WO2005122321A1 - 色素増感型太陽電池及びその製造方法 - Google Patents

色素増感型太陽電池及びその製造方法 Download PDF

Info

Publication number
WO2005122321A1
WO2005122321A1 PCT/JP2005/005806 JP2005005806W WO2005122321A1 WO 2005122321 A1 WO2005122321 A1 WO 2005122321A1 JP 2005005806 W JP2005005806 W JP 2005005806W WO 2005122321 A1 WO2005122321 A1 WO 2005122321A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
dye
transparent
conductive
solar cell
Prior art date
Application number
PCT/JP2005/005806
Other languages
English (en)
French (fr)
Inventor
Hideo Abe
Yasuhito Tanaka
Original Assignee
Sfc Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sfc Co., Ltd. filed Critical Sfc Co., Ltd.
Priority to KR1020077000194A priority Critical patent/KR20070050906A/ko
Priority to DE112005001297T priority patent/DE112005001297T5/de
Priority to US11/596,112 priority patent/US20070204906A1/en
Priority to JP2006514452A priority patent/JPWO2005122322A1/ja
Priority to PCT/JP2005/009677 priority patent/WO2005122322A1/ja
Publication of WO2005122321A1 publication Critical patent/WO2005122321A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye-sensitized solar cell that directly converts light energy into electric energy, and a method for manufacturing the same.
  • This solar cell is also called a dye-sensitized solar cell because an electrolyte is sealed therein.
  • this solar cell includes a transparent conductive film 2 formed on one surface of a transparent substrate 1 and a semiconductor electrode (a dye-sensitized semiconductor electrode 4) carrying a sensitizing dye. ) Is formed on the conductive substrate 5 with the electrolyte contained therein, and the periphery thereof is sealed with a resin and sealed.
  • a porous titanium oxide film provided on the surface of a conductive substrate is coated with a sensitizing dye capable of efficiently absorbing sunlight, such as a ruthenium complex, is used as a dye-sensitized semiconductor electrode. Electrons excited by light can be injected into titanium oxide to conduct electricity.
  • an electrolytic solution is required to transfer electrons, and an iodine electrolytic solution is generally used.
  • Patent Document 1 Japanese Patent Publication No. 8-15097.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-173680.
  • the present invention has been made in view of such a problem, and can stably enclose an electrolytic solution therein for a long period of time, thereby simplifying the manufacturing process and reducing the manufacturing cost, and having a long life. It is an object of the present invention to provide a dye-sensitized solar cell and a method for manufacturing the same.
  • the present invention provides the following.
  • Two conductive substrates each having a transparent conductive film formed on at least one transparent substrate surface, and a conductive substrate having a dye-sensitized semiconductor electrode formed on at least one of the conductive substrate surfaces Are sealed together with a silicone resin-formed adhesive containing at least phenylheptamethylcyclotetrasiloxane and 2,6-cis-diphenylhexamethylcyclotetrasiloxane, and fixed.
  • Solar batteries
  • the adhesive is made of a metal or an oxide-based fine particle such as Al, Ti, Si, Ag or the like, or an ultrafine particle, or a filler having a fine particle power of alumina, a titanium oxide or Si02.
  • a dye-sensitized solar cell characterized by containing ultrafine silica (aerosil) and the like.
  • a sensitizing dye-carrying metal oxide film formed on the surface of the metal oxide film with an electrolyte solution and facing the metal oxide film with a metal oxide film supporting the sensitizing dye.
  • a step of preparing a conductive substrate having a conductive film formed on one surface or a step of preparing a conductive substrate, and a step of forming a transparent conductive film on one surface of the transparent substrate at least A step of forming a metal oxide film having a porous structure on one substrate, a step of attaching a sensitizing dye to the metal oxide film, and at least phenylheptamethylcyclotetrasiloxane and 2,6 on at least one of the two substrates.
  • a step of applying a heated adhesive formed from a silicon resin containing cis-diphenylhexamethylcyclotetrasiloxane; a transparent conductive film formed on the transparent substrate; and a transparent conductive film formed on the conductive substrate. Includes a step of incorporating an electrolytic solution into the metal oxide film supporting the sensitizing dye to adjust the directional force, and a step of solidifying, sealing, and fixing the heated adhesive in a cooling process.
  • a step of preparing a conductive substrate or a conductive substrate having a conductive film formed on at least one surface of the substrate provided with two holes, and a transparent conductive film on one surface of the transparent substrate Forming a metal oxide film having a porous structure on at least one of the substrates, and facing the transparent conductive film formed on the transparent substrate.
  • a dye sensitizer comprising: a step of applying a heated adhesive formed from a silicone resin containing tetrasiloxane; and a step of solidifying, sealing, and fixing the heated adhesive in a cooling process.
  • (6) a step of preparing a conductive substrate or a conductive substrate having a conductive film formed on at least one surface of the substrate provided with two holes, and a transparent conductive film on one surface of the transparent substrate Forming a metal oxide film having a porous structure on at least one of the substrates, and matching the transparent conductive film formed on the transparent substrate to at least one of the two.
  • At least phenylheptamethylcyclotetrasiloxane and 2,6-cisdiphenylhexamethylcyclotetrasiloxane on one of the substrates A step of applying a heated adhesive formed from a silicone resin containing the resin, a step of heating and curing the adhesive to 150 ° C or higher, and a step of injecting a sensitizing dye from at least one hole to oxidize the metal. A step of attaching a sensitizing dye to the film, and further injecting an electrolytic solution through at least one hole to include the electrolytic solution in the metal oxide film supporting the sensitizing dye formed on the conductive substrate.
  • a method for producing a dye-sensitized solar cell comprising the steps of: solidifying, sealing, and fixing in the process of cooling a material.
  • the dye-sensitized solar cell according to the present invention is sealed with an I-seal and fixed in the process of curing, and thus can maintain airtightness and adhesion for a long time at low cost.
  • FIG. 1 is a schematic cross-sectional view showing one example of the dye-sensitized solar cell of the present invention.
  • FIG. 2 is a process flow chart showing one example of the dye-sensitized solar cell of the present invention.
  • FIG. 3 is a process flow chart showing one example of the dye-sensitized solar cell of the present invention.
  • FIG. 4 is a schematic sectional view showing an example of the dye-sensitized solar cell of the present invention.
  • FIG. 5 is a process flow chart showing an example of the dye-sensitized solar cell of the present invention.
  • FIG. 1 is a schematic sectional view of a dye-sensitized solar cell according to an embodiment of the present invention.
  • the dye-sensitized solar cell includes a transparent conductive film having a substrate 1 on which a conductive film 2 is formed on one surface and a dye-sensitized semiconductor electrode 4 which is a counter electrode to the conductive substrate.
  • the transparent glass substrate 5 on which the film 6 is formed is overlapped with the electrolyte 3 soaked therein, and a heated I-seal 7 is applied to the surroundings to seal and cure while the temperature of the I-seal 7 is lowered. , And is fixed.
  • the formation of the dye-sensitized semiconductor electrode is not limited to the formation on the transparent conductive film, and may be formed on the conductive film of the substrate.
  • the transparent substrate is not limited to a glass substrate, and a plastic substrate can be used!
  • the heating temperature of the I-seal 7 may be any as long as the I-seal is softened. It is more preferable to apply the coating at a temperature of about 50 ° C. or more and 400 ° C. or less, and even about once at about 300 ° C., and then about 120 ° C., and to bond two substrates together. At this time, the two substrates 1 and 5 may be heated as long as they are not limited to room temperature. Around 100 ° C is more preferable because the I seal has good wettability.
  • the application of the dye and the injection of the electrolytic solution are not limited to before the sealing, but may be performed after the two substrates are pasted together with an I seal, baked at 150 ° C. or more, and cured. However, in that case, use a substrate with holes formed in at least two places to inject the pigment and electrolyte.
  • the conductive substrate includes, but is not limited to, titanium, tantalum, niobium, or zirconium.
  • the semiconductor electrodes include, but are not limited to, titanium oxide, tantalum oxide, niobium oxide, zirconium oxide, and the like.
  • Examples of the transparent conductive film include ITO (tin-containing indium oxide), tin oxide, zinc oxide, and the like, but are not limited thereto. It is also effective with membranes.
  • titanium, tantalum, niobium or zirconium is used as a conductive substrate.
  • a conductive thin film of ITO, Sn02, Pt, carbon, or the like is formed on a glass substrate, a plastic substrate, or a ceramic substrate by vacuum evaporation.
  • a transparent glass or plastic substrate is prepared as a transparent substrate, and a transparent conductive film such as ITO (tin-containing indium oxide), tin oxide, zinc oxide, or a film that does not reduce transmittance is provided on this substrate.
  • ITO tin-containing indium oxide
  • tin oxide titanium oxide
  • zinc oxide titanium oxide
  • niobium or zirconium is used as a conductive substrate.
  • a conductive thin film of ITO, Sn02, Pt, carbon, or the like is formed on a glass substrate, a plastic substrate, or a ceramic substrate by vacuum evaporation.
  • a transparent glass or plastic substrate is prepared as a transparent substrate, and a transparent conductive film
  • a colloid solution containing metal oxide fine particles such as titanium oxide, tantalum oxide, niobium oxide, and zirconium oxide and a small amount of an organic polymer is applied to at least one of the conductive surfaces of the substrate, After natural drying, heat treatment is performed at a high temperature of 500 ° C to volatilize the organic polymer and form fine pores on the surface.
  • the porous metal oxide film thus formed is immersed in a solution of a sensitizing dye, and the sensitizing dye is adsorbed on its surface to form a dye-sensitized semiconductor electrode.
  • the dye-sensitized semiconductor electrode formed on the conductive substrate in this manner and the transparent conductive film formed on the transparent substrate are superposed with each other in a state where the electrolyte is contained.
  • the I-seal 7 is cured and fixed in the process of decreasing the temperature.
  • the dye-sensitized solar cell according to Example 1 was manufactured by the following procedure. Size 2
  • a titanium oxide for photocatalyst having a particle size of about 20 nm was mixed well with water, polyethylene glycol and nitric acid to form a paste and printed.
  • a heat treatment was performed in the air at 500 ° C for 30 minutes, and after cooling to form a titanium film of about 10 mm, the film was immediately immersed in an ethanol solution of a ruthenium complex.
  • a ruthenium complex which is a sensitizing dye, was adsorbed on the titanium oxide fine particles constituting the film, and a dye-sensitized semiconductor electrode was formed.
  • Iodine electrolyte 3 was impregnated on the dye-sensitized semiconductor electrode.
  • Iodine electrolyte 3 For this, a solution prepared by dissolving tetrapropylammonium-moxide and iodine in a mixed solution of ethylene carbonate and acetonitrile was used.
  • the glass substrate on which the carbon thin film was deposited and the glass substrate on which the dye-sensitized semiconductor electrode to which iodine was dropped were formed were overlapped.
  • an I-seal cooled to 120 ° C is applied and sealed with a dispenser, and the I-seal is cured in the course of cooling, and the superposed substrate is cured.
  • the dye-sensitized solar cell was fixed and fabricated.
  • two substrates having two holes (flmm) 8 formed on one substrate are superimposed, and two I-seals heated to 100 ° C. are placed around the two superposed substrates. After coating around the substrate, it was baked at 300 ° C to cure the I-seal. After cooling, a ruthenium complex as a sensitizing dye was injected from one hole and allowed to adhere to the titanium oxide fine particles. Next, in the same manner, after injecting the iodine electrolyte from one hole 8, the two holes are heated to 300 ° C, and then cooled to 120 ° C, and an I-seal is applied using a dispenser. It was cured and sealed in the process of cooling to produce a dye-sensitized solar cell.
  • Figure 4 shows a schematic cross-sectional view
  • Figure 5 shows a process flow diagram.
  • an I-seal heated to 100 ° C was applied to the periphery of the two substrates before the two substrates having two holes (flmm) 8 formed on one substrate were superimposed.
  • the substrates were bonded together and baked at 300 ° C to cure the I-seal.
  • a sensitizing dye ruthenium complex was injected from one hole 8 and allowed to adhere to the titanium oxide fine particles.
  • the two holes were heated to 300 ° C, and then cooled to 120 ° C, and an I-seal was applied using a dispenser.
  • hard sealing and sealing A sensitized solar cell was fabricated (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 電解液を内部に長期間安定して封入することができ、製造工程が簡単で製造コストを低減できる長寿命な色素増感型太陽電池及びその製造方法を提供する。  少なくとも一方の透明基板表面に透明導電膜が形成された2枚の導電性基板と、その前記導電性基板表面の少なくとも一方に色素増感半導体電極が形成された導電性基板とを重ね合わせ、その周囲に少なくともフェニルヘプタメチルシクロテトラシロキサン及び2,6-シス-ジフェニルヘキサメチルシクロテトラシロキサンを含むシリコンレジンから形成した接着材で封止するとともに固定してなることを特徴とする太陽電池。

Description

明 細 書
色素増感型太陽電池及びその製造方法
技術分野
[0001] 本発明は光エネルギーを電気エネルギーに直接変換する色素増感型太陽電池及 びその製造方法に関する。
背景技術
[0002] 1991年にグレッツエルらが発表した色素増感太陽電池は、シリコン半導体の p-n接 合による太陽電池とは異なるメカニズムによって作動し、変換効率が高くし力も製造コ ストが安いという利点があり、この太陽電池は、内部に電解液を封入してあることから 、色素増感型太陽電池とも呼ばれる。
[0003] この太陽電池は、図 1等に示すように、透明基板 1の一方の面に形成された透明導 電膜 2と、増感色素を担持させた半導体電極 (色素増感半導体電極 4)が形成された 導電性基板 5とを電解液を含ませた状態で重ね合わせ、その周囲に榭脂を塗って封 止されて!/、る。導電性基板の表面に設けられた多孔質な酸化チタン皮膜にルテニゥ ム錯体など太陽光を効率的に吸収することができる増感色素がコーティングされたも のを色素増感半導体電極として用いると、光によって励起された電子が酸ィ匕チタンに 注入されて電気を流すことができる。このタイプの太陽電池では、電子の授受のため に電解液が必要であり、一般的にはヨウ素電解液が用いられている。
特許文献 1:特公平 8 - 15097号公報。
特許文献 2:特開 2000— 173680号公報。
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、電解液を封止するために周辺部(断面部付近)に厚 ヽ榭脂を塗布し 、硬化させているのみであるので断面部付近との接着強度が弱い上に、電解液と接 触するため、電解液の溶媒であるァセトニトリルが榭脂を溶かし、長い間には電解液 が断面部と樹脂との界面力も漏れ出してしまう漏洩や、榭脂から水分が浸透するなど 、長期間安定に封止することは困難であった。 [0005] そこで、本発明はこのような問題に鑑みてなされたものであり、電解液を内部に長期 間安定して封入することができ、製造工程が簡単で製造コストを低減できる長寿命な 色素増感型太陽電池及びその製造方法提供することを目的とするものである。
課題を解決するための手段
[0006] 発明者らは鋭意研究の結果、気密性、耐水性に優れるシール (商品名「Iシール」) を開発し、このシールを開発する過程で本発明をなすに至った。すなわち、本発明 は、以下のものを提供するものである。
[0007] (1)少なくとも一方の透明基板表面に透明導電膜が形成された 2枚の導電性基板と 、その前記導電性基板表面の少なくとも一方に色素増感半導体電極が形成された 導電性基板とを重ね合わせ、その周囲に少なくともフエ-ルヘプタメチルシクロテトラ シロキサン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを含むシ リコンレジン力 形成した接着材で封止するとともに固定してなることを特徴とする太 陽電池。
[0008] (2)前記接着材が金属または酸ィ匕物系の微粒子は Al、 Ti、 Si、 Ag等の微粒子ま たは超微粒子、アルミナやチタン酸ィ匕物や Si02の微粒子力もなるフィラー、超微粒 子のシリカ(ァエロジル)等を含有して 、ることを特徴とする色素増感型太陽電池。
[0009] (3)一方の表面に導電膜が形成された導電性基板を用意する或!ヽは導電性基板 を用意する工程と、透明基板の一方の面に透明導電膜を形成する工程と、少なくとも 一方の基板に多孔質構造の金属酸化膜を形成する工程と、前記金属酸化膜に増感 色素を付着する工程と、前記透明基板に形成された透明導電膜と、前記導電性基 板に形成された増感色素を担持した金属酸化膜とを電解液を含ませて向かいあわ せる工程と、向かい合わさった周辺に少なくともフエ-ルヘプタメチルシクロテトラシ口 キサン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを含むシリコ ンレジンカゝら形成した加熱された接着材を塗布する工程と、加熱された接着材が冷 却する過程で固化し封止するとともに固定する工程と、を含むことを特徴とする色素 増感型太陽電池の製造方法。
[0010] (4)一方の表面に導電膜が形成された導電性基板を用意する或!ヽは導電性基板 を用意する工程と、透明基板の一方の面に透明導電膜を形成する工程と、少なくとも 一方の基板に多孔質構造の金属酸化膜を形成する工程と、前記金属酸化膜に増感 色素を付着する工程と、少なくとも前記 2枚の基板の一方に少なくともフエニルヘプタ メチルシクロテトラシロキサン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシ ロキサンを含むシリコンレジンカゝら形成した加熱された接着材を塗布する工程と、前 記透明基板に形成された透明導電膜と、前記導電性基板に形成された増感色素を 担持した金属酸ィ匕膜に電解液を含ませて向力ゝ ヽあわせる工程と、加熱された接着材 が冷却する過程で固化し封止するとともに固定する工程と、を含むことを特徴とする 色素増感型太陽電池の製造方法、
(5)少なくとも前記基板に 2箇所の穴を設けた一方の表面に導電膜が形成された 導電性基板を用意する或いは導電性基板を用意する工程と、透明基板の一方の面 に透明導電膜を形成する工程と、少なくとも一方の基板に多孔質構造の金属酸化膜 を形成する工程と、前記透明基板に形成された透明導電膜とを向カゝいあわせる工程 において、向かい合わさった周辺に少なくともフエ-ルヘプタメチルシクロテトラシロキ サン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを含むシリコン レジンから形成した加熱された接着材を塗布する工程と、接着材を 150°C以上に加熱 し硬化する工程と、少なくとも 1箇所の穴より増感色素を注入し前記金属酸ィ匕膜に増 感色素を付着する工程と、さらに少なくとも 1個所の穴より電解液を注入し、前記導電 性基板に形成された増感色素を担持した金属酸化膜に電解液を含ませた後に全て の穴を少なくともフエニルヘプタメチルシクロテトラシロキサン及び 2, 6 シスージフエ -ルへキサメチルシクロテトラシロキサンを含むシリコンレジンから形成した加熱され た接着材を塗布する工程と、加熱された接着材が冷却する過程で固化し封止すると ともに固定する工程と、を含むことを特徴とする色素増感型太陽電池の製造方法。
(6)少なくとも前記基板に 2箇所の穴を設けた一方の表面に導電膜が形成された 導電性基板を用意する或いは導電性基板を用意する工程と、透明基板の一方の面 に透明導電膜を形成する工程と、少なくとも一方の基板に多孔質構造の金属酸化膜 を形成する工程と、前記透明基板に形成された透明導電膜とを向カゝいあわせる工程 にお 、て、少なくとも前記 2枚の基板の一方に少なくともフエ-ルヘプタメチルシクロ テトラシロキサン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを 含むシリコンレジンカゝら形成した加熱された接着材を塗布する工程と、接着材を 150 °C以上に加熱し硬化する工程と、少なくとも 1箇所の穴より増感色素を注入し前記金 属酸化膜に増感色素を付着する工程と、さらに少なくとも 1個所の穴より電解液を注 入し、前記導電性基板に形成された増感色素を担持した金属酸化膜に電解液を含 ませた後に全ての穴を少なくともフエニルヘプタメチルシクロテトラシロキサン及び 2, 6—シス ジフエ-ルへキサメチルシクロテトラシロキサンを含むシリコンレジンから形 成した加熱された接着材を塗布する工程と、加熱された接着材が冷却する過程で固 化し封止するとともに固定する工程と、を含むことを特徴とする色素増感型太陽電池 の製造方法。
発明の効果
[0012] 以上説明した通り、本発明にかかる色素増感型太陽電池は、 Iシールで封止すると ともに硬化する過程で固定するので、安価に気密性、密着性を長期に保持すること ができ、水の浸透もなぐ電解液が漏れ出ることもなぐ電解液を色素増感型太陽電 池の中に長期間安定して封入することが可能になり、性能が安定し、長寿命になる。 図面の簡単な説明
[0013] [図 1]本発明の色素増感型太陽電池の一例を示す概略断面図である。
[図 2]本発明の色素増感型太陽電池の一例を示すプロセスフロー図である。
[図 3]本発明の色素増感型太陽電池の一例を示すプロセスフロー図である。
[図 4]本発明の色素増感型太陽電池の一例を示す概略断面図である。
[図 5]本発明の色素増感型太陽電池の一例を示すプロセスフロー図である。
符号の説明
[0014] 1 透明基板
2 透明導電膜
3 ヨウ素電解液
4 色素増感半導体電極
5 透明ガラス基板 (導電性基板)
6 透明導電性膜
7 Iシール 8 穴
発明を実施するための最良の形態
[0015] 以下、本発明の実施形態としての色素増感型太陽電池を図面を用いて説明する。
本発明の実施形態の色素増感型太陽電池の概略断面図を図 1に示す。
[0016] 実施形態の色素増感型太陽電池は、一方の面に導電膜 2が形成された基板 1と、 前記導電性基板と対極をなす色素増感半導体電極 4が形成された透明導電性膜6 を形成した透明ガラス基板 5とを電解液 3を含ませた状態で重ね合わせ、その周囲に 加熱した Iシール 7を塗布し封止するとともに Iシール 7の温度が降下する過程で硬化 し、固定する構成である。色素増感半導体電極の形成は透明導電性膜上に限らず、 基板の導電膜上に形成してもカゝまわない。透明基板としてはガラス基板に限定される ものではなく、プラスチック基板等でも力まわな!/、。
[0017] Iシール 7の加熱温度としては、 Iシールが軟化していれば良。好ましくは 50°C以上 400°C以下で、さらには、一度 300°C程度まで加熱した後に 120°C程度で塗布し、 2枚 の基板を張り合わせるのがより好ましい。その際に 2枚の基板 1,5を室温と限定される ものではなぐ加熱しておいてもかまわない。 Iシールの濡れが良い 100°C前後がより 好ましい。
[0018] また、色素の付与、電解液の注入はシール前に限らず、 Iシールで 2枚の基板を張り 合わせ、 150°C以上で焼成し、硬化させた後に、行っても良い。但し、その場合は色 素、電解液を注入するために少なくとも 2箇所、穴を形成した基板を用いる。
[0019] 導電性基板としては、チタン、タンタル、ニオブまたはジルコニウムが挙げられるが、 これらに限定されるものではない。半導体電極としては、酸化チタン、酸化タンタル、 酸化ニオブ、酸ィ匕ジルコニウム等が挙げられる力 これらに限定されるものではない。 透明導電性膜としては、 ITO (錫含有酸化インジユウム)、酸化錫、酸ィ匕亜鉛等が挙 げられるがこれらに限定されるものではなぐ透過率を低下させない程度の膜厚の白 金又は炭素膜でも有効である。
[0020] 次に、本発明の実施形態の湿式太陽電池の製造方法について、図 2を参照しなが ら説明する。
[0021] 図 2において、まず、導電性基板として、チタン、タンタル、ニオブまたはジルコユウ ム、カーボン等を、もしくはガラス基板またはプラスチック基板あるいはセラミックス基 板上に ITO,Sn02,Pt,カーボン等の導電性薄膜を真空蒸着法で形成する。また、透 明基板として透明なガラス基板又はプラスチック基板を用意し、この基板上に ITO ( 錫含有酸化インジユウム)、酸化錫、酸化亜鉛等の透明導電性膜、もしくは透過率を 低下させない程度の膜厚の白金又は炭素膜を形成する。
[0022] 次に、少なくとも一方の基板の導電性を有する表面上に酸化チタン、酸化タンタル 、酸化ニオブ、酸化ジルコニウム等の金属酸化物微粒子と少量の有機高分子を含有 するコロイド溶液を塗布し、自然乾燥させその後、 500°Cの高温化で加熱処理して有 機高分子を揮発させて、表面に微細な細孔を形成する。このようにして形成した多孔 質の金属酸化膜を増感色素の溶液に浸漬し、その表面に増感色素を吸着させ、色 素増感半導体電極を形成する。
[0023] このようにして導電性基板に形成された色素増感半導体電極と、透明基板上に形 成された透明導電膜とを向力ゝ ヽあわせて電解液を含ませた状態で重ね合わせ、その 周囲に加熱した Iシール 7を塗布し封止することにより、 Iシール 7の温度が降下する 過程で硬化し、固定する。
実施例 1
[0024] 実施例 1にかかる色素増感型太陽電池を以下の様な手順で製作した。大きさが 2
X 3cm、厚さ 2. 8mmのガラス基板を 2枚用意し、一枚にはカーボン膜をイオンビー ムアシスト蒸着法で 100 を形成し、もう一方には透明電極膜として ITO膜をスパッタ 法で 200nm形成した。
[0025] 透明電極膜を形成した基板上にテープ等でマスキングし塗布した後、粒径約 20nm の光触媒用酸ィ匕チタンを水とポリエチレングリコール、硝酸を加えよく混ぜペースト状 にし、印刷した。
[0026] 次に、大気中 500°Cで 30分間加熱処理し、冷却し 10mm程度のチタ-ァ膜とした後 、ただちにルテニウム錯体のエタノ一ル溶液に浸漬した。その結果、皮膜を構成する 酸ィ匕チタン微粒子上に、増感色素であるルテニウム錯体を吸着、 ティングし、色 素増感半導体電極を形成した。
[0027] さらに、色素増感半導体電極上にヨウ素電解液 3をしみ込ませた。ヨウ素電解液 3と しては、テトラプロピルアンモ-ゥムョ一ジドとヨウ素を炭酸エチレンとァセトニトリルの 混合溶液に溶解したものを用いた。
[0028] 次に、カーボン薄膜が蒸着されたガラス基板とヨウ素を滴下した色素増感半導体電 極が形成されたガラス基板を重ね合わせた。
[0029] さらに、この周辺に 300°Cに加熱した後、 120°Cまで冷却した Iシールをデイスペンサ 一にて塗布し封止し、 Iシールが冷却する過程で硬化し、重ね合わせた基板が固定さ れて色素増感型太陽電池を作製した。
実施例 2
[0030] 本実施例は 2枚の基板を重ね合わせる前に 100°Cに加熱した 2枚の基板の周辺に I シールを塗布した後、ヨウ素電解液を滴下した後に 2枚のガラスを重ね合わせ、封止 し、冷却過程でガラスを固定した以外は実施例 1と同様にして色素増感型太陽電池 を作製した。プロセスフロー図を図 3に示す。
実施例 3
[0031] 本実施例は一方の基板に 2の穴 (flmm) 8を形成した 2枚の基板を重ね合わ、その 重ね合わせた 2枚の基板の周辺に 100°Cに加熱した Iシールを 2枚の基板の周辺に塗 布した後、 300°Cで焼成し Iシールを硬化させた。冷却後、 1つの穴より増感色素であ るルテニウム錯体を注入し、酸ィ匕チタン微粒子上に、付着させた。次に同様にして、 1 つの穴 8よりヨウ素電解液を注入したのち、 2つの穴を 300°Cに加熱した後、 120°Cま で冷却した Iシールをディスペンサーにて塗布し、 Iシールが冷却する過程で硬化 ·封 止し、色素増感型太陽電池を作製した。概略断面図を図 4,プロセスフロー図を図 5 にそれぞれ示す。
実施例 4
[0032] 本実施例は一方の基板に 2の穴 (flmm) 8を形成した 2枚の基板を重ね合わたせる 前に 100°Cに加熱した Iシールを 2枚の基板の周辺に塗布した後、基板を張り合わせ、 300°Cで焼成し Iシールを硬化させた。冷却後、 1つの穴 8より増感色素であるルテ- ゥム錯体を注入し、酸ィ匕チタン微粒子上に、付着させた。次に同様にして、 1つの穴 8 よりヨウ素電解液を注入したのち、 2つの穴を 300°Cに加熱した後、 120°Cまで冷却し た Iシールをディスペンサーにて塗布し、 Iシールが冷却する過程で硬ィ匕 '封止し、色 素増感型太陽電池を作製した (不図示)。
[0033] 実施例 1〜4で作製した色素増感型太陽電池に、 500Wのキセノンランプを照射し て起電力を測定したところ、 lcm2あたりの短絡電流は約 4mA、開放電圧は 0.6Vで あった。色素増感型太陽電池を作製してから 1年後に確認しても、電解液の漏れなど は全く見られず、水の浸透もなぐ完全に封入され、特性の劣化が少なく長寿命であ ることが確認できた。
[0034] 以上、本発明の色素増感型太陽電池及びその製造方法について、具体的な実施 の形態を示して説明したが、本発明はこれらに限定されるものではない。当業者であ れば、本発明の要旨を逸脱しない範囲内において、上記各実施形態又は他の実施 形態に力かる発明の構成及び機能に様々な変更 ·改良を加えることが可能である。

Claims

請求の範囲
[1] 少なくとも一方の透明基板表面に透明導電膜が形成された 2枚の導電性基板と、そ の前記導電性基板表面の少なくとも一方に色素増感半導体電極が形成された導電 性基板とを重ね合わせ、その周囲に少なくともフエ-ルヘプタメチルシクロテトラシ口 キサン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを含むシリコ ンレジン力 形成した接着材で封止するとともに固定してなる色素増感型太陽電池。
[2] 前記接着材が金属または酸ィ匕物系の微粒子は Al、 Ti、 Si、 Ag等の微粒子または超 微粒子、アルミナやチタン酸ィ匕物や SiOの微粒子力 なるフィラー、超微粒子のシリ
2
力(ァエロジル)等を含有して ヽることを特徴とする請求項 1記載の色素増感型太陽電 池。
[3] 一方の表面に導電膜が形成された導電性基板を用意する或いは導電性基板を用意 する工程と、
透明基板の一方の面に透明導電膜を形成する工程と、
少なくとも一方の基板に多孔質構造の金属酸化膜を形成する工程と、
前記金属酸ィヒ膜に増感色素を付着する工程と、
前記透明基板に形成された透明導電膜と、前記導電性基板に形成された増感色素 を担持した金属酸ィ匕膜とを電解液を含ませて向カゝいあわせる工程と、
向かい合わさった周辺に少なくともフエ-ルヘプタメチルシクロテトラシロキサン及び 2 , 6—シス ジフエニルへキサメチルシクロテトラシロキサンを含むシリコンレジンから 形成した加熱された接着材を塗布する工程と、
加熱された接着材が冷却する過程で固化し封止するとともに固定する工程と、を含 むことを特徴とする色素増感型太陽電池の製造方法。
[4] 一方の表面に導電膜が形成された導電性基板を用意する或いは導電性基板を用意 する工程と、
透明基板の一方の面に透明導電膜を形成する工程と、
少なくとも一方の基板に多孔質構造の金属酸化膜を形成する工程と、
前記金属酸ィヒ膜に増感色素を付着する工程と、
少なくとも前記 2枚の基板の一方に少なくともフエ-ルヘプタメチルシクロテトラシロキ サン及び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを含むシリコン レジンから形成した加熱された接着材を塗布する工程と、
前記透明基板に形成された透明導電膜と、前記導電性基板に形成された増感色素 を担持した金属酸ィ匕膜に電解液を含ませて向カゝいあわせる工程と、
加熱された接着材が冷却する過程で固化し封止するとともに固定する工程と、を含 むことを特徴とする色素増感型太陽電池の製造方法。
[5] 少なくとも前記基板に 2箇所の穴を設けた一方の表面に導電膜が形成された導電性 基板を用意する或いは導電性基板を用意する工程と、
透明基板の一方の面に透明導電膜を形成する工程と、
少なくとも一方の基板に多孔質構造の金属酸化膜を形成する工程と、
前記透明基板に形成された透明導電膜とを向カゝいあわせる工程において、向かい 合わさった周辺に少なくともフエ-ルヘプタメチルシクロテトラシロキサン及び 2, 6— シスージフエ-ルへキサメチルシクロテトラシロキサンを含むシリコンレジンから形成し た加熱された接着材を塗布する工程と、
接着材を 150°C以上に加熱し硬化する工程と、
少なくとも 1箇所の穴より増感色素を注入し前記金属酸化膜に増感色素を付着する 工程と、
さらに少なくとも 1個所の穴より電解液を注入し、前記導電性基板に形成された増感 色素を担持した金属酸ィ匕膜に電解液を含ませた後に全ての穴を少なくともフエニル ヘプタメチルシクロテトラシロキサン及び 2, 6 シス ジフエニルへキサメチルシクロ テトラシロキサンを含むシリコンレジンカゝら形成した加熱された接着材を塗布する工程 と、
加熱された接着材が冷却する過程で固化し封止するとともに固定する工程と、を含 むことを特徴とする色素増感型太陽電池の製造方法。
[6] 少なくとも前記基板に 2箇所の穴を設けた一方の表面に導電膜が形成された導電性 基板を用意する或いは導電性基板を用意する工程と、
透明基板の一方の面に透明導電膜を形成する工程と、
少なくとも一方の基板に多孔質構造の金属酸化膜を形成する工程と、 前記透明基板に形成された透明導電膜とを向カゝいあわせる工程において、少なくと も前記 2枚の基板の一方に少なくともフエニルヘプタメチルシクロテトラシロキサン及 び 2, 6 シス ジフエニルへキサメチルシクロテトラシロキサンを含むシリコンレジン から形成した加熱された接着材を塗布する工程と、
接着材を 150°C以上に加熱し硬化する工程と、
少なくとも 1箇所の穴より増感色素を注入し前記金属酸化膜に増感色素を付着する 工程と、
さらに少なくとも 1個所の穴より電解液を注入し、前記導電性基板に形成された増感 色素を担持した金属酸ィ匕膜に電解液を含ませた後に全ての穴を少なくともフエニル ヘプタメチルシクロテトラシロキサン及び 2, 6 シス ジフエニルへキサメチルシクロ テトラシロキサンを含むシリコンレジンカゝら形成した加熱された接着材を塗布する工程 と、
加熱された接着材が冷却する過程で固化し封止するとともに固定する工程と、を含 むことを特徴とする色素増感型太陽電池の製造方法。
PCT/JP2005/005806 2004-06-08 2005-03-29 色素増感型太陽電池及びその製造方法 WO2005122321A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077000194A KR20070050906A (ko) 2004-06-08 2005-05-26 색소증감형 태양 전지 및 그 제조방법
DE112005001297T DE112005001297T5 (de) 2004-06-08 2005-05-26 Farbstoff-Solarzelle und Herstellungsverfahren dafür
US11/596,112 US20070204906A1 (en) 2004-06-08 2005-05-26 Dye Sensitization Solar Cell and Manufacturing Method Thereof
JP2006514452A JPWO2005122322A1 (ja) 2004-06-08 2005-05-26 色素増感型太陽電池及びその製造方法
PCT/JP2005/009677 WO2005122322A1 (ja) 2004-06-08 2005-05-26 色素増感型太陽電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004198688 2004-06-08
JP2004-198688 2004-06-08

Publications (1)

Publication Number Publication Date
WO2005122321A1 true WO2005122321A1 (ja) 2005-12-22

Family

ID=35503405

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/005806 WO2005122321A1 (ja) 2004-06-08 2005-03-29 色素増感型太陽電池及びその製造方法
PCT/JP2005/009677 WO2005122322A1 (ja) 2004-06-08 2005-05-26 色素増感型太陽電池及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009677 WO2005122322A1 (ja) 2004-06-08 2005-05-26 色素増感型太陽電池及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2005122322A1 (ja)
KR (1) KR20070050906A (ja)
WO (2) WO2005122321A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146389A1 (en) * 2009-06-16 2010-12-23 Pilkington Group Limited Laminated structure
JP2011221470A (ja) * 2010-04-14 2011-11-04 Sony Corp 光学素子、およびその製造方法、表示装置、ならびに太陽電池
CN103700502A (zh) * 2013-12-30 2014-04-02 中国科学院上海硅酸盐研究所 制备染料敏化太阳能电池二氧化钛光阳极的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210317A (ja) * 2004-12-28 2006-08-10 Nippon Oil Corp 色素増感型太陽電池素子の製造方法
KR101156534B1 (ko) 2009-12-28 2012-06-20 삼성에스디아이 주식회사 광전변환소자
CN103903861B (zh) * 2014-04-23 2017-05-03 南开大学 金属硫化物与石墨烯复合材料对电极及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230376A (ja) * 1991-11-18 1993-09-07 Wacker Silicones Corp 難燃性シリコーンエラストマーを形成可能の室温硬化性組成物
JPH0656997A (ja) * 1990-10-05 1994-03-01 Hercules Inc オルガノシラン組成物
JPH07304956A (ja) * 1994-05-09 1995-11-21 Shin Etsu Chem Co Ltd シリコーン組成物
JPH08134360A (ja) * 1994-11-04 1996-05-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2004095248A (ja) * 2002-08-30 2004-03-25 Three Bond Co Ltd 色素増感型太陽電池用封止剤組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738559B2 (ja) * 1999-09-29 2011-08-03 日揮触媒化成株式会社 光電気セル
JP2001243995A (ja) * 2000-02-29 2001-09-07 Fuji Photo Film Co Ltd 光電変換素子および光電池
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
JP4172239B2 (ja) * 2002-09-25 2008-10-29 松下電工株式会社 光電変換素子
JP4465971B2 (ja) * 2003-03-26 2010-05-26 株式会社ブリヂストン 色素増感型太陽電池用対向電極及び色素増感型太陽電池
JP2005166313A (ja) * 2003-11-28 2005-06-23 Ngk Spark Plug Co Ltd 色素増感型太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656997A (ja) * 1990-10-05 1994-03-01 Hercules Inc オルガノシラン組成物
JPH05230376A (ja) * 1991-11-18 1993-09-07 Wacker Silicones Corp 難燃性シリコーンエラストマーを形成可能の室温硬化性組成物
JPH07304956A (ja) * 1994-05-09 1995-11-21 Shin Etsu Chem Co Ltd シリコーン組成物
JPH08134360A (ja) * 1994-11-04 1996-05-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JP2004095248A (ja) * 2002-08-30 2004-03-25 Three Bond Co Ltd 色素増感型太陽電池用封止剤組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146389A1 (en) * 2009-06-16 2010-12-23 Pilkington Group Limited Laminated structure
JP2011221470A (ja) * 2010-04-14 2011-11-04 Sony Corp 光学素子、およびその製造方法、表示装置、ならびに太陽電池
CN103700502A (zh) * 2013-12-30 2014-04-02 中国科学院上海硅酸盐研究所 制备染料敏化太阳能电池二氧化钛光阳极的方法

Also Published As

Publication number Publication date
JPWO2005122322A1 (ja) 2008-04-10
WO2005122322A1 (ja) 2005-12-22
KR20070050906A (ko) 2007-05-16

Similar Documents

Publication Publication Date Title
KR100947371B1 (ko) 다파장 흡수 나노 구조 염료감응 태양전지 및 그 제조방법
TWI380494B (ja)
TW200908355A (en) Dye-sensitised solar cell module and manufacturing method thereof
JP5367817B2 (ja) 湿式太陽電池モジュール
WO2011096154A1 (ja) 色素増感太陽電池およびその製造方法
JP2007095682A (ja) 積層型光起電素子およびその製造方法
WO2008004556A1 (fr) Module de cellule solaire sensible aux colorants et procédé de fabrication correspondant
JP4881600B2 (ja) 色素増感太陽電池およびその製造方法ならびに色素増感太陽電池モジュール
JP4659954B2 (ja) 色素増感型太陽電池セルの製造方法及び色素増感型太陽電池モジュールの製造方法
JPH11288745A (ja) フレキシブル湿式太陽電池とその製造方法
TW200840067A (en) Dye-sensitized solar cell and method of preparing the same
WO2005122321A1 (ja) 色素増感型太陽電池及びその製造方法
WO2006093109A1 (ja) 光電変換素子及びその製造方法
JP2000231942A (ja) 色素増感型太陽電池
KR100854712B1 (ko) 탄소소재층을 포함하는 염료감응 태양전지용 상대전극 및이의 제조방법
JP2000030767A (ja) 湿式太陽電池の製造方法
JP5397585B2 (ja) 色素増感太陽電池および隔壁形成方法
JP2004311355A (ja) 電極用基材の製造方法
JP2009193911A (ja) 色素増感光電変換素子およびその製造方法ならびに色素増感光電変換素子モジュールおよびその製造方法ならびに電子機器ならびに多孔質シリカ膜の製造方法
JP2008226553A (ja) 色素増感型太陽電池の封止部および色素増感型太陽電池
JP2002314108A (ja) 太陽電池
JP5465446B2 (ja) 光電変換素子
CN101593632B (zh) 一种染料敏化太阳能电池的封装方法
JP2000200627A (ja) 色素増感型太陽電池及びその製造方法
JP2004311354A (ja) 電極用基材の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP