WO2006001083A1 - 固体高分子電解質および燃料電池用電極並びに燃料電池 - Google Patents

固体高分子電解質および燃料電池用電極並びに燃料電池 Download PDF

Info

Publication number
WO2006001083A1
WO2006001083A1 PCT/JP2004/009494 JP2004009494W WO2006001083A1 WO 2006001083 A1 WO2006001083 A1 WO 2006001083A1 JP 2004009494 W JP2004009494 W JP 2004009494W WO 2006001083 A1 WO2006001083 A1 WO 2006001083A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid polymer
fuel cell
polymer electrolyte
compound
electrolyte
Prior art date
Application number
PCT/JP2004/009494
Other languages
English (en)
French (fr)
Inventor
Yuichi Aihara
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to PCT/JP2004/009494 priority Critical patent/WO2006001083A1/ja
Publication of WO2006001083A1 publication Critical patent/WO2006001083A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid polymer electrolyte, a fuel cell electrode, and a fuel cell.
  • this electrolyte membrane made of perfluorinated ponsulfonic acid has sufficient proton conductivity and output at an operating temperature of 10 O to 30 ° C and a relative humidity of 50% or less. There was a drawback that it was not possible to obtain.
  • An object of the present invention is to provide a fuel cell electrode and a fuel cell using an electrolyte. Disclosure of the invention
  • the solid polymer electrolyte of the present invention comprises an acid and an iminoimidazolidinedione compound polymer.
  • the iminoimidazolidinedione compound polymer can contain a large amount of phosphoric acid due to its molecular structure. Moreover, the iminoimidazolidinedione compound polymer can form an integral membrane with phosphoric acid without being separated from phosphoric acid. For this reason, the proton conductivity of the solid polymer electrolyte can be increased. Furthermore, since iminoimidazolidinedione compound polymer has high insulating properties and excellent heat resistance, it can be suitably used as an electrolyte membrane for fuel cells.
  • the solid polymer electrolyte of the present invention may contain at least one or more Lewis basic compounds.
  • the phosphoric acid content in the solid polymer electrolyte can be improved by adding the Lewis basic compound. Thereby, the proton conductivity of the solid polymer electrolyte can be further increased.
  • the content of the Lewis basic compound relative to the total of the iminoimidazolidinedione compound polymer and the Lewis basic compound is preferably less than 50% by mass.
  • the Lewis basic compound is preferably at least one of imidazole, indole, benzimidazole, and purine.
  • the electrode for a fuel cell according to the present invention is configured to contain at least an electrode substance and the solid polymer electrolyte.
  • the solid polymer electrolyte excellent in proton conductivity is included in a part of the electrode for the fuel cell, protons are easily conducted to the inside of the electrode for the fuel cell.
  • the internal resistance of the electrode itself can be reduced.
  • the fuel cell of the present invention comprises a pair of electrodes and an electrolyte membrane disposed between the electrodes, and a part or all of the electrolyte membrane is the solid polymer electrolyte, and A part of the electrode is configured to contain the solid polymer electrolyte.
  • the solid polymer electrolyte excellent in proton conductivity is provided as the electrolyte membrane, and further, the solid polymer electrolyte is provided in part of the electrode, so that the internal impedance of the fuel cell is reduced.
  • the current density of the fuel cell can be increased.
  • FIG. 1A to FIG. 1D are diagrams showing the structural formulas of iminoimidazolidinedione compound polymers.
  • FIG. 2 is a graph showing the relationship between the cell voltage and the current density of the fuel cell of Example 1.
  • the fuel cell of the present invention includes a hydrogen electrode that is one electrode, an oxygen electrode that is the other electrode, and a solid polymer electrolyte disposed between the hydrogen electrode and the oxygen electrode.
  • the fuel cell operates in a temperature range of 100 ° C. to 300 ° C.
  • the solid polymer electrolyte has proton conductivity, and conducts protons (hydrogen ions) generated on the hydrogen electrode side to the oxygen electrode side. Protons conducted by the solid polymer electrolyte electrochemically react with oxygen ions at the oxygen electrode to generate water and generate electrical energy.
  • the hydrogen electrode and the oxygen electrode also contain a gel electrolyte.
  • the hydrogen electrode and the oxygen electrode each contain an electrode material such as activated carbon and a binder for solidifying and forming the electrode material, and a part or all of the binder and the solid polymer electrolyte.
  • an electrode material such as activated carbon and a binder for solidifying and forming the electrode material, and a part or all of the binder and the solid polymer electrolyte.
  • the solid polymer electrolyte is composed of an acid and an iminoimidazolidinedione compound polymer.
  • a Lewis basic compound may be added to the solid polymer electrolyte.
  • the acid examples include phosphoric acid, phosphonic acid, and mixtures thereof.
  • the phosphoric acid includes either or both of orthophosphoric acid and condensed phosphoric acid.
  • the iminoimidazolidinedione compound polymer has the structural formula shown in FIG. 1A.
  • the repeating unit is in the range of 10 to 100 00
  • the substituent X is a molecular unit depending on the monomer of the synthesis raw material.
  • the substituent X is a molecule obtained by removing the isocyanate group from diisocyanate.
  • the iminoimidazolidinedione compound polymer is suitable as an electrolyte membrane for a fuel cell because it has high insulation and excellent heat resistance.
  • the iminoimidazolidinedione compound polymer can contain a particularly large amount of phosphoric acid due to its molecular structure.
  • the iminoimidazolidinedione compound polymer can form an integral membrane without being separated from phosphoric acid. Therefore, the proton conductivity of the solid polymer electrolyte can be increased by containing the iminoimidazolidinedione compound polymer in the solid polymer electrolyte.
  • the iminoimidazolidinedione compound polymer contains nitrogen in the molecule, and exhibits weak Lewis basicity due to the presence of this nitrogen.
  • the iminoimidazolidinedione compound polymer has a lower basicity than a conventional polybenzimidazole and the like, and is relatively neutral. Therefore, the interaction between the iminoimidazolidinedione compound polymer and phosphoric acid is the same as that of polybenzimidazole. It is weaker than For this reason, the acid is not restrained inside the iminoimidazolidinedione compound polymer, and the acid can move relatively freely. Thereby, high proton conductivity can be expressed even with a small amount of acid. Further, since the acid content can be reduced, the mechanical strength of the solid polymer electrolyte can be improved.
  • the iminoimidazolidine dimer compound polymer a polymer obtained by introducing a hydrocyanic acid gas in a solvent such as dimethylformamide and superimposing a diisocyanate compound can be exemplified.
  • the diisocyanate compound include diphenyl methane diisocyanate (MD I), 4,4′-diphenyl ether diisocyanate (O D I), naphthylene 1,5-diisocyanate (N D I), and the like.
  • the iminoimidazolidinedione compound polymer can also be synthesized from a dicyanoformamide and the diisocyanate monosaccharide compound.
  • the iminoimidazolidine diene polymer can also be synthesized from a cyanoformamidyl isocyanate.
  • FIG. 1B shows an iminoimidazolidinedione compound polymer synthesized from diphenylmethane diisocyanate (MDI).
  • FIG. 1C shows an iminoimidazolidinedione compound polymer synthesized from 4,4′-diphenylterdiisocyanate (ODI).
  • FIG. 1D shows an iminoimidazolidinedione compound polymer synthesized from naphthylene 1,5-diisocyanate (NDI).
  • n 2 indicating a repeating unit is in the range of 10 to 100.000.
  • the iminoimidazolidinedione compound polymer shown in FIG. 1B to FIG. 1D has a paravanic acid structure in the molecule, it can contain a large amount of phosphoric acid.
  • the iminoimidazolidinedione compound polymer shown in FIGS. 1B to 1D can form an integral membrane without being separated from phosphoric acid. Thereby, the proton conductivity of the solid polymer electrolyte can be increased.
  • the iminoimidazolidinedione compound polymer shown in FIGS. 1B to 1D has an aromatic ring such as a benzene ring in the molecule, the heat resistance can be improved.
  • the selection of diisocyanate compounds As a result, the degree of freedom in molecular design is increased, whereby the interaction between the iminoimidazolidine dione compound polymer and phosphoric acid can be adjusted.
  • the acid content (swelling ratio) in the solid polymer electrolyte can be increased, and the proton conductivity can be further increased.
  • the content of the Lewis basic compound with respect to the total amount of the iminoimidazolidinedione compound polymer and the Lewis basic compound is preferably less than 50% by mass.
  • the Lewis basic compound is desirably water-insoluble.
  • the Lewis basic compound does not flow out of the solid polymer electrolyte together with water, and the proton conductivity of the solid polymer electrolyte is increased. Can remain high over time.
  • Lewis basic compound it is preferable to add at least one of imidazole, benzimidazole, pyrazole, and purine, and benzimidazole is particularly preferable because it is poorly water-soluble.
  • MDI diphenylmethane diisocyanate
  • ODI 4, 4'-diphenyl ether diisocyanate
  • ND I Diisocyanate
  • the obtained P ImMD I, P ImODI, and P ImND I were each dissolved in N-methylpyrrolidone to give a 10% by weight solution. These solutions were coated on a glass plate using a doctor blade, pre-dried at 60 ° C, and further dried at 120 ° C for 15 minutes to form a polymer film. After washing with water, vacuum drying was performed at 60 ° C. and 0.1 torr. All film thicknesses were about 30 m. Next, the obtained polymer film was directly immersed in 85% phosphoric acid at room temperature. After 2 hours, the polymer membrane was pulled up and the phosphoric acid on the membrane surface was wiped off with a wiping cloth. In this way, the solid polymer electrolytes of Examples 1 to 3 were produced.
  • PI mMDI was dissolved in N-methylpyrrolidone to obtain a 10% by mass solution.
  • 10% by mass of benzimidazole, imidazole, indole and purine were added with respect to PI mMDI.
  • these solutions were coated on a glass plate using a doctor blade in the same manner as in Example 1, preliminarily dried at 60 ° C, and further dried at 120 for 15 minutes.
  • a polymer film was formed. After washing with water, vacuum drying was performed under the conditions of 6 OX, 0.1 t 0 rr. All film thicknesses were about 30 // m.
  • the obtained polymer film was directly immersed in 85% phosphoric acid at room temperature. After 2 hours, the polymer membrane was pulled up and the phosphoric acid on the membrane surface was wiped off with a wiping cloth. Thus, the solid polymer electrolytes of Examples 4 to 7 were produced.
  • Example 2 In the same manner as in Example 1, P 1 mMD I was dissolved in N-methylpyrrolidone to obtain a 10% by mass solution. To this solution, 20 to 50% by mass of benzimidazole was added with respect to PI mMDI. Next, a polymer film was formed under the same conditions as in Example 1, and the obtained polymer film was immersed in phosphoric acid. In this way, the solid polymer electrolytes of Examples 8 to 9 and Comparative Example 1 were produced.
  • Polybens imidazole is dissolved in N-methylpyrrolidone to prepare a solution, followed by coating, preliminary drying, main drying, and swelling by immersion in water in order, and a polybens imidazole with a thickness of 30 m.
  • a membrane was produced.
  • the obtained polybenzimidazole membrane was directly immersed in 85% phosphoric acid at room temperature, and after 2 hours, it was lifted and the phosphoric acid on the surface of the moon was wiped off with a wiping cloth. In this way, the solid polymer electrolyte of Comparative Example 2 was produced.
  • Table 1 shows the types of iminoimidazolidindione compound polymers of Examples 1 to 9 and Comparative Example 1 and Comparative Example 2, the types of Lewis basic compounds, iminoimidazolidine lysinedione compound polymers, and Lewis basic compounds. The content of the Lewis basic compound relative to the total is shown.
  • Proton conductivity was measured by punching a solid polymer electrolyte into a circular shape with a diameter of 13 mm to measure proton conductivity under non-humidified conditions. After sandwiching between blocking electrodes and allowing to stand at 70 for 1 hour, the resistance between the electrodes was measured by the AC impedance method. The results are shown in Table 2.
  • solid polymer electrolytes using iminoimidazolidinedione compound polymers have high proton conductivity and sufficient conductivity as fuel cell electrolytes.
  • Examples 4 to 5 were carried out with the addition rate of the Lewis basic compound being 10%.
  • Example 9 it can be seen that the proton conductivity is further improved as compared with the fixed polymer electrolyte to which the Lewis basic compound is not added.
  • the phosphoric acid swelling rate increases as the benzimidazole addition rate increases, and the proton conductivity also increases.
  • Comparative Example 2 it can be seen that the proton conductivity is greatly reduced even though the swelling rate of phosphoric acid is similar to that of the other examples. This is thought to be because polybenzimidazole, which is a high molecular host, is relatively strongly basic, and thus the interaction between phosphoric acid and polybenzimidazole became stronger, impeding the conduction of hydrogen ions. .
  • the solid polymer electrolyte of the present invention exhibits high proton conductivity even though the phosphoric acid content is relatively low. Also, since the phosphoric acid content is low, it is considered that the mechanical strength of the membrane is relatively improved.
  • a fuel cell was constructed by sandwiching the solid polymer electrolyte of Example 1 between the electrodes.
  • a power generation test was conducted using hydrogen as the anode gas and air as the power sword gas.
  • the temperature of the fuel cell was set at 130 ° C.
  • the supply amounts of hydrogen and oxygen were set at 100 ml / min and 300 m 1 Z, respectively, and the supply gas was not humidified.
  • Figure 2 shows the relationship between fuel cell voltage and current density.
  • the fuel cell using the solid polymer electrolyte of Example 1 was capable of generating power up to a current density of 0.5 AZ cm 2 or more. Since the solid polymer electrolyte of Example 1 has high proton conductivity, it is considered that the internal resistance of the fuel cell is kept low, thereby obtaining a high output. Industrial applicability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Description

固体高分子電解質および燃料電池用電極並びに燃料電池 技術分野
本発明は、 固体高分子電解質および燃料電池用電極並びに燃料電池に関する。 背景技術
燃料電池の技術分野においては、明良好なプロトン伝導性を長期に安定的に示す 電解質膜が望まれている。 特に、 発電効細 1率、 システム効率、 構成部材の長期耐久 性の観点から、 1 0 0 °C〜3 0 0 °Cの温度で書、 無加湿若しくは相対湿度 5 0 %以 下の条件で、 良好なプロトン伝導性を示す電解質膜が望まれている。 従来の固体 高分子電解質型燃料電池の開発において、 上記要求に鑑みて様々な電解質膜が検 討されてきた。 従来の電解質膜のなかで、 比較的良好な特性を示すものにパーフ ルォロカーボンスルホン酸からなる電解質膜がある。 しかし、 このパーフルォロ 力一ポンスルホン酸からなる電解質膜であっても、 1 0 O 以上 3 0 0 °C以下の 作動温度下、 相対湿度 5 0 %以下の条件では、 十分なプロトン伝導性および出力 を得る事が出来ないという欠点があった。
また最近では、 特表平 1 1一 5 0 3 2 6 2号公報に記載されているように、 リ ン酸などの強酸をドープさせたポリベンズィミダゾ一ルからなる固体電解質膜が 開発されている。 この固体電解質膜は、 優れた耐酸化性及び耐熱性を有し、 しか も 2 0 0 °Cまでの高温でも作動可能とされている。
しかし、 リン酸をドープさせたポリべンズイミダゾールからなる固体電解質膜 においても、 燃料電池動作のために十分なプロトン伝導度を得るには、 ポリベン ズィミダゾール重量に対して 4〜 5倍のリン酸を含有させなければならない。 こ のようなリン酸含有量の大きな膜は、 機械的強度が低く、 また燃料電池に組み込 んだ場合にガスのクロスオーバーを発生させる可能性がある。 その一方で、 膜の 機械的強度を高めるためにリン酸のドープ率を低くすると、 プロトン伝導性が低 下してしまう問題がある。 本発明は、 上記事情に鑑みてなされたものであって、 無加湿 '高温の条件にお いても高いプロトン伝導性を示し、 かつ機械的強度に優れた固体高分子電解質お よびこの固体高分子電解質を用いた燃料電池用電極並びに燃料電池を提供するこ とを目的とする。 発明の開示
本発明の固体高分子電解質は、 酸と、 ィミノイミダゾリジンジオン化合物重合 体とから構成される。
ィミノイミダゾリジンジオン化合物重合体は、 その分子構造上、 リン酸を多く 含有することができる。 また、 ィミノイミダゾリジンジオン化合物重合体は、 リ ン酸と分離することがなく、 リン酸とともに一体の膜を形成できる。 このため、 固体高分子電解質のプロトン伝導性を高めることができる。 更に、 ィミノイミダ ゾリジンジオン化合物重合体は絶縁性が高く、 耐熱性にも優れているので、 燃料 電池の電解質膜として好適に用いることができる。
また、 本発明の固体高分子電解質には、 少なくとも一種以上のルイス塩基性化 合物が含有されていてもよい。
上記構成によれば、 ルイス塩基性化合物を添加することによって、 固体高 分子電解質におけるリン酸の含有量を向上させることができる。 これによ り、 固体高分子電解質のプロトン伝導度を更に高めることができる。
また、 前記ィミノイミダゾリジンジオン化合物重合体と前記ルイス塩基性化合 物との合計に対する前記ルイス塩基性化合物の含有率が 5 0質量%未満であるこ とが好ましい。
上記構成によれば、 固体高分子電解質の機械的強度を高めることができる。 また、 前記ルイス塩基性化合物は、 イミダゾール、 インドール、 ベンズイミダ ゾール、 プリンのうちのいずれか 1種以上であることが好ましい。
これらのルイス塩基性化合物は難水溶性であるので、 燃料電池の反応生成 物として水が生成した場合でも、 これらルイス塩基性化合物が水とともに 固体高分子電解質から流出してしまうおそれがなく、 長期間に渡つてプロ トン伝導度を高く維持することができる。 また本発明の燃料電池用電極は、 電極物質と、 前記固体高分子電解質とが少な くとも含有されて構成される。
上記構成によれば、 プロトン伝導度に優れた固体高分子電解質が燃料電池用電 極の一部に含まれているので、 燃料電池用電極の内部までプロトンが伝導されや すくなり、 燃料電池用電極自体の内部抵抗を低減できる。
また本発明の燃料電池は、 一対の電極と、 前記各電極の間に配置された電解質 膜とから構成され、 前記電解質膜の一部または全部が、 前記固体高分子電解質と され、 且つ、 前記電極の一部に前記固体高分子電解質が含有されて構成される。 上記構成によれば、 プロトン伝導度に優れた固体高分子電解質を電解質膜とし て備え、 更に電極の一部にもこの固体高分子電解質が備えられているので、 燃料 電池の内部インピーダンスを低減させることができ、 燃料電池の電流密度を高め ることができる。 図面の簡単な説明
図 1 A〜図 1 D は、 ィミノイミダゾリジンジオン化合物重合体の構造式を示す 図である。
図 2は、 実施例 1の燃料電池の電池電圧と電流密度との関係を示すグラフであ る。
発明を実施するための最良の形態
以下、 図面を参照しつつ、 本発明の好適な実施例について説明する。 ただし、 本発明は以下の実施例に限定されるものではなく、 本発明の範囲内で変更を加え てもよい。
本発明の燃料電池は、一方の電極である水素極と、他方の電極である酸素極と、 前記水素極及び前記酸素極との間に配置された固体高分子電解質とから構成され ている。 前記燃料電池は 1 0 0 °Cないし 3 0 0 °Cの温度範囲で作動する。 前記固 体高分子電解質はプロトン伝導性を有しており、 前記水素極側で生じたプロトン (水素イオン) を前記酸素極側に伝導させる。 前記固体高分子電解質によって伝 導されたプロトンは、 前記酸素極において酸素イオンと電気化学反応して水を生 成するとともに、 電気エネルギーを生じさせる。 前記燃料電池においては、 前記水素極及び前記酸素極にもゲル電解質が含有さ れている。 即ち、 前記水素極及び前記酸素極には、 活性炭等の電極物質と、 前記 電極物質を固化成形するためのバインダとが含有されており、 前記バインダの一 部または全部が前記固体高分子電解質とされている。 この構成によって、 電極内 部と電極外部との間でプロトンが伝導されやすくなり、 電極の内部抵抗が低減さ れる。
前記固体高分子電解質は、 酸と、 ィミノイミダゾリジンジオン化合物重合体と から構成される。 また前記固体高分子電解質には、 ルイス塩基性化合物が添加さ れていてもよい。
前記酸としては、 リン酸、 ホスホン酸あるいはこれらの混合物を例示できる。 また前記リン酸には、 オルトリン酸、 縮合リン酸のいずれか一方または両方が含 まれる。
ィミノイミダゾリジンジオン化合物重合体は、 図 1 Aに示す構造式からなるも のである。 なお、 図 1 A中、 繰り返し単位を示す は 1 0〜1 0 0 0 0の範囲 であり、 置換基 Xは合成原料のモノマーに依存する分子ユニットである。 たとえ ば、 ジイソシァネ一トを原料として合成された場合には、 置換基 Xはジイソシァ ネ一トからイソシァネ一ト基を除いた分子となる。 前記ィミノイミダゾリジンジ オン化合物重合体は、 絶縁性が高く、 耐熱性にも優れているので、 燃料電池の電 解質膜として好適である。 また、 前記イミノイミダゾリジンジオン化合物重合体 は、 その分子構造上、 リン酸を特に多く含有することができる。 更に、 前記イミ ノイミダゾリジンジオン化合物重合体は、 リン酸と分離することなく一体の膜を 形成できる。 従って、 前記イミノイミダゾリジンジオン化合物重合体を前記固体 高分子電解質に含有させることによって、 前記固体高分子電解質のプロトン伝導 性を高めることができる。
また、 前記イミノイミダゾリジンジオン化合物重合体は、 分子中に窒素を含ん でおり、 この窒素の存在によって弱いルイス塩基性を示す。 また前記イミノイミ ダゾリジンジオン化合物重合体は、 従来のポリベンズィミダゾ一ル等に比べると 塩基性が低く、 比較的中性に近いものである。 このため、 前記イミノイミダゾリ ジンジオン化合物重合体とリン酸との相互作用が、 ポリべンズィミダゾールの場 合よりも弱くなつている。 このため、 前記イミノイミダゾリジンジオン化合物重 合体の内部では酸が拘束されず、 酸が比較的自由に動ける。 これにより、 少量の 酸でも高いプロトン伝導性を発現させることができる。 また酸の含有量を少なく できるので、 前記固体高分子電解質の機械的強度を向上することができる。
前記ィミノイミダゾリジンジ才ン化合物重合体の一例として、 ジメチルフオル ムアミドなどの溶媒中において青酸ガスを導入してジィソシァネート化合物を重 合させたものを例示できる。 前記ジィソシァネート化合物としては、 ジフエニル メタンジイソシァネート (MD I )、 4、 4 ' ージフエニルエーテルジイソシァネ —ト (O D I )、 ナフチレン 1、 5—ジイソシァネート (N D I ) などを例示でき る。 更にィミノイミダゾリジンジオン化合物重合体は、 ジシァノフオルムアミド 類と前記ジイソシァネ一卜化合物とから合成することもできる。 また、 前記イミ ノイミダゾリジンジ才ン化合物重合体は、 シァノフオルムアミジルイソシァネ一 卜からも合成できる。
前記ィミノイミダゾリジンジオン化合物重合体の具体例としては、 図 1 Bない し図 1 Dのいずれかの構造式で表されるものを例示できる。 図 1 Bには、 ジフエ ニルメタンジイソシァネート (MD I ) から合成されたィミノイミダゾリジンジ オン化合物重合体を示す。 また、 図 1 Cには、 4、 4 ' ージフエ二ルェ一テルジ イソシァネ一ト (O D I ) から合成されたィミノイミダゾリジンジオン化合物重 合体を示す。 更に、 図 1 Dには、 ナフチレン 1、 5—ジイソシァネート (N D I ) から合成されたィミノイミダゾリジンジオン化合物重合体を示す。 なお、 図 1 B ないし図 1 Dにおいて、 繰り返し単位を示す n 2は、 1 0〜 1 0 0 0 0の範囲で ある。
図 1 Bないし図 1 Dに示すィミノイミダゾリジンジオン化合物重合体は、 分子 中にパラバン酸の構造を有しているため、 リン酸を多く含有することができる。 また、 図 1 Bないし図 1 Dに示すィミノイミダゾリジンジオン化合物重合体は、 リン酸と分離することなく一体の膜を形成できる。 これにより、 前記固体高分子 電解質のプロトン伝導性を高めることができる。 また、 図 1 Bないし図 1 Dに示 すィミノイミダゾリジンジオン化合物重合体は、 分子中にベンゼン環等の芳香族 環を有しているので、 耐熱性を向上できる。 また、 ジイソシァネート化合物の選 択によって分子設計の自由度が大きくなり、 これにより、 ィミノイミダゾリジン ジォン化合物重合体とリン酸との相互作用を調整することができる。
次に、 前記固体高分子電解質に、 前記ルイス塩基性化合物を添加することによ つて、 前記固体高分子電解質中おける酸の含有量 (膨潤率) を増加させることが でき、 プロトン伝導度を更に高めることができる。 すなわち、 前記ルイス塩基性 化合物を前記ィミノイミダゾリジンジオン化合物重合体に溶解若しくは分散させ ることにより、 前記固体高分子電解質の酸に対する膨潤度を更に高めることがで きる。 これにより、 無加湿 ·高温の条件においても、 高いイオン伝導性を発現さ せることができ、 燃料電池用電解質に用いて発電可能な電解質を得ることができ る。
ただし、 前記ィミノイミダゾリジンジオン化合物重合体に対する前記ルイス塩 基性化合物の添加量が多すぎると、 前記固体高分子電解質の機械的強度が低下し てしまう。 従って、 前記イミノイミダゾリジンジオン化合物重合体および前記ル イス塩基性化合物の合計量に対する前記ルイス塩基性化合物の含有率を 5 0質 量%未満とすることが好ましい。
また、 ルイス塩基性化合物は非水溶性であることが望ましい。 これにより、 燃 料電池の反応生成物として水が生成した場合でも、 前記ルイス塩基性化合物が水 とともに前記固体高分子電解質から流出するおそれがなく、 前記固体高分子電解 質のプロトン伝導度を長期間に渡って高く維持することができる。
ルイス塩基性化合物としては、 イミダゾ一ル、 ベンズイミダゾ一ル、 ピラゾー ル、 プリンのうちのいずれか 1種以上を添加することが好ましく、 特にべンズィ ミダゾールが難水溶性である点で好ましい。
以上説明したように、 前記固体高分子電解質によれば、 プロトン伝導性を高め ることができ、 また、 この電解質を燃料電池に使用することによって燃料電池の 電流密度を高めることができ、 高出力な燃料電池を構成することができる。
[実施例]
(ィミノイミダゾリジンジオン化合物重合体の製造)
ジイソシァネート化合物として、ジフエニルメタンジイソシァネート(M D I )、 4、 4 ' ージフエニルエーテルジイソシァネ一ト (O D I )、 ナフチレン 1、 5— ジイソシァネート (ND I) を用意した。 そして、 これらのジイソシァネート化 合物をそれぞれ、 ニトロベンゼンとトルエンの混合溶媒 (ニトロベンゼン: トル ェン =10 : 1) に溶かして 10質量%の溶液とした。 次に、 アイスバスで冷却 させながら、 このジイソシァネート化合物の溶液に、 10質量%のシアン化水素 を含むニトロベンゼン溶液を混合した。 更に、 この混合液に、 シアン化ナトリウ ムの N—メチルー 2—ピロリジノン飽和溶液を滴下した。 その結果、 前駆体とな る高分子の沈殿が溶液中に徐々に生じた。 更にこの溶液をアイスバスから取り出 して室温に戻しながら約 1時間反応を行った。 得られた前駆体の高分子をろ過、 水洗してから更にメタノールで洗浄し、 40でで 8時間乾燥した。 このようにし て各種のィミノイミダゾリジンジオン化合物重合体を製造した。 上記の MD I、 OD I、 ND Iから合成したィミノイミダゾリジンジオン化合物重合体をそれぞ れ、 P ImMD I、 P ImOD I、 P ImND Iと表記する。
(実施例 1〜 3の固体高分子電解質の製造)
次に、 得られた P ImMD I、 P Im〇D I、 P ImND Iを、 N—メチルピ ロリドンにそれぞれ溶解して 10重量%の溶液とした。 これらの溶液をドクター ブレードを用いてガラス板上に塗膜し、 60°Cにて予備乾燥を行い、 さらに 12 0°Cにて 15分問乾燥を行って高分子膜を形成した。水洗後、真空乾燥を 60°C、 0. 1 t o r rの条件にて乾燥した。膜厚はいずれも約 30 mであった。次に、 得られた高分子膜を室温にて 85%のりん酸に直接浸漬させた。 2時間経過後、 高分子膜を引き上げ、 膜表面のりん酸をワイピングクロスで拭き取った。 このよ うにして実施例 1〜 3の固体高分子電解質を製造した。
(実施例 4〜 7の固体高分子電解質の製造)
実施例 1と同様にして、 P I mMD Iを N—メチルピロリドンに溶解して 10 質量%の溶液とした。 この溶液に、 P I mMD Iに対して 10質量%のべンズィ ミダゾール、 イミダゾ一ル、 インドール、 プリンをそれぞれ添加した。 次に、 こ れらの溶液を実施例 1と同様にしてドクターブレードを用いてガラス板上に塗膜 後、 60°Cにて予備乾燥を行い、 さらに 120 にて 15分問乾燥を行って高分 子膜を形成した。 水洗後、 真空乾燥を 6 OX, 0. 1 t 0 r rの条件にて乾燥し た。 膜厚はいずれも約 30 //mであった。 次に、 得られた高分子膜を室温にて 8 5 %のりん酸に直接浸漬した。 2時問経過 の後、 高分子膜を引き上げ、 膜表面のりん酸をワイビングクロスで拭き取った。 このようにして実施例 4〜 7の固体高分子電解質を製造した。
(実施例 8〜 9および比較例 1の固体高分子電解質の製造)
実施例 1と同様にして、 P I mMD Iを N—メチルピロリドンに溶解して 1 0 質量%の溶液とした。 この溶液に、 P I mMD Iに対して 2 0〜5 0質量%のべ ンズイミダゾールを添加した。 次に、 実施例 1と同一の条件で高分子膜を形成す るとともに、 得られた高分子膜をりん酸に浸漬させた。 このようにして実施例 8 〜 9および比較例 1の固体高分子電解質を製造した。
(比較例 2の電解質の製造)
ポリべンズイミダゾ一ルを N—メチルピロリドンに溶解して溶液を調製し、 続 いて塗膜、 予備乾燥、 本乾燥、 水中への浸漬による膨潤を順次行い、 膜厚 3 0 mのポリべンズイミダゾ一ル膜を製造した。 そして、 得られたポリべンズイミダ ゾール膜を室温にて 8 5 %のりん酸に直接浸潰し、 2時問経過した後に引き上げ、 月莫表面のりん酸をワイピングクロスで拭き取つた。 このようにして比較例 2の固 体高分子電解質を製造した。
(評価)
〈固体高分子電解質の膨潤率及びプロトン伝導度〉
表 1には、 実施例 1〜 9および比較例 1並びに比較例 2のィミノイミダゾリジ ンジオン化合物重合体の種類と、 ルイス塩基性化合物の種類と、 ィミノイミダゾ リジンジオン化合物重合体とルイス塩基性化合物の合計に対するルイス塩基性化 合物の含有率とを示す。
実施例 1〜 9および比較例 1並びに比較例 2の固体高分子電解質について、 リ ン酸膨潤率とプロトン伝導度を測定した。 リン酸膨潤率は、 リン酸に浸積する前 のィミノイミダゾリジンジオン化合物重合体の質量 (M l ) と、 リン酸浸積後の 固体高分子電解質の質量 (M 2 ) から、 膨潤率を算出した。 膨潤率 (%) は、 膨 潤率 (%) =M 2 ZM 1 X 1 0 0で求めた。 結果を表 2に示す。
また、 プロトン伝導度は、 無加湿に近い条件でプロトン伝導度を測定するため に、 固体高分子電解質を直径 1 3 mmの大きさの円形状に打ち抜き、 これを白金 ブロッキング電極で挟み込み、 7 0 にて 1時間放置したのち、 電極間の抵抗を A Cインピーダンス法にて測定した。 結果を表 2に示す。
「表 1 J
Figure imgf000011_0001
「表 2」
Figure imgf000011_0002
表 1に示すように、 ィミノイミダゾリジンジオン化合物重合体を用いた固体高 分子電解質は、 プロトン伝導度が高く、 燃料電池の電解質として十分な伝導度を 有している。 また、 ルイス塩基性化合物の添加率を 1 0 %とした実施例 4〜実施 例 9については、 ルイス塩基性化合物が無添加の固定高分子電解質と比較して、 プロトン伝導度が更に向上していることがわかる。 特に、 実施例 4、 8および 9 の結果から明らかなように、 ベンズイミダゾ一ルの添加率の増加とともにリン酸 膨潤率が増加し、 併せてプロトン伝導度も増加していることがわかる。
一方、 ベンズイミダゾ一ルを 5 0 %添加した比較例 1については、 機械的強度 が低下して、 均一な膜の形成が困難であった。
更に、 比較例 2については、 リン酸の膨潤率が他の実施例と同程度であるにも かかわらず、 プロトン伝導度が大幅に低下していることがわかる。 これは、 高分 子ホストであるポリべンズイミダゾ一ルが比較的強塩基性であるため、 リン酸と ポリべンズイミダゾールとの相互作用が強くなり、 水素イオンの伝導が妨げられ たためと考えられる。
このように、 本発明の固体高分子電解質は、 リン酸の含有量が比較的低いにも かかわらず、 高いプロトン伝導度を示すことがわかる。 また、 リン酸の含有量が 低いため、 相対的に膜の機械的強度も向上していると考えられる。
(燃料電池の性能)
白金担持したカーボンを電極物質として含む電極を 2枚用意した。 この電極の 間に実施例 1の固体高分子電解質を挟んで燃料電池を構成した。 水素をアノード ガスとし、 空気を力ソードガスとして発電試験を行った。 また、 燃料電池の温度 を 1 3 0 °Cとし、 水素及び酸素の供給量をそれぞれ、 1 0 0 m l /分、 3 0 0 m 1 Z分とし、 供給ガスの加湿は行わなかった。 図 2に、 燃料電池の電圧と電流密 度との関係を示す。
図 2に示すように、 実施例 1の固体高分子電解質を用いた燃料電池では、 電流 密度が 0 . 5 AZ c m2以上まで発電が可能であった。 実施例 1の固体高分子電 解質のプロトン伝導度が高いために、 燃料電池の内部抵抗が低く抑えられ、 これ により高出力が得られたものと考えられる。 産業上の利用の可能性
本発明の固体高分子電解質によれば、 ィミノイミダゾリジンジオン化合物重合 体を備えているので、 プロトン伝導性を向上させることができる。

Claims

請求の範囲
1 . 酸と、 ィミノイミダゾリジンジオン化合物重合体とから構成される固体高分 子電解質。
2 . 請求項 1に記載の固体高分子電解質であって、 少なくとも一種以上のルイス 塩基性化合物が含有されている固体高分子電解質。
3 . 請求項 2に記載の固体高分子電解質であって、 前記イミノイミダゾリジンジ オン化合物重合体と前記ルイス塩基性化合物との合計に対する前記ルイス塩基性 化合物の含有率が 5 0質量%未満である固体高分子電解質。
4. 請求項 2に記載の固体高分子電解質であって、 前記ルイス塩基性化合物が、 イミダゾ一ル、 インド一ル、 ベンズイミダゾール、 プリンのうちのいずれか 1種 以上である固体高分子電解質。
5 . 電極物質と、 請求項 1ないし請求項 4のいずれかに記載の固体高分子電解質 とが少なくとも含有されてなる燃料電池用電極。
6 . 一対の電極と、 各電極の間に配置された電解質膜とから構成され、 前記電解 質膜の一部または全部が、 請求項 1ないし請求項 4のいずれかに記載の固体高分 子電解質とされ、 かつ、 前記電極の一部に前記固体高分子電解質が含有されてい る燃料電池。
PCT/JP2004/009494 2004-06-29 2004-06-29 固体高分子電解質および燃料電池用電極並びに燃料電池 WO2006001083A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009494 WO2006001083A1 (ja) 2004-06-29 2004-06-29 固体高分子電解質および燃料電池用電極並びに燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009494 WO2006001083A1 (ja) 2004-06-29 2004-06-29 固体高分子電解質および燃料電池用電極並びに燃料電池

Publications (1)

Publication Number Publication Date
WO2006001083A1 true WO2006001083A1 (ja) 2006-01-05

Family

ID=35781635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009494 WO2006001083A1 (ja) 2004-06-29 2004-06-29 固体高分子電解質および燃料電池用電極並びに燃料電池

Country Status (1)

Country Link
WO (1) WO2006001083A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286658A (ja) * 1988-09-21 1990-03-27 Ryuichi Yamamoto 新しい高分子固体電解質
JP2001233974A (ja) * 2000-02-23 2001-08-28 Sumitomo Electric Ind Ltd イオン交換膜とその製造方法
JP2001332306A (ja) * 1999-11-22 2001-11-30 Hitachi Maxell Ltd ポリマー電解質および二次電池
JP2004006232A (ja) * 2001-12-27 2004-01-08 Sanyo Chem Ind Ltd 高分子電解質
JP2004256797A (ja) * 2003-02-04 2004-09-16 Honda Motor Co Ltd 高分子電解質、プロトン伝導膜および膜−電極構造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286658A (ja) * 1988-09-21 1990-03-27 Ryuichi Yamamoto 新しい高分子固体電解質
JP2001332306A (ja) * 1999-11-22 2001-11-30 Hitachi Maxell Ltd ポリマー電解質および二次電池
JP2001233974A (ja) * 2000-02-23 2001-08-28 Sumitomo Electric Ind Ltd イオン交換膜とその製造方法
JP2004006232A (ja) * 2001-12-27 2004-01-08 Sanyo Chem Ind Ltd 高分子電解質
JP2004256797A (ja) * 2003-02-04 2004-09-16 Honda Motor Co Ltd 高分子電解質、プロトン伝導膜および膜−電極構造体

Similar Documents

Publication Publication Date Title
US5525436A (en) Proton conducting polymers used as membranes
JP4416778B2 (ja) 燃料電池用スルホン化パーフルオロシクロブタン多価電解質膜
US6962959B2 (en) Composite electrolyte with crosslinking agents
JP2006147165A (ja) 固体高分子電解質膜とこの製造方法およびこれを用いた燃料電池
US7488549B2 (en) Proton conducting polymer, polymer membrane comprising the same, method of manufacturing the polymer membrane, and fuel cell using the polymer membrane
JP5233065B2 (ja) イオン性基を有するポリマー、高分子電解質材料、高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
KR20130040022A (ko) 고분자 전해질막 및 이를 포함하는 연료 전지
KR100506096B1 (ko) 말단 술폰산기를 포함하는 고분자 및 이를 채용한 고분자전해질과 연료 전지
JP5005160B2 (ja) ゲル電解質及び燃料電池
JP4637488B2 (ja) ゲル電解質および燃料電池用電極および燃料電池
JP4762695B2 (ja) プロトン伝導性固体高分子電解質及び燃料電池
KR101042960B1 (ko) 연료전지용 고체고분자 전해질 및 연료전지
KR102629899B1 (ko) 화합물, 이로부터 유래되는 단위를 포함하는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 집합체, 연료전지 및 레독스 플로우 전지
JP2003229143A (ja) プロトン伝導性高分子膜及びそれからなる燃料電池
WO2006001083A1 (ja) 固体高分子電解質および燃料電池用電極並びに燃料電池
KR20100083994A (ko) 염기성 치환기를 갖는 폴리벤즈이미다졸계 고분자 및 이를 포함하는 전해질막
KR100612897B1 (ko) 프로톤 전도성 전해질, 그 제조방법 및 이를 이용한 연료전지
EP2446499B1 (en) Proton exchange membrane fuel cell
JP5614615B2 (ja) 高分子電解質、およびその利用
JP2007063533A (ja) スルホン酸基含有ポリマーとその用途および製造方法
JP4583874B2 (ja) プロトン伝導性固体高分子電解質膜および燃料電池
WO2013161405A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
JP4022833B2 (ja) スルホン酸基含有ポリマー及びその用途
KR101797160B1 (ko) 연료 전지용 고분자 전해질 막 전구체 조성물, 연료 전지용 고분자 전해질 막, 이의 제조방법, 이를 포함하는 연료 전지용 막-전극 어셈블리 및 연료 전지 시스템
JP4697385B2 (ja) イオン交換膜、膜/電極接合体、燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase