WO2005115653A1 - 金属ガラスの成形方法 - Google Patents

金属ガラスの成形方法 Download PDF

Info

Publication number
WO2005115653A1
WO2005115653A1 PCT/JP2005/009801 JP2005009801W WO2005115653A1 WO 2005115653 A1 WO2005115653 A1 WO 2005115653A1 JP 2005009801 W JP2005009801 W JP 2005009801W WO 2005115653 A1 WO2005115653 A1 WO 2005115653A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
metallic glass
molded product
warm press
rough
Prior art date
Application number
PCT/JP2005/009801
Other languages
English (en)
French (fr)
Inventor
Naokuni Muramatsu
Ken Suzuki
Akihisa Inoue
Hisamichi Kimura
Original Assignee
Ngk Insulators, Ltd.
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Tohoku University filed Critical Ngk Insulators, Ltd.
Priority to US11/628,122 priority Critical patent/US7708844B2/en
Priority to JP2006513968A priority patent/JP4693772B2/ja
Priority to KR1020067027220A priority patent/KR101203757B1/ko
Priority to EP05743302A priority patent/EP1759781B1/en
Publication of WO2005115653A1 publication Critical patent/WO2005115653A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/20Making tools by operations not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • B21J1/006Amorphous metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • Y10T29/49984Coating and casting

Definitions

  • the present invention relates to a method for forming a metallic glass, for example, for forming a thin-walled component such as an electronic device housing using the metallic glass.
  • a metal liquid becomes extremely unstable when cooled to a temperature lower than its melting point, and immediately crystallizes into a crystalline metal.
  • the time during which the supercooled liquid can exist in a state in which atoms are disordered without crystallizing, that is, in a so-called ⁇ amorphous state '' is determined by the nose temperature of the continuous cooling transformation (CCT) curve. 10_ 5 seconds are estimated to be below. That is, the Conoco, if not achieve the cooling rate of more than 10 6 K / s, means that the amorphous alloy is not obtained.
  • Metallic glass produced by using these production methods can obtain mechanical properties such as high strength, low Young's modulus, and high elasticity inherent to amorphous materials, which are not found in crystalline alloys, in large dimensions. It is widely expected to be put to practical use as a building material.
  • Non-Patent Document 1 “Functional Materials”, June 2002, Vol. 22, No. 6, PP 5-PP9
  • Non-Patent Document 2 “Functional Materials”, July 2002, Vol. 22, No. 7, PP 5 to PP 8
  • Non-Patent Document 3 “Functional Materials”, June 2002, Vol. 22, No. 6, PP 26-PP 31 [0007]
  • metallic glass is used for thin-walled molded products, such as electronic equipment housings, which are preferred to have a three-dimensional shape with high strength and light weight.
  • the above-described manufacturing method for obtaining a large-sized metallic glass part which is originally suitable, has the following problems.
  • the mold manufacturing method has the following problems.
  • a general mold making method since it is a simple method of pouring molten metal into the mold forming cavity, depending on the shape of the product, there may be a lack of shape due to insufficient running of the molten metal, wrinkles, nests, etc. ⁇ A lot of structural defects were avoided.
  • the cooling rate of the mold was unstable, and the part did not become amorphous!
  • the high-pressure injection molding method has the following problems.
  • the general high-pressure die-casting method (for example, Japanese Patent Application Laid-Open No. 10-296424) can form a three-dimensional shape by compensating for the shortage of molten metal with high-pressure injection.
  • a complicated runner In order to obtain such a complicated shape, a complicated runner must be formed as shown in FIGS. 6 to 8 of JP-A-10-296424.
  • the defect rate due to a structural defect of a general die casting is considered to be several percent to several tens of percent. It shows that there is no way to prevent structural defects.
  • the molten metal forging method has the following problems.
  • the melt forging method or the mold clamping method in which the molten metal of arc-melted metal is immediately forged on a water-cooled copper mold, is cooled by water from the back so that the mold surface does not melt due to the high temperature during arc melting. ⁇
  • the press molding method has the following problems. For example, a method of forming a block-shaped amorphous alloy heated to a supercooled liquid temperature range by pressing the block-shaped amorphous alloy against a closed portion of a mold placed in a vacuum chamber is disclosed in JP-A-10-216920. It is shown.
  • the present inventors proceeded with experimental research by experimenting with various methods.
  • the metallic glass as a supercooled liquid did not crystallize the molten metal force, but was solidified. It is important to control the dimensional change mainly due to thermal expansion and contraction during solidification and shrinkage, and first perform rough molding by high pressure die-casting to form the necessary external dimensions and three-dimensional parts.
  • prepare a warm press die in which cavities matching the external dimensions are formed in advance place the roughly formed product in the die heated to the supercooled liquid temperature range with bow I, and press with the die. It has been discovered that warm press forming allows filling of surrounding surface defects with viscous flow into the surface defects remaining on the surface of the roughly formed product, thereby eliminating the defects. .
  • the molded product after the warm press molding may be formed to have a thickness of 1 mm or less.
  • the rough molding force by the die casting may be performed while passing an inert gas.
  • the metal glass may be melted by using a YAG laser as a heat source in the rough forming by the die casting.
  • the warm press forming may be performed by heating the roughly formed product to a supercooled liquid temperature range in the atmosphere.
  • the heating to the supercooled liquid temperature range may be performed by setting the rough molded product in a mold in which a heating device is provided.
  • the warm press forming includes, after applying a powder film for shielding air to the rough molded product, heating the coarse molded product to a supercooled liquid temperature range. It's been done.
  • the surface roughness of the roughly formed product is adjusted to an arithmetic average roughness of 0.1 ⁇ m or more and 5 ⁇ m or less. After that, the crude molded article may be heated to a supercooled liquid temperature range.
  • the metallic glass may be a zirconium-based metallic glass.
  • FIG. 1 (a) is a diagram showing a die casting apparatus used for rough molding by die casting in the method for molding metallic glass according to the first embodiment of the present invention.
  • FIG. 1) is a view showing a warm press apparatus used in finish forming by warm press in the method for forming metallic glass according to the first embodiment of the present invention.
  • FIG. 2 (a) shows a cross section of a roughly formed product before being subjected to finish forming by a warm press in the method for forming a metallic glass according to the first embodiment of the present invention.
  • (b) is a view showing a state of finish forming by warm pressing in the method for forming metallic glass according to the first embodiment of the present invention.
  • FIG. 3 is a view for explaining rough forming by die casting performed while passing an inert gas in the method of forming metallic glass according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining melting of the metallic glass by a YAG laser during rough molding by die force in the method for molding a metallic glass according to the first embodiment of the present invention.
  • FIG. 5 is a schematic explanatory view of a mold having a built-in heater used for a warm press in the method for forming a metallic glass according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a roughly molded product coated with a powder film to which a warm press is applied in the method for molding a metallic glass according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory view of a rough molded product having adjusted surface roughness to which a warm press is applied in the method for molding metallic glass according to the first embodiment of the present invention.
  • FIG. 8A is a view showing evaluation results of metallic glasses according to Examples 1 to 9 and Comparative Examples 1 to 5.
  • FIG. 8B is a diagram showing evaluation results of metallic glasses according to Examples 1 to 9 and Comparative Examples 1 to 5.
  • FIG. 1 (a) shows a die casting apparatus 1 applied to a method for forming a metallic glass according to a first embodiment of the present invention
  • FIG. 1 (b) shows a first embodiment of the present invention
  • 1 shows a warm press 10 applied to a method for forming metallic glass according to an embodiment.
  • the method for forming a metallic glass according to the present embodiment includes a step of performing a rough molding by die casting using a metallic glass to form a coarse molded product, and a step of bringing the molded coarse molded product into a supercooled liquid temperature range.
  • a step of heating and warm press forming is to obtain a molded product of metallic glass.
  • the die casting apparatus 1 is configured by appropriately disposing a melting portion 2, a mold portion 3, and a pressing portion 4 of a metallic glass M in a die casting chamber 5. It is roughly configured.
  • the melting section 2 includes a crucible 2a and a heating device 2b disposed around the crucible 2a so as to heat and melt the metallic glass M in the crucible 2a.
  • the mold part 3 is configured to include a mold 3a having a cavity A for molding the roughly molded product Ml, and a sleeve 3b communicating with the cavity A via a runner.
  • the pushing portion 4 includes a plunger 4a that reciprocates in the sleeve 3b, and a piston 4b that is a driving source of the plunger 4a.
  • the warm press 10 is configured to have an upper mold 10a and a lower mold 10b, and the two molds 10a, 10b
  • the cavity B is formed by clamping the mold.
  • the roughly formed product M1 is heated to a supercooled liquid temperature range, placed on the cavity B of the warm press device 10, and press formed.
  • the molded article M2 can be molded.
  • a person skilled in the art is provided with an appropriate number of runners, air vents, and overflows which are usually acquired through repeated experience at appropriate positions.
  • it reduces the complexity of examining the method of making a sword, and even if some surface defects a remain, it can be easily removed by a warm press, so that the mold structure is simplified, and The cost can be reduced.
  • die casting and warm pressing may be performed in separate molding chambers, or may be performed semi-continuously in the same molding chamber. Good to go.
  • the warm press 10 may be configured so that the gap of the cavity B is 1 mm or less.
  • the molded product M2 includes a warm press die 10a having a cavity B having a gap of 1 mm or less, and Since it is formed by 10b, it is possible to achieve final finish molding using viscous flow peculiar to metallic glass M, and as a result, it is possible to mold three-dimensionally uneven or thin molded products and complex shapes It can be easily adapted to the product.
  • the rough molding by die casting may be performed while passing an inert gas.
  • FIG. 3 shows a method of performing rough molding by die casting while injecting an inert gas G into the die casting chamber 5 in FIG. 1 (a).
  • the die casting apparatus 1 is provided with an inert gas inlet 6 and an inert gas outlet 7 at appropriate positions in the die casting chamber 5, and the die casting apparatus 1 Rough molding is performed while passing inert gas G through.
  • inert gas G helium, nitrogen, anoregone, or the like is selected.
  • the crude molded product Ml which has been pushed away from the mold portion 3 by an extrusion pin (not shown) or the like is dropped into a storage space prepared below in the die casting molding chamber 5. It is stored.
  • the metallic glass M may be introduced into the die casting chamber 5 via a pre-evacuated sub-chamber (not shown).
  • a pre-evacuated sub-chamber not shown.
  • the metallic glass M used for die casting is configured to be melted using one L of the YAG laser as a heat source! You can! / ,.
  • FIG. 4 shows an example in which a YAG laser L is used as a heat source for melting the metallic glass M.
  • FIG. 1 (b) a force showing the example in which the heating device 2b is disposed in the die casting chamber 5 As shown in FIG. 5, the volume of the inert gas G can be reduced.
  • the configuration indicated by reference numeral 8 is a window for introducing the YAG laser L, which is made of transparent glass, and the configuration indicated by reference numeral 9 is a seal member.
  • the reason why the YAG laser L is used as a heat source for melting the metallic glass M is that the inside of the die-casting chamber 5 that is isolated from the outside air through the introduction window 8 of transparent quartz glass or the like is high in the die-casting chamber 5 This is because energy density lines can be incident.
  • the warm press forming is performed by using a warm pressing apparatus 10 shown in FIG.
  • the heating to the strong supercooled liquid temperature range may be performed by setting the roughly formed product Ml in a mold in which a heating device is provided.
  • Figure 5 shows a warm press 10 with a powerful configuration.
  • the warm press 10 is composed of an upper die 10a and a lower die 10b in which a cartridge heater H is disposed.
  • the warm press apparatus 10 having such a configuration, at the time of warm press forming, the roughly formed product Ml can be heated, and the upper mold 10a or the upper mold 10a which is less affected by the temperature of the atmosphere. It is possible to continuously perform the warm press only by the simple opening and closing operation of the lower mold 10b.
  • a warm press may be performed by selecting an inert gas as the atmosphere, or a warm press may be performed in the air.
  • an oxide film is formed on the surface of the molded object.However, when the molding is completed before crystallization in the supercooled liquid temperature range, the oxide film becomes a protective film. To prevent permeation into the interior, and do not cause crystallization with a surface force.
  • the powder film P is obtained by applying powder to the surface of the roughly molded product Ml.
  • the present invention is not limited to the case where BN (boron nitride) is used as the powder film P.
  • the dispersion of heat-resistant particles such as high-density carbon powder and molybdenum disulfide (MoS2) is not limited to this.
  • the present invention can be applied to a case where a powder film is used.
  • the present invention is not limited to the case where a spray is used as a coating method.
  • the present invention is also applicable to a case where immersion or brushing is used.
  • the powder film P is located between the mold and the roughly molded product Ml, and plays a role in reducing surface friction during molding. As a result, the viscous flow of
  • the warm press forming is performed to reduce the surface roughness of the roughly formed product Ml to a range of 0.1 ⁇ m or more and 5 ⁇ m or less in arithmetic average roughness (Ra).
  • the crude molded product Ml may be heated to a subcooling liquid temperature range. Roughly molded product M when strong
  • the rough molded article Ml is prepared by sandblasting its surface m to have an arithmetic average roughness (Ra) of 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the present invention is not limited to the case where sandblast is used as the preparation of the surface roughness, but the case where shot blasting using other blasting materials, mechanical grinding, grinding or the like is used. Is also applicable.
  • the reason for limiting the surface roughness is that the surface roughness Ra is less than 0.1 ⁇ m and the mold (for example, This is because the effect of reducing the contact area between the upper mold 10a) and the roughly molded product Ml is not sufficient, and there is no effect of reducing friction.
  • the surface m of the rough molded product Ml is adjusted to a predetermined range of surface roughness, so that the surface of the mold (for example, the upper mold 10a) at the time of warm pressing is roughened. It reduces the area of contact with the molded product Ml to reduce friction and promotes viscous flow of the coarse molded product Ml.
  • the method for forming metallic glass following the step of performing rough forming by die casting using metallic glass, heating is performed to a supercooled liquid temperature range to perform warm press forming.
  • the surrounding material is filled with viscous flow into the surface defects remaining on the surface of the roughly formed product at the time of fabrication, thereby filling the holes, thereby eliminating the defects.
  • the method for forming a metallic glass according to the present embodiment the surface defects remaining on the surface of the roughly formed product Ml formed by die casting are continuously reduced to the supercooled liquid temperature range. Since it can be erased during warm press forming performed by heating, it provides a method for forming a metal glass that can form a molded product without surface defects while maintaining the amorphous state of metallic glass. can do.
  • the surface defects of the roughly formed product Ml can be eliminated during the subsequent warm press forming, so that the die design can be improved.
  • a method for forming a metallic glass capable of forming a molded part with high dimensional accuracy in a simplified process, because the post-process for cutting and removing an excess portion after molding is reduced, as well as being easy. I can do it.
  • the metal glass forming method according to the present embodiment warm press forming is performed Since the method is performed with the viscous flow of the metallic glass, it is possible to provide a method of forming a metallic glass that can be easily formed into a thin-walled or uneven-walled molded article or a molded article having a complicated shape.
  • the formed product is formed by the warm press dies 10a and 10b provided with the cavity B serving as a gap of 1 mm or less.
  • the final finish molding using the viscous flow peculiar to the metallic glass can be sufficiently achieved, and it can be applied to three-dimensional uneven thickness and thin molded products and molded products having complicated shapes.
  • a high energy density line is incident from the outside of the die-casting chamber 5 into the die-casting chamber 5 blocked from the outside air.
  • the metallic glass M in the die casting chamber 5 can be melted.
  • a single laser oscillation device is branched by a plurality of optical fibers to form a metallic glass in a plurality of die-casting chambers 5. M can be dissolved at the same time.
  • the heat source for melting the metallic glass M can be set outside the die casting chamber 5 by using the YAG laser L.
  • the volume of the inert gas G can be saved by reducing the volume of the chamber 5, and the metallic glass M in the multiple die casting chambers 5 can be melted simultaneously by branching with multiple optical fibers. As a result, manufacturing efficiency can be improved.
  • the warm press is continuously performed only by a simple opening / closing operation of the upper mold or the lower mold with a small force S affected by the temperature of the atmosphere. be able to.
  • the powder film P is located between the mold and the coarse molded product Ml, and plays a role of reducing surface friction during molding. Viscous flow of molded product Ml can be promoted.
  • the method for forming a metallic glass according to the present embodiment by adjusting the surface of the roughly formed product Ml to a range of 0.1 ⁇ m or more and 5 ⁇ m or less, the mold 10 a And 10b The contact area between the surface and the coarse molded product Ml is reduced, and the friction therebetween is reduced, and as a result, the viscous flow of the coarse molded product Ml during warm pressing is promoted.
  • the rough molded product Ml may be one obtained by applying the powder film P on the surface whose surface roughness is adjusted. In this case, the formation of the powder film P is favorable. The viscous flow of the rough molded product during warm pressing is further promoted.
  • the resulting roughly formed product Ml is heated to a supercooled liquid temperature range.
  • the final finish forming using the viscous flow within the extremely wide supercooling temperature range characteristic of zirconium-based metal glass is sufficiently performed during the warm press forming. It is possible to effectively eliminate the surface defects that remain on the surface of the roughly formed product during fabrication.
  • the viscous flow in the extremely wide and supercooling temperature range which is unique to the zirconium-based metallic glass, is advantageously used during warm press forming.
  • the surface defects remaining on the surface of the roughly-formed product M1 at the time of fabrication can be more effectively eliminated, and the zirconium-based metallic glass remains amorphous.
  • a molded article free from surface defects can be formed.
  • Figs. 8A and 8B show the evaluation results of the molded products of metallic glass according to Examples 1 to 9 and Comparative Examples 1 to 5.
  • the molded articles of metallic glass according to Examples 1 to 9 are molded by the method of molding a metallic glass according to the first embodiment described above. Specifically, the molded articles of metallic glass according to Examples 1 to 9 were subjected to rough molding by die casting using metallic glass M, and then the resulting crude molded article Ml was heated to a supercooled liquid temperature range. It is formed by hot press forming.
  • FIGS. 8A and 8B show the die casting conditions and warm pressing conditions in Examples 1 to 9.
  • the molded product of the metallic glass according to Comparative Example 1 was formed by die casting only.
  • the metallic glass molded article according to Comparative Example 2 was molded by a metal molding method in which warm pressing was attempted using a material previously manufactured in a plate shape by molten forging.
  • the molded product of the metallic glass according to Comparative Example 3 was molded by a molding method of metallic glass only by a mold structure, and the molded product of the metallic glass according to Comparative Example 4 was subjected to high-pressure injection.
  • the molded product of the metallic glass according to the comparative example 5 was molded by the molding method of the metallic glass only by the molten metal forging.
  • the molding conditions in Comparative Examples 1 to 5 are also shown in FIGS. 8A and 8B.
  • the metallic glass used in Examples 1 to 9 and Comparative Examples 1 to 5 is a zirconium-based metallic glass.
  • the "completed shape (filling degree)" is defined as a case where the difference in the measured weight of the completed shape is less than -0.5% with respect to the weight that can be calculated in advance by the volume and the specific gravity. ⁇ ”, 0
  • An "X" indicates that a weight difference of more than 5% has occurred.
  • the "presence / absence of a surface defect" was determined by visually judging whether or not there is a point that impairs the shape and surface state of the finished product with respect to the design shape of the mold cavity.
  • the “finished product minimum thickness” was smaller than the “molded thickness” of the roughly molded product, and the “surface roughness” was smaller.
  • the finished product is smaller than that during warm pressing.
  • Example 2 is a three-dimensional case having a uniform thickness
  • Examples 3 to 9 are three-dimensional cases having an uneven thickness. Therefore, it can be understood that the method of forming a metallic glass according to the present embodiment can easily form a three-dimensionally uneven / thin-walled molded product / complex molded product.
  • Example 1 The atmosphere during die casting was vacuum in Example 1, nitrogen gas in Examples 2 and 6, argon gas in Examples 3, 5, 7, 8, and 9, and helium gas in Example 4. In each case, all the evaluation items for the effects were cleared, and it can be understood that all of these inert gases are applicable.
  • the atmosphere force during warm press molding was nitrogen gas in Examples 1 to 7, and air in Examples 8 and 9, and all of the evaluation items for all effects were cleared. It can be understood that either inert gas represented by nitrogen gas or air can be applied to warm press molding.
  • a molded article without surface defects is formed while maintaining the amorphous state of metallic glass, and a simplified process using a mold having a simple structure is performed. Accordingly, it is possible to provide a method of forming a metallic glass which can form a molded part with high dimensional accuracy by using a thin-walled or uneven-walled molded article or a molded article having a complicated shape.

Abstract

 本発明に係る金属ガラスの成形方法は、金属ガラスを用いてダイカストによる粗成形を行って粗成形品を成形する工程と、成形された前記粗成形品を過冷却液体温度域に加熱して温間プレス成形する工程とを有する。

Description

明 細 書
金属ガラスの成形方法
技術分野
[0001] 本発明は、金属ガラスを用いて、例えば、電子機器筐体等の薄肉部品を成形する 金属ガラスの成形方法に関する。
背景技術
[0002] 通常、金属の液体は、融点以下に冷却される際に極めて不安定な状態となり、直ち に結晶化して結晶金属となる。この際に、過冷却液体が、結晶化せずに原子が無秩 序に配列した状態、いわゆる「アモルファス状態」で存在できる時間は、連続冷却変 態 (CCT)曲線のノーズ温度で見れば、 10_5秒以下と見積られている。即ち、このこ とは、 106K/s以上の冷却速度を達成しないと、アモルファス合金が得られないことを 意味する。
[0003] しかし、近年、ジルコニウム基をはじめとする特定の合金群において、過冷却液体 状態が極めて安定化され、 lOOK/s以下の冷却速度でも明瞭なガラス遷移をして結 晶化しない金属ガラスが発明されている (例えば、非特許文献 1参照)。
[0004] これらの金属ガラスは、広い範囲の過冷却液体の状態を維持できる温度域 (過冷 却液体温度域)を持っているので、この温度域で結晶化する温度及び時間に達しな い条件の下では、粘性流動を利用した超塑性成形 (例えば、非特許文献 2参照)も可 能である。
[0005] また、水焼入れ法、アーク溶解法、金型铸造法、高圧射出成形法、吸引铸造法、 型締め铸造法、回転ディスク製線法等の製法を用いて、溶湯から直接大形状の非晶 質合金 (バルタ金属ガラス)を製造できることが知られて ヽる(例えば、非特許文献 3 参照)。
[0006] これらの製法を用いて製造された金属ガラスは、非晶質本来の持つ高強度、低ャ ング率、高弾性限という結晶合金にない機械特性を、大きな寸法で得られるため、構 造材料として広く実用化が期待されている。
非特許文献 1:「機能材料」, 2002年 6月号, Vol. 22, No. 6, P. P. 5〜P. P. 9 非特許文献 2 :「機能材料」, 2002年 7月号, Vol. 22, No. 7, P. P. 5〜P. P. 8 非特許文献 3 :「機能材料」, 2002年 6月号, Vol. 22, No. 6, P. P. 26〜P. P. 31 [0007] しカゝしながら、金属ガラスは、電子機器筐体のように、高強度及び軽量化が実現さ れた 3次元形状が好まれる薄肉成形品の用途に、本来適しているにも関わらず、大 形状の金属ガラス部品を得ようとするための上述の製法には、以下に述べるような問 題点がある。
[0008] 第 1に、金型铸造法には、以下のような問題点がある。一般的な金型铸造法では、 金型の成形キヤビティ内に溶湯を注ぎ込むだけの単純な方法のために、製品の形状 によっては、湯回り不足による形状欠落や湯じわや铸物巣等の铸造欠陥が少なから ず避けられな力つた。また、金型力もの冷却速度が不安定であり、部分的に非晶質 にならな!、ことも頻繁に起こって 、た。
[0009] 第 2に、高圧射出成形法には、以下のような問題点がある。一般的な高圧ダイカスト 法 (例えば、特開平 10— 296424号公報)は、湯回りの不足を高圧射出で補うことに よって、 3次元形状に成形することができるが、さらにボスやリブなどが設けられた複 雑な形状を得ようとするためには、特開平 10— 296424号公報の図 6〜図 8に示され るような複雑な湯道を形成しなければならない。
[0010] さらに、前述のような铸造欠陥を減らすためには、エアーベント (ガス排気路)ゃォ 一バーフロー(捨湯溜め)等の工夫を念入りに加える煩雑さが残って 、た。
[0011] 当業者の経験に基づくこのような手法を用いても、一般的なダイカストの铸造欠陥 による不良率は、数%から数十%とされており、この高圧射出成形法には画期的に 铸造欠陥を防ぐ方法のな 、ことを示して 、る。
[0012] 第 3に、溶湯鍛造法には、以下のような問題点がある。水冷した銅铸型上でアーク 溶解した金属ガラスの溶湯を直ちに鍛造成形する溶湯鍛造法あるいは型締め铸造 法は、アーク溶解時に金型表面が高温となって溶融しな 、よう裏側から水冷されて ヽ る。
[0013] 水冷部の金型表面に接する箇所は、溶解が十分とならな 、ために、金属ガラスが 形成されない。このため、成形品には、製品として適合しない箇所が残り、この部分 が除去されなければならない不利があった。 [0014] この問題を回避すべく珪素製の金型を用いて、金型及び原料合金ともに金属ガラ スの融点以上の温度に加熱した後に加圧して高速成形する鍛造方法も提案されて Vヽる(特表 2003 - 534925参照)。
[0015] し力しながら、本鍛造方法は、板材のような単純形状には適用が可能なものの、複 雑な 3次元形状を持つ成形品に適用するには、金型の切削加工が問題となっていた
[0016] さらに、溶湯鍛造法においては、瞬間的な速度で金型を閉じて成形するために、成 形品の厚さを lmm以下で精度良く制御することが難しぐ薄肉や偏肉の成形品には 容易に適用できな ヽ大きな問題があった。
[0017] 第 4に、プレス成形法には、以下のような問題点がある。例えば、過冷却液体温度 域まで加熱したブロック状の非晶質合金を、真空チャンバ一内に置かれた金型の閉 塞部位に押圧して成形を行う方法力 特開平 10— 216920号公報に示されている。
[0018] かかる方法では、単数回のプレス成形でボス、リブ、窓枠、穴等が配備された 3次元 の複雑な形状に仕上げることは極めて困難であり、さらに、加熱装置や冷却装置の 配設及び解除を繰り返すので、寸法精度の高い複雑形状を、短いサイクルタイムで 連続成形することは困難であった。
[0019] そこで、本発明者等は、上述の問題点を解決するために、様々な方法を試行して 実験研究を進めたところ、金属ガラスが過冷却液体として溶湯力も結晶化しな 、まま 固化する際に凝固収縮がなぐ主に熱膨張収縮による寸法変化を管理すれば良い 点に着眼し、まず高圧で射出を行うダイカストにより粗成形を行って必要な外形寸法 や 3次元形状部位を形成し、さらに予め外形寸法に整合するキヤビティを形成した温 間プレス金型を準備し、弓 Iき続き過冷却液体温度域まで加熱した金型内に粗成形品 を配置し、金型で押圧して温間プレス成形することにより、粗成形品の表面に残存し ていた表面欠陥の中に、周囲の材料を粘性流動で充填させて穴埋めし、欠陥を消し 去ることができるとの知見を得た。
[0020] そして、温間プレス金型に、 1mm以下のギャップとなるようにキヤビティ部を形成し ておくことで、金属ガラス特有の粘性流動を用いた最終仕上げ成形が可能になり、 3 次元で偏肉'薄肉の複雑形状にも適合するとの知見を得た。 [0021] 本発明者等は、このような知見に立脚し、さらに鋭意研究を続けた結果、本発明の 完成に至った。
発明の開示
[0022] そこで、本発明は、以上の点に鑑みてなされたもので、金属ガラスの非晶質を維持 しながら表面欠陥の生じない成形品を成形し、構造が簡単な金型を用いた簡略ィ匕し た工程で高寸法精度の成形部品を成形し、薄肉や偏肉の成形品や複雑形状の成 形品にも容易に成形可能な金属ガラスの成形方法を提供することを目的として!ヽる。
[0023] 本発明の第 1の特徴は、金属ガラスの成形方法であって、金属ガラスを用いてダイ カストによる粗成形を行って粗成形品を成形する工程と、成形された前記粗成形品を 過冷却液体温度域に加熱して温間プレス成形する工程とを有することを要旨とする。
[0024] 本発明の第 1の特徴において、前記温間プレス成形後の成形品が、 1mm以下の 厚さを有して形成されて ヽてもよ ヽ。
[0025] 本発明の第 1の特徴において、前記ダイカストによる粗成形力 不活性ガスを通気 させながら行われてもよい。
[0026] 本発明の第 1の特徴において、前記ダイカストによる粗成形で、前記金属ガラスが、 YAGレーザーを熱源として溶解されてもよ!、。
[0027] 本発明の第 1の特徴において、前記温間プレス成形が、前記粗成形品を大気中で 過冷却液体温度域に加熱して行われてもよ 、。
[0028] 本発明の第 1の特徴において、前記過冷却液体温度域への加熱が、内部に加熱 装置が配設された金型に前記粗成形品をセットして行われてもよい。
[0029] 本発明の第 1の特徴において、前記温間プレス成形が、大気を遮断する粉体膜を 前記粗成形品に塗布した後、該粗成形品を過冷却液体温度域に加熱して行われて ちょい。
[0030] 本発明の第 1の特徴にぉ 、て、前記温間プレス成形が、前記粗成形品の面粗度を 算術平均粗さで 0. 1 μ m以上 5 μ m以下の範囲に調製した後に、前記粗成形品を 過冷却液体温度域に加熱して行われてもよ 、。
[0031] 本発明の第 1の特徴において、前記金属ガラスが、ジルコニウム基金属ガラスであ つてもよい。 図面の簡単な説明
[0032] [図 1]図 1 (a)は、本発明の第 1の実施形態に係る金属ガラスの成形方法におけるダ イカストによる粗成形で用いられるダイカスト装置を示す図であり、図 1 (b)は、本発明 の第 1の実施形態に係る金属ガラスの成形方法における温間プレスによる仕上げ成 形で用いられる温間プレス装置を示す図である。
[図 2]図 2 (a)は、本発明の第 1の実施形態に係る金属ガラスの成形方法において、 温間プレスによる仕上げ成形が施される前の粗成形品の断面を示し、図 2 (b)は、本 発明の第 1の実施形態に係る金属ガラスの成形方法における温間プレスによる仕上 げ成形の状態を示す図である。
[図 3]図 3は、本発明の第 1の実施形態に係る金属ガラスの成形方法における不活性 ガスを通気させながら行うダイカストによる粗成形を説明するための図である。
[図 4]図 4は、本発明の第 1の実施形態に係る金属ガラスの成形方法におけるダイ力 ストによる粗成形の際の YAGレーザーによる金属ガラスの溶解を説明するための図 である。
[図 5]図 5は、本発明の第 1の実施形態に係る金属ガラスの成形方法における温間プ レスに用いるヒータを内蔵した金型の概略説明図である。
[図 6]図 6は、本発明の第 1の実施形態に係る金属ガラスの成形方法における温間プ レスが適用される粉体膜を塗布した粗成形品の断面図である。
[図 7]図 7は、本発明の第 1の実施形態に係る金属ガラスの成形方法における温間プ レスが適用される面粗度を調整した粗成形品の説明図である。
[図 8A]図 8Aは、実施例 1〜9及び比較例 1〜5に係る金属ガラスについての評価結 果を示す図である。
[図 8B]図 8Bは、実施例 1〜9及び比較例 1〜5に係る金属ガラスについての評価結 果を示す図である。
発明を実施するための最良の形態
[0033] [本発明の第 1の実施形態]
以下、図面を参照して、本発明の第 1の実施形態に係る金属ガラスの成形方法に ついて説明する。 [0034] 図 1 (a)は、本発明の第 1の実施形態に係る金属ガラスの成形方法に適用されるダ イカスト装置 1を示し、図 1 (b)は、本発明の第 1の実施形態に係る金属ガラスの成形 方法に適用される温間プレス装置 10を示す。
[0035] 本実施形態に係る金属ガラスの成形方法は、金属ガラスを用いてダイカストによる 粗成形を行って粗成形品を成形する工程と、成形された粗成形品を過冷却液体温 度域に加熱して温間プレス成形する工程とによって、金属ガラスの成形品を得るもの である。
[0036] 図 1 (a)に示すように、ダイカスト装置 1は、金属ガラス Mの溶解部 2と、金型部 3と、 押込部 4とを、ダイカスト成形室 5内に適宜配置することにより大略構成されている。
[0037] 溶解部 2は、るつぼ 2aと、当該るつぼ 2a内の金属ガラス Mを加熱溶解するように当 該るつぼ 2aの周囲に配置された加熱装置 2bとを有して構成されている。
[0038] 金型部 3は、粗成形品 Mlを成形するキヤビティ Aを備えた金型 3aと、当該キヤビテ ィ Aに湯道を介して連通するスリーブ 3bとを有して構成されている。
[0039] 押込部 4は、スリーブ 3b内を往復動するプランジャー 4aと、当該プランジャー 4aの 駆動源であるピストン 4bとを有して構成されて 、る。
[0040] 本実施形態に係る金属ガラスの成形方法におけるダイカストによる粗成形は、るつ ぼ 2a内の溶解した金属ガラス Mを、スリーブ 3bに充填した後、プランジャー 4aでキヤ ビティ A内に加圧充填することにより行われ、その結果、粗成形品 Mlを成形すること ができる。
[0041] また、図 1 (b)に示すように、温間プレス装置 10は、上金型 10aと、下金型 10bとを 有しするように構成されており、両金型 10a、 10bの型締めによりキヤビティ Bが形成さ れるように構成されている。
[0042] 本実施形態に係る金属ガラスの成形方法における温間プレス成形は、粗成形品 M 1を過冷却液体温度域に加熱して温間プレス装置 10のキヤビティ Bに載置してプレス 成形することにより行われ、その結果、成形品 M2を成形することができる。
[0043] より詳しくは、ダイカスト装置 1によって成形された粗成形品 Mlを温間プレス装置 2 に移して温間プレスを行う際に、粗成形品 Mlの表面に残っていた铸物巣等の表面 欠陥 (铸造欠陥) aが、粘性流動によって埋められ (図 2 (a)参照)、表面欠陥 aのない 成形品 M2 (図 2 (b)参照)が得られる。
[0044] このように、本実施形態に係る金属ガラスの成形方法によれば、当業者が通常繰り 返しの経験力 習得する湯道やエアーベントやオーバーフローを適切な位置に適当 な数だけ設けると 、つた铸造方案を検討する煩雑さを軽減し、多少の表面欠陥 aが 残ろうとも温間プレスによって抹消される簡便さがあるので、金型構造も簡単になり、 ひ!ヽては金型コストの低減ィ匕を図ることができる。
[0045] なお、図 1 (a)及び図 1 (b)に示すように、ダイカスト及び温間プレスは、別々の成形 室で行われても良 、し、同じ成形室内で半連続的に行われても良 、。
[0046] また、本実施形態において、温間プレス装置 10は、キヤビティ Bのギャップが lmm 以下となるように構成されて 、てもよ 、。
[0047] このような温間プレス装置 10構成によれば、図 2 (b)に示すように、成形品 M2は、 1 mm以下のギャップとなるキヤビティ Bを備えた温間プレス金型 10a及び 10bにより形 成されること〖こなるので、金属ガラス Mに特有の粘性流動を用いた最終仕上げ成形 が充分に達成でき、この結果、 3次元で偏肉'薄肉の成形品や複雑形状の成形品に も容易に適合することができる。
[0048] また、本実施形態にぉ 、て、ダイカストによる粗成形は、不活性ガスを通気させなが ら行うように構成されて 、てもよ 、。
[0049] 図 3は、図 1 (a)において、ダイカスト成形室 5内に不活性ガス Gを通気させながらダ イカストによる粗成形を行う方法を示している。
[0050] すなわち、ダイカスト装置 1は、ダイカスト成形室 5の適所に不活性ガス導入口 6及 び不活性ガス排出口 7とを備えて構成されており、導入口 6からダイカスト成形室 5内 に不活性ガス Gを通気させながら粗成形を行う。
[0051] ここで、不活'性ガス Gとしては、ヘリウム、窒素、ァノレゴンなどが選択される。
[0052] また、成形された後に押し出しピン(図示せず)等で金型部 3から押し離された粗成 形品 Mlは、ダイカスト成形室 5内の下方に用意された置き場へ投下されて溜められ る。
[0053] このようなダイカスト装置 1の構成によれば、溶解時の酸化を嫌う金属ガラス Mを、 溶解する度ごとに、ダイカスト成形室 5内を高真空度まで減圧する必要がなくなるの で、工程の簡略ィ匕を図ることができる。
[0054] このとき、金属ガラス Mは、予備排気された副室(図示せず)を介してダイカスト成形 室 5内へ導入するようにしてもよい。このようなダイカスト装置 1の構成では、金属ガラ ス Mの搬入と粗成形とを連続して行うことができる。
[0055] また、本実施形態にぉ 、て、ダイカストで用いられる金属ガラス Mは、 YAGレーザ 一 Lを熱源として溶解されるように構成されて!、てもよ!/、。
[0056] 図 4は、金属ガラス Mの溶解熱源に、 YAGレーザー Lを用いた例を示す。
[0057] 図 1 (b)では、加熱装置 2bをダイカスト成形室 5内に配設した例を示した力 図 4の ように、溶解熱源をダイカスト成形室 5外に設けることで、ダイカスト成形室 5の容積を 小さくすることができ、不活性ガス Gの通気量を節約することもできる。
[0058] 図 4にお 、て、符号 8で示す構成は、 YAGレーザー Lの導入窓で、透明ガラスで構 成されており、符号 9で示す構成は、シール部材である。
[0059] ここで、金属ガラス Mの溶解熱源として YAGレーザー Lを用いる理由は、透明石英 ガラス等の導入窓 8を介して外気と遮断されたダイカスト成形室 5内にダイカスト成形 室 5外から高エネルギー密度線を入射することができるためである。
[0060] さらに、複数のダイカスト装置 1を使って同時に粗成形を行う場合にも、 1台のレー ザ一発振装置から、複数の光ファイバ一で分岐させることによって効率よく複数の溶 解ができ、有利である。
[0061] また、温間プレス成形は、図 1 (b)に示す温間プレス装置 10を用いて、粗成形品 M
1を大気中で過冷却液体温度域に加熱して行う。この結果、金属ガラス Mに特有の 粘性流動を用いた最終仕上げが達成できる。
[0062] 力かる過冷却液体温度域への加熱は、内部に加熱装置が配設された金型に粗成 形品 Mlをセットして行われるように構成されて 、てもよ 、。力かる構成を有する温間 プレス 10を図 5に示す。
[0063] 力かる温間プレス装置 10は、図 5に示すように、内部にカートリッジヒーター Hを配 設した上型 10a及び下型 10bによって構成されている。
[0064] このような構成を有する温間プレス装置 10によれば、温間プレス成形時に、粗成形 品 Mlを加熱することができ、雰囲気の温度に影響されることが少なぐ上型 10a又は 下型 10bの単純な開閉動作のみで、連続的に温間プレスを行うことが可能である。
[0065] ここで、雰囲気として不活性ガスを選択して温間プレスを行ってもよいし、大気中で 温間プレスを行ってもよい。大気中で温間プレスを行った場合は、被成形物表面に 酸化膜が形成されるが、過冷却液体温度域で結晶化するまでに成形完了することで 、酸化皮膜は、保護膜となって内部への酸ィ匕浸透を防ぎ、表面力もの結晶化も起こさ ない。
[0066] また、本実施形態にぉ ヽて、温間プレス成形は、大気を遮断する粉体膜 Pを粗成形 品 Mlに塗布した後、粗成形品 Mlを過冷却液体温度域に加熱して行うように構成さ れて 、てもよ 、。力かる場合の粗成形品 Mlを図 6に示す。
[0067] ここで、粉体膜 Pは、粗成形品 Mlの表面に粉体を塗布することにより得られる。な お、本発明は、粉体膜 Pとして BN (窒化ほう素)を用いる場合に限定されることなぐ 高密度カーボン粉や二硫ィ匕モリブデン (MoS2)等という耐熱性のある粒子の分散を 果たす粉体膜を用いる場合にも適用可能である。
[0068] また、本発明は、塗布の方法として、スプレーが用いられる場合に限定される必要 はなぐ浸漬ゃはけ塗り等が用いられる場合にも適用可能である。
[0069] このような構成によれば、粉体膜 Pは、金型と粗成形品 Mlとの間にあって、成形中 の表面摩擦を減らす役割を果たす。その結果、粗成形品 Mlの粘性流動を促進させ
、より円滑なプレス成形を行うことができる。
[0070] また、本実施形態にぉ 、て、温間プレス成形が、粗成形品 Mlの面粗度を算術平 均粗さ (Ra)で 0. 1 μ m以上 5 μ m以下の範囲に調製した後に、粗成形品 Mlを過冷 却液体温度域に加熱して行うように構成されて 、てもよ 、。力かる場合の粗成形品 M
1を図 7に示す。
[0071] ここで、粗成形品 Mlは、その表面 mにサンドブラスト処理を施すことによって面粗 度を算術平均粗さ (Ra)で 0. 1 μ m以上 5 μ m以下に調製してある。
[0072] なお、本発明は、面粗度の調製として、サンドブラストを用いる場合に限定されるこ とはなぐその他の投射材を用いたショットブラストや機械研削やィ匕学研摩等を用いる 場合にも適用可能である。
[0073] また、面粗さを限定したのは、面粗度 Raが 0. 1 μ mに満たな 、と、金型 (例えば、 上金型 10a)と粗成形品 Mlとの接触面積を減らす効果が十分ではなぐ摩擦を減ら す効果も生じな 、ためである。
[0074] 逆に、面粗度 Raが 5 μ mを越えて大きくなると、摩擦は大きく低減するものの、粗成 形品 Mlの形状によっては粘性流動によって充填されにくい箇所の残る虞があるから である。
[0075] 力かる構成によれば、粗成形品 Mlの表面 mが所定の範囲の面粗度に調整される ことによって、温間プレス時の金型 (例えば、上金型 10a)表面と粗成形品 Mlとの接 触面積を小さくして摩擦を減らし、粗成形品 Mlの粘性流動を助長する役割を果た す。
[0076] 粗成形品 Mlの大きな表面欠陥は、粘性流動による成形の進行とともに徐々に小さ くなり、成形が完了する時点で完全に平坦となるので、成形品 M2 (図 2 (b)参照)の 表面品質に悪影響を及ぼす虞はな ヽ。
[0077] 本実施形態に係る金属ガラスの成形方法によれば、金属ガラスを用いたダイカスト による粗成形を行う工程に引き続 ヽて、過冷却液体温度域に加熱して温間プレス成 形を行う工程を実行することにより、铸造時に粗成形品の表面に残存していた表面 欠陥の中に、周囲の材料を粘性流動で充填させて穴埋めし、欠陥を消し去ることが できる。
[0078] 換言すると、本実施形態に係る金属ガラスの成形方法によれば、ダイカストにより成 形された粗成形品 Mlの表面に残存している表面欠陥を、引き続いて過冷却液体温 度域に加熱して行う温間プレス成形の際に消し去ることができるので、金属ガラスの 非晶質を維持しながら表面欠陥の生じない成形品を成形することが可能な金属ガラ スの成形方法を提供することができる。
[0079] また、本実施形態に係る金属ガラスの成形方法によれば、粗成形品 Mlの表面欠 陥を、引き続いて行う温間プレス成形の際に消し去ることができるので、金型設計も 容易となると共に、成形後に余分な部分を切断除去する後工程も軽減されるので簡 略ィ匕した工程で、高寸法精度の成形部品を成形することが可能な金属ガラスの成形 方法を提供することできる。
[0080] さらに、本実施形態に係る金属ガラスの成形方法によれば、温間プレス成形は、金 属ガラスの粘性流動を伴って行われるので、薄肉や偏肉の成形品や、複雑形状の成 形品に対しても容易に成形可能な金属ガラスの成形方法を提供することができる。
[0081] 本実施形態に係る金属ガラスの成形方法によれば、成形品は、 1mm以下のギヤッ プとなるキヤビティ Bを備えた温間プレス金型 10a及び 10bにより形成されることにな るので、金属ガラスに特有の粘性流動を用いた最終仕上げ成形が充分に達成でき、 3次元で偏肉'薄肉の成形品や複雑形状の成形品にも適合することができる。
[0082] 本実施形態に係る金属ガラスの成形方法によれば、ダイカストによる粗成形の雰囲 気を、金属ガラスを溶解する度ごとに、高真空度まで減圧する必要がなくなる。
[0083] 本実施形態に係る金属ガラスの成形方法によれば、 YAGレーザー Lを用いること により、外気と遮断されたダイカスト成形室 5内にダイカスト成形室 5外から高工ネル ギー密度線を入射させて、ダイカスト成形室 5内の金属ガラス Mを溶解させることがで きる。その上、複数のダイカスト装置 1を使って同時に粗成形を行う場合にも、 1台の レーザー発振装置から、複数の光ファイバ一で分岐させることによって、複数のダイ カスト成形室 5内の金属ガラス Mを同時に溶解できる。
[0084] 換言すると、本実施形態に係る金属ガラスの成形方法によれば、 YAGレーザー L を用いることにより、金属ガラス Mの溶解熱源をダイカスト成形室 5外に設定すること ができるので、ダイカスト成形室 5の容積を小さくして不活性ガス Gの通気量を節約す ることができると共に、複数の光ファイバ一で分岐させることによって、複数のダイカス ト成形室 5内の金属ガラス Mを同時に溶解でき、製造の効率ィ匕を図ることができる。
[0085] 本実施形態に係る金属ガラスの成形方法によれば、粗成形品 Mlを大気中で過冷 却液体温度域に加熱して温間プレス成形を行うようにしたので、金属ガラスに特有の 粘性流動を用いた最終仕上げが達成できる。
[0086] 本実施形態に係る金属ガラスの成形方法によれば、雰囲気の温度に影響されるこ と力 S少なく、上型又は下型の単純な開閉動作のみで、連続的に温間プレスすること ができる。
[0087] 本実施形態に係る金属ガラスの成形方法によれば、粉体膜 Pは、金型と粗成形品 Mlとの間にあって、成形中の表面摩擦を減らす役割を果たし、この結果、粗成形品 Mlの粘性流動を促進させることができる。 [0088] 本実施形態に係る金属ガラスの成形方法によれば、粗成形品 Mlの表面を 0. 1 μ m以上 5 μ m以下の範囲に調製することによって、温間プレス時の金型 10a及び 10b 表面と粗成形品 Mlとの接触面積が小さくなつて、その間の摩擦が減じ、この結果、 温間プレス時の粗成形品 Mlの粘性流動が助長される。
[0089] また、このときの粗成形品 Mlは、その面粗度を調整した表面に粉体膜 Pを施したも のであってもよぐこの場合、粉体膜 Pの形成が良好で、温間プレス時の粗成形品の 粘性流動が一層助長される。
[0090] 本実施形態に係る金属ガラスの成形方法によれば、ジルコニウム基金属ガラスを用 いて、ダイカストによる粗成形を行った後に、得られた粗成形品 Mlを過冷却液体温 度域に加熱して温間プレス成形するようにしたので、温間プレス成形の際に、ジルコ -ゥム基金属ガラスに特有の極めて広い過冷却温度域内の粘性流動を有利に用い た最終仕上げ成形が充分に達成でき、铸造時に粗成形品の表面に残存して!/ヽた表 面欠陥を効果的に消し去ることができる。
[0091] 換言すると、本実施形態に係る金属ガラスの成形方法によれば、温間プレス成形の 際に、ジルコニウム基金属ガラスに特有の極めて広 、過冷却温度域での粘性流動を 有利に用いた最終仕上げ成形が充分に達成でき、この結果、铸造時に粗成形品 M 1の表面に残存していた表面欠陥を一層効果的に消し去ることができ、ジルコニウム 基金属ガラスの非晶質を維持しながら表面欠陥の生じない成形品を成形することが できる。
[0092] 図 8A及び図 8Bに、実施例 1〜9及び比較例 1〜5に係る金属ガラスの成形品につ いての評価結果を示す。
[0093] 実施例 1〜9に係る金属ガラスの成形品は、上述の第 1の実施形態に係る金属ガラ スの成形方法によって成形されたものである。具体的には、実施例 1〜9に係る金属 ガラスの成形品は、金属ガラス Mを用いてダイカストによる粗成形を行った後に、得ら れた粗成形品 Mlを過冷却液体温度域に加熱して温間プレス成形することによって 成形されたものである。各実施例 1〜9におけるダイカスト条件及び温間プレス条件 については、図 8A及び図 8Bに示す。
[0094] これに対して、比較例 1に係る金属ガラスの成形品は、ダイカストのみによる金属ガ ラスの成形方法によって成形されたものであり、比較例 2に係る金属ガラスの成形品 は、溶湯鍛造で予め板状に製作した素材を用いて温間プレスを試みた金属ガラスの 成形方法によって成形されたものであり、比較例 3に係る金属ガラスの成形品は、金 型铸造のみによる金属ガラスの成形方法によって成形されたものであり、比較例 4に 係る金属ガラスの成形品は、高圧射出成形のみによる金属ガラスの成形方法によつ て成形されたものであり、比較例 5に係る金属ガラスの成形品は、溶湯鍛造のみによ る金属ガラスの成形方法によって成形されたものである。なお、比較例 1〜5における 成形条件についても、図 8A及び図 8Bに示す。
[0095] なお、実施例 1〜9及び比較例 1〜5に用いた金属ガラスは、ジルコニウム基金属ガ ラスである。
[0096] なお、図 8A及び図 8Bに示すように、「成形による完成品の最小肉厚」、「完成品の 面粗度」、「完成形状 (充填度)」、「表面欠陥の有無」、「完成品が非晶質を維持して
V、る力否力」の効果にっ 、て評価がなされた。
[0097] ここで、「完成形状 (充填度)」は、体積と比重とによって予め算出され得る重量に対 して、完成形状での計測重量の差異がマイナス 0. 5%以内の場合を「〇」で示し、 0
. 5%を越える重量差異が生じた場合を「 X」で示している。
[0098] また、「表面欠陥の有無」は、金型キヤビティの設計形状に対して完成品の形状や 表面状態を損なう点があるか否かを目視判定することで行った。
[0099] また、「非晶質を維持して!/、るか否かの判定」は、完成品を X線回折法で分析した 結果で、非晶質を維持していると判定して場合を「〇」で示し、非晶質を維持すること なく結晶化が生じた場合を「 X」で示す。
[0100] 図 8A及び図 8B力も解るように、実施例 1〜9は、いずれも全ての効果についての 評価項目をクリアしたものとなっているのに対し、比較例 1〜5は、いずれも完成形状
(充填度)が「X」で、表面欠陥が「有」となっており、実施例 1〜9が、如何に優れてい るかが理解できる。
[0101] さら〖こ詳しくは、実施例 1〜9は、いずれも「完成品最小厚さ」が粗成形品の「成形厚 さ」に比べて小さくなつており、かつ、「面粗度」が温間プレス時よりも完成品の方が小 さくなつており、この結果、温間プレス成形を行うことにより、铸造時に粗成形品の表 面に残存していた表面欠陥の中に、周囲の材料を粘性流動で充填させて穴埋めし、 欠陥を消し去ることができることが理解できる。
[0102] また、実施例 2は、肉厚均一の 3次元筐体であり、実施例 3〜9は、偏肉の 3次元 筐体であるが、いずれも全ての効果についての評価項目をクリアしたものとなってお り、本実施形態に係る金属ガラスの成形方法は、 3次元で偏肉'薄肉の成形品ゃ複 雑形状の成形品も容易に成形することができることが理解できる。
[0103] また、ダイカスト成形時の雰囲気が、実施例 1では真空、実施例 2、 6では窒素ガス 、実施例 3、 5、 7、 8、 9ではアルゴンガス、実施例 4ではヘリウムガスであり、いずれも 全ての効果についての評価項目をクリアしたものとなっており、これら不活性ガスの全 てが適用可能であることが理解できる。
[0104] また、温間プレス成形時の雰囲気力 実施例 1〜7では窒素ガス、実施例 8、 9では 大気であり、いずれも全ての効果についての評価項目をクリアしたものとなっており、 窒素ガスを代表例とする不活性ガスか大気のいずれでも温間プレス成形に適用可能 であることが理解できる。
産業上の利用の可能性
[0105] 以上説明したように、本発明によれば、金属ガラスの非晶質を維持しながら表面欠 陥の生じない成形品を成形し、構造が簡単な金型を用いた簡略化した工程で高寸 法精度の成形部品を成形し、薄肉や偏肉の成形品や複雑形状の成形品にも容易に 成形可能な金属ガラスの成形方法を提供することができる。

Claims

請求の範囲
[1] 金属ガラスを用いてダイカストによる粗成形を行って粗成形品を成形する工程と、 成形された前記粗成形品を過冷却液体温度域に加熱して温間プレス成形するェ 程とを有することを特徴とする金属ガラスの成形方法。
[2] 請求項 1に記載の金属ガラスの成形方法であって、
前記温間プレス成形後の成形品は、 1mm以下の厚さを有して形成されることを特 徴とする金属ガラスの成形方法。
[3] 請求項 1に記載の金属ガラスの成形方法であって、
前記ダイカストによる粗成形は、不活性ガスを通気させながら行うことを特徴とする 金属ガラスの成形方法。
[4] 請求項 1に記載の金属ガラスの成形方法であって、
前記ダイカストによる粗成形において、前記金属ガラスは、 YAGレーザーを熱源と して溶解されることを特徴とする金属ガラスの成形方法。
[5] 請求項 1に記載の金属ガラスの成形方法であって、
前記温間プレス成形は、前記粗成形品を大気中で過冷却液体温度域に加熱して 行うことを特徴とする金属ガラスの成形方法。
[6] 請求項 5に記載の金属ガラスの成形方法であって、
前記過冷却液体温度域への加熱は、内部に加熱装置が配設された金型に前記粗 成形品をセットして行うことを特徴とする金属ガラスの成形方法。
[7] 請求項 1に記載の金属ガラスの成形方法であって、
前記温間プレス成形は、大気を遮断する粉体膜を前記粗成形品に塗布した後、該 粗成形品を過冷却液体温度域に加熱して行うことを特徴とする金属ガラスの成形方 法。
[8] 請求項 1に記載の金属ガラスの成形方法であって、
前記温間プレス成形は、前記粗成形品の面粗度を算術平均粗さで 0. 1 μ m以上 5 μ m以下の範囲に調製した後に、前記粗成形品を過冷却液体温度域に加熱して行 うことを特徴とする金属ガラスの成形方法。
[9] 請求項 1に記載の金属ガラスの成形方法であって、 前記金属ガラスは、ジルコニウム基金属ガラスであることを特徴とする金属ガラスの 成形方法。
PCT/JP2005/009801 2004-05-28 2005-05-27 金属ガラスの成形方法 WO2005115653A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/628,122 US7708844B2 (en) 2004-05-28 2005-05-27 Method of forming metallic glass
JP2006513968A JP4693772B2 (ja) 2004-05-28 2005-05-27 金属ガラスの成形方法
KR1020067027220A KR101203757B1 (ko) 2004-05-28 2005-05-27 금속 유리의 성형 방법
EP05743302A EP1759781B1 (en) 2004-05-28 2005-05-27 Method for forming metallic glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-160234 2004-05-28
JP2004160234 2004-05-28

Publications (1)

Publication Number Publication Date
WO2005115653A1 true WO2005115653A1 (ja) 2005-12-08

Family

ID=35450707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009801 WO2005115653A1 (ja) 2004-05-28 2005-05-27 金属ガラスの成形方法

Country Status (6)

Country Link
US (1) US7708844B2 (ja)
EP (1) EP1759781B1 (ja)
JP (1) JP4693772B2 (ja)
KR (1) KR101203757B1 (ja)
CN (1) CN100473472C (ja)
WO (1) WO2005115653A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200734A (ja) * 2007-02-22 2008-09-04 Seiko Instruments Inc スリーブ製造方法、動圧軸受装置及びスリーブ製造装置
JPWO2007069385A1 (ja) * 2005-12-13 2009-05-21 株式会社Bmg 金属ガラス部材表面への画像模様形成方法、画像模様を形成するための装置および表面に画像模様を形成した金属ガラス部材
US7708051B2 (en) 2006-01-25 2010-05-04 Ykk Corporation Method for manufacture of a physical quantity detector
JP2011067838A (ja) * 2009-09-25 2011-04-07 Toyota Motor Corp 半溶融金属の鋳造方法、及び半溶融金属の鋳造装置
US8087264B2 (en) * 2005-10-14 2012-01-03 Ohara Inc. Glass forming apparatus and method

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530555A1 (en) 2007-07-12 2012-12-05 Apple Inc. Methods for integrally trapping a glass insert in a metal bezel and produced electronic device
CN102695569B (zh) * 2009-11-09 2015-04-15 丰田自动车株式会社 热压用金属模具与温度测定装置、以及热压成型方法
KR101104191B1 (ko) * 2010-06-23 2012-01-09 이호도 비정질합금을 이용한 임플란트의 제조장치 및 제조방법
WO2012006571A2 (en) * 2010-07-08 2012-01-12 Yale University Method and system based on thermoplastic forming to fabricate high surface quality metallic glass articles
WO2012064871A2 (en) 2010-11-09 2012-05-18 California Institute Of Technology Ferromagnetic cores of amorphouse ferromagnetic metal alloys and electonic devices having the same
WO2012115944A1 (en) * 2011-02-21 2012-08-30 The Board Of Trustees Of The University Of Illinois Blade fabrication process and bulk metallic glass surgical grade blade
US8459331B2 (en) 2011-08-08 2013-06-11 Crucible Intellectual Property, Llc Vacuum mold
US8858868B2 (en) 2011-08-12 2014-10-14 Crucible Intellectual Property, Llc Temperature regulated vessel
JP5723078B2 (ja) 2011-11-11 2015-05-27 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc 射出成形システムにおける制御された移送のためのデュアルプランジャロッド
US9302320B2 (en) 2011-11-11 2016-04-05 Apple Inc. Melt-containment plunger tip for horizontal metal die casting
KR101258788B1 (ko) * 2011-11-22 2013-04-29 박영훈 다이캐스팅 금형구조체
CN102527982B (zh) * 2011-12-15 2015-05-13 比亚迪股份有限公司 非晶合金压铸设备及非晶合金压铸工艺
WO2013162504A2 (en) * 2012-04-23 2013-10-31 Apple Inc. Methods and systems for forming a glass insert in an amorphous metal alloy bezel
US9314839B2 (en) 2012-07-05 2016-04-19 Apple Inc. Cast core insert out of etchable material
US9004151B2 (en) 2012-09-27 2015-04-14 Apple Inc. Temperature regulated melt crucible for cold chamber die casting
US8701742B2 (en) 2012-09-27 2014-04-22 Apple Inc. Counter-gravity casting of hollow shapes
US8813816B2 (en) 2012-09-27 2014-08-26 Apple Inc. Methods of melting and introducing amorphous alloy feedstock for casting or processing
US8833432B2 (en) 2012-09-27 2014-09-16 Apple Inc. Injection compression molding of amorphous alloys
US8826968B2 (en) 2012-09-27 2014-09-09 Apple Inc. Cold chamber die casting with melt crucible under vacuum environment
US8813814B2 (en) 2012-09-28 2014-08-26 Apple Inc. Optimized multi-stage inductive melting of amorphous alloys
US8813817B2 (en) 2012-09-28 2014-08-26 Apple Inc. Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques
US8813813B2 (en) 2012-09-28 2014-08-26 Apple Inc. Continuous amorphous feedstock skull melting
US9725796B2 (en) * 2012-09-28 2017-08-08 Apple Inc. Coating of bulk metallic glass (BMG) articles
US10197335B2 (en) 2012-10-15 2019-02-05 Apple Inc. Inline melt control via RF power
US9925583B2 (en) 2013-07-11 2018-03-27 Crucible Intellectual Property, Llc Manifold collar for distributing fluid through a cold crucible
US9445459B2 (en) 2013-07-11 2016-09-13 Crucible Intellectual Property, Llc Slotted shot sleeve for induction melting of material
TWI511823B (zh) 2013-12-20 2015-12-11 財團法人工業技術研究院 調控積層製造之裝置及其方法
US9873151B2 (en) 2014-09-26 2018-01-23 Crucible Intellectual Property, Llc Horizontal skull melt shot sleeve
US10668529B1 (en) 2014-12-16 2020-06-02 Materion Corporation Systems and methods for processing bulk metallic glass articles using near net shape casting and thermoplastic forming
CN104690245A (zh) * 2015-03-18 2015-06-10 东莞台一盈拓科技股份有限公司 非晶合金用卧式压铸机
US10870904B2 (en) * 2016-07-14 2020-12-22 Crucible Intellectual Property, Llc Bulk metallic glass interference layers
WO2022115867A1 (en) * 2020-11-25 2022-06-02 Amorphology Inc. Methods and systems for fabricating layers of metallic glass-based materials
CN112872313B (zh) * 2021-04-08 2021-10-19 株洲宜安新材料研发有限公司 一种非晶合金压铸工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563676A (en) * 1978-11-09 1980-05-13 Matsushita Electric Works Ltd Preparation of outer edge of electric razor
JPH02175039A (ja) * 1988-12-27 1990-07-06 Miyama Seiko Kk インジェクタ用ボデー基体の製造方法
JP2000301316A (ja) * 1999-04-21 2000-10-31 Sumitomo Rubber Ind Ltd 非晶質合金成型品の製造装置
JP2000317900A (ja) * 1999-05-07 2000-11-21 Tokyo Inst Of Technol 薄膜構造体の製造方法
JP2001347351A (ja) * 2000-06-07 2001-12-18 Sumitomo Metal Ind Ltd モールドパウダおよび連続鋳造方法
JP2002086258A (ja) * 2000-09-12 2002-03-26 Sumitomo Rubber Ind Ltd 非晶質合金の製造方法及び非晶質合金製造装置
JP2002192294A (ja) * 2000-12-21 2002-07-10 Toyota Industries Corp 球冠状シューの製造方法
JP2002361399A (ja) * 2001-06-07 2002-12-17 Aisin Seiki Co Ltd アルミニウム合金鋳造鍛造方法、鋳造鍛造用アルミニウム合金
JP2003117647A (ja) * 2001-10-09 2003-04-23 Ykk Corp スリット付き中空鋳造成型品並びにその製造方法及び装置
JP2004098125A (ja) * 2002-09-10 2004-04-02 Komatsu Sanki Kk プレス成形方法およびプレス成形装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512209C1 (de) * 1995-03-21 1996-07-18 Mannesmann Ag Verfahren und Vorrichtung zum Einfüllen metallischer Schmelze in eine Kokille
JP3808167B2 (ja) 1997-05-01 2006-08-09 Ykk株式会社 金型で加圧鋳造成形された非晶質合金成形品の製造方法及び装置
JPH10216920A (ja) 1997-02-07 1998-08-18 Olympus Optical Co Ltd 非晶質合金の成形装置及び成形方法
US6325868B1 (en) * 2000-04-19 2001-12-04 Yonsei University Nickel-based amorphous alloy compositions
KR100809376B1 (ko) 2000-06-09 2008-03-05 캘리포니아 인스티튜트 오브 테크놀로지 고온주형급냉법에 의한 비결정질 금속 부품 성형방법
JP4695311B2 (ja) * 2001-09-21 2011-06-08 シチズンホールディングス株式会社 チタン合金
JP4110506B2 (ja) * 2001-11-21 2008-07-02 コニカミノルタホールディングス株式会社 光学素子成形用金型
JP2003202350A (ja) * 2001-12-28 2003-07-18 Tokyo Cathode Laboratory Co Ltd プローブカード用探針、プローブカード用探針ユニット、プローブカード及びそれらの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563676A (en) * 1978-11-09 1980-05-13 Matsushita Electric Works Ltd Preparation of outer edge of electric razor
JPH02175039A (ja) * 1988-12-27 1990-07-06 Miyama Seiko Kk インジェクタ用ボデー基体の製造方法
JP2000301316A (ja) * 1999-04-21 2000-10-31 Sumitomo Rubber Ind Ltd 非晶質合金成型品の製造装置
JP2000317900A (ja) * 1999-05-07 2000-11-21 Tokyo Inst Of Technol 薄膜構造体の製造方法
US20020072203A1 (en) 1999-05-07 2002-06-13 Akira Shimokohbe Thin film-structure and a method for producing the same
JP2001347351A (ja) * 2000-06-07 2001-12-18 Sumitomo Metal Ind Ltd モールドパウダおよび連続鋳造方法
JP2002086258A (ja) * 2000-09-12 2002-03-26 Sumitomo Rubber Ind Ltd 非晶質合金の製造方法及び非晶質合金製造装置
JP2002192294A (ja) * 2000-12-21 2002-07-10 Toyota Industries Corp 球冠状シューの製造方法
JP2002361399A (ja) * 2001-06-07 2002-12-17 Aisin Seiki Co Ltd アルミニウム合金鋳造鍛造方法、鋳造鍛造用アルミニウム合金
JP2003117647A (ja) * 2001-10-09 2003-04-23 Ykk Corp スリット付き中空鋳造成型品並びにその製造方法及び装置
JP2004098125A (ja) * 2002-09-10 2004-04-02 Komatsu Sanki Kk プレス成形方法およびプレス成形装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HATA S. ET AL: "Usumaku Kinzoku Glass o Mochiita Bisai Kozobutsu no Seisaku (Dai 1 Ho)", JOURNAL OF THE JAPAN SOCIETY OF PRECISION ENGINEERING, vol. 66, no. 1, 5 January 2000 (2000-01-05), pages 96 - 97, XP003002866 *
See also references of EP1759781A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8087264B2 (en) * 2005-10-14 2012-01-03 Ohara Inc. Glass forming apparatus and method
JPWO2007069385A1 (ja) * 2005-12-13 2009-05-21 株式会社Bmg 金属ガラス部材表面への画像模様形成方法、画像模様を形成するための装置および表面に画像模様を形成した金属ガラス部材
JP5407013B2 (ja) * 2005-12-13 2014-02-05 株式会社Bmg 金属ガラス部材表面への画像模様形成方法、画像模様を形成するための装置および表面に画像模様を形成した金属ガラス部材
US7708051B2 (en) 2006-01-25 2010-05-04 Ykk Corporation Method for manufacture of a physical quantity detector
JP2008200734A (ja) * 2007-02-22 2008-09-04 Seiko Instruments Inc スリーブ製造方法、動圧軸受装置及びスリーブ製造装置
JP2011067838A (ja) * 2009-09-25 2011-04-07 Toyota Motor Corp 半溶融金属の鋳造方法、及び半溶融金属の鋳造装置

Also Published As

Publication number Publication date
JPWO2005115653A1 (ja) 2008-03-27
JP4693772B2 (ja) 2011-06-01
US20080034796A1 (en) 2008-02-14
KR101203757B1 (ko) 2012-11-21
EP1759781A1 (en) 2007-03-07
KR20070042929A (ko) 2007-04-24
CN100473472C (zh) 2009-04-01
US7708844B2 (en) 2010-05-04
EP1759781A4 (en) 2007-12-05
EP1759781B1 (en) 2011-07-06
CN1956808A (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
WO2005115653A1 (ja) 金属ガラスの成形方法
JP3808167B2 (ja) 金型で加圧鋳造成形された非晶質合金成形品の製造方法及び装置
KR101342817B1 (ko) 다이캐스트 장치 및 다이캐스트 방법
US20090321037A1 (en) Mold assembly apparatus and method for molding metal articles
KR101440151B1 (ko) 다이캐스트 장치
EP0867246B1 (en) Method and apparatus for injection molding of semi-molten metals
JPH09323146A (ja) バルク凝固アモルファス合金のダイカスト法
JP2001347346A (ja) 合金塊の製造方法及び装置
CA3021395C (fr) Procede et dispositif pour le moulage en coquille d'un alliage metallique
JPH07155897A (ja) 鋳型構造及び鋳造方法
Yang et al. Numerical calculation and experimental evaluation of counter-gravity investment casting of Ti-48Al-2Cr-2Nb alloy
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
JP3592239B2 (ja) 鋳造方法及び鋳造装置
JP3809057B2 (ja) 金属製品の成形用金型
JPS58215263A (ja) 複合材料の製造方法
US20230201913A1 (en) Hollow article made of amorphous metal
US20070215307A1 (en) Method for Manufacturing Cast Parts
KR100856097B1 (ko) 용탕단조 및 열간성형에 의한 제조방법
JP3756021B2 (ja) マグネシウム合金成形装置
JP2000301316A (ja) 非晶質合金成型品の製造装置
JPS58179541A (ja) 平滑面を有する金属材料の連続鋳造法および装置
Kim et al. Effects of casting variables on soundness of A356 alloy products in Rheo-diecasting
JP2003053483A (ja) アルミホイールの還元鋳造方法
Bilwal et al. A REVIEW PAPER ON PERMANENT MOLD CASTING
JPH021588B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580016993.0

Country of ref document: CN

Ref document number: 2006513968

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11628122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005743302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067027220

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005743302

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11628122

Country of ref document: US