WO2005113139A1 - 複合酸化物触媒及びその製造方法 - Google Patents

複合酸化物触媒及びその製造方法 Download PDF

Info

Publication number
WO2005113139A1
WO2005113139A1 PCT/JP2004/014387 JP2004014387W WO2005113139A1 WO 2005113139 A1 WO2005113139 A1 WO 2005113139A1 JP 2004014387 W JP2004014387 W JP 2004014387W WO 2005113139 A1 WO2005113139 A1 WO 2005113139A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
pore volume
composite oxide
oxide catalyst
pores
Prior art date
Application number
PCT/JP2004/014387
Other languages
English (en)
French (fr)
Inventor
Yoshimune Abe
Isao Teshigahara
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2005113139A1 publication Critical patent/WO2005113139A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution

Definitions

  • the present invention provides a composite oxide catalyst for producing a corresponding unsaturated carboxylic acid stably over a long period of time and in a high yield by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas. And its manufacturing method.
  • the production scale of producing acrylic acid by reacting acrolein is usually performed at a scale of 3,000,000 tons / year, so that even if the conversion and the selectivity are improved by 0.1%, The amount of acrylic acid obtained, the product, is greatly increased at the level of hundreds and thousands of tons. Therefore, improvement in catalytic performance such as conversion of raw material unsaturated aldehyde and selectivity of unsaturated carboxylic acid, even with a slight improvement, greatly contributes to effective use of resources and rationalization of processes.
  • Patent Document 1 discloses Mo Nb V Cu Si C XY Z O (where X is an alkali metal and
  • Y represents at least one element selected from Mg, Ca, Sr, Ba and Zn
  • Z represents W, Ce, Sn, Cr, Mn, Fe , Co, Y, Nd, Sm, Ge, and Ti.
  • a, b, c, d, e, f, and g are atoms of each element]; denote arid, a »0 ⁇ a ⁇ 12, 0 ⁇ b ⁇ 10, 0 ⁇ c ⁇ 8, 0 ⁇ d ⁇ 1000, 0 ⁇ e ⁇ 1000, 0 ⁇ f ⁇ 2, 0 ⁇ g ⁇ 5, 0 ⁇ h ⁇ 5, where i is a number determined by the degree of oxidation of each of the above components excluding Si and C)
  • a catalyst having a composition is proposed. [0004]
  • such composite oxide catalysts exhibit reasonably excellent performance, it is desired to further improve the conversion of the raw material unsaturated aldehyde and the selectivity of the unsaturated carboxylic acid.
  • Patent Document 2 discloses a general formula (Mo) a (V) b (A) c (B) d (C) e (D) f (0) x (where A is W and Nb B indicates at least one element selected, B indicates at least one element selected from Fe, Cu, Bi, Cr, and S, and C indicates at least one element selected from alkali metals and alkaline earth metals.
  • Patent Document 2 discloses that the characteristics of the catalyst are controlled by controlling the pore distribution of the catalyst. However, the performance provided by the use of a strong catalyst is insufficient. Yes, it is desired to improve the conversion of raw material unsaturated aldehyde and selectivity of unsaturated carboxylic acid even if it is slightly high.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-200055
  • Patent Document 2 Japanese Patent Publication No. 5-70502
  • the present invention provides a method for producing an unsaturated carboxylic acid by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas to produce a high conversion of the raw material unsaturated aldehyde and a high unsaturated carboxylic acid.
  • a composite oxide catalyst which gives selectivity and exhibits stable performance over a long period of time, and a method for producing the same.
  • the composition of the catalyst of the present invention is the same or similar to the catalyst of Patent Document 1.
  • the catalyst of Patent Document 2 is strictly different from the catalyst of Patent Document 2 in that the catalyst of the present invention contains carbon atoms.
  • the pore distribution of the catalyst of the present invention is clearly different from the pore distribution of the catalyst disclosed in Patent Document 2, it seems that this is due to the difference in the composition of the catalyst.
  • the catalyst having the composition of the present invention has excellent performance when it has the pore distribution defined by the present invention, as shown in Comparative Examples described later.
  • the present inventors when producing the catalyst having the above specific composition and pore distribution according to the present invention, require, as a source compound of Si and C contained in the catalyst, two or more kinds of compounds having different particle diameters. It has been found that when the silicon carbide powder is used, the pore size distribution of the obtained catalyst is easily controlled, and the catalyst having the specific pore size distribution of the present invention can be produced favorably.
  • the control of the pore size distribution by this method can be applied not only to the catalyst of the catalyst component alone but also to the case of a molded catalyst.
  • an extrusion molding method or a tablet molding method can be used without using a special molding method such as a centrifugal flow coating method disclosed in Patent Document 2. This is industrially advantageous because a normal molding method such as that described above can be used.
  • the present invention is characterized by the following gist.
  • a complex oxide catalyst used for producing a corresponding unsaturated fatty acid by subjecting an unsaturated aldehyde to gas-phase catalytic oxidation with a molecular oxygen-containing gas represented by the following formula (I): Having a specific surface area of 0.5-10 m 2 / g, a pore volume of 0.1-0.9 ccZg, and a pore occupied by pores having a pore diameter of less than 0.1-1 ⁇ m
  • the volume is 10% or more of the total pore volume, and the pore volume occupied by pores having a pore diameter of less than 1 to 10 zm is 30% or more of the total pore volume, and the pore diameter is less than 0.1 lxm.
  • the pore volume occupied by 20% or less of the total pore volume, and the pore volume occupied by pores having a pore diameter of 10 am or more is 10% or less of the total pore volume.
  • Complex characterized by having a distribution Oxide catalyst.
  • each component and variable have the following meanings.
  • X represents at least one element selected from the group consisting of W and Sb.
  • A, b, c, d, e, f, and g represent each element. 0 ⁇ a ⁇ 12, 0 ⁇ b ⁇ 12, 0 ⁇ c ⁇ 12, 0 ⁇ d ⁇ 8, 0 ⁇ e ⁇ 1000, 0 ⁇ f ⁇ 1000, and g is the formula (I ) Is a number determined by the degree of oxidation of each component)
  • a source compound of Si and C contained in the catalyst two or more kinds of silicon carbide powders having different particle diameters are used, and the silicon carbide powder and another element contained in the catalyst are used.
  • the two or more kinds of silicon carbide powders having different particle diameters are a carbon carbide powder having an average particle diameter of 5 ⁇ m or more and a silicon carbide powder having an average particle diameter of less than 5 ⁇ m (3). 3.
  • Acrolein is subjected to gas-phase catalytic oxidation with a molecular oxygen-containing gas in the presence of the composite oxide catalyst obtained by the production method according to any one of the above (3) to (5), and the corresponding atalylic acid is obtained. How to manufacture.
  • the raw material unsaturated aldehyde when an unsaturated aldehyde is produced by gas-phase catalytic oxidation with a molecular oxygen-containing gas to produce an unsaturated carboxylic acid, the raw material unsaturated aldehyde has a high conversion and an unsaturation.
  • a composite oxide catalyst that provides a high selectivity of carboxylic acid and exhibits stable performance over a long period of time is provided.
  • the pore distribution of the obtained catalyst can be easily controlled, so that the catalyst having the above specific pore diameter distribution can be produced favorably. Further, the control of the pore size distribution by this method can be applied to the case of a molded catalyst.
  • the composite oxide catalyst produced by the present invention is represented by the above formula (I).
  • X, a, b, c, d, e, f, and g are as described above. Above all, 0. 1 ⁇ a ⁇ 6, 0. l ⁇ b ⁇ 6, 0. l ⁇ c ⁇ 6, 0. 01 ⁇ d ⁇ 6, 5 ⁇ e ⁇ 500, 5 ⁇ f ⁇ 500 force S preferred Les ,.
  • the catalyst having the above composition according to the present invention has a specific surface area of 0.5 to 10 m 2 / g, preferably 0.7 to 5 m 2 / g, and a pore volume of 0.1 to 0.1 m 2 / g. -0.9 cc / g, preferably 0.15 to 0.5 cc / g.
  • the pore distribution is such that the pore volume occupied by pores having a pore diameter of less than 0.1 lxm is 10% or more, preferably 15 to 40% of the total pore volume, 1
  • the pore volume occupied by pores smaller than 10 ⁇ m is 30% or more of the total pore volume, preferably 45-80%, and the pore volume occupied by pores having a pore diameter of less than 0.1 lzm.
  • the volume is 20% or less of the total pore volume, preferably 15% or less, and the pore volume occupied by pores having a pore diameter of 10 II m or more is 10% or less, preferably 5% of the total pore volume. It is as follows.
  • the pore distribution is, inter alia, the sum of the pore volume occupied by pores with a pore diameter of 0.1--1 ⁇ m and the pore volume occupied by pores with a pore diameter of 1-110 ⁇ m. Is more than 60%, preferably more than 80% of the total pore volume, more excellent performance can be obtained.
  • the specific surface area is the surface area per unit weight of the catalyst measured by the BET method using nitrogen adsorption, and the pore diameter and the pore volume are determined by the porosimetry by the mercury intrusion method. These are the pore diameter and pore volume per unit weight of the catalyst determined by measurement with a dimeter.
  • the composite oxide catalyst of the present invention comprises a source compound of Mo, V, Nb, Cu, X, Si and C, which are components constituting the catalyst composition represented by the formula (I), in an aqueous medium system. It is produced by drying an aqueous solution or dispersion of the obtained integrated product to prepare a powder, and firing the powder.
  • the coagulation is preferably performed by mixing the source compounds containing the respective component elements in an aqueous system preferably composed of an aqueous solution or an aqueous dispersion and subjecting them to aging treatment if necessary, so that the respective elements are uniformly contained. It means to become.
  • the term "aging” is obtained by treating an industrial raw material or semi-finished product under specific conditions such as a fixed time and a constant temperature. Operation to obtain and increase the required physical properties and chemical properties or to advance a predetermined reaction ”.
  • the above-mentioned constant time is within a range of 1 minute and 24 hours
  • the above-mentioned constant temperature is within a range of room temperature and 200 ° C.
  • the source compound of the catalyst component may be a compound excluding a silicon carbide compound, as long as it becomes an oxide upon firing.
  • the raw material of the catalyst constituent element compound include a molybdenum compound, a niobium compound, a vanadium compound, and a copper compound.
  • Specific examples of the compound include halides, sulfates, nitrates, ammonium salts, oxides, carboxylate salts, ammonium carboxylate salts, ammonium halide salts, hydride salts, acetylinoacetate salts, and alkoxides of the catalyst constituent elements. As an example.
  • silicon and carbon source compounds include green silicon carbide and black silicon carbide. Silicon carbide is preferably a fine powder.
  • Examples of the silicon supply source include colloidal silica, powdered or granular silica, and the like, and examples of the aluminum supply source include alumina. Compounds of these catalyst constituent elements can be used alone You can mix and use two or more.
  • the present invention when at least two kinds of silicon carbide (SiC) powders having different particle diameters are used as the source compounds of Si and C, as described above, This is preferable because the pore size distribution of the catalyst to be used can be controlled.
  • SiC silicon carbide
  • a catalyst having a large proportion of the pore volume having a small pore diameter can be obtained, while a catalyst having a large particle diameter is used.
  • a catalyst having a large proportion of the pore volume having a large pore diameter can be obtained.
  • a catalyst having the above-described pore size distribution can be easily obtained. found.
  • the difference between the average particle diameters of the two is preferably at least 3 ⁇ m, particularly preferably at least 5 ⁇ m.
  • the use ratio between the silicon carbide powder having an average particle diameter of 5 / m or more and the silicon carbide powder having an average particle diameter of less than 5 ⁇ is preferably 20-95 / 80-5 for the former / the latter (weight ratio). Particularly preferred is 70-95 / 30-5.
  • the slurry liquid can be obtained by uniformly mixing the source compound of each component of the catalyst and water.
  • the use ratio of the compound of each component in the slurry liquid is such that the atomic ratio of each catalyst component falls within the above-mentioned composition range.
  • the amount of water used in the slurry liquid is not particularly limited as long as the entire amount of the source compound of each component can be completely dissolved or uniformly mixed, but the following heat treatment method and temperature are taken into consideration. May be determined appropriately. Usually, 100 to 2000 parts by weight based on 100 parts by weight of the total weight of the source compound of each component. If the amount of water is less than the above-mentioned predetermined amount, the source compound of each component may not be completely dissolved or may not be mixed uniformly. Further, if the amount of water exceeds the above-mentioned predetermined amount, there is a problem that the energy cost during the heat treatment increases.
  • the room temperature is preferably 200 ° C, particularly preferably 70 ° C-100 ° C. C, preferably 1 minute to 24 hours, especially preferred It is preferable to carry out aging treatment for 30 minutes to 6 hours.
  • the slurry liquid obtained in the above step is preferably dried.
  • the drying method is not particularly limited as long as one slurry can be completely dried and a powder can be obtained. Examples of preferable methods include drum drying, freeze drying, and spray drying.
  • Spray drying is a method that can be preferably applied to the present invention because the slurry can be dried to a homogeneous powder state in a short time.
  • the drying temperature varies depending on the concentration of the slurry liquid, the speed of liquid feeding, and the like, but is usually 90 to 200 ° C, preferably 130 to 170 ° C at the outlet of the dryer. Further, it is preferable to dry the dried powder so that the particle diameter becomes 10-200 / im.
  • the composite oxide catalyst obtained by the production method of the present invention can also be obtained by molding the powder after the heat treatment.
  • a molding aid such as a binder to mold.
  • binders include, for example, tableting of heat-treated powder, tableting, and crystalline cellulose, and silica gel, diatomaceous earth, and alumina powder for extrusion. It is preferable to use about 1 to 50 parts by weight of the binder per 100 parts by weight of the heat-treated powder.
  • inorganic fibers such as ceramic fibers and whiskers can be used as a strength improving material to improve the mechanical strength of the catalyst.
  • fibers that react with catalyst components such as potassium titanate whiskers and basic magnesium carbonate whiskers are not preferred.
  • the strength improving material ceramic fibers are particularly preferable.
  • the amount of these fibers used is usually 110 to 30 parts by weight per 100 parts by weight of the heat-treated powder.
  • the molding aid and the strength improving material are usually used as a mixture with a heat-treated powder.
  • the powder mixed with a molding aid, a strength improving material, and the like is subjected to an appropriate molding method such as (A) tablet molding, (B) extrusion molding, and (C) coating and molding on a carrier such as a sphere.
  • An appropriate molding method such as (A) tablet molding, (B) extrusion molding, and (C) coating and molding on a carrier such as a sphere.
  • Appropriate shapes such as pellets, spheres, cylinders, and rings can be selected as the shape of the molded body. Among them, pellets and rings are used for tableting, and spheres and rings are used for extrusion. Is preferred.
  • the molded article is calcined to obtain a composite oxide catalyst.
  • Firing temperature The temperature can be usually from 250 to 600 ° C, preferably from 300 to 420 ° C, and the firing time is from 1 to 50 hours.
  • the calcination can be performed in an atmosphere in the presence of an inert gas or molecular oxygen. If the firing temperature is too low, the molybdenum element may be lost by sublimation if the thermal diffusion of the molybdenum element is too high.
  • the means for producing a corresponding unsaturated carboxylic acid by subjecting the unsaturated aldehyde to a gas phase oxidation using a molecular oxygen-containing gas using the catalyst produced according to the present invention is carried out by an existing method. be able to.
  • the reaction is performed using a fixed-bed tube reactor.
  • the reaction may be carried out under a condition generally used for this type of reaction, which may be a single flow method or a recycling method through a reactor.
  • a mixed gas composed of acrolein 1 to 15 vol%, molecular oxygen 0.5 to 25 vol%, water vapor 0 to 40 vol%, and inert gas such as nitrogen and carbon dioxide 20 to 80 vol% is used.
  • acrolein 1 to 15 vol% acrolein 1 to 15 vol%
  • molecular oxygen 0.5 to 25 vol% acrolein 1 to 15 vol%
  • water vapor 0 to 40 vol% a mixed gas composed of acrolein 1 to 15 vol%, molecular oxygen 0.5 to 25 vol%, water vapor 0 to 40 vol%, and inert gas such as nitrogen and carbon dioxide 20 to 80 vol%
  • 0.1-IMPa under pressure and space velocity (SV) 300-5000hr- 1 Is done.
  • SV space velocity
  • it is also possible to operate under a high load reaction condition for example, a condition of a higher raw material gas degree or a high space velocity in order to increase productivity.
  • acrylic acid can be produced with high selectivity and high yield.
  • Akurorein conversion (mol 0/0) 100 X (moles of reacted Akurorein) / (number of moles of the supplied Akurorein)
  • Acrylic acid yield (mol 0/0) 100 X (acrylic acid mol number generated) / (Akurore Inmoru number of supplied)
  • Example 1 Composite metal oxide whose composition formula is Mo V Nb Cu Si C except for oxygen
  • the catalyst was prepared as follows.
  • 1446ml of pure water is 80.
  • the mixture was heated to C, and 207 g of ammonium paramolybdate and 27.5 g of ammonium metavanadate were dissolved while stirring sequentially.
  • An aqueous copper sulfate solution obtained by dissolving 48.6 g of copper sulfate in 204 ml of pure water was added thereto, and 19.3 g of niobium hydroxide was further added thereto and stirred to obtain a slurry liquid.
  • the night game bath is a salt bath in which a reaction tube is placed in a heating medium made of an alkali metal nitrate to cause a reaction, and this heating medium melts at 200 ° C or higher and can be used up to 400 ° C and is removed. Because of its high thermal efficiency, it is a reaction bath suitable for oxidation reactions that generate a large amount of heat.
  • An oxide catalyst was prepared as follows.
  • Tables 1 and 2 show the results of measurement of physical properties such as the specific surface area of the obtained composite oxide catalyst and the result of performing an acrolein oxidation reaction using the obtained composite oxide.
  • the catalyst was prepared as follows.
  • Tables 1 and 2 show the results of measurement of physical properties such as the specific surface area of the obtained composite oxide catalyst and the result of performing an acrolein oxidation reaction using the obtained composite oxide.
  • the catalyst was prepared as follows.
  • 1446ml of pure water is 80. C.
  • 207 g of ammonium paramolybdate and 27.5 g of ammonium metavanadate were dissolved with stirring in order, and an aqueous solution of copper sulfate obtained by dissolving 48.6 g of copper sulfate in 204 ml of pure water was added thereto.
  • Add niobium 19.3g And stirred to obtain a slurry liquid.
  • Tables 1 and 2 show the results of measurement of physical properties such as the specific surface area of the obtained composite oxide catalyst and the result of performing an acrolein oxidation reaction using the obtained composite oxide.
  • the ratio of the pore volume refers to the ratio of the pore volume occupied by the pores existing at 0.1-lxm or the pores existing at 110 ⁇ m in the total pore volume.
  • the catalyst obtained in Comparative Example 1 has a pore volume of 0.1-1 ⁇ m which is too small, and the catalyst obtained in Comparative Example 2 has a pore volume of 110 x 10m which is too small. Examples of both catalyst activity and selectivity It was lower than 1 and 2.
  • the catalyst of the present invention is used in the step of producing an unsaturated carboxylic acid from an unsaturated aldehyde as a raw material, but is preferably used in a step of oxidizing acrolein to produce acrylic acid. That is, usually, the catalyst of the present invention produces an unsaturated carboxylic acid from an olefin by dividing into two steps of production of an unsaturated aldehyde by oxidation of the olefin and then production of an unsaturated carboxylic acid by oxidation of the unsaturated aldehyde. In this case, it is useful in the latter stage of the production of unsaturated carboxylic acid by oxidation of unsaturated aldehyde.
  • Unsaturated carboxylic acids such as acrylic acid produced using the catalyst of the present invention are used as raw materials for various chemicals, monomers for general-purpose resins, monomers for functional resins such as water-absorbing resins, and coagulants. It is used in a wide range of applications as a thickener and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

明 細 書
複合酸化物触媒及びその製造方法
技術分野
[0001] 本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して、長期 にわたり安定して、かつ高収率で対応する不飽和カルボン酸を製造するための複合 酸化物触媒及びその製造方法に関する。
背景技術
[0002] 従来、ァクロレイン、メタクロレインなどの不飽和アルデヒドを分子状酸素により気相 接触酸化してアクリル酸、メタクリル酸などの不飽和カルボン酸を製造するための触 媒が種々提案されている。これらの触媒は、ォレフィンから製造される不飽和アルデ ヒド原料の有効利用及び反応における工程の合理化の観点から、少しでも高い不飽 和アルデヒドの転化率や目的物である不飽和カルボン酸の選択率が求められる。こ の場合、例えば、ァクロレインを反応してアクリル酸を製造する生産規模は、通常、 3 00万トン/年の規模で行われるので、上記転化率や選択率が 0. 1%でも向上すると 、得られる生成物である、アクリル酸の量は、数百一数千トンのレベルで大きく増加す る。したがって、原料不飽和アルデヒドの転化率や不飽和カルボン酸の選択率等の 触媒性能の向上は、たとえ少しの向上であっても、資源の有効活用や工程の合理化 に大幅に寄与する。
[0003] 従来、これらの反応の原料転化率や選択率等の触媒性能の向上を目指して種々 の提案がなされている。そのための優れた性能を有する複合酸化物触媒として、例 えば、特許文献 1には、 Mo Nb V Cu Si C XY Z O (式中、 Xは、アルカリ金属及
12 a b o d e f g n i
び Tlから選ばれた少なくとも 1種の元素を示し、 Yは Mg、 Ca、 Sr、 Ba及び Znから選 ばれた少なくとも 1種の元素を示し、 Zは W、 Ce、 Sn、 Cr、 Mn、 Fe、 Co、 Y、 Nd、 S m、 Ge及び Tiから選ばれた少なくとも 1種の元素を表す。 a、 b、 c、 d、 e、 f及び gは各 元素の原子];匕を表し、 a»0< a≤12, 0<b≤10, 0< c≤8, 0< d≤1000, 0< e≤ 1000、 0≤f≤2、 0≤g< 5, 0≤h< 5、 iは前記各成分のうち Siと Cを除いた各成分 の酸化度によって決まる数である)を有する組成を有する触媒が提案される。 [0004] しかし、かかる複合酸化物触媒は、それなりに優れた性能を示すものの、更に高い 原料不飽和アルデヒドの転化率や不飽和カルボン酸の選択率の向上が望まれてい る。
[0005] また、特許文献 2には、一般式 (Mo)a(V)b(A)c(B)d(C)e(D)f(0)x (式中、 Aは W 及び Nb力 選ばれた少なくとも 1種の元素を示し、 Bは、 Fe、 Cu、 Bi、 Cr、及び Sか ら選ばれた少なくとも 1種の元素を示し、 Cは、アルカリ金属及びアルカリ土類金属か ら選ほ'れた少なくとち 1種の元素を示す。 a = 12のとさ b = 2— 14、 c = 0— 12、 d = 0 一 6、 e = 0— 6、 f = 0— 30)で表され、かつ比表面積が 0. 50— 15. Om2/g、細孑し 容積 0. 10— 0. 90cc/gであり、それぞれ、 0. 1一 1. 0 x m、 1. 0— l O x m及び 10 一 100 μ ΐηの細孔によって占められる細孔容積がいずれも全細孔容積の少なくとも 1 0%以上を占める細孔分布を有する触媒が開示されている。また、該特許文献 2には 、かかる細孔分布を有する成形触媒は、通常の成形よりも遠心流動コーティング法に よる場合に優れた性能を有することが開示される。
[0006] 上記特許文献 2には、触媒の有する細孔分布を制御することにより触媒の特性を制 御することが開示されている力 なお、力かる触媒の使用によってもたらされる性能は 不充分であり、少しでも高レ、原料不飽和アルデヒドの転化率や不飽和カルボン酸の 選択率の向上が望まれている。
特許文献 1:特開 2003-200055号公報
特許文献 2:特公平 5—70502号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して不飽 和カルボン酸を製造する際に、原料不飽和アルデヒドの高転化率及び不飽和カルボ ン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複合酸化物触媒 及びその製造方法を提供する。
課題を解決するための手段
[0008] 本発明者は、上記目的を達成すべく鋭意研究を進めたところ、上記した特許文献 1 や特許文献 2と同一乃至類似の組成を有する、 Μο、 V、 Nb、 Cu、 X、 Si及び Cを含 有する複合酸化物触媒であるが、この触媒の有する細孔分布として、上記した特許 文献 2などに開示される細孔分布とは異なる新規な範囲を選択することにより、触媒 性能、特に目的物である不飽和カルボン酸の選択率が向上することを見出した。
[0009] なお、本発明における触媒の組成は、特許文献 1の触媒とは同一乃至類似である 、特許文献 2の触媒とは、厳密には、本発明の触媒が炭素原子を含有する点で明 確に異なるものである。本発明の触媒の細孔分布は、明らかに特許文献 2に開示さ れる触媒の細孔分布とは明らかに異なっているが、これは触媒の組成が異なることに 基因するものと思われる。実際に、本発明の組成の触媒の場合には、後記する比較 例に示されるように、本発明で規定する細孔分布を有する場合に優れた性能を有す るものである。
[0010] 更に、本発明者は、本発明の上記特定の組成と細孔分布を有する触媒を製造する 場合、触媒に含有される Si及び Cの供給源化合物として、粒子径の異なる 2種以上 の炭化ケィ素粉末を使用した場合、得られる触媒の細孔径分布が容易に制御され、 上記本発明の特定の細孔径分布を有する触媒が良好に製造できることを見出した。 この方法による細孔径分布の制御は、触媒成分単体の触媒とともに、成形体触媒の 場合にも適用できる。また、本発明の成体形触媒の製造の場合の成形方法としては 、特許文献 2に開示される、遠心流動コーティング法のような特殊な成形方法を使用 しなくとも、押出し成形法や打錠成形などの通常の成形方法が使用できるので工業 的に有利である。
[0011] 力べして、本発明は、下記の要旨を特徴とするものである。
(1)不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して対応する不飽 和脂肪酸を製造する際に使用される複合酸化物触媒であって、下記の式 (I)で表さ れ、かつ比表面積が 0. 5— 10m2/gであり、細孔容積が 0. 1-0. 9ccZgであり、 細孔直径 0. 1— 1 μ m未満の細孔により占められる細孔容積が全細孔容積の 10% 以上であり、細孔直径 1一 10 z m未満の細孔により占められる細孔容積が全細孔容 積の 30%以上であり、細孔直径 0. l x m未満の細孔により占められる細孔容積が全 細孔容積の 20%以下であり、さらに細孔直径 10 a m以上の細孔により占められる細 孔容積が全細孔容積の 10%以下である細孔径分布を有することを特徴とする複合 酸化物触媒。
[0012] Mo V Nb Cu X Si C O (I)
12 a b c d e f g
(式中、各成分及び変数は次の意味を有する。 Xは W及び Sbからなる群から選ば れた少なくとも一種の元素を示す。 a、 b、 c、 d、 e、 f及び gは各元素の原子比を表し、 0< a≤12, 0<b≤12, 0< c≤12, 0≤d≤8, 0 < e≤1000, 0< f≤1000を満足 し、 gは式 (I)の前記各成分の酸化度によって決まる数である)
(2)前記触媒が、円柱状又はリング状の成形触媒である上記(1)に記載の複合酸化 物触媒。
(3)前記触媒に含有される Si及び Cの供給源化合物として、粒子径の異なる 2種以 上の炭化ケィ素粉末を使用し、該炭化ケィ素粉末と触媒に含有される他の元素の供 給源化合物とを水性媒体系にて一体化させ、得られる一体化物の水溶液又は分散 液を乾燥して粉末を調製し、該粉末を焼成する上記(1)又は (2)に記載の複合酸化 物触媒の製造方法。
(4)前記粒子径の異なる 2種以上の炭化ケィ素粉末が、平均粒子径 5 μ m以上の炭 化ケィ素粉末と平均粒子径 5 μ m未満の炭化ケィ素粉末である上記(3)に記載の複 合酸化物触媒の製造方法。
(5)前記粉末を焼成する前に押出し又は打錠成形し、成形物を焼成する上記(3)又 は (4)に記載の複合酸化物触媒の製造方法。
(6)上記(1)又は(2)に記載の複合酸化物触媒の存在下にァクロレインを分子状酸 素含有ガスにより気相接触酸化して対応するアクリル酸を製造する方法。
(7)上記(3)— (5)のいずれかに記載の製造方法により得られた複合酸化物触媒の 存在下にァクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアタリ ル酸を製造する方法。
発明の効果
[0013] 本発明によれば、不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して 不飽和カルボン酸を製造する場合にぉレ、て、原料不飽和アルデヒドの高転化率及び 不飽和カルボン酸の高選択率を与え、かつ長期にわたって安定した性能を示す複 合酸化物触媒が提供される。 [0014] また、本発明の製造方法によれば、得られる触媒の細孔分布が容易に制御できる ため、上記特定の細孔径分布を有する触媒が良好に製造できる。また、この方法に よる細孔径分布の制御は、成形体触媒の場合にも適用できる。また、本発明の成形 体触媒の場合の成形方法として、特許文献 2に開示される、遠心流動コーティング法 のような特殊な成形方法を使用しなくとも、押出し成形法や打錠成形などの通常の成 形方法が使用できるので工業的に有利である。
発明を実施するための最良の形態
[0015] 本発明で製造される複合酸化物触媒は前記の式 (I)で表される。前記式 (I)におい て、 X、 a、 b、 c、 d、 e、 f、及び gは、それぞれ前記したとおりである。なかでも、 0. 1≤ a≤6, 0. l≤b≤6, 0. l≤c≤6, 0. 01≤d≤6, 5≤e≤500, 5≤f≤500力 S好まし レ、。
[0016] 本発明における上記組成を有する触媒は、比表面積として、 0. 5— 10m2/g、好ま しくは 0. 7— 5m2/gを有し、また、細孔容積が 0. 1 -0. 9cc/g、好ましくは 0. 15 一 0. 5cc/gを有する。また、その細孔分布は、細孔直径 0. 1— l x m未満の細孔 により占められる細孔容積が全細孔容積のうち 10%以上、好ましくは 15— 40%であ り、細孔直径 1一 10 μ m未満の細孔により占められる細孔容積が全細孔容積の 30 %以上、好ましくは 45— 80%であり、細孔直径 0. l z m未満の細孔により占められ る細孔容積が全細孔容積の 20%以下、好ましくは 15%以下であり、さらに細孔直径 10 II m以上の細孔により占められる細孔容積が全細孔容積の 10%以下、好ましくは 5%以下である。触媒組成が同じでも、力かる細孔分布を有しない場合には、後記す る比較例に示されるように触媒性能が低下してしまう。細孔分布は、なかでも、細孔 直径 0. 1— 1 μ m未満の細孔により占められる細孔容積と細孔直径 1一 10 μ m未満 の細孔により占められる細孔容積との合計が全細孔容積の 60%以上、好ましくは 80 %以上である場合にさらに優れた性能が得られる。
[0017] なお、本発明でレ、う比表面積は、窒素吸着による BET法で測定される、触媒単位 重量あたりの表面積であり、また、細孔直径及び細孔容積は、水銀圧入法によるポロ ジメーターで測定により求められた、触媒単位重量あたりの細孔直径、細孔容積であ る。 [0018] 本発明の複合酸化物触媒は、式 (I)で示した触媒組成を構成する成分である、 Mo 、 V、 Nb、 Cu、 X、 Si及び Cの供給源化合物を水性媒体系にて一体化させ、得られる 一体化物の水溶液又は分散液を乾燥して粉末を調製し、該粉末を焼成することによ り製造される。ここでレ、う一体化は、好ましくは水溶液又は水分散液からなる水性系 において各成分元素を含んだ供給源化合物を混合し、必要に応じて熟成処理する ことによって各元素を均一に含むようになることをいう。
[0019] すなわち、(ィ)上記の各供給源化合物を一括して混合する方法、(口)上記の各供 給源化合物を一括して混合し、さらに熟成処理する方法、(ハ)上記の各供給源化合 物を段階的に混合する方法、(二)上記の各供給源化合物を段階的に混合'熟成処 理を繰り返す方法、又は (ィ)一(二)を組み合わせた方法はいずれも、本発明にいう 各成分元素の供給源化合物の水性系での一体化に含まれる。
[0020] ここで、前記の「熟成」は、化学大辞典 (共立出版)にも記載があるように「工業原料 又は半製品を、一定時間、一定温度などの特定条件の下に処理して必要とする物理 性、化学性の取得、上昇又は所定反応の進行などを図る操作」のことをいう。なお、 上記の一定時間は、この発明において 1分一 24時間の範囲をレ、い、上記の一定温 度は室温一 200°Cの範囲である。
[0021] 上記した一体化においては、各元素の供給源化合物のみならず、アルミナ、シリカ 、耐火性酸化物などの担体材料もそのような一体化の対象として含むものである。
[0022] 触媒成分の供給源化合物は、炭化珪素化合物を除き、焼成によって酸化物になる 化合物であればよい。触媒構成元素化合物の原料としては、モリブデン化合物、二 ォブ化合物、バナジウム化合物、銅化合物が挙げられる。化合物の具体例としては、 触媒構成元素のハロゲン化物、硫酸塩、硝酸塩、アンモニゥム塩、酸化物、カルボン 酸塩、カルボン酸アンモニゥム塩、ハロゲン化アンモニゥム塩、水素酸塩、ァセチノレ ァセトナート、アルコキシド等がその例として挙げられる。
[0023] また、ケィ素及び炭素の供給源化合物の具体例としては、緑色炭化珪素、黒色炭 化珪素などが挙げられ、炭化珪素は微粉末のものが好ましい。ケィ素供給源としては 、コロイダルシリカ、粉末若しくは粒状シリカ等が挙げられ、アルミニウム供給源として はアルミナなどが挙げられる。これら触媒構成元素の化合物は単独で用いてもよぐ 2種以上を混合して用いてもょレ、。
[0024] 本発明では、なかでも、上記のように、 Si及び Cの供給源化合物として、粒子径の 異なる少なくとも 2種の炭化ケィ素(SiC)粉末を使用した場合には、最終的に製造さ れる触媒の細孔径分布が制御できるので好ましい。一般に粒子径の小さい炭化ケィ 素粉末を使用した場合には、細孔直径の小さい細孔容積を占める割合の大きい触 媒が得られ、一方、粒子径の大きい炭化ケィ素粉末を使用した場合には、細孔直径 の大きい細孔容積を占める割合の大きい触媒が得られる。本発明では、平均粒子径 5 μ m以上の炭化ケィ素粉末と平均粒子径 5 μ m未満の炭化ケィ素粉末と混合する ことにより、上記した細孔径分布を有する触媒が容易に得られることが判明した。両 者の平均粒子径の差は好ましくは 3 μ m以上、特に好ましくは 5 μ m以上あることが 好ましい。また、平均粒子径 5 / m以上の炭化ケィ素粉末と平均粒子径 5 μ η未満の 炭化ケィ素粉末と使用比率は、前者/後者 (重量比)が、 20— 95/80— 5が好まし く、特に好ましくは 70— 95/30— 5が特に好ましい。
[0025] 本発明の触媒の製造工程を順に説明すると、まず上記した触媒成分供給源化合 物の水溶液又は水分散体を調製する。以下、特に断らない限りこれらの水溶液又は 水分散体をスラリー液という。
[0026] スラリー液は、触媒の各成分の供給源化合物と水とを均一に混合して得ることがで きる。スラリー液における各構成成分の化合物の使用割合は、各触媒成分の原子比 が上記した組成範囲になるように使用される。
[0027] スラリー液における水の使用量は、各成分の供給源化合物の全量を完全に溶解又 は均一に混合できる量であれば特に限定されないが、下記の熱処理の方法や温度 等を勘案して適宜に決定すればよい。通常、各成分の供給源化合物の合計重量 10 0重量部に対して 100— 2000重量部である。水の量が上記所定量未満の少量では 各成分の供給源化合物を完全に溶解できず、又は均一に混合できないことがある。 また、水の量が上記所定量を越えて多量であれば、熱処理時のエネルギーコストが 力^むという問題が生じる。スラリー液の調製過程における混合や攪拌を通じて、上 記触媒成分の一体化は進行するが、一体化をさらに促進するために、好ましくは室 温一 200°C、特に好ましくは 70°C— 100°Cで、好ましくは 1分一 24時間、特に好まし くは 30分一 6時間熟成処理されるのが好適である。
[0028] 次レ、で、上記工程で得られたスラリー液を好ましくは乾燥する。乾燥方法は、スラリ 一液が完全に乾燥でき、かつ粉末が得られる方法であれば特に制限はなぐ例えば ドラム乾燥、凍結乾燥、噴霧乾燥等が好ましい方法として挙げられる。
[0029] 噴霧乾燥は、スラリー液状態力 短時間に均質な粉末状態に乾燥することができる ので、本発明に好ましく適用できる方法である。
[0030] 乾燥温度は、スラリー液の濃度や送液の速度等によって異なるが、乾燥機の出口 の温度で通常 90— 200°C、好ましくは 130°C— 170°Cである。また、乾燥粉末の粒 径が 10— 200 /i mとなるように乾燥させることが好ましい。
[0031] 本発明の製造方法によって得られる複合酸化物触媒は、前記の熱処理後の粉末 を成形して得ることもできる。成形方法に特に制限はなぐ熱処理粉末をバインダー などの成形助剤と混合して成形するのが好ましい。好ましいバインダーとしては、熱 処理された粉末を打錠成形する際にはシリ力、グラフアイト及び結晶性セル口ース等 、押出成形する際にはシリカゲル、珪藻土、アルミナ粉末等が挙げられる。バインダ 一は、熱処理粉末 100重量部に対して約 1一 50重量部程度使用することが好ましい
[0032] また、必要によりセラミックス繊維、ウイスカ一等の無機繊維を強度向上材として用 いれば、触媒の機械的強度を向上させることができる。しかし、チタン酸カリウムゥイス カーや塩基性炭酸マグネシウムゥイスカーの様な触媒成分と反応する繊維は好まし くない。強度向上材としては、セラミックス繊維が特に好ましい。これらの繊維の使用 量は、熱処理粉末 100重量部に対して通常 1一 30重量部である。前記成形助剤及 び強度向上材は、通常熱処理粉末と混合して用いられる。
[0033] 成形助剤、強度向上材等と混合された粉末は、(A)打錠成形、(B)押出成形、(C) 球状等の担体上に被覆担持成形など、適当な成形方法により成形できる。成形体の 形状としては、ペレット状、球状、円柱状、リング状などの適宜の形状が選択できるが 、中でも、打錠成形の場合はペレット状やリング状、押出成形の場合は球状やリング 状が好ましい。
[0034] 次レ、で、成形された成形品を焼成して複合酸化物触媒を得ることができる。焼成温 度は、通常 250— 600°Cを採用でき、好ましくは 300— 420°Cであり、焼成時間は 1 一 50時間である。焼成は、不活性ガス又は分子状酸素の存在下の雰囲気で行うこと ができる。焼成温度が低すぎる場合はモリブデン元素の熱拡散が十分でなぐ高す ぎる場合はモリブデン元素が昇華により失われる恐れがあるからである。
[0035] 本発明により製造された触媒を使用し、不飽和アルデヒドを分子状酸素含有ガスを 使用して気相酸化し、対応する不飽和カルボン酸を製造する手段は、既存の方法に より行うことができる。例えば、反応器としては、固定床管型反応器を用いて行われる 。この場合、反応は、反応器を通じて単流通法でもリサイクル法であってもよぐこの 種の反応に一般的に使用される条件下で実施できる。
[0036] 例えば、ァクロレイン 1一 15容量%、分子状酸素 0. 5— 25容量%、水蒸気 0— 40 容量%、窒素、炭酸ガスなどの不活性ガス 20— 80容量%などからなる混合ガスを、 内径が好ましくは 15— 50mmの各反応管の各反応帯に充填した触媒層に 250— 4 50°C、 0. 1一 IMPaの加圧下、空間速度(SV) 300— 5000hr— 1で導入される。本発 明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料ガス度 、又は高い空間速度の条件下でも運転することもできる。力べして、本発明で製造さ れた触媒により、高選択率及び高収率でアクリル酸を製造することができる。
実施例
[0037] 以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明 は、これらの実施例に限定されて解釈されるべきでないことはもちろんである。なお、 ァクロレイン転化率、アクリル酸選択率、アクリル酸収率は、下記の式で定義されるも のである。
[0038] ァクロレイン転化率(モル0 /0) = 100 X (反応したァクロレインのモル数) / (供給し たァクロレインのモル数)
アクリル酸選択率(モル0 /0) = 100 X (生成したアクリル酸モル数) / (転化したァク ロレインモノレ数)
アクリル酸収率(モル0 /0) = 100 X (生成したアクリル酸モル数) / (供給したァクロレ インモル数)
[0039] 実施例 1 酸素を除く構成成分の組成式が Mo V Nb Cu Si C である複合金属酸化物
12 2.4 1 2 200 200
触媒を以下のようにして調製した。
先ず、純水 1446mlを 80。Cに加熱し、パラモリブデン酸アンモニゥム 207g、メタバ ナジン酸アンモニゥム 27. 5gを順次攪拌しながら溶解した。これに硫酸銅 48. 6gを 純水 204mlに溶解させた硫酸銅水溶液をカ卩え、さらに水酸化ニオブ 19. 3gを加え て攪拌し、スラリー液を得た。
[0040] このスラリー液に平均粒子径 7 μ mの炭化珪素粉末 626g及び平均粒子径 1 μ mの 炭化珪素粉末 156g加えて充分に撹拌混合した。このスラリー状液を 130°Cに加熱し て乾燥した。これに 1. 5重量%のグラフアイトを添加混合し、小型打錠成形機にて成 形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成したものを触媒とした。
[0041] 得られた触媒を評価するために、 20— 28メッシュに粉砕し整粒した触媒 0. 3gを、 内径 4mmの U字型反応管に充填し、この反応管を加熱したナイター浴に入れて下 記の組成ガス(ァクロレイン: 5容量%、酸素: 8容量%、スチーム: 15容量%、窒素ガ ス: 72容量%)を導入し、 SV (空間速度;単位時間当たりの原料ガスの流量/充填 した触媒の見かけ容積)を 14900/hr— 1で反応させた。
[0042] なお、ナイター浴は、アルカリ金属の硝酸塩からなる熱媒体に反応管を入れて反応 させる塩浴をいい、この熱媒体は 200°C以上で溶融し、 400°Cまで使用可能で除熱 効率がよいので、発熱量の大きな酸化反応に適した反応浴である。
[0043] 上記で得られた複合酸化物触媒についての比表面積、細孔容積、細孔容積の割 合等の物性測定、及び得られた複合酸化物を用いてァクロレイン酸化反応を実施し た結果を表 1及び表 2に示した。
[0044] 実施例 2
酸素を除く構成成分の組成式が Mo V Nb W Cu Sb Si C である複合金属
12 2.4 1 0.5 2 1 200 200
酸化物触媒を以下のようにして調製した。
先ず、純水 1446mlを 80。Cに加熱し、パラモリブデン酸アンモニゥム 201g、メタバ ナジン酸アンモニゥム 26. 7g,メタタングステン酸アンモニゥム 21. 9gを順次攪拌し ながら溶解した.これに三酸化アンチモン 13. 8gを加え、さらに硫酸銅 47. 3gを純 水 204mlに溶解させた硫酸銅水溶液を加え,水酸化ニオブ 18. 7gを加えて攪拌し 、スラリー液を得た。
[0045] このスラリー液に平均粒子径 7 μ mの炭化珪素粉末 626g及び平均粒子径 1 μ mの 炭化珪素粉末 156g加えて充分に撹拌混合した。このスラリー状液を 130°Cに加熱し て乾燥した。これに 1. 5重量%のグラフアイトを添加混合し、小型打錠成形機にて成 形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成したものを触媒とした。得ら れた触媒の反応性を実施例と全く同様の条件で評価した。
得られた複合酸化物触媒の比表面積等の物性測定、及び得られた複合酸化物を 用いてァクロレイン酸化反応を実施した結果を表 1及び表 2に示した。
[0046] 比較例 1
酸素を除く構成成分の組成式が Mo V Nb Cu Si C である複合金属酸化物
12 2.4 1 2 200 200
触媒を以下のようにして調製した。
先ず、純水 1446mlを 80°Cに加熱し、パラモリブデン酸アンモニゥム 207g、メタバ ナジン酸アンモニゥム 27. 5gを順次攪拌しながら溶解した。これに硫酸銅 48. 6gを 純水 204mlに溶解させた硫酸銅水溶液を加え、さらに水酸化ニオブ 19. 3gを加え て攪拌し、スラリー液を得た。
[0047] このスラリー液に平均粒子径 7 μ mの炭化珪素粉末 782gを加えて充分に撹拌混 合した。このスラリー状液を 130°Cに加熱して乾燥した。これに 1. 5重量%のグラファ イトを添加混合し、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中 380 °Cで 3時間焼成したものを触媒とした。得られた触媒の反応性を実施例と全く同様の 条件で評価した。
得られた複合酸化物触媒の比表面積等の物性測定、及び得られた複合酸化物を 用いてァクロレイン酸化反応を実施した結果を表 1及び表 2に示した。
[0048] 比較例 2
酸素を除く構成成分の組成式が Mo V Nb Cu Si C である複合金属酸化物
12 2.4 1 2 200 200
触媒を以下のようにして調製した。
先ず、純水 1446mlを 80。Cに加熱し、パラモリブデン酸アンモニゥム 207g、メタバ ナジン酸アンモニゥム 27. 5gを順次攪拌しながら溶解した.これに硫酸銅 48. 6gを 純水 204mlに溶解させた硫酸銅水溶液を加え、さらに水酸化ニオブ 19. 3gを加え て攪拌し、スラリー液を得た。
[0049] このスラリー液に平均粒子径 1 μ mの炭化珪素粉末 782g加えて充分に撹拌混合し た。このスラリー状液を 130°Cに加熱して乾燥した。これに 1. 5重量%のグラフアイト を添加混合し、小型打錠成形機にて成形し、これを焼成炉にて窒素気流中 380°Cで 3時間焼成したものを触媒とした。得られた触媒の反応性を実施例と全く同様の条件 で評価した。
得られた複合酸化物触媒の比表面積等の物性測定、及び得られた複合酸化物を 用いてァクロレイン酸化反応を実施した結果を表 1及び表 2に示した。
[0050] なお表 1において細孔容積の割合とは、 0. 1— l x mに存在する細孔又は 1一 10 μ mに存在する細孔により占められる細孔容積の全細孔容積中の割合を言う。
[0051] [表 1]
Figure imgf000014_0001
[0052] [表 2]
Figure imgf000014_0002
[0053] 比較例 1で得られた触媒は 0. 1 - 1 μ mの細孔容積が過小であり、比較例 2で得ら れた触媒は 1一 10 x mの細孔容積が過小であり、触媒の活性、選択性ともに実施例 1、 2のものに比し低かった。
産業上の利用可能性
[0054] 本発明の触媒は、不飽和アルデヒドを原料にして不飽和カルボン酸を製造するェ 程で使用されるが、好ましくはァクロレインを酸化して、アクリル酸を製造する工程に 使用される。即ち、通常、本発明の触媒は、ォレフィンの酸化による不飽和アルデヒド の製造、次いで該不飽和アルデヒドの酸化による不飽和カルボン酸の製造の二工程 に分割してォレフィンから不飽和カルボン酸を製造する場合、後段である、不飽和ァ ルデヒドの酸化による不飽和カルボン酸の製造に有用である。
[0055] 本発明の触媒を使用して製造された、アクリル酸などの不飽和カルボン酸は、各種 化学品の原料、汎用樹脂のモノマー、吸水性樹脂などの機能性樹脂のモノマー、凝 集剤、増粘剤となどとして広範な用途に使用される。

Claims

請求の範囲
[1] 不飽和アルデヒドを分子状酸素含有ガスにより気相接触酸化して対応する不飽和 脂肪酸を製造する際に使用される複合酸化物触媒であって、下記の式 (I)で表され 、かつ比表面積が 0. 5— 10m2/gであり、細孔容積が 0. 1— 0. 9cc/gであり、細孔 直径 0. 1— 1 μ m未満の細孔により占められる細孔容積が全細孔容積の 10%以上 であり、細孔直径 1一 10 /i m未満の細孔により占められる細孔容積が全細孔容積の 30%以上であり、細孔直径 0. 1 /i m未満の細孔により占められる細孔容積が全細孔 容積の 20%以下であり、さらに細孔直径 10 μ ΐη以上の細孔により占められる細孔容 積が全細孔容積の 10%以下である細孔径分布を有することを特徴とする複合酸化 物触媒。
Mo V Nb Cu X Si C O (I)
12 a b c d e f g
(式中、各成分及び変数は次の意味を有する。 Xは W及び Sbからなる群から選ば れた少なくとも一種の元素を示す。 a、 b、 c、 d、 e、 f及び gは各元素の原子比を表し、 0< a≤12, 0<b≤12, 0< c≤12, 0≤d≤8, 0 < e≤1000, 0< f≤1000を満足 し、 gは、式 (I)の前記各成分の酸化度によって決まる数である)
[2] 前記触媒が、円柱状又はリング状の成形触媒である請求項 1に記載の複合酸化物 触媒。
[3] 前記触媒に含有される Si及び Cの供給源化合物として、粒子径の異なる 2種以上 の炭化ケィ素粉末を使用し、該炭化ケィ素粉末と触媒に含有される他の元素の供給 源化合物とを水性媒体系にて一体化させ、得られる一体化物の水溶液又は分散液 を乾燥して粉末を調製し、該粉末を焼成する請求項 1又は 2に記載の複合酸化物触 媒の製造方法。
[4] 前記粒子径の異なる 2種以上の炭化ケィ素粉末が、平均粒子径 5 μ m以上の炭化 ケィ素粉末と平均粒子径 5 μ m未満の炭化ケィ素粉末である請求項 3に記載の複合 酸化物触媒の製造方法。
[5] 前記粉末を焼成する前に押出し又は打錠成形し、成形物を焼成する請求項 3又は 4に記載の複合酸化物触媒の製造方法。
[6] 請求項 1又は 2に記載の複合酸化物触媒の存在下にァクロレインを分子状酸素含 有ガスにより気相接触酸化して対応するアクリル酸を製造する方法。
請求項 3— 5のいずれかに記載の製造方法により得られた複合酸化物触媒の存在 下にァクロレインを分子状酸素含有ガスにより気相接触酸化して対応するアクリル酸 を製造する方法。
PCT/JP2004/014387 2004-05-21 2004-09-30 複合酸化物触媒及びその製造方法 WO2005113139A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-151954 2004-05-21
JP2004151954 2004-05-21

Publications (1)

Publication Number Publication Date
WO2005113139A1 true WO2005113139A1 (ja) 2005-12-01

Family

ID=35350099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014387 WO2005113139A1 (ja) 2004-05-21 2004-09-30 複合酸化物触媒及びその製造方法

Country Status (2)

Country Link
CN (1) CN100423834C (ja)
WO (1) WO2005113139A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755898A (zh) * 2012-08-07 2012-10-31 江苏龙源催化剂有限公司 适用于高含尘烟气条件的scr脱硝催化剂及其制备方法
CN102755887A (zh) * 2012-08-07 2012-10-31 江苏龙源催化剂有限公司 适用于高温烟气条件的scr脱硝催化剂的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917956B (zh) * 2004-02-10 2010-06-16 三菱丽阳株式会社 α,β-不饱和羧酸制造用催化剂及其制造方法,以及α,β-不饱和羧酸的制造方法
KR101264031B1 (ko) 2004-02-10 2013-05-21 미츠비시 레이온 가부시키가이샤 α,β-불포화 카복실산 제조용 촉매 및 그의 제조방법, 및 α,β-불포화 카복실산의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213486A (en) * 1975-07-23 1977-02-01 Tokai Kounetsu Kogyo Kk Process for producing recrystalline silicon carbide catalyst carrier
JPS63200839A (ja) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒および再現性に優れたその製造方法
JPS6485139A (en) * 1987-06-05 1989-03-30 Nippon Catalytic Chem Ind Catalyst for oxidation of acrolein and manufacture thereof of excellent reproducibility
JP2001328951A (ja) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2003171340A (ja) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp アクリル酸の製造方法
JP2003200055A (ja) * 2002-01-09 2003-07-15 Mitsubishi Chemicals Corp 複合酸化物触媒の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279374B1 (en) * 1987-02-17 1992-01-02 Nippon Shokubai Kagaku Kogyo Co., Ltd Catalyst for oxidation of olefin or tertiary alcohol and process for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213486A (en) * 1975-07-23 1977-02-01 Tokai Kounetsu Kogyo Kk Process for producing recrystalline silicon carbide catalyst carrier
JPS63200839A (ja) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒および再現性に優れたその製造方法
JPS6485139A (en) * 1987-06-05 1989-03-30 Nippon Catalytic Chem Ind Catalyst for oxidation of acrolein and manufacture thereof of excellent reproducibility
JP2001328951A (ja) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2003171340A (ja) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp アクリル酸の製造方法
JP2003200055A (ja) * 2002-01-09 2003-07-15 Mitsubishi Chemicals Corp 複合酸化物触媒の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755898A (zh) * 2012-08-07 2012-10-31 江苏龙源催化剂有限公司 适用于高含尘烟气条件的scr脱硝催化剂及其制备方法
CN102755887A (zh) * 2012-08-07 2012-10-31 江苏龙源催化剂有限公司 适用于高温烟气条件的scr脱硝催化剂的制备方法

Also Published As

Publication number Publication date
CN100423834C (zh) 2008-10-08
CN1697696A (zh) 2005-11-16

Similar Documents

Publication Publication Date Title
US7414008B2 (en) Catalyst for synthesis of unsaturated aldehyde, production process for said catalyst, and production process for unsaturated aldehyde using said catalyst
US7217680B2 (en) Method for producing composite oxide catalyst
JP2001162169A (ja) 担体、複合酸化物触媒、およびアクリル酸の製造方法
TW201002420A (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
WO2004105941A1 (ja) メタクリル酸製造用触媒の製造方法
JP6812869B2 (ja) 複合酸化物触媒の製造方法
JP2006007205A (ja) 複合酸化物触媒及びその製造方法
JP5831329B2 (ja) 複合酸化物触媒
JP2005169311A (ja) 複合酸化物触媒の製造方法
WO2005113139A1 (ja) 複合酸化物触媒及びその製造方法
JP6845473B2 (ja) 触媒の製造方法
JP2005305421A (ja) 複合酸化物触媒の製造方法
US20050261520A1 (en) Process for producing catalyst for production of unsaturated carboxylic acid
JP6136436B2 (ja) 触媒の製造方法
JP2015120133A (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP3999972B2 (ja) アクリル酸またはメタクリル酸の製造方法
JP2003251184A (ja) 複合酸化物触媒の製造方法
US7279442B2 (en) Process for producing catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid
JP2003200055A (ja) 複合酸化物触媒の製造方法
WO2005089943A1 (ja) 複合酸化物触媒の製造方法
JP3999965B2 (ja) アクリル酸またはメタクリル酸の製造方法
JP2003236383A (ja) 複合酸化物触媒の製造方法
JP2005205263A (ja) 複合酸化物触媒の製造方法。
JP3999974B2 (ja) アクリル酸またはメタクリル酸の製造方法
WO2021152916A1 (ja) 触媒の製造方法及びアクリル酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20048003786

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase