WO2005116238A1 - キサントフィルの製造方法 - Google Patents

キサントフィルの製造方法 Download PDF

Info

Publication number
WO2005116238A1
WO2005116238A1 PCT/JP2005/008274 JP2005008274W WO2005116238A1 WO 2005116238 A1 WO2005116238 A1 WO 2005116238A1 JP 2005008274 W JP2005008274 W JP 2005008274W WO 2005116238 A1 WO2005116238 A1 WO 2005116238A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
culture
medium
xanthophyll
cells
Prior art date
Application number
PCT/JP2005/008274
Other languages
English (en)
French (fr)
Inventor
Kai Zhang
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to JP2006513831A priority Critical patent/JPWO2005116238A1/ja
Priority to US10/578,096 priority patent/US7566551B2/en
Priority to EP05736917A priority patent/EP1749890A1/en
Publication of WO2005116238A1 publication Critical patent/WO2005116238A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes

Definitions

  • the present invention relates to a method for efficiently producing xanthophyll.
  • Xanthophylls which are a type of carotenoid (for example, astaxanthin, canthaxanthin, zeaxanthin, adonirubin, rydnixanthin,
  • Liptoxanthine, etc. are used for various purposes.
  • astaxanthin is a kind of red carotenoid and is known to have a strong antioxidant effect. For this reason, it is used as a pigment for foodstuffs, cosmetics, health foods, and pharmaceuticals.
  • Astaxanthin is not only chemically synthesized but also derived from natural products. Astaxanthin derived from natural products has been extracted from shrimps such as krill and prawns, fafa yeast, and algae. However, shrimp such as krill and yeast have low astaxanthin content, so that astaxanthin cannot be efficiently extracted.
  • algae for example, Hematococcus
  • J. Fabregas et al., J. Biotech. Vol. 89, p66, (2001) describes a method for producing astaxanthin by culturing hematococcus in two steps.
  • vegetative cells of Matococcus are obtained while exchanging a culture solution of 10 to 40% a day (that is, while culturing in a batch).
  • batch culture is performed for another 15 days while irradiating light to transform vegetative cells into dormant cells (ie, cysts) and astaxane into cells.
  • dormant cells ie, cysts
  • Japanese Patent Application Laid-Open No. 2000-600532 discloses that in a first stage, vegetative cells are obtained by culturing Hematococcus while irradiating light in a sealed Bioreactor, and In the second stage, a method of transferring to dormant cells in an outdoor culture pond to induce the production and accumulation of astaxanthin, predating hematococcus or recovering hematococcus before the organisms parasitizing hematococcus multiply. has been described.
  • Japanese Patent Application Laid-Open No. 2004-129495 discloses that astaxanthin can be obtained by culturing Hematococcus in a place or without irradiating light and under aerobic conditions. Although a production method is described, there is a problem that the productivity of astaxanthin is low. 5 008274
  • the present invention provides a method for producing xanthophylls from photosynthetic microalgae, comprising the steps of inoculating a photosynthetic microalgae containing xanthophylls into a nutrient medium and growing the nutrient medium; and converting the grown microalgae to cysts Provide a method.
  • the photosynthetic microalgae containing xanthophyll is a cystified photosynthetic microalgae
  • the above-mentioned growth step and cyst formation step are performed in the same culture tank.
  • the growth and cyst formation of the microalgae are performed, and the growth step and the cyst formation step are performed using a low nutrient medium.
  • the growth step and the cyst formation step are performed in batch culture.
  • the growth step and the cyst formation step are performed using different media.
  • the above-mentioned growth step and cyst formation step are each performed in batch culture.
  • the multiplying step and the cyst forming step are performed under light irradiation.
  • the microalgae is a green algae belonging to the genus Hematococcus.
  • the green algae is Hematococcus pluvialis.
  • the xanthophyll is astaxanthin.
  • the present invention also provides photosynthetic microalgae having zoospores containing xanthophyll.
  • Figure 1 is a micrograph of Hematococcus cyst cells inoculated in a nutrient medium.
  • Figure 2 shows a photomicrograph of Hematococcus cells 50 hours after the start of culture.
  • FIG. 3 is a micrograph of Hematococcus cells 200 hours after the start of culture.
  • FIG. 4 is a micrograph of Hematococcus cells 350 hours after the start of culture.
  • FIG. 5 is a diagram showing changes in algal growth and astaxanthin content over time in the one-step culture method of the present invention.
  • the method of the present invention is characterized by inoculating a photosynthetic microalgae containing xanthophyll, preferably a cysted photosynthetic microalgae, into a growth medium, growing the culture medium, and then cysting the growth medium.
  • photosynthetic microalgae may be simply referred to as “microalgae”.
  • Xanthophyll-containing microalgae preferably cystified microalgae, which have a large accumulation of xanthophylls, are inoculated into a growth medium and grown, and the cysted microalgae release zoospores containing xanthophylls . These zoospores become vegetative cells while containing xanthophylls. Vegetative cells also proliferate by division, still containing xanthophylls. Therefore, fine Algal numbers increase faster than with simple cell division.
  • microalgae cysts formed by the method of the present invention include newly produced xanthophylls in addition to the originally existing xanthophylls.
  • the xanthophyll content is higher than that of.
  • the photosynthetic microalgae used in the present invention is not particularly limited as long as it is capable of photosynthesizing and capable of producing xanthophyll.
  • Green algae are preferably used from the viewpoint of production of xanthophylls.
  • unicellular algae belonging to the genus Haematoc occus are preferably used.
  • Preferred hematococcus algae include H. pluvialis, H. pluvialis, H. lacustris, H. lacustris, H. capensis, H. capensis, and H. capensis. droebakens i), Hematococcus 'H. zimbabwiensis' and the like.
  • Hematococcus 'Pluvialis' includes NIES 144 strains deposited at the National Institute for Environmental Studies, UTEX 2505 strains deposited at the University of Texas Algae Preservation Facility, Denmark. Scandinavian Culture Center for Algae and Protozoa, Konnoken University
  • Hematococcus ratastris (H. lacustris) includes ATCC 3042 and 3043 strains deposited with the ATCC, and IAMC deposited with the Institute of Applied Microbiology, The University of Tokyo. -39 2 shares, same C-39 3 shares, same C _394 and C-339 strains, or UTEX16 and 294 strains.
  • Hematococcus. H. capensis includes UTEXLB1023 strain and the like.
  • H. zimbabwiensis examples include UTEXLB 1758 strain.
  • Hematococcus pluvialis is preferably used.
  • the microalgae which is a microalgae containing xanthophyll, is inoculated into a nutrient medium.
  • Microalgae containing xanthophylls include vegetative cells containing xanthophylls and cystified microalgae. Vegetative cells of a microalgae containing xanthophyll mean that the microalgae was once cysted (dormant).
  • Microalgae accumulate xanthophyll and the like in cells and become dormant spores when subjected to stress from the growth environment such as light irradiation, nutrient starvation, and the presence of oxides. Entering this dormant state is called a cyst.
  • cyst formation includes any state from a state in which the state has entered a dormant state and the xanthophyll has begun to accumulate, to a state in which the state has completely become a cyst and has become a dormant spore. From the viewpoint of increasing the xanthophyll content, it is preferable to use microalgae in which cyst formation has progressed as much as possible and which has accumulated a large amount of xanthophyll.
  • the medium used for culturing microalgae is not particularly limited. Generally, a medium containing nitrogen required for growth, inorganic salts of trace metals (eg, phosphorus, potassium, magnesium, iron, etc.), vitamins (eg, thiamine, etc.) is used.
  • trace metals eg, phosphorus, potassium, magnesium, iron, etc.
  • vitamins eg, thiamine, etc.
  • VT medium, C medium, MC medium, MBM medium, MDM medium and other mediums (these are described in the Algae Research Methods Mitsuo Chihara and Kazutoshi Nishizawa, Kyoritsu Shuppan (1977)), OHM medium (Refer to Non-Patent Document 1), BG-11 medium, a modified medium thereof and the like are used.
  • These media can be used according to the intended use, such as a medium for growth and a medium for cyst formation.
  • a medium for growth and a medium for cyst formation For example, if the purpose is to grow microalgae, use a medium rich in nitrogen source components (rich medium: medium containing 0.15 g / L or more as nitrogen).
  • a medium containing almost no nitrogen source component For the purpose of cyst formation, use a medium containing almost no nitrogen source component (cyst formation medium: less than 0.02 g ZL as nitrogen).
  • a medium containing a nitrogen source at an intermediate concentration low nutrient medium: not less than 0.02 g / L and less than 0.15 g / L as nitrogen may be used.
  • the concentration of nitrogen source and phosphorus in the medium may be determined depending on the amount of microalgae to be inoculated. For example, if the concentration of 10 5 order of microalgae (to Matokokkasu) at the initiation of the culture, the use of low nutrient medium, to some extent, although microalgae grow, because the amount of nitrogen source is small, growth immediately Stop. In such a case, the low nutrient medium is a medium suitable for continuous growth and cyst formation in one step (batchwise), as described later. Further, by adjusting the N / P ratio (molar ratio) to 10 to 30, preferably 15 to 20, it is possible to smoothly lead to cyst formation.
  • the culture can be performed using the eutrophic medium.
  • the composition of the medium can be determined in consideration of various conditions.
  • the medium used in the present invention hardly contains organic carbon sources such as acetic acid and glucose, so that there is almost no contamination of bacteria even for long-term culture.
  • the microalgae culturing device there is no particular limitation on the microalgae culturing device as long as it can supply carbon dioxide and irradiate the culture solution with light.
  • a flat culture bottle in the case of a small scale, a flat culture bottle, in the case of a large scale, a plate culture tank made of a transparent plate such as glass or plastic, a tank culture tank with a stirrer equipped with an illuminator, A tube type culture tank, an air dome type culture tank, a hollow cylindrical type culture tank and the like are used. Further, a closed container is preferably used.
  • the culture conditions are not particularly limited, and generally the temperature and pH used for culturing microalgae are used.
  • the culture of the microalgae is performed, for example, at 15 to 35 ° C, preferably at 20 to 25 ° C. It is preferable that ⁇ during culturing is kept at 6 to 8.
  • Carbon dioxide is supplied by injecting a gas containing carbon dioxide having a concentration of 1 to 3 ⁇ % ⁇ %, for example, to have a concentration of 0.2 to 2 V vm.
  • a plate culture tank is used, the culture solution is stirred by the supply of carbon dioxide, and the microalgae are uniformly irradiated with light.
  • the photosynthetic effective photon flux density (PPFD) is set to a value such that the density of the photosynthetically active photon flux (PPFD) is about lOO zmo 1- ⁇ hoton / m 2 s (hereafter, the unit is abbreviated as mo 1 ⁇ / m 2 s).
  • the irradiation is preferably 300 1-p / m 2 s or more, and more preferably 500 ⁇ 1-p / m 2 s or more, from the viewpoint of increasing the amount of xanthophylls produced.
  • PPF D is the photon flux density measured using a LI COR-190 SA planar photon sensor (LI COR Inc., Lincoln, USA), and is located at the center of the culture device without a culture medium. It is a value measured by placing a sensor and irradiating light. In the case of equipment composed of transparent plates such as glass and acrylic resin, Measure the PPFD passing through the light plate, determine the illuminance of the light or the distance of the light source so that the specified PPFD is obtained, and place the light source.
  • the culturing is performed under light irradiation by appropriately selecting and combining the above-mentioned medium, culturing apparatus, culturing conditions and the like.
  • One is a one-stage culture method in which cystized microalgae are inoculated into a nutrient medium, grown, and continuously cultivated in the same medium.
  • the other is a two-stage culture method in which a culture medium for growing cysted microalgae and a culture medium for cyst formation are separated, and growth and cyst formation are performed separately.
  • the one-step cultivation method is a method of continuously culturing without exchanging the medium from the inoculation of the citrated microalgae to the end of the culture. That is, this is a method in which microalgae are grown and cysts are formed in a predetermined culture medium and in the same culture tank.
  • This one-step culture method is not suitable for continuous culture and is preferably performed batchwise.
  • microalgae grow rapidly, but nutrient starvation stress due to consumption of nutrients in the medium, stress due to light irradiation, temperature stress due to high temperature, and stress due to zero addition of salt ⁇ sodium. In response to this, after the breeding, it shifts smoothly to the cyst state.
  • xanthophylls preferably cystified microalgae
  • a medium having a low nitrogen source concentration for example, the above-described low nutrient medium is preferably used as the medium.
  • a medium having a high nitrogen source concentration for example, the above-described eutrophic medium may be used.
  • V ⁇ which is a rich nutrient medium, may be supplemented with a low nutrient medium to grow the microalgae to a desired concentration.
  • the one-step cultivation method is that the process management is simple, microalgae containing a high concentration of xanthophyll can be obtained easily, and it is not necessary to transfer to another culture tank, so that contamination of various bacteria can be prevented. It has the advantage that only one culture tank is required.
  • the two-stage culture method is a method in which cysted microalgae are proliferated, and then transferred to a cystized culture medium to form cysts. That is, in the two-step culture method, first, the first step of inoculating cystized microalgae in a eutrophic or low-nutrient medium, preferably in a eutrophic medium, and growing the microalgae, and recovering the microalgae Then, a second step is performed in which the medium is transferred to a cyst-forming medium containing almost no nitrogen source, and cysts are formed.
  • microalgae in the first step Since the growth of microalgae in the first step must be terminated while xanthophylls remain in the vegetative cells, culture in the nutrient medium is performed in a short time. It is preferable to use a eutrophic medium when culturing using a eutrophic medium at the start of cultivation, because the growth rate of vegetative cells is faster than that when culturing in a low-nutrient medium. After the growth is completed, the microalgae are collected and transferred to a cyst medium. Then, the cyst of the second step is performed.
  • the first step and the second step may be performed batchwise in separate culture tanks. After the completion of the first step, the grown microalgae may be washed and collected, returned to the same culture tank, and then subjected to the second step.
  • This two-step culture method has the advantage that the growth step is shorter than the one-step culture method, but requires an operation of transferring microalgae grown on the way. A part of the obtained cysted microalgae may be used for recovering xanthophylls, and the other part may be used again for inoculation into a nutrient medium.
  • Xanthophylls are accumulated in the microalgae due to the cyst formation of the microalgae, so that the xanthophylls can be collected by an ordinary method after collecting the algae. For example, a method in which microalgae are mechanically crushed and then extracted with an organic solvent is applied.
  • chlorophyll, xanthophyll, and dried algal cells were measured.
  • the measuring method is as follows.
  • Xanthophyll concentration (/ gZniI) 4.5 X dilution factor X absorbance Xanthophyll produced by Hematococcus pluvialis used in the following examples is mostly astaxanthin.
  • the above-described method for measuring xanthophyll is applied to the measurement of astaxanthin.
  • a predetermined amount of the culture solution was collected, suction-filtered on a GC 50 glass fiber filter paper (manufactured by TOYO 'ADVA NT EC), and washed twice with 5 ml of a hydrochloric acid aqueous solution of pH 4 to dissolve inorganic salts. Then, the filter paper was dried for 3 hours in a constant temperature dryer at 105 ° C, cooled to room temperature for 1 hour in a vacuum desiccator, and the dry weight was measured. The GC 50 glass fiber filter paper was previously dried at 105 ° C. for 1 hour with the above constant temperature dryer, and its mass was measured in advance. ,
  • strain K0084 Hematococcus pluvialis strain K0084 (hereinafter simply referred to as strain K0084) was used. 1.5 L, put 1 L of MBG-11 medium shown in Table 1 below into a closed flat culture bottle with a light path of 25 mm, and culture the K00 84 strain so that the initial concentration is 0.6 gZL. Inoculated. The N / P ratio of MBG-11 medium is 20.
  • a white fluorescent lamp FL 40 S SW / 37, manufactured by National
  • the light irradiation intensity was adjusted such that the PP FD in the light receiving direction of the culture tank measured using a LI COR-190SA planar light quantum sensor was 100 ⁇ 1 1 p / m 2 s.
  • FIG. 1 shows a micrograph of the cyst cells used for inoculation into a nutrient medium obtained by this method.
  • the same medium (MBG-11 medium) was inoculated with the cystized K0084 strain so as to have an initial concentration of 0.6 gZL, and cultured under the same culture conditions as above.
  • the K0084 strain was brown as shown in FIG. 1, and the ataxanthin content was about 1.2% as described above.
  • the content of astaxanthin (the content of ataxanthin per dry alga body) decreased immediately, while the content of chlorophyll decreased.
  • the content (chlorophyll content per dry algal body) increases. And from around 50 hours this reverses. That is, after 50 hours, the content of astaxanthin starts to increase and the content of chlorophyll starts to decrease. It is likely that the 50th hour is when the growth stops and turns into cysts.
  • FIG. 1 A micrograph of the cells at 50 hours is shown in FIG.
  • cystized Hematococcus cells contain reddish zoospores. This It can be seen that zoospores are released and converted into vegetative cells. That is, a green layer was observed inside the cell wall of the cells generated from the zoospores, which is thought to be the accumulation of chlorophyll.
  • FIG. 3 shows a photomicrograph of the cells at 200 hours from the start of the culture
  • FIG. 4 shows a photomicrograph at 350 hours.
  • the cells in Fig. 3 after 200 hours have grown in size, and the brown astaxanthin has accumulated further inside the green layer (black mouth fill layer) formed inside the cells. Understand.
  • 350 hours it can be seen that the cell size further increased and the inside of the cell wall was occupied by red content.
  • Example 2 The culture was carried out for 350 hours in the same manner as in Example 1 except that the non-cyst vegetative cells of the K084 strain were inoculated into the MBG-11 medium. Table 2 shows the results. , Table 2
  • a two-stage culture in which cystized microalgae were grown in a nutrient medium and then transferred to a cyst medium was examined.
  • the media shown in Table 3 below was prepared.
  • the BG-11 medium in Table 3 is eutrophic containing 1.5 g ZL of sodium nitrate instead of 0.41 g of potassium nitrate (KN ⁇ 3) of the MB G-11 medium used in the one-step culture of Example 1. It is a medium.
  • the NBG-11 medium is a cyst medium that does not contain a nitrogen source such as sodium nitrate or nitric acid, and does not contain phosphorus. Table 3
  • the cystized K0084 strain which had been cultured under the same conditions as in Example 1, was collected and washed, and the initial concentration was 0.6 gZL in 1 L of BG-11 medium in Table 3. And the culture was started under the same culture conditions as in Example 1 except that the intensity of light irradiation was adjusted so that the PPFD was 300 / zmo 1 -p / m 2 s. After 120 hours (5 days), the K0084 strain was recovered, inoculated into an NBG-11 1. medium (a medium for cisification), and further cultured under the same culture conditions using the same flat culture bottle. Table 4 shows the results after culturing for 400 hours.
  • cyst-forming cells were cultured under the same culture conditions as in Example 1 except that MBG-11 was used as the culture medium and the light irradiation conditions were adjusted so that the PPFD was 300 ⁇ 1 ⁇ / m 2 s. Inoculation was performed in one stage. Table 4 shows the results after culturing for 400 hours.
  • Example 2 A two-step culture was performed in the same manner as in Example 2 except that the vegetative cells were inoculated into BG-11 medium. Table 4 shows the results after culturing for 400 hours. Table 4
  • a cystified microalgae containing a high concentration of xanthophylls can be obtained by inoculating a microalgae containing xanthophyll, for example, a cystified microalgae, growing and inoculating the cyst.
  • a part of the obtained cysted microalgae is used for the next culture. Therefore, it is industrially useful as an efficient xanthophyll culture production method using microalgae.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

光合成微細藻類からキサントフィルを製造する方法であって、キサントフィルを含有する光合成微細藻類、好ましくはシスト化した微細藻類を栄養培地に接種して増殖させる工程、および、該増殖した微細藻類をシスト化させる工程を含む方法が提供される。窒素源濃度が低い栄養培地を用いて、増殖工程およびシスト化工程を連続的に行う、1段階培養法、あるいは、窒素源濃度が高い栄養培地で増殖し、シスト化培地に移植する2段階培養法が適用される。

Description

キサントフィルの製造方法 技術分野
本発明は、 キサントフィルの効率的な生産方法に関する。
背景技術
カロチノイドの一種であるキサントフィル (例えば、 ァスタキサンチン、 カンタキサンチン、 ゼアキサンチン、 アド二ルビン、 了ドニキサンチン、 ク 書
リプトキサンチンなど) は、 種々の用途に使用されている。 例えば、 ァスタ キサンチンは、 赤色のカロチノイドの一種であり、 強力な抗酸化作用を有す ることが知られている。 そのため、 食材用色素、 化粧品、 健康食品、 医薬品 などとして使用されている。 ァスタキサンチンは、 化学合成されるものの他、 天然物由来のものがある。 天然物由来のァスタキサンチンは、 ォキアミ、 ァ マエビなどのェビ類、 ファフィァ酵母、 藻類などから抽出されている。 しか し、 ォキアミなどのェビ類あるいは酵母のァスタキサンチン含量は低いため、 効率よくァスタキサンチンが抽出されない。
他方、 藻類、 例えば、 へマトコッカスは、 外部環境の変化に応じてシスト 化し、 藻体内にァスタキサンチンを蓄積する。 そのため、 藻類によるァスタ キサンチンの生産研究が行われている。
例えば、 J. Fabregas et al. , J. Biotech. Vol. 89, p66, (2001)には、 へマトコッカスを 2段階で培養し、 ァスタキサンチンを生産する方法が記載 されている。 この方法では、 第 1段階で、 1日に 1 0〜4 0 %の培養液を交 換しながら (すなわち、 半回分培養しながら) へマトコッカスの栄養細胞を 得る。 第 2段階では、 さらに 1 5日間、 光を照射しながら回分培養を行い、 栄養細胞の休眠細胞化 (すなわち、 シスト化) と細胞内部へのァスタキサン 008274
チンの蓄積を誘発する。
R. T. Lorenz et al. , TIBTECH, vol. 18 (April) , pl60- 167, (2000)には、 ァスタキサンチンの商業的生産のために、 へマトコッカスの 2段階培養方法 が記載されている。 この方法においては、 第 1段階で、 密閉されたパイオリ アクター内で光照射しながらへマトコッカスを培養して栄養細胞を得る。 そ して、 次の第 2段階では、 この栄養細胞を、 培地中の窒素とリンを欠乏させ た屋外培養池に移し、 培養池の温度を上昇させながら照射光の強度を上げて 培養する力、 屋外培養池の培地に塩化ナトリゥムを添カ卩して培養することに より、 栄養細胞の休眠細胞化 (すなわち、 シスト化) と細胞内部へのァスタ キサンチンの蓄積を誘発する。
特開 2 0 0 0— 6 0 5 3 2号公報には、 第 1段階で、 密閉されたパイオリ アクター内で光照射しながらへマトコッカスを培養して栄養細胞を得、 そし て、 次の第 2段階では、 屋外培養池で休眠細胞に移行させてァスタキサンチ ンの生成、 蓄積を誘発させ、 へマトコッカスを捕食するあるいはへマトコッ カスに寄生する生物が増殖する前に、 へマトコッカスを回収する方法が記載 されている。
しかし、 上記のような 2段階の反応においては、 第 2段階において、 レー スウェイ式大気開放型培養液などの開放または屋外培養池で培養を行う場合、 培地に雑菌が増殖する可能性が高い。 そのため、 短期間にシスト化を行わな ければならず、 シスト化細胞のァスタキサンチン含量も低い。 ァスタキサン チンの生産効率を高めるためには、 大量の栄養細胞を準備しなければならな い。
他方、 特開 2 0 0 4— 1 2 9 5 0 4号公報には、 喑所でもしくは光を照射 しないで、 かつ好気的な条件下でへマトコッカスを培養することにより、 ァ スタキサンチンを生産する方法が記載されているが、 ァスタキサンチンの生 産性は低いという問題がある。 5 008274
3 そこで、 藻類からの効率的なァスタキサンチンの製造方法が望まれている。 発明の開示
本発明は、 光合成微細藻類からキサントフィルを製造する方法であって、 キサントフィルを含有する光合成微細藻類を栄養培地に接種して増殖させ る工程;および、 該増殖した微細藻類をシスト化させる工程を含む方法を提 供する。
1つの実施形態では、 上記キサントフィルを含有する光合成微細藻類が、 シスト化された光合成微細藻類である
別の実施形態では、 上記増殖工程およびシスト化工程が同一培養槽内で行 なわれる。
また、 別の実施形態では、 上記微細藻類の増殖およびシスト化が、 前記増 殖工程およびシスト化工程が、 低栄養培地を用いて行われる。
さらに別の実施形態では、 上記増殖工程およびシスト化工程が回分培養で 行われる。
さらに異なる実施形態では、 上記増殖工程およびシスト化工程が、 それぞ れ異なる培地を用いて行なわれる。
別の実施態様では、 上記増殖工程およびシスト化工程が、 それぞれ回分培 養で行なわれる。
また、 一つの実施形態では、 上記増殖工程およびシスト化工程が、 光照射 下行われる。
さらに別の実施形態では、 上記記微細藻類がへマトコッカス属に属する緑 藻である。
また、 別の実施形態では、 上記緑藻がへマトコッカス 'プルビアリスであ る。
さらに異なる実施形態では、 上記キサントフィルがァスタキサンチンであ る。
また、 本発明は、 キサントフィルを含有する遊走子を有する光合成微細藻 類を提供する。
図面の簡単な説明
図 1は、 栄養培地に接種するへマトコッカスのシスト化細胞の顕微鏡写 真である。
図 2は、 培養開始から 5 0時間目のへマトコッカス細胞の顕微鏡写真で める。
図 3は、 培養開始から 2 0 0時間目のへマトコッカス細胞の顕微鏡写真で ある。
図 4は、 培養開始から 3 5 0時間目のへマトコッカス細胞の顕微鏡写真で ある。
図 5は、 本発明の 1段階培養方法における、 藻類の増殖およびァスタキサ ンチン含量の経時変化を示す図である。
発明を実施するための最良の形態
本発明の方法は、 キサントフィルを含有する光合成微細藻類、 好ましくは シスト化した光合成微細藻類を増殖培地に接種して増殖させ、 ついで、 シス ト化させることを特徴とする。 以下、 本明細書において、 光合成微細藻類を 単に 「微細藻類」 ということがある。
キサントフィルを含有する微細藻類、 好ましくはキサントフィルを多く蓄 積した、 シスト化した微細藻類を増殖培地に接種して増殖させた場合、 シス ト化した微細藻類は、 キサントフィルを含有する遊走子を放出する。 この遊 走子がキサントフィルを含有したまま、 栄養細胞となる。 栄養細胞は、 さら にキサントフィルを含有したまま、 分裂によっても増殖する。 従って、 微細 藻類の数は、 単純な細胞分裂による場合よりも、 早く増加する。 そして、 こ の増殖 (増加) した、 キサントフィルを含有する微細藻類 (栄養細胞) をさ らにシスト化することにより、 更なるキサントフィルが微細藻類内で、 生産 され、 蓄積される。 従って、 本発明の方法でシスト化した微細藻類中には、 もともと存在していたキサントフィルに加えて、 新たに生産されたキサント フィルが含まれるので、 単に微細藻類の栄養細胞からシスト化させた場合に 比べて、 キサントフィル含量が高くなる。 以下、 本発明について、 詳細に説 明する。
(光合成微細藻類)
本発明に用いられる光合成微細藻類としては、 光合成をすることができ、 かつキサントフィルを生産する能力がある藻類であれば、 特に制限はない。 緑藻類が、 キサントフィル類の生産の点から、 好ましく用いられる。
本発明に用いられる緑藻類としては、 例えば、 へマトコッカス (Haematoc occus) 属に属する単細胞藻類が好ましく用いられる。 好ましいへマトコッ カス属の藻類としては、 へマトコッカス 'プルビアリス (H. pluvialis) 、 へマトコッカス .ラクストリス (H. lacustris) 、 へマトコッカス '力ペン シス (H. capensis) 、 へマトコッカス · ドロエノ ケンシ (H. droebakens i) 、 へマトコッカス 'ジンパプェンシス (H. zimbabwiensis) などが挙げ られる。 へマトコッカス 'プルビアリス (H. pluvialis) としては、 独立 行政法人国立環境研究所に寄託されている N I E S 1 4 4株、 米国テキサス 大学藻類保存施設に寄託されている U T E X 2 5 0 5株、 デンマークのコぺ ンノヽーケン大学の Scandinavian Culture Center for Algae and Protozoa,
Botanical Instituteに保存されている K 0 0 8 4株などが挙げられる。 へマトコッカス .ラタストリス (H. lacustris) としては、 A T C Cに寄 託されている A T C C 3 0 4 0 2株および同 3 0 4 5 3株、 東京大学応用微 生物研究所に寄託されている I AM C - 3 9 2株、 同 C— 3 9 3株、 同 C _ 3 9 4株および同 C— 3 3 9株、 あるいは U T E X 1 6株および同 2 9 4株などが挙げられる。
へマトコッカス .力ペンシス (H. capensis) としては、 U T E X L B 1 0 2 3株などが挙げられる。
へマトコッカス . ドロエバケンシ (H. droebakensi) としては、 U T E X
5 5株が挙げられる。
へマトコッカス .ジンパブェンシス (H. zimbabwiensis) としては、 U T E X L B 1 7 5 8株などが挙げられる。
これらの中でも、 へマトコッカス ·プルビアリスが好ましく用いられる。 (シスト化)
本発明においては、 上記微細藻類であって、 キサントフィルを含有する微 細藻類が、 栄養培地に接種される。 キサントフィルを含有する微細藻類には、 キサントフィルを含有する栄養細胞およびシスト化した微細藻類が含まれる。 キサントフィルを含有する微細藻類の栄養細胞は、 その微細藻類が、 かって シスト化していた (休眠状態にあった) ことを意味する。
微細藻類は、 例えば、 光照射、 栄養飢餓状態、 酸化物の存在など、 生育環 境からのストレスを受けると、 細胞内にキサントフィルなどを蓄積し、 休眠 胞子化する。 この休眠状態に入ることをシスト化という。 本明細書では、 シ スト化は、 休眠状態に入りキサントフィルを蓄積し始めた状態から完全にシ スト化し休眠胞子となった状態までのいずれかの状態を含む。 キサントフィ ル含量を高める観点からは、 できるだけシスト化が進行し、 キサントフィル を多く蓄積した微細藻類を用いることが好ましい。
(培地)
微細藻類の培養に用いる培地としては、 特に制限がない。 一般に、 増殖に 必要な窒素と、 微量金属の無機塩 (例えば、 リン、 カリウム、 マグネシウム、 鉄など) 、 ビタミン類 (例えば、 チアミンなど) などを含む培地が用いられ る。 例えば、 VT培地、 C培地、 MC培地、 MBM培地、 MDM培地などの 培地 (これらは、 藻類研究法 千原光雄 ·西澤一俊編、 共立出版 (1 9 7 9) を参照のこと) 、 OHM培地 (これは、 非特許文献 1を参照のこと) 、 BG- 1 1培地およびこれらの改変培地などが用いられる。
これらの培地は、 増殖を目的とする培地、 シスト化を目的とする培地など、 用途に応じて使用することができる。 例えば、 微細藻類の増殖を目的とする 場合は、 窒素源となる成分の多い培地 (富栄養培地:窒素として、 0. 1 5 g/L以上を含む培地) を用いる。 シスト化を目的とする場合は、 窒素源と なる成分をほとんど含まない培地 (シスト化培地:窒素として、 0. 02 g ZL未満) を用いる。 あるいは、 その中間の濃度の窒素源を含む培地 (低栄 養培地:窒素として、 0. 02 g/L以上で、 0. 15 g/L未満) を用い てもよい。
培地中の窒素源濃度、 リン濃度などは、 接種する微細藻類の量に依存して、 決めればよい。 例えば、 培養開始時の微細藻類 (へマトコッカス) の濃度が 105オーダーの場合、 低栄養培地を用いると、 ある程度まで、 微細藻類は 増殖するが、 窒素源の量が少ないため、 増殖はすぐに止まる。 このような場 合、 低栄養培地は、 後述するように、 一段階で (回分的に) 増殖とシスト化 を連続して行う場合に適した培地である。 さらに、 N/P比 (モル比) を 1 0〜30に、 好ましくは 15〜20に調整することにより、 シスト化へスム ーズに導くことができる。
培養開始時の微細藻類の濃度がさらに高い場合、 上記富栄養培地を用いて、 上記培養を行うことができる。
このように、 培地の組成は、 種々の条件を考慮して決定することができる。 なお、 本発明で用いる培地には、 酢酸、 グルコースなどの有機炭素源がほ とんど含まれないため、 長期間の培養でも、 雑菌の混入はほとんどない。
(培養装置) P T/JP2005/008274
微細藻類の培養装置は、 二酸化炭素が供給でき、 かつ培養液に光照射がで きる装置であれば、 特に制限はない。 例えば、 小スケールの場合は、 扁平培 養ビン、 大スケールの場合は、 ガラス製、 プラスチック製などの透明板で構 成された平板培養槽、 照明器を備えた撹拌機つきのタンク型培養槽、 チュー ブ型培養槽、 エアドーム型培養槽、 中空円筒型培養槽などが用いられる。 ま た、 密閉容器が好ましく用いられる。
(培養条件)
培養条件に特に制限はなく、 一般に、 微細藻類の培養に用いられる温度、 pHが用いられる。 微細藻類の培養は、 例えば 1 5〜35°Cで行われ、 好ま しくは 20〜25°Cで行われる。 培養中の ρΗは、 6〜8に保たれることが 好ましい。 二酸化炭素は、 1〜3 νΖν%濃度の二酸化炭素を含有するガス を、 例えば、 0. 2〜2 V vmとなるように吹き込むことで、 供給される。 平板培養槽を用いる場合、 この二酸化炭素の供給により、 培養液が撹拌され、 微細藻類に対して光照射が均一に行われる。
(光照射)
微細藻類の培養においては、 通常、 光合成有効光量子束密度 (PPFD) を l O O zmo 1— ρ h o t o n /m 2 s (以下、 単位を m o 1― /m 2 sと略す) 程度となるように光を照射するが、 キサントフィルの生成量を増 加させる観点からは、 300 1-p/m2 s以上であることが好ましく、 500 πιο 1— p/m2 s以上であることがより好ましい。 このような P P FDが大きい光を培養開始時からシスト化までの培養過程全般に亘つて照 射することにより、 ァスタキサンチンの生産量が大きくなる。 なお、 PPF Dは、 L I COR— 190 S A平面光量子センサー (L I COR I n c. , L i n c o l n, USA) を用いて、 測定した光量子束密度であり、 培地を 入れていない培養装置の中央部にセンサーを配置し、 光を照射して測定した 値である。 ガラス、 アクリル樹脂などの透明板で構成された装置の場合、 透 明板を通過してくる P P F Dを測定し、 所定の P P F Dとなるように光の照 度あるいは光源の距離を決定し、 光源を配置すればよい。
. (培養方法)
培養は、 上記培地、 培養装置、 培養条件などを適宜選択して組合せ、 光照 射下、 行われる。 培養方法には、 2つの方法がある。 一つは、 シスト化した 微細藻類を栄養培地に接種して増殖させ、 シスト化させるまでを連続して、 同一の培地で行う、 1段階培養法である。 他の一つは、 シスト化した微細藻 類を増殖させる培地とシスト化させる培地とを分離し、 増殖とシスト化を 別々に行う 2段階培養法である。
1段階培養法は、 シス ト化した微細藻類を接種してから培養終了までの間、 培地を交換することなく連続的に培養する方法である。 すなわち、 所定の培 地で、 同一培養槽内で、 微細藻類の増殖およびシスト化を行う方法である。 この 1段階培養法は、 連続培養には不向きであり、 回分的に行われることが 好ましい。 この 1段階培養法では、 微細藻類はいつたん増殖するが、 培地中 の栄養成分の消費による栄養飢餓ストレス、 光照射によるストレス、 高温に よる温度ストレス、 塩^^ナトリウムの添力 0によるス トレスなどを受けて、 増 殖後、 シスト化状態にスムーズに移行する。
キサントフィルを含有する微細藻類、 好ましくはシスト化した微細藻類が 栄養培地に接種されると、 キサントフィルを含む遊走子を 2 n個 (n = l〜 4 ) 放出する。 この遊走子がキサントフィルを含んだまま栄養細胞となるの で、 キサントフィルを含む栄養細胞の数が増加する (微細藻類が増殖する) 。 さらに、 栄養細胞は、 細胞分裂により、 増殖する。 このキサントフィルを含 有する栄養細胞をシスト化することにより、 もともと有していたキサントフ ィルに加えて、 新たにキサントフィルが蓄積されることから、 キサントフィ ル含量が高められる。
ところで、 栄養細胞が増殖を続けると、 細胞内のキサントフィル濃度が低 下すると考えられるので、 増殖は、 キサントフィルが細胞内に残っている状 態で停止させることが好ましい。
ある程度栄養細胞が増殖した時点で、 微細藻類の増殖を停止させるために は、 培地を栄養飢餓になるように設計することが好ましい。 そのため、 1段 階培養法では、 培地として、 窒素源濃度が低い培地、 例えば、 上記低栄養培 地が好ましく用いられる。 接種するシスト化細胞の量が多い場合は、 上記の ように、 窒素源濃度が高い培地、 例えば、 上記富栄養培地を用いてもよい。 なお、 低栄養培地で微細藻類の生育が不十分である場合、 富栄養培地ある Vヽは低栄養培地を追加して、 所望の濃度まで微細藻類を増殖させてもよい。 また、 低栄養培地を用いる場合、 NZP比 (モル比) を 1 0〜3 0の間に 調整しておくと、 増殖後スムーズにシスト化させることができる。
1段階培養法は、 工程の管理が簡便であること、 高濃度のキサントフィル を含有する微細藻類が簡便に得られること、 別の培養槽に移し替える必要が ないため、 雑菌の混入が防止できること、 培養槽が一つで済むことなどの利 点がある。
2段階培養法は、 シスト化した微細藻類を増殖させ、 ついで、 シスト化培 地に移送して、 シスト化を行う方法である。 すなわち、 2段階培養法では、 まず、 シスト化した微細藻類を富栄養培地または低栄養培地に、 好ましくは 富栄養培地に接種して微細藻類を増殖させる第 1工程と、 この微細藻類を回 収して、 窒素源をほとんど含まないシスト化培地に移行して、 シスト化する 第 2工程からなる。
第 1工程における微細藻類の増殖は、 キサントフィルが栄養細胞に残存し ている間に終了させる必要があるため、 栄養培地での培養は短時間で行われ る。 培養の開始時に富栄養培地を用いて培養すると、 栄養細胞の増殖速度が、 低栄養培地で培養した場合増殖速度よりも速いので、 富栄養培地を用いるこ とが好ましい。 増殖終了後、 微細藻類は回収され、 シスト化培地に移し替え られ、 第 2工程のシスト化が行われる。
この第 1工程と第 2工程は、 それぞれ、 別の培養槽で回分的に行ってもよ い。 第 1工程終了後、 増殖した微細藻類を洗浄、 回収し、 同一培養槽に戻し て、 第 2工程を行ってもよい。
この 2段階培養法でも、 キサントフィル含量が高い微細細胞が得られる。 この 2段階培養法は、 1段階培養法に比べて、 増殖工程が短時間ですむとい う利点があるが、 途中に増殖した微細藻類を移し替える操作が必要となる。 得られたシスト化微細藻類の一部はキサントフィルの回収に、 残りの一部 は、 再度、 栄養培地への接種のために用いてもよい。
(キサントフィルの回収)
微細藻類のシスト化により、 キサントフィルが微細藻類内に蓄積されるの で、 藻類を回収後、 常法により、 キサントフィルを回収することができる。 例えば、 機械的に微細藻類を破壌した後、 有機溶媒により抽出するなどの方 法が適用される。
(実施例)
以下、 実施例を挙げて本発明を説明するが、 この実施例が本発明を制限す るものではない。
なお、 この実施例において、 クロロフィル、 キサントフィル、 および乾燥 藻体を測定したが、 その測定法は以下の通りである。
(クロロフィルの測定)
培養液を 5 m l採取し、 遠心分離 (3 5 0 0 r p m、 5分) して、 微細藻 類を回収する。 微細藻類をボルテックスして分散させ、 ジメチルスルホキシ ド (DM S O) を 5 m l加えて分散して、 3 0分間遮光静置した。 その後、 7 0 °Cの恒温槽で 1 0分間、 加熱処理し、 遠心分離で DM S O画分を回収し た。 沈殿部分が着色している場合、 さらに DM S Oを 5 m 1添加して、 上記 操作を繰り返す。 この操作は、 細胞の色が白色になるまで、 繰り返す。 回収 した DMSO画分を併せ、 672 nmの吸光度を、 分光光度計 (日立分光光 度計 U— 3210) を用いて測定する。 クロロフィルの濃度は、 以下の式で 求められる。
クロロフィル濃度 gZm l ) =13. 9 X希釈倍率 X吸光度
(キサントフィルの測定)
培養液を 5ml採取し、 遠心分離 (3500 r pm、 5分) して、 微細藻 類を回収する。 微細藻類をボルテックスして分散させ、 5質量%のKOHを 含む 30 (v/v) %メタノール水溶液を 5m 1加えて、 緑藻をボルテック スし、 分散させ、 70°Cの恒温水槽で 10分間処理する。 この処理により、 クロロフィルが分解される。 再度、 遠心分離 (3500 r pm、 5分) を行 い、 沈殿を回収する。 ボルテックス後、 酸 (例えば酢酸) を用いて、 残留ァ ルカリを中和する。 中和後、 DMSOを5ml'加ぇ、 20分間遮光静置し、 さらに 70°Cで 10分間、 処理する。 遠心分離 (3500 r pm、 5分) に より、 上清を回収する。 沈殿部分が着色している場合、 さらに DMSOを 5 m l添加して、 上記操作を繰り返す。 この操作を細胞の色が白色になるまで、 繰り返す。 回収した DMSO画分を併せ、 492 nmの吸光度を測定する。 キサントフィルの濃度は、 以下の式で求められる。
キサントフィル濃度 (/ gZni l ) =4. 5 X希釈倍率 X吸光度 なお、 以下の実施例で使用するへマトコッカス ·プルビアリスが生産する キサントフィルは、 ほとんどがァスタキサンチンである。 上記キサントフィ ルの測定方法がァスタキサンチンの測定にも適用される。
(微細藻類の乾燥質量) 所定量の培養液を採取し、 GC 50ガラス繊維ろ紙 (TOYO ' ADVA NT EC製) 上で吸引濾過し、 無機塩類を溶解するため、 pH4の塩酸水溶 液 5 m 1で 2回洗浄した。 その後、 ろ紙ごと、 105 °Cの恒温乾燥機で 3時 間乾燥させ、 真空デシケーター中で 1時間、 室温まで冷却し、 乾燥質量を測 定した。 なお、 GC 50ガラス繊維ろ紙は、 予め、 上記恒温乾燥機で、 10 5°C、 1時間乾燥させて、 その質量を測定しておいた。 ,
(実施例 1 )
(前培養:増殖のためのシスト化細胞の取得)
Figure imgf000014_0001
ンを生産するへマトコッカ ス ·プルビアリス K0084株 (以下、 単に K0084株という) を用いた。 1. 5 L、 ライトパス 25 mmの密閉式扁平培養瓶に、 以下の表 1に示す M BG- 1 1培地を 1 L入れ、 初発の濃度が 0. 6 gZLとなるように K00 84株を接種した。 なお、 MBG— 1 1培地の N/P比は 20である。
Figure imgf000014_0002
3容積%の C〇2を含むガスを 600m 1 /分の速度で (すなわち、 0. 6 v vmで) 通気しながら、 培養温度 25°C、 p Hを 6〜 8の間で調整し、 以下に示す光照射条件下で 5日間培養した。
光照射は、 光源として白色蛍光灯 (National製、 F L 40 S SW/37) を用いた。 光照射の強度は、 L I COR— 190 S A平面光量子センサーを 用いて測定した培養槽受光方向の P P FDが 100 μπιο 1一 p/m2 sと なるように、 光照射の強度を調整した。
培養後の K0084株は、 緑色から、 茶色ないし茶褐色に変色しており、 シス ト化したことが確認された。 このシスト化した K0084株は、 乾燥質 量あたり 1. 2%のァスタキサンチンを含有していた。 この方法で得られた、 栄養培地への接種に用いるシスト化細胞の顕微鏡写真を図 1に示す。
(本培養:シスト化細胞の増殖および増殖した細胞のシスト化)
上記と同じ扁平培養瓶を用い、 同じ培地 (MBG—l 1培地) に、 初発の 濃度が 0. 6 gZLとなるようにシスト化した K0084株を接種し、 上記 と同じ培養条件で培養した。
培養の経過を、 図 1〜4および図 5を参照しながら説明する。 培養開始時 の K0084株は、 図 1に示すように褐色をしており、 上記のように、 ァス タキサンチンの含有量は約 1. 2%であった。 培養開始後、 図 5 (c) およ び (d) に示すように、 ァスタキサンチンの含有率 (乾燥藻体あたりのァス タキサンチン含量) はいつたん低下するのに対して、 クロロフィルの含有率 (乾燥藻体あたりのクロロフィル量) は上昇する。 そして、 約 50時間目か らは、 これが反転する。 すなわち、 50時間目以降、 ァスタキサンチンの含 有率は上昇に転じ、 クロロフィルの含有率は減少に転じる。 この 50時間目 は、 増殖が停止し、 シスト化に転じる時期と思われる。
50時間目の細胞の顕微鏡写真を図 2に示す。 図 2からわかるように、 シ スト化したへマトコッカス細胞は、 赤色を帯びた遊走子を含んでいる。 この 遊走子が放出され、 栄養細胞に変化していることもわかる。 すなわち、 遊走 子から生じた細胞の細胞壁の内側にクロロフィルの蓄積と思われる緑色の層 が見られた。
さらに培養を続けると、 ァスタキサンチン含有率は徐々に上昇し、 クロ口 フィルは減少する。 培養開始から 2 0 0時間目の細胞の顕微鏡写真を図 3に、 3 5 0時間目の顕微鏡写真を図 4に示す。 2 0 0時間経過した図 3の細胞は 細胞のサイズが大きくなるとともに、 細胞の内側に形成された緑層 (クロ口 フィル層) のさらに内側に褐色のァスタキサンチンが蓄積していることがわ かる。 3 5 0時間目には、 さらに細胞のサイズが増大し、 細胞壁の内側が赤 色の内容物で占められていることがわかる。 これらの経過は、 図5 (A) の 細胞濃度の経時的増加、 図 5 ( B ) のァスタキサンチン濃度の経時的増加と よく一致する。 3 5 0時間目の培養結果を表 2に示す。
(比較例 1 )
K 0 0 8 4株のシスト化していない栄養細胞を MB G— 1 1培地に接種し たこと以外は実施例 1と同様にして、 3 5 0時間培養した。 結果を表 2に示 す。 , 表 2
Figure imgf000016_0001
表 2からわかるように、 シス ト化した微細藻類 (へマトコッカス).を接種 して増殖させ、 シスト化させることにより、 栄養細胞を接種して増殖させて た場合に比べて、 ァスタキサンチンの濃度および含有率が高くなることがわ かる。 (実施例 2)
シスト化した微細藻類を栄養培地で増殖させ、 ついで、 シスト化培地に移 し替える 2段階培養について、 検討した。
以下の表 3に示す培地を調製した。 表 3の BG— 11培地は、 実施例 1の 1段階培養に用いた MB G— 1 1培地の硝酸カリウム (KN〇3) 0. 41 gの代わりに、 硝酸ナトリウムを 1. 5 gZL含む富栄養培地である。 一方、 NBG— 1 1培地は、 硝酸ナトリゥムあるいは硝酸力リゥムという窒素源を 含まず、 また、 リンも含まない、 シスト化培地である。 表 3
Figure imgf000017_0001
実施例 1と同一条件で培養し、 シスト化した K0084株を回収し、 洗浄 して、 表 3の BG—11培地 1 Lに、 初発の濃度が 0. 6 gZLとなるよう に接種し、 PPFDが 300 /zmo 1 -p/m2 sとなるように、 光照射の 強度を調整したこと以外は実施例 1と同様の培養条件で、 培養を開始した。 120時間 (5日) 後に K0084株を回収し、 NBG— 1 1.培地 (シス ト 化用培地) に接種して、 同じ扁平培養瓶を用い、 同じ培養条件でさらに培養 を,継続した。 400時間培養後の結果を表 4に示す。
(実施例 3)
一方、 培地として MBG— 1 1を用い、 PPFDが 300 μπιο 1 - / m2 sとなるように光照射の条件を調整したこと以外は実施例 1と同様の培 養条件で、 シスト化細胞を接種して 1段階で培養を行った。 400時間培養 後の結果を表 4に示す。
(比較例 2)
栄養細胞を B G— 1 1培地に接種したこと以外は、 実施例 2と同様にして. 2段階培養を行つ fこ。 400時間培養後の結果を表 4に示す。 表 4
Figure imgf000018_0001
*1) 乾燥藻体あたりのキサントフィル含量 この結果は、'シスト化した微細藻類あるいはァスタキサンチンを含む微細 藻類を増殖させ、 シスト化させることにより、 ァスタキサンチン含量が高い 微細藻類を得ることができることを示している。 そして、 1段階培養法およ ぴ 2段階培養法のいずれの方法も、 ァスタキサンチン含量の高い微細藻類を 得る方法として、 有用であることを示している。 産業上の利用可能性
本発明は、 キサントフィルを含有する微細藻類、 例えば、 シスト化した微 細藻類を接種して増殖させ、 シスト化させることにより、 キサントフィルを 高濃度で含有する、 シスト化した微細藻類が得られる。 また、 得られたシス ト化した微細藻類の一部は、 次の培養に用いられる。 そのため、 微細藻類に よる、 効率的なキサントフィルの培養生産方法として、 産業上有用である。

Claims

請求の範囲
1 . 光合成微細藻類からキサントフィルを製造する方法であって、
キサントフィルを含有する光合成微細藻類を栄養培地に接種して増殖させ る工程;および、 該増殖した微細藻類をシスト化させる工程を含む、 方法。
2 . 前記キサントフィルを含有する光合成微細藻類が、 シスト化された光合 成微細藻類である、 請求項 1に記載の方法。
3 . 前記増殖工程およびシスト化工程が同一培養槽内で行なわれる、 請求項 1または 2に記載の方法。
4 . 前記増殖工程およびシスト化工程が、 低栄養培地を用いて行われる、 請 求項 1から 3のいずれかの項に記載の方法。
5 . 前記増殖工程おょぴシスト化工程が回分培養で行われる、 請求項 1から 4のいずれかの項に記載の方法。
6 . 前記増殖工程およびシスト化工程が、 それぞれ異なる培地を用いて行な われる、 請求項 1または 2に記載の方法。
7 . 前記増殖工程およびシスト化工程が、 それぞれ回分培養で行なわれる、 請求項 6に記載の方法。
8 . 前記増殖工程およびシスト化工程が、 光照射下行われる、 請求項 1から 7のいずれかの項に記載の方法。
9. 前記微細藻類がへマトコッカス属に属する緑藻である、 請求項 1から 8 のいずれかの項に記載の方法。
10. 前記緑藻がへマトコッカス 'プルビアリスである、 請求項 1から 9の いずれかの項に記載の方法。
1 1. 前記キサントフィルがァスタキサンチンである、 請求項 1から 10の いずれかの項に記載の方法。
12. キサントフィルを含有する遊走子を有する光合成微細藻類。
PCT/JP2005/008274 2004-05-26 2005-04-22 キサントフィルの製造方法 WO2005116238A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006513831A JPWO2005116238A1 (ja) 2004-05-26 2005-04-22 キサントフィルの製造方法
US10/578,096 US7566551B2 (en) 2004-05-26 2005-04-22 Method of producing xanthophyll
EP05736917A EP1749890A1 (en) 2004-05-26 2005-04-22 Method of producing xanthophyll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-156098 2004-05-26
JP2004156098 2004-05-26

Publications (1)

Publication Number Publication Date
WO2005116238A1 true WO2005116238A1 (ja) 2005-12-08

Family

ID=35450901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008274 WO2005116238A1 (ja) 2004-05-26 2005-04-22 キサントフィルの製造方法

Country Status (5)

Country Link
US (1) US7566551B2 (ja)
EP (1) EP1749890A1 (ja)
JP (1) JPWO2005116238A1 (ja)
CN (1) CN1878872A (ja)
WO (1) WO2005116238A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760157A1 (en) 2005-09-06 2007-03-07 Yamaha Hatsudoki Kabushiki Kaisha Green algae having a high astaxanthin content and method for producing the same
WO2018043146A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
WO2018043147A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
JP2018530321A (ja) * 2015-09-11 2018-10-18 ウニベルジテート ツー ケルン アスタキサンチン製造のためのヘマトコッカスの培養方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254056A1 (en) * 2005-09-06 2008-10-16 Yamaha Hatsudoki Kabushiki Kaisha Green Alga Extract with High Astaxanthin Content and Method of Producing the Same
US20120156669A1 (en) 2010-05-20 2012-06-21 Pond Biofuels Inc. Biomass Production
US11512278B2 (en) 2010-05-20 2022-11-29 Pond Technologies Inc. Biomass production
US8889400B2 (en) 2010-05-20 2014-11-18 Pond Biofuels Inc. Diluting exhaust gas being supplied to bioreactor
US8940520B2 (en) 2010-05-20 2015-01-27 Pond Biofuels Inc. Process for growing biomass by modulating inputs to reaction zone based on changes to exhaust supply
US8969067B2 (en) 2010-05-20 2015-03-03 Pond Biofuels Inc. Process for growing biomass by modulating supply of gas to reaction zone
CN102094061B (zh) * 2010-12-01 2015-07-01 华东理工大学 一种利用微藻生产叶黄素的方法
US20120276633A1 (en) 2011-04-27 2012-11-01 Pond Biofuels Inc. Supplying treated exhaust gases for effecting growth of phototrophic biomass
US9534261B2 (en) 2012-10-24 2017-01-03 Pond Biofuels Inc. Recovering off-gas from photobioreactor
WO2014074770A2 (en) 2012-11-09 2014-05-15 Heliae Development, Llc Balanced mixotrophy methods
WO2014074772A1 (en) 2012-11-09 2014-05-15 Heliae Development, Llc Mixotrophic, phototrophic, and heterotrophic combination methods and systems
CN103044303B (zh) * 2012-12-19 2014-06-04 广州优锐生物科技有限公司 利用酶生产虾青素的方法
US20160201007A1 (en) * 2013-07-02 2016-07-14 Bio.Te.Ma. S.R.L. Process of production of oil from microalgae
CN107868811A (zh) * 2017-11-13 2018-04-03 湖南农业大学 营养型定向调控雨生红球藻厚壁孢子增殖破壁提取虾青素的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739389A (ja) * 1993-07-30 1995-02-10 Higashimaru Shoyu Kk アスタキサンチンの製造方法
JP2001061466A (ja) * 2000-07-31 2001-03-13 Higashimaru Shoyu Co Ltd アスタキサンチンの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4045663B2 (ja) 1998-08-27 2008-02-13 大日本インキ化学工業株式会社 アスタキサンチン含有ヘマトコッカスの製造方法
JP2004129504A (ja) 2002-10-08 2004-04-30 Suntory Ltd アスタキサンチン含有脂質の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739389A (ja) * 1993-07-30 1995-02-10 Higashimaru Shoyu Kk アスタキサンチンの製造方法
JP2001061466A (ja) * 2000-07-31 2001-03-13 Higashimaru Shoyu Co Ltd アスタキサンチンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKIO FURUBAYASHI ET AL.: "Ryokuso Haematococcus pluvialis no Astaxanthin Seigosei ni okeru Hikari Izonsei", SEIBUTSU KOGAKKAISHI, vol. 71, no. 4, 1993, pages 233 - 237 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760157A1 (en) 2005-09-06 2007-03-07 Yamaha Hatsudoki Kabushiki Kaisha Green algae having a high astaxanthin content and method for producing the same
JP2018530321A (ja) * 2015-09-11 2018-10-18 ウニベルジテート ツー ケルン アスタキサンチン製造のためのヘマトコッカスの培養方法
JP2021100437A (ja) * 2015-09-11 2021-07-08 ウニベルジテート ツー ケルン アスタキサンチン製造のためのヘマトコッカスの培養方法
US11085014B2 (en) 2015-09-11 2021-08-10 Universitat Zu Koln Method of culturing Haematococcus species for manufacturing of astaxanthin
JP7242742B2 (ja) 2015-09-11 2023-03-20 アド アストラ エフ アスタキサンチン製造のためのヘマトコッカスの培養方法
WO2018043146A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法
WO2018043147A1 (ja) 2016-09-01 2018-03-08 昭和電工株式会社 光合成微細藻類の培養方法

Also Published As

Publication number Publication date
US7566551B2 (en) 2009-07-28
EP1749890A1 (en) 2007-02-07
US20070092932A1 (en) 2007-04-26
JPWO2005116238A1 (ja) 2008-04-03
CN1878872A (zh) 2006-12-13

Similar Documents

Publication Publication Date Title
WO2005116238A1 (ja) キサントフィルの製造方法
CN110484451B (zh) 一种促进雨生红球藻生长和积累虾青素的方法
US20040077036A1 (en) Process to produce astaxanthin from haematococcus biomass
JP2007097584A (ja) アスタキサンチン含有量の高い緑藻およびその製造方法
JP6158427B2 (ja) アスタキサンチンの生産方法
CN1928066A (zh) 虾青素含量高的绿藻及其制造方法
CN108410939A (zh) 一种提高雨生红球藻中虾青素含量的方法
WO2007029627A1 (ja) アスタキサンチン含量の高い緑藻抽出物およびその製造方法
CN104404118B (zh) 一种利用海水促进雨生红球藻生产天然虾青素的方法
WO2010044469A1 (ja) カロテノイドの発酵法
WO2018043146A1 (ja) 光合成微細藻類の培養方法
US20220340950A1 (en) Method for culturing haematococcus pluvialis to produce astaxanthin
Zhang et al. Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1
KR20160114102A (ko) 피코시아닌의 합성에서의 개선
CN112266945A (zh) 一种从红法夫酵母提取虾青素的方法
WO2003033683A1 (fr) Micro-organismes et production de composes de carotinoide
WO2018043147A1 (ja) 光合成微細藻類の培養方法
JP2000060532A (ja) アスタキサンチン含有ヘマトコッカスの製造方法
WO2018056160A1 (ja) アスタキサンチンの生産方法
CN107034151B (zh) 鞘氨醇单胞菌及用其生产类胡萝卜素的方法
RU2631803C2 (ru) Способ культивирования клеток дрожжей Phaffia rhodozyma для получения белково-витаминной добавки, содержащей каротиноид астаксантин
CN106834405B (zh) 一种添加胡萝卜汁诱导雨生红球藻高效积累虾青素的方法
CN105695550B (zh) 一种高密度培养植物乳杆菌生产虾青素的方法
JP2003319795A (ja) スラウストキトリウムによるカロチノイドの製造法
CN113846044A (zh) 一种同时提高雨生红球藻干重和虾青素含量的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001216.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513831

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005736917

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2007092932

Country of ref document: US

Ref document number: 10578096

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005736917

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10578096

Country of ref document: US