WO2006000349A2 - Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre - Google Patents

Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre Download PDF

Info

Publication number
WO2006000349A2
WO2006000349A2 PCT/EP2005/006549 EP2005006549W WO2006000349A2 WO 2006000349 A2 WO2006000349 A2 WO 2006000349A2 EP 2005006549 W EP2005006549 W EP 2005006549W WO 2006000349 A2 WO2006000349 A2 WO 2006000349A2
Authority
WO
WIPO (PCT)
Prior art keywords
inert gas
substrate
radiation
curing
net
Prior art date
Application number
PCT/EP2005/006549
Other languages
English (en)
French (fr)
Other versions
WO2006000349A3 (de
Inventor
Andreas Daiss
Erich Beck
Manfred Biehler
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AT05753770T priority Critical patent/ATE471218T1/de
Priority to EP05753770A priority patent/EP1791652B1/de
Priority to CN2005800210422A priority patent/CN101304814B/zh
Priority to JP2007517159A priority patent/JP4819803B2/ja
Priority to BRPI0512542-1A priority patent/BRPI0512542A/pt
Priority to DE502005009765T priority patent/DE502005009765D1/de
Priority to KR1020077001772A priority patent/KR20070034073A/ko
Priority to US11/629,195 priority patent/US7863583B2/en
Publication of WO2006000349A2 publication Critical patent/WO2006000349A2/de
Publication of WO2006000349A3 publication Critical patent/WO2006000349A3/de

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0486Operating the coating or treatment in a controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/066After-treatment involving also the use of a gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/068Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using ionising radiations (gamma, X, electrons)

Definitions

  • the invention relates to a device and a method for the production of molding compounds and coatings on substrates by curing radiation-curable compositions under an inert gas atmosphere by irradiation with high-energy radiation.
  • This oxygen inhibition effect can be achieved by the use of high amounts of photoinitiator, by co-using coinitiators, for. Amines, high energy, high dose UV radiation, e.g. be reduced with high pressure mercury lamps or by the addition of barrier-forming waxes.
  • Radiation-curable compositions may contain both volatile diluents, such as, for example, water or organic solvents, and be processed in the absence of such diluents.
  • volatile diluents such as, for example, water or organic solvents
  • the process of radiation curing is suitable for coatings which are carried out in industrial applications or in medium or small craft enterprises or in the domestic sector. So far, however, has the complicated implementation of the method and the benö ⁇ ended devices, in particular the UV lamps, an application of radiation curing in the non-industrial areas prevented.
  • WO 01/39897 describes a process for radiation curing under an inert gas atmosphere which is heavier than air, preferably carbon dioxide.
  • a preferred embodiment for curing described therein takes place in a dip tank.
  • the object of the invention was to provide a device with which a radiation curing can be performed and you can keep the consumption of inert gas as low as possible.
  • the object has been achieved by a device 1 for carrying out a curing of coatings on a substrate S under an inert gas atmosphere containing
  • Shielding gases which are heavier than air and those which are lighter than air can be used in the device according to the invention.
  • the molecular weight of an inert gas which is heavier than air is therefore greater than 28.8 g / mol (corresponds to the molecular weight of a gas mixture of 20% oxygen O 2 and 80% nitrogen N 2 ), preferably greater than 30 g / mol, particularly preferably min - at least 32 g / mol, in particular greater than 35 g / mol.
  • Suitable examples include noble gases such as argon, hydrocarbons and halogenated hydrocarbons. Carbon dioxide is particularly preferred.
  • the supply of carbon dioxide may be from pressurized containers, filtered combustion gases, e.g. of natural gas or hydrocarbons, or preferably as dry ice er ⁇ follow.
  • the supply of dry ice is considered to be advantageous, in particular for applications in the non-industrial or in the small industrial sector, since solid dry ice can be transported and stored as a solid in simple containers insulated with foams.
  • the dry ice can be used as such, it is then in gaseous form at the usual temperatures of use.
  • Another advantage in the use of dry ice is the cooling effect that can be used for the condensation and removal of volatile coating components, such as solvents or water (see below).
  • Shielding gases which are lighter than air are those having a molecular weight of less than 28.8 g / mol, preferably not more than 28.5 g / mol, more preferably not more than 28.1 g / mol.
  • Examples of these are molecular nitrogen, helium, neon, carbon monoxide, steam, methane or nitrogen-air mixtures (so-called lean air), particular preference is given to nitrogen, water vapor and nitrogen-air mixtures, very particular preference is given to nitrogen and nitrogen. Air mixtures, in particular nitrogen.
  • the supply of inert gases which are lighter than air can preferably be carried out from pressurized containers or from oxygen-depleted exhaust gases, for example from oxidations or coking exhaust gases or by separating off oxygen from gas mixtures, such as, for example, Air or combustion gases, over membranes.
  • protection gas and “inert gas” are used interchangeably in this document and refer to those compounds which do not react significantly with the coating compositions when irradiated with high-energy radiation and which do not adversely affect their curing with respect to speed and / or quality. In particular, this is understood to mean a low oxygen content (see below). In it “does not mean Substantially react "that the inert gases under the applied in the process irradiation with high-energy radiation to less than 5 mol% per hour, preferably less than 2 mol% per hour and more preferably less than 1 mol% per hour with the coating materials or other substances within the device react.
  • the protective gas (mixture) is introduced into the device and the air is forced out of it.
  • the device now contains a protective gas atmosphere into which the substrate, which is coated with the radiation-curable composition, or the shaped body can be guided. Subsequently, the radiation hardening can take place.
  • the average oxygen content (O 2 ) in the protective gas atmosphere should be less than 15% by volume, preferably less than 10% by volume, more preferably less than 8% by volume, very preferably less than 6% by volume and in particular less than 3% by volume, based in each case on the total amount of gas in the protective gas atmosphere;
  • the particular difficulty is to be taken into account that three-dimensional substrates entrain oxygen into the device according to the invention (so-called scooping) and the oxygen content is therefore substantially more difficult to reduce than with two-dimensional objects such as films, webs or the like.
  • lower oxygen contents than in the case of three-dimensional ones can also be achieved, for example up to less than 1% by volume, more preferably less than 0.5% by volume, particularly preferably less than 0.1% by volume %, very particularly preferably less than 0.05% by volume and in particular less than 0.01% by volume.
  • a protective gas atmosphere is understood to mean the gas volume during the irradiation with high-energy radiation, which surrounds the substrate at a distance of up to 10 cm from its surface.
  • Another advantage of curing in a protective gas atmosphere is that the distances between the lamps and the radiation-curable composition can be increased in relation to the curing in air. Overall, lower radiation doses can be used and a radiator unit can be used to cure larger areas.
  • dry ice as a protective gas
  • a feed of the device which may be storage containers for dry ice at the same time, easily done.
  • the monitoring of carbon dioxide consumption is directly determined by the consumption of dry ice solids. Dry ice sublimates at -78.5 0 C directly to gaseous carbon dioxide. As a result, atmospheric oxygen is displaced upwards out of the basin in a basin without swirling.
  • the residual oxygen can be determined with commercially available atmospheric oxygen measuring devices. Because of the oxygen-reduced atmosphere in the device according to the invention and the risk of suffocation associated therewith, suitable safety measures should be taken. Likewise, sufficient ventilation and inert gas drainage should be ensured in adjacent work areas.
  • the device 1 according to the invention for carrying out a curing of coatings on a substrate S under an inert gas atmosphere contains
  • the partitions 8 are substantially perpendicular to the lower cover 7
  • the dividing walls 9 are substantially perpendicular to the upper cover 6
  • the distances d1 and d2 and the width b of the device 1 are chosen to be greater than that Dimensions of the substrate S along the originallyrich ⁇ direction of the conveyor device 12 and - are formed by the devices 2, 3, 8 and 9 at least 4 compartments.
  • An example of such a device is shown in FIGS. 1 to 4.
  • the outer walls of the device according to the invention namely front 2 and rear 3 covers, upper 6 and lower 7 covers and side covers 4 and 5, together enclose the interior of the device first
  • partitions 8 and 9 of the device according to the invention in each case together with adjacent partitions 9 and 8 or with the front or hinte ⁇ ren cover 2 or 3 and with the side covers 4 and 5 and the upper and lower covers covers 6 and 7 compartments that divide the entire interior of the device.
  • a compartment is formed by the walls enclosing it, which, if necessary, are designed to be extended over free spaces in order to close any gaps, for example in the case of partition walls 8, which extend to the conceptual design of a compartment up to the upper cover 6 be thought longer.
  • the number of compartments of the device according to the invention is at least 4, preferably at least 5 and more preferably at least 6.
  • the number of compartments is not limited in principle, it is preferably up to 15, more preferably up to 12, most preferably up to 10 and in particular up to 8.
  • the partitions 8 and 9 are substantially perpendicular to the lower 7 and upper 6 cover. Essentially, this means that the angle ⁇ 1, 8 and 7 or oc2, 9 and 6 enclose, not more than 30 ° from the vertical deviates, preferably not more than 20 °, more preferably not more than 15 °, especially not more than 10 °, in particular not more than 5 ° and especially not at all, wherein in the construction of the device according to the invention in general the usual structural error limits are taken into account.
  • the device according to the invention saves space and occupies the least possible footprint.
  • the device allows at the same time a simple shielding against UV radiation to the outside, so that radiation sources without filters, e.g. against UV-C radiation, can be used for efficient radiation utilization.
  • the partitions 8 and 9 are up to the described deviation from the vertical perpendicular to the front 2 and rear 3 covers, which in turn eben ⁇ may differ from the vertical.
  • All components of the device according to the invention are as far as ver ⁇ bound that as little inert gas escapes, except from the input 12 or the output 13, from the interior, ie any cracks, gaps, slots or holes are sealed.
  • This also applies to the partitions, which, however, in the case of FIG. 8 need not be firmly connected to the lower cover 7 or, in the case of FIG. 9, to the upper cover 6 in order to possibly move the partitions.
  • the dividing wall 8 with the upper cover 6 or the dividing wall 9 with the lower cover 7 leave enough space to convey the substrate through this intermediate space.
  • the space between 8 and 6 leaves the space d1, the space between 9 and 7, the gap d2.
  • the gaps d1 and d2 are designed so that they leave enough space for the dimensions of the substrate in the conveying direction of the conveyor 12.
  • the substrate can be conveyed in any desired orientation through the device according to the invention; preference is given to an orientation in which the flow resistance and the turbulence caused by the movement of the substrate are minimized.
  • the cross-sectional area of the substrate projected in this direction in the conveying direction is assumed in this document to be the area of the substrate.
  • the dimensions present in this orientation of the substrate, as conveyed by the device according to the invention, are used in this document as the characteristic dimensions of the substrate.
  • the substrate is preferably conveyed through the device according to the invention such that its projected cross-sectional area perpendicular to the conveying direction is as small as possible or at least not more than 25% more than this minimum, preferably not more than 20%, particularly preferably not more than 15%, especially preferably not more than 10% and in particular not more than 5%.
  • the cross-sectional area through which the substrate is conveyed through the individual compartments in the device according to the invention, ie the surface perpendicular to the conveying device 12 should in a preferred embodiment according to the invention amount to at least three times the projected cross-sectional area of the substrate in the conveying direction fourfold. In a further preferred embodiment according to the invention, the cross-sectional area should not be more than six times the area of the substrate, preferably not more than five times.
  • This cross-sectional area is, for example, the cross-sectional area Q1, which leaves the Trenn ⁇ walls 8 with the upper cover 6, so in the case of a square ⁇ ff ⁇ tion the surface d1 • b, or the cross-sectional area Q2, leaving the partitions 9 with the untren cover 7 that is, in the case of a square opening, the area d2 • b, or the cross-sectional area Q3 formed between the partitions and, if necessary, the walls 2 or 3, ie in the case of a square opening, the area d3 • b.
  • the height h of the device according to the invention should be at least twice the diameter d1 or d2, whichever is the larger, preferably at least three times.
  • the partitions 8 and 9 are designed in a preferred embodiment so that they are displaceable parallel to the upper and lower covers 6 and 7 in order to adapt the device according to the invention to different characteristic substrate dimensions.
  • the dividing walls can be displaced in guide rails or fixed in passages or receiving devices in the side and / or top and bottom covers.
  • the partitions 8 and 9 are designed such that the distance d1 or d2 to the lower or upper covers 7 or 6 can be varied in order to adapt the device according to the invention to different characteristic substrate dimensions.
  • the distances d1, d2, d3 and b are preferably chosen so that the distances between the substrate and the walls are as equal as possible in order to ensure the most uniform possible flow around the substrate in the inert atmosphere.
  • the cross-sectional area formed thereby can be round, oval, ellipsoidal, quadrangular, trapezoidal, rectangular, square or irregular in shape.
  • the cross-sectional area is preferably quadrangular and particularly preferably rectangular or square.
  • the inlet 13 and outlet 14 can only consist of openings in the front 2 or rear 3, or possibly also in a lateral 4 or 5 cover.
  • input 13 and output 14 may also be mounted in the upper 6 or lower cover 7.
  • input 13 and / or output 14 are made longer, so that the substrate is conveyed a distance 15 with the length f1 through the input 13 and / or a distance 16 with the length f2 through the output 14 ,
  • These distances f1 and / or f2 may, for example, be 0 to 10 times the parameters d1 or d2, depending on which of these two parameters is the larger, preferably 0 to 5 times, particularly preferably 0 to 2-fold, most preferably 0.5 to 2-fold and especially 1 to 2-fold ( Figure 1).
  • the input 13 and / or output 14 are designed so that the substrate is enclosed as closely as possible. This can be achieved, for example, so that the openings of input and / or output come as close as possible to the dimensions of the substrate and not, as required above, form a multiple of the substrate cross-section. If the input and / or output are extended, the cross-sectional area of the extended embodiment can taper in the direction of the input or output.
  • input 13 and / or output 14 are provided with devices which reduce leakage of the inert gas contained in the device from the input or output. Since the substrate at the entrance is usually coated with an uncured, ie sticky, coating composition, such devices should not touch the substrate at the entrance.
  • Pre-and post-flooders at the inputs and / or outputs are also suitable.
  • Pre- and post-floods are tanks containing inert gas for the purpose of separating air-vortex zones from the irradiation zone.
  • the inert gas tank can be extended from the exposure zone both in the height and on both sides in the width. The dimensions of the receiving waters are primarily dependent on the rate of entry and exit and on the geometry of the substrate.
  • both inputs and outputs are provided with such devices, then it is a preferred embodiment to open and close inputs and outputs simultaneously with these devices. This means that in the period in which a substrate passes through the entrance and the device there, for example a door, sliding Door, shutter or lock, is opened, at the same time a hardened substrate passes through the Aus ⁇ gang and the device located there is also open.
  • the device according to the invention is set up in a drafty location, then it may be preferable to close the input and output reciprocally, since such a passage through the device according to the invention can be avoided.
  • the inlet and / or outlet can also be provided with devices which reduce turbulence or flow.
  • devices which reduce turbulence or flow.
  • These may be, for example, guide plates 17 or grids arranged along the conveying direction, a plurality of finely meshed nets connected in series or guide plates 18 arranged transversely to the conveying direction, which preferably are adapted as close as possible to the substrate cross section (FIGS. 5 to 8).
  • the inlet 13 and / or outlet 14 of the device according to the invention are mounted in the lower half of the device relative to the height h of the device preferably in the lower third and most preferably as far as possible below or in the lower cover 7 ( Figure 1).
  • the inlet 13 and / or outlet 14 of the device according to the invention are mounted in the upper half of the device, relative to the height h of the device preferably in the upper third and very particularly preferably as far as possible at the top or in the upper cover 6 (FIG. 9).
  • the conveying mechanism 12 serves to convey the substrate S through the device.
  • Such conveying mechanisms are known per se and not erfindungschert ⁇ Lich.
  • the conveying mechanism can be arranged through the device above, below or laterally of the substrate.
  • the substrate is moved through the device by a one-sided or two-sided laterally arranged conveying mechanism. This has the advantage that no abrasion from the conveying mechanism falls on the possibly still uncured substrate.
  • the promotion of the substrate can be done for example on conveyor belts, chains, ropes or rails. If desired, the substrate may also rotate within the device according to the invention, but this is less preferred according to the invention.
  • the conveyor device 12 can consist of rollers and / or rollers, via which the substrate is conveyed.
  • the device according to the invention contains at least one radiation source 10.
  • the radiation curing can be carried out with electron beams, X-rays or gamma rays, NIR, IR and / or UV radiation or visible light. It is an advantage of the inventive hardening under inert gas atmosphere that the radiation curing can be done with a wide variety of sources of radiation and low intensity.
  • Radiation sources which can be used according to the invention are those which are capable of emitting high-energy radiation.
  • High-energy radiation is in this case electromagnetic radiation in the spectral NIR, VIS and / or UV range and / or electron radiation.
  • NIR radiation electromagnetic radiation in the wavelength range of 760 nm to 2.5 microns, preferably from 900 to 1500 nm is designated.
  • the radiation dose for UV curing which is usually sufficient to cure the coating composition, is in the range from 80 to 5000 mJ / cm 2 .
  • electron radiation is meant irradiation with high-energy electrons (150 to 300 keV).
  • Preference according to the invention is given to NIR and / or UV radiation and particularly preferably radiation having wavelengths below 500 nm. Very particular preference is given to radiation having a wavelength of less than 500 nm and an exposure dose on the substrate of more than 10 seconds than 100 mJ / cm 2 of the substrate surface.
  • lamps with a broadband spectrum that is, a distribution of the emitted light over a wavelength range.
  • Intensity maxima are preferably in the range below 430 nm.
  • Suitable radiation sources for radiation curing are, for example, low-pressure mercury lamps, medium-pressure lamps with high-pressure lamps as well as fluorescent tubes, pulse emitters, metal halide lamps, electronic flash units, whereby Radiation curing without photoinitiator is possible, or Excimerstrahler.
  • Mercury radiators may be doped with gallium or iron.
  • Radiation curing in the process according to the invention can also be effected with daylight or with lamps which serve as a substitute for daylight. These lamps emit in the visible range above 400 nm and have in comparison to UV lamps only little or no UV light components. Called e.g. Incandescent lamps, halogen lamps, xenon lamps.
  • pulsed lamps e.g. Photo flash lamps or high-performance flash lamps (VISIT company).
  • a particular advantage of the method is the usability of low energy and low UV lamps, e.g. of 500 watt halogen lamps, as they are used for general lighting purposes.
  • a high-voltage unit for the power supply in the case of mercury-vapor lamps
  • light-protection measures there is no danger from exposure to ozone in the case of halogen lamps, as is the case with short-wave UV lamps. This facilitates radiation curing with portable irradiation devices and "on-site" applications, ie independent of fixed industrial curing plants, are possible.
  • a radiation source arrangement adapted to the substrate geometry and to the conveying speed is also possible in order to expose specific areas in a more intensive manner.
  • At least a part of the radiation sources and / or at least a part of existing reflectors is made movable, for example on robot arms, so that, for example, shadow areas lying within substrates are also exposed can.
  • the duration of the irradiation depends on the desired degree of hardening of the coating or of the shaped body.
  • the degree of hardening can be determined by debonding or scratch resistance, for example, with respect to the fingernail or against other objects such as pencil, metal or plastic tips.
  • usual resistance tests to chemicals For example, solvents, inks, etc. suitable. Without damage to the paint surfaces, it is above all spectroscopic methods, in particular Raman and infrared spectroscopy, or measurements of the dielectric or acoustic properties, etc. that are suitable.
  • the radiation sources usually provide a large amount of waste heat, which can have damaging effects on temperature-sensitive substrates, it may be expedient not to install the radiation sources completely inside the interior of the device according to the invention, but to mount the radiation sources in such a way that.devorrich ⁇ tions of the radiation sources are applied outside the device according to the invention and the radiation sources radiate into the device according to the invention.
  • the radiation sources are completely mounted within the device according to the invention, so that the waste heat for an optionally required drying of the coating composition on the substrate can be used (see below).
  • one or more reflectors may be provided in the device according to the invention, for example mirrors, aluminum or other metal foils or bare metal surfaces.
  • the surfaces of the walls or covers 2, 3, 4, 5, 6, 7, 8 and / or 9 may themselves be designed as reflectors.
  • the at least one radiation source 10 may be positioned in the device according to the invention, based on the total path length of the conveying device by the device according to the invention preferably in the range of 25% of the total path length up to 80% of the total path length, particularly preferably in the range of 33% to 75% of the total path length, more preferably in the range of 40% to 75% and in particular in the range of 50% to 75% of the total path length.
  • This information refers to the path length of the conveyor by the device according to the invention, i. at the entrance, this path length is 0%, at the exit 100% and in the middle 50% of the total path length.
  • the at least one radiation source can also be distributed over a wide range, so that a zone is formed within which is irradiated.
  • at least one radiation source 10 is located in front of the gas supply device 11, viewed in the conveying direction of the conveying device 12, very particularly preferably at least one radiation source 10 is located on the lateral covers 4 and / or 5 and / or on the dividing walls 8 and / or 9 ( Figure 10).
  • the inert gas can be metered into the device according to the invention at any desired point through at least one gas supply device 11.
  • the flow of the inert gas can in principle move in cocurrent or in countercurrent with respect to the conveying direction of the conveyor 12, preferably the inert gas is metered in so that the flow of the inert gas between the inlet 13 and the Stre ⁇ bridge, at the radiation curing of the substrate takes place, moved in countercurrent to bain ⁇ direction.
  • the inert gas is metered in the region around and / or after the last radiation source, more preferably within a quarter of the total path length of the conveyor by the inventive device before and / or behind the zone within which is irradiated, most preferably in the range from to up to 15% of the total path length before and up to 25% behind the zone in which irradiation takes place and in particular within the range of up to 5% of the total path length before and up to 15% behind the zone within which irradiation takes place.
  • a gas or gas mixture can be guided into the inner space or formed there.
  • the latter is of interest, for example, if the inert gas in solid, for example dry ice, or liquid form, for example as condensate or under pressure, is introduced into the apparatus according to the invention and then sublimated or evaporated there.
  • the inert gas is flow and vortex low in the device according to the invention passed, for example by Strömungs certified choirer or flow straightener, such as perforated plates, sieves, sintered metal, grids, frits, beds, honeycomb or tubular structures, preferably perforated plates or grids.
  • Strömungs tone-producing machines, or flow straightener, such as perforated plates, sieves, sintered metal, grids, frits, beds, honeycomb or tubular structures, preferably perforated plates or grids.
  • the addition of inert gas to compensate for the loss of inert gas in addition to the inert gas volume displaced and exhausted via the conveyed material is not more than twice the internal volume of the device according to the invention per hour, more preferably not more than the simple Internal volume, most preferably not more than 0.5 times and in particular not more than 0.25 times the internal volume of the device according to the invention per hour.
  • the inert gas is fed via a gas supply device 11 in the upper third of the device according to the invention, with respect to their height h, more preferably in the upper quarter and most preferably in the upper cover 6.
  • the inert gas when using an inert gas which is lighter than air, is heated before, during or after the metered addition via a gas supply device 11, for example to a temperature which corresponds at least to the temperature of the protective gas atmosphere, particularly preferably to a temperature, the temperature at least 10 0 C above the Tempe ⁇ the protective gas atmosphere is located and very particularly preferably to a Tempera ⁇ structure which is at least 20 0 C above the temperature of the protective gas atmosphere.
  • the inert gas is supplied via a Gaszu Operationsvor ⁇ direction 11 in the lower third of the device according to the invention, with respect to des ⁇ sen height h, particularly preferably in the lower quarter and most preferably in the lower cover 7.
  • the inert gas when using an inert gas which is heavier than air, is cooled before, during or after the metered addition via a gas supply device 11, for example to a temperature which is below the temperature of the protective gas atmosphere be ⁇ Sonders preferably to a temperature at least 10 ° C below the temperature lies Tempera ⁇ the inert gas atmosphere, and most preferably to a Tempera ⁇ structure, is at least 20 0 C below the temperature of the protective gas atmosphere.
  • the device according to the invention to use nitrogen and carbon dioxide simultaneously as inert gases, with nitrogen via a gas supply device 11 in the upper third the device according to the invention, based on the height h, fed, particularly preferably in the upper quarter and very particularly preferably in the upper cover 6 and carbon dioxide via a gas supply device 11 in the lower third of the inventive device, based on the height h, supplied, especially Preferably in the lower quarter and most preferably in the lower cover 7 is supplied.
  • the nitrogen can be heated as described above and / or the carbon dioxide can be metered cooled as described above.
  • the lateral covers 2, 3, 4 and / or 5, as well as the upper and lower Abde ⁇ ments 6 and / or 7 are designed in a preferred embodiment thermostatically controlled or isolated to a temperature compensation between the device according to the invention and the environment as low as possible to keep. By compensating the temperature via the outer walls, unwanted convection currents could occur within the device.
  • the device according to the invention can have one or more manholes or accesses through which the interior space is accessible, in order for example to move partition walls, to change the distances d1 and / or d2 or to replace lamps.
  • the inert gas should be removed from the interior and the radiation sources switched off, for safety reasons.
  • the application can be applied to the substrate, for example, by spraying, filling, doctoring, brushing, rolling, rolling, casting, laminating, dipping, flooding, brushing, etc.
  • the coating thickness is usually in a range of about 3 to 1000 g / m 2 and preferably 5 to 200 g / m 2 .
  • the substrate coated with a coating compound is dried at least partially within the device according to the invention, ie, volatile components of the coating composition are largely removed within the device.
  • volatile constituents may be used, for example, in the coating. act mass contained solvents act.
  • esters for example butyl acetate or ethyl acetate, aromatic or (cyclo) aliphatic hydrocarbons, such as, for example, xylene, toluene or heptane, ketones, for example acetone, isobutyl methyl ketone, methyl ethyl ketone or cyclohexanone, alcohols, for example ethanol, isopropanol, Mono- or lower oligoethylene or propylene glycols, mono- or di-etherified ethylene or propylene glycol ethers, glycol ether acetates, such as, for example, methoxypropyl acetate, cyclic ethers, such as tetrahydrofuran, carboxylic acid amides, such as dimethylformamide or N-methylpyrrolidone, and / or water.
  • esters for example butyl acetate or ethyl acetate
  • the evaporation and / or evaporation of solvents in the drying step within the device according to the invention has the advantage that the gaseous solvents within the dust-free device contribute to the inert atmosphere, which reduces the consumption of inert gas, and additionally has a softening effect on the treatment during curing. stratification, which makes it more flexible. Therefore, it is advantageous according to the invention if the inert gas atmosphere present in the device according to the invention is at least 2.5% by volume, preferably at least 5, particularly preferably at least 7.5% and very particularly preferably at least 10% by volume having one or more solvents.
  • the device according to the invention additionally has a condensation possibility 19 (FIG. 11) in which the solvents present in the inert gas atmosphere within the device according to the invention can be condensed out.
  • condensation possibilities are preferably located at the input and / or output of the device according to the invention.
  • These may be, for example, plate or shell-and-tube heat exchangers, cooling coils or cold fingers which are operated either with an external cooling medium in cocurrent or countercurrent, preferably in countercurrent to the conveying direction of the substrate, or preferably in the case of dry ice as a source of CO 2 as an inert gas within the Vorrich ⁇ device to be operated with dry ice, whereby at the same time inert gas is generated within the device and the solvent can be recovered.
  • the condensate is then collected and conveyed outside the device, for example by means of a lift, outflow or discharge, optionally with a siphon.
  • a lift, outflow or discharge optionally with a siphon.
  • the inert gas atmosphere and / or the coating composition over a period of at least 1 minute, preferably at least 2 minutes, more preferably at least 3 minutes and most preferably at least 5 min a temperature of at least 50 0 C, preferably at least 60 0 C, more preferably at least 70 0 C and most preferably at least 80 0 C heated.
  • the heat for the drying can be introduced, for example, by utilizing the waste heat of the at least one radiation source 10 or via at least one additional heating device 20, which is located between the inlet and the irradiation of the coated substrates.
  • Such heaters 13 are known per se to those skilled in the art, it is preferably IR and / or NIR emitters that heat the coating composition.
  • NIR radiation electromagnetic radiation in the wavelength range of 760 nm to 2.5 microns, preferably from 900 to 1500 nm
  • IR radiation the wavelength range of 25-1000 microns (far IR) and preferably 2.5-25 microns (middle IR).
  • radiation with a wavelength of 1 to 5 ⁇ m is preferably used.
  • the radiation is at least partially, preferably fully performed if the coating composition to the be ⁇ coated substrates at a temperature of 50 0 C or more, preferably of at least 60 0 C, more preferably of at least 70 0 C, and most preferably of at least 80 ° C. It is of minor importance how the coating composition is brought to this temperature, whether by heating the inert gas atmosphere and / or by radiation sources 10 and / or by additional heating devices 20 and / or in another way.
  • the radiation curing is carried out at least in part at such an elevated temperature of the coating composition, better properties are found in the coating thus obtained.
  • the reason for this is unclear, for example, could be a reduced viscosity of the heated coating composition.
  • the residence time within the device depends on whether additional drying is to take place within the device according to the invention or not.
  • the residence time without drying within the device according to the invention ie from the passage of the substrate through the entrance to the passage of the exit, is at least one minute, preferably at least 2 minutes, more preferably at least 3 minutes, most preferably at least 4 minutes and in particular at least 5 min.
  • the residence time without drying within the device according to the invention as a rule does not exceed 15 minutes, preferably it is not more than 12 minutes, more preferably not more than 10 minutes, very particularly preferably not more than 9 minutes and in particular not more than 7 min.
  • the length of the winningeriniques 12 by the device according to the invention and the speed of conveying the substrate is adapted accordingly to this residence time.
  • the residence time of the substrate in the device depends, for example, on the substrate, as well as its size, weight and complexity of its structure, as well as reactivity, type (for example pigmentation), amount, thickness and area of the coating composition to be hardened or of the coating containing it from the substrate.
  • the conveying speed of three-dimensional objects through the device according to the invention can be, for example, 0.5 to 10 m / min, preferably 1 to 10 m / min, particularly preferably 2 to 8 m / min, very particularly preferably 3 to 7 and in particular 5 m / min.
  • Objects with gas-producing parts, such as trim parts or housings for vehicles or machines, are conveyed at a similar speed, but require additional measures to reduce the oxygen input, in particular by means of extended travel distances.
  • Three-dimensional objects are those whose coating with a coating composition could not be at least theoretically cured by direct irradiation from exactly one radiation source.
  • the conveying speed can be up to over 100 m / min and for the fibers to over 1000 m / min.
  • the conveyor 12 may include, for example, rollers and / or rollers.
  • the device according to the invention should be set up in a draft-free location, since inert gas can already be sucked out of the device according to the invention by a slight flow which flows around the device.
  • adequate ventilation of the location of the device must be ensured in order to avoid an inerting of the surroundings, which could jeopardize the operating personnel.
  • air flows which are present via air exchange at application and drying devices can be reduced by keeping corresponding distance to these application and drying devices or by redirecting or breaking these air flows with, for example, shielding walls.
  • Radiation-curable coating compositions contain radiation-curable compounds as binders. These are compounds with free-radically or cationically polymerizable ethylenically unsaturated groups.
  • the radiation-curable composition preferably contains from 0.001 to 12, more preferably from 0.1 to 8 and very particularly preferably from 0.5 to 7, mol, of radiation-curable ethylenically unsaturated groups per 1000 g of radiation-curable compounds.
  • (meth) acrylate compounds such as polyester (meth) acrylates, polyether (meth) acrylates, urethane (meth) acrylates, epoxy (meth) acrylates, carbonates (meth) acrylates, silicone (meth) acrylates, acrylated polyacrylates.
  • At least 40 mol%, more preferably at least 60%, of the radiation-curable ethylenically unsaturated groups are (meth) acrylic groups.
  • the radiation-curable compounds may contain other reactive groups, e.g. Methylamine, isocyanate, epoxide, anhydride, alcohol, carboxylic acid groups for additional thermal curing, eg. B. by chemical reaction of alcohol, carboxylic acid, amine, epoxy, anhydride, isocyanate or melamine groups, contain (dual eure).
  • other reactive groups e.g. Methylamine, isocyanate, epoxide, anhydride, alcohol, carboxylic acid groups for additional thermal curing, eg. B. by chemical reaction of alcohol, carboxylic acid, amine, epoxy, anhydride, isocyanate or melamine groups, contain (dual eure).
  • the radiation-curable compounds may be e.g. as a solution, e.g. in an organic solvent or water, as an aqueous dispersion, as a powder.
  • the radiation-curable compounds and thus also the radiation-curable compositions are preferably free-flowing at room temperature.
  • the radiation-curable compositions preferably contain less than 20% by weight, in particular less than 10% by weight, of organic solvents and / or water. They are preferably solvent-free and water-free (so-called 100% systems). In this case, it is preferably possible to dispense with a drying step.
  • the radiation-curable compositions may contain other components as binders. Suitable examples are pigments, leveling agents, dyes, stabilizers, etc.
  • photoinitiators are generally used.
  • Photoinitiators known to those skilled in the art may be used as photoinitiators, for example. those in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 or in K.K. Dietliker, Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polymerization, P.K.T. Oldring (Eds), SITA Technology Ltd, London.
  • Suitable examples are phosphine oxides, benzophenones, ⁇ -hydroxy-alkyl aryl ketones, thioxanthones, anthraquinones, acetophenones, benzoins and benzoin ethers, ketals, imidazoles or phenylglyoxylic acids.
  • Phosphine oxides are, for example, mono- or bisacylphosphine oxides, such as, for example, Irgacure® 819 (bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide), as described, for example, in EP-A 7 508, EP-A 57 474, DE-A 196 18 720, EP-A 495 751 are described or EP-A 615 980, for example, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin ® TPO), ethyl 2,4,6-trimethylbenzoylphenyl phosphinate, bis (2,6-dimethoxybenzoyI) -2 , 4,4-trimethylpentylphosphine oxide,
  • Irgacure® 819 bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide
  • Benzophenones are, for example, benzophenone, 4-aminobenzophenone, 4,4'-bis (dimethylamino) benzophenone, 4-phenylbenzophenone, 4-chlorobenzophenone, Michler's ketone, o-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone, 2 , 4-dimethylbenzophenone, 4-isopropylbenzophenone, 2-chlorobenzophenone, 2,2'-dichlorobenzophenone, 4-methoxybenzophenone, 4-propoxybenzophenone or 4-butoxybenzophenone
  • ⁇ -hydroxy-alkyl-aryl ketones are, for example, 1-benzoylcyclohexan-1-ol (1-hydroxycyclohexyl-phenylketone), 2-hydroxy-2,2-dimethylacetophenone (2-hydroxy-2-methyl-1-phenyl- propan-1-one), 1-hydroxyacetophenone, 1 - [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, polymer containing 2-hydroxy-2- contains methyl-1- (4-isopropen-2-yl-phenyl) -propan-1-one in copolymerized form (Esacure® KIP 150)
  • Examples of xanthones and thioxanthones are 10-thioxanthenone, thioxanthen-9-one, xanthen-9-one, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4-dichlorothioxanthone, chloroxanthenone .
  • Anthraquinones are, for example, ⁇ -methylanthraquinone, te / f-butylanthraquinone, anthraquinonecarbonyl acid ester, benz [de] anthracen-7-one, benz [a] anthracene-7,12-dione, 2-methylanthraquinone, 2-ethylanthraquinone, 2-terf-butylanthraquinone , 1-chloroanthraquinone, 2-amylanthraquinone
  • Acetophenones are, for example, acetophenone, acetonaphthoquinone, valerophenone, hexanophenone, ⁇ -phenylbutyrophenone, p-morpholinopropiophenone, dibenzosuberone, 4-morpholinobenzophenone, p-diacetylbenzene, 4'-methoxyacetophenone, ⁇ -tetralone, 9-acetylphenanthrene, 2-acetylphenanthrene, 3-acetylphenanthrene, 3-acetylindole, 9-fluorenone, 1-indanone, 1, 3,4-triacetylbenzene, 1-acetonaphthone, 2-acetonaphthone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1, 1-dichloroacetophenone, 1-hydroxyacetophenone, 2,2-diethoxyacetophen
  • Benzoins and benzoin ethers are, for example, 4-morpholinodeoxybenzoin, benzoin, benzoin isobutyl ether, benzoin tetrahydropyranyl ether, benzoin methyl ether, benzoin ethyl ether, benzoin butyl ether, benzoin isopropyl ether, 7-H-benzoin methyl ether,
  • ketals examples include acetophenone dimethyl ketal, 2,2-diethoxyacetophenone, benzil ketals, such as benzil dimethyl ketal,
  • the radiation-curable compositions contain less than 10 parts by weight, in particular less than 4 parts by weight, more preferably less than 1.5 parts by weight of photoinitiator per 100 parts by weight of radiation-curable compounds.
  • the radiation-curable composition can be applied by conventional methods to the substrate to be coated or brought into the appropriate form.
  • the radiation curing can then take place as soon as the substrate is surrounded by the protective gas.
  • the inventive method is suitable for the production of coatings on substrates and for the production of moldings.
  • Suitable substrates are, for example, wood, paper, textile, leather, fleece, Kunststoff ⁇ surfaces, glass, ceramics, mineral building materials such as cement bricks and Faserzementplatten, or metals or coated metals, preferably plastics or metals, for example, as films may be present.
  • Plastics are for example thermoplastic polymers, in particular poly methyl methacrylates, rephthalate Polybutylmethacrylate, polyethylene terephthalates, polybutylene, Polyvinylidenflouride, polyvinyl chlorides, polyesters, polyolefins, Acrylnitri- lethylenpropylendienstyrolcopolymere (A-EPDM) 1 polyetherimides, polyether ketones, polyphenylene sulfides, polyphenylene ethers or mixtures thereof.
  • A-EPDM Acrylnitri- lethylenpropylendienstyrolcopolymere
  • polyethylene polypropylene, polystyrene, polybutadiene, polyesters, polyamides, polyethers, polycarbonate, polyvinyl acetal, polyacrylonitrile, polyacetal, polyvinyl alcohol, polyvinyl acetate, phenolic resins, urea resins, melamine resins, alkyd resins, epoxy resins or polyurethanes, their block or graft copolymers and blends of it.
  • Preferred plastics include ABS, AES, AMMA, ASA, EP, EPS 1 EVA, E-VAL, HDPE, LDPE, MABS, MBS, MF, PA, PA6, PA66, PAN, PB, PBT, PBTP, PC, PE , PEC, PEEK, PEI, PEK, PEP, PES 1 PET, PETP, PF, PI, PIB, PMMA, POM, PP, PPS, PS, PSU, PUR, PVAC, PVAL, PVC, PVDC 1 PVP, SAN, SB, SMS, UF, UP plastics (abbreviated to DIN 7728) and aliphatic polyketones.
  • plastics as substrates are polyolefins, e.g. PP (polypropylene), which may optionally be isotactic, syndiotactic or atactic and optionally non-oriented or oriented by uni- or bisaxial stretching, SAN (styrene-acrylonitrile copolymers), PC (polycarbonates), PMMA (polymethyl methacrylates), PBT (Poly (butylene terephthalate) e), PA (polyamides), ASA (acrylonitrile-styrene-acrylic ester copolymers) and ABS (acrylonitrile-butadiene-styrene copolymers), as well as their physical blends (blends).
  • Particularly preferred are PP, SAN, ABS, ASA and blends of ABS or ASA with PA or PBT or PC.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Coating Apparatus (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von Formmassen und Beschichtungen auf Substraten durch Härtung von strahlungshärtbaren Massen unter Inertgasatmosphäre durch Bestrahlen mit energiereicher Strahlung.

Description

Vorrichtung und Verfahren zum Härten mit energiereicher Strahlung unter Inertgasat¬ mosphäre
Beschreibung
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von Form¬ massen und Beschichtungen auf Substraten durch Härtung von strahlungshärtbaren Massen unter Inertgasatmosphäre durch Bestrahlen mit energiereicher Strahlung.
Bei der Strahlungshärtung von radikalisch polymerisierbaren Verbindungen, z.B. von (Meth)acrylatverbindungen oder Vinyletherverbindungen, kann eine starke Inhibierung der Polymerisation bzw. Härtung durch Sauerstoff auftreten. Diese Inhibierung führt zu einer unvollständigen Härtung an der Oberfläche und so z.B. zu klebrigen Beschich¬ tungen.
Dieser Sauerstoffinhibierungseffekt kann durch den Einsatz hoher Fotoinitiatormengen, durch Mitverwendung von Coinitiatoren, z. B. Aminen, energiereicher UV-Strahlung hoher Dosis, z.B. mit Quecksilberhochdrucklampen oder durch Zusatz von barrierebil¬ denden Wachsen vermindert werden.
Bekannt ist auch die Durchführung der Strahlungshärtung unter einem inerten Schutz¬ gas, z.B. aus EP-A-540884, aus Joachim Jung, RadTech Europe 99, Berlin 08. bis 10.11.1999 in Berlin (UV-Applications in Europe Yesterday-Today Tomorrow).
Strahlungshärtbare Massen können sowohl flüchtige Verdünnungsmittel, wie bei¬ spielsweise Wasser oder organische Lösungsmittel enthalten als auch in Abwesenheit solcher Verdünnungsmittel verarbeitet werden. Das Verfahren der Strahlungshärtung eignet sich für Lackierungen, welche in industriellen Anwendungen oder auch in mittle¬ ren oder kleinen Handwerksbetrieben oder im häuslichen Bereich durchgeführt wer- den. Bisher hat aber die aufwendige Durchführung des Verfahrens und die dazu benö¬ tigten Vorrichtungen, insbesondere die UV-Lampen, eine Anwendung der Strahlungs¬ härtung in den nicht industriellen Bereichen verhindert.
WO 01/39897 beschreibt ein Verfahren zur Strahlungshärtung unter einer Inertgasat- mosphäre, die schwerer als Luft ist, bevorzugt Kohlendioxid. Eine dort beschriebene bevorzugte Ausführungsform zur Aushärtung findet in einem Tauchbecken statt.
Ein Verbesserungsbedarf an dem dort offenbarten Verfahren besteht, indem Schutz¬ gasverluste und die Kontamination durch Luftsauerstoff weiter verringert werden, die beispielsweise beim Erwärmen der Schutzgasatmosphäre auftreten, z.B. verursacht durch die Abwärme. Gewünscht ist eine größere Unabhängigkeit von Wärmequellen im Bestrahlungsraum und damit auch mehr Freiheit mit der Auswahl an Art, Positionierung und Anzahl an Bestrahlungsmöglichkeiten zu erreichen. In RadTech Conference Proceedings, November 3 - 5, 2003, Berlin, Germany, Dr. E- rich Beck, BASF AG, Germany; "UV-Curing under Carbon Dioxide", S. 855 - 863; Vo¬ lume II, ISBN 3-87870-152-7, werden Verfahren und eine Vorrichtung zur Strahlungs- härtung unter CO2 vorgestellt, die ein kontinuierliches Verfahren zur Härtung unter I- nertgas zuläßt. Nachteilig daran ist, daß der Verbrauch an Inertgas noch relativ hoch ist.
Aufgabe der Erfindung war es, eine Vorrichtung zur Verfügung zu stellen, mit der eine Strahlungshärtung durchgeführt werden kann und man den Verbrauch an Inertgas möglichst gering halten kann.
Die Aufgabe wurde gelöst durch eine Vorrichtung 1 zum Durchführen einer Härtung von Beschichtungen auf einem Substrat S unter einer Inertgasatmosphäre, enthaltend
seitliche Abdeckungen 2, 3, 4 und 5, obere und untere Abdeckungen 6 und 7, wobei 2, 3, 4, 5, 6 und 7 gemeinsam einen Innenraum umschließen, eine oder mehrere Trennwände 8, die den Innenraum unterteilen, wobei die Trennwände 8 mit der unteren Abdeckung 7 abschließen und einen Abstand dϊ zur oberen Abdeckung 6 freilassen, eine oder mehrere Trennwände 9, die den Innenraum unterteilen, wobei die Trennwände 9 mit der oberen Abdeckung 6 abschließen und einen Abstand d2 zur unteren Abdeckung 7 freilassen, - wobei 8 und 9 mit der jeweils benachbarten Trennwand 9 oder 8 und gegebenen¬ falls den seitlichen Abdeckungen 2 oder 3 einen unterteilten Innenraum (Kompar- timent) bilden, mindestens eine innerhalb des Innenraums und/oder in den Innenraum hinein strahlende Strahlungsquelle 10, - mindestens eine Gaszuführungsvorrichtung 11, mit der ein Gas oder Gasge¬ misch in den Innenraum geführt oder dort gebildet werden kann, mindestens eine Fördervorrichtung 12 für das Substrat S, Einlaß 13 und Auslaß 14, - Wobei die Trennwände 8 im wesentlichen senkrecht auf die untere Abdeckung 7 ste¬ hen, die Trennwände 9 im wesentlichen senkrecht auf die obere Abdeckung 6 stehen, die Abstände d1 und d2 sowie die Breite b der Vorrichtung 1 so gewählt sind, daß sie größer sind als die Dimensionen des Substrats S entlang der Förderrich¬ tung der Fördervorrichtung 12 und durch die Vorrichtungen 2, 3, 8 und 9 mindestens 4 Kompartimente ausgebildet werden.
In der erfindungsgemäßen Vorrichtung können sowohl Schutzgase verwendet werden, welche schwerer sind als Luft als auch solche, die leichter sind als Luft.
Das Molgewicht eines Inertgases, das schwerer ist als Luft ist daher größer als 28,8 g/mol (entspricht dem Molgewicht eines Gasgemisches von 20 % Sauerstoff O2 und 80 % Stickstoff N2), vorzugsweise größer 30 g/mol, besonders bevorzugt mindes- tens 32 g/mol, insbesondere größer 35 g/mol. In Betracht kommen z.B. Edelgase wie Argon, Kohlenwasserstoffe und halogenierte Kohlenwasserstoffe. Besonders bevor¬ zugt ist Kohlendioxid.
Die Versorgung mit Kohlendioxid kann aus Druckbehältern, gefilterten Verbrennungs- gasen, z.B. von Erdgas oder Kohlenwasserstoffen, oder bevorzugt als Trockeneis er¬ folgen. Als vorteilhaft, insbesondere für Anwendungen im nicht industriellen oder im kleinindustriellen Bereich wird die Versorgung mit Trockeneis gesehen, da festes Tro¬ ckeneis als Feststoff in einfachen, mit Schaumstoffen isolierten Behältern transportiert und gelagert werden kann. Das Trockeneis kann als solches verwendet werden, bei den üblichen Verwendungstemperaturen liegt es dann gasförmig vor. Ein weiterer Vor¬ teil in der Verwendung von Trockeneis ist die Kühlwirkung, die zur Kondensation und Entfernung von flüchtigen Lackkomponenten, wie Lösemitteln oder Wasser genutzt werden kann (siehe unten).
Schutzgase die leichter sind als Luft, sind solche mit einem Molgewicht von weniger als 28,8 g/mol, bevorzugt von nicht mehr als 28,5 g/mol, besonders bevorzugt von nicht mehr als 28,1 g/mol. Beispiele dafür sind molekularer Stickstoff, Helium, Neon, Koh- lenstoffmonoxid, Wasserdampf, Methan oder Stickstoff-Luft-Gemische (sog. Magerluft), besonders bevorzugt sind Stickstoff, Wasserdampf und Stickstoff-Luft-Gemische, ganz besonders bevorzugt sind Stickstoff und Stickstoff-Luft-Gemische, insbesondere Stick¬ stoff.
Die Versorgung mit Schutzgasen, die leichter sind als Luft kann bevorzugt aus Druck¬ behältern erfolgen oder aus sauerstoffabgereicherten Abgasen, beispielsweise aus Oxidationen oder Kokereiabgasen oder durch Abtrennung von Sauerstoff aus Gasge¬ mischen, wie z.B. Luft oder Verbrennungsgasen, über Membranen.
Die Begriffe "Schutzgas" und "Inertgas" werden in dieser Schrift synonym verwendet und bezeichnen solche Verbindungen, die unter Bestrahlung mit energiereicher Strah- lung nicht wesentlich mit den Beschichtungsmassen reagieren und deren Aushärtung bzgl. Geschwindigkeit und/oder Qualität nicht negativ beeinflussen. Insbesondere wird darunter ein niedriger Sauerstoffgehalt verstanden (siehe unten). Darin bedeutet "nicht wesentlich reagieren", daß die Inertgase unter der im Prozeß ausgeübten Bestrahlung mit energiereicher Strahlung zu weniger als 5 mol% pro Stunde, bevorzugt zu weniger als 2 mol% pro Stunde und besonders bevorzugt zu weniger als 1 mol% pro Stunde mit den Beschichtungsmassen oder mit anderen innerhalb der Vorrichtung vorhande- nen Stoffen reagieren.
Das Schutzgas(-gemisch) wird in die Vorrichtung eingefüllt und die Luft daraus ver¬ drängt.
Die Vorrichtung enthält nun eine Schutzgasatmosphäre in die das Substrat, welches mit der strahlungshärtbaren Masse beschichtet ist, oder der Formkörper geführt wer¬ den kann. Anschließend kann die Strahlungshärtung erfolgen.
Während der Strahlungshärtung sollte mittlere der Sauerstoffgehalt (O2) in der Schutz- gasatmosphäre weniger ais 15 Vol% betragen, bevorzugt weniger als 10 Vol%, beson¬ ders bevorzugt weniger als 8 Vol%, ganz besonders bevorzugt weniger als 6 Vol% und insbesondere weniger als 3 VoI %, jeweils bezogen auf die gesamte Gasmenge in der Schutzgasatmosphäre; mit dem erfindungsgemäßen Verfahren können leicht mittlere Sauerstoffgehalte unter 2,5 Vol%, bevorzugt unter 2,0 Vol% und besonders bevorzugt auch unter 1 ,5 Vol% eingestellt werden. Dabei ist die besondere Schwierigkeit zu be¬ rücksichtigen, daß dreidimensionale Substrate Sauerstoff in die erfindungsgemäße Vorrichtung einschleppen (sog. Einschöpfen) und der Sauerstoffgehalt daher wesent¬ lich schwieriger zu verringern ist als bei zweidimensionalen Objektenm wie beispiels¬ weise Folien, Bahnen oder dergleichen. Bei der Führung von zweidimensionalen Sub- straten durch die erfindungsgemäße Vorrichtung sind auch geringere Sauerstoffgehalte als bei dreidimensionalen zu erreichen, beispielsweise bis zu weniger als 1 VoI %, be¬ vorzugt weniger als 0,5 Vol%, besonders bevorzugt weniger als 0,1 Vol%, ganz be¬ sonders bevorzugt weniger als 0,05 Vol% und insbesondere weniger als 0,01 Vol%.
Unter Schutzgasatmosphäre wird dabei das Gasvolumen während der Bestrahlung mit energiereicher Strahlung verstanden, welches das Substrat in einem Abstand von bis zu 10 cm von seiner Oberfläche umgibt.
Ein weiterer Vorteil der Härtung in einer Schutzgasatmosphäre ist, daß die Abstände zwischen Lampen und strahlungshärtbarer Masse gegenüber der Härtung an Luft vergrößerbar sind. Insgesamt können geringere Strahlungsdosen eingesetzt werden und eine Strahlereinheit kann zur Aushärtung größerer Flächen verwendet werden.
Im Falle der Verwendung von Trockeneis als Schutzgas kann z.B. eine Beschickung der Vorrichtung, die unter Umständen gleichzeitig Lagerbehälter für Trockeneis sind, einfach erfolgen. Die Überwachung des Kohlendioxidverbrauchs ist unmittelbar am Verbrauch des Trockeneisfeststoffes zu bestimmen. Trockeneis sublimiert bei -78,50C direkt zu gasförmigem Kohlendioxid. In einem Becken wird dadurch verwirbelungsarm Luftsauerstoff nach oben aus dem Becken verdrängt.
Der Restsauerstoff kann mit handelsüblichen Luftsauerstoffmeßgeräten bestimmt wer- den. Wegen der sauerstoffreduzierten Atmosphäre in der erfindungsgemäßen Vorrich¬ tung und der damit verbundenen Erstickungsgefahr sollten geeignete Sicherheitsma߬ nahmen getroffen werden. Ebenso sollte in angrenzenden Arbeitsbereichen eine aus¬ reichende Belüftung und Inertgasabfluß sichergestellt werden.
Die erfindungsgemäße Vorrichtung 1 zum Durchführen einer Härtung von Beschich- tungen auf einem Substrat S unter einer Inertgasatmosphäre, enthält
seitliche Abdeckungen 2, 3, 4 und 5, obere und untere Abdeckungen 6 und 7, wobei 2, 3, 4, 5, 6 und 7 gemeinsam einen Innenraum umschließen, eine oder mehrere Trennwände 8, die den Innenraum unterteilen, wobei die Trennwände 8 mit der unteren Abdeckung 7 abschließen und einen Abstand d1 zur oberen Abdeckung 6 freilassen, eine oder mehrere Trennwände 9, die den Innenraum unterteilen, wobei die Trennwände 9 mit der oberen Abdeckung 6 abschließen und einen Abstand d2 zur unteren Abdeckung 7 freilassen, wobei 8 und 9 mit der jeweils benachbarten Trennwand 9 oder 8 und gegebenen¬ falls den seitlichen Abdeckungen 2 oder 3 einen unterteilten Innenraum (Kompar- timent) bilden, - mindestens eine innerhalb des Innenraums und/oder in den Innenraum hinein strahlende Strahlungsquelle 10, mindestens eine Gaszuführungsvorrichtung 11 , mit der ein Gas oder Gasge¬ misch in den Innenraum geführt oder dort gebildet werden kann, - mindestens eine Fördervorrichtung 12 für das Substrat S, - Einlaß 13 und Auslaß 14, wobei
die Trennwände 8 im wesentlichen senkrecht auf die untere Abdeckung 7 ste- hen, die Trennwände 9 im wesentlichen senkrecht auf die obere Abdeckung 6 stehen, die Abstände d1 und d2 sowie die Breite b der Vorrichtung 1 so gewählt sind, daß sie größer sind als die Dimensionen des Substrats S entlang der Förderrich¬ tung der Fördervorrichtung 12 und - durch die Vorrichtungen 2, 3, 8 und 9 mindestens 4 Kompartimente ausgebildet werden. Ein Beispiel für eine solche Vorrichtung ist in den Figuren 1 bis 4 dargestellt. Die Außenwände der erfindungsgemäßen Vorrichtung, nämlich vordere 2 und hintere 3 Abdeckungen, obere 6 und untere 7 Abdeckungen sowie seitliche Abdeckungen 4 und 5, umschließen gemeinsam den Innenraum der Vorrichtung 1.
Die Trennwände 8 und 9 der erfindungsgemäßen Vorrichtung umschließen jeweils gemeinsam mit benachbarten Trennwänden 9 und 8 bzw. mit der vorderen oder hinte¬ ren Abdeckung 2 oder 3 sowie mit den seitlichen Abdeckungen 4 und 5 und den obe¬ ren und unteren Abdeckungen 6 und 7 Kompartimente, die den gesamten Innenraum der Vorrichtung unterteilen. Ein Kompartiment wird dabei gebildet von den dieses um- schließenden Wänden, die falls erforderlich über freie Räume verlängert gedacht wer¬ den um eventuelle Lücken zu schließen, beispielsweise im Falle der Trennwände 8, die zur gedanklichen Konstruktion eines Kompartiments bis zur oberen Abdeckung 6 ver¬ längert gedacht werden.
Die Zahl der Kompartimente der erfindungsgemäßen Vorrichtung beträgt mindestens 4, bevorzugt mindestens 5 und besonders bevorzugt mindestens 6. Die Anzahl der Kompartimente ist prinzipell nicht begrenzt, bevorzugt beträgt sie bis zu 15, besonders bevorzugt bis zu 12, ganz besonders bevorzugt bis zu 10 und insbesondere bis zu 8.
Die Trennwände 8 und 9 stehen im wesentlichen senkrecht auf die untere 7 und obere 6 Abdeckung. Darin bedeutet im wesentlichen, daß der Winkel α1, den 8 und 7 bzw. oc2, den 9 und 6 einschließen, um nicht mehr als 30° von der Senkrechten abweicht, bevorzugt nicht mehr als 20°, besonders bevorzugt nicht mehr als 15°, ganz besonders nicht mehr als 10°, insbesondere nicht mehr als 5° und speziell überhaupt nicht, wobei beim Bau der erfindungsgemäßen Vorrichtung allgemein die üblichen konstruktiven Fehlergrenzen zu berücksichtigen sind.
Vorteil einer solchen Senkrechtförderung ist, daß die erfindungsgemäße Vorrichtung platzsparend ist und eine geringstmögliche Stellfläche einnimmt. Zudem erlaubt die Vorrichtung gleichzeitig eine einfache Abschirmung gegen UV-Strahlung nach außen, so dass Strahlungsquellen ohne Filter, z.B. gegen UV-C-Strahlung, für eine effiziente Strahlungsausnutzung eingesetzt werden können.
Die Trennwände 8 und 9 stehen bis auf die beschriebene Abweichung aus der Senk- rechten parallel zu den vorderen 2 und hinteren 3 Abdeckungen, die ihrerseits eben¬ falls aus der Senkrechten abweichen können.
Sämtliche Bauteile der erfindungsgemäßen Vorrichtung sind soweit miteinander ver¬ bunden, daß möglichst wenig Inertgas, außer aus dem Eingang 12 oder dem Ausgang 13, aus dem Innenraum entweicht, d.h. eventuelle Ritze, Spalten, Schlitze oder Löcher werden abgedichtet. Dies gilt auch für die Trennwände, die jedoch im Fall von 8 nicht fest mit der unteren Abdeckung 7 bzw. im Fall von 9 mit der oberen Abdeckung 6 verbunden sein müssen, um die Trennwände eventuell verschieben zu können. Hier kann zwischen 8 und 7 bzw. zwischen 9 und 6 ein schmaler Spalt von bevorzugt nicht mehr als 10 mm, be- sonders bevorzugt nicht mehr als 7 mm, ganz besonders bevorzugt nicht mehr als 5 mm, insbesondere nicht mehr als 3 mm und speziell nicht mehr als 1 mm tolerabel sein.
Dahingegen lassen die Trennwand 8 mit der oberen Abdeckung 6 bzw. die Trennwand 9 mit der unteren Abdeckung 7 genügend Platz, um das Substrat durch diesen Zwi¬ schenraum zu fördern. Der Zwischenraum zwischen 8 und 6 läßt den Freiraum d1, der Zwischenraum zwischen 9 und 7 den Zwischenraum d2. Die Zwischenräume d1 und d2 sind so gestaltet, daß sie ausreichend Platz für die Abmessungen des Substrats in der Förderrichtung der Fördereinrichtung 12 lassen.
Selbstverständlich gilt für den gesamten Weg durch die erfindungsgemäße Vorrichtung entlang der Fördereinrichtung 12, daß ausreichend Platz für die Abmessungen des Substrats in der Förderrichtung gelassen wird, ohne daß das Substrat andere Bauteile und/oder Substrate berührt.
Das Substrat kann prinzipiell in jeder beliebigen Ausrichtung durch die erfindungsge- mäße Vorrichtung gefördert werden, bevorzugt wird eine Ausrichtung, in der der Strö¬ mungswiderstand und die durch die Bewegung des Substrats verursachte Verwirbe- lung minimiert wird. Die in dieser Ausrichtung in Förderrichtung projizierte Quer- schnittsfläche des Substrats wird in dieser Schrift als Fläche des Substrats angenom¬ men. Die in dieser Ausrichtung des Substrats, wie es durch die erfindungsgemäße Vor¬ richtung gefördert wird, vorliegenden Abmessungen werden in dieser Schrift als die charakteristischen Dimensionen des Substrats verwendet.
Bevorzugt wird das Substrat so durch die erfindungsgemäße Vorrichtung gefördert, daß dessen projizierte Querschnitsfläche senkrecht zur Förderrichtung kleinstmöglich ist oder zumindest nicht mehr als 25% mehr als dieses Minimum beträgt, bevorzugt nicht mehr als 20%, besonders bevorzugt nicht mehr als 15%, ganz besonders bevor¬ zugt nicht mehr als 10% und insbesondere nicht mehr als 5%.
Die Querschnittsfläche, durch die das Substrat durch die einzelnen Kompartimente in der erfindungsgemäßen Vorrichtung gefördert wird, also die Fläche senkrecht zur För¬ dereinrichtung 12 sollte in einer bevorzugten erfindungsgemäßen Ausgestaltung min¬ destens das dreifache der projizierten Querschnittsfläche des Substrats in Förderrich- tung betragen, bevorzugt das vierfache. Die Querschnittsfläche sollte in einer weiteren bevorzugten erfindungsgemäßen Aus¬ gestaltung nicht mehr als das sechsfache der Fläche des Substrats betragen, bevor¬ zugt nicht mehr als das fünffache.
Diese Querschnittsfläche ist beispielsweise die Querschnittsfläche Q1, die die Trenn¬ wände 8 mit der oberen Abdeckung 6 freilassen, also im Fall einer quadratischen Öff¬ nung die Fläche d1 • b, oder die Querschnittsfläche Q2, die die Trennwände 9 mit der untren Abdeckung 7 freilassen, also im Fall einer quadratischen Öffnung die Fläche d2 • b, oder die Querschnittsfläche Q3, die zwischen den Trennwänden und gegebenen- falls den Wänden 2 oder 3 gebildet wird, also im Fall einer quadratischen Öffnung die Fläche d3 • b.
Die Höhe h der erfindungsgemäßen Vorrichtung sollte mindestens das Doppelte der Durchmesser d1 oder d2, je nachdem welcher Durchmesser der größere ist, betragen, bevorzugt mindestens das Dreifache.
Die Trennwände 8 und 9 sind in einer bevorzugten Ausführungsform so gestaltet, daß sie parallel zu den oberen und unteren Abdeckungen 6 und 7 verschiebbar sind um die erfindungsgemäße Vorrichtung auf unterschiedliche charakteristische Substratdimen- sionen anzupassen.
Derartigen Gestaltungsmöglichkeiten sind dem Fachmann an sich bekannt. Beispiels¬ weise können die Trennwände in Führungsschienen verschoben werden oder in Pas¬ sungen oder Aufnahmevorrichtungen in den Seiten- und/oder oberen und unteren Ab- deckungen fixiert werden.
Die Trennwände 8 und 9 sind in einer weiteren bevorzugten Ausführungsform so ges¬ taltet, daß der Abstand d1 bzw. d2 zu den unteren bzw. oberen Abdeckungen 7 bzw. 6 veränderbar ist um die erfindungsgemäße Vorrichtung auf unterschiedliche charakteris- tische Substratdimensionen anzupassen.
Derartigen Gestaltungsmöglichkeiten sind dem Fachmann an sich bekannt. Beispiels¬ weise können mehrere Trennwände teleskopartig aneinander angeordnet sein, so daß sie durch Ausziehen verlänger- oder verkürzbar sind.
Die Abstände d1 , d2, d3 und b sind bevorzugt so gewählt, daß die Abstände zwischen Substrat und den Wänden möglichst gleich sind, um eine möglichst gleichmäßige Um- strömung des Substrats in der Inertatmosphäre zu gewährleisten. Die dadurch gebilde¬ te Querschnittsfläche kann rund, oval, ellipsoid, viereckig, trapezförmig, rechteckig, quadratisch oder unregelmäßig geformt sein. Einfachheitshalber wird die Querschnitts¬ fläche bevorzugt viereckig und besonders bevorzugt rechteckig oder quadratisch ge¬ wählt. Eingang 13 und Ausgang 14 können einfachheitshalber lediglich als Öffnungen in der vorderen 2 oder hinteren 3, oder gegebenenfalls auch in einer seitlichen 4 oder 5, Ab¬ deckung bestehen. Selbstverständlich können Eingang 13 und Ausgang 14 auch in der oberen 6 oder unteren Abdeckung 7 angebracht sein.
In einer bevorzugten Ausführungsform werden Eingang 13 und/oder Ausgang 14 ver¬ längert ausgeführt, so daß das Substrat eine Strecke 15 mit der Länge f1 durch den Eingang 13 und/oder eine Strecke 16 mit der Länge f2 durch den Ausgang 14 geför¬ dert wird. Diese Strecken f1 und/oder f2 können beispielsweise das 0- bis 10-fache der Parameter d1 oder d2, je nachdem, welcher dieser beiden Parameter der größere ist, betragen, bevorzugt das 0- bis 5-fache, besonders bevorzugt das 0- bis 2-fache, ganz besonders bevorzugt das 0,5- bis 2-fache und insbesondere das 1- bis 2-fache (Figur 1).
In einer weiteren bevorzugten Ausführungsform werden Eingang 13 und/oder Ausgang 14 so ausgeführt, so daß das Substrat möglichst eng umschlossen wird. Dies kann beispielsweise so erreicht werden, daß die Öffnungen von Eingang und/oder Ausgang möglichst nah an die Dimensionen des Substrats heranreichen und nicht, wie oben gefordert, ein Vielfaches des Substratquerschnittes bilden. Sind Ein- und/oder Ausgang verlängert ausgeführt, so kann sich die Querschnittsfläche der verlängerten Ausfüh¬ rung in Richtung Eingang bzw. Ausgang verjüngen.
In einer weiteren bevorzugten Ausführungsform werden Eingang 13 und/oder Ausgang 14 mit Vorrichtungen versehen, die ein Ausfließen des in der Vorrichtung enthaltenen Inertgases aus Eingang bzw. Ausgang verringern. Da das Substrat am Eingang in der Regel mit einer ungehärteten, also klebrigen Beschichtungsmasse überzogen ist, soll¬ ten derartige Vorrichtungen am Eingang das Substrat nicht berühren.
Beispiele für geeignete Vorrichtungen sind Blenden, Bürsten, Vorhänge, Vorhangs- streifen, feinmaschige Netze, Federn, Türen, Schiebetüren oder Schleusen. Von die¬ sen können, falls gewünscht, auch mehrere hintereinandergeschaltet werden. Geeig¬ net sind auch Vor- und Nachfluter an den Ein- und/oder Ausgängen. Bei Vor- bzw. Nachflutern handelt es sich um Inertgas enthaltende Beckenmit dem Zweck, Luftwirbe- lungszonen von der Bestrahlungszone zu trennen. Dazu kann das Inertgasbecken von der Belichtungszone ausgehend sowohl in die Höhe als auch beidseitig in die Breite erweitert werden. Die Ausmaße der Vorfluter sind in erster Linie abhängig von Ein- und Austauchgeschwindigkeit und von der Geometrie des Substrats.
Sind sowohl Ein- als auch Ausgang mit derartigen Vorrichtungen versehen, so stellt es eine bevorzugte Ausführungsform dar, Ein- und Ausgang gleichzeitig mit diesen Vor¬ richtungen zu öffnen bzw. zu verschließen. D.h., daß in dem Zeitraum, in dem ein Sub¬ strat den Eingang passiert und die dortige Vorrichtung, beispielsweise eine Tür, Schie- betür, Blende oder Schleuse, geöffnet ist, gleichzeitig ein gehärtetes Substrat den Aus¬ gang passiert und die dort befindliche Vorrichtung ebenfalls geöffnet ist.
Ist die erfindungsgemäße Vorrichtung jedoch an einem zugigen Standort aufgestellt, so kann es bevorzugt sein, Ein- und Ausgang wechselseitig zu verschließen, da so ein Durchzug durch die erfindungsgemäße Vorrichtung vermieden werden kann.
Ein- und/oder Ausgang können in einer weiteren bevorzugten Ausführungsform auch mit Vorrichtungen versehen sein, die Turbulenzen oder Strömungen vermindern. Dabei kann es sich beispielsweise um längs der Förderrichtung angeordnete Leitbleche 17 oder -gitter, mehrere hintereinandergeschaltete feinmaschige Netze oder quer zur Förderrichtung angeordnete Leitbleche 18 handeln, die bevorzugt möglichst nah dem Substratquerschnitt angepaßt sind (Figuren 5 bis 8).
In einer bevorzugten Ausführungsform der Erfindung bei Verwendung eines Inertga¬ ses, das leichter als Luft ist, sind Eingang 13 und/oder Ausgang 14 der erfindungsge¬ mäßen Vorrichtung in der unteren Hälfte der Vorrichtung, bezogen auf die Höhe h der Vorrichtung, angebracht, besonders bevorzugt im unteren Drittel und ganz besonders bevorzugt weitestmöglich unten oder in der unteren Abdeckung 7 (Figur 1 ).
In einer bevorzugten Ausführungsform der Erfindung bei Verwendung eines Inertga¬ ses, das schwerer als Luft ist, sind Eingang 13 und/oder Ausgang 14 der erfindungs¬ gemäßen Vorrichtung in der oberen Hälfte der Vorrichtung, bezogen auf die Höhe h der Vorrichtung, angebracht, besonders bevorzugt im oberen Drittel und ganz beson- ders bevorzugt weitestmöglich oben oder in der oberen Abdeckung 6 (Figur 9).
Der Fördermechanismus 12 dient dazu, das Substrat S durch die Vorrichtung zu för¬ dern. Derartige Fördermechanismen sind an sich bekannt und nicht erfindungswesent¬ lich. Der Fördermechanismus kann durch die Vorrichtung hindurch oberhalb, unterhalb oder seitlich des Substrats angeordnet sein. In einer bevorzugten Ausführungsform wird das Substrat durch einen einseitigen oder beidseitigen seitlich angeordneten För¬ dermechanismus durch die Vorrichtung bewegt. Dies hat den Vorteil, daß kein Abrieb aus dem Fördermechanismus auf das gegebenenfalls noch ungehärtete Substrat fällt.
Die Förderung des Substrats kann beispielsweise an Fließbändern, Ketten, Seilen oder Schienen erfolgen. Falls gewünscht, kann sich das Substrat auch innerhalb der erfin¬ dungsgemäßen Vorrichtung drehen, dies ist jedoch erfindungsgemäß weniger bevor¬ zugt.
Werden andere als dreidimensionale Objekte durch die erfindungsgemäße Vorrichtung gefördert, beispielsweise Fasern, Folien oder Bodenbelege, so kann die Fördervorrich¬ tung 12 aus Walzen und/oder Rollen bestehen, über die das Substrat gefördert wird. Die erfindungsgemäße Vorrichtung enthält mindestens eine Strahlungsquelle 10.
Die Strahlungshärtung kann mit Elektronenstrahlen, Röntgen- oder Gammastrahlen, NIR-, IR- und/oder UV-Strahlung oder sichtbarem Licht erfolgen. Es ist ein Vorteil der erfindungsgemäßen Härtung unter Inertgasatmosphäre, daß die Strahlungshärtung mit einer breiten Vielfalt von Strahlungsquellen auch niedriger Intensität erfolgen kann.
Erfindungsgemäß verwendbare Strahlungsquellen sind solche, die energiereiche Strahlung abzugeben vermögen. Energiereiche Strahlung ist dabei solche elektromag- netische Strahlung im spektralen NIR-, VIS- und/oder UV-Bereich und/oder Elektro¬ nenstrahlung.
Mit NIR-Strahlung ist hier elektromagnetische Strahlung im Wellenlängenbereich von 760 nm bis 2,5 μm, bevorzugt von 900 bis 1500 nm bezeichnet.
UV-Strahlung oder Tageslicht umfaßt Licht im Wellenlängenbereich von λ=200 bis 760 nm, besonders bevorzugt von λ=200 bis 500 nm und ganz besonders bevorzugt λ=250 bis 430 nm.
Die üblicherweise zur Härtung von Beschichtungsmasse ausreichende Strahlungsdosis bei UV-Härtung liegt im Bereich von 80 bis 5000 mJ/cm2.
Unter Elektronenstrahlung wird Bestrahlung mit energiereichen Elektronen (150 bis 300 keV) verstanden.
Erfindungsgemäß bevorzugt sind NIR und/oder UV-Strahlung und besonders bevor¬ zugt Strahlung mit Wellenlängen unter 500 nm. Ganz besonders bevorzugt ist Strah¬ lung mit einer Wellenlänge unter 500 nm, die in einer Belichtungszeit von 10 Sekunden eine Belichtungsdosis auf dem Substrat von mehr als 100 mJ/cm2 der Substratoberflä- che ergeben.
In Betracht kommen Lampen, die ein Linienspektrum aufweisen, daß heißt nur bei be¬ stimmten Wellenlängen abstrahlen, z. B. Leuchtdioden oder Laser.
In Betracht kommen ebenfalls Lampen mit Breitbandspektrum, daß heißt, einer Vertei¬ lung des emittierten Lichts über einen Wellenlängenbereich. Intensitätsmaxima liegen dabei vorzugsweise im Bereich unterhalb 430 nm.
Als Strahlungsquellen für die Strahlungshärtung geeignet sind z.B. Quecksilber- Niederdruckstrahler, -Mitteldruckstrahler mit Hochdruckstrahler sowie Leuchtstoffröh¬ ren, Impulsstrahler, Metallhalogenidstrahler, Elektronenblitzeinrichtungerc, wodurch eine Strahlungshärtung ohne Photoinitiator möglich ist, oder Excimerstrahler. Queck¬ silberstrahler können mit Gallium oder Eisen dotiert sein.
Die Strahlungshärtung beim erfindungsgemäßen Verfahren kann auch mit Tageslicht erfolgen oder mit Lampen, welche als Tageslichtersatz dienen. Diese Lampen strahlen im sichtbaren Bereich oberhalb 400 nm ab und haben im Vergleich zu UV-Lampen nur geringe oder keine UV-Lichtanteile. Genannt seien z.B. Glühlampen, Halogenlampen, Xenonlampen.
Ebenso geeignet sind gepulste Lampen z.B. Fotoblitzlampen oder Hochleistungsblitz¬ lampen (Fa. VISIT). Ein besonderer Vorteil des Verfahrens ist die Einsetzbarkeit von Lampen mit niedrigem Energiebedarf und niedrigem UV-Anteil, z.B. von 500 Watt Ha¬ logen-Lampen, wie sie zu allgemeinen Beleuchtungszwecken eingesetzt werden. Da¬ durch kann sowohl auf eine Hochspannungseinheit zur Stromversorgung (bei Queck- silberdampflampen) sowie gegebenenfalls auf Lichtschutzmaßnahmen verzichtet wer¬ den. Auch besteht mit Halogenlampen auch an Luft keine Gefährdung durch Ozonent¬ wicklung wie bei kurzwellig abstrahlenden UV-Lampen. Dadurch wird die Strahlungs¬ härtung mit transportablen Bestrahlungsgeräten erleichtert und Anwendungen „vor Ort", also unabhängig von feststehenden industriellen Härtungsanlagen sind möglich.
Es können beliebig viele Strahlungsquellen für die Härtung eingesetzt werden, die je¬ weils gleich oder voneinander verschieden sein können.
Gegebenenfalls ist auch eine zur Substratgeometrie und zur Fördergeschwindigkeit angepasste Strahlungsquellenanordnung möglich, um gezielt bestimmte Flächen in¬ tensiver zu belichten.
Um schwer zugängliche Bereiche besonders von dreidimensionalen Substraten zu belichten ist es denkbar, daß zumindest ein Teil der Strahlungsquellen und/oder zu- mindest ein Teil von vorhandenen Reflektoren beweglich ausgeführt ist, beispielsweise an Roboterarmen, so daß auch beispielsweise innerhalb von Substraten liegende Schattenbereiche belichtet werden können.
Es kann auch sinnvoll sein, im Verlauf des Durchganges durch die erfindungsgemäße Vorrichtung das Substrat zunächst mit NIR-Strahlung zu behandeln und anschließend mit UV-Strahlung.
Die Dauer der Bestrahlung hängt vom gewünschten Härtungsgrad der Beschichtung oder des Formkörpers ab. Der Härtungsgrad läßt sich im einfachsten Fall an der Ent- klebung oder an der Kratzfestigkeit z.B. gegenüber dem Fingernagel oder gegenüber anderen Gegenständen wie Bleistift-, Metall- oder Kunststoffspitzen bestimmen. E- benso sind im Lackbereich übliche Beständigkeitsprüfungen gegenüber Chemikalien, z.B. Lösemittel, Tinten etc. geeignet. Ohne Beschädigung der Lackflächen sind vor allem spektroskopische Methoden, insbesondere die Raman- und Infrarotspektrosko¬ pie, oder Messungen der dielektrischen oder akustischen Eigenschaften usw. geeignet.
Da die Strahlungsquellen in der Regel ein starke Abwärme liefern, die für tempera- turmpfindliche Substrate schädigend wirken kann, kann es sinnvoll sein, die Strah¬ lungsquellen nicht vollständig innerhalb des Innenraums der erfindungsgemäßen Vor¬ richtung anzubringen, sondern die Strahlungsquellen so anzubringen, daß. Kühlvorrich¬ tungen der Strahlungsquellen außerhalb der erfindungsgemäßen Vorrichtung ange- bracht sind und die Strahlungsquellen in die erfindungsgemäße Vorrichtung hinein¬ leuchten.
Dies kann beispielsweise dadurch erzielt werden, daß die Strahlungsquellen in die o- bere 6 oder untere Abdeckung 7 und/oder in die seitlichen Abdeckungen 4 und/oder 5 eingelassen sind und sich die Gehäuse und/oder Kühlaggregate außerhalb der erfin¬ dungsgemäßen Vorrichtung befinden.
In einer bevorzugten Ausführung der Erfindung sind die Strahlungsquellen vollständig innerhalb der erfindungsgemäßen Vorrichtung angebracht, so daß die Abwärme für eine gegebenenfalls erforderliche Trocknung der Beschichtungsmasse auf dem Sub¬ strat genutzt werden kann (siehe unten).
Weiterhin können zur Erhöhung der Ausnutzung der energiereichen Strahlung ein oder mehrere Reflektoren in der erfindungsgemäßen Vorrichtung angebracht sein, bei- spielsweise Spiegel, Aluminium- oder sonstige Metallfolien oder blanke Metalloberflä¬ chen. In einer bevorzugten Ausführungsform können die Oberflächen der Wände oder Abdeckungen 2, 3, 4, 5, 6, 7, 8 und/oder 9 selber als Reflektoren ausgeführt sein.
Die mindestens eine Strahlungsquelle 10 kann in der erfindungsgemäßen Vorrichtung bezogen auf die gesamte Weglänge der Fördervorrichtung durch die erfindungsgemä¬ ße Vorrichtung bevorzugt im Bereich von 25% der gesamten Weglänge bis zu 80 % der gesamten Weglänge positioniert sein, besonders bevorzugt im Bereich von 33% bis zu 75% der gesamten Weglänge, ganz besonders bevorzugt im Bereich von 40 % bis zu 75% und insbesondere im Bereich von 50 % bis zu 75 % der gesamten Weglän- ge.
Diese Angaben beziehen sich dabei auf die Weglänge der Fördervorrichtung durch die erfindungsgemäße Vorrichtung, d.h. am Eingang beträgt diese Weglänge 0 %, am Ausgang 100 % und in der Mitte 50 % der gesamten Weglänge.
Die mindestens eine Strahlungsquelle kann auch über einen breiten Bereich verteilt sein, so daß eine Zone entsteht, innerhalb der bestrahlt wird. In einer besonders bevorzugten Ausführungsform befindet sich mindestens eine Strah¬ lungsquelle 10 vor der Gaszuführungsvorrichtung 11, betrachtet in Förderrichtung der Fördervorrichtung 12, ganz besonders bevorzugt befindet sich dabei mindestens eine Strahlungsquelle 10 an den seitlichen Abdeckungen 4 und/oder 5 und/oder an den Trennwänden 8 und/oder 9 (Figur 10).
Dies bewirkt, daß die Strömung des Inertgases zumindest zwischen dem Eingang 13 und der Gaszuführungsvorrichtung 11 bevorzugt im Gegenstrom zur Förderrichtung der Fördereinrichtung 12 verläuft.
Das Inertgas kann prinzipiell an beliebiger Stelle durch mindestens eine Gaszufüh¬ rungsvorrichtung 11 in die erfindungsgemäße Vorrichtung eindosiert werden.
Der Strom des Inertgases kann sich prinzipiell im Gleich- oder im Gegenstrom bezogen auf die Förderrichtung der Fördereinrichtung 12 bewegen, bevorzugt wird das Inertgas so eindosiert, daß sich der Strom des Inertgases zwischen Eingang 13 und der Stre¬ cke, an der die Strahlungshärtung des Substrats erfolgt, im Gegenstrom zur Förder¬ richtung bewegt.
Bevorzugt wird das Inertgas im Bereich um und/oder nach der letzten Strahlungsquelle eindosiert, besonders bevorzugt innerhalb eines Viertels der gesamten Weglänge der Fördervorrichtung durch die erfindungsgemäße Vorrichtung vor und/oder hinter der Zone, innerhalb der bestrahlt wird, ganz besonders bevorzugt im Bereich von bis zu 15% der gesamten Weglänge vor und bis zu 25% hinter der Zone, in der bestrahlt wird und insbesondere im Bereich von bis zu 5% der gesamten Weglänge vor und bis zu 15% hinter der Zone, innerhalb der bestrahlt wird.
Mit der Gaszuführungsvorrichtung 11 kann ein Gas oder Gasgemisch in den Innen- räum geführt oder dort gebildet werden. Letzteres ist beispielsweise von Interesse, wenn das Inertgas in fester, beispielsweise Trockeneis, oder flüssiger Form, beispiels¬ weise als Kondensat oder unter Druck, in die erfindungsgemäße Vorrichtung gegeben wird und dann dort sublimiert oder verdampft.
In einer bevorzugten Ausführungsform der Erfindung wird das Inertgas strömungs- und verwirbelungsarm in die erfindungsgemäße Vorrichtung geleitet, beispielsweise durch Strömungsvergleichmäßiger oder Strömungsgleichrichter, wie z.B. Lochbleche, Siebe, Sintermetall, Gitter, Fritten, Schüttungen, Waben- oder Rohrstrukturen, bevorzugt Lochbleche oder Gitter. Durch solche Strömungsvergleichmäßiger oder Strömungs- gleichrichter werden eine schräge Anströmung oder ein Drall verringert. Die Zugabemenge des Inertgases wird erfindungsgemäß so angepaßt, daß man die Verluste an Inertgas durch eventuelle Lecks oder durch den Eingang und/oder Aus¬ gang ausgleicht. Es wird selbstverständlich angestrebt, den Verbrauch an Inertgas so gering wie möglich zu halten. In der Regel beträgt mit der erfindungsgemäßen Vorrich- tung die Zudosierung von Inertgas bei Ausgleich des Verlustes an Inertgas zusätzlich dem über das Fördergut verdrängte und ausgeschöpfte Inertgasvolumen nicht mehr als das zweifache des Innenvolumens der erfindungsgemäßen Vorrichtung pro Stunde, besonders bevorzugt nicht mehr als das einfache des Innenvolumens, ganz besonders bevorzugt nicht mehr als das 0,5-fache und insbesondere nicht mehr als das 0,25- fache des Innenvolumens der erfindungsgemäßen Vorrichtung pro Stunde.
In einer bevorzugten Ausführungfsorm der vorliegenden Erfindung bei Einsatz eines Inertgases, das leichter als Luft ist, wird das Inertgas über eine Gaszuführungsvorrich- tung 11 im oberen Drittel der erfindungsgemäßen Vorrichtung, bezogen auf deren Hö- he h, zugeführt, besonders bevorzugt im oberen Viertel und ganz besonders bevorzugt in der oberen Abdeckung 6.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung bei Einsatz eines Inertgases, das leichter als Luft ist, wird das Inertgas vor, während oder nach der Zudosierung über eine Gaszuführungsvorrichtung 11 erwärmt, beispielsweise auf eine Temperatur, die mindestens der Temperatur der Schutzgasatmosphäre entspricht, besonders bevorzugt auf eine Temperatur, die mindestens 10 0C oberhalb der Tempe¬ ratur der Schutzgasatmosphäre liegt und ganz besonders bevorzugt auf eine Tempera¬ tur, die mindestens 20 0C oberhalb der Temperatur der Schutzgasatmosphäre liegt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung bei Einsatz eines Inertgases, das schwerer als Luft ist, wird das Inertgas über eine Gaszuführungsvor¬ richtung 11 im unteren Drittel der erfindungsgemäßen Vorrichtung, bezogen auf des¬ sen Höhe h, zugeführt, besonders bevorzugt im unteren Viertel und ganz besonders bevorzugt in der unteren Abdeckung 7.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung bei Einsatz eines Inertgases, das schwerer als Luft ist, wird das Inertgas vor, während oder nach der Zudosierung über eine Gaszuführungsvorrichtung 11 gekühlt, beispielsweise auf eine Temperatur, die unterhalb der Temperatur der Schutzgasatmosphäre liegt, be¬ sonders bevorzugt auf eine Temperatur, die mindestens 10 °C unterhalb der Tempera¬ tur der Schutzgasatmosphäre liegt und ganz besonders bevorzugt auf eine Tempera¬ tur, die mindestens 20 0C unterhalb der Temperatur der Schutzgasatmosphäre liegt.
Es stellt eine weitere bevorzugte Ausführungsform der Erfindung dar, in der erfin¬ dungsgemäßen Vorrichtung Stickstoff und Kohlendioxid gleichzeitig als Inertgase zu verwenden, wobei Stickstoff über eine Gaszuführungsvorrichtung 11 im oberen Drittel der erfindungsgemäßen Vorrichtung, bezogen auf deren Höhe h, zugeführt, besonders bevorzugt im oberen Viertel und ganz besonders bevorzugt in der oberen Abdeckung 6 und Kohlendioxid über eine Gaszuführungsvorrichtung 11 im unteren Drittel der erfin¬ dungsgemäßen Vorrichtung, bezogen auf dessen Höhe h, zugeführt, besonders be- vorzugt im unteren Viertel und ganz besonders bevorzugt in der unteren Abdeckung 7 zugeführt wird. In einer weiteren Ausgestaltung dieser Ausführungsform kann der Stickstoff wie oben beschrieben erwärmt und/oder das Kohlendioxid wie oben be¬ schrieben gekühlt zudosiert werden. Dadurch kann innerhalb der erfindungsgemäßen Vorrichtung durch eine Überschichtung ein Dichtegradient der Inertgase erzielt werden.
Die seitlichen Abdeckungen 2, 3, 4 und/oder 5, sowie die oberen und unteren Abde¬ ckungen 6 und/oder 7 sind in einer bevorzugten Ausführungsform thermostatiert oder isoliert ausgeführt, um einen Temperaturausgleich zwischen der erfindungsgemäßen Vorrichtung und der Umgebung so niedrig wie möglich zu halten. Durch einen Tempe- raturausgleich über die Außenwände könnten innerhalb der Vorrichtung unerwünschte Konvektionsströme auftreten.
Selbstverständlich kann die erfindungsgemäße Vorrichtung ein oder mehrere Mannlö¬ cher oder Zugänge aufweisen, durch die der Innenraum zugängig ist, um beispielswei- se Trennwände zu verschieben, die Abstände d1 und/oder d2 zu verändern oder Lam¬ pen auszutauschen. Vor Einstieg in die Vorrichtung sollte aus Arbeitssicherheitsgrün¬ den unbedingt das Inertgas aus dem Innenraum entfernt werden sowie die Strahlungs¬ quellen abgeschaltet werden.
Applikation, Filmbildung, Abdunsten von Verdünnungsmitteln und/oder thermische Vor¬ reaktionen der Beschichtungsmasse erfolgt üblicherweise außerhalb der erfindungs¬ gemäßen Vorrichtung.
Dabei spielt es erfindungsgemäß in der Regel keine Rolle, in welchem zeitlichen oder räumlichen Abstand von der erfindungsgemäßen Vorrichtung oder auf welche Weise die Applikation erfolgt.
Die Applikation kann beispielsweise durch Spritzen, Spachteln, Rakeln, Bürsten, Rol¬ len, Walzen, Gießen, Laminieren, Tauchen, Fluten, Streichen etc. auf das Substrat aufgebracht werden. Die Beschichtungsstärke liegt in der Regel in einem Bereich von etwa 3 bis 1000 g/m2 und vorzugsweise 5 bis 200 g/m2.
In einer besonders bevorzugten Ausführungsform der Erfindung wird das mit einer Be¬ schichtungsmasse beschichtete Substrat zumindest teilweise innerhalb der erfin- dungsgemäßen Vorrichtung getrocknet, d.h. es werden innerhalb der Vorrichtung leichtflüchtige Bestandteile der Beschichtungsmasse größtenteils entfernt. Bei derarti¬ gen leichtflüchtigen Bestandteilen kann es sich beispielsweise um in der Beschich- tungsmasse enthaltene Lösungsmittel handeln. Dies können beispielsweise Ester, wie z.B. Butylacetat oder Ethylacetat, aromatische oder (cyclo)aliphatische Kohlenwasser¬ stoffe, wie z.B. XyIoI, Toluol oder Heptan, Ketone, wie z.B. Aceton, iso- Butylmethylketon, Methylethylketon oder Cyclohexanon, Alkohole wie z.B. Ethanol, Isopropanol, Mono- oder niedere Oligoethylen- oder -propylenglykole, ein- oder zwei¬ fach veretherte Ethylen- oder Propylenglykolether, Glykoletheracetate, wie z.B. Metho- xypropylacetat, cyclische Ether wie Tetrahydrofuran, Carbonsäureamide wie Dimethyl- formamid oder N-Methylpyrrolidon und/oder Wasser sein. Die Verdunstung und/oder Verdampfung von Lösungsmitteln im Trocknungsschritt innerhalb der erfindungsgemä- ßen Vorrichtung hat den Vorteil, daß die gasförmigen Lösungsmittel innerhalb der staubfreien Vorrichtung zur Inertatmosphäre beitragen, was den Inertgasverbrauch verringert, und zusätzlich während der Härtung einen Weichmacher-Effekt auf die Be- schichtung ausübt, wodurch diese flexibler wird. Daher ist es erfindungsgemäß von Vorteil, wenn die in der erfindungsgemäßen Vorrichtung befindliche Inertgasatmosphä- re zu mindestens 2,5 Vol%, bevorzugt zu mindestens 5, besonders bevorzugt zu min¬ destens 7,5 und ganz besonders bevorzugt zu mindestens 10 Vol% einen Anteil an einem oder mehreren Lösungsmitteln aufweist.
In einer weiteren besonders bevorzugten Ausführungsform weist die erfindungsgemä- ße Vorrichtung zusätzlich eine Kondensationsmöglichkeit 19 (Figur 11) auf, in der die in der Inertgasatmosphäre innerhalb der erfindungsgemäßen Vorrichtung befindlichen Lösungsmittel auskondensiert werden können. Derartige Kondensationsmöglichkeiten befinden sich bevorzugt am Ein- und/oder Ausgang der erfindungsgemäßen Vorrich¬ tung. Bei diesen kann es sich beispielsweise um innerhalb der Vorrichtung liegende Platten- oder Rohrbündelwärmetauscher, Kühlwendeln oder Kühlfinger handeln, die entweder mit einem externen Kühlmedium im Gleich- oder Gegenstrom, bevorzugt im Gegenstrom bezogen auf die Förderrichtung des Substrats betrieben werden, oder bevorzugt, im Fall von Trockeneis als Quelle für CO2 als Inertgas innerhalb der Vorrich¬ tung, mit Trockeneis betrieben werden, wodurch gleichzeitig Inertgas innerhalb der Vorrichtung generiert wird und das Lösungsmittel wiedergewonnen werden kann. Das Kondensat wird dann gesammelt und außerhalb der Vorrichtung gefördert, beispiels¬ weise durch einen Heber, Ausfluß oder Auslauf, gegebenenfalls mit einem Syphon. Durch ein solches Kondensieren und gegebenenfalls Wiederverwenden des Lösungs¬ mittels werden die Emissionen sowie der Verbrauch an Lösungsmittel deutlich verrin- gert.
Zum Trocknen der Beschichtungsmasse auf den beschichteten Substraten innerhalb der erfindungsgemäßen Vorrichtung wird die Inertgasatmosphäre und/oder die Be¬ schichtungsmasse über einen Zeitraum von mindestens 1 Minute, bevorzugt mindes- tens 2 min, besonders bevorzugt mindestens 3 min und ganz besonders bevorzugt mindestens 5 min auf eine Temperatur von mindestens 50 0C, bevorzugt mindestens 60 0C, besonders bevorzugt mindestens 70 0C und ganz besonders bevorzugt mindes¬ tens 80 0C erwärmt.
Die Wärme für die Trocknung kann dabei beispielsweise durch Ausnutzung der Ab- wärme der mindestens einen Strahlungsquelle 10 oder über mindestens eine zusätzli¬ che Heizvorrichtung 20 eingebracht werden, die sich zwischen Eingang und Bestrah¬ lung der beschichteten Substrate befindet. Derartige Heizvorrichtungen 13 sind dem Fachmann an sich bekannt, bevorzugt handelt es sich um IR- und/oder NIR-Strahler, die die Beschichtungsmasse erwärmen. Mit NIR-Strahlung ist hier elektromagnetische Strahlung im Wellenlängenbereich von 760 nm bis 2,5 μm, bevorzugt von 900 bis 1500 nm bezeichnet, mit IR-Strahlung der Wellenlängenbereich von 25 - 1000 μm (fernes IR) und bevorzugt 2,5 - 25 μm (mittleres IR). Bevorzugt wird zum Trocknen Strahlung mit einer Wellenlänge von 1 bis 5 μm eingesetzt.
In einer bevorzugten Ausführungsform wird die Strahlungshärtung zumindest teilweise bevorzugt vollständig dann durchgeführt, wenn die Beschichtungsmasse auf den be¬ schichteten Substraten eine Temperatur von 50 0C oder mehr aufweist, bevorzugt von mindestens 60 0C, besonders bevorzugt von mindestens 70 0C und ganz besonders bevorzugt von mindestens 80 0C. Dabei ist es von untergeordneter Bedeutung, wie die Beschichtungsmasse auf diese Temperatur gebracht wird, ob durch Erwärmen der Inertgasatmosphäre und/oder durch Strahlungsquellen 10 und/oder durch zusätzliche Heizvorrichtungen 20 und/oder auf andere Weise.
Wird die Strahlungshärtung zumindest teilweise bei einer solchen erhöhten Temperatur der Beschichtungsmasse durchgeführt, so findet man bei der so erhaltenen Beschich- tung bessere Eigenschaften. Der Grund dafür ist unklar könnte beispielsweise in einer verringerten Viskosität der erwärmten Beschichtungsmasse liegen.
Die Verweilzeit innerhalb der Vorrichtung ist abhängig davon, ob innerhalb der erfin- dungsgemäßen Vorrichtung eine zusätzliche Trocknung erfolgen soll oder nicht. Übli¬ cherweise beträgt die Verweilzeit ohne Trocknung innerhalb der erfindungsgemäßen Vorrichtung, also vom Passieren des Substrats durch den Eingang bis zum Passieren des Ausgangs, mindestens eine Minute, bevorzugt mindestens 2 min, besonders be¬ vorzugt mindestens 3 min, ganz besonders bevorzugt mindestens 4 min und insbeson- dere mindestens 5 min. Die Verweilzeit ohne Trocknung innerhalb der erfindungsge¬ mäßen Vorrichtung überschreitet in der Regel nicht 15 min, bevorzugt beträgt sie nicht mehr als 12 min, besonders bevorzugt nicht mehr als 10 min, ganz besonders bevor¬ zugt nicht mehr als 9 min und insbesondere nicht mehr als 7 min. Eine höhere Verweil¬ zeit hat zwar in der Regel keinen nachteiligen Effekt auf die Härtung der Beschich- tungsmasse, hat jedoch auch keinen positiven Effekt und führt so zu unnötig großen Vorrichtungen. Enthält die erfindungsgemäßen Vorrichtung noch eine zusätzliche Trocknung, so muß selbstverständlich die Zeit für die Trocknung noch zur angegebenen Verweilzeit addiert werden.
Die Länge der Fördererinrichtung 12 durch die erfindungsgemäße Vorrichtung und die Geschwindigkeit der Förderung des Substrats wird entsprechend an diese Verweilzeit angepaßt. Die Verweilzeit des Substrats in der Vorrichtung hängt beispielsweise vom Substrat, sowie dessen Größe, Gewicht und der Komplexität seiner Struktur, sowie Reaktivität, Art (beispielsweise Pigmentierung), Menge, Dicke und Fläche der zu här- tenden Beschichtungsmasse bzw. des diese enthaltenden Lacks auf dem Substrat ab.
Die Fördergeschwindigkeit von dreidimensionalen Objekten durch die erfindungsge¬ mäße Vorrichtung kann beispielsweise 0,5 bis 10 m/min, bevorzugt 1 - 10 m/min, be¬ sonders bevorzugt 2 - 8 m/min, ganz besonders bevorzugt 3 - 7 und insbesondere um 5 m/min betragen. Objekte mit gasschöpfenden Teilen, wie Verkleidungsteile oder Ge¬ häuse für Fahrzeuge oder Maschinen, werden ähnlich schnell befördert, erfordern aber zusätzliche Maßnahmen zur Verminderung des Sauerstoffeintrags, insbesondere durch verlängerte Wegstrecken.
Dreidimensionale Objekte sind dabei solche, deren Beschichtung mit einer Beschich¬ tungsmasse nicht durch direkte Bestrahlung aus genau einer Strahlungsquelle zumin¬ dest theoretisch gehärtet werden könnte.
Für Bahnenware, wie beispielsweise Folien oder Bodenbelag, kann die Förderge- schwindigkeit bis über 100m/min und für die Fasern bis über 1000 m/min betragen. In diesen Fällen kann die Fördereinrichtung 12 beispielsweise Walzen und/oder Rollen umfassen.
Es kann sinnvoll sein, innerhalb der Vorrichtung zwei oder mehr parallele Fördervor- richtungen vorzusehen, die die Substrate durch jeweils einen gemeinsamen Ein- und Ausgang fördern aber innerhalb der Vorrichtung voneinander getrennte Strecken durchlaufen. Dies hat den Vorteil, daß die Anzahl der Ein- und Ausgänge, über die das meisten Inertgas verloren geht, so gering wie möglich gehalten wird.
Um die Verluste an Inertgas zu vermeiden, sollte die erfindungsgemäße Vorrichtung an einem zugfreien Standort aufgestellt werden, da bereits durch eine leichte Strömung, die die Vorrichtung umspült, Inertgas aus der erfindungsgemäßen Vorrichtung gesogen werden kann. Selbstverständlich ist jedoch aus Sicherheitsgründen auf eine ausrei¬ chende Belüftung des Standortes der Vorrichtung zu achten, um eine Inertisierung der Umgebung, die das Bedienungspersonal gefährden könnte, zu vermeiden. Zur Minimierung des Inertgasbedarfs in der erfindungsgemäßen Vorrichtung können Luftströmungen, die über Luftaustausch an Applikations- und Trocknungseinrichtungen vorhanden sind, reduziert werden, indem man entsprechend Abstand zu diesen Appli¬ kations- und Trocknungseinrichtungen hält oder diese Luftströmungen mit beispiels- weise Abschirmwänden umleitet oder bricht.
Strahlungshärtbare Beschichtungsmassen enthalten strahlungshärtbare Verbindungen als Bindemittel. Dies sind Verbindungen mit radikalisch oder kationisch polymerisierba- ren ethylenisch ungesättigten Gruppen. Vorzugsweise enthält die strahlungshärtbare Masse 0,001 bis 12, besonders bevorzugt 0,1 bis 8 und ganz besonders bevorzugt 0,5 bis 7 Mol, strahlungshärtbare ethylenisch ungesättigte Gruppen auf 1000 g strahlungs¬ härtbare Verbindungen.
Als strahlungshärtbare Verbindungen kommen z. B. (Meth)acrylverbindungen, Vinyl- ether, Vinylamide, ungesättigte Polyester z.B. auf Basis von Maleinsäure oder Fumar- säure gegebenenfalls mit Styrol als Reaktiwerdünner oder Maleinimid/Vinylether- Systemen in Betracht.
Bevorzugt sind (Meth)acrylatverbindungen wie Polyester(meth)acrylate, PoIy- ether(meth)acrylate, Urethan(meth)acrylate, Epoxi(meth)acreylate, Carbo- nat(meth)acrylate, Silikon(meth)acrylate, acrylierte Polyacrylate.
Vorzugsweise handelt es sich bei mindestens 40 Mol-%, besonders bevorzugt bei mindestens 60 % der strahlungshärtbaren ethylenisch ungesättigten Gruppen um (Meth)acrylgruppen.
Die strahlungshärtbaren Verbindungen können weitere reaktive Gruppen, z.B. MeI- amin-, Isocyanat-, Epoxid-, Anhydrid-, Alkohol-, Carbonsäuregruppen für eine zu¬ sätzliche thermische Härtung, z. B. durch chemische Reaktion von Alkohol-, Carbon- säure-, Amin-, Epoxid-, Anhydrid-, Isocyanat- oder Melamingruppen, enthalten (dual eure).
Die strahlungshärtbaren Verbindungen können z.B. als Lösung, z.B. in einem organi¬ schen Lösungsmittel oder Wasser, als wäßrige Dispersion, als Pulver vorliegen.
Bevorzugt sind die strahlungshärtbaren Verbindungen und somit auch die strahlungs¬ härtbaren Massen bei Raumtemperatur fließfähig. Die strahlungshärtbaren Massen enthalten vorzugsweise weniger als 20 Gew.-%, insbesondere weniger als 10 Gew.-% organische Lösemittel und/oder Wasser. Bevorzugt sind sie lösungsmittelfrei und was- serfrei (sog. 100 % Systeme). In diesem Fall kann bevorzugt auf einen Trocknungs¬ schritt verzichtet werden. Die strahlungshärtbaren Massen können neben den strahlungshärtbaren Verbindun¬ gen als Bindemittel weitere Bestandteile enthalten. In Betracht kommen z.B. Pigmente, Verlaufsmittel, Farbstoffe, Stabilisatoren etc.
Für die Härtung mit UV-Licht werden im allgemeinen Photoinitiatoren verwendet.
Als Photoinitiatoren können dem Fachmann bekannte Photoinitiatoren verwendet wer¬ den, z.B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietliker, Chemistry and Technology of UV- and EB-Formulation for Coa- tings, Inks and Paints, Volume 3; Photoinitiators for Free Radical and Cationic Polyme- rization, P. K. T. Oldring (Eds), SITA Technology Ltd, London, genannten.
In Betracht kommen beispielsweise Phosphinoxide, Benzophenone, α-Hydroxy-alkyl- aryl-ketone, Thioxanthone, Anthrachinone, Acetophenone, Benzoine und Benzoi- nether, Ketale, Imidazole oder Phenylglyoxylsäuren.
Phosphinoxide sind beispielsweise Mono- oder Bisacylphosphinoxide, wie z.B. Irgacu- re® 819 (Bis(2,4,6-Trimethylbenzoyl)phenylphosphinoxid), wie sie z.B. in EP-A 7 508, EP-A 57 474, DE-A 196 18 720, EP-A 495 751 oder EP-A 615 980 beschrieben sind, beispielsweise 2,4,6-Trimethylbenzoyldiphenylphosphinoxid (Lucirin® TPO), Ethyl- 2,4,6-trimethylbenzoylphenylphosphinat, Bis(2,6-dimethoxybenzoyI)-2,4,4- trimethylpentylphosphinoxid,
Benzophenone sind beispielsweise Benzophenon, 4-Aminobenzophenon, 4,4'- Bis(dimethylamino)benzophenon, 4-Phenylbenzophenon, 4-Chlorbenzophenon, Mich- lers Keton, o-Methoxybenzophenon, 2,4,6-Trimethylbenzophenon, 4-Methylbenzophenon, 2,4-Dimethylbenzophenon, 4-lsopropylbenzophenon, 2-Chlorbenzophenon, 2,2'-Dichlorbenzophenon, 4-Methoxybenzophenon, 4-Propoxybenzophenon oder 4-Butoxybenzophenon
α-Hydroxy-alkyl-aryl-ketone sind beispielsweise 1-Benzoylcyclohexan-1-ol (1-Hydroxy- cyclohexyl-phenylketon), 2-Hydroxy-2,2-dimethylacetophenon (2-Hydroxy-2-methyl-1 - phenyl-propan-1 -on), 1 -Hydroxyacetophenon, 1 -[4-(2-Hydroxyethoxy)-phenyl]-2- hydroxy-2-methyl-1-propan-1-on, Polymeres, das 2-Hydroxy-2-methyl-1-(4-isopropen- 2-yl-phenyI)-propan-1-on einpolymerisiert enthält (Esacure® KIP 150)
Xanthone und Thioxanthone sind beispielsweise 10-Thioxanthenon, Thioxanthen-9-on, Xanthen-9-on, 2,4-Dimethylthioxanthon, 2,4-Diethylthioxanthon, 2,4-Di-iso- propylthioxanthon, 2,4-Dichlorthioxanthon, Chloroxanthenon, Anthrachinone sind beispielsweise ß-Methylanthrachinon, te/f-Butylanthrachinon, Anthrachinoncarbonylsäureester, Benz[de]anthracen-7-on, Benz[a]anthracen-7, 12- dion, 2-Methylanthrachinon, 2-Ethylanthrachinon, 2-terf-Butylanthrachinon, 1- Chloranthrachinon, 2-Amylanthrachinon
Acetophenone sind beispielsweise Acetophenon, Acetonaphthochinon, Valerophenon, Hexanophenon, α-Phenylbutyrophenon, p-Morpholinopropiophenon, Dibenzosuberon, 4-Morpholinobenzophenon, p-Diacetylbenzol, 4'-Methoxyacetophenon, α-Tetralon, 9- Acetylphenanthren, 2-Acetylphenanthren, 3-Acetylphenanthren, 3-Acetylindol, 9- Fluorenon, 1-lndanon, 1 ,3,4-Triacetylbenzol, 1-Acetonaphthon, 2-Acetonaphthon, 2,2- Dimethoxy-2-phenylacetophenon, 2,2-Diethoxy-2-phenylacetophenon, 1,1- Dichloracetophenon, 1-Hydroxyacetophenon, 2,2-Diethoxyacetophenon, 2-Methyl-1-[4- (methylthio)phenyl]-2-morpholinopropan-1-on, 2,2-Dimethoxy-1,2-diphenylethan-2-on, 2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-on
Benzoine und Benzoinether sind beispielsweise 4-Morpholinodeoxybenzoin, Benzoin, Benzoin-iso-butylether, Benzoin-tetrahydropyranylether, Benzoin-methylether, Ben- zoin-ethylether, Benzoin-butylether, Benzoin-iso-propylether, 7-H-Benzoin-methylether,
Ketale sind beispielsweise Acetophenondimethylketal, 2,2-Diethoxyacetophenon, Ben- zilketale, wie Benzildimethylketal,
Phenylglyoxylsäuren wie in DE-A 198 26 712, DE-A 199 13 353 oder WO 98/33761 beschrieben oder sonstige Photoinitiatoren, wie z.B. Benzaldehyd, Methylethylketon, 1- Naphthaldehyd, Triphenylphosphin, Tri-o-Tolylphosphin, 2,3-Butandion oder deren Gemische, wie beispielsweise 2-Hydroxy-2-Methyl-1 -phenyl-propan-2-on und 1 -Hydroxy-cyclohexyl-phenylketon, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyIphosphinoxid und 2-Hydroxy-2-methyl- 1-phenyl-propan-1-on Benzophenon und 1 -Hydroxy-cyclohexyl-phenylketon, Bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyIphosphinoxid und 1 -Hydroxy- cyclohexyl-phenylketon, 2,4,6-Trimethylbenzoyldiphenylphosphinoxid und 2-Hydroxy-2-methyl-1 -phenyl-propan- 1-on, 2,4,6-Trimethylbenzophenon und 4-Methylbenzophenon, 2,4,6-Trimethylbenzophenon und 4-Methylbenzophenon und 2,4,6- Trimethylbenzoyldiphenylphosphinoxid,
Es ist ein Vorteil der Erfindung, daß der Gehalt der Photoinitiatoren in der strahlungs- härtbaren Masse gering sein kann.
Vorzugsweise enthalten die strahlungshärtbaren Massen weniger als 10 Gew.-Teile, insbesondere weniger als 4 Gew.-Teile, besonders bevorzugt weniger als 1 ,5 Gew.- Teile Photoinitiator auf 100 Gew.-Teile strahlungshärtbare Verbindungen.
Ausreichend ist insbesondere eine Menge von 0 Gew.-Teilen bis 1 ,5 Gew.-Teilen, insbesondere 0,01 bis 1 Gew.-Teil Photoinitiator.
Die strahlungshärtbare Masse kann nach üblichen Verfahren auf das zu beschichtende Substrat aufgebracht werden oder in die entsprechende Form gebracht werden.
Die Strahlungshärtung kann dann erfolgen, sobald das Substrat von dem Schutzgas umgeben ist.
Das erfindungsgemäße Verfahren eignet sich zur Herstellung von Beschichtungen auf Substraten und zur Herstellung von Formkörpern.
Geeignete Substrate sind beispielsweise Holz, Papier, Textil, Leder, Vlies, Kunststoff¬ oberflächen, Glas, Keramik, mineralische Baustoffe, wie Zement-Formsteine und Fa- serzementplatten, oder Metalle oder beschichtete Metalle, bevorzugt Kunststoffe oder Metalle, die beispielsweise auch als Folien vorliegen können.
Kunststoffe sind beispielsweise thermoplastische Polymere, insbesondere PoIy- methylmethacrylate, Polybutylmethacrylate, Polyethylenterephthalate, Polybutylente- rephthalate, Polyvinylidenflouride, Polyvinylchloride, Polyester, Polyolefine, Acrylnitri- lethylenpropylendienstyrolcopolymere (A-EPDM)1 Polyetherimide, Polyetherketone, Polyphenylensulfide, Polyphenylenether oder deren Mischungen.
Weiterhin genannt seien Polyethylen, Polypropylen, Polystyrol, Polybutadien, Polyes- ter, Polyamide, Polyether, Polycarbonat, Polyvinylacetal, Polyacrylnitril, Polyacetal, Polyvinylalkohol, Polyvinylacetat, Phenolharze, Harnstoffharze, Melaminharze, Alkyd- harze, Epoxidharze oder Polyurethane, deren Block- oder Pfropfcopolymere und Blends davon.
Bevorzugt als Kunststoffe genannt seien ABS, AES, AMMA, ASA, EP, EPS1 EVA, E- VAL, HDPE, LDPE, MABS, MBS, MF, PA, PA6, PA66, PAN, PB, PBT, PBTP, PC, PE, PEC, PEEK, PEI, PEK, PEP, PES1 PET, PETP, PF, PI, PIB, PMMA, POM, PP, PPS, PS, PSU, PUR, PVAC, PVAL, PVC, PVDC1 PVP, SAN, SB, SMS, UF, UP-Kunststoffe (Kurzzeichen gemäß DIN 7728) und aliphatische Polyketone.
Besonders bevorzugte Kunststoffe als Substrate sind Polyolefine, wie z.B. PP(Polypropylen), das wahlweise isotaktisch, syndiotaktisch oder ataktisch und wahl¬ weise nicht-orientiert oder durch uni- oder bisaxiales Recken orientiert sein kann, SAN (Styrol-Acrylnitril-Copolymere), PC (Polycarbonate), PMMA (Polymethylmethacrylate), PBT (Poly(butylenterephthalat)e), PA (Polyamide), ASA (Acrylnitril-Styrol-Acrylester- Copolymere) und ABS (Acrylnitril-Butadien-Styrol-Copolymere), sowie deren physikali- sehe Mischungen (Blends). Besonders bevorzugt sind PP, SAN, ABS, ASA sowie Blends von ABS oder ASA mit PA oder PBT oder PC.
Als Formkörper genannt seien z. B. Verbundwerkstoffe, die z. B. mit strahlungshärtba¬ rer Masse getränkte Fasermaterialien oder Gewebe enthalten, oder Formkörper für die Stereolithographie.

Claims

Patentansprüche
1. Vorrichtung 1 zum Durchführen einer Härtung von Beschichtungen auf einem Substrat S unter einer Inertgasatmosphäre, enthaltend - seitliche Abdeckungen 2, 3, 4 und 5, obere und untere Abdeckungen 6 und 7, wobei 2, 3, 4, 5, 6 und 7 gemein¬ sam einen Innenraum umschließen, eine oder mehrere Trennwände 8, die den Innenraum unterteilen, wobei die Trennwände 8 mit der unteren Abdeckung 7 abschließen und einen Ab- stand d1 zur oberen Abdeckung 6 freilassen, eine oder mehrere Trennwände 9, die den Innenraum unterteilen, wobei die Trennwände 9 mit der oberen Abdeckung 6 abschließen und einen Ab¬ stand d2 zur unteren Abdeckung 7 freilassen, wobei 8 und 9 mit der jeweils benachbarten Trennwand 9 oder 8 und gege- benenfalls den seitlichen Abdeckungen 2 oder 3 einen unterteilten Innen¬ raum (Kompartiment) bilden, mindestens eine innerhalb des Innenraums und/oder in den Innenraum hinein strahlende Strahlungsquelle 10, mindestens eine Gaszuführungsvorrichtung 11 , mit der ein Gas oder Gas- gemisch in den Innenraum geführt oder dort gebildet werden kann, mindestens eine Fördervorrichtung 12 für das Substrat S, Einlaß 13 und Auslaß 14,
wobei
die Trennwände 8 im wesentlichen senkrecht auf die untere Abdeckung 7 stehen, die Trennwände 9 im wesentlichen senkrecht auf die obere Abdeckung 6 stehen, die Abstände d1 und d2 sowie die Breite b der Vorrichtung 1 so gewählt sind, daß sie größer sind als die Dimensionen des Substrats S entlang der Förderrichtung der Fördervorrichtung 12 und durch die Vorrichtungen 2, 3, 8 und 9 mindestens 4 Kompartimente ausge- bildet werden.
2. Vorrichtung gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Querschnitts¬ fläche, durch die das Substrat durch die einzelnen Kompartimente in der Vorrich¬ tung gefördert wird, mindestens das dreifache der projizierten Querschnittsfläche des Substrats in Förderrichtung betragen.
3. Vorrichtung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Anzahl der Kompartimente 4 bis 15 beträgt.
4. Vorrichtung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Anzahl der Kompartimente 6 bis 8 beträgt.
5. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Inertatmosphäre überwiegend aus Stickstoff und/oder Kohlenstoffdi¬ oxid besteht.
6. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Inertatmosphäre einen Sauerstoffgehalt unter 3 Vol% aufweist.
7. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich- net, daß die Höhe h eines Kompartiments mindestens doppelt so groß ist, wie der größere der Abstände d1 oder d2.
8. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Trennwände 8 bzw. 9 nicht mehr als 30° aus der Senkrechten mit den Abdeckungen 7 bzw. 6 abweichen.
9. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Querschnittsflächen, wie in Anspruch 2 definert, nicht mehr als sechsmal so groß sind wie die projizierte Querschnittsfläche des Substrats S in Förderrichtung.
10. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Strahlungsquelle 10 eine UV-Wellenlänge λ von 200 nm bis 760 nm umfaßt.
11. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Strahlungsquelle 10 eine NIR und/oder IR-Wellenlänge λ von 760 nm bis 25 μm umfaßt.
12. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die Gaszufuhr über die Gaszuführungsvorrichtung 11 strömungsarm er¬ folgt.
13. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich- net, daß der Eingang 13 über mindestens eine Länge f1 ausgebildet ist, die das 0- bis 10-fache der Parameter d1 oder d2, je nachdem, welcher dieser beiden Parameter der größere ist, beträgt.
14. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß der Ausgang 14 über mindestens eine Länge f2 ausgebildet ist, die das 0- bis 10-fache der Parameter d1 oder d2, je nachdem, welcher dieser beiden Parameter der größere ist, beträgt.
15. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß Eingang 13 und/oder Ausgang 14 mit geeigneten Mitteln gegen Gasab- Strömung abgedichtet sind.
16. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß das Inertgas schwerer als Luft ist und man das Inertgas über eine Gas¬ zuführungsvorrichtung 11 im unteren Drittel der Vorrichtung 1 , bezogen auf deren Höhe h, zuführt.
17. Vorrichtung gemäß Anspruch 16, dadurch gekennzeichnet, daß man das Inert¬ gas über eine Gaszuführungsvorrichtung 11 bei einer Temperatur zudosiert, die unterhalb der Temperatur der Schutzgasatmosphäre liegt.
18. Vorrichtung gemäß Anspruch 16 oder 17, dadurch gekennzeichnet, daß Eingang 13 und/oder Ausgang 14 der Vorrichtung in der oberen Hälfte der Vorrichtung, bezogen auf die Höhe h der Vorrichtung, angebracht sind.
19. Vorrichtung gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Inertgas leichter als Luft ist und man das Inertgas über eine Gaszuführungs¬ vorrichtung 11 im oberen Drittel der Vorrichtung 1, bezogen auf deren Höhe h, zuführt.
20. Vorrichtung gemäß Anspruch 19, dadurch gekennzeichnet, daß man das Inert¬ gas über eine Gaszuführungsvorrichtung 11 bei einer Temperatur zudosiert, die oberhalb der Temperatur der Schutzgasatmosphäre liegt.
21. Vorrichtung gemäß Anspruch 19 oder 20, dadurch gekennzeichnet, daß Eingang 13 und/oder Ausgang 14 der Vorrichtung in der unteren Hälfte der Vorrichtung, bezogen auf die Höhe h der Vorrichtung, angebracht sind.
22. Vorrichtung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeich¬ net, daß die seitlichen Abdeckungen 2, 3, 4 und/oder 5, sowie die oberen und un- teren Abdeckungen 6 und/oder 7 thermostatiert oder isoliert ausgeführt sind.
23. Verfahren zum Durchführen einer Härtung von Beschichtungen auf einem Sub¬ strat S unter einer Inertgasatmosphäre, dadurch gekennzeichnet, daß man die Härtung in einer Vorrichtung gemäß einem der vorstehenden Ansprüche durch¬ führt.
24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, daß die Temperatur in der Vorrichtung zumindest teilweise 50 0C oder mehr beträgt.
25. Verfahren zum Durchführen einer Härtung von Beschichtungsmassen auf einem Substrat S unter einer Inertgasatmosphäre, dadurch gekennzeichnet, dass man die Härtung zumindest teilweise bei einer Temperatur der Beschichtungsmasse auf dem beschichteten Substrat S von mindestens 5O0C durchführt.
26. Verwendung einer Vorrichtung gemäß einem der Ansprüche 1 bis 22 zum Durch- führen einer Härtung von Beschichtungsmassen auf einem Substrat S.
PCT/EP2005/006549 2004-06-24 2005-06-17 Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre WO2006000349A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT05753770T ATE471218T1 (de) 2004-06-24 2005-06-17 Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre
EP05753770A EP1791652B1 (de) 2004-06-24 2005-06-17 Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre
CN2005800210422A CN101304814B (zh) 2004-06-24 2005-06-17 用于在惰性气氛下利用高能辐射固化的设备和方法
JP2007517159A JP4819803B2 (ja) 2004-06-24 2005-06-17 不活性ガス雰囲気下で高エネルギの放射線を用いて硬化させるための装置および方法
BRPI0512542-1A BRPI0512542A (pt) 2004-06-24 2005-06-17 dispositivo para efetuar uma cura de revestimentos em um substrato sob uma atmosfera de gás inerte, processos para efetuar uma cura de revestimentos e de materiais de revestimento em um substrato sob uma atmosfera de gás inerte, e, uso de um dispositivo
DE502005009765T DE502005009765D1 (de) 2004-06-24 2005-06-17 Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre
KR1020077001772A KR20070034073A (ko) 2004-06-24 2005-06-17 불활성 기체 대기에서 에너지-농후 방사선을 이용하여경화하기 위한 장치 및 방법
US11/629,195 US7863583B2 (en) 2004-06-24 2005-06-17 Device and process for curing using energy-rich radiation in an inert gas atmosphere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004030674.5 2004-06-24
DE102004030674A DE102004030674A1 (de) 2004-06-24 2004-06-24 Vorrichtung und Verfahren zum Härten mit energiereicher Strahlung unter Inertgasatmosphäre

Publications (2)

Publication Number Publication Date
WO2006000349A2 true WO2006000349A2 (de) 2006-01-05
WO2006000349A3 WO2006000349A3 (de) 2008-05-29

Family

ID=34970913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006549 WO2006000349A2 (de) 2004-06-24 2005-06-17 Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre

Country Status (10)

Country Link
US (1) US7863583B2 (de)
EP (1) EP1791652B1 (de)
JP (1) JP4819803B2 (de)
KR (1) KR20070034073A (de)
CN (1) CN101304814B (de)
AT (1) ATE471218T1 (de)
BR (1) BRPI0512542A (de)
DE (2) DE102004030674A1 (de)
ES (1) ES2346068T3 (de)
WO (1) WO2006000349A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245135A (ja) * 2006-02-15 2007-09-27 Trinity Ind Corp 紫外線塗料硬化設備、塗料硬化方法
US9562512B2 (en) 2012-07-17 2017-02-07 Aurora Limited Dual rotor wind or water turbine
EP3994987A1 (de) 2020-11-08 2022-05-11 Bayer AG Agrochemische zusammensetzung mit verbesserten drift- und aufnahmeeigenschaften

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050371B4 (de) * 2005-10-20 2012-08-16 Sturm Maschinenbau Gmbh Anlage und Verfahren zum Strahlungshärten einer Beschichtung eines Werkstückes unter Schutzgas
JP4649344B2 (ja) * 2006-02-17 2011-03-09 トリニティ工業株式会社 紫外線塗料硬化設備、塗料硬化方法
JP2007216153A (ja) * 2006-02-17 2007-08-30 Trinity Ind Corp 紫外線塗料硬化設備、塗料硬化方法
EP1967284A3 (de) 2007-03-06 2008-12-17 Ist Metz Gmbh Verfahren und Vorrichtung zur UV-Strahlungshärtung von Substratbeschichtungen
FI124379B (fi) * 2007-11-12 2014-07-31 Tikkurila Oy Kappaleen pinnoitus
WO2010149733A1 (en) * 2009-06-26 2010-12-29 Basf Se System and method for curing a composition
WO2010149742A1 (en) 2009-06-26 2010-12-29 Basf Se Method of dissociating an organoborane-amine complex
EP2445655B1 (de) 2009-06-26 2015-12-02 Basf Se Verfahren zur herstellung einer gehärteten beschichtungszusammensetzung auf einer fahrzeugkomponente
PT2445975E (pt) 2009-06-26 2013-11-18 Basf Se Método de endurecer uma composição de revestimento que compreende um composto endurecível por radicais e um complexo organoborano-amina
DE102009046407A1 (de) * 2009-11-04 2011-05-05 Dürr Systems GmbH Vorrichtung zur Strahlungsbehandlung einer Beschichtung
EP2374547A1 (de) * 2010-04-08 2011-10-12 Co-Energy Engineering B.V. Verfahren und Vorrichtung zum Härten einer Beschichtung
US10126051B2 (en) * 2013-08-18 2018-11-13 Eran Inbar Method for drying of a coating and related device
JP2015045678A (ja) * 2013-08-27 2015-03-12 株式会社リコー 硬化槽
DE102013015580A1 (de) * 2013-09-20 2015-03-26 Oerlikon Trading Ag, Trübbach Gasstromvorrichtung für Anlage zur Strahlungsbehandlung von Substraten
CN104689964B (zh) * 2015-02-11 2017-11-17 志圣科技(广州)有限公司 一种低氧环境光学膜涂布uv干燥方法及装置
DE102015204555B4 (de) * 2015-03-13 2017-08-31 Koenig & Bauer Ag Vorrichtung zum Trocknen eines strahlenhärtenden Mediums auf einem bogenförmigen Drucksubstrat
EP3500535B1 (de) * 2016-08-19 2020-06-24 Xylo Technologies AG Beschichtete platte und verfahren zur herstellung einer beschichteten platte
WO2019026596A1 (ja) 2017-08-02 2019-02-07 Thk株式会社 スプライン構造、減速又は増速装置、等速ジョイント
EP4000643B1 (de) * 2020-11-24 2023-10-11 Ion Beam Applications Vorrichtung zur bestrahlung mit röntgenstrahlen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143468A (en) * 1974-04-22 1979-03-13 Novotny Jerome L Inert atmosphere chamber
US5921002A (en) * 1993-09-24 1999-07-13 Optimum Air Corporation Radiation curing system
DE19957900A1 (de) * 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337744A (en) * 1976-09-20 1978-04-07 Nippon Steel Corp Control of atmosphere in which coated film is cured by radiation of electronrays and equipment therefor
DE2909992A1 (de) * 1979-03-14 1980-10-02 Basf Ag Photopolymerisierbare aufzeichnungsmassen, insbesondere zur herstellung von druckplatten und reliefformen
CA1169305A (en) * 1982-03-03 1984-06-19 Gordon A.D. Reed Catalytic curing of coatings
JPS6235673U (de) * 1985-08-16 1987-03-03
JPS6242768A (ja) * 1985-08-20 1987-02-24 Dynic Corp 電子線照射方法
JP2844074B2 (ja) * 1989-01-30 1999-01-06 旭化成工業株式会社 塗料の硬化方法
EP0495751A1 (de) 1991-01-14 1992-07-22 Ciba-Geigy Ag Bisacylphosphine
DE4133290A1 (de) * 1991-10-08 1993-04-15 Herberts Gmbh Verfahren zur herstellung von mehrschichtlackierungen unter verwendung von radikalisch und/oder kationisch polymerisierbaren klarlacken
US5565240A (en) * 1992-05-14 1996-10-15 Sanderson Plumbing Products, Inc. Process for producing powder coated plastic product
ZA941879B (en) * 1993-03-18 1994-09-19 Ciba Geigy Curing compositions containing bisacylphosphine oxide photoinitiators
KR100267155B1 (ko) * 1996-09-13 2000-10-16 아끼구사 나오유끼 반도체 장치의 제조 방법 및 제조 장치
WO1998033761A1 (en) 1997-01-30 1998-08-06 Ciba Specialty Chemicals Holding Inc. Non-volatile phenylglyoxalic esters
DE19826712A1 (de) 1998-06-16 1999-12-23 Basf Ag Strahlungshärtbare Massen, enthaltend Phenylglyoxylate
DE19913353A1 (de) * 1999-03-24 2000-09-28 Basf Ag Verwendung von Phenylglyoxalsäureestern als Photoinitiatoren
US6161304A (en) * 1999-10-05 2000-12-19 M&R Printing Equipment, Inc. Dryer assembly
JP2001232264A (ja) * 2000-02-25 2001-08-28 Dainippon Ink & Chem Inc 塗布方法、塗布装置およびディスクの製造装置
WO2002023629A2 (en) * 2000-09-13 2002-03-21 Shipley Company, L.L.C. Electronic device manufacture
US20040202790A1 (en) * 2003-04-08 2004-10-14 Fuji Photo Film Co., Ltd. Method and apparatus for producing photothermographic material
US6807906B1 (en) * 2003-05-16 2004-10-26 Printing Research, Inc. Zoned ultraviolet curing system for printing press
DE10354165B3 (de) 2003-11-19 2004-11-04 EISENMANN Maschinenbau KG (Komplementär: Eisenmann-Stiftung) Vorrichtung und Verfahren zur Aushärtung einer Beschichtung in einem Schutzgas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143468A (en) * 1974-04-22 1979-03-13 Novotny Jerome L Inert atmosphere chamber
US5921002A (en) * 1993-09-24 1999-07-13 Optimum Air Corporation Radiation curing system
DE19957900A1 (de) * 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245135A (ja) * 2006-02-15 2007-09-27 Trinity Ind Corp 紫外線塗料硬化設備、塗料硬化方法
US9562512B2 (en) 2012-07-17 2017-02-07 Aurora Limited Dual rotor wind or water turbine
EP3994987A1 (de) 2020-11-08 2022-05-11 Bayer AG Agrochemische zusammensetzung mit verbesserten drift- und aufnahmeeigenschaften

Also Published As

Publication number Publication date
US7863583B2 (en) 2011-01-04
ES2346068T3 (es) 2010-10-08
CN101304814A (zh) 2008-11-12
EP1791652B1 (de) 2010-06-16
JP2008503338A (ja) 2008-02-07
CN101304814B (zh) 2011-10-12
US20080311309A1 (en) 2008-12-18
DE502005009765D1 (de) 2010-07-29
JP4819803B2 (ja) 2011-11-24
KR20070034073A (ko) 2007-03-27
WO2006000349A3 (de) 2008-05-29
ATE471218T1 (de) 2010-07-15
EP1791652A2 (de) 2007-06-06
BRPI0512542A (pt) 2008-03-25
DE102004030674A1 (de) 2006-01-19

Similar Documents

Publication Publication Date Title
EP1791652B1 (de) Vorrichtung und verfahren zum härten mit energiereicher strahlung unter inertgasatmosphäre
EP1235652A2 (de) Lichthärtung von strahlungshärtbaren massen unter schutzgas
Choi et al. Degradation of poly (methylmethacrylate) by deep ultraviolet, x‐ray, electron beam, and proton beam irradiations
EP0540884B1 (de) Verfahren zur Herstellung von Mehrschichtlackierungen unter Verwendung von radikalisch und/oder kationisch polymerisierbaren Klarlacken
DE69829774T2 (de) Vorrichtung und verfahren zur dampfphasenabscheidung einer beschichtung
Nguyen et al. Relating laboratory and outdoor exposure of coatingsIII. Effect of relative humidity on moisture-enhanced photolysis of acrylic-melamine coatings
DK2198981T3 (en) A method and apparatus for direct radiation-induced polymerisation and crosslinking of acrylates and methacrylates
DE102008014378B4 (de) Belichtungskammer für die Aushärtung von Lacken auf Bauteilen und Härtungsanlage für Kraftfahrzeugkarosserien
EP2888113B1 (de) Elektronenstrahlhärtbare inkjet-tinten und deren verwendung in inkjet-druckverfahren
WO2008043812A2 (de) Verfahren zur folienbeschichtung von gegenständen
DE10131620A1 (de) Verfahren und Vorrichtung zum Trocknen und/oder Vernetzen oder Erwärmen mittels elektromagnetischer Strahlung
CN106257615A (zh) 粒子束设备和用于运行粒子束设备的方法
EP1060029B1 (de) Verfahren zur mehrschichtlackierung mit strahlenhärtbaren beschichtungsmitteln
DE102008046548B4 (de) Belichtungskammer für die Aushärtung strahlungshärtender Beschichtungen sowie Härtungsanlage für Kraftfahrzeugkarosserien
EP3013912A1 (de) Metallisierbare, kratzfeste und lösemittelbeständige folie
EP1152841B2 (de) Verfahren zur mehrschichtlackierung
EP1413416A2 (de) Anlage zum Strahlungshärten
DE102007053543B4 (de) Vorrichtung zur Bestrahlung von Elementen mit UV-Licht sowie Verfahren zu deren Betrieb
WO2006037578A2 (de) Gasentladungslampe, system und verfahren zum härten von durch uv-licht härtbare materialien sowie durch uv-licht gehärtetes material
DE102009005079A1 (de) Verfahren zum Beschichten eines Bauteils
DE10109847A1 (de) Verfahren zum Erzeugen einer Beschichtung auf einem quasi-endlos geförderten Materialband
WO2005016557A1 (de) Verfahren und vorrichtung zum beschichten bunter und unbunter substrate mit einer transparenten beschichtung
DE20120718U1 (de) UV-Bestrahlungsvorrichtung zum Bestrahlen in CO2
ér émy Bourgalais et al. On an EUV Atmospheric Simulation Chamber to Study the Photochemical Processes of Titan’s Atmosphere
Innocenti Photoelectron spectroscopy of reactive intermediates with synchrotron radiation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005753770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11629195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007517159

Country of ref document: JP

Ref document number: 200580021042.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077001772

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077001772

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005753770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0512542

Country of ref document: BR