WO2005117412A1 - 画像処理方法、画像処理プログラムおよび画像処理装置 - Google Patents

画像処理方法、画像処理プログラムおよび画像処理装置 Download PDF

Info

Publication number
WO2005117412A1
WO2005117412A1 PCT/JP2005/008972 JP2005008972W WO2005117412A1 WO 2005117412 A1 WO2005117412 A1 WO 2005117412A1 JP 2005008972 W JP2005008972 W JP 2005008972W WO 2005117412 A1 WO2005117412 A1 WO 2005117412A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
color gamut
image processing
component
lightness
Prior art date
Application number
PCT/JP2005/008972
Other languages
English (en)
French (fr)
Inventor
Takeshi Saito
Tsuyoshi Hattori
Kenji Kuwae
Misae Tasaki
Original Assignee
Konica Minolta Photo Imaging, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004157767A external-priority patent/JP2005341260A/ja
Priority claimed from JP2004159372A external-priority patent/JP2005339343A/ja
Application filed by Konica Minolta Photo Imaging, Inc. filed Critical Konica Minolta Photo Imaging, Inc.
Publication of WO2005117412A1 publication Critical patent/WO2005117412A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control

Definitions

  • Image processing method image processing program, and image processing apparatus
  • the present invention relates to an image processing method, an image processing program, and an image processing device.
  • a photographic photosensitive material such as a color or black-and-white negative film or a reversal film on which an image is recorded by an analog camera, or a storage medium (hereinafter, referred to as a medium) on which an image is captured by a digital camera.
  • a storage medium hereinafter, referred to as a medium
  • color or black-and-white photographic paper such as silver halide photographic paper on which images have been recorded.
  • Image information is read to create image data, and color balance and brightness are applied to the original image corresponding to the image data.
  • an image processing apparatus which performs image processing for changing the image data and outputs image data for output (for example, see Patent Document 1).
  • the following method is generally employed. That is, first, at the time of the rough reading, the light of each color of R (red), G (green), and B (blue) is transmitted or reflected by a film or a photographic paper, and the R GB is read by a CCD or the like. The color density is separately measured, and image data is created for each pixel of the original image. Then, at the time of image processing, the color density of each of the RGB colors of the image data is changed based on, for example, a one-dimensional LUT (Look Up Table) as shown in FIG.
  • a one-dimensional LUT Look Up Table
  • a process (correction) of emphasizing blue for an original image on a display device such as a monitor of an image processing device is performed.
  • a display device such as a monitor of an image processing device
  • image processing to increase the brightness of the entire image can be performed by making changes to increase the color densities of all R, G, and B of the image data of each pixel based on the LUT for each of RGB. ).
  • Such an image processing method can easily and quickly change the color density of each of the RGB colors in the force image data performed on each pixel of the original image by LUT conversion. Perspective of easiness This is a very effective method.
  • the dark green pixel portion has a B component as shown in FIG. While the color density is changed so that the change in the G component is greater than the change, in the bright green pixel portion, the change in the B component is A phenomenon occurs in which the color density is changed so as to be larger than the change.
  • the color density is changed using a large change amount LUT as shown in FIG. 27 for each of the RGB colors.
  • the output value obtained by the change exceeds the output possible range of the display means (for example, 0 to 255), it cannot be output. Therefore, if the output value exceeds the maximum value (255 in this case), For that input value, it is necessary to perform clipping processing to suppress the output value of the corresponding color density to the maximum value that can be taken (see the dotted line in the figure).
  • the output value is clipped for a group of pixels that already have a high color density of R.
  • the pixel portion hardly increases redness, and it does not respond to changes in hue of surrounding pixels. The color becomes unnatural only in the pixel portion of.
  • the result of the image processing is not always the expected processing result, and it is not always easy to perform a precise color tone adjustment.
  • Patent document 1 JP-A-9-163163
  • An object of the present invention is to provide an image processing method, an image processing program, and an image processing apparatus capable of performing assumed color reproduction without changing hue in image processing of an image or the like read from a film. To provide.
  • a function represented by an output value f (input value)
  • a unit change amount with respect to a predetermined input value is defined, and based on the function and the unit change amount, an LUT created for each of the brightness component and the color component is used, or based on the function and the unit change amount.
  • the color density change processing is performed to change each of the lightness component and the color component of the color density of each pixel by calculation.
  • a determination process for determining whether or not the pixel after the color density change process is within the defined color gamut, and a determination that the pixel after the color density change process is outside the definition color gamut by the determination process it is preferable to perform a color gamut compression process of displacing the pixel after the color density changing process into a defined color gamut while maintaining its hue constant.
  • An LUT is created for each of the lightness component and the color component based on the unit change amount defined for a predetermined input value of the function and the function, and the lightness component and the color component of the color density of each pixel are created.
  • the computer may determine whether or not the pixel after the color density change processing is within a defined color gamut. If the computer determines that the pixel after the color density change processing is outside the defined color gamut, Preferably, the pixel after the color density change processing functions as a means for performing a color gamut compression processing for displacing the pixel within a defined color gamut while maintaining its hue constant.
  • the image processing apparatus of the present invention includes a control unit that acquires image data of each pixel and performs image processing, and an operation unit that issues an instruction to the control unit.
  • a unit change amount defined for a predetermined input value of a function represented by output value f (input value)
  • a LUT is created for each of the lightness component and the color component based on the function, or a color density that is changed for each of the lightness component and the color component of the color density of each pixel by calculation based on the function and the unit change amount It has a change processing means.
  • control unit determines whether or not the pixel after the color density change processing is within the defined color gamut, and determines that the pixel after the color density change processing is outside the defined color gamut.
  • a color gamut compression processing means for performing color gamut compression processing for displacing the pixel after the color density change processing within the defined color gamut while maintaining its hue constant.
  • FIG. 2 is a schematic diagram showing an operation unit of the image processing apparatus according to the embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration centering on a control unit of the image processing apparatus of the present embodiment.
  • FIG. 4 is a view showing a point S corresponding to a color density of a target pixel in an L * a * b * color space.
  • FIG. 5 is a diagram showing LUTs in the case of “+ M” processing.
  • FIG. 5A shows LUTs for L * components
  • FIG. 5B shows LUTs for a * components
  • FIG. 6 is a diagram showing a state in which the color density of the pixel of interest is changed in the L * a * b * color space based on the LUT in FIG.
  • FIG. 7 is a diagram illustrating the relationship between a vector Y, a vector ⁇ , and a vector C.
  • FIG. 8 is a table showing regulation values used in regulation processing.
  • FIG. 9 ( ⁇ ) is a diagram explaining the brightness, saturation and hue of the pixel in the L * a * b * color space, and (B) is a diagram illustrating the saturation of the pixel in the a * b * plane. And FIG. [10] FIG. 10 is a diagram illustrating a defined color gamut on an LC plane.
  • FIG. 11 is a diagram illustrating a defined color gamut of another shape on the LC plane.
  • FIG. 13 is a diagram illustrating a process of determining whether or not a target pixel is within a defined color gamut.
  • FIG. 14 is a diagram for describing a method of dividing an out-of-definition color gamut region into three parts.
  • FIG. 15 is a diagram for describing processing in a case where saturation becomes 0 before a target pixel reaches a defined color gamut boundary in color gamut compression.
  • FIG. 16 is a diagram for explaining processing in the case where the brightness changes significantly before and after compression in color gamut compression.
  • FIG. 17 is a flowchart showing a procedure of an image processing method using an image processing program.
  • FIG. 18 is a diagram for explaining that a vector M of the “+ M” process faces in the same direction on the a * b * plane.
  • FIG. 19 is a diagram for explaining that the inclination of the vector M changes depending on the position in the L * -axis direction in the “+ M” process.
  • FIG. 20 is a diagram illustrating displacement of a point by a color gamut compression method different from that of the present embodiment.
  • FIG. 21 is a diagram illustrating displacement of a point by the color gamut compression method of the present embodiment.
  • FIG. 22 is a diagram showing a first modification of the operation unit.
  • FIG. 23 illustrates a second modification of the operation unit.
  • FIG. 24 is a diagram showing an LUT used in conventional image processing.
  • FIG. 25 is a diagram showing a change in green color density when a conventional LUT is used.
  • FIG. 26 is a diagram showing a change in the color density of bright green when a conventional LUT is used.
  • FIG. 27 is a diagram showing an LUT with clipping processing used in conventional image processing.
  • FIG. 28 is a diagram showing LUT with clipping processing used when weakening color density in conventional image processing.
  • FIG. 1 is a perspective view showing an embodiment of an image processing apparatus according to the present invention.
  • a transparent original input device 3 and a reflective original input device 4 are arranged on the upper part of the main body 2 of the image processing apparatus 1.
  • the transparent original input device 3 reads image information from a film such as a color negative film, a color reversal film, a black and white negative film, a black and white reversal film with a film scanner, and the reflective original input device 4 uses a flatbed scanner with color or black and white. It is configured to read image information and convert it into digital information to create image data.
  • An image reading unit 5 is provided on the front of the main body of the image processing apparatus 1.
  • a floppy (registered trademark) disk (hereinafter referred to as FD) 6 in which a plurality of pieces of frame image information are captured by a digital camera and can be inserted into the image reading unit 5 is provided.
  • a PC card adapter 9 to which a PC card 8 having a memory storing a frame 7 and similar frame image information can be inserted is provided.
  • the reading unit (not shown) of each of the adapters 7 and 9 is configured to read the image information of each media, convert the image information into digital information, and create image data! Puru.
  • the image processing apparatus 1 further includes a compact flash (registered trademark) in which image information is stored by an imaging device such as a digital camera, a memory stick, a smart media, a multimedia card, Portable media such as magneto-optical storage media (MO), CD-R, DVD etc.
  • a compact flash registered trademark
  • image information is stored by an imaging device such as a digital camera, a memory stick, a smart media, a multimedia card, Portable media such as magneto-optical storage media (MO), CD-R, DVD etc.
  • Means for reading image information and means for acquiring digital image information via communication means such as a network are provided. .
  • an image corresponding to the image data is displayed on the screen on the upper part of the main body of the image processing apparatus 1.
  • a CRT 10 as a display means for displaying images is provided, and an operation unit 11 including a keyboard and a panel having dedicated buttons for performing image processing while viewing the screen of the CRT 10 is provided in front of the CRT 10. You. It is also possible to adopt a configuration such as a touch panel monitor in which the functions of the CRT 10 and the operation unit 11 are integrated.
  • the operation unit 11 is provided with various function buttons for issuing an image processing instruction to each device constituting the image processing apparatus 1 via the control unit of the image processing apparatus 1. Have been killed. Further, the operation unit 11 is provided with at least a color correction processing button such as “+ Y” as shown in FIG.
  • Y, M, and C represent the colors of yellow, magenta, and cyan, respectively. “+” Increases the color density of the color, and “one” decreases (decreases) the color density of the color. ) Means that the correction process is performed.
  • the “+ Y” button makes the entire image displayed on the screen of the CRT 10 yellowish
  • the “ ⁇ ” button shows the color density so that the entire image becomes bluish. It is an operation button for changing.
  • the color correction processing by the operation of the operation unit 11 may be configured to be performed using, for example, RGB.
  • the operation unit 11 is also provided with various buttons for performing other image processing.
  • D represents density correction processing of the entire image
  • T represents Indicates contrast adjustment processing.
  • the “+ D” button decreases the brightness of the entire image (ie, darkens), and the “+ T” button increases the contrast of the entire image (ie, makes it harder).
  • image processing in addition to the above-described color correction processing, density correction processing, contrast adjustment processing, color enhancement processing, sharpness processing, noise suppression processing, soft focus processing, backlight correction processing, partial gradation adjustment processing, etc.
  • the image processing method of the present invention can also be applied to those cases.
  • the image processing apparatus 1 of the present embodiment also has a print output function of exposing and developing image data subjected to image processing on a photosensitive material to produce a print.
  • a magazine loading section 12 loaded with photosensitive material is attached to one side of the main body 2 of the image processing apparatus 1, and the magazine loading section 12 loads photosensitive materials of various sizes into the main body 2. like It is configured.
  • the main body 2 is provided with an exposure processing section 13 for exposing the photosensitive material, and a print producing section 14 for developing and drying the exposed photosensitive material to produce a print.
  • the created print is discharged to a tray 15 provided on the other side of the main body 2.
  • an image writing unit 16 for storing image-processed image data on a medium is provided on the front of the main body of the image processing apparatus 1, and the FD 6 is inserted into the image writing unit 16.
  • An FD adapter 17 that can be inserted, an MO adapter 19 that can insert an MO 18, and an optical disk adapter 21 that can be inserted an optical disk 20 are provided. It can be stored.
  • a means for writing image data to other portable media a means for transmitting digital image data subjected to image processing via communication means such as a network, and the like.
  • control unit for controlling the above devices and the like.
  • the control unit uses a computer configured by connecting a CPU, a RAM, a ROM, an input / output interface, and the like via a BUS.
  • the control unit 22 is connected to data storage means 23 including a storage medium such as a hard disk.
  • data storage means 23 including a storage medium such as a hard disk.
  • the control unit 22 digitizes the image information.
  • the stored image data is transmitted to the data storage means 23 and is sequentially stored.
  • the control unit 22 performs the following image processing based on an instruction from the operation unit 11.
  • the processed image data is read from the data storage unit 23 and transmitted to the image writing unit 16, and the image writing unit 16 writes the image data on a medium such as the FD 6, the MO 18, and the optical disk 20.
  • the control unit 22 transmits the processed image data to the exposure processing unit 13 and the print production unit 14 based on an instruction from the operation unit 11, and outputs the service size, the high-definition size, the panorama size, the A4 size, and the business card. It is configured to produce prints of various sizes such as sizes.
  • control unit 22 develops an image processing program stored in the ROM of the control unit 22 on the RAM based on an instruction from the operation unit 11, and performs image processing based on the image processing program. It is configured to perform.
  • the image processing program is configured to cause the control unit 22 of the image processing apparatus 1 as a computer to execute a color density change process, a determination process, and a gamut compression process as necessary. Being done.
  • the control unit 22 can also be applied to a case where the image data is processed on the RAM without displaying the image on the CRT 10 to automatically correct the color correction and the density correction of the image.
  • each process such as a color density change process is performed in a CIE 1976 L * a * b * color space (hereinafter referred to as an L * a * b * color space) as a uniform color space. If it is a space, it is not particularly necessary to limit to the L * a * b * color space.
  • each process can be similarly performed in the Munsell color space or the CIE1976L * u * v * color space.
  • the control unit 22 selects a pixel (hereinafter, referred to as a pixel of interest) for which the color strength of the image displayed on the CRT 10 is to be changed, and converts the image data of the pixel of interest into image data.
  • RAM power Read The color density of the pixel of interest is a numerical value corresponding to the sRGB color space on the CRT 10 screen.
  • the control unit 22 determines the L * a * b * color as a uniform color space. It is configured to perform image processing using the space, and the color density of the sRGB color space is changed to the L * a * b * color space.
  • the point S (Ls, as, bs) corresponding to the color density of the target pixel is defined in the L * a * b * color space (see FIG. 4).
  • the conversion between the color density in the sRGB color space and the color density in the L * a * b * color space is appropriately performed based on a predetermined conversion formula or a conversion formula determined experimentally.
  • the color density change process is a process of changing the point S corresponding to the color density of the target pixel in the L * a * b * color space to change the color density of the target pixel.
  • the color density conversion processing is executed in response to a color density change instruction transmitted from the operation unit 11.
  • the displacement of the point S corresponding to the color density of the target pixel in the L * a * b * color space is a force performed based on the LUT. It is also possible.
  • the color density change processing is performed based on the LUT.
  • each color density change instruction instead of using an existing LUT, is defined with a unit change amount for each of the lightness component of the color density and a predetermined input value of the color component. LUTs are created based on the defined unit change amount.
  • the specified color density change instruction is ⁇ + Yj, ⁇ , “+ M”, “1M”, “+ C”, and “1C”. Instructing to change each color density.
  • the LUTs for the a * component and the b * component The 45 ° straight line indicated by the line is created as a translated straight line (that is, a linear function), and the unit change amount for the a * component and the b * component indicates the distance of the translation. Numeric values are defined one by one.
  • the L * The unit change amount of each component of b * can be set or changed for each color density change instruction.
  • the control unit 22 determines a point S (Ls, as) corresponding to the color density of the target pixel based on the LUT as shown in FIG. , bs) to the point T (Lt, at, bt) to change the color density of the target pixel.
  • the LUT is configured such that the amount of change in the displacement of the a * component and the displacement of the b * component is increased or decreased by a fixed value from the input value, respectively (see FIG. 5 (B) and FIG. 5 (C)), and in FIG. 6, when the vector directed to the point S force point T is vector M, the a * component and b * component of the vector M have constant values. Therefore, in the color density change processing, the color density of each pixel is kept at least in the a * component and the component, that is, the direction of the change is maintained in a constant direction with respect to the color component.
  • each LUT has a converted output value of L * It is configured to allow conversion to a value larger than the maximum value or smaller than the minimum value of each component of b *, and does not involve clipping! /.
  • the power that can define the vector Y and the vector C indicating the unit change amount is “+ Y” processing and As shown in FIG. 7, the “+ C” processing is performed as shown in FIG. 7, in which the total sum of the unit changes in the a * component and the b * component of the vector Y and the vector C and the solid vector M is 0, that is, the vector The processing is determined so that the sum becomes a vector on the L * axis, and the unit change instruction for each color.
  • the vectors indicating the unit change amount of each process of “ ⁇ Y“ ⁇ ”and C” are the vectors Y and “Y” indicating the unit change amount of each process of “+ Y” “+ ⁇ ” and “+ C”, respectively. It is represented as a vector having the same length in the opposite direction to the vector ⁇ and the vector C, and has the same relationship as that shown in FIG. 7, and similarly, the unit change instruction for each color.
  • the vectors ⁇ ⁇ ⁇ ⁇ , ⁇ , and C described here are vectors defined in the L * a * b * color space as described above, and are used in an inkjet recording apparatus or the like. It differs from the basic vector in the YMC color space as the color space used.
  • the “+ D” button or the “ ⁇ 0” button of the operation unit 11 is pressed to perform “+ DJ processing (or“ ⁇ D ”processing).
  • the brightness of the image on the screen of the CRT 10 can be darkened (or brightened) as a whole.
  • the unit change amount of the minimum value 0, the maximum value 100, and the intermediate value 50 of the input value is defined only for the L * component, and the unit variation for the a * component and the b * component is defined.
  • the change amount is 0.
  • the ⁇ + T '' and ⁇ --T '' processes which increase or decrease the contrast of the entire image, also use the L * component in proportion to the distance from the fixed brightness in the L * axis direction, based on the fixed brightness.
  • the unit change amount of the minimum value 0, the maximum value 100 and the intermediate value 50 of the input value is defined only for the L * component.
  • control unit 22 sets L *, L * for each input change instruction. Add all the unit change amounts for each component of b *, and calculate L *, It is configured to create a LUT for each component of b *.
  • the LUT of the L * component is determined by calculating the exponential function that passes through the sum of the unit changes at the input values 0, 50, and 100, respectively.
  • the LUT is created by translating the 45 ° straight line indicated by the dashed line in Fig. 5 (B) and Fig. 5 (C), for example, by the sum of the unit change amounts. .
  • the control unit 22 is configured to read a table of the regulation process as shown in FIG. 8 from the ROM, load the table on the RAM, and perform regulation based on the table.
  • the changes in the a * and b * components are reduced by the same regulation value ⁇ . Therefore, the directionality of the change in the color density of each pixel in the above-described color density change processing is kept constant.
  • the regulation may be configured to be performed in accordance with the lightness L, or to be performed in accordance with the hue H described later, or may be configured to be performed in accordance with both. It is.
  • the lightness L, chroma C, and hue H of a pixel in the L * a * b * color space will be described.
  • the coordinates of a point in the L * a * b * color space corresponding to the color density of one pixel in the image displayed on the screen of the CRT10 are generally expressed as (L *, a *, b *)
  • the brightness L, saturation, and hue H of the pixel are expressed as follows.
  • the hue ⁇ ⁇ is the a * axial force when the point S corresponding to the pixel is projected on the a * b * plane. This corresponds to the angle ⁇ (see FIGS. 9 (A) and 9 (B)).
  • the L * a * b * color space is a set of points where the angle ⁇ from the a * axis when projected on the a * b * plane is constant, that is, as shown in Fig. 9 (A) All points on the LC plane as shown in Fig. 3 are formed to have the same hue ⁇ .
  • the hue ⁇ ⁇ can take a value of 0 ° or more and less than 360 °.
  • the CRT 10 cannot express all points in the L * a * b * color space in its lightness L, saturation C, and hue ⁇ . Only points within can be expressed.
  • the image in the L * a * b * color space that can be displayed on the screen of the CRT 10 is The elementary color density area is called a defined color gamut, and this defined color gamut is represented on the LC plane as an area R indicated by oblique lines in FIG.
  • a table of maximum values that can be taken by the saturation C corresponding to each lightness L in a certain hue H is stored in all the hue H Are defined and stored.
  • the table showing the defined color gamut is such that the maximum value of the saturation C (that is, the boundary value of the definition area R) for 101 lightnesses L from 0 to 100 on one LC plane is defined as Each is assigned and defined for each of the 360 angles H (ie, hue H) from 0 ° to 359 °.
  • the determination process is a process for determining whether or not the target pixel is within the defined color gamut.
  • control unit 22 determines in this determination process that the target pixel after the color density change processing is within the defined color gamut, the control unit 22 stores the color density data of the target pixel after the color density change processing in the RAM.
  • the gamut compression process is a process in which a pixel of interest outside the defined gamut is displaced within the defined gamut on the same LC plane while its hue is kept constant.
  • the area outside the defined color gamut on the LC plane is The image data is divided, and color gamut compression processing is performed in accordance with the color gamut compression rules determined for each region.
  • the maximum saturation point Nl (Cnl, Lnl) and the brightness on the defined gamut R A line connecting the maximum saturation point N1 and the convergence point N2 with a point N2 (Cn2, Ln2) (hereinafter referred to as a convergence point) having the same Lnl and shifted by a fixed value to the low saturation side on the defined color gamut R.
  • a straight line that forms the angle of 0 1 on the high brightness side with the convergence point N2 as the starting point is defined as a straight line 1 (first straight line), and the angle of angle ⁇ 2 on the low brightness side with the convergence point N 2 as the starting point.
  • a method is used in which the defined out-of-gamut region is divided into three by dividing the out-of-defined-gamut region by the straight line 1 and the straight line 2 as a straight line 2 (second straight line).
  • the out-of-definition color gamut area on the lightness side higher than straight line 1 is the first area (the first out-of-definition color gamut area).
  • the outside of the defined gamut on the degree side is the second area (outside the second defined gamut), and the outside of the defined gamut on the lightness side lower than the straight line 2 is the third area (outside the third defined gamut).
  • the distance between the maximum saturation point N1 and the convergence point N2 and the values of the angle 01 and the angle 02 can be set as appropriate, and the convergence point N2 has the same brightness as the maximum saturation point N1. It can be set arbitrarily within the defined color gamut. Further, it is also possible to set the convergence points ⁇ 2, ⁇ 1 value and 02 value for each hue H (ie, for each angle H in FIG. 7).
  • control unit 22 determines which region is outside the defined color gamut to which the pixel of interest belongs, and according to the compression rule defined in each defined color gamut region. Performs color gamut compression.
  • the rule of the color gamut compression in the region outside the defined color gamut is such that when a point corresponding to the color density of the pixel of interest after the color density change processing exists in the first area, that point is determined. Displaced in the direction parallel to line 1 (ie, at an angle ⁇ 1), displaced by force toward convergence point N2 when in the second region, and parallel to line 2 when in the third region In other words, they are displaced in different directions (that is, at an angle of ⁇ 2) and are compressed to points on the defined gamut boundaries (see FIG. 14).
  • the points on the defined gamut boundary to be compressed are configured to be calculated and obtained by the control unit 22 based on the table.
  • a point corresponding to the color density of the target pixel is located on the boundary of the defined color gamut.
  • the saturation may become zero.
  • the color gamut is compressed on the boundary where the saturation is 0 and the brightness is the closest.
  • the saturation is 0 and the lightness is the maximum value (in this case, If the point in the third area is displaced by ⁇ 2 and intersects with the lightness axis, the point of saturation is 0 and the lightness is the minimum value (0 in this case).
  • the difference between the lightness Lt of the point T before the color gamut compression process and the lightness Lul of the point U1 after the color gamut compression process May increase, and the image may feel uncomfortable.
  • the maximum lightness displacement amount A Lmax is set, and the absolute value of the difference between the lightness Lt before the color gamut compression processing and the lightness Lul after the expected color gamut compression processing is set. If the value exceeds the maximum lightness change amount A Lmax, the color gamut is compressed to a point on the defined color gamut boundary where the lightness change amount is the maximum lightness change amount A Lmax.
  • control unit 22 stores the color density data of the pixel of interest after the processing in the RAM.
  • FIG. 17 is a flowchart showing the procedure of the image processing method.
  • control unit 22 of the image processing apparatus 1 stores the image data of the image specified according to the specification information from the operation unit 11.
  • the image read out from the means 23 is displayed on the CRT 10.
  • the control unit 22 sends an instruction to change the color density that has already been executed. If present, the sum of the unit change amounts of the L * component, a * component, and b * component of each process that has already been added is read out from the RAM force, and the L * component, a * The sum of the unit changes of each of the L *, a *, and b * components is calculated based on the sum of the unit changes by adding the unit changes of the components and the b * components, respectively (step S1). Create an LUT (step S2).
  • the sum of the unit changes of the newly added L * and ab * components is stored in the RAM.
  • the ability to determine the amount of change in the color density of the pixel of interest based on each LUT At this time, in the present embodiment, the amount of change in the a * and b * components of the pixel of interest is stored in RAM.
  • the regulation is performed with reference to the regulation value a corresponding to the lightness L shown in FIG. 8 (step S3).
  • a color density change process is executed based on the amounts of change of the L *, a *, and b * components thus obtained (step S4).
  • the LUTs for the displacements of the a * component and the b * component used by the control unit 22 for changing the color density add a constant value to the input value (see FIG. 5B) or decrease the input value (see FIG. 5B).
  • the vector M of the color density change in the operation of “+ M” from point S to point T in FIG. 6 is projected on the a * b * plane. As shown in the figure, the vector M points in the same direction at all points on the a * b * plane.
  • the control unit 22 reads out a table showing the defined color gamut for the hue Ht of the point T corresponding to the color density of the target pixel after the color density change processing, and executes the determination processing ( Step S5).
  • the control unit 22 determines in this determination process that the target pixel after the color density change process is within the defined color gamut
  • the control unit 22 stores the color density data of the target pixel after the color density change process in the RAM, and stores the data in the RAM.
  • the image processing for the pixel of interest is completed, the next pixel on the image of the CRT 10 is selected, and the above-described processing procedure is repeated.
  • control unit 22 determines that the target pixel after the color density change processing is out of the defined color gamut in the above-described determination processing, the control unit 22 goes out of the defined color gamut on the LC plane as described above.
  • the region into which the pixel of interest belongs is determined by dividing the region into three (Step S6), and the gamut compression process is performed in accordance with the gamut compression rules defined for each region (Steps S7 to S9). .
  • the control unit 22 stores the color density data of the pixel of interest after the color gamut compression processing in the RAM, and stores the image for the pixel of interest.
  • the image processing is completed, the next pixel is selected as the image power on the screen of the CRT 10, and the above-mentioned processing procedure is repeated.
  • the control unit 22 controls the above-described color density for all the pixels of the image on the screen of the CRT 10.
  • the change processing, the determination processing, and the color gamut compression processing are completed, the next image processing is accepted, and an image processing instruction from the operation unit 11 is waited.
  • an instruction for the next image processing is input from the operation unit 11, processing is performed according to the above-described procedure.
  • data on all pixels of the image stored in the RAM is stored in the data storage unit 23 as image data of the image. At that time, the image data may be stored as data different from the original image data, or may be configured to be overwritten and stored on the original image data.
  • the control unit 22 stores the image data stored in the RAM in the data storage unit 23, and simultaneously transmits the image data to the exposure processing unit 13. .
  • control unit 22 processes the image data on the RAM without displaying the image on the CRT 10 and processes the image.
  • similar operations are performed when color correction, density correction, and the like are automatically corrected.
  • a color density change instruction (for example, “+ M” processing) is performed based on the unit change amount.
  • the LUT which is the standard for color density change processing and does not involve clipping processing, is created by dividing the lightness component of color density into the a * and b * components of color components, and based on those, Since the lightness component and the color component are changed separately, the lightness component and the color component of the color density can be changed independently of each other. It is possible to change the color density with the same direction.
  • the LUT for the L * component is create Using the exponential function used to create the LUTs for the a * and b * components, and the color density of the pixel of interest without LUT creation It is also possible to obtain the amount directly by calculation, which improves the calculation accuracy.
  • calculation is performed only on the grid points of the 3D LUT or changes based on the LUT are performed, and points around the grid points are subjected to color density change processing and the like in a state attached to the grid points.
  • the present invention can be applied to image processing using a dimensional LUT. In this case, if the processing speed for a large image is increased, the effect is improved.
  • L *, L *, A new LUT is created or calculated by adding the unit change amount for each component of b *. Therefore, after performing a certain color density change process (for example, “+ M” process) and then another color density change process (for example, “+0” process), the reverse color density change process (“ If the “1M” process and the “1D” process) are performed, the inverse processes are necessarily canceled out, and the sum of the unit change amounts becomes 0 in all cases, and the image can be returned to the initial image.
  • a certain color density change process for example, “+ M” process
  • another color density change process for example, “+0” process
  • the reverse color density change process (“ If the “1M” process and the “1D” process) are performed, the inverse processes are necessarily canceled out, and the sum of the unit change amounts becomes 0 in all cases, and the image can be returned to the initial image.
  • the same gamut compression processing can be used to execute the same LC plane. Since the gamut is compressed within the defined gamut by displacing it in the plane of the same hue, that is, in the defined gamut, the hue of the pixel becomes unnatural due to the uniform displacement effect in the L * a * b * color space described above. Can be reliably prevented.
  • the color density of the pixel after the color density change processing is more likely to fall outside the defined color gamut.
  • the color density of the target pixel can easily fall within the defined color gamut, and the trouble of performing the color gamut compression process can be easily omitted. In addition, it is possible to prevent unnecessary highlight coloring and a decrease in color discrimination at high saturation. Furthermore, in this regulation process, as described above, the hue is unnaturally changed in order to regulate the color density of the target pixel in the color density change process while maintaining the directionality of the change. Thus, the effect of enabling the operator to perform the expected color reproduction without performing the above operation is maintained.
  • the point S in the L * a * b * color space corresponding to the color density that goes out of the defined color gamut by performing the above-described regulation process has a smaller force S.
  • the processed pixels can be displayed on the screen of the CRT 10. Also, since the color gamut compression processing is performed on the LC plane where the hue H is constant, the hue of the pixel does not change by these processings, and the color reproduction assumed by the operator is also performed. Is guaranteed.
  • the out-of-defined-gamut area on the LC plane is divided into three parts, and the points are displaced in the first area in parallel with the straight line 1 (first straight line). Compressed to a point on the defined gamut boundary, and displaced toward the convergence point N2 corresponding to the intersection of line 1 and line 2 (second line) in the second region, and compressed to a point on the defined gamut boundary.
  • the third area by adopting a rule of displacing parallel to the straight line 2 and compressing it to points on the boundary of the defined gamut, for example, all points in a certain area outside the defined gamut can be defined.
  • the CRT10 screen after color gamut compression will not be compressed to a specific point on the boundary, nor will there be any point on the boundary of the defined gamut that will not be compressed from any of the defined gamut regions.
  • the gradation of the upper image can be made very smooth without any unnaturalness.
  • a convergence point ⁇ 2 is set on the lightness axis, and the color density change processing for increasing the lightness of the entire image ( ⁇ )
  • the image processing ( ⁇ ) Points S1 and S2 are color gamut compressed to points Ul and U2 via points Tl and ⁇ 2, respectively
  • points S3 and S4 are points U3 via points T3 and ⁇ 4 respectively.
  • the gamut is compressed to U4.
  • the operation unit 11 shown in FIG. 2 is configured to add the unit change amount corresponding to each color density change instruction by the number of times of pressing a button such as “+ Y”.
  • a button such as “+ Y”.
  • a slide bar is displayed on the screen of the CRT 11 in the form of a wizard. It is also possible to input a numerical value corresponding to the number of times the button is pressed on the operation unit 11 of FIG. Further, as shown in FIG. 23, it is also possible to configure to input a numerical value more finely according to the type of the film or the medium from which the image is read.
  • the operation unit 11 of the slide bar system in FIG. 22 or the operation unit 11 of FIG. 23 for directly inputting a numerical value can input not only an integer value but also a decimal value, so that more precise It can also be configured to perform image processing.
  • the image information is read from a film, a medium, or a print to create image data, and the image data is subjected to image processing to change the color density, and the image data is converted into a hue.
  • the expected color reproduction can be performed without any problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

 規定された色濃度の変更指示毎に、色濃度の明度成分及び色成分のそれぞれについて、出力値=f(入力値)で表される関数の所定の入力値に対する単位変化量を定義し、前記関数と単位変化量に基づいて前記明度成分及び色成分それぞれについて作成したLUTを用いるか、前記関数と単位変化量に基づく計算により、各画素の色濃度の明度成分及び色成分のそれぞれについて変更する色濃度変更処理を行う画像処理方法。

Description

明 細 書
画像処理方法、画像処理プログラムおよび画像処理装置
技術分野
[0001] この発明は、画像処理方法、画像処理プログラムおよび画像処理装置に関する。
背景技術
[0002] アナログカメラにより画像が記録されたカラーや白黒のネガフィルムゃリバーサルフ イルム等の写真感光材料 (以下、フィルムという。)や、デジタルカメラにより画像が撮 像された記憶媒体 (以下、メディアという。)、或いは画像が記録された銀塩印画紙等 のカラーや白黒の印画紙等力 画像情報を読み取って画像データを作成し、その画 像データに対応する原画像に対してカラーバランスや明度等の変更を行う画像処理 を施して出力用の画像データとする画像処理装置が知られている(例えば、特許文 献 1等参照)。
[0003] 画像のカラーバランスや明度等を変更する方法としては、一般的には、以下のよう な方法が採られる。すなわち、まず、あら力じめ読み取りの段階で、フィルムや印画紙 等に R (赤)、 G (緑)、 B (青)の各色の光を透過させ或いは反射させて、 CCD等で R GB別に色濃度を測定し、原画像の画素ごとに画像データを作成する。そして、画像 処理の際には、画像データの RGB各色の色濃度に対して、例えば、図 24に示すよう な 1次元の LUT(Look Up Table)に基づいてそれぞれ変更を行う。
[0004] 具体的には、例えば、画像処理装置のモニタ等の表示装置上の原画像に対して青 みを強調する処理 (補正)を行 、た 、場合には、 Bに対する LUTに基づ 、て各画素 の画像データの Bの色濃度のみをそれぞれ増力!]させる変更を行う(カラーバランスの 変更)。また、 RGBのそれぞれに対する LUTに基づいて各画素の画像データの RG B全ての色濃度をそれぞれ増加させる変更を行うことで、画像全体の明度を上げる画 像処理を行うことができる(明度の変更)。
[0005] このような画像処理方法は、原画像の各画素について行われる力 画像データに おける RGB各色の色濃度を LUT変換で簡単かつ迅速に変更することができるため 、処理速度や画像処理の容易性の観点力 非常に効果的な方法である。 [0006] しかしながら、図 24に示したような LUTに基づいて、例えば、画像全体の明度を上 げる画像処理を行った場合、暗い緑色の画素部分では、図 25に示すように B成分の 変化分に対して G成分の変化分が大きくなるように色濃度が変更されるのに対して、 明るい緑色の画素部分では、図 26に示すように B成分の変化分の方が G成分の変 化分より大きくなるように色濃度が変更されるという現象が生じる。
[0007] すなわち、例えば、画素の色濃度変更における R、 G、 B各成分の変化分を成分と するベクトルを考えれば概略的に分力るように、それぞれの画素にお 、て変更前の 色濃度力 変更後の色濃度への変化の方向性がまちまちであり、し力も、色濃度の 明度成分と色成分 (彩度成分および色相成分)が互いに混ざり合った状態で変更さ れる。このような現象が生じると、オペレータにとっては、同一の色相(この場合は緑 色)の画像に対して明度を上げる指示を出しただけなのに、画素の明暗によって異な る色相の画像に変換されてしまうということになる。
[0008] またさらに強い変更を行う場合には、例えば、 RGBの各色に対して図 27に示すよう な変化量の大きい LUTを用いて色濃度の変更を行う。その際、変更により得られる 出力値が表示手段の出力可能範囲(例えば、 0〜255)を超えてしまうと出力できな いため、出力値が最大値 (この場合は 255)を超える場合には、その入力値に関して は対応する色濃度の出力値を取り得る最大値に抑えるクリッピング処理を行う必要が ある(図中の点線部分参照)。
[0009] しかしながら、このようなクリッピング処理を伴う LUTに基づいて画像処理を行う場 合、画像処理後の画像が想定していた色相にならず、想定した色再現を行うことがで きないことがある。例えば、このような LUTを用いて画像全体の明度を上げる処理を 行うと、 RGBのそれぞれの LUTでクリッピングが異なる色濃度(図 27中では入力値 A )で発生する。そのため、既に明度が高い白色を呈している画素では、前記画像処 理の結果、 RGBの各色の色濃度のうち 、ずれかにクリッピングが発生して RGB比が 崩れ、ある色味を帯びてしまう。
[0010] また、例えば、画像全体の赤みを強調するために Rの色濃度を増加させる処理を行 うと、既に Rの色濃度が高い一群の画素に対しては出力値がクリッピングされてしまう ため、その画素部分ではほとんど赤みが増さず、周りの画素の色相変化に対してそ の画素部分だけ色味が不自然になる。
[0011] このように、クリッピング処理を伴う LUTに基づく色濃度の変更では、特に、高明度 域 (ハイライト域)の画素において、画像処理後、色相が不自然に変化するという問題 が生じ易い。
[0012] また逆に、 RGBの各成分を弱める処理を行う場合には、 RGBの各色の色濃度につ きそれぞれ図 28に示すようなクリッピング処理を伴う LUTを用いる。この場合には、 前記の場合とは逆に、出力値が 0になる色濃度(図 28中では入力値 B)が RGBのそ れぞれで異なるため、処理後の RGB比が崩れ、特に、低明度 (シャドー部)の画素の 色相が変化し易くなる。
このように、従来の LUTを用いた場合、画像処理の結果は必ずしも想定された処理 結果にはならず、緻密な色調調整を行うことは必ずしも容易ではな力つた。
特許文献 1 :特開平 9— 163163号公報
発明の開示
[0013] この発明の目的は、フィルム力 読み取った画像等の画像処理において、色相を 変化させることなく想定された色再現を行うことが可能な画像処理方法、画像処理プ ログラムおよび画像処理装置を提供することである。
[0014] すなわち、本発明の画像処理方法は、規定された色濃度の変更指示毎に、色濃度 の明度成分及び色成分のそれぞれについて、出力値 =f (入力値)で表される関数 の所定の入力値に対する単位変化量を定義し、前記関数と単位変化量に基づ 、て 前記明度成分及び色成分それぞれにつ!ヽて作成した LUTを用いるか、前記関数と 単位変化量に基づく計算により、各画素の色濃度の明度成分及び色成分のそれぞ れにつ 1、て変更する色濃度変更処理を行うものである。
[0015] 更に前記色濃度変更処理後の画素が定義色域内にあるか否かを判定する判定処 理と、前記判定処理で前記色濃度変更処理後の画素が定義色域外にあると判定さ れた場合に、前記色濃度変更処理後の画素を、その色相が一定に維持された状態 で定義色域内に変位させる色域圧縮処理とを行うことが好まし 、。
[0016] また本発明の画像処理プログラムは、コンピュータを、色濃度の変更指示により、色 濃度の明度成分及び色成分のそれぞれについて、出力値 =f (入力値)で表される 関数の所定の入力値に対して定義された単位変化量と、前記関数とに基づいて前 記明度成分及び色成分それぞれについて LUTを作成し、各画素の色濃度の明度成 分及び色成分のそれぞれについて変更する色濃度変更処理を行う手段、又は、色 濃度の変更指示により、前記関数と前記単位変化量に基づく計算により、各画素の 色濃度の明度成分及び色成分のそれぞれについて変更する色濃度変更処理を行う 手段として機能させるものである。
[0017] 更に、コンピュータを、前記色濃度変更処理後の画素が定義色域内にあるか否か を判定する手段、前記色濃度変更処理後の画素が定義色域外にあると判定された 場合に、前記色濃度変更処理後の画素を、その色相が一定に維持された状態で定 義色域内に変位させる色域圧縮処理を行う手段として機能させることが好ましい。
[0018] また本発明の画像処理装置は、各画素の画像データを取得して画像処理を行う制 御部と、該制御部に指示を行う操作部を備え、前記制御部が、操作部からの色濃度 の変更指示により、色濃度の明度成分及び色成分のそれぞれについて、出力値 =f (入力値)で表される関数の所定の入力値に対して定義された単位変化量と、前記 関数とに基づいて前記明度成分及び色成分それぞれについて LUTを作成し、又は 、前記関数と前記単位変化量に基づく計算により、各画素の色濃度の明度成分及び 色成分のそれぞれについて変更する色濃度変更処理手段を有するものである。
[0019] 更に前記制御部が、前記色濃度変更処理後の画素が定義色域内にある力否かを 判定する判定処理手段、前記色濃度変更処理後の画素が定義色域外にあると判定 された場合に、前記色濃度変更処理後の画素を、その色相が一定に維持された状 態で定義色域内に変位させる色域圧縮処理を行う色域圧縮処理手段を有することが 好ましい。
図面の簡単な説明
[0020] [図 1]本発明に係る画像処理装置の実施形態を示す斜視図である。
[図 2]本実施形態の画像処理装置の操作部を示す概略図である。
[図 3]本実施形態の画像処理装置の制御部を中心とする概略構成を示すブロック図 である。
[図 4]L*a*b*色空間における注目画素の色濃度に対応する点 Sを示す図である。 [図 5]「 + M」処理の場合の LUTを示す図であり、(A)図は L*成分、(B)図は a*成分 、(C)図は b*成分の変位についての LUTを表す。
圆 6]第 5図の LUTに基づいて注目画素の色濃度を L*a*b*色空間内で変更する状 態を示す図である。
[図 7]ベクトル Y、ベクトル Μおよびベクトル Cの関係を説明する図である。
[図 8]規制処理にぉ 、て用いられる規制値を表す表である。
[図 9] (Α)図は、 L*a*b*色空間における画素の明度、彩度および色相を説明する図 であり、(B)図は、 a*b*平面における画素の彩度および色相を説明する図である。 圆 10]LC平面における定義色域を説明する図である。
圆 11]LC平面における他の形状の定義色域を説明する図である。
圆 12]更に他の形状を有する定義色域を説明する図である。
圆 13]注目画素が定義色域内にあるか否かの判定処理を説明する図である。
圆 14]定義色域外領域を 3分割する方法について説明する図である。
圆 15]色域圧縮において注目画素が定義色域境界上に到達する前に彩度が 0にな る場合の処理を説明する図である。
圆 16]色域圧縮において圧縮の前後で明度が大きく変化する場合の処理を説明す る図である。
[図 17]画像処理プログラムを用いた画像処理方法の手順を示すフローチャートであ る。
[図 18]「 + M」処理のベクトル Mが a*b*平面で同一方向を向くことを説明する図であ る。
[図 19]「 + M」処理においてベクトル Mが L*軸方向の位置によって傾きが変わること を説明する図である。
圆 20]本実施形態とは異なる色域圧縮方法による点の変位を説明する図である。 圆 21]本実施形態の色域圧縮方法による点の変位を説明する図である。
圆 22]操作部の第 1変形例を示す図である。
圆 23]操作部の第 2変形例を示す図である。
[図 24]従来の画像処理で用いられる LUTを示す図である。 [図 25]従来の LUTを用いた場合の喑 、緑色の色濃度の変更を示す図である。
[図 26]従来の LUTを用いた場合の明るい緑色の色濃度の変更を示す図である。
[図 27]従来の画像処理で用いられるクリッピング処理を伴う LUTを示す図である。
[図 28]従来の画像処理で色濃度を弱める際に用いられるクリッピング処理を伴う LU Tを示す図である。
発明を実施するための最良の形態
[0021] 以下、本発明に係る画像処理方法、画像処理プログラムおよび画像処理装置の実 施の形態について、図面を参照して説明する。
[0022] 図 1は、本発明に係る画像処理装置の実施形態を示す斜視図である。画像処理装 置 1の本体 2の上部には、透過原稿入力装置 3および反射原稿入力装置 4が配置さ れている。透過原稿入力装置 3は、フィルムスキャナでカラーネガフィルム、カラーリ バーサルフィルム、白黒ネガフィルム、白黒リバーサルフィルム等のフィルムから画像 情報を読み取り、また、反射原稿入力装置 4は、フラットベットスキャナでカラーや白 黒の印画紙等力 画像情報を読み取ってそれぞれデジタル情報に変換し、画像デ ータを作成するように構成されて 、る。
[0023] また、画像処理装置 1の本体正面には、画像読込部 5が設けられている。本実施形 態では、画像読込部 5には、デジタルカメラで撮像して複数の駒画像情報が記憶さ れたフロッピー(登録商標)ディスク(以下、 FDという。)6を差し込み可能な FD用ァダ プタ 7および同様の駒画像情報が記憶されたメモリを有する PCカード 8を差し込み可 能な PCカード用アダプタ 9が配置されている。各アダプタ 7、 9の図示しない読み取り 部は、それぞれのメディア力 画像情報を読み取ってデジタル情報に変換し、画像 データを作成するように構成されて!ヽる。
[0024] 図示を省略する力 画像処理装置 1には、この他にも、デジタルカメラ等の撮像装 置により画像情報が記憶されたコンパクトフラッシュ (登録商標)、メモリースティック、 スマートメディア、マルチメディアカード、光磁気記憶媒体 (MO)、 CD— R、或いは D VD等の可搬式のメディア力 画像情報を読み取る手段や、ネットワークなどの通信 手段を介してデジタル画像情報を取得する手段等が設けられている。
[0025] また、画像処理装置 1の本体上部には、画像データに対応する画像を画面に表示 する表示手段としての CRT10が配置されており、 CRT10の手前側には、 CRT10の 画面を見ながら画像処理を行うためのキーボードや専用ボタンを備えたパネル等より なる操作部 11が設けられて ヽる。 CRT10と操作部 11の機能を一体ィ匕したタツチパ ネルモニタ等の構成とすることも可能である。
[0026] 本実施形態では、操作部 11には、画像処理装置 1の制御部を介して画像処理装 置 1を構成する各装置等に対して画像処理指示を発するための各種機能ボタンが設 けられている。さらに、操作部 11には、色濃度の変更指示を行うために、少なくとも図 2に示すような「+Y」等の色補正処理ボタンが設けられている。ここで、 Y、 M、 Cはそ れぞれイェロー、マゼンタ、シアンの各色を表し、「 +」はその色の色濃度を増加させ 、「一」はその色の色濃度を減少させる(弱める)補正処理を行うことを意味して 、る。 具体的には、例えば、「+Y」ボタンは、 CRT10の画面上に表示された画像全体に 黄色みを帯びさせ、また、「一 Υ」ボタンは、画像全体が青みを呈するように色濃度を 変更させるための操作ボタンになっている。
[0027] なお、操作部 11の操作による色補正処理を、本実施形態のように YMCを用いて 行う代わりに、例えば、 RGBを用いて行うように構成することも可能である。
[0028] また、操作部 11には、その他の画像処理を行うための各種ボタンも設けられており 、図 2に示されている例では、 Dは画像全体の濃度補正処理を表し、 Tはコントラスト 調整処理を表している。具体的には、例えば、「 + D」ボタンは、画像全体の明度を下 げ (すなわち、暗くし)、「+T」ボタンは、画像全体のコントラストを増加させる(すなわ ち、硬調にする)ための操作ボタンである。画像処理としては、前記の色補正処理や 濃度補正処理、コントラスト調整処理のほか、色強調処理やシャープネス処理、ノィ ズ抑制処理、ソフトフォーカス処理、逆光補正処理、部分階調調整処理等を行うよう に構成することも可能であり、それらの場合も本発明の画像処理方法に則って処理さ れる。
[0029] 本実施形態の画像処理装置 1は、画像処理された画像データを感光材料に露光し て現像し、プリントを作製するプリント出力機能をも有している。画像処理装置 1の本 体 2の一方の側面には、感光材料が装填されたマガジン装填部 12が取り付けられて おり、マガジン装填部 12は、本体 2の内部に各種サイズの感光材料を装填するように 構成されている。本体 2には、感光材料に露光する露光処理部 13と、露光された感 光材料を現像処理して乾燥し、プリントを作製するプリント作製部 14が備えられてお り、プリント作製部 14で作成されたプリントが本体 2の他方の側面に設けられたトレー 15に排出されるようになって 、る。
[0030] また、画像処理装置 1の本体正面には、画像処理された画像データをメディアに保 存するための画像書込部 16が設けられており、画像書込部 16には、 FD6を差し込 み可能な FD用アダプタ 17、 MO 18を差し込み可能な MO用アダプタ 19および光デ イスク 20を差し込み可能な光ディスク用アダプタ 21が備えられており、それぞれのメ ディアに画像処理された画像データを保存可能とされている。図示を省略するが、そ の他の可搬式のメディアに画像データを書き込む手段や、ネットワークなどの通信手 段を介して画像処理されたデジタルの画像データを送信する手段等も設けられてい る。
[0031] 画像読込部 5や画像書込部 16の後方の本体内部には、前記各装置等を制御する ための制御部が備えられている。制御部には、 CPUや RAM、 ROM,入出力インタ 一フェース等が BUSにより接続されて構成されたコンピュータが用いられている。
[0032] 図 3は、本実施形態の画像処理装置の概略構成を示すブロック図である。制御部 2 2は、操作部 11からの指示に基づいて、透過原稿入力装置 3にアナログカメラ C1等 で撮像されたフィルム Fからの画像情報の読み取りを行わせ、或いは反射原稿入力 装置 4に印画紙 Pからの画像情報の読み取りを行わせてデジタル情報に変換させる ように構成されている。また、制御部 22は、操作部 11からの指示に基づいて、画像 読取部 5にデジタルカメラ C2等で撮像された FD6や PCカード 8等のメディア力 デ ジタル画像情報の読み取りを行わせ、或いは図示しない通信手段にネットワークから デジタル画像情報を取得させるように構成されて 、る。
[0033] 制御部 22には、ハードディスク等の記憶媒体よりなるデータ蓄積手段 23が接続さ れており、制御部 22は、透過原稿入力装置 3等が画像情報をデジタル化すると、そ のデジタル化された画像データをデータ蓄積手段 23に送信させ、順次記憶させるよ うになつている。
[0034] 制御部 22は、操作部 11からの指示に基づいて、以下に述べる画像処理により処 理された画像データをデータ蓄積手段 23から読み出して画像書込部 16に送信し、 画像書込部 16に画像データを FD6や MO 18、光ディスク 20等のメディアに書き込ま せるようになつている。また、制御部 22は、操作部 11からの指示に基づいて、処理さ れた画像データを露光処理部 13およびプリント作製部 14に送信し、サービスサイズ やハイビジョンサイズ、パノラマサイズ、 A4サイズ、名刺サイズ等の各種サイズのプリ ントを作製させるように構成されて 、る。
[0035] 次に、本実施形態の画像処理装置 1の制御部 22に画像処理をさせるための画像 処理プログラムについて説明する。
[0036] 本実施形態では、制御部 22は、操作部 11からの指示に基づ 、て制御部 22の RO Mに記憶されている画像処理プログラムを RAM上に展開し、それに基づいて画像 処理を行うように構成されている。本実施形態では、画像処理プログラムは、コンビュ ータである画像処理装置 1の制御部 22に、色濃度変更処理と、判定処理と、必要に 応じて色域圧縮処理とを実行させるように構成されて 、る。
[0037] 以下の説明においては、オペレータが CRT10に表示された画像を見ながら画像 処理を行う場合が想定されているが、本発明の画像処理方法、画像処理プログラム および画像処理装置は、例えば、制御部 22が、画像を CRT10に表示することなく R AM上で画像データを処理して画像の色補正や濃度補正等を自動補正するような 場合にも適用可能であることは言うまでもない。また、以下、均等色空間としての CIE 1976L*a*b*色空間(以下、 L*a*b*色空間という。)において色濃度変更処理等の 各処理を行う場合について述べるが、均等色空間であれば特に L*a*b*色空間に限 定する必要はなぐ例えば、マンセル色空間や CIE1976L*u*v*色空間等でも同様 に各処理を行うことも可能である。
[0038] まず、色濃度変更処理につ!、て説明する。色濃度変更処理にお!、て、制御部 22 は、 CRT10に表示された画像力も色濃度変更を行うべき画素(以下、注目画素とい う。)を選択して、この注目画素の画像データを RAM力 読み出す。注目画素の色 濃度は、 CRT10の画面上では sRGB色空間に対応した数値とされている力 本実 施形態では、前述したように、制御部 22は均等色空間として L*a*b*色空間を使用 して画像処理を行うように構成されており、 sRGB色空間の色濃度を L*a*b*色空間 の色濃度に変換して、注目画素の色濃度に対応する点 S (Ls, as, bs)を L*a*b*色 空間に定める(図 4参照)。 sRGB色空間における色濃度と L*a*b*色空間における 色濃度との変換は、所定の変換式或いは実験的に定めた変換式に基づいて適宜行 われるようになつている。
[0039] 色濃度変更処理は、注目画素の色濃度に対応する点 Sを L*a*b*色空間内で変 位させて注目画素の色濃度を変更する処理であり、制御部 22は、操作部 11から送 信される色濃度の変更指示に応じて、色濃度変換処理を実行する。本実施形態で は、注目画素の色濃度に対応する点 Sの L*a*b*色空間内での変位は、 LUTに基 づいて行われる力 この LUTによる処理と同じ処理を計算によって行うことも可能で ある。
[0040] 本実施形態では、例えば、図 5に示す「 + M」処理の場合のように、各色濃度の変 更指示ごとに色濃度の明度成分 (すなわち L*成分。図 5 (A)参照)および色成分 (す なわち a*成分および 成分。図 5 (B)および図 5 (C)参照)についてそれぞれ LUT に基づいて色濃度変更処理が行われるようになつている。さらに、本実施形態では、 各色濃度の変更指示について既存の LUTを用いるのではなぐ各色濃度の変更指 示はそれぞれ色濃度の明度成分および色成分の所定の入力値についてそれぞれ 単位変化量が定義されており、その定義された単位変化量に基づいて LUTを作成 するようになっている。
[0041] すなわち、「+Y」、「一 Υ」、「 + Μ」、「一 M」、「 + C」および「一 C」の各色濃度の変 更指示において、 L*成分については出力値 =f (入力値)で表される関数の入力値 の最小値 0、最大値 100および中間値 50における単位変化量が定義されており、ま た a*成分および b*成分については出力値 =f (入力値)で表される関数の最小値 100、最大値 100および中間値 0における単位変化量が定義されており、図 5に例示 した「 + M」処理の場合のように、 L*、
Figure imgf000012_0001
b*の各成分ごとにその 3点を通る、出力値 =ί' (入力値)、で表される関数を求めて LUTを定めるようになつている。
[0042] ここで、本実施形態においては、規定された色濃度の変更指示とは、 Γ +Yj、 Γ -γ 」、「 + M」、「一 M」、「 + C」および「一 C」の各色濃度の変更指示を言う。
[0043] なお、本実施形態では、 a*成分および b*成分についての LUTは、図中に 1点鎖 線で示した 45° の直線を平行移動した直線 (すなわち、 1次関数)として作成するよ うになつており、 a*成分および b *成分についての単位変化量はその平行移動の距 離を表す数値が 1つずつそれぞれ定義されている。また、前記 L*
Figure imgf000013_0001
b *の各成分 の単位変化量は、各色濃度の変更指示ごと設定し或いは変更することが可能とされ ている。
[0044] 制御部 22は、図 5に例示した「 + M」処理の場合には、この LUTに基づいて、図 6 に示すように、注目画素の色濃度に対応する点 S (Ls, as, bs)を点 T (Lt, at, bt)に 変位させて注目画素の色濃度を変更させる。その際、本実施形態では、 LUTが、 a* 成分および b*成分の変位についてはその変化量がそれぞれ入力値から一定値だけ 増減するように構成されているため(図 5 (B)および図 5 (C)参照)、図 6において点 S 力 点 Tに向力うベクトルをベクトル Mとすると、ベクトル Mの a*成分および b *成分は それぞれ一定値となる。そのため、色濃度変更処理においては、各画素の色濃度は 、少なくとも a*成分および 成分では、すなわち、色成分に関してはその変化の方 向性が一定方向に保たれる。
[0045] なお本実施形態では、それぞれの LUTは、変換後の出力値が L*
Figure imgf000013_0002
b *のそれ ぞれの成分の最大値より大きな値、或いは最小値より小さい値に変換されることを許 すように構成されており、クリッピング処理を伴わな!/、。
[0046] また、本実施形態では、「+Y」処理および「 + C」処理においても同様に単位変化 量を示すベクトル Yおよびベクトル Cが定義できる力 本実施形態では、「+Y」処理 および「 + C」処理は、図 7に示すように、このベクトル Yおよびベクトル Cと前記べタト ル Mとの総和力 a*成分および b*成分における単位変化量の総和がそれぞれ 0 すなわち、ベクトルの和が L*軸上のベクトルになるような処理として定め、各色の単 位変更指示とする。また、「― Y 「― Μ」および C」の各処理の単位変化量を示 すベクトルは、それぞれ「+Y 「 + Μ」および「 + C」の各処理の単位変化量を示す ベクトル Y、ベクトル Μおよびベクトル Cに対して逆向きで同一長さのベクトルとして表 され、それぞれ図 7に示したものと同様の関係を有するものとし、同様に各色の単位 変更指示とする。なお、ここで言うベクトル Υ、ベクトル Μおよびベクトル Cは、前記の ように L*a*b*色空間で定義されるベクトルであり、インクジェット記録装置等で使用さ れる色空間としての YMC色空間における基本ベクトルとは異なる。
[0047] また、本実施形態では、前述したように、操作部 11の「 + D」ボタンまたは「― 0」ボ タンを押して「 + DJ処理(または「― D」処理)を行うことにより、 CRT10の画面上の画 像の明度を全体的に暗くする(または明るくする)ことができる。これらの処理では、そ れぞれ L*成分についてのみ入力値の最小値 0、最大値 100および中間値 50におけ る単位変化量が定義されており、 a*成分および b*成分についての単位変化量は 0 である。なお、画像全体のコントラストを強めまたは弱める「+T」処理および「― T」処 理も、一定の明度を基準として L*成分のみをその一定の明度からの距離に比例して L*軸方向に増減させる処理であり、同様に L*成分についてのみ入力値の最小値 0 、最大値 100および中間値 50における単位変化量が定義されている。
[0048] 一方、本実施形態では、色濃度の変更指示が複数入力された場合には、制御部 2 2は、入力された各変更指示に対する L*、
Figure imgf000014_0001
b *の各成分ごと単位変化量をそれぞ れ全て加算し、この変化量の総和に基づいて L*、
Figure imgf000014_0002
b*の各成分ごと LUTをそれ ぞれ作成するように構成されている。例えば、「+Y」処理を行った後、「 + Μ」処理を 行つた場合、「 + Μ」処理を行うときには「 + Υ」処理で作成した LUTに「 + M」処理の LUTを加算するのではなぐ「+Y」処理に対応する L*、
Figure imgf000014_0003
b*の各成分ごと単位変 化量 (L*成分については入力値 0、 50、 100の場合の 3個、 a*成分および b*成分に ついては平行移動の単位変化量 1個ずつ)に「 + M」処理のそれぞれの単位変化量 を加算した後、 L*成分の LUTについてはそれぞれ入力値 0、 50、 100における単 位変化量の総和を通る指数関数を求めて LUTを定め、 a*成分および 成分につ いては、単位変化量の総和の分だけ、例えば、図 5 (B)および図 5 (C)に 1点鎖線で 示した 45° の直線を平行移動して LUTを作成する。
[0049] 本実施形態では、色濃度変更処理にお!、て、注目画素の色濃度の色成分、すな わち、この場合は a*成分および b *成分の変化量について、明度に応じて a*成分お よび 成分の変化量をそれぞれ同じ割合 (以下、規制値 αという。図 8参照)で縮小 する規制処理を行う。具体的には、制御部 22は、 ROMから図 8に示したような規制 処理についての表を読み出して RAM上に展開しておき、それに基づいて規制を行 うように構成されている。 a*成分および b *成分の変化量を同じ規制値 αで縮小され るため、前述した色濃度変更処理における各画素の色濃度の変化の方向性は一定 に保たれる。なお、本実施形態では、規制は、明度 Lに応じて行うように構成されてい る力 後述する色相 Hに応じて行うように構成したりその両方に応じて行うように構成 することも可會である。
[0050] ここで、次の判定処理と必要に応じて行われる色域圧縮処理の前提となる均等色 空間の定義色域について、 L*a*b *色空間を例にとって簡単に説明する。
[0051] まず、 L*a*b*色空間における画素の明度 L、彩度 Cおよび色相 Hについて述べる 。 CRT10の画面に表示された画像中の 1つの画素の色濃度に対応する L*a*b *色 空間内の点の座標を一般的に (L*, a* , b*)と表すと、その画素の明度 L、彩度じお よび色相 Hはそれぞれ以下のように表される。
L = L* · · · (1 )
Figure imgf000015_0001
[0052] (3)式に示されるように、 L*a*b *色空間では、色相 Ηは、画素に対応する点 Sを a* b *平面上に投影した場合の a*軸力もの角度 Η (図 9 (A)および図 9 (B)参照)に相当 する。別の言い方をすれば、 L*a*b *色空間は、 a*b *平面上に投影した場合の a* 軸からの角度 Ηが一定になる点の集合、すなわち、図 9 (A)に示されるような LC平面 上の点がすべて同じ色相 Ηを持つように形成されている。なお、この場合、色相 Ηは 0° 以上 360° 未満の値を取り得る。
[0053] しかし、 CRT10は、 L* a*b *色空間内の全ての点をその明度 L、彩度 Cおよび色相 Ηにおいて表現できるわけではなぐ L*a*b*色空間内のある領域内の点しか表現で きない。本発明では、この CRT10の画面上で色表示可能な L* a*b *色空間内の画 素の色濃度領域のことを定義色域といい、この定義色域は、前述した LC平面上では 図 10に斜線で示されるような領域 Rとして表される。
[0054] なお、色相 H (角度 H)が変わり LC平面が変わると、定義色域 Rの形状は、例えば、 図 11や図 12に示されるように変化するが、定義色域 Rの L軸方向の最大値 (この場 合は 100)および最小値 (この場合は 0)は変わらない。また、前記図 10乃至図 12の ように定義色域 Rの形状が変化しても、定義色域 R上で最大彩度となる点 Nl (Cnl, Lnl) (以下、最大彩度点という。)は 1点に定まる(すなわち、最大彩度点 N1が複数 生じることはない)が、最大彩度点 N1の位置は色相 Hが変わると上下左右に変化す る。
[0055] 本実施形態の制御部 22には、一定の色相 H (すなわち、それに対応する一定の L C平面)において各明度 Lに対応する彩度 Cが取り得る最大値のテーブルがすべて の色相 Hについて定義され、記憶されている。具体的には、この定義色域を示すテ 一ブルは、 1つの LC平面の 0〜100の 101個の明度 Lについて彩度 Cの最大値(す なわち、定義領域 Rの境界値)がそれぞれ割り振られ、それが 0° 〜359° の 360個 の各角度 H (すなわち、色相 H)について定義されている。
[0056] 判定処理は、注目画素が定義色域内にあるか否かを判定する処理である。
[0057] 制御部 22は、判定処理において、色濃度変更処理後の注目画素の色濃度に相当 する点 Tの色相 Htについての前記定義色域を示すテーブルを ROM力 読み出し、 彩度 Ctとテーブルに記載されている明度 Ltにおける彩度の最大値 との比較を行 い(図 13参照)、彩度 Ctが最大値 以下であれば色濃度変更処理後の注目画素が 定義色域内にあり、彩度 Ctが最大値 より大きければ注目画素が定義色域外にあ ると判定する。
[0058] 制御部 22は、この判定処理で色濃度変更処理後の注目画素が定義色域内にある と判定すると、その色濃度変更処理後の注目画素の色濃度のデータを RAMに保存 する。
[0059] 次に、色域圧縮処理につ!、て説明する。色域圧縮処理は、定義色域外にある注目 画素をその色相が一定に維持された状態で、すなわち、同一 LC平面上で定義色域 内に変位させる処理である。本実施形態では、 LC平面上の定義色域外の領域を 3 分割し、各領域ごとに定められた色域圧縮の規則に則って色域圧縮処理を行う。
[0060] まず、定義色域外領域の分割方法としては、本実施形態では、図 14に示すように、 定義色域 R上で最大彩度となる最大彩度点 Nl (Cnl, Lnl)と明度 Lnlが同一で低 彩度側に一定値だけ移動した点 N2 (Cn2, Ln2) (以下、収束点という。)を定義色 域 R上にとり、最大彩度点 N1と収束点 N2とを結ぶ線分に対して、収束点 N2を起点 として高明度側に角度 0 1の角をなす直線を直線 1 (第 1直線)とし、収束点 N2を起 点として低明度側に角度 Θ 2の角をなす直線を直線 2 (第 2直線)として、定義色域外 領域をこの直線 1および直線 2で分割することにより、定義色域外領域を 3分割する 方法が採用されている。
[0061] ここでは、図 14に示したように、直線 1より高明度側の定義色域外領域を第 1領域( 第 1定義色域外領域)、直線 1より低明度側でかつ直線 2より高明度側の定義色域外 領域を第 2領域 (第 2定義色域外領域)、および直線 2より低明度側の定義色域外領 域を第 3領域 (第 3定義色域外領域)と ヽぅ。
[0062] なお最大彩度点 N1と収束点 N2との距離や角度 0 1、角度 0 2の値は適宜設定可 能であり、さらに、収束点 N2は、最大彩度点 N1と明度が同じであるである必要はな ぐ定義色域内で任意に設定可能である。また、各色相 Hごと (すなわち、図 7におけ る角度 Hごと)に収束点 Ν2、 θ 1の値および 0 2の値を設定することも可能である。
[0063] 制御部 22は、色域圧縮処理にお!、て、注目画素が属する定義色域外領域がどの 領域であるかを判別し、各定義色域外領域で定められている圧縮の規則に従って色 域圧縮を行う。
[0064] 本実施形態では、各定義色域外領域における色域圧縮の規則は、前記色濃度変 更処理後の注目画素の色濃度に対応する点が第 1領域にある場合にはその点を直 線 1に平行な方向に(すなわち、角度 θ 1で)変位させ、第 2領域にある場合には収 束点 N2に向力つて変位させ、第 3領域にある場合には直線 2に平行な方向に (すな わち、角度 Θ 2で)変位させて、それぞれ定義色域境界上の点に圧縮するものである (図 14参照)。圧縮される定義色域境界上の点は、制御部 22が、前記テーブルに基 づ 、て算出して求めるように構成されて 、る。
[0065] この色域圧縮処理にぉ 、て、注目画素の色濃度に対応する点が定義色域境界上 に到達する前に彩度が 0になってしまう場合がある。本実施形態では、そのような場 合には、彩度が 0で明度が最も近い境界上に色域圧縮する。具体的には、図 15に示 すように、第 1領域にある点が角度 Θ 1で変位したときに明度軸と交わってしまう場合 には、彩度が 0で明度が最大値 (この場合は 100)の点に色域圧縮され、第 3領域に ある点が Θ 2で変位して明度軸と交わる場合には、彩度が 0で明度が最小値 (この場 合は 0)の点に色域圧縮される。
[0066] また、各定義色域外領域における色域圧縮処理において、図 16に示すように、色 域圧縮処理前の点 Tの明度 Ltと色域圧縮処理後の点 U1の明度 Lulとの差が大きく なり、画像に違和感を生じる場合がある。本実施形態では、そのような場合には、最 大明度変位量 A Lmaxを設定しておき、色域圧縮処理前の明度 Ltと予定される色域 圧縮処理後の明度 Lulとの差の絶対値が最大明度変位量 A Lmaxを超える場合は 、明度の変位量が最大明度変更量 A Lmaxとなる定義色域境界上の点に色域圧縮 する。
[0067] 制御部 22は、以上の色域圧縮処理を完了すると、その処理後の注目画素の色濃 度のデータを RAMに保存する。
[0068] 次に、この画像処理プログラムを用いた画像処理方法について説明する。図 17は 、画像処理方法の手順を示すフローチャートである。
[0069] 画像処理装置 1の制御部 22は、オペレータが操作部 11から画像処理を行うべき画 像を指定すると、操作部 11からの指定情報に応じて指定された画像の画像データが データ蓄積手段 23から読み出されて画像が CRT10に表示される。
[0070] 操作部 11のボタン操作で実行されるべき画像処理 (以下、例えば、「 + M」処理の 場合)が選択されると、制御部 22は、既に実行された色濃度の変更指示があれば、 既に加算されている各処理の L*成分、 a*成分および b*成分の単位変化量の和を R AM力 読み出して「 + M」処理につ 、ての L*成分、 a*成分および b *成分の単位変 化量をそれぞれ加算して単位変化量の総和を求め(ステップ S 1)、その単位変化量 の総和に基づいて L*、 a*、 b *の各成分についての LUTを作成する(ステップ S2)。 その際、新たに加算された L*、 a b *の各成分の単位変化量の総和はそれぞれ R AMに保存される。 [0071] そして、各 LUTに基づいて注目画素の色濃度の変化量が求められる力 その際、 本実施形態では、注目画素の a*成分および b*成分の変化量について、 RAMに記 憶された図 8に示した明度 Lに応じた規制値 aを参照して規制が行われる (ステップ S3)。そして、このようにして求められた L*、 a*および b*の各成分の変化量に基づい て色濃度変更処理を実行する (ステップ S4)。
[0072] ここで、制御部 22が色濃度変更に用いる a*成分および b*成分の変位についての LUTがそれぞれ入力値に一定値を加え(図 5 (B)参照)または減少させる(図 5 (C) 参照)ように構成されているため、図 6で点 Sから点 Tに向かう「 + M」の操作における 色濃度変更の各ベクトル Mを a*b*平面に投影した場合、図 18に示すように、ベタト ル Mは a*b*平面上のすべての点において同一方向を向く。
[0073] また、明度 Lについては、 L*成分の変位についての LUTが図 5 (A)に示したように 構成されているため、図 19に示すように、変更前の点 Sの L*軸方向の位置によって その傾きが変わる力 その傾きの変化は一様である。
[0074] 次に、制御部 22は、色濃度変更処理後の注目画素の色濃度に相当する点 Tの色 相 Htについての定義色域を示すテーブルを ROM力 読み出し、判定処理を実行 する (ステップ S5)。制御部 22は、この判定処理で色濃度変更処理後の注目画素が 定義色域内にあると判定すると、その色濃度変更処理後の注目画素の色濃度のデ ータを RAMに保存してその注目画素につ 、ての画像処理を終了し、 CRT10の画 面上の画像カゝら次の 1画素を選択して、前記処理手順を繰り返す。
[0075] 一方、制御部 22は、前記判定処理にお!、て、色濃度変更処理後の注目画素が定 義色域外にあると判定すると、前述したように LC平面上の定義色域外の領域を 3分 割したどの領域に注目画素が属するかを判別し (ステップ S6)、それぞれの領域に定 められた色域圧縮の規則に則って色域圧縮処理を行う(ステップ S7〜S9)。
[0076] 注目画素についての色域圧縮処理が終了すると、制御部 22は、その色域圧縮処 理後の注目画素の色濃度のデータを RAMに保存してその注目画素につ 、ての画 像処理を終了し、 CRT10の画面上の画像力も次の 1画素を選択して、前記処理手 順を繰り返す。
[0077] 制御部 22は、 CRT10の画面上の画像のすべての画素について、以上の色濃度 変更処理、判定処理および色域圧縮処理を終了すると、次の画像処理を受け付ける 状態となり、操作部 11からの画像処理の指示を待つ。操作部 11から次の画像処理 の指示が入力されると、前記手順に従って処理を行う。また、操作部 11からデータの 保存の指示が入力されると、 RAMに保存された画像のすべての画素についてのデ ータをその画像の画像データとしてデータ蓄積手段 23に保存する。その際、元の画 像データとは別のデータとして保存してもよいし、或いは元の画像データに上書き保 存するように構成されていてもよい。また、操作部 11からプリント出力の指示が入力さ れると、制御部 22は、 RAMに保存された画像データをデータ保存手段 23に保存す ると同時に、露光処理部 13に画像データを送信する。
[0078] なお、以上の作用を、オペレータが画像を CRT10に表示させつつ行わせるのでは なぐ例えば、制御部 22が、画像を CRT10に表示することなく RAM上で画像データ を処理して画像の色補正や濃度補正等を自動補正するような場合にも同様に行わ れることは、前述したとおりである。
[0079] 以上のように、本実施形態の画像処理方法、画像処理プログラムおよび画像処理 装置によれば、色濃度の変更指示 (例えば「 + M」処理)に対し、その単位変化量に 基づいて、色濃度変更処理の基準となり、クリッピング処理を伴わない LUTを、色濃 度の、明度成分と、色成分の a*成分および b*成分とに分けて作成し、それらに基づ いて色濃度の明度成分と色成分とをそれぞれ別々に変更するようにしたため、色濃 度の明度成分と色成分とを独立にそれぞれ色濃度変更することができ、しかも、各画 素について色成分の変化に関して同一の方向性を持つ状態で色濃度変更を行うこ とがでさる。
[0080] そのため、従来のように、例えば、明度のみを変更する画像処理を行っても、色濃 度の明度成分と色成分とが互いに混ざり合い、しかも各画素の色濃度の変化の方向 性がまちまちで色相等が変化してしまうという事態を確実に回避することができ、色濃 度変更の方向性をすベての画素について維持した状態で、色相を不自然に変化さ せることなぐオペレータが想定した色再現を行うことが可能となる。
[0081] また、本実施形態では、色濃度変更処理を LUTに基づ ヽて行う場合につ!ヽて説明 したが、前述したように、例えば、本実施形態で L*成分についての LUTを作成する ために用いた指数関数、および a*成分と b *成分についての LUTをそれぞれ作成す るために用いた 1次関数等を使って、 LUT作成を介さずに、注目画素の色濃度の変 化量を計算により直接求めることも可能であり、その方が計算精度が向上する。また、 3次元 LUTの格子点についてのみ計算または LUTに基づく変更を行い、格子点周 囲の点はその格子点に付随する状態で色濃度変更処理等を行うように構成すること で、この 3次元 LUTを用いて本発明を画像処理に適用することも可能である。この場 合、大きな画像に対して処理速度が速くなると 、う効果がある。
[0082] さらに、色濃度の変更指示が複数入力された場合には、既に入力され処理された すべての変更指示に対する L*、
Figure imgf000021_0001
b *の各成分についての単位変化量を加算して 新たに LUTを作成し、または計算を行うようになっている。そのため、ある色濃度の 変更処理 (例えば、「 + M」処理)のあとに他の色濃度の変更処理 (例えば、「 + 0」処 理)をした後、逆の色濃度の変更処理(「一 M」処理および「一 D」処理)を行えば、必 ずそれぞれ逆の処理が相殺されて単位変化量の総和はすべてにおいて 0になり、画 像を初期画像に戻すことができる。
[0083] また、その変位により注目画素の色濃度に対応する点が定義色域外に位置してし まい、そのままでは CRT10の画面上に表示できない場合でも、前記色域圧縮処理 により、同一 LC平面上、すなわち同一色相の平面内で変位させて定義色域内に色 域圧縮されるから、前記の L*a*b*色空間内での一様な変位の効果と相まって画素 の色相が不自然に変化することを確実に防止することが可能となる。また、 LUTにお ける変化量を大きくし、画素の色濃度に強い変更を加えると、色濃度変更処理後の 画素の色濃度は定義色域外に出る可能性が高くなるが、このような色域圧縮処理を 行うことにより、そのような強い変更でも色相を変化させることなく想定された色再現を 行うことが可能となる。
[0084] また、色濃度変更処理にお!、て、前記規制処理を行うことで、注目画素の色濃度が 定義色域内に入り易くなり、色域圧縮処理を行う手間が省略し易くなると同時に、不 要なハイライトの色付きや高彩度での色弁別性の低下を防止することができる。さら に、この規制処理においては、前述したように、色濃度変更処理における注目画素 の色濃度の変化の方向性を保った状態で規制するため、色相を不自然に変化させ ることなくオペレータが想定した色再現を行うことを可能とする効果が維持される。
[0085] また、前記規制処理を行うことにより定義色域外に出る色濃度に対応する L*a*b* 色空間内の点は少なくなる力 S、さらに定義色域外に出てしまう点に対して色域圧縮処 理を行うことにより、 CRT10の画面上に処理後の画素を表示することが可能となる。 し力も、色域圧縮処理は、それぞれ色相 Hが一定の LC平面上で行われるため、これ らの処理によって画素の色相は変化せず、このことによつてもオペレータが想定した 色再現を行うことが保証される。
[0086] 色域圧縮処理においては、図 14に示す様に、 LC平面上の定義色域外領域を 3分 割し、第 1領域では直線 1 (第 1直線)に平行に点を変位させて定義色域境界上の点 に圧縮し、第 2領域では直線 1と直線 2 (第 2直線)との交点に相当する収束点 N2に 向かって変位させて定義色域境界上の点に圧縮し、第 3領域では直線 2に平行に変 位させて定義色域境界上の点に圧縮する規則を採用することにより、例えば、ある特 定の定義色域外領域内のすべての点が定義色域境界上の特定の 1点に圧縮されて しまったり、いずれの定義色域外領域からも圧縮を受けない定義色域境界上の点が 生じたりすることがないので、色域圧縮後の CRT10の画面上の画像の階調を不自 然さがなく非常にスムーズなものにすることができる。
[0087] つまり、図 21 (A)および図 21 (B)に示すように、色濃度変更処理によって定義色 域外に出た点 Tl、点 Τ2は角度 θ 1で変位させ、点 Τ3、 Τ4は角度 Θ 2で変位させる から、特により白色側の点 Τ2およびより黒色側の点 Τ4はこの場合は明度の最大値 である点 および最小値である点 ΙΙ4Ίこそれぞれ色域圧縮される。このように、本 実施形態の画像処理方法等によれば、ハイライト抜けや黒の締まりが的確に良化さ れる。
[0088] これに対して、例えば、図 20 (A)および図 20 (B)に示すように、収束点 Ν2を明度 軸上に設定し、画像全体の明度を上げる色濃度変更処理 (Α)または画像全体の明 度を下げる色濃度変更処理 (Β)によって定義色域外に出た点を単に収束点 Ν2に向 力つて色域圧縮するように構成したとすると、明度を上げる画像処理 (Α)では、点 S1 、 S2はそれぞれ点 Tl、 Τ2を経て点 Ul、 U2に色域圧縮され、明度を下げる画像処 理(B)では、点 S3、 S4はそれぞれ点 T3、 Τ4を経て点 U3、 U4に色域圧縮される。 この場合、明度を上げる画像処理 (A)では、より白色側の点 S2が点 U2に色域圧縮 されるがほとんど白色度(明度)が増さず、また、明度を下げる画像処理 (B)において も、より黒色側の点 S4は点 U4に変換されるがほとんど黒色度は増さない(明度が下 がらない)。すなわち、このような色域圧縮処理方法では、ハイライトの抜けが悪く(図 20 (A)参照)、黒の締まりが悪くなる(図 20 (B)参照)。
[0089] なお、図 2に示した操作部 11では、「+Y」等のボタンを押す回数分だけそれぞれ の色濃度の変更指示に応じた単位変化量を加算するように構成されているが、その 他にも、例えば、図 22に示すように、 CRT11の画面上にウイザード形式でスライドバ 一方式の操作部 11を表示して、スライドバーをスライドさせることにより、 YMCおよび Dのそれぞれの処理について図 2の操作部 11でボタンを押す回数に相当する数値 を入力するように構成することも可能である。また、図 23に示すように、画像を読み取 つたフィルムやメディア等の種類に応じてさらに細カゝく数値を入力するように構成する ことも可能である。
[0090] その際、図 22のスライドバー方式の操作部 11や直接数値を入力する図 23の操作 部 11において、例えば、整数値のみならず小数値を入力可能とすることで、より緻密 な画像処理を行うよう〖こ構成することもできる。
[0091] また、以上の本実施形態では、画像の全画素について画像処理を行う場合につい て述べたが、画像の一部または複数部分を特定して行う画像処理につ!ヽて本発明 の画像処理方法等を適用することも当然可能である。
産業上の利用可能性
[0092] 本発明によれば、フィルム、メディア或いはプリントから画像情報を読み取って画像 データを作成し、その画像データに色濃度を変更する画像処理を施して画像データ とするに当たり、色相を変化させることなく想定された色再現を行うことができる。

Claims

請求の範囲
[1] 規定された色濃度の変更指示毎に、色濃度の明度成分及び色成分のそれぞれに ついて、出力値 =f (入力値)で表される関数の所定の入力値に対する単位変化量を 定義し、前記関数と単位変化量に基づ!/、て前記明度成分及び色成分それぞれにつ いて作成した LUTを用いるか、前記関数と単位変化量に基づく計算により、各画素の 色濃度の明度成分及び色成分のそれぞれについて変更する色濃度変更処理を行う ことを特徴とする画像処理方法。
[2] 複数の前記色濃度の変更指示では、各色濃度の変更指示毎に定義されている所 定の入力値に対する単位変化量の総和を明度成分及び色成分のそれぞれについ て加算により求め、該単位変化量の総和から前記明度成分及び色成分それぞれに ついて作成した LUTを用いる力、当該総和に基づく計算により、各画素の色濃度の 明度成分及び色成分のそれぞれについて変更することを特徴とする請求の範囲第 1 項に記載の画像処理方法。
[3] 前記明度成分および色成分の単位変化量は、それぞれ均等色空間における明度 成分および色成分の単位変化量として定義されることを特徴とする請求の範囲第 1 項又は第 2項に記載の画像処理方法。
[4] 各画素の色濃度の色成分の変更を、変化の方向性を保った状態で、明度及び色 相から選ばれる少なくとも一方に応じて、定義された単位変化量に対して縮小した変 化量に基づいて行うことを特徴とする請求の範囲第 1項乃至第 3項の何れか一項に 記載の画像処理方法。
[5] イェロー (Y)、マゼンタ (M)、シアン (C)の個々の色濃度の変更指示を有すること を特徴とする請求の範囲第 1項乃至第 4項の何れか一項に記載の画像処理方法。
[6] Y、 M、 Cの個々の色濃度の変更指示として、各色の単位変更指示を有し、 Y、 Μ、
Cの全てについて色濃度を各色の単位変更指示で増加させる又は減少させる時、各 色の単位変化量ベクトルの総和が a*成分及び b*成分でそれぞれ 0になることを特徴 とする請求の範囲第 5項に記載の画像処理方法。
[7] 前記色濃度変更処理後の画素が定義色域内にあるか否かを判定する判定処理と 、前記判定処理で前記色濃度変更処理後の画素が定義色域外にあると判定された 場合に、前記色濃度変更処理後の画素を、その色相が一定に維持された状態で定 義色域内に変位させる色域圧縮処理とを行うことを特徴とする請求の範囲第 1項乃 至第 6項の何れか一項に記載の画像処理方法。
[8] 前記判定処理は、前記色濃度変更処理後の画素の明度、色相および彩度に基づ いて行うことを特徴とする請求の範囲第 7項に記載の画像処理方法。
[9] 前記色域圧縮処理は、前記色濃度変更処理後の画素の明度、色相および彩度の 情報に応じて、圧縮の規則を変更して行うことを特徴とする請求の範囲第 7項または 第 8項に記載の画像処理方法。
[10] 前記色域圧縮処理は、色相が同一であり明度軸と彩度軸で表現される 2次元平面 上において、前記定義色域外の領域を複数の領域に分割し、各領域ごとに圧縮の 規則を変更して行うことを特徴とする請求の範囲第 9項に記載の画像処理方法。
[11] 前記色域圧縮処理は、前記定義色域外の領域を、前記定義色域内の任意の収束 点を通り彩度軸に平行な直線に対して前記収束点を起点として高明度側に角度 Θ 1 の角をなす第 1直線と、前記収束点を起点として低明度側に角度 Θ 2の角をなす第 2 直線とによって 3分割して行うことを特徴とする請求の範囲第 10項に記載の画像処 理方法。
[12] 前記色域圧縮処理は、前記定義色域の境界上の最大彩度を持つ最大彩度点と明 度が同一であり前記最大彩度点力 一定値だけ低彩度側に移動した点を収束点とし た場合に、前記定義色域外の領域を、前記最大彩度点と前記収束点を結ぶ線分に 対して前記収束点を起点として高明度側に角度 Θ 1の角をなす第 1直線と、前記収 束点を起点として低明度側に角度 Θ 2の角をなす第 2直線とによって 3分割して行う ことを特徴とする請求の範囲第 10項に記載の画像処理方法。
[13] 前記色域圧縮処理は、前記第 1直線より高明度側の第 1定義色域外領域において は、前記第 1直線に平行な方向に変位させて前記定義色域の境界上の点に圧縮し 、前記第 1直線より低明度側かつ前記第 2直線より高明度側の第 2定義色域外領域 においては、前記収束点に向かって変位させて前記定義色域の境界上の点に圧縮 し、前記第 2直線より低明度側の第 3定義色域外領域においては、前記第 2直線に 平行な方向に変位させて前記定義色域の境界上の点に圧縮して行うことを特徴とす る請求の範囲第 11または第 12項に記載の画像処理方法。
[14] 前記色域圧縮処理は、前記定義色域の境界上に到達する前に彩度が 0になる場 合には、彩度が 0で明度が最も近い前記境界上に色域圧縮して行うことを特徴とする 請求の範囲第 11項乃至第 13項のいずれか一項に記載の画像処理方法。
[15] 前記収束点、角度 θ 1の値および角度 Θ 2の値は、色相ごとに設定可能であること を特徴とする請求の範囲第 11項乃至第 14項のいずれか一項に記載の画像処理方 法。
[16] 前記色域圧縮処理は、色域圧縮処理前の明度と予定される色域圧縮処理後の明 度の差の絶対値が設定された最大明度変位量を超える場合は、明度の変位量が前 記最大明度変位量となる前記定義色域の境界上の点に色域圧縮して行うことを特徴 とする請求の範囲第 7項乃至第 15項のいずれか一項に記載の画像処理方法。
[17] 前記色濃度変更処理は、色補正処理、濃度補正処理、色強調処理、コントラスト調 整処理、シャープネス処理、ノイズ抑制処理、ソフトフォーカス処理、逆光補正処理、 部分階調調整処理のいずれか 1つまたはそれらの組み合わせであることを特徴とす る請求の範囲第 7項乃至第 16項のいずれか一項に記載の画像処理方法。
[18] コンピュータを、
色濃度の変更指示により、色濃度の明度成分及び色成分のそれぞれについて、出 力値 =f (入力値)で表される関数の所定の入力値に対して定義された単位変化量と 、前記関数とに基づ 、て前記明度成分及び色成分それぞれにつ 、て LUTを作成し 、各画素の色濃度の明度成分及び色成分のそれぞれについて変更する色濃度変更 処理を行う手段、又は
色濃度の変更指示により、前記関数と前記単位変化量に基づく計算により、各画 素の色濃度の明度成分及び色成分のそれぞれについて変更する色濃度変更処理 を行う手段
として機能させることを特徴とする画像処理プログラム。
[19] コンピュータを、
複数の色濃度の変更指示により、各色濃度の変更指示毎に定義されている所定の 入力値に対する単位変化量の総和を明度成分及び色成分のそれぞれについてカロ 算により求め、該単位変化量の総和から前記明度成分及び色成分それぞれについ て LUTを作成し、各画素の色濃度の明度成分及び色成分のそれぞれにつ!/、て変更 する手段、又は
複数の色濃度の変更指示により、各色濃度の変更指示毎に定義されている所定の 入力値に対する単位変化量の総和を明度成分及び色成分のそれぞれについてカロ 算により求め、当該総和に基づく計算により、各画素の色濃度の明度成分及び色成 分のそれぞれにつ 、て変更する手段
として機能させることを特徴とする請求の範囲第 18項に記載の画像処理プログラム
[20] コンピュータを、
各画素の色濃度の色成分の変更を、変化の方向性を保った状態で、明度及び色 相から選ばれる少なくとも一方に応じて、定義された単位変化量に対して縮小した変 化量に基づいて行う手段
として機能させることを特徴とする請求の範囲第 18項又は第 19項に記載の画像処 理プログラム。
[21] コンピュータを、更に
前記色濃度変更処理後の画素が定義色域内にあるか否かを判定する手段、 前記色濃度変更処理後の画素が定義色域外にあると判定された場合に、前記色 濃度変更処理後の画素を、その色相が一定に維持された状態で定義色域内に変位 させる色域圧縮処理を行う手段
として機能させることを特徴とする請求の範囲第 18項乃至第 20項の何れか一項に 記載の画像処理プログラム。
[22] コンピュータを、
前記色域圧縮処理の際、前記色濃度変更処理後の画素の明度、色相および彩度 の情報に応じて、圧縮の規則を変更して行う手段
として機能させることを特徴とする請求の範囲第 21項に記載の画像処理プログラム
[23] コンピュータを、 前記色域圧縮処理の際、
色相が同一であり明度軸と彩度軸で表現される 2次元平面上において、前記定義 色域外の領域を複数の領域に分割する手段、
各領域ごとに圧縮の規則を変更して行う手段
として機能させることを特徴とする請求の範囲第 22項に記載の画像処理プログラム
[24] コンピュータを、
前記色域圧縮処理の際、
前記定義色域外の領域を、前記定義色域内の任意の収束点を通り彩度軸に平行 な直線に対して前記収束点を起点として高明度側に角度 Θ 1の角をなす第 1直線と 、前記収束点を起点として低明度側に角度 Θ 2の角をなす第 2直線とによって 3分割 して行う手段
として機能させることを特徴とする請求の範囲第 23項に記載の画像処理プログラム
[25] コンピュータを、
前記色域圧縮処理の際、
前記定義色域の境界上の最大彩度を持つ最大彩度点と明度が同一であり前記最 大彩度点から一定値だけ低彩度側に移動した点を収束点とし、前記定義色域外の 領域を、前記最大彩度点と前記収束点を結ぶ線分に対して前記収束点を起点として 高明度側に角度 Θ 1の角をなす第 1直線と、前記収束点を起点として低明度側に角 度 Θ 2の角をなす第 2直線とによって 3分割して行う手段
として機能させることを特徴とする請求の範囲第 23項に記載の画像処理プログラム
[26] コンピュータを、
前記色域圧縮処理の際、
前記第 1直線より高明度側の第 1定義色域外領域においては、前記第 1直線に平 行な方向に変位させて前記定義色域の境界上の点に圧縮し、前記第 1直線より低明 度側かつ前記第 2直線より高明度側の第 2定義色域外領域においては、前記収束 点に向かって変位させて前記定義色域の境界上の点に圧縮し、前記第 2直線より低 明度側の第 3定義色域外領域においては、前記第 2直線に平行な方向に変位させ て前記定義色域の境界上の点に圧縮して行う手段
として機能させることを特徴とする請求の範囲第 24項または第 25項に記載の画像 処理プログラム。
[27] コンピュータを、
前記色域圧縮処理の際、
前記定義色域の境界上に到達する前に彩度が 0になる場合には、彩度が 0で明度 が最も近い前記境界上に色域圧縮して行う手段
として機能させることを特徴とする請求の範囲第 24項乃至第 26項のいずれか一項 に記載の画像処理プログラム。
[28] コンピュータを、
前記色域圧縮処理の際、色域圧縮処理前の明度と予定される色域圧縮処理後の 明度の差の絶対値が設定された最大明度変位量を超える場合は、明度の変位量が 前記最大明度変位量となる前記定義色域の境界上の点に色域圧縮して行う手段 として機能させることを特徴とする請求の範囲第 21項乃至第 27項のいずれか一項 に記載の画像処理プログラム。
[29] 各画素の画像データを取得して画像処理を行う制御部と、該制御部に指示を行う 操作部を備え、
前記制御部が、操作部からの色濃度の変更指示により、色濃度の明度成分及び色 成分のそれぞれについて、出力値 =f (入力値)で表される関数の所定の入力値に 対して定義された単位変化量と、前記関数とに基づいて前記明度成分及び色成分 それぞれについて LUTを作成し、又は、前記関数と前記単位変化量に基づく計算に より、各画素の色濃度の明度成分及び色成分のそれぞれにつ!、て変更する色濃度 変更処理手段を有することを特徴とする画像処理装置。
[30] 前記色濃度変更処理手段は、
操作部からの複数の色濃度の変更指示により、各色濃度の変更指示毎に定義され ている所定の入力値に対する単位変化量の総和を明度成分及び色成分のそれぞれ について加算により求め、該単位変化量の総和から前記明度成分及び色成分それ ぞれについて LUTを作成し、又は、当該総和に基づく計算により、各画素の色濃度 の明度成分及び色成分のそれぞれについて変更することを特徴とする請求の範囲 第 29項に記載の画像処理装置。
[31] 前記色濃度変更処理手段は、
各画素の色濃度の色成分の変更を、変化の方向性を保った状態で、明度及び色 相から選ばれる少なくとも一方に応じて、定義された単位変化量に対して縮小した変 化量に基づいて行うことを特徴とする請求の範囲第 29項又は第 30項に記載の画像 処理装置。
[32] 前記制御部が、更に
前記色濃度変更処理後の画素が定義色域内にあるか否かを判定する判定処理手 段、
前記色濃度変更処理後の画素が定義色域外にあると判定された場合に、前記色 濃度変更処理後の画素を、その色相が一定に維持された状態で定義色域内に変位 させる色域圧縮処理を行う色域圧縮処理手段
を有することを特徴とする請求の範囲第 29項乃至第 31項の何れか一項に記載の 画像処理装置。
[33] 前記判定処理手段は、
前記色濃度変更処理後の画素の明度、色相および彩度に基づいて判定を行うこと を特徴とする請求の範囲第 32項に記載の画像処理装置。
[34] 前記色域圧縮処理手段は、
色相が同一であり明度軸と彩度軸で表現される 2次元平面上において、前記定義 色域外の領域を複数の領域に分割し、各領域ごとに圧縮の規則を変更して色域圧 縮処理を行うことを特徴とする請求の範囲第 32項に記載の画像処理装置。
[35] 前記色域圧縮処理手段は、
前記定義色域外の領域を、前記定義色域内の任意の収束点を通り彩度軸に平行 な直線に対して前記収束点を起点として高明度側に角度 Θ 1の角をなす第 1直線と 、前記収束点を起点として低明度側に角度 Θ 2の角をなす第 2直線とによって 3分割 して色域圧縮処理を行うことを特徴とする請求の範囲第 34項に記載の画像処理装 置。
[36] 前記色域圧縮処理手段は、
前記定義色域の境界上の最大彩度を持つ最大彩度点と明度が同一であり前記最 大彩度点から一定値だけ低彩度側に移動した点を収束点とし、前記定義色域外の 領域を、前記最大彩度点と前記収束点を結ぶ線分に対して前記収束点を起点として 高明度側に角度 Θ 1の角をなす第 1直線と、前記収束点を起点として低明度側に角 度 Θ 2の角をなす第 2直線とによって 3分割して色域圧縮処理を行うことを特徴とする 請求の範囲第 34項に記載の画像処理装置。
[37] 前記色域圧縮処理手段は、
前記第 1直線より高明度側の第 1定義色域外領域においては、前記第 1直線に平 行な方向に変位させて前記定義色域の境界上の点に圧縮し、前記第 1直線より低明 度側かつ前記第 2直線より高明度側の第 2定義色域外領域においては、前記収束 点に向かって変位させて前記定義色域の境界上の点に圧縮し、前記第 2直線より低 明度側の第 3定義色域外領域においては、前記第 2直線に平行な方向に変位させ て前記定義色域の境界上の点に圧縮して色域圧縮処理を行うことを特徴とする請求 の範囲第 35項または第 36項に記載の画像処理装置。
[38] 前記色域圧縮処理手段は、
前記定義色域の境界上に到達する前に彩度が 0になる場合には、彩度が 0で明度 が最も近い前記境界上に色域圧縮処理を行うことを特徴とする請求の範囲第 35項 乃至第 37項の 、ずれか一項に記載の画像処理装置。
[39] 前記色域圧縮処理手段は、
色域圧縮処理前の明度と予定される色域圧縮処理後の明度の差の絶対値が設定 された最大明度変位量を超える場合は、明度の変位量が前記最大明度変位量とな る前記定義色域の境界上の点に色域圧縮処理を行うことを特徴とする請求の範囲第 29項乃至第 38項のいずれか一項に記載の画像処理装置。
PCT/JP2005/008972 2004-05-27 2005-05-17 画像処理方法、画像処理プログラムおよび画像処理装置 WO2005117412A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004157767A JP2005341260A (ja) 2004-05-27 2004-05-27 画像処理方法、画像処理プログラムおよび画像処理装置
JP2004-157767 2004-05-27
JP2004-159372 2004-05-28
JP2004159372A JP2005339343A (ja) 2004-05-28 2004-05-28 画像処理方法、画像処理プログラムおよび画像処理装置

Publications (1)

Publication Number Publication Date
WO2005117412A1 true WO2005117412A1 (ja) 2005-12-08

Family

ID=35451261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008972 WO2005117412A1 (ja) 2004-05-27 2005-05-17 画像処理方法、画像処理プログラムおよび画像処理装置

Country Status (1)

Country Link
WO (1) WO2005117412A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262347A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 画像処理装置
JPH11191846A (ja) * 1997-12-25 1999-07-13 Canon Inc 画像処理装置、方法および記録媒体
JPH11341264A (ja) * 1998-05-29 1999-12-10 Canon Inc モザイク画像生成方法、記録媒体
JP2000165692A (ja) * 1998-11-30 2000-06-16 Fujitsu Ltd カラーデータ変換方法
JP2000278546A (ja) * 1999-01-22 2000-10-06 Sony Corp 画像処理装置及び画像処理方法、色域変換テーブル作成装置及び色域変換テーブル作成方法、画像処理プログラムを記録した記録媒体、並びに色域変換テーブル作成プログラムを記録した記録媒体
JP2001028694A (ja) * 1999-05-07 2001-01-30 Matsushita Research Institute Tokyo Inc 画像処理装置及び画像処理方法
JP2002027263A (ja) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd 画像処理方法
JP2003110868A (ja) * 2001-10-01 2003-04-11 Canon Inc 画像処理方法、画像処理装置、記憶媒体及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262347A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 画像処理装置
JPH11191846A (ja) * 1997-12-25 1999-07-13 Canon Inc 画像処理装置、方法および記録媒体
JPH11341264A (ja) * 1998-05-29 1999-12-10 Canon Inc モザイク画像生成方法、記録媒体
JP2000165692A (ja) * 1998-11-30 2000-06-16 Fujitsu Ltd カラーデータ変換方法
JP2000278546A (ja) * 1999-01-22 2000-10-06 Sony Corp 画像処理装置及び画像処理方法、色域変換テーブル作成装置及び色域変換テーブル作成方法、画像処理プログラムを記録した記録媒体、並びに色域変換テーブル作成プログラムを記録した記録媒体
JP2001028694A (ja) * 1999-05-07 2001-01-30 Matsushita Research Institute Tokyo Inc 画像処理装置及び画像処理方法
JP2002027263A (ja) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd 画像処理方法
JP2003110868A (ja) * 2001-10-01 2003-04-11 Canon Inc 画像処理方法、画像処理装置、記憶媒体及びプログラム

Similar Documents

Publication Publication Date Title
US6975437B2 (en) Method, apparatus and recording medium for color correction
JP4375781B2 (ja) 画像処理装置および画像処理方法並びにプログラムおよび記録媒体
US7372597B2 (en) Tonescales for geographically localized digital rendition of people
US8259373B2 (en) Soft proofing method and apparatus to perform color matching between input image data and a printed output image
US6535301B1 (en) Image processing apparatus, image processing method, image processing program recording medium, color adjustment method, color adjustment device, and color adjustment control program recording medium
US20070133017A1 (en) Image processing apparatus, photographing apparatus, image processing system, image processing method and program
US7333136B2 (en) Image processing apparatus for carrying out tone conversion processing and color correction processing using a three-dimensional look-up table
JP2005208817A (ja) 画像処理方法、画像処理装置及び画像記録装置
US7379096B2 (en) Image processing method for processing image data based on conditions customized for each user
JP2005227897A (ja) 画像表示方法、画像表示装置及び画像表示プログラム
JP2019204428A (ja) 画像処理装置、表示システム、画像処理方法及びプログラム
JP2004336521A (ja) 画像処理方法、画像処理装置及び画像記録装置
JP2002033934A (ja) 画像処理装置及び方法
JP4321698B2 (ja) 画像出力方法および装置並びに記録媒体
JP3754944B2 (ja) 画像処理装置およびその方法
WO2005117412A1 (ja) 画像処理方法、画像処理プログラムおよび画像処理装置
JP2005341260A (ja) 画像処理方法、画像処理プログラムおよび画像処理装置
JP2007312125A (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JPH09270925A (ja) 画像処理装置及び方法
JP2005202749A (ja) 画像処理方法、画像処理装置及び画像記録装置
JP2002051225A (ja) 画像処理装置及び方法
JP2004153337A (ja) 画像処理装置
JP2005339343A (ja) 画像処理方法、画像処理プログラムおよび画像処理装置
JP2002016875A (ja) 階調設定方法および装置並びに記録媒体
JP2004357001A (ja) 画像処理方法、画像処理装置及び画像記録装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase