WO2010044469A1 - カロテノイドの発酵法 - Google Patents

カロテノイドの発酵法 Download PDF

Info

Publication number
WO2010044469A1
WO2010044469A1 PCT/JP2009/067935 JP2009067935W WO2010044469A1 WO 2010044469 A1 WO2010044469 A1 WO 2010044469A1 JP 2009067935 W JP2009067935 W JP 2009067935W WO 2010044469 A1 WO2010044469 A1 WO 2010044469A1
Authority
WO
WIPO (PCT)
Prior art keywords
carotenoid
added
medium
culture
acid
Prior art date
Application number
PCT/JP2009/067935
Other languages
English (en)
French (fr)
Inventor
和明 平澤
章 坪倉
博 佐藤
哲久 矢田
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to AU2009304688A priority Critical patent/AU2009304688B2/en
Priority to JP2010533939A priority patent/JP5714907B2/ja
Priority to CA2740967A priority patent/CA2740967C/en
Priority to CN200980140867.4A priority patent/CN102186984B/zh
Priority to NZ592213A priority patent/NZ592213A/xx
Priority to US13/124,304 priority patent/US8993282B2/en
Priority to EP09820647.7A priority patent/EP2345736B1/en
Priority to KR1020117011061A priority patent/KR101392066B1/ko
Publication of WO2010044469A1 publication Critical patent/WO2010044469A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a method for microbiological production of carotenoids.
  • the present invention relates to carotenoids such as astaxanthin, canthaxanthin, zeaxanthin, ⁇ -cryptoxanthin, lycopene, ⁇ -carotene, phenicoxanthine, adonixanthin, echinone, asteroidenone and 3-hydroxyechinenone.
  • the present invention relates to a method for producing by microbial fermentation.
  • Carotenoids are natural pigments that are useful as feed additives, food additives, pharmaceuticals, and the like.
  • Examples of carotenoids include astaxanthin, canthaxanthin, zeaxanthin, ⁇ -cryptoxanthin, lycopene, ⁇ -carotene, phenicoxanthine, adonixanthin, echinone, asteroidenone and 3-hydroxyechinenone.
  • astaxanthin is useful as a feed additive such as a body color improving agent for salmon, trout, red sea bream, etc., which are cultured fish, and an egg yolk improving agent for poultry.
  • astaxanthin has high industrial value as a safe natural food additive and health food material.
  • Adonixanthin and phenicoxanthin are expected to be used as feed additives, food additives, pharmaceuticals, etc., as in the case of astaxanthin, by establishing an industrial production method.
  • ⁇ -carotene is used as a feed additive, food additive, pharmaceutical, etc.
  • canthaxanthin is used as a feed additive, food additive, cosmetics, etc.
  • zeaxanthin is used as a food additive, feed additive, etc. ing.
  • lycopene, echinenone, ⁇ -cryptoxanthin, 3-hydroxyechinenone, asteroidenone and the like are also expected to be used as feed additives and food materials.
  • Known methods for producing these carotenoids include chemical synthesis methods, extraction methods from natural products, and production methods using microorganisms.
  • Astaxanthin produced by these chemical synthesis methods is sold as a feed additive. Astaxanthin is present in fishes such as red sea bream and salmon, and crustaceans such as shrimp, crab and krill, and can be extracted from these.
  • Patent Document 1 JP 2007-97584
  • Patent Document 2 JP 11-69969A
  • Parenter genus bacteria A fermentation method using bacteria (hereinafter also referred to as “Paracoccus genus bacteria”) has been reported.
  • Examples of bacteria belonging to the genus Paracoccus that produce astaxanthin include the E-396 strain and the A-581-1 strain (Patent Document 3: JP-A-7-79796 and Non-Patent Document 3: International Journal of Systematic Bacteriology ( 1999), 49, 277-282).
  • Other astaxanthin-producing bacteria belonging to the genus Paracoccus include Paracoccus marcusii MH1 strain (Patent Document 4: Special Table 2001-512030), Paracoccus haeundaensis BC74171 strain (Non-Patent Document 4: International Journal of Systematic and Evolutionary Microbiology (2004)).
  • Patent Document 5 JP 2007-244205
  • Non-Patent Document 5 International Journal of Systematic and Evolutionary Microbiology (2003), 53, 231- 238) and Paracoccus sp. PC-1 strain
  • Patent Document 6 WO 2005/118812
  • the carotenoid production method described above has several problems.
  • the chemical synthesis method gives an unfavorable impression to consumers from the viewpoint of safety.
  • extraction from natural products is expensive to manufacture.
  • carotenoids are difficult to extract due to low productivity and a strong cell wall.
  • Patent Document 7 discloses a method of adding an iron salt during culturing
  • Patent Document 8 discloses a method of limiting the carbon source concentration. Since this method uses a large amount of expensive yeast extract as a medium raw material, it is not commercially and industrially practical.
  • JP 2007-97584 A Japanese Patent Laid-Open No. 11-69969 Japanese Unexamined Patent Publication No. 7-79796 Special table 2001-512030 gazette JP 2007-244205 A International Publication No. 2005/118812 Pamphlet JP 2007-143492 A JP 2008-167665 A
  • the present invention has been made in view of such a situation, and an object thereof is to provide a method for microbiologically producing carotenoids with high yield and low cost.
  • the present inventors have further added an amino acid such as sodium glutamate or a salt thereof to a medium usually used for culturing bacteria in culturing bacteria producing carotenoids.
  • an amino acid such as sodium glutamate or a salt thereof
  • the present invention A method for producing a carotenoid, comprising culturing a carotenoid-producing bacterium using a medium to which an amino acid is added, and collecting the carotenoid from the resulting culture,
  • the present invention relates to the method, wherein the amino acid is at least one selected from the group consisting of glutamic acid, aspartic acid, glutamine, asparagine, alanine, glycine, serine, threonine, arginine, tyrosine, proline, phenylalanine and leucine, and salts thereof.
  • the amino acid is preferably glutamic acid or glutamate.
  • the concentration of amino acid added is, for example, 1 mmol / L to 200 mmol / L.
  • the “additional concentration of amino acid” means the concentration of amino acid achieved in the medium to which the amino acid is added (that is, the concentration of the added amino acid in the medium).
  • the carotenoid is, for example, from the group consisting of astaxanthin, canthaxanthin, zeaxanthin, ⁇ -cryptoxanthin, lycopene, ⁇ -carotene, phenicoxanthine, adonixanthin, echinenone, asteroidenone and 3-hydroxyechinenone. At least one selected.
  • bacteria belonging to the genus Paracoccus are preferably used.
  • the bacterium may be a bacterium in which the base sequence of DNA corresponding to 16S ribosomal RNA has 95% or more homology with the base sequence described in SEQ ID NO: 1.
  • the bacterium is preferably the E-396 strain (FERM BP-4283), the A-581-1 strain (FERM BP-4671) or a mutant thereof.
  • the present invention makes it possible to produce carotenoids with high concentration more efficiently.
  • the present invention also makes it possible to produce carotenoids microbiologically at low cost.
  • the present invention relates to a method for producing carotenoids by culturing carotenoid-producing bacteria, and this method is characterized by adding a predetermined amino acid to a medium.
  • the method of the present invention makes it possible to produce a high concentration of carotenoid more efficiently and at low cost.
  • the bacterium used in the present invention is not limited as long as it is a carotenoid-producing bacterium, but a bacterium belonging to the genus Paracoccus is preferably used.
  • a bacterium belonging to the genus Paracoccus is preferably used.
  • bacteria belonging to the genus Paracoccus Paracoccus carotinifaciens, Paracocccus marcusii, Paracocccus haeundaensis and Paracocccus zeaxanthinifaciens are preferably used, and Paracocccus carotinifaciens is particularly preferably used.
  • bacteria belonging to the genus Paracoccus include Paracoccus oc carrotinifaciens E-396 strain and Paracoccus genus A-581-1 strain (FERM BP-4671), and these strains are also preferably used in the present invention. .
  • the carotenoid-producing bacterium preferably used is a bacterium whose base sequence of DNA corresponding to 16S ribosomal RNA is highly homologous to the base sequence of E-396 strain described in SEQ ID NO: 1.
  • “having high homology” means, for example, that the base sequence corresponding to the bacterium compared with the base sequence described in SEQ ID NO: 1 is preferably 95% or more, more preferably 96% or more, More preferably, it means 97% or more, particularly preferably 98% or more, and most preferably 99% or more homology.
  • the base sequence of DNA corresponding to 16S ribosomal RNA means a base sequence in which U (uracil) in the base sequence of 16S ribosomal RNA is replaced with T (thymine).
  • U uracil
  • T thymine
  • the classification method of microorganisms based on the homology of the base sequence of 16S ribosomal RNA has become mainstream.
  • Conventional classification methods for microorganisms are based on mycological properties such as motility, nutritional requirements, and sugar assimilation of the microorganism. There was a case of misclassification.
  • the base sequence of 16S ribosomal RNA is extremely genetically stable, the classification method based on the homology significantly improves the classification reliability compared to the conventional classification method.
  • the homology of Paracoccus ⁇ ⁇ ⁇ zeaxanthinifaciens ATCC 21588 strain and Paracoccus sp. ⁇ PC-1 strain with the base sequence of 16S ribosomal RNA is 99.7%, 99.7%, 99.6%, 99.4%, 95.95, respectively.
  • these strains form one group as bacteria producing carotenoids. For this reason, these strains are preferably used in the present invention and can efficiently produce carotenoids.
  • mutant strains with improved carotenoid productivity can also be used.
  • improved mutant strains include strains with high astaxanthin-producing ability (JP 2001-95500), strains that selectively produce canthaxanthin (JP 2003-304875), zeaxanthin and ⁇ -cryptoxanthin Strains that produce a large amount (JP 2005-87097) and strains that selectively produce lycopene (JP 2005-87100).
  • Mutants with improved carotenoid productivity can be obtained by mutation treatment and screening.
  • the method for mutation treatment is not particularly limited as long as it induces mutation.
  • chemical methods with mutants such as N-methyl-N′-nitro-N-nitrosoguanidine (NTG) and ethyl methanesulfonate (EMS), physical methods such as ultraviolet irradiation and X-ray irradiation, genetic recombination and Biological methods such as transposon can be used.
  • the bacterium to be mutated is not particularly limited, but is preferably a carotenoid-producing bacterium.
  • the mutant strain may be generated by a naturally occurring mutation.
  • the screening method for mutant strains is not particularly limited.
  • the mutant strain is cultured in a test tube, flask, fermentor, etc.
  • examples thereof include a method of selecting a target mutant strain by carotenoid dye analysis using liquid chromatography, thin layer chromatography, or the like.
  • the mutation and screening steps may be performed once, or a mutant strain is obtained by, for example, mutation treatment and screening, and a mutant strain with improved productivity is obtained by further mutation treatment and screening. Mutation and screening steps may be repeated more than once.
  • the E-396 strain mentioned as an example of the carotenoid-producing bacterium used in the present invention is deposited internationally as follows in the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology. International Depositary Authority: National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Former Name: Institute of Biotechnology, Institute of Industrial Science and Technology, Ministry of International Trade and Industry) 305-8566 Tsukuba City, Ibaraki Pref. Display for identification: E-396 Accession Number: FERM BP-4283 Original deposit date: April 27, 1993
  • A-581-1 strain mentioned as another example of the carotenoid-producing bacterium used in the present invention has been deposited internationally with the above organization as follows. Display for identification: A-581-1 Accession Number: FERM BP-4671 Original deposit date: May 20, 1994
  • the carotenoid produced by the method of the present invention is not particularly limited.
  • astaxanthin canthaxanthin, zeaxanthin, ⁇ -cryptoxanthin, lycopene, ⁇ -carotene, phenicoxanthine, adonixanthin, echinenone, asteroidenone or 3 -Hydroxyequenone, preferably astaxanthin, canthaxanthin, zeaxanthin or ⁇ -cryptoxanthin, more preferably astaxanthin, zeaxanthin or ⁇ -cryptoxanthin.
  • One kind of carotenoid produced from the present invention may be used, or a plurality of kinds may be combined.
  • the carotenoid production medium used for the culture of the present invention is not particularly limited as long as it is an amino acid-added medium to which a predetermined amino acid is added, and carotenoid-producing bacteria grow and produce carotenoids.
  • a medium containing a source, a nitrogen source, inorganic salts and, if necessary, vitamins is preferably used. That is, in the present invention, amino acids are added to a medium (for example, a standard carotenoid production medium) in which carotenoid-producing bacteria grow and can produce carotenoids.
  • Examples of the carbon source include sugars such as glucose, sucrose, lactose, fructose, trehalose, mannose, mannitol and maltose, and organic acids such as acetic acid, fumaric acid, citric acid, propionic acid, malic acid, malonic acid and pyruvic acid. , Alcohols such as ethanol, propanol, butanol, pentanol, hexanol, isobutanol and glycenol, and fats and oils such as soybean oil, nuka oil, olive oil, corn oil, sesame oil and linseed oil, among which glucose or Sucrose is used. Among these carbon sources, one type or two or more types can be used. The amount to be added to the medium prior to culture (starting medium) varies depending on the type of carbon source and may be adjusted as appropriate. In addition, the carbon source is preferably added not only to the starting medium, but also to be added continuously or continuously during the culture.
  • the inorganic nitrogen source one or more of ammonium salts such as ammonium nitrate, ammonium sulfate, ammonium chloride and ammonium phosphate, nitrates such as potassium nitrate, ammonia and urea are used.
  • the addition amount varies depending on the type of nitrogen source and may be adjusted as appropriate, but is usually 0.1 to 20 g, preferably 0.2 to 10 g, per 1 L of the medium.
  • the organic nitrogen source for example, one or more kinds of corn steep liquor (including filtered products), pharma media, soybean meal, soybean meal, peanut meal, distillers solver and dry yeast are used. It is done.
  • the addition concentration varies depending on the type of nitrogen source and may be adjusted as appropriate, but is usually 0 to 80 g / L, preferably 0 to 30 g / L.
  • the inorganic nitrogen source and the organic nitrogen source are usually added to the starting medium, but it is also preferable to add them sequentially or continuously.
  • inorganic salts include phosphates such as potassium dihydrogen phosphate, dipotassium hydrogen phosphate and disodium hydrogen phosphate, magnesium salts such as magnesium sulfate and magnesium chloride, iron salts such as iron sulfate and iron chloride, Calcium salts such as calcium chloride, calcium carbonate, sodium salts such as sodium carbonate and sodium chloride, manganese salts such as manganese sulfate, cobalt salts such as cobalt chloride, copper salts such as copper sulfate, zinc salts such as zinc sulfate, molybdic acid
  • molybdenum salts such as sodium, nickel salts such as nickel sulfate, selenium salts such as sodium selenate, boric acid and potassium iodide are used.
  • the addition amount varies depending on the type of inorganic salt and may be adjusted as appropriate, but is usually 0.0001 to 15 g with respect to 1 L of the medium.
  • potassium iodide or the like When potassium iodide or the like is added, 0.1 to 15 mg / L is a preferable concentration.
  • Inorganic salts are usually added to the starting medium, but they may be additionally supplied sequentially or continuously.
  • vitamins for example, cyanocobalamin, riboflavin, pantothenic acid, pyridoxine, thiamine, ascorbic acid, folic acid, niacin, p-aminobenzoic acid, biotin, inositol, choline and the like can be used.
  • the addition ratio varies depending on the type of vitamins and may be adjusted as appropriate, but is usually 0.001 to 1000 mg, preferably 0.01 to 100 mg per 1 L of the medium. Vitamins are usually added to the starting medium, but may be supplemented sequentially or continuously.
  • a feature of the present invention is that a carotenoid-producing bacterium is cultured in a carotenoid-producing amino acid-added medium supplemented with an amino acid.
  • a carotenoid-producing bacterium is cultured in a carotenoid-producing amino acid-added medium supplemented with an amino acid.
  • the amino acid used in the present invention is not an amino acid contained in a natural mixture having a complicated composition such as casamino acid, yeast extract, or peptone, but a pure product (single product) that is purified to some extent, that is, an isolated product.
  • a natural mixture may contain not only effective amino acids but also unnecessary or inhibitory components, and the composition may vary from lot to lot. Furthermore, natural mixtures such as casamino acid, yeast extract, and peptone are expensive and thus have low industrial utility value.
  • the purity of the purified amino acid is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and particularly preferably 99% or more.
  • the amino acid used in the present invention may contain components other than the amino acid to such an extent that the growth of the carotenoid producing bacterium is not inhibited or the production of the carotenoid of the carotenoid producing bacterium is not inhibited.
  • the amino acid used in this case is preferably a pure amino acid that does not contain other components such as impurities, but is not purified (for example, an amino acid having a purity of less than 90%) as long as the production of the carotenoid is not inhibited. ).
  • glutamic acid, aspartic acid, glutamine, asparagine, alanine, glycine, serine, threonine, arginine, tyrosine, proline, phenylalanine or leucine, or a salt thereof is preferably used.
  • These amino acids are preferably L-form, but may be a mixture of L-form and D-form. More preferred is glutamic acid, aspartic acid, glutamine or asparagine or a salt thereof, and further preferred is glutamic acid or aspartic acid or a salt thereof. Of these, glutamic acid or a salt thereof is preferable because it has a high carotenoid production effect.
  • Sodium L-glutamate or a hydrate thereof is particularly preferably used because it is inexpensive.
  • the salt with an acid include inorganic acid salts such as hydrochloride, hydrobromide, sulfate and phosphate, and organic acid salts such as formic acid, acetic acid and lactic acid.
  • salts with bases include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts and magnesium salts, organic base salts such as trimethylamine, triethylamine and pyridine, ammonium salts, and the like. Can do.
  • the amino acid added to the carotenoid production medium is at least one of the above amino acids, and may be one, or two or more amino acids can be added.
  • cysteine, lysine, isoleucine and methionine have an inhibitory effect on the production of carotenoids. In the present invention, it is preferable to add amino acids not containing these to the medium.
  • Amino acids are usually added to the starting medium, but may be added intermittently or continuously during the culture, or may be added intermittently or continuously during the cultivation after addition to the starting medium.
  • the amino acid addition concentration (that is, the concentration of the amino acid to be added in the medium) in the method of the present invention is not particularly limited, but is preferably 1 mmol / L or more, more preferably 3 mmol / L or more, further preferably 5 mmol / L or more, particularly Preferably it is 10 mmol / L, and most preferably 15 mmol / L or more.
  • the amino acid addition concentration is preferably 200 mmol / L or less, more preferably 150 mmol / L or less, still more preferably 100 mmol / L or less, even more preferably 80 mmol / L or less, particularly preferably 60 mmol / L or less, Most preferably, it is 50 mmol / L or less. Therefore, in the present invention, the amino acid addition concentration is, for example, 1 mmol / L to 200 mmol / L.
  • an antifoaming agent is preferably used in order to suppress foaming of the culture solution.
  • the type of the antifoaming agent is not particularly limited as long as it has an action of suppressing the generation of foam or eliminating the generated foam and has a small inhibitory action on the producing bacteria. Examples thereof include alcohol-based antifoaming agents, polyether-based antifoaming agents, ester-based antifoaming agents, fatty acid-based antifoaming agents, silicon-based antifoaming agents, and sulfonic acid-based antifoaming agents.
  • the amount added varies depending on the type of antifoaming agent and may be adjusted as appropriate, but is usually 0.01 g to 10 g per 1 L of the medium.
  • Antifoam is usually added to the starting medium before sterilization. Furthermore, you may add an antifoamer continuously or intermittently during culture
  • a method of adding an antifoaming agent during the culture a method of automatically adding bubbles by sensing with a sensor, a method of adding at a fixed time with a program timer, a carbon source for feed, a nitrogen source in conjunction with the growth rate Or the method of mixing and adding with a pH adjuster etc. can be illustrated.
  • the antifoaming agent added to the initial culture medium and the antifoaming agent added to the culture medium during the culture may be the same, but different types may be used according to the action.
  • the initial pH of the amino acid-added medium supplemented with amino acids is adjusted to 2 to 12, preferably 6 to 9, and more preferably 6.5 to 8.0. It is preferable to maintain the pH in the above range during the culture.
  • the pH adjuster include sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, sodium carbonate aqueous solution, ammonia water, ammonia gas, sulfuric acid aqueous solution or a mixture thereof.
  • the amino acid-added medium is sterilized and then used for bacterial culture.
  • a person skilled in the art can appropriately perform the sterilization treatment.
  • the medium in a suitable container may be heat sterilized with an autoclave. Or what is necessary is just to sterilize by filtration with a sterilization filter.
  • the carotenoid-producing bacterium is inoculated in the amino acid-added medium prepared as described above and cultured under predetermined conditions. Inoculation is performed by appropriately increasing the number of strains by seed culture using a test tube, flask, fermenter, or the like, and adding the obtained culture to an amino acid-added medium for carotenoid production.
  • the medium used for seed culture is not particularly limited as long as it is a medium in which carotenoid-producing bacteria grow well, whether it is a medium added with a predetermined amino acid or a medium not added with an amino acid.
  • Culture is performed in a suitable culture vessel.
  • the culture vessel can be appropriately selected depending on the culture volume, and examples thereof include a test tube, a flask, and a fermenter.
  • the culture temperature is 15 to 80 ° C., preferably 20 to 35 ° C., more preferably 25 to 32 ° C., usually 1 to 20 days, preferably 2 to 12 days, more preferably 3 to 9 days, aerobic Cultivate under conditions.
  • aerobic conditions include shaking culture or aeration and agitation culture, and it is preferable to control the dissolved oxygen concentration within a certain range.
  • the dissolved oxygen concentration can be controlled, for example, by changing the number of rotations of stirring, the amount of ventilation, the internal pressure, and the like.
  • the dissolved oxygen concentration is preferably controlled to 0.3 to 10 ppm, more preferably 0.5 to 7 ppm, and still more preferably 1 to 5 ppm.
  • the quantification of the carotenoid in the culture obtained by culturing the carotenoid-producing bacteria or the carotenoid collected from the culture through some purification operation can be performed by high performance liquid chromatography.
  • Carotenoid-producing bacteria can be cultured as described above, and carotenoids can be collected from the resulting culture.
  • the culture include a culture solution, a culture supernatant, a cell concentrate, a wet cell, a dry cell, and a cell lysate.
  • the culture supernatant may be prepared by removing the cells from the culture solution by subjecting the culture solution to centrifugation or filtration.
  • the bacterial cell concentrate can be obtained by concentrating the culture solution by centrifugation or membrane filtration.
  • Wet cells can be obtained by centrifuging or filtering the culture solution.
  • the dried cells can be obtained by drying wet cells or cell concentrates by a general drying method.
  • the carotenoid-containing dry cells thus obtained can be used as a feed additive as they are.
  • the method for collecting carotenoids from the culture is not particularly limited, and any method in which carotenoids are stably and efficiently recovered may be used. These methods can be appropriately selected from extraction techniques and purification techniques known
  • one or more treatments may be performed on the culture.
  • the solvent used for extraction and washing is not particularly limited, but lower alcohols such as methanol, ethanol, isopropanol, acetone, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, dichloromethane, chloroform, dimethylform.
  • examples include amide and dimethyl sulfoxide.
  • the treatment may be performed in an inert gas atmosphere such as nitrogen gas.
  • the extract thus obtained can be used as it is as a carotenoid, and can be used after further purification.
  • the method for separating bacteria and the like from the extract after the extraction operation is not particularly limited, and membrane filtration, centrifugation, decantation, and the like are used.
  • Methods for obtaining carotenoid precipitates from extracts generally include heating and / or vacuum concentration and crystallization.
  • the carotenoid pigment may be separated without being concentrated by precipitation of the carotenoid pigment at a low temperature or by precipitation with an acid / alkali agent or various salts. In industrial use, it is desirable to crystallize.
  • the obtained carotenoid precipitate may be suspended and stirred using a small amount of a solvent such as a lower alcohol as necessary for washing.
  • a solvent such as a lower alcohol
  • the method of washing is not particularly limited, and examples include practically preferable methods such as a method of filtering after suspension and stirring or a method of passing liquid from above the precipitate.
  • the cultures, extracts or purified products obtained as described above can be used alone as carotenoids, or can be used by mixing them at an arbitrary ratio.
  • Example 1 Medium having the following composition (sucrose 30 g / L, corn steep liquor 30 g / L, potassium dihydrogen phosphate 1.5 g / L, disodium hydrogen phosphate dodecahydrate 3.8 g / L, calcium chloride dihydrate 5.0 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 0.3 g / L, pH 7.2) 8 ml was placed in a test tube with an inner diameter of 18 mm with a cotton plug at 121 ° C. After sterilization by autoclave for 15 minutes, a test tube medium for seed was prepared.
  • a medium having the following composition (glucose 30 g / L, corn steep liquor filtered product 5 g / L, ammonium sulfate 1.5 g / L, potassium dihydrogen phosphate 1.5 g / L, disodium hydrogen phosphate dodecahydrate 3.8 g / L, calcium chloride dihydrate 5.0 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 0.6 g / L, ester defoamer 0.2 g / L) Twenty-one 21 ml of 18 mm inner diameter test tubes with a cotton plug were prepared.
  • the carotenoid concentration of the culture solution was measured by HPLC, and the cell growth was measured by OD610 (absorbance at 610 nm).
  • OD610 absorbance at 610 nm
  • glutamic acid, aspartic acid, glutamine, asparagine, alanine, glycine, serine, threonine , Arginine, tyrosine, proline, phenylalanine and leucine were found to promote the production of carotenoid pigments.
  • cysteine, lysine, isoleucine and methionine were found to have a clear inhibitory effect on carotenoid production.
  • Example 2 Medium of the following composition (glucose 20 g / L, corn steep liquor filtered 5 g / L, potassium dihydrogen phosphate 0.54 g / L, dipotassium hydrogen phosphate dodecahydrate 2.78 g / L, calcium chloride 2 Hydrate 5.0 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 3.0 g / L, alcohol-based antifoaming agent 0.2 g / L, pH 7.5) 100 ml It put into the 500 mL capacity
  • a medium having the following composition (glucose 40 g / L, corn steep liquor 30 g / L, ammonium sulfate 0.5 g / L, potassium dihydrogen phosphate 2.25 g / L, disodium hydrogen phosphate dodecahydrate 5.7 g / L, calcium chloride dihydrate 0.1 g / L, magnesium sulfate heptahydrate 0.5 g / L, iron sulfate heptahydrate 5 g / L, alcohol-based antifoaming agent 0.5 g / L).
  • Eight were prepared by putting 0 L in a 5 L fermenter. To this, sodium L-glutamate monohydrate was added at 0, 1, 5, 15, 30, 50, 100 and 200 mmol / L, respectively, and autoclaved at 121 ° C. for 30 minutes.
  • Paracoccus carotinifaciens E-396 strain (FERM BP-4283) was inoculated into a seed flask medium with one platinum loop, and cultured at 29 ° C for 2 days at 100 rpm. Inoculated. Aerobic culture at 29 ° C. and aeration volume of 1 vvm was performed for 100 hours. The pH was continuously controlled with 15% aqueous ammonia so that the pH during the culture was maintained at 7.2. Glucose was added in an amount of 30 g each on the first and second days of culture so as not to be depleted. In addition, the stirring speed was changed so that the minimum stirring speed was 200 rpm and the dissolved oxygen concentration in the culture solution was maintained at 2 to 4 ppm. By detecting foaming with a bubble sensor, an alcohol-based antifoaming agent was automatically added to suppress foaming.
  • Example 3 Paracoccus carotinifaciens E-396 strain was mutated with N-methyl-N′-nitro-N-nitrosoguanidine to select colonies with a deep red color.
  • the carotenoid in the culture solution of the selected strain was analyzed, and a mutant Y-1071 strain with improved astaxanthin productivity was selected.
  • a medium having the following composition sucrose 30 g / L, Pharmamedia 20 g / L, ammonium sulfate 1.5 g / L, potassium dihydrogen phosphate 1.5 g / L, disodium hydrogen phosphate dodecahydrate 3.8 g / L, calcium chloride dihydrate 0.1 g / L, magnesium sulfate heptahydrate 4.5 g / L, iron sulfate heptahydrate 5 g / L, biotin 1 mg / L, silicon-based antifoaming agent 1 g / L 2) Two pieces of 8 ml placed in a test tube with a cotton plug having an inner diameter of 18 mm were prepared. Add one soda L-glutamate monohydrate to 30 mmol / L, add nothing to the other for comparison, and finally adjust to pH 7.1 with aqueous sodium hydroxide. And autoclaved at 121 ° C. for 20 minutes.
  • Example 4 Medium having the following composition (glucose 20 g / L, dry yeast 5 g / L, potassium dihydrogen phosphate 1.5 g / L, disodium hydrogen phosphate 12 hydrate 3.8 g / L, calcium chloride dihydrate 0 .1g / L, Magnesium sulfate heptahydrate 0.7g / L, Iron sulfate heptahydrate 3g / L, pH 7.2) 8ml was put into a test tube with a cotton plug with an inner diameter of 18mm and autoclaved at 121 ° C for 15 minutes. Then, a test tube medium for seed was prepared.
  • a medium having the following composition (glucose 40 g / L, ammonium sulfate 1.5 g / L, potassium dihydrogen phosphate 0.54 g / L, dipotassium hydrogen phosphate 2.78 g / L, calcium chloride dihydrate 1 g / L, sodium chloride 3 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 5 g / L, zinc sulfate heptahydrate 2 mg / L, cobalt chloride hexahydrate 2 mg / L, Copper sulfate pentahydrate 1 mg / L, manganese sulfate pentahydrate 4 mg / L, sodium molybdate dihydrate 2 mg / L, nickel sulfate hexahydrate 1 mg / L, sodium selenate 0.5 mg / L, Boric acid 5 mg / L, potassium iodide 1 mg / L,
  • a medium having the following composition (glucose 40 g / L, corn steep liquor 30 g / L, ammonium sulfate 0.5 g / L, potassium dihydrogen phosphate 2.25 g / L, disodium hydrogen phosphate dodecahydrate 5.7 g / L, calcium chloride dihydrate 0.1 g / L, magnesium sulfate heptahydrate 0.5 g / L, iron sulfate heptahydrate 5 g / L, alcohol-based antifoaming agent 0.5 g / L).
  • Two were prepared by putting 0 L in a 5 L fermenter. To one fermentor, sodium L-glutamate monohydrate was added at 15 mmol / L, and nothing was added to one fermentor for comparison. These fermenters were autoclaved at 121 ° C. for 30 minutes.
  • One platinum ear of a Paracoccus genus A-581-1 strain (FERM BP-4671) was inoculated into a seed flask medium and cultured at 27 ° C. for 2 days at 150 rpm, and then 90 mL of the culture solution was added. Each fermentor was inoculated. Aerobic culture at 27 ° C. and aeration volume of 1 vvm was performed for 100 hours. The pH was continuously controlled with a 20% aqueous sodium hydroxide solution so that the pH during the culture was maintained at 7.1. Glucose was added in an amount of 30 g each on the first and second days of culture so as not to be depleted.
  • Example 6 A Paracoccus genus A-581-1 strain (FERM BP-4671) was subjected to mutation treatment by ultraviolet irradiation, and colonies having a deep red color were selected. The carotenoid in the culture solution of the selected strain was analyzed, and a mutant K-185 strain with improved astaxanthin productivity was selected.
  • a medium having the following composition (glucose 30 g / L, soybean meal 20 g / L, ammonium sulfate 1.5 g / L, potassium dihydrogen phosphate 1.5 g / L, disodium hydrogen phosphate dodecahydrate 3.8 g / L, calcium chloride dihydrate 5.0 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 0.6 g / L, ester defoamer 0.2 g / L) 8 ml
  • a test tube with a cotton plug having an inner diameter of 18 mm 8 ml
  • sodium L-glutamate monohydrate was added to a concentration of 30 mmol / L, and for the other one nothing was added for comparison, and finally the pH was adjusted to 7.1 with aqueous ammonia. Adjusted and autoclaved at 121 ° C. for 20 minutes.
  • Paracoccus genus K-185 strain was inoculated into a seed tube medium for seeding, and cultured at 28 ° C. for 2 days with shaking at 300 spm, and 0.1 ml each of the culture solution was added to two types of test tube mediums. Inoculated and cultured with shaking at 300 spm at 28 ° C. for 3 days. When the carotenoid concentration of the culture solution was measured by HPLC, the results were as shown in Table 6. Also in the mutant strain Paracoccus genus K-185, the group to which glutamic acid was added showed a higher carotenoid production concentration than the group to which glutamic acid was not added.
  • Example 7 E-396 strain (FERM BP-4283) was mutagenized with N-methyl-N′-nitro-N-nitrosoguanidine to select a mutant colony exhibiting a reddish purple color, and further analysis of carotenoid compounds in the culture broth was performed by high performance liquid chromatography, and the strain L-25 which specifically produced lycopene was selected.
  • a medium having the following composition (glucose 30 g / L, corn steep liquor filtered product 5 g / L, ammonium sulfate 1.5 g / L, potassium dihydrogen phosphate 1.5 g / L, disodium hydrogen phosphate dodecahydrate 3.8 g / L, calcium chloride dihydrate 5.0 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 0.6 g / L, ester defoamer 0.2 g / L)
  • Two pieces of 8 ml placed in a test tube with a cotton plug having an inner diameter of 18 mm were prepared.
  • sodium L-glutamate monohydrate was added to a concentration of 30 mmol / L, and for the other one nothing was added for comparison, and finally the pH was adjusted to 7.1 with aqueous ammonia. Adjusted and autoclaved at 121 ° C. for 20 minutes.
  • the Paracoccus genus L-25 strain selected above is inoculated into a test tube medium for seeding, and cultured at 28 ° C. for 2 days at 300 spm, and the culture solution is then added to two types of test tube media. Each 0.1 ml was inoculated and cultured with shaking at 300 spm at 28 ° C. for 3 days. When the carotenoid concentration of the culture solution was measured by HPLC, the results were as shown in Table 7. In the mutant Paracoccus genus L-25 strain, the group to which glutamic acid was added showed a higher carotenoid production concentration than the group to which glutamic acid was not added.
  • Example 8 Medium of the following composition (sucrose 20 g / L, corn steep liquor filtered 5 g / L, potassium dihydrogen phosphate 0.54 g / L, dipotassium hydrogen phosphate dodecahydrate 2.78 g / L, calcium chloride Dihydrate 5.0 g / L, magnesium sulfate heptahydrate 0.7 g / L, iron sulfate heptahydrate 3.0 g / L, fatty acid antifoam 0.2 g / L, pH 7.5) 100 ml Was placed in a 500 mL Erlenmeyer flask with a cotton stopper and autoclaved at 121 ° C. for 15 minutes to prepare two seed flask media.
  • composition sucrose 20 g / L, corn steep liquor filtered 5 g / L, potassium dihydrogen phosphate 0.54 g / L, dipotassium hydrogen phosphate dodecahydrate 2.78 g / L, calcium chloride Dihydrate 5.0
  • a medium having the following composition sucrose 40 g / L, corn steep liquor 30 g / L, ammonium sulfate 0.5 g / L, potassium dihydrogen phosphate 2.25 g / L, disodium hydrogen phosphate 12 hydrate 5. 7 g / L, calcium chloride dihydrate 0.1 g / L, magnesium sulfate heptahydrate 0.5 g / L, iron sulfate heptahydrate 5 g / L, fatty acid antifoam 0.5 g / L) 2 Two sets of 0.0 L in a 5 L capacity fermentor were prepared. To one fermentor, sodium L-glutamate monohydrate was added to a concentration of 50 mmol / L, and for comparison, nothing was added for comparison, and autoclaved at 121 ° C. for 30 minutes.
  • the mutant Paracoccus genus Y-1071 selected in Example 3 was inoculated with a platinum loop in a seed flask medium and cultured at 28 ° C. for 2 days at 150 rpm, and then 80 mL of the culture solution was added. Each fermentor was inoculated. Aerobic culture at 28 ° C. and aeration volume of 1 vvm was performed for 120 hours. The pH was continuously controlled with 15% aqueous ammonia so that the pH during the culture was maintained at 7.2. Glucose was added in an amount of 30 g on the first day, the second day, and the third day so as not to be depleted.

Abstract

 本発明によって、アミノ酸が添加された培地を用いてカロテノイド産生細菌を培養し、得られる培養物からカロテノイドを採取することを含む、カロテノイドを製造する方法であって、前記アミノ酸が、グルタミン酸、アスパラギン酸、グルタミン、アスパラギン、アラニン、グリシン、セリン、スレオニン、アルギニン、チロシン、プロリン、フェニルアラニンおよびロイシン並びにこれらの塩からなる群から選ばれる少なくとも1つである、前記方法が提供される。

Description

カロテノイドの発酵法
 本発明は、カロテノイドの微生物学的製造方法に関する。詳細には、本発明は、アスタキサンチン、カンタキサンチン、ゼアキサンチン、β-クリプトキサンチン、リコペン、β-カロテン、フェニコキサンチン、アドニキサンチン、エキネノン、アステロイデノンおよび3-ヒドロキシエキネノンなどのカロテノイドを、微生物発酵により製造する方法に関するものである。
 カロテノイドは飼料添加物、食品添加物、医薬品等として有用な天然色素である。カロテノイドには、アスタキサンチン、カンタキサンチン、ゼアキサンチン、β-クリプトキサンチン、リコペン、β-カロテン、フェニコキサンチン、アドニキサンチン、エキネノン、アステロイデノンおよび3-ヒドロキシエキネノンなどが含まれる。中でも、アスタキサンチンは養殖魚であるサケ、マス、マダイ等の体色改善剤や、家禽類の卵黄色改善剤のような飼料添加物として有用である。また、アスタキサンチンは安全な天然の食品添加物や健康食品素材として産業上の価値が高い。アドニキサンチンおよびフェニコキサンチンは、工業的製造法が確立されることにより、アスタキサンチンと同様に飼料添加物、食品添加物、医薬品等としての用途が期待されている。さらに、β-カロテンは飼料添加物、食品添加物、医薬品等として使用され、カンタキサンチンは飼料添加物、食品添加物、化粧品等として使用され、ゼアキサンチンは食品添加物、飼料添加物等として使用されている。さらにリコペン、エキネノン、β-クリプトキサンチン、3-ヒドロキシエキネノン、アステロイデノン等も飼料添加物、食品素材等としての使用が期待される。これらカロテノイドの製造方法としては、化学合成法、天然物からの抽出法、微生物による産生方法などが知られている。
 アスタキサンチンの化学合成法としてはβ-カロテンの変換による方法(非特許文献1:Pure Appl. Chem., 57, 741, 1985)およびC15ホスホニウム塩から合成する方法(非特許文献2:Helv. Chim. Acta, 64, 2436, 1981)が知られている。これらの化学合成法で製造されたアスタキサンチンは、飼料添加物として販売されている。また、アスタキサンチンはマダイ、サケ等の魚類およびエビ、カニ、オキアミ等の甲殻類に存在するため、これらより抽出することも可能である。
 微生物によるアスタキサンチンの生産方法としては、緑藻類Haematococcus pluvialisによる培養法(特許文献1:特開2007-97584)、赤色酵母Phaffia rhodozymaによる発酵法(特許文献2:特開平11-69969)、Paracoccus属に属する細菌(以下、「Paracoccus属細菌」ともいう)による発酵法が報告されている。アスタキサンチンを生産するParacoccus属に属する細菌の例としては、E-396株およびA-581-1株が挙げられる(特許文献3:特開平7-79796および非特許文献3:International Journal of Systematic Bacteriology (1999), 49, 277-282)。他のアスタキサンチン生産性のParacoccus属に属する細菌としては、Paracoccus marcusii MH1株(特許文献4:特表2001-512030)、Paracoccus haeundaensis BC74171株(非特許文献4:International Journal of Systematic and Evolutionary Microbiology (2004), 54, 1699-1702)、Paracoccus属細菌N-81106株(特許文献5:特開2007-244205)、Paracoccus zeaxanthinifaciens(非特許文献5:International Journal of Systematic and Evolutionary Microbiology (2003), 53, 231-238)およびParacoccus sp. PC-1株(特許文献6:WO 2005/118812)などが挙げられる。
 しかしながら、前述のカロテノイドの製造方法はいくつかの問題点があった。例えば、化学合成法は安全性の観点から消費者に好ましくない印象を与えるものである。また、天然物からの抽出は製造コストが高い。さらに、緑藻類や酵母による産生では生産性が低いうえに強固な細胞壁を持つためにカロテノイドの抽出が困難である。
 一方、Paracoccus属に属する細菌は、増殖速度が速く、カロテノイドの生産性が高い、抽出が容易であるなどの利点を有し、いくつかの培養方法が報告されている。特開2007-143492(特許文献7)は培養途中に鉄塩を添加する方法を開示し、また、特開2008-167665(特許文献8)は炭素源濃度を制限する方法を開示するが,これらの方法は培地原料として高価な酵母エキスを多量に用いているため、商業的および工業的に実用的ではない。
特開2007-97584号公報 特開平11-69969号公報 特開平7-79796号公報 特表2001-512030号公報 特開2007-244205号公報 国際公開第2005/118812号パンフレット 特開2007-143492号公報 特開2008-167665号公報
Pure Appl. Chem., 57, 741, 1985 Helv. Chim. Acta, 64, 2436, 1981 International Journal of Systematic Bacteriology (1999), 49, 277-282 International Journal of Systematic and Evolutionary Microbiology (2004), 54, 1699-1702 International Journal of Systematic and Evolutionary Microbiology (2003), 53, 231-238
 本発明は、このような実状に鑑みなされたものであり、その目的は高収量かつ安価にカロテノイドを微生物学的に製造する方法を提供することにある。
 本発明者らは、上記の課題を解決すべく種々検討した結果、カロテノイドを産生する細菌の培養において、細菌の培養に通常使用される培地にグルタミン酸ナトリウム等のアミノ酸又はその塩をさらに添加することにより、カロテノイドの生産性を向上させることが可能であることを見出し、本発明を完成した。
 すなわち、本発明は、
 アミノ酸が添加された培地を用いてカロテノイド産生細菌を培養し、得られる培養物からカロテノイドを採取することを含む、カロテノイドを製造する方法であって、
 前記アミノ酸が、グルタミン酸、アスパラギン酸、グルタミン、アスパラギン、アラニン、グリシン、セリン、スレオニン、アルギニン、チロシン、プロリン、フェニルアラニンおよびロイシン並びにこれらの塩からなる群から選ばれる少なくとも1つである、前記方法に関する。
 上記方法において、アミノ酸はグルタミン酸またはグルタミン酸塩が好ましい。
 また、アミノ酸の添加濃度は、例えば、1mmol/L~200mmol/Lである。本明細書において、「アミノ酸の添加濃度」とは、当該アミノ酸が添加された培地において達成されるアミノ酸の濃度(すなわち、添加されるアミノ酸の培地中濃度)を意味する。
 また、上記カロテノイドは、例えば、アスタキサンチン、カンタキサンチン、ゼアキサンチン、β-クリプトキサンチン、リコペン、β-カロテン、フェニコキサンチン、アドニキサンチン、エキネノン、アステロイデノンおよび3-ヒドロキシエキネノンからなる群から選ばれる少なくとも1つである。
 上記方法において、細菌は、Paracoccus属に属する細菌が好ましく用いられる。また、上記細菌は、16SリボソームRNAに対応するDNAの塩基配列が配列番号1に記載の塩基配列と95%以上の相同性を有する細菌でもよい。特に、上記細菌は、E-396株(FERM BP-4283)もしくはA-581-1株(FERM BP-4671)またはそれらの変異株が好ましい。
 本発明により、高濃度のカロテノイドをより効率的に製造することが可能になった。また、本発明により、低コストにカロテノイドを微生物学的に製造することが可能になった。
 以下、本発明をさらに詳細に説明する。本発明の範囲はこれらの説明に限定されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施し得る。
 なお、本明細書において引用した全ての刊行物、例えば、先行技術文献、公開公報、特許公報およびその他の特許文献は、その全体が本明細書において参考として組み込まれる。本明細書は、本願優先権主張の基礎となる特願2008-268106号明細書の内容を包含する。
 本発明は、カロテノイド産生細菌を培養し、カロテノイドを製造する方法に関するものであり、本方法は培地に所定のアミノ酸を添加することを特徴とする。本発明の方法により、高濃度のカロテノイドをより効率的かつ低コストに製造することが可能になる。
 本発明に用いる細菌としては、カロテノイドを産生する細菌であれば何ら限定されないが、好ましくはParacoccus属に属する細菌が用いられる。Paracoccus属に属する細菌の中では、Paracoccus carotinifaciens、Paracoccus marcusii、Paracoccus haeundaensisおよびParacoccus zeaxanthinifaciensが好ましく用いられ、特にParacoccus carotinifaciensが好ましく用いられる。Paracoccus属に属する細菌の具体的な菌株の例として、Paracoccus carotinifaciens E-396株およびParacoccus属細菌A-581-1株(FERM BP-4671)が挙げられ、これらの菌株も本発明に好ましく用いられる。
 また、カロテノイド産生細菌として、好ましくは16SリボソームRNAに対応するDNAの塩基配列が配列番号1に記載されるE-396株の塩基配列と高い相同性を有する細菌が用いられる。ここで言う「高い相同性を有する」とは、例えば、配列番号1に記載される塩基配列と比較される細菌の対応する塩基配列とが、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、特に好ましくは98%以上、最も好ましくは99%以上相同であることを意味する。
 16SリボソームRNAに対応するDNAの塩基配列とは、16SリボソームRNAの塩基配列中のU(ウラシル)をT(チミン)に置き換えた塩基配列を意味する。
 この16SリボソームRNAの塩基配列の相同性に基づいた微生物の分類法は、近年主流になっている。従来の微生物の分類法は、当該微生物の運動性、栄養要求性、糖の資化性など菌学的性質に基づいているため、自然突然変異による形質の変化等が生じた場合に、微生物を誤って分類する場合があった。これに対し、16SリボソームRNAの塩基配列は極めて遺伝的に安定であるので、その相同性に基づく分類法は従来の分類法に比べて分類の信頼度が格段に向上する。
 Paracoccus carotinifaciens E-396株の16SリボソームRNAの塩基配列と、他のカロテノイド産生細菌Paracoccus marcusii DSM 11574株、Paracoccus属細菌N-81106株、Paracoccus haeundaensis BC 74171株、Paracoccus属細菌 A-581-1株、Paracoccus zeaxanthinifaciens ATCC 21588株、およびParacoccus sp. PC-1株の16SリボソームRNAの塩基配列との相同性は、それぞれ99.7%、99.7%、99.6%、99.4%、95.7%、および95.4%であり、これらは分類学上極めて近縁な菌株であることが分かる。よって、これらの菌株はカロテノイドを産生する細菌として一つのグループを形成しているといえる。このため、これらの菌株は本発明に好ましく用いられ、カロテノイドを効率的に産生することができる。
 本発明において、カロテノイドの生産性が改良された変異株も用いることができる。改良された変異株の例としては、アスタキサンチン生産能の高い菌株(特開2001-95500)、カンタキサンチンを選択的に多く産生する菌株(特開2003-304875)、ゼアキサンチンとβ-クリプトキサンチンを選択的に多く産生する菌株(特開2005-87097)、リコペンを選択的に産生する菌株(特開2005-87100)を挙げることができる。
 カロテノイドの生産性が改良された変異株は、変異処理とスクリーニングにより取得することができる。変異処理する方法は変異を誘発するものであれば特に限定されない。例えば、N-メチル-N'-ニトロ-N-ニトロソグアニジン(NTG)およびエチルメタンスルホネート(EMS)などの変異剤による化学的方法、紫外線照射およびX線照射などの物理的方法、遺伝子組換えおよびトランスポゾンなどによる生物学的方法などを用いることができる。変異処理される細菌は特に限定されないが、カロテノイド産生細菌であることが好ましい。また、変異株は、自然に起こる突然変異により生じたものでもよい。
 変異株のスクリーニング方法は特に限定されないが、例えば、寒天培地上のコロニーの色調で目的の変異株を選択する方法の他、試験管、フラスコ、発酵槽などで変異株を培養し、吸光度、高速液体クロマトグラフィー、薄層クロマトグラフィーなどを利用したカロテノイド色素分析により目的の変異株を選択する方法などが例示される。
 変異およびスクリーニングの工程は1回でもよいし、また、例えば突然変異処理とスクリーニングにより変異株を得て、これをさらに変異処理とスクリーニングにより生産性の改良された変異株を取得するというように、変異およびスクリーニング工程を2回以上繰り返してもよい。
 本発明に使用するカロテノイド産生細菌の例として挙げられるE-396株は、独立行政法人 産業技術総合研究所 特許生物寄託センターに以下のとおり国際寄託されている。
 国際寄託当局:独立行政法人 産業技術総合研究所 特許生物寄託センター
       (旧名称:通商産業省工業技術院生命工学工業技術研究所)
        〒305-8566
         茨城県つくば市東1丁目1番地1中央第6
 識別のための表示:E-396
 受託番号:FERM BP-4283
 原寄託日:平成5年(1993年)4月27日
 また、本発明に使用するカロテノイド産生細菌の他の例として挙げられるA-581-1株は、上記機関に以下のとおり国際寄託されている。
 識別のための表示:A-581-1
 受託番号:FERM BP-4671
 原寄託日:平成6年(1994年)5月20日
 本発明において、上記のカロテノイド産生細菌を所定のアミノ酸添加培地で培養することにより、当該アミノ酸が添加されていない培地で培養する場合と比較して、より多くの量のカロテノイドを高濃度に生産させることができる。
 本発明の方法によって産生されるカロテノイドは特に限定されないが、例えば、アスタキサンチン、カンタキサンチン、ゼアキサンチン、β-クリプトキサンチン、リコペン、β-カロテン、フェニコキサンチン、アドニキサンチン、エキネノン、アステロイデノンまたは3-ヒドロキシエキネノンであり、好ましくは、アスタキサンチン、カンタキサンチン、ゼアキサンチンまたはβ-クリプトキサンチンであり、より好ましくは、アスタキサンチン、ゼアキサンチンまたはβ-クリプトキサンチンである。本発明より製造されるカロテノイドは一種でもよいし、複数種が組み合わされていてもよい。
 本発明において上記細菌を培養する方法を以下に説明する。
 本発明の培養に用いるカロテノイド生産用培地は、所定のアミノ酸が添加されたアミノ酸添加培地であって、かつ、カロテノイド産生細菌が生育し、カロテノイドを生産するものであるならば特に限定されないが、炭素源、窒素源、無機塩類および必要に応じてビタミン類などを含有する培地が好ましく用いられる。すなわち、本発明において、アミノ酸は、カロテノイド産生細菌が生育し、カロテノイドを産生し得る培地(例えば、標準的なカロテノイド生産用培地)に添加される。
 炭素源としては、例えば、グルコース、シュークロース、ラクトース、フルクトース、トレハロース、マンノース、マンニトールおよびマルトース等の糖類、酢酸、フマル酸、クエン酸、プロピオン酸、リンゴ酸、マロン酸およびピルビン酸等の有機酸、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、イソブタノールおよびグリセノール等のアルコール類、大豆油、ヌカ油、オリーブ油、トウモロコシ油、ゴマ油およびアマニ油等の油脂類などが挙げられ、中でも好ましくはグルコースまたはシュークロースが用いられる。これらの炭素源の中、1種または2種以上を用いることができる。培養前の培地(始発培地)に添加する量は炭素源の種類により異なり適宜調整すれば足りるが、通常、培地1L当たり1~100g、好ましくは2~50gである。また、炭素源は始発培地に添加するだけでなく、培養途中に逐次的または連続的に追加供給することも好ましく行われる。
 無機窒素源としては、硝酸アンモニウム、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウムなどのアンモニウム塩類、硝酸カリウムなどの硝酸塩類、アンモニアおよび尿素等の中、1種または2種以上が用いられる。添加量は窒素源の種類により異なり適宜調整すれば足りるが、通常、培地1Lに対し0.1g~20g、好ましくは0.2~10gである。
 有機窒素源としては、例えば、コーンスティープリカー(ろ過処理物を含む)、ファーマメディア、大豆粕、大豆粉、ピーナッツミール、ディスティラーズソルブルおよび乾燥酵母などの中、1種または2種以上が用いられる。添加濃度は窒素源の種類により異なり適宜調整すれば足りるが、通常、0~80g/L、好ましくは0~30g/Lである。
 無機窒素源および有機窒素源は、通常始発培地に添加するが、逐次的または連続的に追加供給することも好ましく行われる。
 無機塩類としては、例えば、リン酸二水素カリウム、リン酸水素二カリウム、リン酸水素二ナトリウムなどのリン酸塩類、硫酸マグネシウム、塩化マグネシウムなどのマグネシウム塩類、硫酸鉄、塩化鉄などの鉄塩類、塩化カルシウム、炭酸カルシウムなどのカルシウム塩類、炭酸ナトリウム、塩化ナトリウムなどのナトリウム塩類、硫酸マンガンなどのマンガン塩類、塩化コバルトなどのコバルト塩類、硫酸銅などの銅塩類、硫酸亜鉛などの亜鉛塩類、モリブデン酸ナトリウムなどのモリブデン塩類、硫酸ニッケルなどのニッケル塩類、セレン酸ナトリウムなどのセレン塩類、ホウ酸およびヨウ化カリウム等の中、1種または2種以上が用いられる。添加量は無機塩の種類により異なり適宜調整すれば足りるが、通常、培地1Lに対し0.0001~15gである。リン酸塩類、マグネシウム塩類、カルシウム塩類、ナトリウム塩類および鉄塩類では、0.02~15g/Lが好ましく、マンガン塩類、コバルト塩類、銅塩類、亜鉛塩類、モリブデン塩類、ニッケル塩類、セレン塩類、ホウ酸、ヨウ化カリウムなどを加える場合には、0.1~15mg/Lが好ましい濃度である。無機塩類は通常始発培地に添加するが、逐次的または連続的に追加供給してもよい。
 ビタミン類としては、例えば、シアノコバラミン、リボフラビン、パントテン酸、ピリドキシン、チアミン、アスコルビン酸、葉酸、ナイアシン、p-アミノ安息香酸、ビオチン、イノシトール、コリンなどを用いることができる。添加割合はビタミン類の種類により異なり適宜調整すれば足りるが、通常、培地1Lに対し0.001~1000mgであり、好ましくは0.01~100mgである。ビタミン類は通常始発培地に添加するが、逐次的または連続的に追加供給してもよい。
 本発明の特徴は、アミノ酸を添加したカロテノイド生産用アミノ酸添加培地中にカロテノイド産生細菌を培養することである。カロテノイド生産用アミノ酸添加培地でカロテノイド産生細菌を培養することにより、当該アミノ酸が添加されていない培地で培養する場合と比較して、より多くの量のカロテノイドを高濃度に製造することができる。
 本発明で用いるアミノ酸は、カザミノ酸、酵母エキス、ペプトンなどの複雑な組成を有する天然混合物に含まれているアミノ酸ではなく、ある程度精製された純物(単品)、すなわち単離物である。天然混合物では有効なアミノ酸だけでなく、無用あるいは阻害的な成分を含む可能性があるうえに、ロットにより組成がばらつく恐れがある。さらにカザミノ酸、酵母エキス、ペプトンなどの天然混合物は高価であるので、工業的には利用価値が低い。
 精製アミノ酸の純度は、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。
但し、本発明で用いるアミノ酸は、カロテノイド産生細菌の生育を阻害しない程度またはカロテノイド産生細菌のカロテノイドの産生を阻害しない程度に当該アミノ酸以外の成分を含んでいてもよい。この場合に使用されるアミノ酸は、例えば不純物などの他の成分を含まない純粋なアミノ酸であることが好ましいが、上記カロテノイドの産生を阻害しない限り未精製のもの(例えば、純度90%未満のアミノ酸)であってもよい。
 カロテノイド生産用培地に添加するアミノ酸としては、好ましくはグルタミン酸、アスパラギン酸、グルタミン、アスパラギン、アラニン、グリシン、セリン、スレオニン、アルギニン、チロシン、プロリン、フェニルアラニンもしくはロイシン、またはこれらの塩が用いられる。これらのアミノ酸は、好ましくはL体であるが、L体とD体の混合物でもよい。より好ましくは、グルタミン酸、アスパラギン酸、グルタミンもしくはアスパラギンまたはこれらの塩であり、さらに好ましくはグルタミン酸もしくはアスパラギン酸またはこれらの塩である。中でも、グルタミン酸またはその塩が高いカロテノイド生産効果を有するので好ましい。L-グルタミン酸ナトリウムまたはその水和物は安価であるため、特に好ましく用いられる。
 酸との塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩などの無機酸塩およびギ酸、酢酸、乳酸などの有機酸塩などを挙げることができる。また、塩基との塩としては、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、トリメチルアミン、トリエチルアミン、ピリジンなどの有機塩基塩、アンモニウム塩などを挙げることができる。
 カロテノイド生産用培地に添加されるアミノ酸は、上記アミノ酸中少なくとも1種以上であり、1種でもよいが2種以上のアミノ酸を添加することも可能である。
 必須アミノ酸の中でもシステイン、リジン、イソロイシンおよびメチオニンはカロテノイドの生産に対して阻害的に作用するので、本発明ではこれらを含有しないアミノ酸を培地に添加することが好ましい。
 アミノ酸は通常始発培地に添加するが、培養途中に間欠的または連続的に添加してもよく、また、始発培地に添加した上でさらに培養途中に間欠的あるいは連続的に追加添加してもよい。
 本発明の方法におけるアミノ酸添加濃度(すなわち、添加するアミノ酸の培地中濃度)に特に下限はないが、好ましくは1mmol/L以上、より好ましくは3mmol/L以上、さらに好ましくは5mmol/L以上、特に好ましくは10mmol/L、最も好ましくは15mmol/L以上である。アミノ酸の添加濃度に上限はないが、好ましくは200mmol/L以下、より好ましくは150mmol/L以下、さらに好ましくは100mmol/L以下、さらにもっと好ましくは80mmol/L以下、特に好ましくは60mmol/L以下、最も好ましくは50mmol/L以下である。従って、本発明においては、アミノ酸添加濃度は例えば1mmol/L~200mmol/Lである。
 本発明において、培養液の発泡を抑えるために消泡剤が好ましく用いられる。消泡剤の種類は泡の発生を抑制しまたは発生した泡を消す作用があり、かつ生産菌に対する阻害作用の少ないものであれば、特に限定されるものではない。たとえば、アルコール系消泡剤、ポリエーテル系消泡剤、エステル系消泡剤、脂肪酸系消泡剤、シリコン系消泡剤、スルフォン酸系消泡剤などを例示することができる。添加量は消泡剤の種類により異なり適宜調整すれば足りるが、通常、培地1Lに対し0.01g~10gである。
 消泡剤は通常殺菌前の始発培地に添加する。さらに、培養途中に連続的または間欠的に消泡剤を追加添加してもよい。培養途中に消泡剤を添加する方法としては、センサーで泡を感知して自動添加する方法、プログラムタイマーで一定時間ごとに添加する方法、生育速度に連動するようにフィード用炭素源、窒素源またはpH調整剤などと混合して添加する方法などを例示できる。始発培地に添加する消泡剤と培養途中に培養液に添加する消泡剤とは同種でもよいが、作用に合わせて異なる種類を用いることもできる。
 本発明において、アミノ酸を添加したアミノ酸添加培地の初期pHは2~12、好ましくは6~9、より好ましくは6.5~8.0に調整する。培養中も上記範囲のpHを維持することが好ましい。pH調整剤としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸ナトリウム水溶液、アンモニア水、アンモニアガス、硫酸水溶液またはこれらの混合物が例示される。
 本発明において、アミノ酸添加培地は殺菌処理した後、細菌の培養に用いられる。殺菌処理は、当業者であれば、適宜行うことができる。例えば、適切な容器中の培地をオートクレーブで加熱滅菌すればよい。あるいは、滅菌フィルターによりろ過滅菌すればよい。
 本発明において、カロテノイド生産細菌は、上記のように調製されたアミノ酸添加培地に植菌され、所定の条件で培養される。植菌は、試験管、フラスコあるいは発酵槽などを用いたシード培養により菌株を適宜増やし、得られた培養物をカロテノイド生産用アミノ酸添加培地に加えることで行う。シード培養に用いる培地は、所定のアミノ酸を添加した培地でも、アミノ酸を添加していない培地でも、カロテノイド生産菌が良好に増殖する培地であれば特に限定されない。
 培養は、適切な培養容器において行われる。培養容器は培養容量により適宜選択することができ、例えば、試験管、フラスコ、発酵槽などをあげることができる。
 培養温度は15~80℃、好ましくは20~35℃、より好ましくは25℃~32℃であり、通常1日~20日間、好ましくは2~12日間、より好ましくは3~9日間、好気条件で培養を行う。好気条件としては、例えば、振とう培養または通気撹拌培養等が挙げられ、溶存酸素濃度を一定の範囲に制御するのが好ましい。溶存酸素濃度の制御は、例えば、攪拌回転数、通気量、内圧などを変化させることにより行うことができる。溶存酸素濃度は好ましくは0.3~10ppm、より好ましくは0.5~7ppm、さらに好ましくは1~5ppmに制御する。
 本発明において、カロテノイド産生細菌を培養して得られる培養物中のカロテノイド、または培養物から何らかの精製操作を経て採取されたカロテノイドの定量は、高速液体クロマトグラフィーにより行うことができる。
 上記のようにカロテノイド産生細菌を培養し、得られる培養物からカロテノイド採取することができる。
 培養物は、例えば、培養液、培養上清、菌体濃縮液、湿菌体、乾燥菌体、菌体溶解物などが挙げられる。培養上清は、培養液を遠心処理またはろ過処理することで、培養液から菌体を除いて調製すればよい。菌体濃縮液は、培養液を遠心分離または膜ろ過濃縮することにより得ることができる。湿菌体は、培養液を遠心またはろ過することにより得ることができる。乾燥菌体は、湿菌体または菌体濃縮液を一般的な乾燥方法によって乾燥させることにより得ることができる。このようにして得られたカロテノイド含有乾燥菌体をそのまま飼料添加物として用いることができる。
 本発明においてカロテノイドを上記培養物から採取する方法は特に限定されず、カロテノイドが安定に効率よく回収されるいずれの方法でもよい。これらの方法は、当業者に公知の抽出技術および精製技術から適宜選択して行うことができる。
 培養物からカロテノイドの抽出を行う前に、アルカリ試薬や界面活性剤などを用いた化学的処理、溶菌酵素、脂質分解酵素およびタンパク分解酵素などを用いた生化学処理、または超音波もしくは粉砕などの物理的処理の中、1つまたは2つ以上の処理を培養物に対して行ってもよい。
 例えば、カロテノイドを培養物から抽出する場合、抽出および洗浄に用いる溶媒は特に限定されないが、メタノール、エタノール、イソプロパノールなどの低級アルコール類、アセトン、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、ジクロロメタン、クロロフォルム、ジメチルフォルムアミド、ジメチルスルフォキシドなどが挙げられる。
 抽出操作中のカロテノイドの酸化を極力防止したい場合には、窒素ガスなどの不活性ガス雰囲気で処理すればよい。また、医薬品や食品で用いられている酸化防止剤を選択して抽出溶媒に加えてもよい。あるいは、これらの処理を組み合わせてもよい。
 また、光によるカロテノイドの分解を極力防止するために、光を当てない条件下で行ってもよい。
 このように得られた抽出物をカロテノイドとしてそのまま用いることが可能であり、さらに精製して使用することもできる。
 抽出操作後の抽出物から細菌等を分離する方法は特に限定されないが、膜濾過、遠心分離、デカンテーションなどが用いられる。
 抽出物からカロテノイド沈殿物を得る方法としては、一般的には加熱および/または減圧濃縮ならびに晶析が挙げられる。この他、低温におけるカロテノイド色素の析出、または酸・アルカリ薬剤もしくは各種塩類による析出によってカロテノイド色素を濃縮せずに分離してもよい。
 工業的に用いる場合には、晶析することが望ましい。
 得られたカロテノイド沈殿物は、洗浄のため必要に応じて少量の低級アルコール類などの溶媒を用いて懸濁攪拌させてもよい。
 洗浄の手法は特に限定されないが、例えば、懸濁攪拌後に濾取する方法または沈殿物の上から通液する方法等が実用的に好ましい方法として挙げられる。
 上記のように得られる培養物、抽出物または精製物は、カロテノイドとしてそれぞれ単独で用いることもできるし、これらを任意の割合で混合して用いることもできる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明の範囲は以下の例に限定されるものではない。
 なお、実施例におけるカロテノイド類の定量は、高速液体クロマトグラフィー(HPLC)を用いて以下のように行った。
 カラムはWakosil-II 5 SIL-100(φ4.6×250mm)(和光純薬製)を2本連結して使用した。溶出は、移動相であるn-ヘキサン-テトラヒドロフラン-メタノール混合液(40:20:1)を室温付近一定の温度にて毎分1.0mL流すことで行った。測定においては、サンプルをテトラヒドロフランで溶解したものを移動相にて100倍希釈した液20μLを注入量とし、カラム溶離液の検出は波長470nmで行った。また、定量のための標準品としては、シグマ社製アスタキサンチン(Cat.No.A9335)を用いた。標準液のアスタキサンチン濃度の設定は、標準液の477nmの吸光度(A)及び上記条件でHPLC分析を行ったときのアスタキサンチンピークの面積百分率%(B)を測定した後に、以下の式を用いて行った。
 アスタキサンチンの濃度(mg/L)=A÷2150×B×100
〔実施例1〕
 以下の組成の培地(シュークロース30g/L,コーンスティープリカー30g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物5.0g/L、硫酸マグネシウム7水和物0.7g/L、硫酸鉄7水和物0.3g/L、pH7.2)8mlを内径18mmの綿栓付き試験管に入れ121℃で15分間オートクレーブ殺菌し、シード用試験管培地を調製した。
 次に以下の組成の培地(グルコース30g/L,コーンスティープリカーろ過処理物5g/L,硫酸アンモニウム1.5g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物0.6g/L、エステル系消泡剤0.2g/L)8mlを内径18mmの綿栓付き試験管に入れたものを21本準備した。
 これにグリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、リジン、アルギニン、システイン、メチオニン、フェニルアラニン、チロシン、トリプトファン、ヒスチジンおよびプロリンの20種類のアミノ酸をそれぞれ1.0g/Lになるように添加した。1本は比較のためアミノ酸を何も添加しなかった。最後に水酸化ナトリウム水溶液または硫酸水溶液でpH7.1に調整し、121℃で20分間オートクレーブ殺菌した。
 Paracoccus carotinifaciens E-396株(FERM BP-4283)をシード用試験管培地に植菌し、28℃で2日間、300spmで振とう培養を行った後、その培養液を21種類の試験管培地にそれぞれ0.1mlずつ植菌し、28℃で4日間、300spmで振とう培養を行った。
 培養液のカロテノイド濃度をHPLCにより測定し、また、菌体生育をOD610(610nmの吸光度)により測定したところ、表1に示すとおり、グルタミン酸、アスパラギン酸、グルタミン、アスパラギン、アラニン、グリシン、セリン、スレオニン、アルギニン、チロシン、プロリン、フェニルアラニンおよびロイシンにカロテノイド色素の生産を促進する効果が見られた。一方、システイン、リジン、イソロイシンおよびメチオニンにはカロテノイドの生産に対する明らかな阻害作用があることが分かった。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 以下の組成の培地(グルコース20g/L,コーンスティープリカーろ過処理物5g/L、リン酸二水素カリウム0.54g/L,リン酸水素二カリウム12水和物2.78g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物3.0g/L、アルコール系消泡剤0.2g/L、pH7.5)100mlを500mL容量の綿栓付き三角フラスコに入れ、121℃で15分間オートクレーブ殺菌し、シード用フラスコ培地を8本調製した。
 次に以下の組成の培地(グルコース40g/L,コーンスティープリカー30g/L,硫酸アンモニウム0.5g/L、リン酸二水素カリウム2.25g/L,リン酸水素二ナトリウム12水和物5.7g/L,塩化カルシウム2水和物0.1g/L,硫酸マグネシウム7水和物0.5g/L,硫酸鉄7水和物5g/L、アルコール系消泡剤0.5g/L)2.0Lを5L容量の発酵槽に入れたものを8基準備した。これにL-グルタミン酸ナトリウム1水和物をそれぞれ0、1、5、15、30、50、100および200mmol/Lになるように添加し、121℃で30分間オートクレーブ殺菌した。
 Paracoccus carotinifaciens E-396株(FERM BP-4283)をシード用フラスコ培地に一白金耳植菌し、29℃で2日間、100rpmで回転振とう培養を行った後、その培養液80mLを各発酵槽に植菌した。29℃、通気量1vvmの好気培養を100時間行った。培養中のpHが7.2を維持するように15%アンモニア水で連続的にpHを制御した。グルコースは枯渇しないように培養1日目および2日目にそれぞれ30gずつ添加した。また、最低攪拌回転数を200rpmとして培養液中の溶存酸素濃度が2~4ppmを維持するように攪拌回転数を変化させた。気泡センサーで発泡を感知することによりアルコール系消泡剤を自動添加して発泡を抑えた。
 培養終了時の培養液のカロテノイド濃度をHPLCにより測定したところ、結果は表2に示すとおりであった。グルタミン酸を添加した区は1~200mmol/Lのいずれの濃度においても、添加しなかった区に比較して高いカロテノイド生産濃度を示した。
Figure JPOXMLDOC01-appb-T000002
〔実施例3〕
 Paracoccus carotinifaciens E-396株をN-メチル-N’-ニトロ-N-ニトロソグアニジンで変異処理し、赤色の色調が濃いコロニーを選択し
た。選択された株の培養液中のカロテノイドを分析し、アスタキサンチン生産性の向上した変異株Y-1071株を選択した。
 以下の組成の培地(シュークロース30g/L,ファーマメディア30g/L、リン酸二水素カリウム0.8g/L,リン酸水素二カリウム4.2g/L,塩化カルシウム2水和物1g/L,硫酸マグネシウム7水和物12g/L,硫酸鉄7水和物1g/L、pH7.2)8mlを内径18mmの綿栓付き試験管に入れ121℃で15分間オートクレーブ殺菌し、シード用試験管培地を調製した。
 次に以下の組成の培地(シュークロース30g/L,ファーマメディア20g/L,硫酸アンモニウム1.5g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物0.1g/L,硫酸マグネシウム7水和物4.5g/L,硫酸鉄7水和物5g/L、ビオチン1mg/L、シリコン系消泡剤1g/L)8mlを内径18mmの綿栓付き試験管に入れたものを2本準備した。1本にはL-グルタミン酸ソーダ1水和物を30mmol/Lになるように添加し、他の1本には比較のため何も添加せず、最後に水酸化ナトリウム水溶液でpH7.1に調整し、121℃で20分間オートクレーブ殺菌した。
 上記で選抜したParacoccus属細菌Y-1071株をシード用試験管培地に植菌し、28℃で2日間、300spmで振とう培養を行った後、その培養液を2種類の試験管培地にそれぞれ0.1mlずつ植菌し、28℃で4日間、300spmで振とう培養を行った。
 培養液のカロテノイド濃度をHPLCにより測定したところ、結果は表3に示すとおりであった。
 変異株であるParacoccus属細菌Y-1071株においても、グルタミン酸を添加した区は、添加しなかった区に比較して高いカロテノイド生産濃度を示した。
Figure JPOXMLDOC01-appb-T000003
〔実施例4〕
 以下の組成の培地(グルコース20g/L,乾燥酵母5g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物0.1g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物3g/L、pH7.2)8mlを内径18mmの綿栓付き試験管に入れ121℃で15分間オートクレーブ殺菌し、シード用試験管培地を調製した。
 次に以下の組成の培地(グルコース40g/L,硫酸アンモニウム1.5g/L、リン酸二水素カリウム0.54g/L,リン酸水素二カリウム2.78g/L,塩化カルシウム2水和物1g/L,塩化ナトリウム3g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物5g/L、硫酸亜鉛7水和物2mg/L,塩化コバルト6水和物2mg/L,硫酸銅5水和物1mg/L,硫酸マンガン5水和物4mg/L,モリブデン酸ナトリウム2水和物2mg/L,硫酸ニッケル6水和物1mg/L,セレン酸ナトリウム0.5mg/L,ホウ酸5mg/L,ヨウ化カリウム1mg/L,シアノコバラミン1mg/L,リボフラビン10mg/L,パントテン酸カルシウム15mg/L,ピリドキシン塩酸塩20mg/L,チアミン塩酸塩30mg/L,アスコルビン酸30mg/L,葉酸1mg/L,ナイアシン15mg/L,p-アミノ安息香酸10mg/L,ビオチン0.1mg/L,myo-イノシトール50mg/L,コリン10mg/L,ポリエーテル系消泡剤0.2g/L)8mlを内径18mmの綿栓付き試験管に入れたものを4本準備した。
 ここで、グルコース、無機塩類、微量金属類およびビタミン類は別々に調製し、グルコース、無機塩類および微量金属類は121℃、15分加熱殺菌し、ビタミン類はろ過滅菌し、あとで4種の溶液を混合した。
 さらに、試験管の1本には加熱殺菌したL-グルタミン酸ソーダ1水和物水溶液を6g/L(32mmol/L)になるように加え、1本には加熱殺菌した酵母エキス水溶液を6g/Lになるように,1本には当該酵母エキスを12g/Lになるように加え,残りの1本には何も添加しなかった。最後にpH7.2になるように無菌的に12%アンモニア水を加えた。
 実施例3で選抜した変異株Paracoccus属細菌Y-1071株をシード用試験管培地に植菌し、30℃で2日間、300spmで振とう培養を行った後、その培養液を4種類の試験管培地にそれぞれ0.1mlずつ植菌し、30℃で3日間、300spmで振とう培養を行った。
 培養液のカロテノイド濃度をHPLCにより測定したところ、表4に示すとおり、無添加区に比較してグルタミン酸添加区では高いカロテノイド生産濃度を示した。酵母エキス添加区ではグルタミン酸添加区ほどの顕著な生産向上効果は認められなかった。
Figure JPOXMLDOC01-appb-T000004
〔実施例5〕
 以下の組成の培地(シュークロース20g/L,コーンスティープリカーろ過処理物5g/L、リン酸二水素カリウム0.54g/L,リン酸水素二カリウム12水和物2.78g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物3.0g/L、アルコール系消泡剤0.2g/L、pH7.5)100mlを500mL容量の綿栓付き三角フラスコに入れ、121℃で15分間オートクレーブ殺菌し、シード用フラスコ培地を2本調製した。
 次に以下の組成の培地(グルコース40g/L,コーンスティープリカー30g/L,硫酸アンモニウム0.5g/L、リン酸二水素カリウム2.25g/L,リン酸水素二ナトリウム12水和物5.7g/L,塩化カルシウム2水和物0.1g/L,硫酸マグネシウム7水和物0.5g/L,硫酸鉄7水和物5g/L、アルコール系消泡剤0.5g/L)2.0Lを5L容量の発酵槽に入れたものを2基準備した。1基の発酵槽にはL-グルタミン酸ナトリウム1水和物を15mmol/Lになるように添加し、1基には比較のために何も添加しなかった。これらの発酵槽を121℃で30分間オートクレーブ殺菌した。
 Paracoccus属細菌 A-581-1株(FERM BP-4671)をシード用フラスコ培地に一白金耳植菌し、27℃で2日間、150rpmで回転振とう培養を行った後、その培養液90mLを各発酵槽に植菌した。27℃、通気量1vvmの好気培養を100時間行った。培養中のpHが7.1を維持するように20%水酸化ナトリウム水溶液で連続的にpHを制御した。グルコースは枯渇しないように培養1日目および2日目にそれぞれ30gずつ添加した。培養22hおよび29hに、L-グルタミン酸ナトリウム1水和物を始発培地1Lに対して5g添加し、硫酸アンモニウムを3g添加した。最低攪拌回転数を100rpmとして培養液中の溶存酸素濃度が2~4ppmを維持するように攪拌回転数を変化させた。アルコール系消泡剤を1時間に0.1g添加することにより気泡の発生を抑えた。
 培養終了時の培養液のカロテノイド濃度をHPLCにより測定したところ、結果は表5に示すとおりであった。無添加区に比較してグルタミン酸添加区では高いカロテノイド生産濃度を示した。
Figure JPOXMLDOC01-appb-T000005
〔実施例6〕
 Paracoccus属細菌A-581-1株(FERM BP-4671)を紫外線照射により変異処理し、赤色の色調が濃いコロニーを選択した。選択された株の培養液中のカロテノイドを分析し、アスタキサンチン生産性の向上した変異株K-185株を選択した。
 以下の組成の培地(シュークロース30g/L,コーンスティープリカー30g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物0.3g/L、pH7.2)8mlを内径18mmの綿栓付き試験管に入れ121℃で15分間オートクレーブ殺菌し、シード用試験管培地を調製した。
 次に以下の組成の培地(グルコース30g/L,大豆粕20g/L,硫酸アンモニウム1.5g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物0.6g/L、エステル系消泡剤0.2g/L)8mlを内径18mmの綿栓付き試験管に入れたものを2本準備した。1本の試験管にはL-グルタミン酸ソーダ1水和物を30mmol/Lになるように添加し、他の1本には比較のため何も添加せず、最後にアンモニア水でpH7.1に調整し、121℃で20分間オートクレーブ殺菌した。
 Paracoccus属細菌K-185株をシード用試験管培地に植菌し、28℃で2日間、300spmで振とう培養を行った後、その培養液を2種類の試験管培地にそれぞれ0.1mlずつ植菌し、28℃で3日間、300spmで振とう培養を行った。培養液のカロテノイド濃度をHPLCにより測定したところ、結果は表6に示すとおりであった。
 変異株であるParacoccus属細菌K-185株においても、グルタミン酸を添加した区は、添加しなかった区に比較して高いカロテノイド生産濃度を示した。
Figure JPOXMLDOC01-appb-T000006
〔実施例7〕
 E-396株(FERM BP-4283)をN-メチル-N'-ニトロ-N-ニトロソグアニジンで変異処理し、赤紫色を呈する変異株コロニーを選択し、さらに、培養液中のカロテノイド化合物の分析を高速液体クロマトグラフィーにより行い、リコペンを特異的に生産する菌株L-25株を選抜した。
 以下の組成の培地(シュークロース30g/L,コーンスティープリカー30g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物0.3g/L、pH7.2)8mlを内径18mmの綿栓付き試験管に入れ121℃で15分間オートクレーブ殺菌し、シード用試験管培地を調製した。
 次に以下の組成の培地(グルコース30g/L,コーンスティープリカーろ過処理物5g/L,硫酸アンモニウム1.5g/L、リン酸二水素カリウム1.5g/L,リン酸水素二ナトリウム12水和物3.8g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物0.6g/L、エステル系消泡剤0.2g/L)8mlを内径18mmの綿栓付き試験管に入れたものを2本準備した。1本の試験管にはL-グルタミン酸ソーダ1水和物を30mmol/Lになるように添加し、他の1本には比較のため何も添加せず、最後にアンモニア水でpH7.1に調整し、121℃で20分間オートクレーブ殺菌した。
 上記で選抜したParacoccus属細菌L-25株をシード用試験管培地に植菌し、28℃で2日間、300spmで振とう培養を行った後、その培養液を2種類の試験管培地にそれぞれ0.1mlずつ植菌し、28℃で3日間、300spmで振とう培養を行った。培養液のカロテノイド濃度をHPLCにより測定したところ、結果は表7に示すとおりであった。
 変異株であるParacoccus属細菌L-25株においても、グルタミン酸を添加した区は、添加しなかった区に比較して高いカロテノイド生産濃度を示した。
Figure JPOXMLDOC01-appb-T000007
〔実施例8〕
 以下の組成の培地(シュークロース20g/L,コーンスティープリカーろ過処理物5g/L、リン酸二水素カリウム0.54g/L,リン酸水素二カリウム12水和物2.78g/L,塩化カルシウム2水和物5.0g/L,硫酸マグネシウム7水和物0.7g/L,硫酸鉄7水和物3.0g/L、脂肪酸系消泡剤0.2g/L、pH7.5)100mlを500mL容量の綿栓付き三角フラスコに入れ、121℃で15分間オートクレーブ殺菌し、シード用フラスコ培地を2本調製した。
 次に以下の組成の培地(シュークロース40g/L,コーンスティープリカー30g/L,硫酸アンモニウム0.5g/L、リン酸二水素カリウム2.25g/L,リン酸水素二ナトリウム12水和物5.7g/L,塩化カルシウム2水和物0.1g/L,硫酸マグネシウム7水和物0.5g/L,硫酸鉄7水和物5g/L、脂肪酸系消泡剤0.5g/L)2.0Lを5L容量の発酵槽に入れたものを2基準備した。1基の発酵槽にはL-グルタミン酸ナトリウム1水和物を50mmol/Lになるように添加し、1基には比較のために何も添加せず、121℃で30分間オートクレーブ殺菌した。
 実施例3で選抜した変異株Paracoccus属細菌Y-1071株をシード用フラスコ培地に一白金耳植菌し、28℃で2日間、150rpmで回転振とう培養を行った後、その培養液80mLを各発酵槽に植菌した。28℃、通気量1vvmの好気培養を120時間行った。培養中のpHが7.2を維持するように15%アンモニア水で連続的にpHを制御した。グルコースは枯渇しないように培養1日目、2日目および3日目にそれぞれ30gずつ添加した。最低攪拌回転数を100rpmとして培養液中の溶存酸素濃度が2~3ppmを維持するように攪拌回転数を変化させた。気泡センサーで発泡を感知することにより脂肪酸系消泡剤を自動添加して発泡を抑えた。
 培養終了時の培養液のカロテノイド濃度をHPLCにより測定したところ、結果は表8に示すとおりであった。グルタミン酸添加区は、無添加区に比較して高いカロテノイド生産濃度を示した。
Figure JPOXMLDOC01-appb-T000008
 配列番号1:未知生物(E-396)の説明
 n=a,c,gまたはt(存在位置:1350)

Claims (7)

  1.  アミノ酸が添加された培地を用いてカロテノイド産生細菌を培養し、得られる培養物からカロテノイドを採取することを含む、カロテノイドを製造する方法であって、
     前記アミノ酸が、グルタミン酸、アスパラギン酸、グルタミン、アスパラギン、アラニン、グリシン、セリン、スレオニン、アルギニン、チロシン、プロリン、フェニルアラニンおよびロイシン並びにこれらの塩からなる群から選ばれる少なくとも1つである、前記方法。
  2.  アミノ酸がグルタミン酸またはグルタミン酸塩である、請求項1に記載の方法。
  3.  アミノ酸の添加濃度が1mmol/L~200mmol/Lである、請求項1に記載の方法。
  4.  カロテノイドがアスタキサンチン、カンタキサンチン、ゼアキサンチン、β-クリプトキサンチン、リコペン、β-カロテン、フェニコキサンチン、アドニキサンチン、エキネノン、アステロイデノンおよび3-ヒドロキシエキネノンからなる群から選ばれる少なくとも1つである、請求項1に記載の方法。
  5.  細菌がParacoccus属に属する細菌である、請求項1に記載の方法。
  6.  細菌は、16SリボソームRNAに対応するDNAの塩基配列が配列番号1に記載の塩基配列と95%以上の相同性を有する細菌である、請求項1に記載の方法。
  7.  細菌が、E-396株(FERM BP-4283)もしくはA-581-1株(FERM BP-4671)またはそれらの変異株である、請求項1に記載の方法。
PCT/JP2009/067935 2008-10-17 2009-10-16 カロテノイドの発酵法 WO2010044469A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2009304688A AU2009304688B2 (en) 2008-10-17 2009-10-16 Carotenoid fermentation method
JP2010533939A JP5714907B2 (ja) 2008-10-17 2009-10-16 カロテノイドの発酵法
CA2740967A CA2740967C (en) 2008-10-17 2009-10-16 Carotenoid fermentation method
CN200980140867.4A CN102186984B (zh) 2008-10-17 2009-10-16 类胡萝卜素的发酵法
NZ592213A NZ592213A (en) 2008-10-17 2009-10-16 Carotenoid fermentation method using bacterium strain E-396 (FERM BP-4283) or A-581-1 (FERM BP-4671)
US13/124,304 US8993282B2 (en) 2008-10-17 2009-10-16 Carotenoid fermentation method
EP09820647.7A EP2345736B1 (en) 2008-10-17 2009-10-16 Process for the fermentative production of carotenoids
KR1020117011061A KR101392066B1 (ko) 2008-10-17 2009-10-16 카로테노이드의 발효법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008268106 2008-10-17
JP2008-268106 2008-10-17

Publications (1)

Publication Number Publication Date
WO2010044469A1 true WO2010044469A1 (ja) 2010-04-22

Family

ID=42106633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067935 WO2010044469A1 (ja) 2008-10-17 2009-10-16 カロテノイドの発酵法

Country Status (10)

Country Link
US (1) US8993282B2 (ja)
EP (1) EP2345736B1 (ja)
JP (1) JP5714907B2 (ja)
KR (1) KR101392066B1 (ja)
CN (1) CN102186984B (ja)
AU (1) AU2009304688B2 (ja)
CA (1) CA2740967C (ja)
NZ (1) NZ592213A (ja)
RU (1) RU2461628C1 (ja)
WO (1) WO2010044469A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122616A1 (ja) * 2010-03-30 2011-10-06 Jx日鉱日石エネルギー株式会社 発酵によるゼアキサンチンの製造法
JP2012139164A (ja) * 2010-12-28 2012-07-26 Tosoh Corp 微生物を用いたカロテノイドの製造法
JP2012139166A (ja) * 2010-12-28 2012-07-26 Tosoh Corp 新規微生物及びそれを用いたカロテノイドの生産方法
JP2012139165A (ja) * 2010-12-28 2012-07-26 Tosoh Corp 新規微生物及びそれを用いたリコペンの生産方法
US20130317116A1 (en) * 2011-02-02 2013-11-28 Jx Nippon Oil & Energy Corporation External skin preparation
KR20180072825A (ko) 2015-12-28 2018-06-29 제이엑스티지 에네루기 가부시키가이샤 코발트 함유 배지에 의한 카로테노이드 산생 세균에 의한 카로테노이드의 발효 제조 방법
KR20180131543A (ko) 2016-03-31 2018-12-10 제이엑스티지 에네루기 가부시키가이샤 카로테노이드의 제조 방법

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993282B2 (en) 2008-10-17 2015-03-31 Jx Nippon Oil & Energy Corporation Carotenoid fermentation method
JP5155898B2 (ja) * 2009-01-30 2013-03-06 Jx日鉱日石エネルギー株式会社 カロテノイドの分離法
JP2012170425A (ja) * 2011-02-23 2012-09-10 Jx Nippon Oil & Energy Corp ゼアキサンチン強化家禽卵
KR102072838B1 (ko) * 2012-10-02 2020-02-03 주식회사 다이셀 카로테노이드 함유 조성물의 제조 방법 및 카로테노이드 함유 조성물
CN104593428A (zh) * 2014-12-11 2015-05-06 湖南省土壤肥料研究所 一种甲烷细菌酶活剂
CN109706197A (zh) * 2018-10-17 2019-05-03 许传高 一种制备分离谷氨酸和蛋白膏的工艺
CN109706196A (zh) * 2018-10-17 2019-05-03 许传高 谷氨酸和菌体蛋白的共生产方法
CN109652477A (zh) * 2018-10-17 2019-04-19 许传高 一种提高谷氨酸发酵中后期转化率的方法
CN114085881B (zh) * 2020-08-25 2023-12-22 浙江医药股份有限公司新昌制药厂 提高法夫酵母虾青素产量的方法及应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469969A (en) 1987-09-11 1989-03-15 Kansai Electric Power Co Measuring device of partial discharge
JPH0779796A (ja) 1993-07-22 1995-03-28 Nippon Oil Co Ltd カロチノイド色素の製造方法
JP2001095500A (ja) 1999-09-30 2001-04-10 Nippon Mitsubishi Oil Corp 飼料添加用色素含有物
JP2001512030A (ja) 1997-07-29 2001-08-21 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム 新規カロテノイド産生細菌種とそれを用いたカロテノイドの生産方法
JP2003304875A (ja) 2002-04-15 2003-10-28 Nippon Oil Corp カンタキサンチンの製造方法
JP2005046027A (ja) * 2003-07-31 2005-02-24 Tosoh Corp 合成培地を用いたカロテノイドの製造法
JP2005087099A (ja) * 2003-09-17 2005-04-07 Nippon Oil Corp β−カロテンの製造方法
JP2005087100A (ja) 2003-09-17 2005-04-07 Nippon Oil Corp リコペンの製造方法
JP2005087097A (ja) 2003-09-17 2005-04-07 Nippon Oil Corp ゼアキサンチンの製造方法
WO2005118812A1 (ja) 2004-06-04 2005-12-15 Marine Biotechnology Institute Co., Ltd. カロテノイドケトラーゼ及びカロテノイドヒドロキシラーゼ遺伝子を利用したアスタキサンチンまたはその代謝物の製造法
JP2007097584A (ja) 2005-09-06 2007-04-19 Yamaha Motor Co Ltd アスタキサンチン含有量の高い緑藻およびその製造方法
JP2007143492A (ja) 2005-11-29 2007-06-14 Tosoh Corp カロテノイド類の生産方法
JP2007244205A (ja) 2006-03-13 2007-09-27 Tosoh Corp カロテノイド類の製造方法
JP2008167665A (ja) 2007-01-09 2008-07-24 Tosoh Corp カロテノイド類の製法
JP2008268106A (ja) 2007-04-24 2008-11-06 Mitsui Optronics:Kk 温度情報計測方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424940A (en) 1977-07-26 1979-02-24 Kagome Kk Production of carotinoid containing substance for coloring food
DK199887D0 (da) 1987-04-15 1987-04-15 Danisco Bioteknologi As Gaerstamme
JP3172742B2 (ja) * 1992-03-31 2001-06-04 株式会社コスモ総合研究所 カロチノイド類の製造方法およびカロチノイド化合物
FR2703692B1 (fr) 1993-04-07 1995-07-13 Heliosynthese Sa Procede d'extraction de carotenouides et notamment d'astaxanthine a partir d'une culture de micro-algues.
US5607839A (en) 1993-07-22 1997-03-04 Nippon Oil Company, Ltd. Bacteria belonging to new genus process for production of carotenoids using same
HUT75371A (en) 1995-10-09 1997-05-28 Motiv Magyar Nemet Kereskedelm Natural carotene-concentrate of vegetable material and process for producing of that
JP4427167B2 (ja) * 2000-06-12 2010-03-03 新日本石油株式会社 カロテノイド色素の製法
AU2004274750B2 (en) * 2003-09-17 2007-05-17 Nippon Oil Corporation Process for producing carotenoid compound
JP4799895B2 (ja) 2004-12-15 2011-10-26 電源開発株式会社 カロチノイド色素、スフィンゴ糖脂質、ユビキノンq−10の生産方法
GB0509341D0 (en) 2005-05-07 2005-06-15 Aquapharm Bio Discovery Ltd Biological prodution of Zeaxanthin
JP2006340676A (ja) 2005-06-10 2006-12-21 Asahi Kasei Corp アスタキサンチンの製造方法
US20070054351A1 (en) 2005-09-06 2007-03-08 Yamaha Hatsudoki Kabushiki Kaisha Green algae having a high astaxanthin content and method for producing the same
RU2303061C2 (ru) * 2005-09-06 2007-07-20 Закрытое акционерное общество научно-производственное предприятие "Биомедхим" (ЗАО НПП "Биомедхим") Питательная среда для культивирования бактерий рода pseudomonas
CA2627636A1 (en) 2005-10-28 2007-05-03 Tosoh Corporation Novel microorganism and method for producing carotenoid using the same
JP4984742B2 (ja) * 2005-10-28 2012-07-25 東ソー株式会社 新規微生物およびそれを用いたカロテノイドの生産方法
CN101321859A (zh) 2005-12-06 2008-12-10 东曹株式会社 新微生物和使用该微生物生产类胡萝卜素的方法
JP2007244206A (ja) * 2006-03-13 2007-09-27 Tosoh Corp 魚類の色調改善剤及びその製造方法
JP2007244222A (ja) * 2006-03-14 2007-09-27 Tosoh Corp 発酵法によるカロテノイド類の製造方法
ES2548520T3 (es) * 2006-03-28 2015-10-19 Nippon Oil Corporation Proceso para la producción de carotenoides
JP2007306884A (ja) * 2006-05-22 2007-11-29 Tosoh Corp カロテノイド生産新規微生物およびこれを用いたカロテノイド類の生産方法
JP5091531B2 (ja) 2007-04-12 2012-12-05 電源開発株式会社 アスタキサンチン産生細菌、細菌培養物およびアスタキサンチンの製造方法
US8993282B2 (en) 2008-10-17 2015-03-31 Jx Nippon Oil & Energy Corporation Carotenoid fermentation method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469969A (en) 1987-09-11 1989-03-15 Kansai Electric Power Co Measuring device of partial discharge
JPH0779796A (ja) 1993-07-22 1995-03-28 Nippon Oil Co Ltd カロチノイド色素の製造方法
JP2001512030A (ja) 1997-07-29 2001-08-21 イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム 新規カロテノイド産生細菌種とそれを用いたカロテノイドの生産方法
JP2001095500A (ja) 1999-09-30 2001-04-10 Nippon Mitsubishi Oil Corp 飼料添加用色素含有物
JP2003304875A (ja) 2002-04-15 2003-10-28 Nippon Oil Corp カンタキサンチンの製造方法
JP2005046027A (ja) * 2003-07-31 2005-02-24 Tosoh Corp 合成培地を用いたカロテノイドの製造法
JP2005087099A (ja) * 2003-09-17 2005-04-07 Nippon Oil Corp β−カロテンの製造方法
JP2005087100A (ja) 2003-09-17 2005-04-07 Nippon Oil Corp リコペンの製造方法
JP2005087097A (ja) 2003-09-17 2005-04-07 Nippon Oil Corp ゼアキサンチンの製造方法
WO2005118812A1 (ja) 2004-06-04 2005-12-15 Marine Biotechnology Institute Co., Ltd. カロテノイドケトラーゼ及びカロテノイドヒドロキシラーゼ遺伝子を利用したアスタキサンチンまたはその代謝物の製造法
JP2007097584A (ja) 2005-09-06 2007-04-19 Yamaha Motor Co Ltd アスタキサンチン含有量の高い緑藻およびその製造方法
JP2007143492A (ja) 2005-11-29 2007-06-14 Tosoh Corp カロテノイド類の生産方法
JP2007244205A (ja) 2006-03-13 2007-09-27 Tosoh Corp カロテノイド類の製造方法
JP2008167665A (ja) 2007-01-09 2008-07-24 Tosoh Corp カロテノイド類の製法
JP2008268106A (ja) 2007-04-24 2008-11-06 Mitsui Optronics:Kk 温度情報計測方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALCANTARA S. ET AL.: "Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis", J. IND. MICROBIOL. BIOTECHNOL., vol. 23, no. L, 1999, pages 697 - 700, XP008146645 *
HELV. CHIM. ACTA, vol. 64, 1981, pages 2436
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 53, 2003, pages 231 - 238
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 54, 2004, pages 1699 - 1702
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 49, 1999, pages 277 - 282
PURE APPL. CHEM., vol. 57, 1985, pages 741
See also references of EP2345736A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122616A1 (ja) * 2010-03-30 2011-10-06 Jx日鉱日石エネルギー株式会社 発酵によるゼアキサンチンの製造法
AU2011235718B2 (en) * 2010-03-30 2014-06-05 Jx Nippon Oil & Energy Corporation Method of manufacturing zeaxanthin by fermentation
US8883443B2 (en) 2010-03-30 2014-11-11 Jx Nippon Oil & Energy Corporation Method for producing zeaxanthin by fermentation
JP5851392B2 (ja) * 2010-03-30 2016-02-03 Jx日鉱日石エネルギー株式会社 発酵によるゼアキサンチンの製造法
JP2012139164A (ja) * 2010-12-28 2012-07-26 Tosoh Corp 微生物を用いたカロテノイドの製造法
JP2012139166A (ja) * 2010-12-28 2012-07-26 Tosoh Corp 新規微生物及びそれを用いたカロテノイドの生産方法
JP2012139165A (ja) * 2010-12-28 2012-07-26 Tosoh Corp 新規微生物及びそれを用いたリコペンの生産方法
US20130317116A1 (en) * 2011-02-02 2013-11-28 Jx Nippon Oil & Energy Corporation External skin preparation
KR20180072825A (ko) 2015-12-28 2018-06-29 제이엑스티지 에네루기 가부시키가이샤 코발트 함유 배지에 의한 카로테노이드 산생 세균에 의한 카로테노이드의 발효 제조 방법
US10947574B2 (en) 2015-12-28 2021-03-16 Eneos Corporation Method for producing fermented carotenoid using carotenoid-producing bacteria obtained by using cobalt-containing culturing medium
KR20180131543A (ko) 2016-03-31 2018-12-10 제이엑스티지 에네루기 가부시키가이샤 카로테노이드의 제조 방법
US11268121B2 (en) 2016-03-31 2022-03-08 Eneos Corporation Carotenoid production method

Also Published As

Publication number Publication date
CA2740967C (en) 2016-02-23
CN102186984B (zh) 2016-01-13
JPWO2010044469A1 (ja) 2012-03-15
JP5714907B2 (ja) 2015-05-07
US20110262981A1 (en) 2011-10-27
CN102186984A (zh) 2011-09-14
NZ592213A (en) 2012-10-26
KR20110071013A (ko) 2011-06-27
US8993282B2 (en) 2015-03-31
EP2345736A1 (en) 2011-07-20
RU2461628C1 (ru) 2012-09-20
KR101392066B1 (ko) 2014-05-07
AU2009304688A1 (en) 2010-04-22
EP2345736A4 (en) 2013-01-16
CA2740967A1 (en) 2010-04-22
AU2009304688B2 (en) 2012-11-08
EP2345736B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5714907B2 (ja) カロテノイドの発酵法
JP5762691B2 (ja) 発酵によるアスタキサンチン製造方法
JP5851392B2 (ja) 発酵によるゼアキサンチンの製造法
JP5155898B2 (ja) カロテノイドの分離法
JP6291631B2 (ja) コバルト含有培地によるカロテノイド産生細菌によるカロテノイドの発酵製造方法
JP6132905B2 (ja) ゼアキサンチンの製造方法及び細菌の培養方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140867.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533939

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 592213

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2009304688

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2740967

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009820647

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009304688

Country of ref document: AU

Date of ref document: 20091016

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117011061

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011119634

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13124304

Country of ref document: US