WO2006000348A1 - Verfahren zur herstellung von mittels isocyanaten gekoppelten polyoxiranen - Google Patents

Verfahren zur herstellung von mittels isocyanaten gekoppelten polyoxiranen Download PDF

Info

Publication number
WO2006000348A1
WO2006000348A1 PCT/EP2005/006548 EP2005006548W WO2006000348A1 WO 2006000348 A1 WO2006000348 A1 WO 2006000348A1 EP 2005006548 W EP2005006548 W EP 2005006548W WO 2006000348 A1 WO2006000348 A1 WO 2006000348A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxirane
polymers
polymer
isocyanate
ppo
Prior art date
Application number
PCT/EP2005/006548
Other languages
English (en)
French (fr)
Inventor
Philippe Desbois
Alain Deffieux
Stéphane CARLOTTI
Cyrille Billouard
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE502005006282T priority Critical patent/DE502005006282D1/de
Priority to EP05762650A priority patent/EP1761585B1/de
Publication of WO2006000348A1 publication Critical patent/WO2006000348A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/12Saturated oxiranes characterised by the catalysts used containing organo-metallic compounds or metal hydrides

Definitions

  • the invention relates to a process for the preparation of polymers P2 from oxiranes and optional comonomers, characterized in that
  • step 2) in a step 2) reacting these oxirane polymers P1 with a coupling agent to the polymer P2 having a weight-average molecular weight M2, M2 being greater than M1, and wherein the coupling agent is an aromatic or aliphatic isocyanate having at least two isocyanate groups per molecule having.
  • the invention relates to the polymers obtainable by the process, their use for the production of moldings, films, fibers and foams, as well as the moldings, films, fibers and foams from the polymers.
  • Oxiranes are to be understood as meaning epoxides of simple structure, for example ethylene oxide (EO), also referred to as oxirane, and propylene oxide (PO) also referred to as methyloxirane. See also CD Römpp Chemie Lexikon, version 2.2, Thieme Verlag Stuttgart, 2004 (hereinafter referred to as Römpp), keyword "oxiranes.” As oxirane polymers, mention may be made in particular of polyethylene oxide (PEO) and polypropylene oxide (PPO).
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PO and EO polymers can be prepared, inter alia, by anionic polymerization. If, in addition to the oxirane, another anionically polymerizable monomer such as styrene is used, it is also possible to prepare oxirane copolymers, in particular block copolymers.
  • oxirane copolymers in particular block copolymers.
  • the older, not previously published DE applications with the file numbers 10323047.5 from 20.05.2003, 10352105.4 from 04.11.2003, 102004027095.3 from 02.06.2004 and 102004027070.8 from 02.06.2004 describe homo- and copolymers of oxiranes such as PO and EO 1 and block copolymers of oxirane blocks and styrene polymer blocks, for example polystyrene-PPO block copolymers.
  • US Pat. No. 3,985,830 describes the preparation of star-shaped polymers from vinylaromatic compounds and conjugated dienes, such as e.g. Styrene and isoprene, described ben, wherein u.a. certain aromatic di- or polyisocyanates are used as coupling agents.
  • the simple diisocyanates toluene diisocyanate and tetramethylene diisocyanate are described as unsuitable.
  • the object was to provide an alternative process for the preparation of Oxiranpolyme- ren. Additionally, for particularly demanding applications there is a need for higher molecular weight oxirane polymers; therefore, the process should enable the preparation of such higher molecular weight oxirane polymers.
  • the process should be able to prepare triblock copolymers in a simple manner, especially those of the type B-A-B, where A is a polyoxirane block and B is a copolymer block.
  • the process should also enable the preparation of graft polymers and crosslinked polymers (polymer networks or polymer gels).
  • polymers P2 are prepared from oxiranes and optional comonomers.
  • Optional comonomers mean that such monomers may or may not be present.
  • the polymer P2 is an oxirane homopolymer or an oxirane copolymer, the Coupling agent isocyanate is not counted here to the monomers. The isocyanate is therefore not a monomer or comonomer in the sense of the invention.
  • oxiranes all epoxides of simple structure are suitable, in particular those without condensed ring systems.
  • the oxiranes are selected from propylene oxide (PO), ethylene oxide (EO) or mixtures thereof.
  • PO and EO oxiranes
  • PO / EO mixtures polymerize in a similar manner to pure PO. Because of this similar polymerization behavior can replace part of the PO by EO, without having to change the polymerization conditions (procedural parameters) significantly. This brings economic benefits, since complex procedural adjustments are eliminated.
  • EO is generally cheaper than PO.
  • Such PO-EO polymers can e.g. be random or block polymers.
  • Suitable mixtures of PO and EO usually have an EO content of from 0.1 to 99.9, in particular from 10 to 90, and particularly preferably from 20 to 80,% by weight, based on the mixture.
  • Oxirane polymers containing more than one oxirane, e.g. PO together with EO but containing no other comonomers will be referred to hereinafter as oxirane homopolymers, i. Comonomers for the purposes of the invention are all monomers different from oxiranes.
  • comonomers for the polymers P2 are preferably those monomers which are anionically polymerizable, e.g. Styrene monomers and diene monomers.
  • Suitable styrene monomers are all vinylaromatic monomers, for example styrene, ⁇ -methylstyrene, p-methylstyrene, ethylstyrene, tert-butylstyrene, vinylstyrene, vinyltoluene, 1,2-diphenylethylene, 1,1-diphenylethylene or mixtures thereof.
  • Styrene and ⁇ -methylstyrene are preferred, styrene being particularly preferred.
  • Suitable diene monomers are all polymerizable dienes, in particular 1,3-butadiene (short: butadiene), 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, isoprene, piperylene, chloroprene or mixtures thereof.
  • nitrile compounds such as acrylonitrile or methacrylonitrile
  • Acrylates in particular C ⁇ -alkyl acrylates such as n- or tert-butyl acrylate or 2-ethylhexyl acrylate, and the corresponding methacrylates, such as methyl methacrylate (MMA).
  • MMA methyl methacrylate
  • comonomers are mentioned in DE-A 196 33 626 on page 3, lines 5-50 under M1 to M10. If comonomers are used, they are selected from styrene, ⁇ -methylstyrene, butadiene, isoprene or mixtures thereof. Particularly preferred is styrene.
  • the oxirane is selected from propylene oxide and ethylene oxide, and the comonomer is styrene.
  • the proportion of comonomers on the polymer P2 is usually 0 to 99 wt .-%. If comonomers are used, their proportion is generally from 1 to 99, preferably from 10 to 90, particularly preferably from 25 to 75,% by weight, based on the copolymer.
  • one or more oxirane polymers P1 having a weight-average molecular weight M1 are prepared from the oxiranes and optionally the comonomers by anionic polymerization in the presence of a metal organyl.
  • Organyls are understood as meaning the organometallic compounds of a metal having at least one metal-carbon ⁇ bond, in particular the alkyl or aryl compounds.
  • the metal organyls may also contain hydrogen, halogen or organic radicals bonded via heteroatoms, such as alcoholates or phenolates, on the metal. The latter are obtainable, for example, by complete or partial hydrolysis, alcoholysis or aminolysis.
  • aluminum organyls it is thought that they act as activators and complexing agents. Presumably they activate the oxirane and they improve the solubility of the alkali metal compound by complex formation.
  • the aluminum organyl possibly interacts with its epoxide group, opens the epoxide ring and thus allows the polymerization of the oxirane.
  • the mechanism presumably differs fundamentally from that of the anionic polymerization of styrene or butadiene, in which the aluminum organyl, as so-called "retarder", reduces the rate of polymerization.
  • organoaluminum compounds are those of the formula R 3 -Al, where the radicals R independently of one another are hydrogen, halogen, C 1-2 o-alkyl, C 6-20 -aryl or C 7-2 o-arylalkyl.
  • R 3 -Al the radicals R independently of one another are hydrogen, halogen, C 1-2 o-alkyl, C 6-20 -aryl or C 7-2 o-arylalkyl.
  • aluminum organyl aluminum trialkyls are preferably used.
  • the alkyl radicals may be the same, for example trimethylaluminum (TMA), triethylaluminum (TEA), tri-iso-butylaluminum (TIBA), tri-n-butylaluminum, tri-iso-propylaluminum, tri-n-hexylaluminum, or various, eg ethyl- di-iso-butyl aluminum.
  • TMA trimethylaluminum
  • TEA triethylaluminum
  • TIBA tri-iso-butylaluminum
  • AlBAH aluminiumaluminiumhydrid
  • Organylaluminum compounds which can also be used are those which are formed by partial or complete reaction of alkyl, arylalkyl or arylaluminum compounds with water (hydrolysis), alcohols (alcoholysis), amines (aminolysis) or oxygen (oxidation), or the alkoxide -, thiolate, amide, imide or phosphite groups carry. Hydrolysis gives aluminoxanes. Suitable aluminoxanes are, for example, methylaluminoxane, isobutylated methylaluminoxane, isobutylaluminoxane and tetraisobutyldialuminoxane.
  • Suitable alcoholates are, for example, dimethyl aluminum ethoxide, diethyl aluminum ethoxide, dimethyl aluminum isopropoxide, dimethyl aluminum n-butoxide, diisobutyl aluminum ethoxide, diisobutyl aluminum hydride.
  • propanolate di-iso-butyl-aluminum-n-butoxide.
  • BHT butylhydroxytoluene
  • a suitable aluminum amide is e.g. Diethylaluminum (N, N-dibutylamide). Oxidation gives aluminum oxides such as bis (diisobutyl) alumina.
  • Me means methyl, nBu n-butyl, iBu iso-butyl.
  • the aluminum organyl used is aluminum trialkyl.
  • the trialkylaluminums may be used as the sole aluminum compound, or together with aluminoxanes, alcoholates, amides and / or oxides of aluminum.
  • no aluminoxanes, alcoholates, amides and / or oxides of aluminum are used alone, ie without Aluminiumtrialkyle used.
  • use is made of TIBA alone or ethyl diisobutyl aluminum alone.
  • an aluminum alcoholate is used in addition to the aluminum trialkyl, for example TIBA or TEA and an alkoxide selected from dimethyl aluminum isopropoxide, dimethyl aluminum n-butoxide, diisobutyl aluminum iso propanolate, diisobutylaluminum n-butoxide, or iBu 2 -Al-O-nBu-O-Al-iBu 2 .
  • organoaluminium it is also possible to use an alkali metal compound. This is particularly suitable when comonomers are also used, ie the oxirane polymers P1 are copolymers.
  • Suitable alkali metal compounds are all compounds which are effective as initiators in the anionic polymerization, in particular alkali metal hydrides and alkali metal organyls, with lithium, sodium or potassium being suitable as alkali metal, for example.
  • Suitable alkali metal hydrides are in particular lithium hydride, sodium hydride or potassium hydride.
  • Preferred alkali metal organyls are the alkoxides, hydroxides, amides, carboxylates, aryls, arylalkyls and alkyls of the alkali metals.
  • Suitable alkali metal alkoxides are those of alcohols having 1 to 10 carbon atoms, for example the methanolates, ethanolates, n- and isopropanolates, n-, sec- and tert-butanolates, and also the pentanolam.
  • the alcoholate radical may be substituted, for example with C 1 -C 5 -alkyl or halogen.
  • Suitable alkali metal hydroxides are, for example, lithium hydroxide, sodium hydroxide or potassium hydroxide, in particular potassium hydroxide.
  • Suitable alkali metal amides are, for example, the compounds M-NH 2 .
  • alkali metal carboxylates R-COOM it is possible to use those of carboxylic acids having 1 to 10 C atoms. In both cases M is Li, Na or K.
  • Suitable alkali metal aryls are, for example, phenyl lithium and phenyl potassium, and the multifunctional compound 1, 4-dilithiobenzene.
  • oligomeric or polymeric compounds such as polystyryl lithium or sodium, which can be obtained, for example, by mixing sec-butyllithium and styrene, and then adding TIBA, is available. Furthermore, it is also possible to use diphenylhexyllithium or potassium.
  • Suitable alkali metal alkyls are those of alkanes, alkenes and alkynes having 1 to 10 carbon atoms, for example ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, hexamethylene, butadienyl, isoprenyl Lithium, sodium or potassium, or multi-functional compounds such as 1, 4-dilithiobutane or 1,4-dilithio-2-butene.
  • alkali metal alkyls are particularly suitable for preparing the oxirane copolymers P1: in the preparation of the block copolymers formed from polyoxirane and comonomer blocks (see below), they can be used to advantage in the polymerization of the comonomer block. So you can, for example For the polymerization of the polystyrene block preferably sec-butyllithium use.
  • the choice of the alkali metal compound also depends on the solvent used. Preference is given to choosing alkali metal compound and solvent in such a way that the alkali metal compound dissolves at least partially in the solvent.
  • the alkali metal compound is selected from alcoholates, hydrides, hydroxides, amides, carboxyls, arylene, arylalkylene and alkyls of the alkali metals, or mixtures thereof. It is understood that various alkali metal compounds can also be used. The preparation of the alkali metal compounds is known or the Verbindun ⁇ conditions are commercially available.
  • the required amount of alkali metal compound - if it is included - is u.a. the desired molecular weight (molecular weight) of the polymer P1 to be prepared, the type and amount of organoaluminum used and the polymerization temperature. In general, from 0.0001 to 10, preferably from 0.0001 to 5 and particularly preferably from 0.0001 to 2 mol% of alkali metal compound, based on the total amount of the monomers used.
  • the aluminum organyl probably acts as an activator of the oxirane. Therefore, the required amount of organoaluminum depends inter alia on the type and amount of the monomer used, the desired molecular weight (molecular weight) of the polymers, the type and amount of the alkali metal compound used and the polymerization temperature.
  • the molar ratio of aluminum organyl to alkali metal compound can vary within wide limits. It depends, for example, on the rate of polymerization, the polymerization temperature, the type and amount (concentration) of the monomers used, and the desired molecular weight of the polymer.
  • the amounts of organoaluminum compound and alkali metal compound are preferably chosen such that from 1 to 100 mol of aluminum are present in the reaction mixture per mole of alkali metal, ie the molar ratio of aluminum to alkali metal is preferably 1: 1 to 100: 1.
  • the molar ratio of aluminum to alkali metal is particularly preferably from 2: 1 to 50: 1, in particular from 4: 1 to 10: 1. For example, you can work at a ratio of about 5: 1.
  • the amount of organoaluminium compound is chosen such that, based on the molar amount of the oxirane monomer, 0.5 to 20 mol% of aluminum organylaluminum, calculated as aluminum atoms, are present. That Preferably, 0.5 to 20 mol% of organoaluminum, calculated as aluminum atoms and based on the molar amount of oxirane used. It is particularly preferable to use 1 to 5 mol% of organoaluminum.
  • alkali metal compound and organoaluminum organism may take place together or separately from one another, both in time and in space, batchwise at once or in several portions, or also continuously.
  • alkali metal hydrides as the alkali metal compound may be alumi ⁇ niumorganyl and alkali metal hydride pre-mix and add this mixture, since the organoaluminum improves the solubility of the alkali metal hydride. If one uses several alkali metal compounds or more aluminum organyls, they can be added temporally and / or spatially together or separately.
  • alkali metal compound and aluminum organyl as such, or be ⁇ preferably dissolved or dispersed (emulsified or suspended) in a solvent or dispersion medium.
  • this solvent or dispersant may or may not be identical to the solvent used in the polymerization, see below.
  • Quaternary ammonium compounds are understood as meaning ammonium compounds in which all four H atoms of the NH 4 + ion have been replaced by organic radicals R. They preferably have the general formula I.
  • Formula 1 can also simplify as formula Ia
  • R 1 , R 2 , R 3 , R 4 , and R are identical or different alkyl radicals, aryl radicals or alkylaryl radicals having 1 to 20 C atoms, which may be unsubstituted or substituted, and the O, S, N, P , Si, halogen or other heteroatoms, and
  • X an inorganic or organic radical, for example an inorganic grouping such as halogen, cyanide, hydroxide or bicarbonate, or an organic group such as alkoxide, amine or alkylamine, or carboxylic acid radicals such as formate, acetate or propionate.
  • an inorganic grouping such as halogen, cyanide, hydroxide or bicarbonate, or an organic group such as alkoxide, amine or alkylamine, or carboxylic acid radicals such as formate, acetate or propionate.
  • R 1 , R 2 , R 3 and R 4 , and R the same or different alkyl having 1 to 10 carbon atoms
  • X is halogen, OH or an alcohol radical having 1 to 10 carbon atoms.
  • R is ethyl (Et) or n-butyl (nBu) and X is more preferably Cl, OH, acetate or isopropanolate (OiPr).
  • Particularly preferred quaternary ammonium compounds are tetraethylammonium isopropanolate NEt 4 -OiPr, tetra-n-butylammonium isopropanolate NnBu 4 -OiPr, tetra-n-butylammonium hydroxide NnBu 4 -OH 1 tetra-n-butylammonium acetate NnBu 4 -OOC (CHa and most preferably tetra-n-butylammonium chloride NnBu 4 -CI and tetra-n-butylammonium bromide NnBu 4 -Br.
  • the quaternary ammonium compounds are commercially available or can be prepared in a simple manner known per se.
  • the isopropanolates can be prepared from the corresponding commercially available halides by reaction with isopropanol.
  • the amount of quaternary ammonium compound required, if used, is determined, inter alia, by the desired molecular weight (molar mass) of the polymer to be prepared, the nature and amount of the organoaluminum used and, if appropriate, the coinitiator (see below) and after the polymerization temperature. In general, from 0.0001 to 10, preferably from 0.0001 to 5, and particularly preferably from 0.0001 to 2 mol% of quaternary ammonium compound, based on the total amount of the monomers used. It is possible to produce homopolymers P1 and copolymers P1 of the oxirane side by side in a single polymerization batch.
  • the ratio of oxirane copolymer to oxirane homopolymer is determined, inter alia, by the molar ratio of alkali metal compound to quaternary ammonium compound. Usually, equimolar amounts of alkali metal and ammonium compounds, calculated as alkali metal or ammonium nitrogen, are used exclusively or completely predominantly as the copolymer and little or no homopolymer.
  • amine compounds which chelate the alkali metal atom are particularly suitable.
  • tertiary amine compounds such as N, N, N'-tetramethylmethylenediamine (TMMDA), NNN'.N'-tetramethylethylenediamine (TMEDA), NNN'.N'-tetramethylpropylenediamine (TMPDA), N , N, N ', N'-tetramethylhexenediamine (TMHDA) and other NNN'.N'-tetraalkyldiamines, as well as diazabicyclo [2,2,2] octane (DABCO).
  • amines such as pentamethyldiethylenetriamine are suitable.
  • polypropylene oxide homopolymers can be functionalized with ethylene oxide.
  • the reaction mixture containing the living PPO chains is added with monomeric ethylene oxide which is polymerized onto the PPO.
  • the amount of EO required for the functionalization is usually such that the PPO chain ends are functionalized with EO.
  • crown ethers are macrocyclic polyethers. They are usually built planar, and their oxygen atoms are spielnem connected by ethylene bridges. Crown ethers also include those whose oxygen atoms are wholly or partially replaced by heteroatoms such as N, P or S, and spherands, i. isocyclic carbon rings bearing -OH or other polar groups, all pointing rectified into the interior of a cavity.
  • Cryptands are understood to mean macropolycyclic azeta polyethers which are related to the crown ethers and in which two bridgehead nitrogen atoms are linked by bridges containing one or more oxygen atoms.
  • Crown ethers or cryptands are preferably used neither as a reagent nor as an ancillary substance (for example solvent).
  • the oxirane polymers P1 can be prepared in the absence or, preferably, in the presence of a solvent.
  • the solvent used is non-polar and contains no oxygen atoms or other polarity-increasing heteroatoms.
  • the polymerization is particularly preferably carried out in an aliphatic, isocyclic or aromatic hydrocarbon or hydrocarbon mixture, such as benzene, toluene, ethylbenzene, xylene, cumene, hexane, heptane, octane or cyclohexane.
  • the reaction is usually not terminated by the addition of a chain stopper. Rather, the "living” reaction mixture is preferably used directly in step 2). "Living" means that upon renewed monomer addition, the polymerization reaction at the living polymer chain ends would start again immediately without having to add polymerization initiator again.
  • the polymerization conditions in step 1) for example pressure and temperature depend, inter alia, on the reactivity and concentration of the monomers, the alkali metal and aluminum compounds used and their concentrations. Usually carried out at from 0.1 to 10, particularly 0.5 to 5 bar absolute, particularly preferably at atmospheric pressure, and at -50 to 200, in particular -30 to 100 and particularly preferably -10 to 5O 0 C reaction temperature. Low temperatures allow better control of the reaction, but the polymerization time is longer. The polymerization time is usually 5 minutes to 48 hours, in particular 10 minutes to 12 hours.
  • the process for the preparation of the oxirane polymers P1 can be carried out batchwise or continuously in any conventional vessel or reactor, it being possible in principle to use backmixing or non-backmixing reactors (i.e. reactors with stirred tank or tubular reactor behavior).
  • backmixing or non-backmixing reactors i.e. reactors with stirred tank or tubular reactor behavior.
  • the process leads to polymers of different molecular weight.
  • stirred tanks, tower reactors, loop reactors and tube reactors or tube bundle reactors with or without internals are suitable. Built-ins can be static or movable installations.
  • the obtained oxirane polymers P1 can be homopolymers or copolymers.
  • the Oxiranhomopolymere P1 have a weight average molecular weight (Mw) M1 of 1000 to 300,000, in particular 5000 to 200,000 g / mol.
  • the copolymers can have a random structure, ie the sequence of the monomer units in the copolymer is purely statistical or alternating (alternating oxirane and comonomer units). They can also have a tapered structure. Tapered means that there is a gradient from oxirane-rich to oxirane-arm or vice versa along the polymer chain.
  • the oxirane copolymers P1 preferably have a block structure, ie they are block copolymers.
  • the block copolymers are preferably composed of at least one block of the oxirane or oxiranes, and at least one block of the one or more comonomers. Particularly preferably, the block copolymers are linear.
  • the block copolymers of the invention may e.g. be linear diblock copolymers A-B. Where A is the polyoxirane block and B is the block of comonomers). For styrene as the preferred comonomer B is therefore a polystyrene block.
  • the block structure is formed by anionically polymerizing the comonomer alone, thereby forming a "living" block B from the comonomer.
  • the monomer is changed by adding monomeric oxirane and adding anionically to one Oxirane block A is polymerized, ie, a polyoxirane block is polymerized onto the living comonomer block, for example, styrene can be polymerized first to give a polystyrene block PS
  • the monomer is changed by adding propylene oxide, which is then converted into polypropylene oxide.
  • a diblock polymer BA for example PS-PPO
  • the oxirane copolymers P1 are preferably block copolymers, the comonomer first being polymerized to form a polymer block B by sequential polymerization, and the oxirane then being polymerized to form a polyoxirane block A.
  • both the alkali metal compound and a partial amount of the organoaluminum may be added already in the polymerization of the first block.
  • the polystyrene block can first be prepared from styrene using an alkali metal compound (for example sec-butyllithium), and the aluminum organyl (eg TIBA) added only when the oxirane monomer is added and polymerized to give the polyoxirane block.
  • an alkali metal compound for example sec-butyllithium
  • the aluminum organyl eg TIBA
  • the molar ratio of aluminum to alkali metal is usually 0.5: 1 to 100: 1.
  • At least the oxirane monomer is polymerized at a molar excess of aluminum over alkali metal.
  • Preferred oxirane polymers P1 are diblock copolymers PS-PPO.
  • part of the PO can be replaced by EO in the PPO block.
  • the proportion of polystyrene blocks in such a block copolymer is particularly preferably from 2 to 90, preferably from 25 to 75,% by weight, calculated as the sum of all polystyrene blocks in the block copolymer and based on the block copolymer.
  • block copolymers which, in addition to a polyoxirane block and a block of styrene monomers, contain one or more blocks of diene monomers.
  • block copolymers PS-PBu-PPO instead of or together with butadiene, it is also possible to use isoprene or other dienes.
  • the polyoxirane block is polymerized as the last block.
  • oxirane copolymers P1 are random or block copolymers
  • their weight-average molecular weight M1 is usually from 1,000 to 500,000, preferably from 5,000 to 300,000 and more preferably from 10,000 to 200,000 g / mol.
  • the individual polyoxirane block preferably has a weight-average molecular weight of from 1000 to 300 000 g / mol, and the individual polystyrene block has a number-average molecular weight of from 1000 to 200 000 g / mol.
  • step 2) of the process according to the invention the oxirane polymers P1 obtained in step 1) are reacted with a coupling agent to give the polymer P2 having a weight-average molecular weight M2.
  • M2 is greater than the weight-average molecular weight M1 of the polymers P1.
  • the number of isocyanate groups is preferably 2, 3 or 4, particularly preferably 2 or 3 and in particular 2, ie the diisocyanates are very particularly preferred.
  • isocyanate compounds which are obtained by reacting monoisocyanates or other isocyanates with themselves and, for example, alcohols, amines or, for example: allophanates obtainable by reacting an isocyanate with an alcohol, and reacting the resulting urethane with further Isocyanate, biurets, obtainable by reacting an isocyanate with urea derivatives, uretdiones, obtainable by reacting 2 moles of isocyanate, isocyanurates, obtainable by reacting 3 moles of isocyanate.
  • isocyanate compounds are e.g. in Römpp, keyword “polyisocyanates” described.
  • the coupling agent may be as such, or dissolved in a suitable solvent, e.g. Toluene, ethylbenzene, cyclohexane or other aliphatic, isocyclic see or aromatic hydrocarbon or hydrocarbon mixture, are added.
  • a suitable solvent e.g. Toluene, ethylbenzene, cyclohexane or other aliphatic, isocyclic see or aromatic hydrocarbon or hydrocarbon mixture, are added.
  • the polymerization conditions in step 2) for example pressure and temperature depend, inter alia, on the reactivity and concentration of the polymers P1 and of the coupling agent.
  • the reaction is carried out at from 0.1 to 10, in particular from 0.5 to 5, absolute pressure, more preferably at atmospheric pressure, and at from -50 to 200, in particular from -30 to 100 and particularly preferably from -10 to 80 ° C.
  • the polymerization time is usually 5 minutes to 48 hours, in particular 10 minutes to 12 hours.
  • the conversion to the polymer P2 can be carried out batchwise or continuously, in any conventional vessel or reactor, it being possible in principle is to use backmixing or non-backmixing reactors (ie reactors with stirred tank or tubular reactor behavior).
  • backmixing or non-backmixing reactors ie reactors with stirred tank or tubular reactor behavior.
  • stirred tanks, tower reactors, loop reactors and tube reactors or tube bundles with or without internals are suitable.
  • Built-ins can be static or movable installations.
  • step 2 the living anionic chain ends of the oxirane polymer P1 react with the C atoms of the isocyanate groups.
  • An anion whose N atoms of the isocyanate groups have a negative charge is probably formed schematically
  • PPO means a polypropylene oxide chain (PPO block). It carries a negatively charged O atom -O " at the end of the chain, R is the aromatic or aliphatic residue of the isocyanate.
  • nitran ion is reactive, i. the polymer molecule obtained in (1) is evidently an active molecule. This mechanism differs fundamentally from that of polyurethane synthesis, in which by polyaddition of dihydric or higher alcohols and isocyanates, polyurethanes are formed.
  • the required amount of coupling agent depends on the number of isocyanate groups per isocyanate molecule and on the desired structure of the polymer P2. For example, according to the above equation (1), per mole of oxirane polymer P1, 0.5 mole of a diisocyanate is used to obtain the polymer P2. P2 usually has about twice the molecular weight of P1. It is thought that the polymer P2 has two branches of oxirane polymer P1, which are coupled via the coupling agent. If the coupling agent used is an isocyanate having three isocyanate groups, a polymer P2 with three polymer branches is obtained in a similar manner, for which 1/1 mole of triisocyanate is used per mole of oxirane polymer P1. The same applies analogously to polymers P2 having more than three branches or isocyanates having more than three isocyanate groups.
  • oxirane polymers P1 prepared in step 1) of the process contain homopolymers or copolymers, e.g. Block copolymers are obtained, as the polymer P2 is an oxirane homopolymer or copolymer.
  • PPO polypropylene oxide
  • PS polystyrene
  • X is representative of an isocyanate coupling agent
  • step 1) an oxirane homopolymer P1 is prepared and this is reacted in step 2) with the coupling agent to give a polymer P2 having two or more branches of oxirane homopolymer, schematically:
  • step 1) an oxirane block copolymer P1 is prepared and this is reacted in step 2) with the coupling agent to form a block copolymer P2, schematically:
  • a particularly preferred embodiment ii) is characterized in that one prepares in step 1) a two-block copolymer P1 polypropylene oxide-polystyrene PPO-PS and this reaction in step 2) to a block copolymer P2 PS-PPO-PPO-PS.
  • PPO-X-PPO or PPO-PPO is used for clarification; in fact, due to its very low mass compared to the PPO blocks, the coupling agent X should not be material to polymer properties, and PPO-X-PPO and PPO-PPO, respectively, can be considered as a single block of PPO * about twice as large is like the two individual PPO blocks.
  • an oxirane block copolymer PPO-PS is first prepared in step 1) and, separately in a step 1'), a polystyrene polymer is also added by anionic polymerization in a separate reaction. Homopolymer PS, and converts these two polymers P1 in step 2) with the coupler, schematically:
  • the polymers P2 obtained in step 2) are living polymers (nitran ions). If these polymers represent the desired final product, the reaction is usually terminated by addition of a chain-breaking agent.
  • termination agents are all proton-active substances, and Lewis acids, into consideration. Suitable examples are water, and C 1 -C 10 -alcohols such as methanol, ethanol, isopropanol, n-propanol and the butanols. Also suitable are aliphatic and aromatic carboxylic acids such as 2-ethylhexanoic acid, and phenols. Also, inorganic acids such as carbonic acid (solution of CO 2 in water) and boric acid can be used. Ethanol is preferably used as the stopping agent.
  • the polymers P2 obtained in step 2) can be reacted in a subsequent step 3) with suitable reaction partners to form polymers P3, i. P3 is the end product. This is described by the following registersfor ⁇ men iii) and iv). Due to the living nature of the polymers P2, no reinitiation is generally required, but rather the reaction is continued by simple addition of the reactant.
  • the reaction mixture obtained in step 2) can be re-added with isocyanate as a reactant.
  • isocyanate as a reactant.
  • a graft polymer P3 is obtained. Accordingly, in this preferred embodiment, iii) the process is characterized in that after step 2)
  • step 3 the polymer P2 is reacted with further isocyanate to form a graft polymer P3.
  • the graft polymer obtained has a grafting base of the isocyanate and grafts of polyoxirane grafted thereon. Therefore, the method is preferably gekenn ⁇ characterized in that the graft polymer P3 has a graft of isocyanate residues and a graft (PfropfITAe) of oxirane polymers.
  • the isocyanate used in step 3) of this embodiment iii) may be identical to that used in step 2) - this is preferred - or different therefrom.
  • the amount of isocyanate required in step 3) depends on the desired structure of the polymer P3, in particular on the ratio of the graft to the graft and can be determined by preliminary experiments in a simple manner. It is preferred to use the isocyanate in stoichiometric amounts, e.g. 0.5 mol of diisocyanate per 1 mol of the polymer P2.
  • step 2) isocyanate and, in addition, oxirane monomer can be added as reactant (instead of isocyanate alone) to give a crosslinked polymer P3.
  • step 2) isocyanate and, in addition, oxirane monomer can be added as reactant (instead of isocyanate alone) to give a crosslinked polymer P3.
  • the polymer P2 in a step 3) is reacted with further isocyanate and further oxirane to form a crosslinked polymer P3.
  • the polymer obtained contains isocyanate radicals which are spatially linked (crosslinked) with chains of oxirane homo- or - copolymer to form a polymer gel.
  • the process is therefore preferably characterized in that the crosslinked polymer P3 has isocyanate radicals which are linked in three dimensions via oxirane polymers.
  • the isocyanate or oxirane monomer used in step 3) of this embodiment iv) may be identical to the isocyanate or oxirane used in step 2) - this is preferred - or different therefrom.
  • the amount of isocyanate and oxirane monomer required in step 3) depends on the desired structure of the polymer P3, in particular on the desired degree of crosslinking, and can be determined by preliminary experiments in a simple manner. Preferably, unlike in the preparation of the graft polymers P3, the isocyanate is used in excess.
  • reaction is usually terminated by the addition of a chain stopper as previously described.
  • the resulting reaction mixture contains the polymer P2 or P3 and can be worked up after the termination, if desired, in a conventional manner to the polymer P2 or P3.
  • the polymer can be precipitated and separated by adding methanol or other suitable compounds to the reaction mixture.
  • the polymer can be degassed in a degassing extruder or evaporator. Degassing removes residual monomers and oligomers formed, as well as volatile auxiliaries and accompanying substances used in the polymerization, and in particular the solvent.
  • the weight-average molecular weight M2 of the polymer P2 or P3 results from the molecular weights M1 of the polymer blocks or branches P1, from which the polymers P2 or P3 are constructed, and the copolymerized coupling agent.
  • M2 is M2
  • the method according to the invention makes it possible to
  • oxirane homopolymers P1 by coupling with isocyanate, oxirane homopolymers P2, ii) to prepare from oxirane copolymers P1 by coupling with isocyanate, oxirane copolymers P2, in particular from block copolymers P1 to produce block copolymers P2, iii) from the homo- or copolymers P2 by reacting with isocyanate to produce graft polymers P3, or iv) from the Homo- or copolymers P2 by reacting with isocyanate and oxirane monomer to produce crosslinked polymers P3.
  • the polymers P2 or P3 obtainable by the process according to the invention are likewise provided by the invention.
  • the polymers may also contain customary additives and processing aids in the quantities customary therefor, for example lubricants or mold release agents, colorants, such as, for example, Pigments or dyes, flame retardants, antioxidants, light stabilizers, antistatic agents, or fibrous and pulverulent fillers or reinforcing agents, and other additives or mixtures thereof.
  • the mixing of the polymers with the additives can be carried out by mixing methods known per se, for example by melting in an extruder, Banbury mixer, kneader, roll mill or calender.
  • the components can also be used "cold” and the powdery or granular mixture is not processed until the end product, e.g. Molding, foil, fiber or foam, melted and homogenized.
  • Molded articles also semifinished products of films, fibers and foams of all kinds can be produced from the polymers according to the invention.
  • the invention accordingly also provides the use of the polymers according to the invention for the production of moldings, films, fibers and foams, as well as the moldings, films, fibers and foams obtainable from the polymer blends.
  • oxirane polymers can be prepared in a simple manner, in particular those with a higher molecular weight.
  • the process makes triblock copolymers of the type B-A-B, for example PS-PPO-PS, accessible in a simple manner, and it is also possible to prepare graft polymers and crosslinked polymers (polymer networks or polymer gels).
  • the molecular weights and molecular weight distributions of the polymer blends were determined by gel permeation chromatography (GPC) with tetrahydrofuran as the eluent and calibration with polystyrene standards. For this was the to be examined Reaction mixture taken a sample in which the reaction stopped by the addition of 10 ml of ethanol and the sample examined.
  • the polydispersity index PDI Mw / Mn was determined from the number-average molecular weight Mn and the weight-average molecular weight Mw.
  • the numbering 1), 2) and 3) corresponds approximately to the steps 1), 2) and 3) of the method according to the invention.
  • Example 1 PPO homopolymer 23,000 g / mol
  • the reaction mixture was sampled and analyzed by GPC.
  • the results were as follows: polydispersity index (PDI) 1.15, number average molecular weight Mn 13,000 g / mol.
  • the reaction mixture was sampled and analyzed by GPC.
  • the results were as follows: polydispersity index (PDI) 1, 06, number average molecular weight Mn 26,700 g / mol.
  • Example 2 was repeated, but the non-inventive coupling agent Y1 to Y4 was used in step 2) instead of the TDI solution.
  • the table summarizes the polymerization conditions and the results.
  • oxirane homopolymers of higher molecular weight as well as block copolymers, graft polymers and crosslinked polymers can be prepared by the process according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

Verfahren zur Herstellung von Polymeren P2 aus Oxiranen und optionalen Comonomeren, dadurch gekennzeichnet, dass man: 1) in einem Schritt (1) aus den Oxiranen und ggf. den Comonomeren durch an-ionische Polymerisation in Gegenwart eines Metallorganyls ein oder mehrere Oxiranpolymere P1 mit einem gewichtsmittleren Molekulargewicht M1 herstellt, und 2) in einem Schritt (2) diese Oxiranpolymere P1 mit einem Kopplungsmittel zu dem Polymer P2 mit einem gewichtsmittleren Molekulargewicht M2 umsetzt, wobei M2 größer ist als M1, und wobei das Kopplungsmittel ein aromatisches oder aliphatisches Isocyanat ist, das mindestens zwei Isocyanatgruppen pro Molekül aufweist.

Description

Verfahren zur Herstellung von mittels Isocyanaten gekoppelten Polyoxiranen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Polymeren P2 aus Oxiranen und optionalen Comonomeren, dadurch gekennzeichnet, dass man
1) in einem Schritt 1) aus den Oxiranen und ggf. den Comonomeren durch anioni¬ sche Polymerisation in Gegenwart eines Metallorganyls ein oder mehrere Oxi- ranpolymere P1 mit einem gewichtsmittleren Molekulargewicht M1 herstellt, und
2) in einem Schritt 2) diese Oxiranpolymere P1 mit einem Kopplungsmittel zu dem Polymer P2 mit einem gewichtsmittleren Molekulargewicht M2 umsetzt, wobei M2 größer ist als M1 , und wobei das Kopplungsmittel ein aromatisches oder aliphati- sches Isocyanat ist, das mindestens zwei Isocyanatgruppen pro Molekül auf- - weist.
Außerdem betrifft die Erfindung die nach dem Verfahren erhältlichen Polymere, deren Verwendung zur Herstellung von Formkörpern, Folien, Fasern und Schäumen, sowie die Formkörper, Folien, Fasern und Schäume aus den Polymeren.
Unter Oxiranen sollen Epoxide einfacher Struktur verstanden werden, beispielsweise Ethylenoxid (EO), auch als Oxiran bezeichnet, und Propylenoxid (PO) auch als Methyl- oxiran bezeichnet. Siehe auch CD Römpp Chemie Lexikon, Version 2.2, Thieme Ver- lag Stuttgart, 2004 (nachfolgend als Römpp zitiert), Stichwort „Oxirane". Als Oxiran- Polymere sind insbesondere Polyethylenoxid (PEO) und Polypropylenoxid (PPO) zu nennen.
PO- und EO-Polymere können u.a. durch anionische Polymerisation hergestellt wer- den. Verwendet man neben dem Oxiran ein weiteres, anionisch polymerisierbares Mo¬ nomer wie z.B. Styrol, so lassen sich auch Oxiran-Copolymere herstellen, insbesonde¬ re Blockcopolymere. Die älteren, nicht vorveröffentlichen DE-Anmeldungen mit den Aktenzeichen 10323047.5 vom 20.05.2003, 10352105.4 vom 04.11.2003, 102004027095.3 vom 02.06.2004 und 102004027070.8 vom 02.06.2004 beschreiben Homo- und Copolymere von Oxiranen wie PO und EO1 auch Blockcopolymere aus Oxiranblöcken und Styrolpolymerblöcken, beispielsweise Polystyrol-PPO-Blockcopoly- mere.
Diese Schriften erwähnen die Herstellung von Dreiblockcopolymeren durch Kopplung von Zweiblockcopymeren mit einem weiteren Polymerblock zu Dreiblockcopolymeren, sowie die Herstellung von sternförmigen Blockcopolymeren durch Kopplung, wobei die lebenden anionischen Polymerketten mit bifunktionellen Kopplungsmitteln umgesetzt werden. Auch die Herstellung von verzweigten Blockcopolymeren durch Pfropfreaktio¬ nen wird beschrieben. Als Kopplungsmittel werden epoxidierte Glyceride, z.B. epoxidi- iertes Leinsamenöl, Siliciumhalogenide, Divinylbenzol, polyfunktionelle Aldehyde, Ke- tone, Ester, Anhydride oder Epoxide genannt.
Die US-PS 3,637,554 beschreibt die Herstellung von verzweigten Blockcopolymeren aus konjugierten Dienen und vinylaromatischen Verbindungen, insbesondere Butadien und Styrol, unter Verwendung von polyfunktionellen Verbindungen wie Polyepoxiden oder auch Polyisocyanaten mit mindestens 3 Isocyanatgruppen.
In der US-PS 3,985,830 wird die Herstellung sternförmiger Polymere aus vinylaromati¬ schen Verbindungen und konjugierten Dienen, wie z.B. Styrol und Isopren, beschrie¬ ben, wobei u.a. bestimmte aromatische Di- oder Polyisocyanate als Kopplungsmittel verwendet werden. Die einfachen Diisocyanate Toluoldiisocyanat und Tetramethylen- diisocyanat werden als ungeeignet beschrieben.
In beiden US-Schriften werden Oxirane als Monomere oder oxiranhaltige Polymere nicht erwähnt.
Es bestand die Aufgabe, ein alternatives Verfahren zur Herstellung von Oxiranpolyme- ren bereitzustellen. Außerdem besteht für besonders anspruchsvolle Anwendungen ein Bedarf an Oxiranpolymeren mit höherem Molekulargewicht; daher sollte das Verfahren die Herstellung solcher höhermolekularen Oxiranpolymere ermöglichen.
Weiterhin sollten sich mit dem Verfahren Dreiblockcopolymere auf einfache Weise her¬ stellen lassen, insbesondere solche des Typs B-A-B, worin A für einen Polyoxiranblock und B für einen Copolymerblock steht.
Schließlich sollte das Verfahren auch die Herstellung von Pfropfpolymeren und ver- netzten Polymeren (Polymemetzwerken bzw. Polymergelen) ermöglichen.
Demgemäß wurde das eingangs definierte Verfahren, die damit erhältlichen Polymere, deren Verwendung zur Herstellung von Formkörpern, Folien, Fasern und Schäumen, sowie die Formkörper, Folien, Fasern und Schäume aus den Polymeren, gefunden. Bevorzugte Ausführungsformen der Erfindung sind den Unteransprüchen zu entneh¬ men.
Bei dem erfindungsgemäßen Verfahren stellt man aus Oxiranen und optionalen Como- nomeren, Polymere P2 her. Dabei bedeutet optionale Comonomere, dass solche Co- monomere vorhanden sein können, aber nicht müssen. Demnach handelt es sich bei dem Polymer P2 um ein Oxiranhomopolymer oder ein Oxirancopolymer, wobei das Kopplungsmittel Isocyanat hier nicht zu den Monomeren gerechnet wird. Das lsocyanat ist demnach kein Monomer oder Comonomer im Sinne der Erfindung.
Als Oxirane sind alle Epoxide einfacher Struktur geeignet, insbesondere solche ohne kondensierte Ringsysteme. Bevorzugt sind die Oxirane ausgewählt aus Propylenoxid (PO), Ethylenoxid (EO) oder deren Mischungen.
Man kann mehrere Oxirane gemeinsam verwenden, beispielsweise PO und EO zu¬ sammen. Es wurde gefunden, dass PO/EO-Gemische in ähnlicher Weise polymerisie- ren wie reines PO. Aufgrund dieses ähnlichen Polymerisationsverhaltens kann man einen Teil des PO durch EO ersetzen, ohne die Polymerisationsbedingungen (Verfah¬ rensparameter) wesentlich ändern zu müssen. Dies bringt wirtschaftliche Vorteile, da aufwändige Verfahrensanpassungen entfallen. Außerdem ist EO in der Regel preiswer¬ ter als PO. Solche PO-EO-Polymere können z.B. statistische oder Blockpolymere sein.
Geeignete Gemische von PO und EO weisen üblicherweise einen EO-Anteil von 0,1 bis 99,9, insbesondere 10 bis 90 und besonders bevorzugt 20 bis 80 Gew.-% auf, be¬ zogen auf das Gemisch.
Oxiranpolymere, die zwar mehr als ein Oxiran, z.B. PO zusammen mit EO, aber keine anderen Comonomere enthalten, werden nachfolgend als Oxiranhomopolymere be¬ zeichnet, d.h. Comonomere im Sinne der Erfindung sind alle von Oxiranen verschiede¬ nen Monomere.
Als optionale Comonomere für die Polymere P2 kommen bevorzugt solche Monomere in Betracht, die anionisch polymerisierbar sind, z.B. Styrolmonomere und Dienmono- mere. Als Styrolmonomere sind alle vinylaromatischen Monomere geeignet, beispiels¬ weise Styrol, α-Methylstyrol, p-Methylstyrol, Ethylstyrol, tert.-Butylstyrol, Vinylstyrol, Vinyltoluol, 1 ,2-DiphenyIethylen, 1 ,1-Diphenylethylen oder deren Mischungen. Styrol und α-Methylstyrol sind bevorzugt, Styrol besonders bevorzugt.
Als Dienmonomere kommen alle polymerisierbaren Diene in Betracht, insbesondere 1 ,3-Butadien (kurz: Butadien), 1 ,3-Pentadien, 1,3-Hexadien, 2,3-Dimethylbutadien, Isopren, Piperylen, Chloropren oder Mischungen davon.
Außerdem als Comonomere geeignet sind Nitrilverbindungen wie Acrylnitril oder Meth- acrylnitril; Acrylate, insbesondere C^-Alkylacrylate wie n- oder tert.-Butylacrylat oder 2-Ethylhexylacrylat, und die entsprechenden Methacrylate, wie Methylmethacrylat (MMA). Weitere geeignete Comonomere nennt die DE-A 196 33 626 auf Seite 3, Zei- len 5-50 unter M1 bis M10. Sofern Comonomere verwendet werden, sind sie ausgewählt aus Styrol, α-Methylsty- rol, Butadien, Isopren oder deren Mischungen. Besonders bevorzugt ist Styrol. In einer bevorzugten Ausführungsform ist das Oxiran ausgewählt aus Propylenoxid und Ethy- lenoxid, und das Comonomer ist Styrol.
Der Anteil der Comonomeren am Polymer P2 beträgt üblicherweise 0 bis 99 Gew.-%. Falls man Comonomere verwendet, beträgt ihr Anteil in der Regel 1 bis 99, bevorzugt 10 bis 90, besonders bevorzugt 25 bis 75 Gew.-%, bezogen auf das Copolymer.
Im Schritt 1) des erfindungsgemäßen Verfahrens stellt man aus den Oxiranen und ggf. den Comonomeren durch anionische Polymerisation in Gegenwart eines Metallorga- nyls ein oder mehrere Oxiranpolymere P1 mit einem gewichtsmittleren Molekularge¬ wicht M1 her.
Die Polymerisation ist erfindungsgemäß anionisch, und als Metallorganyle kommen insbesondere Aluminiumorganyle in Betracht. Als Organyle werden die metallorgani¬ schen Verbindungen eines Metalls mit mindestens einer Metall-Kohlenstoff σ-Bindung verstanden, insbesondere die Alkyl- oder Arylverbindungen. Daneben können die Me¬ tallorganyle noch Wasserstoff, Halogen oder über Heteroatome gebundene organische Reste, wie Alkoholate oder Phenolate, am Metall enthalten. Letztere sind beispielswei¬ se durch ganze oder teilweise Hydrolyse, Alkoholyse oder Aminolyse erhältlich.
Bezüglich der Aluminiumorganyle besteht die Vorstellung, dass sie als Aktivator und Komplexbildner wirken. Vermutlich aktivieren sie das Oxiran, und sie verbessern die Löslichkeit der Alkalimetallverbindung durch Komplexbildung. Bei dem Oxiran tritt das Aluminiumorganyl möglicherweise in Wechselwirkung mit dessen Epoxidgruppe, öffnet den Epoxidring und ermöglicht auf diese Weise die Polymerisation des Oxirans. Der Mechanismus unterscheidet sich vermutlich grundlegend von dem der anionischen Polymerisation von Styrol oder Butadien, bei der das Aluminiumorganyl als sog. „Re- tarder" die Polymerisationsgeschwindigkeit verringert.
Als Aluminiumorganyle können insbesondere solche der Formel R3-Al verwendet wer¬ den, wobei die Reste R unabhängig voneinander Wasserstoff, Halogen, C1-2o-Alkyl, C6-20-Aryl oder C7-2o-Arylalkyl bedeuten. Bevorzugt werden als Aluminiumorganyl, AIu- miniumtrialkyle verwendet.
Die Alkylreste können gleich sein, z.B. Trimethylaluminium (TMA), Triethylaluminium (TEA), Tri-iso-butylaluminium (TIBA), Tri-n-butylaluminium, Tri-iso-propylaluminium, Tri-n-hexylaluminium, oder verschieden, z.B. Ethyl-di-iso-butyl-aluminium. Ebenso kann man Aluminiumdialkyle wie Di-isobutyialuminiumhydrid (DiBAH) verwenden. Als Aluminiumorganyle können auch solche verwendet werden, die durch teilweise oder vollständige Umsetzung von Alkyl-, Arylalkyl- oder Arylaluminiumverbindungen mit Wasser (Hydrolyse), Alkoholen (Alkoholyse), Aminen (Aminolyse) oder Sauerstoff (Oxi- dation) gebildet werden, oder die Alkoholat-, Thiolat-, Amid-, Imid- oder Phosphit- Gruppen tragen. Durch Hydrolyse werden Aluminoxane erhalten. Geeignete Alumin- oxane sind z.B. Methylaluminoxan, isobutyliertes Methylaluminoxan, Isobutylalumin- oxan und Tetraisobutyldialuminoxan.
Alkoholyse ergibt Aluminiumalkoholate, auch als Aluminiumalkoxide bezeichnet (z.B. ...propanolat = ...propoxid). Geeignete Alkoholate sind beispielsweise Dimethyl- aluminium-ethanolat, Diethyl-aluminium-ethanolat, Dimethyl-aluminium-iso-propanolat, Dimethyl-aluminium-n-butanolat, Diisobutyl-aluminium-ethanolat, Di-iso-butyl-alumi- nium-iso-propanolat, Di-iso-butyl-aluminium-n-butanolat. Geeignete Alkoholate sind außerdem solche des 2,6-Di-tert.-butyl-4-methylphenols, auch als Butylhydroxytoluol (BHT) bezeichnet, beispielsweise Methyl-aluminium-bis(2,6-di-tert-butyl-4-methyl- phenolat) (= Me-AI-(BHT)2), lsobutyl-aluminium-bis(2,6-di-tert-butyl-4-methylphenolat) (= JBu-AI-(BHT)2), und Diisobutyl-aluminium-(2,6-di-tert.-butyI-4-methyl-phenolat (= (JBu)2-AI-BHT, CAS-Nr. 56252-56-3).
Ein geeignetes Aluminiumamid ist z.B. Diethylaluminium-(N,N-dibutylamid). Oxidation ergibt Aluminiumoxide wie etwa Bis(diisobutyl)aluminiumoxid.
Bei der Alkoholyse werden in Abhängigkeit vom molaren Verhältnis von Aluminiumalkyl R3-Al zum Alkohol R1OH eine, zwei oder alle drei Alkylgruppen des Aluminiumalkyls durch eine Alkoholatgruppe (Alkoxidgruppe) ersetzt. Es können auch Gemische ver¬ schiedener Alkoholate R2-AI-OR', R-AI-(OR')2 und AI-(OR')3 entstehen. Gleiches gilt sinngemäß für Aluminiumaryle bzw. -arylalkyle, und für andere Reaktionspartner als Alkohol. So entstehen z.B. bei Umsetzung zweier verschiedener AIuminiumalkyle R3-Al und RV-AI sowohl Verbindungen R2-Al-R' als auch R-Al-R'2.
Durch Umsetzung von Aluminiumalkylen mit mehrwertigen Alkoholen, beispielsweise Dialkoholen sind Alkoholate mit mehreren AI-Atomen erhältlich. So erhält man durch Umsetzung von TIBA mit 1 ,4-Butandiol (HO-nBu-OH) ein Aluminiumalkoholat iBu-AI-O-nBu-O-AI-iBu, das bevorzugt verwendet werden kann.
Es bedeuten Me Methyl, nBu n-Butyl, iBu iso-Butyl.
In einer bevorzugten Ausführungsform werden als Aluminiumorganyl Aluminiumtrialky- Ie verwendet. In dieser Ausführungsform können die Aluminiumtrialkyle als einzige Aluminiumverbindung, oder zusammen mit Aluminoxanen, Alkoholaten, Amiden und/oder Oxiden des Aluminiums, verwendet werden. Jedenfalls werden in dieser Aus¬ führungsform keine Aluminoxane, Alkoholate, Amide und/oder Oxide des Aluminiums alleine, d.h. ohne Aluminiumtrialkyle, verwendet. In einer besonders bevorzugten Aus¬ führungsform verwendet man TIBA alleine, oder Ethyl-di-iso-butyl-aluminium alleine.
In einer anderen, ebenfalls besonders bevorzugten Ausführungsform wird zusätzlich zum Aluminiumtrialkyl ein Aluminiumalkoholat mitverwendet, beispielsweise TIBA oder TEA und ein Alkoholat ausgewählt aus Dimethyl-aluminium-iso-propanolat, Dimethyl- aluminium-n-butanolat, Di-iso-butyl-aluminium-iso-propanolat, Di-iso-butyl-aluminium- n-butanolat, oder iBu2-AI-O-nBu-O-AI-iBu2.
Man kann zusätzlich zum Aluminiumorganyl auch eine Alkalimetallverbindung mitver¬ wenden. Dies kommt insbesondere dann in Betracht, wenn Comonomere mitverwen¬ det werden, die Oxiranpolymere P1 also Copolymere sind.
Als Alkalimetallverbindung sind alle Verbindungen geeignet, die bei der anionischen Polymerisation als Initiator wirksam sind, insbesondere Alkalimetallhydride und Alkali- metallorganyle, wobei als Alkalimetall beispielsweise Lithium, Natrium oder Kalium geeignet sind. In Betracht kommende Alkalimetallhydride sind insbesondere Lithium¬ hydrid, Natriumhydrid oder Kaliumhydrid.
Als Alkalimetallorganyle sind bevorzugt die Alkoholate, Hydroxide, Amide, Carboxylate, Aryle, Arylalkyle und Alkyle der Alkalimetalle, geeignet. Geeignete Alkalimetallalkohola- te sind solche von Alkoholen mit 1 bis 10 C-Atomen, beispielsweise die Methanolate, Ethanolate, n- und iso-Propanolate, n-, sec- und tert-Butanolate, sowie die Pentanola- te. Der Alkoholatrest kann substituiert sein, z.B. mit CrC5-Alkyl oder Halogen. Bevor- zugte Alkoholate sind die tert-Amylate (= 2-Methyl-2-butanolate). Besonders bevorzugt verwendet man Kalium-tert-amylat, Natrium-tert-amylat und Natrium-iso-propanolat.
Als Alkalimetallhydroxide kommen beispielsweise Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in Betracht, insbesondere Kaliumhydroxid. Geeignete Alkalimetal- lamide sind z.B. die Verbindungen M-NH2. Als Alkalimetallcarboxylate R-COOM kön¬ nen solche von Carbonsäuren mit 1 bis 10 C-Atomen verwendet werden. In beiden Fällen ist M gleich Li, Na oder K.
Geeignete Alkalimetallaryle sind beispielsweise Phenyllithium und Phenylkalium, sowie die multifunktionelle Verbindung 1 ,4-Dilithiobenzol. Als Alkalimetallarylalkyle sind ins¬ besondere Alkalimetallverbindungen vinylsubstituierter Aromaten geeignet, insbeson¬ dere Styrylkalium und Styrylnatrium M-CH=CH-C6H5 mit M gleich K oder Na. Sie sind beispielsweise durch Umsetzung des entsprechenden Alkalimetallhydrids mit Styrol und Gegenwart einer Aluminiumverbindung wie TIBA, erhältlich. Ebenso sind oligome- re bzw. polymere Verbindungen wie Polystyryl-Iithium oder -natrium geeignet, das z.B. durch Vermischen von sec-Butyllithium und Styrol, und anschließende Zugabe von TIBA, erhältlich ist. Weiterhin kann man auch Diphenylhexyllithium oder -kalium ver¬ wenden.
Geeignete Alkalimetallalkyle sind solche von Alkanen, Alkenen und Alkinen mit 1 bis 10 C-Atomen, beispielsweise Ethyl-, Propyl-, Isopropyl-, n-Butyl-, sec-Butyl-, tert-Butyl-, Hexamethylendi-, Butadienyl-, Isoprenyl-Lithium, -Natrium oder -Kalium, oder multi¬ funktionelle Verbindungen wie 1 ,4-Dilithiobutan oder 1,4-Dilithio-2-buten. Wie erwähnt sind Alkalimetallalkyle besonders gut zur Herstellung der Oxiran-Copolymere P1 ge¬ eignet: bei der Herstellung der aus Polyoxiran blocken und Comonomerblöcken aufge- bauten Blockcopolymere (siehe weiter unten) können sie vorteilhaft bei der Polymerisa¬ tion des Comonomerblocks verwendet werden. So kann man z.B. zur Polymerisation des Polystyrolblocks bevorzugt sec-Butyllithium einsetzen.
Wird die Polymerisation als Lösungspolymerisation durchgeführt, richtet sich die Wahl der Alkalimetallverbindung auch nach dem verwendeten Lösungsmittel. Bevorzugt wählt man Alkalimetallverbindung und Lösungsmittel derart, dass sich die Alkalimetall¬ verbindung zumindest teilweise im Lösungsmittel löst.
Aus dem Vorstehenden ergibt sich, dass in einer bevorzugten Ausführungsform die Alkalimetallverbindung ausgewählt ist aus Alkoholaten, Hydriden, Hydroxiden, Amiden, Carboxylen, Arylen, Arylalkylen und Alkylen der Alkalimetalle, oder deren Mischungen. Es versteht sich, dass auch verschiedene Alkalimetallverbindungen verwendet werden können. Die Herstellung der Alkalimetallverbindungen ist bekannt bzw. die Verbindun¬ gen sind im Handel erhältlich.
Man kann auch Mischungen verschiedener Alkalimetallverbindungen bzw. Aluminiu- morganyle verwenden. Zu den Mengen an Alkalimetallverbindung und Aluminiumorga- nyl ist Folgendes zu sagen:
Die benötigte Menge an Alkalimetallverbindung - sofern sie mitverwendet wird - richtet sich u.a. nach dem gewünschten Molekulargewicht (Molmasse) des Polymeren P1 , das hergestellt werden soll, nach Art und Menge des verwendeten Aluminiumorganyl und nach der Polymerisationstemperatur. In der Regel verwendet man 0,0001 bis 10, bevorzugt 0,0001 bis 5 und besonders bevorzugt 0,0001 bis 2 mol-% Alkalimetallver- bindung, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
Wie erwähnt dient das Aluminiumorganyl vermutlich als Aktivator des Oxirans. Daher richtet sich die erforderliche Menge an Aluminiumorganyl u.a. nach Art und Menge des verwendeten Monomeren, dem gewünschten Molekulargewicht (Molmasse) des PoIy- meren, nach Art und Menge der verwendeten Alkalimetallverbindung und nach der Polymerisationstemperatur. Das molare Verhältnis von Aluminiumorganyl zu Alkalimetallverbindung kann in weiten Grenzen variieren. Es richtet sich z.B. nach Polymerisationsgeschwindigkeit, der Poly¬ merisationstemperatur, der Art und Menge (Konzentration) der eingesetzten Monome¬ ren, und dem gewünschten Molekulargewicht des Polymeren. Bevorzugt wählt man die Mengen an Aluminiumorganyl und Alkalimetallverbindung derart, dass in der Reakti¬ onsmischung pro ein Mol Alkalimetall 1 bis 100 mol Aluminium vorliegen, d.h. bevor¬ zugt beträgt das Molverhältnis von Aluminium zu Alkalimetall 1 :1 bis 100:1. Besonders bevorzugt liegt das Molverhältnis Aluminium zu Alkalimetall bei 2:1 bis 50:1 , insbeson¬ dere 4:1 bis 10:1. Beispielsweise kann man bei einem Verhältnis von etwa 5:1 arbei- ten.
In einer bevorzugten Ausführungsform wählt man die Menge an Aluminiumorganyl derart, dass bezogen auf die Stoffmenge des Oxiran-Monomers, 0,5 bis 20 mol-% Alu¬ miniumorganyl, gerechnet als Aluminiumatome, vorliegen. D.h. bevorzugt werden 0,5 bis 20 mol-% Aluminiumorganyl, gerechnet als Aluminiumatome und bezogen auf die Stoffmenge des Oxirans, verwendet. Besonders bevorzugt setzt man 1 bis 5 mol-% Aluminiumorganyl ein.
Die Zugabe von Alkalimetallverbindung und Aluminiumorganyl kann sowohl zeitlich als auch räumlich betrachtet gemeinsam oder getrennt voneinander, diskontinuierlich auf einmal oder in mehreren Portionen, oder auch kontinuierlich, erfolgen. Insbesondere bei Verwendung von Alkalimetallhydriden als Alkalimetallverbindung kann man Alumi¬ niumorganyl und Alkalimetallhydrid vorab vermischen und diese Mischung zugeben, da das Aluminiumorganyl die Löslichkeit des Alkalimetallhydrids verbessert. Verwendet man mehrere Alkalimetallverbindungen bzw. mehrere Aluminiumorganyle, so kann man sie zeitlich und/oder räumlich gemeinsam oder getrennt voneinander zufügen.
Man kann Alkalimetallverbindung und Aluminiumorganyl als solche zugeben, oder be¬ vorzugt gelöst bzw. dispergiert (emulgiert oder suspendiert) in einem Lösungsmittel bzw. Dispersionsmittel. Dabei kann - muss jedoch nicht - dieses Lösungs- bzw. Disper¬ sionsmittel identisch sein mit dem bei der Polymerisation verwendeten Lösungsmittel, siehe weiter unten.
Bei der Herstellung des Polymers P1 kann man zusätzlich zum Aluminiumorganyl und ggf. der Alkalimetallverbindung, eine quartäre Ammoniumverbindung mitverwenden. Unter quartärer Ammoniumverbindung werden Ammoniumverbindungen verstanden, bei denen alle vier H-Atome des NH4 +-lons durch organische Reste R ersetzt sind. Sie weisen bevorzugt die allgemeine Formel I
R1R2R3R4N-X (I) auf, wobei die Reste R1, R2, R3 und R4 gleich oder verschieden sein können. Formel 1 kann vereinfachend auch als Formel Ia
NR4-X (Ia)
geschrieben werden. Es bedeuten
R1, R2, R3, R4, bzw. R: gleiche oder verschiedene Alkylreste, Arylreste oder Alkylaryl- reste mit 1 bis 20 C-Atomen, die unsubstituiert oder substituiert sein können, und die O, S, N, P, Si, Halogen oder andere Heteroatome enthalten können, und
X: ein anorganischer oder organischer Rest, beispielsweise eine anorganische Grup¬ pierung wie Halogen, Cyanid, Hydroxid oder Hydrogencarbonat, oder eine organische Gruppierung wie Alkoholat (Alkoxid), Amin bzw. Alkylamin, oder Carbonsäurereste wie Formiat, Acetat oder Propionat.
Bevorzugt bedeuten R1, R2, R3 und R4, bzw. R, gleiches oder verschiedenes Alkyl mit 1 bis 10 C-Atomen, und X Halogen, OH oder ein Alkoholatrest mit 1 bis 10 C-Atomen. Besonders bevorzugt steht R für gleiche Reste, also R1 = R2 = R3 = R4. Besonders be- vorzugt ist R gleich Ethyl (Et) oder n-Butyl (nBu), und X ist besonders bevorzugt Cl, OH, Acetat oder Isopropanolat (OiPr).
Besonders bevorzugte quartäre Ammoniumverbindungen sind Tetraethylammonium- isopropanolat NEt4-OiPr, Tetra-n-butylammonium-isopropanolat NnBu4-OiPr, Tetra-n- butylammonium-hydroxid NnBu4-OH1 Tetra-n-butylammonium-acetat NnBu4-OOC(CHa) und ganz besonders bevorzugt Tetra-n-butylammonium-chlorid NnBu4-CI sowie Tetra- n-butylammonium-bromid NnBu4-Br.
Die quartären Ammoniumverbindungen sind im Handel erhältlich, oder können auf ein- fache, an sich bekannte Weise hergestellt werden. So lassen sich beispielsweise die Isopropanolate aus den entsprechenden handelsüblichen Halogeniden durch Umset¬ zung mit Isopropanol herstellen.
Die benötigte Menge an quartärer Ammoniumverbindung - sofern sie mitverwendet wird - richtet sich u.a. nach dem gewünschten Molekulargewicht (Molmasse) des Po¬ lymeren, das hergestellt werden soll, nach Art und Menge des verwendeten Alumi- niumorganyls und ggf. Coinitiators (siehe unten) und nach der Polymerisations¬ temperatur. In der Regel verwendet man 0,0001 bis 10, bevorzugt 0,0001 bis 5 und besonders bevorzugt 0,0001 bis 2 Mol-% quartäre Ammoniumverbindung, bezogen auf die Gesamtmenge der eingesetzten Monomeren. Es ist möglich, in einem einzigen Polymerisationsansatz Homopolymere P1 und Copo- lymere P1 des Oxirans nebeneinander herzustellen. Dabei wird das Mengenverhältnis von Oxirancopolymer zu Oxiranhomopolymer u.a. durch das molare Verhältnis von Alkalimetallverbindung zu quartärer Ammoniumverbindung bestimmt. Üblicherweise erhält man bei äquimolaren Mengen von Alkalimetall- und Ammoniumverbindung, ge¬ rechnet als Alkalimetall bzw. Ammoniumstickstoff, ausschließlich oder ganz überwie¬ gend das Copolymer und kein oder nur wenig Homopolymer.
Bei der Herstellung der Polymere P1 können Aminverbindungen mitverwendet werden, die das Alkalimetallatom durch Chelatbildung komplexieren. In Betracht kommen ins¬ besondere tertiäre Aminverbindungen wie N,N,N\N'-Tetramethylmethylendiamin (TMMDA), N.N.N'.N'-Tetramethylethylendiamin (TMEDA), N.N.N'.N'-Tetramethyl- propylendiamin (TMPDA), N,N,N',N'-Tetramethylhexendiamin (TMHDA) und andere N.N.N'.N'-Tetraalkyldiamine, sowie Diazabicylco[2,2,2]octan (DABCO). Außerdem sind auch Amine wie Pentamethyldiethylentriamin geeignet.
Um die Effizienz der Kopplung in Schritt 2) zu verbessern, kann man Polypropylenoxid- Homopolymere mit Ethylenoxid funktionalisieren. Dazu fügt man der die lebenden PPO-Ketten enthaltenden Reaktionsmischung monomeres Ethylenoxid hinzu, welches an das PPO anpolymerisiert. Die zur Funktionalisierung erforderliche EO-Menge ist üblicherweise so bemessen, dass die PPO-Kettenenden mit EO funktionalisiert wer¬ den.
Bevorzugt werden bei der Herstellung der Oxiranpolymere P1 keine Kronenether und keine Kryptanden mitverwendet. Unter Kronenethem sind makrocyclische Polyether zu verstehen. Sie sind in der Regel planar gebaut, und ihre Sauerstoffatome sind bei¬ spielsweise durch Ethylenbrücken verbunden. Zu Kronenethern zählen auch solche, deren Sauerstoffatome ganz oder teilweise durch Heteroatome wie N, P oder S ersetzt sind, und Spheranden, d.h. isocyclische Kohlenstoff-Ringe, die -OH oder andere pola- re Gruppen tragen, welche alle gleichgerichtet in das Innere eines Hohlraumes zeigen. Unter Kryptanden werden makropolycyclische, mit den Kronenethern verwandte Aza- polyether verstanden, in denen zwei Brückenkopf-Stickstoffatome durch ein oder meh¬ rere Sauerstoffatome enthaltende Brücken verbunden sind. Näheres siehe Römpp, Stichworte „Kronenenter" und „Kryptanden". Bevorzugt verwendet man Kronenether bzw. Kryptanden weder als Reagenz noch als Begleitstoff (z.B. Lösungsmittel).
Man kann die Oxiranpolymere P1 in Abwesenheit oder - bevorzugt - in Gegenwart eines Lösungsmittels herstellen. Bevorzugt ist das verwendete Lösungsmittel unpolar und enthält keine Sauerstoffatome oder andere die Polarität erhöhende Heteroatome. Die Polymerisation erfolgt besonders bevorzugt in einem aliphatischen, isocyclischen oder aromatischen Kohlenwasserstoff oder Kohlenwasserstoffgemisch, wie Benzol, Toluol, Ethylbenzol, XyIoI, Cumol, Hexan, Heptan, Octan oder Cyclohexan. Bevorzugt werden Lösungsmittel mit einem Siedepunkt oberhalb 7O0C verwendet. Besonders bevorzugt wird Heptan, Toluol oder Cyclohexan verwendet.
Nach Beendigung der Polymerisation, d.h. nach Verbrauch der Monomeren, wird die Reasktion üblicherweise nicht durch Zugabe eines Kettenabbruchmittels abgebrochen. Vielmehr wird die „lebende" Reaktionsmischung bevorzugt unmittelbar in Schritt 2) ein¬ gesetzt. Lebend bedeutet, dass bei erneuter Monomerzugabe die Polymerisationsreak¬ tion an den lebenden Polymerkettenenden sofort wieder anspringen würde, ohne dass erneut Polymerisationsinitiator zugegeben werden müsste.
Die Polymerisationsbedingungen in Schritt 1 ), z.B. Druck und Temperatur richten sich u.a. nach der Reaktivität und Konzentration der Monomere, den verwendeten Alkalime¬ tall- und Aluminiumverbindungen und ihren Konzentrationen. Üblicherweise arbeitet man bei 0,1 bis 10, insbesondere 0,5 bis 5 bar Absolutdruck, besonders bevorzugt bei Normaldruck , und bei -50 bis 200, insbesondere -30 bis 100 und besonders bevor¬ zugt -10 bis 5O0C Reaktionstemperatur. Tiefe Temperaturen ermöglich eine bessere Kontrolle der Reaktion, jedoch ist die Polymerisationszeit länger. Die Polymerisations¬ dauer beträgt üblicherweise 5 min bis 48 Stunden, insbesondere 10 min bis 12 Stun¬ den.
Das Verfahren zur Herstellung der Oxiranpolymere P1 kann diskontinuierlich oder kon¬ tinuierlich, in jedem üblichen Behälter bzw. Reaktor durchgeführt werden, wobei es grundsätzlich möglich ist, rückvermischende oder nicht rückvermischende Reaktoren (d.h. Reaktoren mit Rührkessel- oder Rohrreaktor-Verhalten) zu verwenden. Das Ver- fahren führt je nach Wahl der Alkalimetallverbindung und des Aluminiumorganyls, de¬ ren Konzentrationen, des speziell angewandten Verfahrensablaufs (z.B. Zugabereihen¬ folge) und anderer Parameter, wie Polymerisationsdauer und -temperatur und evtl. Temperaturverlauf, zu Polymerisaten unterschiedlichen Molekulargewichts. Geeignet sind zum Beispiel Rührkessel, Turmreaktoren, Schlaufenreaktoren sowie Rohrreakto- ren oder Rohrbündelreaktoren mit oder ohne Einbauten. Einbauten können statische oder bewegliche Einbauten sein.
Die erhaltenen Oxiranpolymere P1 können Homo- oder Copolymere sein. Bevorzugt weisen die Oxiranhomopolymere P1 ein gewichtsmittleres Molekulargewicht (Mw) M1 von 1000 bis 300.000, insbesondere 5000 bis 200.000 g/mol auf.
Die Copolymere können statistisch aufgebaut sein, d.h. die Abfolge der Monomerein¬ heiten im Copolymer ist rein statistisch, oder alternierend (abwechselnd Oxiran- und Comonomereinheiten). Sie können ebenso eine tapered-Struktur aufweisen. Tapered bedeutet, dass entlang der Polymerkette ein Gradient von Oxiran-reich nach Oxiran- arm oder umgekehrt vorliegt. Bevorzugt jedoch weisen die Oxirancopolymere P1 eine Blockstruktur auf, es handelt sich also um Blockcopolymere. Bevorzugt sind die Blockcopolymere aufgebaut aus mindestens einem Block aus dem oder den Oxiranen, und mindestens einem Block aus dem oder den Comonomeren. Besonders bevorzugt sind die Blockcopolymere linear aufgebaut.
Die erfindungsgemäßen Blockcopolymere können z.B. lineare Zweiblock-Copolymere A-B sein. Dabei steht A für den Polyoxiran-Block und B für den Block aus Comono¬ meren). Für Styrol als bevorzugtes Comonomer ist B demnach ein Polystyrolblock.
Die Blockstruktur entsteht im Wesentlichen dadurch, dass man zunächst das Como¬ nomer alleine anionisch polymerisiert, wodurch ein „lebender" Block B aus dem Como¬ nomer entsteht. Nach Verbrauch des Comonomeren wechselt man das Monomere, indem man monomeres Oxiran zufügt und anionisch zu einem Oxiranblock A polymeri- siert, d.h. an den lebenden Comonomerblock wird ein Polyoxiranblock anpolymerisiert. Beispielsweise kann man zunächst Styrol alleine zu einem Polystyrolblock PS polyme- risieren. Nach Verbrauch des Styrols erfolgt der Monomerwechsel, indem man Propy- lenoxid zufügt, das dann zum Polypropylenoxid-Block PPO polymerisiert wird. Als Er¬ gebnis dieser sog. sequentiellen Polymerisation erhält man ein Zweiblockpolymer B-A, z.B. PS-PPO.
Bevorzugt handelt es sich demnach bei den Oxirancopolymeren P1 um Blockcopoly¬ mere, wobei durch sequentielle Polymerisation zunächst das Comonomer zu einem Polymerblock B polymerisiert wird, und danach das Oxiran zu einem Polyoxiranblock A polymerisiert wird.
Bei der Herstellung der Blockcopolymere können sowohl die Alkalimetallverbindung als auch eine Teilmenge des Aluminiumorganyls bereits bei der Polymerisation des ersten Blocks zugegeben werden. Jedoch kann man insbesondere dann, wenn - wie es be- vorzugt ist - zunächst der Comonomer-Block und danach der Polyoxiran-Block herge¬ stellt wird, den Comonomerblock in Gegenwart der Alkalimetallverbindung polymerisie- ren (d.h. ohne Aluminiumorganyl) und das Aluminiumorganyl erst bei der Polymerisati¬ on des Polyoxiranblocks zufügen.
Beispielsweise kann man zunächst aus Styrol mittels Alkalimetallverbindung (z.B. sec- Butyllithium) den Polystyrolblock herstellen, und erst bei der Zugabe des Oxiranmono- mers das Aluminiumorganyl (z.B. TIBA) zufügen und zum Polyoxiranblock polymerisie- ren. Besonders bevorzugt gibt man nach der Herstellung des Comonomerblocks erst das Oxiranmonomer, und nach dem Anspringen der Reaktion, in manchen Fällen sichtbar an einer Verfärbung der Reaktionsmischung, das Aluminiumorganyl hinzu. Bei der Herstellung der Blockcopolymere beträgt das Molverhältnis von Aluminium zu Alkalimetall üblicherweise 0,5:1 bis 100:1. Bevorzugt wird zumindest das Oxiranmo- nomer bei einem molaren Überschuss von Aluminium gegenüber Alkalimetall, polyme- risiert. Insbesondere beträgt zumindest bei der Polymerisation des Polyoxiranblocks A das Molverhältnis von Aluminium zu Alkalimetall 1 :1 bis 20:1.
Bevorzugte Oxiranpolymere P1 sind Zweiblockcopolymere PS-PPO. Dabei kann im PPO-Block ein Teil des PO durch EO ersetzt sein. Besonders bevorzugt beträgt der Anteil der Polystyrolblöcke an einem solchen Blockcopolymer 2 bis 90, vorzugsweise 25 bis 75 Gew.-%, gerechnet als Summe aller Polystyrolblöcke im Blockcopolymer und bezogen auf das Blockcopolymer.
Man kann auch Blockcopolymere herstellen, die neben einem Polyoxiranblock und einem Block aus Styrolmonomeren, einen oder mehrere Blöcke aus Dienmonomeren enthalten. Beispielsweise kann man Dreiblockcopolymere PBu-PS-PPO (PBu = PoIy- butadienblock) herstellen, indem man zunächst Butadien anionisch zu einem Polybu- tadienblock, danach Styrol wie beschrieben zum Polystyrolblock und schließlich PO zum PPO-Block polymerisiert. Durch Vertauschen der Monomerfolge lassen sich auch Blockcoplymere PS-PBu-PPO herstellen. Anstelle oder zusammen mit Butadien kann man auch Isopren oder andere Diene verwenden. Bevorzugt wird unabhängig von der Blockabfolge der Polyoxiranblock als letzter Block polymerisiert.
Unabhängig davon, ob die Oxirancopolymere P1 statistisch oder als Blockcopolymer aufgebaut sind, liegt ihr gewichtsmittleres Molekulargewicht M1 üblicherweise bei 1000 bis 500.000, bevorzugt 5000 bis 300.000 und besonders bevorzugt 10.000 bis 200.000 g/mol.
Bei Blockcopolymeren als Oxirancopolymer P1 weist bevorzugt der einzelne Polyoxi¬ ranblock ein gewichtsmittleres Molekulargewicht von 1000 bis 300.000 g/mol, und der einzelne Polystyrolblock ein zahlenmittleres Molekulargewicht von 1000 bis 200.000 g/mol, auf.
In Schritt 2) des erfindungsgemäßen Verfahrens setzt man die in Schritt 1 ) erhaltenen Oxiranpolymere P1 mit einem Kopplungsmittel zu dem Polymer P2 mit einem ge- wichtsmittleren Molekulargewicht M2 um. Dabei ist M2 größer als das gewichtsmittlere Molekulargewicht M1 der Polymere P1.
Erfindungsgemäß ist das Kopplungsmittel ein aromatisches oder aliphatisches Isocya- nat, das mindestens zwei Isocyanatgruppen (-N=C=O) pro Molekül aufweist. Bevor- zugt beträgt die Anzahl der Isocyanatgruppen 2, 3 oder 4, besonders bevorzugt 2 oder 3 und insbesondere 2, d.h. die Diisocyanate sind ganz besonders bevorzugt. Bevorzugte Kopplungsmittel sind die Toluylendiisocyanate (= Toluoldiisocyanate, TDI), beispielsweise Toluylen- 2,4-diisocyanat und Toluylen-2,6-diisocyanat, Hexan-1 ,6-diisocyanat (= Hexamethylendiisocyanat, HDI oder HMDI) - Naphthylen-1 ,5-diisocyanat (NDI), Diphenylmethan-4,4'-diisocyanat (= 4,4'-Methylendi(phenylisocyanat), MDI), Dicyclohexylmethan-4,4'-diisocyanat (= 4,4'-Methylenbis(cyclohexylisocyanat), H12MDI), 5-lsocyanato-1-isocyanatomethyl-1 ,3,3-trimethyl-cyclohexan (= Isophorondiiso- cyanat, IPDI).
Ebenso kommen als Kopplungsmittel solche Isocyanatverbindungen in Betracht, die durch Umsetzung von Monoisocyanaten oder anderen Isocyanaten mit sich selbst und beispielsweise Alkoholen, Aminen oder erhalten werden, z.B.: - Allophanate, erhältlich durch Umsetzung eines Isocyanats mit einem Alkohol, und Umsetzung des erhaltenen Urethans mit weiterem Isocyanat, Biurete, erhältlich durch Umsetzung eines Isocyanats mit Harnstoffderivaten, Uretdione, erhältlich durch Umsetzung von 2 mol Isocyanat, Isocyanurate, erhältlich durch Umsetzung von 3 mol Isocyanat.
Derartige Isocyanatverbindungen werden z.B. im Römpp, Stichwort „Polyisocyanate", beschrieben.
Bevorzugte Isocyanat-Kopplungsmittel sind die Toluylendiisocyanate (= Toluoldiisocy- anate, TDI), beispielsweise als kommerziell erhältliche Isomerengemische 80:20 oder 65:35 (2,4-lsomer : 2,6-lsomer).
Das Kopplungsmittel kann als solches, oder gelöst in einem geeigneten Lösungsmittel wie z.B. Toluol, Ethylbenzol, Cyclohexan oder einem anderen aliphatischen, isocycli- sehen oder aromatischen Kohlenwasserstoff oder Kohlenwasserstoffgemisch, zugefügt werden.
Die Polymerisationsbedingungen in Schritt 2), z.B. Druck und Temperatur richten sich u.a. nach der Reaktivität und Konzentration der Polymere P1 und des Kopplungsmit- tels. Üblicherweise arbeitet man bei 0,1 bis 10, insbesondere 0,5 bis 5 bar Absolut¬ druck, besonders bevorzugt bei Normaldruck , und bei -50 bis 200, insbesondere -30 bis 100 und besonders bevorzugt -10 bis 800C Reaktionstemperatur. Die Polymerisati¬ onsdauer beträgt üblicherweise 5 min bis 48 Stunden, insbesondere 10 min bis 12 Stunden.
Das Umsetzung zum Polymer P2 kann diskontinuierlich oder kontinuierlich, in jedem üblichen Behälter bzw. Reaktor durchgeführt werden, wobei es grundsätzlich möglich ist, rückvermischende oder nicht rückvermischende Reaktoren (d.h. Reaktoren mit Rührkessel- oder Rohrreaktor-Verhalten) zu verwenden. Geeignet sind zum Beispiel Rührkessel, Turmreaktoren, Schlaufenreaktoren sowie Rohrreaktoren oder Rohrbün¬ delreaktoren mit oder ohne Einbauten. Einbauten können statische oder bewegliche Einbauten sein.
Es besteht die Vorstellung, dass in Schritt 2) die lebenden anionischen Kettenenden des Oxiranpolymers P1 mit den C-Atomen der Isocyanatgruppen reagieren. Dabei bil¬ det sich vermutlich ein Anion, dessen N-Atome der Isocyanatgruppen eine negative Ladung aufweisen, schematisch
PPO—O© + o=C=N—R N =C=O + ΘO OPP
Figure imgf000016_0001
O 0 I O=C-N — R N C=O
OPP
Dabei bedeutet PPO eine Polypropylenoxid-Kette (PPO-Block). Sie trägt ein negativ geladenes O-Atom -O" am Kettenende. R bedeutet den aromatischen bzw. aliphati- schen Rest des Isocyanats.
Das Nitranion ist reaktiv, d.h. das in (1) erhaltene Polymermolekül ist offenbar ein le¬ bendes Molekül. Dieser Mechanismus unterscheidet sich grundlegend von dem der Polyurethansynthese, bei der durch Polyaddition aus zwei- oder höherwertigen Alkoho¬ len und Isocyanaten, Polyurethane gebildet werden.
Die erforderliche Menge an Kopplungsmittel richtet sich nach der Anzahl Isocyanat¬ gruppen pro Isocyanatmolekül und nach dem gewünschten Aufbau des Polymeren P2. Beispielsweise verwendet man gemäß der obigen Gleichung (1) pro 1 mol Oxiranpo- lymer P1, 0,5 mol eines Diisocyanats, um das Polymer P2 zu erhalten. P2 hat übli¬ cherweise etwa das doppelte Molekulargewicht von P1. Es besteht die Vorstellung, dass das Polymer P2 zwei Äste aus Oxiranpolymer P1 aufweist, die über das Kopp¬ lungsmittel gekoppelt sind. Verwendet man als Kopplungsmittel ein Isocyanat mit drei Isocyanatgruppen, so erhält man in ähnlicher Weise ein Polymer P2 mit drei Polymerästen, wozu pro 1 mol Oxiran- polymer P1, 1/3 mol Triisocyanat verwendet werden. Entsprechendes gilt sinngemäß für Polymere P2 mit mehr als drei Ästen bzw. für Isocyanate mit mehr als drei Isocya- natgruppen.
Je nachdem, ob die in Schritt 1) des Verfahrens hergestellten Oxiranpolymere P1 Ho- mopolymere oder Copolymere, z.B. Blockcopolymere sind, erhält man als Polymer P2 ein Oxiran-Homopolymer oder -Copolymer.
Nachfolgend steht PPO (Polypropylenoxid) stellvertretend für ein Oxiranhomopolymer bzw. Oxiranhomopolymerblock, PS (Polystyrol) stellvertretend für ein Polymer bzw. Polymerblock aus Comonomeren, und X stellvertretend für ein Isocyanat-Kopplungs- mittel.
In einer bevorzugten Ausführungsform i) ist das Verfahren dadurch gekennzeichnet, dass man in Schritt 1) ein Oxiran-Homopolymer P1 herstellt und dieses in Schritt 2) mit dem Kopplungsmittel zu einem Polymer P2 mit zwei oder mehr Ästen aus Oxiran- Homopolymer umsetzt, schematisch:
2 PPO + X → PPO-X-PPO (2)
In einer anderen, ebenfalls bevorzugten Ausführungsform ii) ist das Verfahren dadurch gekennzeichnet, dass man in Schritt 1) ein Oxiran-Blockcopolymer P1 herstellt und dieses in Schritt 2) mit dem Kopplungsmittel zu einem Blockcopolymer P2 umsetzt, schematisch:
2 PS-PPO + X -> PS-PPO-X-PPO-PS (3)
Eine besonders bevorzugte Ausführungsform ii) ist dadurch gekennzeichnet, dass man in Schritt 1) ein Zweiblockcopolymer P1 Polypropylenoxid-Polystyrol PPO-PS herstellt und dieses in Schritt 2) zu einem Blockcopolymer P2 PS-PPO-PPO-PS umsetzt.
Die Schreibweise PPO-X-PPO bzw. PPO-PPO dient der Verdeutlichung; tatsächlich dürfte das Kopplungsmittel X aufgrund seiner im Vergleich zu den PPO-Blöcken sehr geringen Masse für den Polymereigenschaften nicht wesentlich sein, und man kann PPO-X-PPO bzw. PPO-PPO als einen einheitlichen Block PPO* betrachten, der etwa doppelt so groß ist wie die beiden einzelnen PPO-Blöcke.
In einer Abwandlung ii') dieser Ausführungsform ii) stellt man zunächst in Schritt 1 ) ein Oxiran-Blockcopolymer PPO-PS, und getrennt davon in einem Schritt 1 ') ebenfalls durch anionische Polymerisation in einer separaten Reaktion ein Polystyrol- Homopolymer PS her, und setzt diese beiden Polymere P1 in Schritt 2) mit dem Kopp¬ lungsmittel um, schematisch:
PS + PPO-PS + X → PS-X-PPO-PS (4)
Das gemäß Gleichung (4) erhaltene Produkt kann unter Vernachlässigung des Kopp¬ lungsmittels X auch als PS-PPO-PS geschrieben werden.
Wie erwähnt besteht die Vorstellung, dass die in Schritt 2) erhaltenen Polymere P2 lebende Polymere (Nitranionen) sind. Sofern diese Polymere das gewünschte Endpro¬ dukt darstellen, bricht man üblicherweise die Reaktion durch Zugabe eines Kettenab¬ bruchmittels ab.
Als Abbruchmittel kommen alle protonenaktiven Substanzen, und Lewis-Säuren, in Betracht. Geeignet sind beispielsweise Wasser, sowie Ci-C10-Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol und die Butanole. Ebenfalls geeignet sind aliphati- sche und aromatische Carbonsäuren wie 2-Ethylhexansäure, sowie Phenole. Auch anorganische Säuren wie Kohlensäure (Lösung von CO2 in Wasser) und Borsäure können verwendet werden. Bevorzugt wird als Abbruchmittel Ethanol verwendet.
Alternativ zum Abbruch, kann man die in Schritt 2) erhaltenen Polymere P2 in einem anschließenden Schritt 3) mit geeigneten Reaktionspartnern zu Polymeren P3 umset¬ zen, d.h. P3 ist das Endprodukt. Dies beschreiben die nachfolgenden Ausführungsfor¬ men iii) und iv). Aufgrund des lebenden Charakters der Polymere P2 ist dazu in der Regel keine Reinitiierung erforderlich, vielmehr wird die Reaktion durch einfache Zuga¬ be des Reaktionspartners fortgeführt.
In der bevorzugten Ausführungsform iii) kann man der in Schritt 2) erhaltenen Reakti¬ onsmischung erneut Isocyanat als Reaktionspartner zufügen. Auf diese Weise erhält man ein Pfropfpolymer P3. Demnach ist in dieser bevorzugten Ausführungsform iii) das Verfahren dadurch gekennzeichnet, dass man nach Schritt 2)
3) in einem Schritt 3) das Polymer P2 mit weiterem Isocyanat zu einem Pfropfpoly¬ mer P3 umsetzt.
Es besteht die Vorstellung, dass die Reaktion an den negativ geladenen N-Atomen des Kopplungsmittels abläuft, schematisch wie folgt:
Figure imgf000019_0001
Das erhaltene Pfropfpolymer hat eine Pfropfgrundlage aus dem Isocyanat und darauf gepfropfte Äste aus Polyoxiran. Daher ist das Verfahren bevorzugt dadurch gekenn¬ zeichnet, dass das Pfropfpolymer P3 eine Pfropfgrundlage aus Isocyanatresten und eine Pfropfauflage (Pfropfäste) aus Oxiranpolymeren aufweist.
Das in Schritt 3) dieser Ausführungsform iii) verwendete Isocyanat kann mit dem in Schritt 2) verwendeten identisch sein - dies ist bevorzugt - oder davon verschieden. Die in Schritt 3) erforderliche Menge an Isocyanat richtet sich nach dem gewünschten Aufbau des Polymers P3, insbesondere nach dem Verhältnis von Pfropfgrundlage zu Pfropfauflage und kann durch Vorversuche auf einfache Weise ermittelt werden. Be¬ vorzugt setzt man das Isocyanat in stöchiometrischen Mengen ein, z.B. 0,5 mol Diiso- cyanat pro 1 mol des Polymers P2.
Alternativ kann man in einer bevorzugten Ausführungsform iv) der in Schritt 2) erhalte¬ nen Reaktionsmischung erneut Isocyanat und außerdem Oxiranmonomer als Reakti¬ onspartner zugeben (statt Isocyanat alleine), wodurch man ein vernetztes Polymer P3 erhält. In dieser Ausführungsform iv) ist das Verfahren dadurch gekennzeichnet, dass man nach Schritt 2)
3) in einem Schritt 3) das Polymer P2 mit weiterem Isocyanat und weiterem Oxiran zu einem vernetzten Polymer P3 umsetzt. Das erhaltene Polymer enthält Isocyanatreste, die mit Ketten aus Oxiranhomo- oder - copolymer zu einem Polymergel räumlich verknüpft (vernetzt) sind. Das Verfahren ist also bevorzugt dadurch gekennzeichnet, dass das vernetzte Polymer P3 Isocyanat¬ reste aufweist, die über Oxiranpolymere dreidimensional verknüpft sind.
Das in Schritt 3) dieser Ausführungsform iv) verwendete Isocyanat bzw. Oxiranmono- mer können mit dem in Schritt 2) verwendeten Isocyanat bzw. Oxiran identisch sein - dies ist bevorzugt - oder davon verschieden. Die in Schritt 3) erforderliche Menge an Isocyanat und Oxiranmonomer richtet sich nach dem gewünschten Aufbau des PoIy- mers P3, insbesondere nach dem gewünschten Vernetzungsgrad und kann durch Vor¬ versuche auf einfache Weise ermittelt werden. Bevorzugt wird das Isocyanat, anders als bei der Herstellung der Pfropfpolymere P3, im Überschuss verwendet.
Danach wird die Reaktion üblicherweise durch Zugabe eines Kettenabbruchmittels abgebrochen wie bereits beschrieben.
Die erhaltene Reaktionsmischung enthält das Polymer P2 bzw. P3 und kann nach dem Abbruch, falls gewünscht, in an sich bekannter Weise auf das Polymer P2 bzw. P3 aufgearbeitet werden. Beispielsweise kann man das Polymer, falls erforderlich, durch Zugabe von Methanol oder anderen geeigneten Verbindungen zur Reaktionsmischung, ausfällen und abtrennen. Das Polymer kann in einem Entgasungsextruder oder Ver¬ dampfer entgast werden. Durch die Entgasung werden Restmonomere und gebildete Oligomere, sowie bei der Polymerisation verwendete flüchtige Hilfs- und Begleitstoffe sowie insbesondere das Lösungsmittel, abgetrennt.
Das gewichtsmittlere Molekulargewicht M2 des Polymers P2 bzw. P3 ergibt sich aus den Molekulargewichten M1 der Polymerblöcke bzw. -äste P1 , aus denen die Polyme¬ re P2 bzw. P3 aufgebaut sind, und dem einpolymerisierten Kopplungsmittel. Üblicher¬ weise beträgt M2
für Homopolymere P2, 2000 bis 1.000.000, bevorzugt 5000 bis 300.000 g/mol, für Blockcopolymere P2, 2000 bis 1.000.000, bevorzugt 5000 bis 300.000 g/mol, und für Pfropfpolymere P3, 5000 bis 10.000.000, bevorzugt 10.000 bis 5.000.000 g/mol.
Zusammenfassend ermöglicht es das erfindungsgemäße Verfahren,
i) aus Oxiran-Homopolymeren P1 durch Kopplung mit Isocyanat, Oxiran- Homopolymere P2 herzustellen, ii) aus Oxiran-Copolymeren P1 durch Kopplung mit Isocyanat, Oxiran-Copolymere P2 herzustellen, insbesondere aus Blockcopolymeren P1 Blockcopolymere P2 herzustellen, iii) aus den Homo- oder Copolymeren P2 durch erneute Umsetzung mit Isocyanat, Pfropfpolymere P3 herzustellen, oder iv) aus den Homo- oder Copolymeren P2 durch erneute Umsetzung mit Isocyanat und Oxiranmonomer, vernetzte Polymere P3 herzustellen.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Polymere P2 bzw. P3 sind ebenfalls Gegenstand der Erfindung. Die Polymere können außerdem übliche Zusatz¬ stoffe und Verarbeitungshilfsmittel in den dafür üblichen Mengen enthalten, beispiels¬ weise Gleit- oder Entformungsmittel, Farbmittel wie z.B. Pigmente oder Farbstoffe, Flammschutzmittel, Antioxidantien, Stabilisatoren gegen Lichteinwirkung, Antistatika, oder faser- und pulverförmige Füll- oder Verstärkungsmittel, sowie andere Zusatzstof- fe, oder deren Mischungen.
Das Abmischen der Polymere mit den Zusatzstoffen kann nach an sich bekannten Mischverfahren erfolgen, beispielsweise unter Aufschmelzen in einem Extruder, Ban- bury-Mischer, Kneter, Walzenstuhl oder Kalander. Die Komponenten können jedoch auch "kalt" verwendet werden und das pulvrige oder aus Granulaten bestehende Ge¬ misch wird erst bei der Verarbeitung zum Endprodukt, z.B. Formteil, Folie, Faser oder Schaum, aufgeschmolzen und homogenisiert.
Aus den erfindungsgemäßen Polymeren lassen sich Formkörper (auch Halbzeuge) Folien, Fasern und Schäume aller Art herstellen.
Gegenstand der Erfindung sind demnach auch die Verwendung der erfindungsgemä¬ ßen Polymere zur Herstellung von Formkörpern, Folien, Fasern und Schäumen, sowie die aus den Polymerblends erhältlichen Formkörper, Folien, Fasern und Schäume.
Mit dem erfindungsgemäßen, alternativen Verfahren lassen sich Oxiranpolymere auf einfache Weise herstellen, insbesondere solche mit höherem Molekulargewicht. Au¬ ßerdem macht das Verfahren Dreiblockcopolymere des Typs B-A-B, beispielsweise PS-PPO-PS, auf einfache Weise zugänglich, und es lassen sich auch Pfropfpolymere und vernetzte Polymere (Polymernetzwerke bzw. Polymergele) herstellen.
Beispiele:
Es wurden die nachfolgend genannten Verbindungen verwendet, wobei „gereinigt" be- deutet, dass mit Aluminoxan gereinigt und getrocknet wurde, sofern nicht anders an¬ gegeben. Handelsprodukte wurden ohne weitere Reinigung verwendet. - Styrol, gereinigt - Propylenoxid (PO), gereinigt durch Behandeln mit Calciumhydrid - Cyclohexan, gereinigt Ethanol (als Abbruchmittel) - sec-Butyllithium (sBuLi) als 1 ,3 molare Lösung in Cyclohexan; es wurde eine ferti¬ ge Lösung von Fa. Aldrich verwendet - Tetra-n-butylammoniumchlorid (NnBu4-CI); es wurde aus dem entsprechenden Hydrat (NnBu4-CI • H2O, als 98%iger Feststoff von Fa. Aldrich) durch Behandeln mit Methanol und anschließende Vakuumtrocknung erhalten - Triisobutylaluminium (TIBA, JBu3-AI) als 1 ,0 molare Lösung in Toluol; es wurde eine fertige Lösung von Fa. Aldrich verwendet, - Toluylen-2,4-diisocyanat (TDI, als erfindungsgemäßes Kopplungsmittel); das Han¬ delsprodukt (Reinheit 95 % von Fa. Aldrich) wurde durch Kryodestillation gereinigt. Es wurden TDI-Lösungen verschiedener Konzentration in Toluol hergestellt.
Die folgenden nicht erfindungsgemäßen Kopplungsmittel Y1 bis Y4 wurden zum Ver¬ gleich verwendet:
Figure imgf000022_0001
Figure imgf000022_0002
Y4: °^(CH2)4 — <?
Alle Polymerisationen wurden unter Feuchtigkeitsausschluss in einer glove box mit Stickstoffatmosphäre durchgeführt. Es wurde ein mit Magnetrührer und Septum ausge¬ statteter, temperierbarer Rundkolben verwendet. Während der Polymerisation wurde gerührt und die Abnahme der Monomerkonzentration gravimetrisch verfolgt.
Die Molekulargewichte und Molekulargewichtsverteilungen der Polymermischungen wurden durch Gelpermeationschromatographie (GPC) bestimmt mit Tetrahydrofuran als Eluent und Kalibration mit Polystyrolstandards. Dazu wurde der zu untersuchenden Reaktionsmischung eine Probe entnommen, darin die Reaktion durch Zugabe von 10 ml Ethanol abgebrochen und die Probe untersucht. Aus dem zahlenmittleren Moleku¬ largewicht Mn und dem gewichtsmittleren Molekulargewicht Mw wurde der Polydisper- sitätsindex PDI = Mw/Mn, bestimmt.
Nachfolgend entspricht die Nummerierung 1), 2) und 3) ungefähr den Schritten 1), 2) bzw. 3) des erfindungsgemäßen Verfahrens.
Beispiel 1 : PPO-Homopolymer 23.000 g/mol
1) Zu 12,5 ml Toluol wurden 42,7 mg (0,154 mmol) festes NnBu4-CI gegeben. Danach fügte man 3 ml PO und 0,22 ml der 1 ,0 molaren TIBA-Lösung hinzu. Es wurde 60 min bei 00C polymerisiert.
Von der Reaktionsmischung wurde eine Probe genommen und mit GPC untersucht. Die Ergebnisse waren wie folgt: Polydispersitätsindex (PDI) 1,15, zahlenmittleres Mo¬ lekulargewicht Mn 13.000 g/mol.
2) Zu der restlichen, noch lebenden Reaktionsmischung gab man 0,55 ml einer 0,14 molaren TDI-Lösung in Toluol, und polymerisierte 3 Stunden bei 600C.
Danach wurde durch Zugabe von 10 ml Ethanol abgebrochen und die Reaktionsmi¬ schung mit GPC untersucht. Die Ergebnisse waren wie folgt: Polydispersitätsindex (PDI) 1,18, zahlenmittleres Molekulargewicht Mn 23.000 g/mol. Ein zweiter GPC-Peak mit ca. 50 % des Integrals wurde dem ungekoppelten PPO zugeordnet.
Beispiel 2: PPO-Homopolymer 46.600 g/mol
1) Zu 10 ml Toluol wurden 31,1 mg (0,112 mmol) festes NnBu4-CI gegeben. Danach fügte man 3,6 ml PO und 0,28 ml der 1,0 molaren TIBA-Lösung hinzu. Es wurde 60 min bei O0C polymerisiert.
Von der Reaktionsmischung wurde eine Probe genommen und mit GPC untersucht. Die Ergebnisse waren wie folgt: Polydispersitätsindex (PDI) 1 ,06, zahlenmittleres Mo- lekulargewicht Mn 26.700 g/mol.
2) Zu der restlichen, noch lebenden Reaktionsmischung gab man 0,4 ml einer 0,23 molaren TDI-Lösung in Toluol, und polymerisierte 60 min bei 00C.
Danach wurde durch Zugabe von 10 ml Ethanol abgebrochen und die Reaktionsmi¬ schung mit GPC untersucht. Die Ergebnisse waren wie folgt: Polydispersitätsindex (PDI) 1 ,10, zahlenmittleres Molekulargewicht Mn 46.600 g/mol. Ein zweiter GPC-Peak mit ca. 5 % des Integrals wurde dem ungekoppelten PPO zugeordnet.
Beispiel 3: Pfropfpolymer 130.800 g/mol
1) + 2) Es wurde vorgegangen wie in Beispiel 2 beschrieben, jedoch wurde die Reakti¬ on nicht durch Zugabe von Ethanol abgebrochen.
3) Stattdessen gab man 0,4 ml einer 0,23 molaren TDI-Lösung in Toluol, hinzu, und polymerisierte 24 Stunden bei 200C.
Danach wurde durch Zugabe von 10 ml Ethanol abgebrochen und die Reaktionsmi¬ schung mit GPC untersucht. Die Ergebnisse waren wie folgt: Polydispersitätsindex (PDI) 1 ,41 , zahlenmittleres Molekulargewicht Mn 130.800 g/mol. Ein zweiter GPC-Peak mit ca. 5 bis 10 % des Integrals wurde dem ungekoppelten PPO zugeordnet; ein dritter GPC-Peak mit ca. 10 bis 20 % des Integrals wurde dem gekoppelten, aber ungepfropf- ten PPO zugeordnet.
Beispiel 4: vernetztes Polymer
1) + 2) Es wurde vorgegangen wie in Beispiel 2 beschrieben, jedoch wurde die Reakti¬ on nicht durch Zugabe von Ethanol abgebrochen.
3) Stattdessen gab man 1 ,0 ml einer 0,23 molaren TDI-Lösung in Toluol, sowie 3,5 ml PO und 0,28 ml der 1 ,0 molaren TIBA-Lösung hinzu, und polymerisierte 2 Stunden bei O0C. Zu diesem Zeitpunkt hatte sich ein unlösliches Polymergel gebildet.
Vergleichsbeispiele 5V bis 8V:
Beispiel 2 wurde wiederholt, allerdings verwendete man in Schritt 2) anstelle der TDI- Lösung die nicht erfindungsgemäßen Kopplungsmittel Y1 bis Y4. Die Tabelle fasst die Polymerisationsbedingungen und die Ergebnisse zusammen.
Tabelle: Vergleichsbeispiele
Figure imgf000024_0001
Die Beispiele zeigen, dass sich mit dem erfindungsgemäßen Verfahren sowohl Oxiran- Homopolymere mit höherem Molekulargewicht, als auch Blockcopolymere, Pfropfpo¬ lymere und vernetzte Polymere herstellen ließen.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Polymeren P2 aus Oxiranen und optionalen Co- monomeren, dadurch gekennzeichnet, dass man
1 ) in einem Schritt 1 ) aus den Oxiranen und ggf. den Comonomeren durch an¬ ionische Polymerisation in Gegenwart eines Metallorganyls ein oder mehre¬ re Oxiranpolymere P1 mit einem gewichtsmittleren Molekulargewicht M1 herstellt, und
2) in einem Schritt 2) diese Oxiranpolymere P1 mit einem Kopplungsmittel zu dem Polymer P2 mit einem gewichtsmittleren Molekulargewicht M2 um¬ setzt, wobei M2 größer ist als M1 , und wobei das Kopplungsmittel ein aro¬ matisches oder aliphatisches Isocyanat ist, das mindestens zwei Isocya- natgruppen pro Molekül aufweist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Oxirane ausge¬ wählt sind aus Propylenoxid, Ethylenoxid oder deren Mischungen.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Co- monomere ausgewählt sind aus Styrol, α-Methylstyrol, Butadien, Isopren oder deren Mischungen.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Me- tallorganyl ein Aluminiumorganyl ist.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass das Iso¬ cyanat ein Toluylendiisocyanat ist.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass man in Schritt 1 ) ein Oxiran-Homopolymer P1 herstellt und dieses in Schritt 2) mit dem Kopplungsmittel zu einem Polymer P2 mit zwei oder mehr Ästen aus Oxiran- Homopolymer umsetzt.
7. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass man in Schritt 1) ein Oxiran-Blockcopolymer P1 herstellt und dieses in Schritt 2) mit dem Kopplungsmittel zu einem Blockcopolymer P2 umsetzt.
8. Verfahren nach den Ansprüchen 1 bis 5 und 7, dadurch gekennzeichnet, dass man in Schritt 1) ein Zweiblockcopolymer P1 Polypropylenoxid-Polystyrol (PPO-PS) herstellt und dieses in Schritt 2) zu einem Blockcopolymer P2 PS-PPO-PPO-PS umsetzt.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man nach Schritt 2)
3) in einem Schritt 3) das Polymer P2 mit weiterem Isocyanat zu einem Pfropfpolymer P3 umsetzt.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass das Pfropfpolymer P3 eine Pfropfgrundlage aus Isocyanatresten und eine Pfropfauf- läge aus Oxiranpolymeren aufweist.
11. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man nach Schritt 2)
3) in einem Schritt 3) das Polymer P2 mit weiterem Isocyanat und weiterem Oxiran zu einem vernetzten Polymer P3 umsetzt.
12. Verfahren nach den Ansprüchen 1 bis 8 und 11 , dadurch gekennzeichnet, dass das vernetzte Polymer P3 Isocyanatreste aufweist, die über Oxiranpolymere dreidimensional verknüpft sind.
13. Polymere aus Oxiranen, erhältlich nach dem Verfahren gemäß den Ansprüchen 1 bis 12.
14. Verwendung der Polymere gemäß Anspruch 13 zur Herstellung von Formkör¬ pern, Folien, Fasern und Schäumen.
15. Formkörper, Folien, Fasern und Schäume aus den Polymeren gemäß An¬ spruch 13.
PCT/EP2005/006548 2004-06-23 2005-06-17 Verfahren zur herstellung von mittels isocyanaten gekoppelten polyoxiranen WO2006000348A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE502005006282T DE502005006282D1 (de) 2004-06-23 2005-06-17 Gekoppelten polyoxiranen
EP05762650A EP1761585B1 (de) 2004-06-23 2005-06-17 Verfahren zur herstellung von mittels isocyanaten gekoppelten polyoxiranen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004030071.2 2004-06-23
DE102004030071A DE102004030071A1 (de) 2004-06-23 2004-06-23 Verfahren zur Herstellung von mittels Isocyanaten gekoppelten Polyoxiranen

Publications (1)

Publication Number Publication Date
WO2006000348A1 true WO2006000348A1 (de) 2006-01-05

Family

ID=34972775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/006548 WO2006000348A1 (de) 2004-06-23 2005-06-17 Verfahren zur herstellung von mittels isocyanaten gekoppelten polyoxiranen

Country Status (4)

Country Link
EP (1) EP1761585B1 (de)
AT (1) ATE417880T1 (de)
DE (2) DE102004030071A1 (de)
WO (1) WO2006000348A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956037A1 (de) * 2007-02-09 2008-08-13 Basf Se Verfahren zur anionischen Polymerisation von Epoxiden und Oxetanen
US20090163099A1 (en) * 2007-12-19 2009-06-25 32 Degrees, Inc. Fabric and method of making the same
US9885129B2 (en) 2007-12-19 2018-02-06 Coolcore, Llc Fabric and method of making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059299A1 (de) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Vorrichtung zur Verarbeitung von zu entgasenden Produkten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2438880A1 (de) * 1973-08-13 1975-02-27 Mobil Oil Corp Blockcopolymere und verfahren zu deren herstellung
US4297240A (en) * 1980-02-25 1981-10-27 The General Tire & Rubber Company Solution polymerization
DE10136446A1 (de) * 2001-07-26 2003-02-06 Bayer Ag Hochmolekulare Polyalkylenoxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2438880A1 (de) * 1973-08-13 1975-02-27 Mobil Oil Corp Blockcopolymere und verfahren zu deren herstellung
US4297240A (en) * 1980-02-25 1981-10-27 The General Tire & Rubber Company Solution polymerization
DE10136446A1 (de) * 2001-07-26 2003-02-06 Bayer Ag Hochmolekulare Polyalkylenoxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1956037A1 (de) * 2007-02-09 2008-08-13 Basf Se Verfahren zur anionischen Polymerisation von Epoxiden und Oxetanen
US20090163099A1 (en) * 2007-12-19 2009-06-25 32 Degrees, Inc. Fabric and method of making the same
US8440119B2 (en) * 2007-12-19 2013-05-14 Tempnology Llc Process of making a fabric
US9121642B2 (en) 2007-12-19 2015-09-01 Tempnology Llc Method of cooling an object with a fabric
US9885129B2 (en) 2007-12-19 2018-02-06 Coolcore, Llc Fabric and method of making the same

Also Published As

Publication number Publication date
EP1761585A1 (de) 2007-03-14
DE102004030071A1 (de) 2006-01-12
EP1761585B1 (de) 2008-12-17
ATE417880T1 (de) 2009-01-15
DE502005006282D1 (de) 2009-01-29

Similar Documents

Publication Publication Date Title
DE3103202A1 (de) Polybutadiene und ihre herstellung
DE69821713T2 (de) Klebstoffpolymer und sein Herstellungsverfahren
EP1501879B1 (de) Verfahren zur anionischen polymerisation
DE3023785C2 (de) Katalysatorkomplex und seine Verwendung zur Polymerisation von Butadien-(1,3), Isopren oder Styrol, oder eines Gemisches aus Butadien-(1,3) und Styrol
EP1761585B1 (de) Verfahren zur herstellung von mittels isocyanaten gekoppelten polyoxiranen
EP1682603B1 (de) Verfahren zur anionischen polymerisation von oxiranen
EP0993477B1 (de) Glycidylether aliphatischer polyalkohole als kopplungsmittel in der anionischen polymerisation
EP1095078B1 (de) Schlagzähes polystyrol mit hoher steifigkeit und zähigkeit
EP1718686A1 (de) Verbessertes verfahren zur herstellung von schlagzähem polystyrol
US6506846B1 (en) Method for producing impact-resistant modified thermoplastic moulding materials
EP1629026B1 (de) Verbessertes verfahren zur anionischen polymerisation von oxiranen
DE10253147B4 (de) Verfahren zur Herstellung eines Polymerkautschuks und ölgestreckter Polymerkautschuk
WO2005118713A1 (de) Polymerblends aus styrolpolymeren und oxiran-copolymeren
DE19836410A1 (de) Thermoplastische Formmassen auf der Basis von Sternpolymeren, thermoplastischen Elastomeren und Polyarylenethern
EP1956037A1 (de) Verfahren zur anionischen Polymerisation von Epoxiden und Oxetanen
DE102006023585A1 (de) Polymerblends aus Styrolpolymeren und Oxiran-Homopolymeren
DE2164313A1 (de) Difunktionelle polymere mit endstaendigen hydrazidgruppen
EP1682592A1 (de) Verfahren zur anionischen polymerisation von monomeren in alpha-methylstyrol
DE2948323A1 (de) Waermehaertende harzzusammensetzung
JPS6324611B2 (de)
WO2005082958A1 (de) Vereinfachtes verfahren zur herstellung von schlagzähem polystyrol
DE102005029019A1 (de) Verfahren zur Herstellung von Copolymeren aus Styrolmonomeren und Dienmonomeren
DD150469A1 (de) Verfahren zur herstellung multifunktioneller polymerisationsinitiatoren
EP1523513A1 (de) Verfahren zur herstellung von polymeren hydroperoxiden
WO1999001487A1 (de) Thermoplastische elastomere auf basis 1,1-diphenylethylen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005762650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005762650

Country of ref document: EP