WO2005109537A1 - 圧電単結晶素子およびその製造方法 - Google Patents

圧電単結晶素子およびその製造方法 Download PDF

Info

Publication number
WO2005109537A1
WO2005109537A1 PCT/JP2004/016473 JP2004016473W WO2005109537A1 WO 2005109537 A1 WO2005109537 A1 WO 2005109537A1 JP 2004016473 W JP2004016473 W JP 2004016473W WO 2005109537 A1 WO2005109537 A1 WO 2005109537A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal element
axis
piezoelectric single
piezoelectric
Prior art date
Application number
PCT/JP2004/016473
Other languages
English (en)
French (fr)
Inventor
Mitsuyoshi Matsushita
Original Assignee
Jfe Mineral Company,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Mineral Company,Ltd. filed Critical Jfe Mineral Company,Ltd.
Priority to EP20040793393 priority Critical patent/EP1744378B1/en
Priority to US11/578,953 priority patent/US7888848B2/en
Publication of WO2005109537A1 publication Critical patent/WO2005109537A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/095Forming inorganic materials by melting
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a piezoelectric single crystal device and a method for manufacturing the same. More particularly, made of Pb [(Mg, Nb) 1 _ x Ti x] 0 3 represented by magnesium niobate Pb (g, Nb) 0 3 (lead magnesium niobate) and lead titanate PbTi0 3 (lead titanate)
  • a solid solution (referred to as PMN-PT or PMNT), which is composed of a piezoelectric single crystal element material having a complex perovskite structure of a tetragonal system, and (150 ° C), even in the usage environment, the electromechanical coupling factor k 3i in the direction almost perpendicular to the polarization direction, that is, the so-called lateral vibration mode
  • the present invention relates to a piezoelectric single crystal element excellent in heat resistance, which can be stably maintained at a high value of 50% or more without lowering, and a method for manufacturing the piezoelectric single
  • Electromechanical coupling factor k 31 vibration mode in the transverse direction for example, as shown in FIG. 1, an aspect ratio (aspect ratio): a / b is 2.5 or more rectangular plate (aZb ⁇ 2.5, a >> L, b >> L) is proportional to the square root of the conversion efficiency of electrical energy and mechanical energy with respect to the magnitude of vibration (lateral vibration) in direction 1 perpendicular to polarization direction 3 when a voltage is applied in polarization direction 3. The larger the value, the higher the efficiency.
  • the piezoelectric single crystal element can be a rectangular plate, a circular plate, It may be in the form of a body such as, in the same manner for each of the shape, it is possible to determine the electromechanical coupling factor k 31.
  • Jpn. J.Appl.Phys.90 (2001) to (P.3471-3475) is the electromechanical coupling factor k 31 of 59% (0.59) and 0.67Pb with a high value (M gl / 3 Nb 2 / 3) O 3 - 0.33PbTi_ ⁇ 3 and the polarization direction of the [001] direction of the single crystal, [100] direction or, discloses a piezoelectric characteristics were measured transverse vibration modes k 31 in the [010] direction I have.
  • the present invention relates to Pb [(Mg, Is a solid solution (referred to as PMN-PT or PMNT) consisting of lead magnesium niobate and lead titanate represented by the following formula. It consists of a piezoelectric single crystal element material having a tetragonal composite perovskite structure. also (specifically 0.99 ° C) Atsushi Ko even under use environment in which the temperature change of up, can be maintained stably and more than 50% of the high value without lowering the electrical machinery coupling coefficient k 31,
  • An object of the present invention is to provide a piezoelectric single crystal element having excellent heat resistance and a method for manufacturing the same. To achieve the above object, the gist of the present invention is as follows.
  • the [101] axis of a tetragonal crystal with the [CO 01] axis as the C axis is the polarization direction
  • the normal direction of the end face of the piezoelectric single crystal element is polarized.
  • the [-101] axis including the [-100] axis, which is a direction substantially orthogonal to the direction, is within an angle range of the solid angle of ⁇ 25 °, and is a direction substantially orthogonal to the polarization direction, that is, a so-called lateral direction.
  • the normal direction of the end face of the piezoelectric single crystal element is The [0-11] axis including the [0-11] axis, which is a direction substantially perpendicular to the polarization direction, is within the solid angle range of ⁇ 25 ° of the [0-11] axis, and is a direction substantially perpendicular to the polarization direction, that is, a so-called lateral direction.
  • Directional vibration mode electricity The piezoelectric single crystal device coupling factor k 31 is 50% or more.
  • the “tetragonal crystal” here has a rectangular parallelepiped unit cell, and when the axis having the largest lattice constant is the [011] axis (c-axis), the same length of [ 100] A force having a crystal structure having an axis (a-axis) and a [0 10] axis (b-axis).
  • the molar fraction of lead titanate (PT) is reduced to 0.30. If it is close, those having a thermodynamically low-temperature phase exhibiting a quasi-cubic crystal in its structure are included.
  • the “perovskite structure” means that, as shown schematically in FIG. 2, the unit cell of a solid solution single crystal has R ions positioned at the corners of the unit cell and oxygen ions positioned at the center of the unit cell. position and refers to that name structure (RM0 3) as the M ion is positioned at the body-centered unit cell.
  • RM0 3 that name structure
  • the ⁇ composite perovskite structure '' targeted by the present invention means that the M ion at the body center position in FIG. 2 is not one element ion but any one of two or more element ions. We say that we consist of element.
  • a single crystal element material having a predetermined shape is cut out from a single crystal ingot in a predetermined direction.
  • the direction of polarization of the ingot of the single crystal, the cut single crystal block, or the cut single crystal element [101] or [0111]
  • a process of cutting a single crystal element of a predetermined shape from the single crystal ingot in a predetermined direction, and in a [101] or [011] direction of the single crystal element under a predetermined condition comprising: a main polarization process of polarizing by applying an electric field.
  • the main polarization treatment is performed at 350 to 1500 V / mm in a temperature range of 20 to 200 ° C. in the [101] or [011] direction of the cut single crystal element. Applying a DC electric field, or the Curie temperature of the single crystal element And cooling to room temperature while applying a DC electric field of 250 to 500 VZmm at a temperature higher than the temperature (Tc).
  • the types of electric field applied in the direction 1 perpendicular to the polarization direction 3 include a DC electric field, a pulse electric field, an AC electric field, these stationary electric fields, a damping electric field, and the like. etc., there is a proper condition in accordance with the desired value of the electromechanical coupling factor k 31 in the direction 1 orthogonal to the characteristics and the polarization direction 3 of the individual piezoelectric single crystal device. These can be determined by experiments and the like.
  • the pulse electric field unipolar and bipolar pulses such as an AC triangular wave can be used in addition to a rectangular wave.
  • an electromechanical coupling coefficient k 31 in the direction 1 (transverse vibration mode) orthogonal to the polarization direction 3 is positively used, for example, an accurate positioning actuator of a magnetic head.
  • Piezoelectric single crystal element used for applications such as image stabilizers for piezoelectric gyro devices, digital gyro devices, digital 7-mef, digital still cameras, and cardiac pacemaker sensors for cardiac pacemakers. (Device) can be manufactured.
  • the piezoelectric single crystal device of the present invention can also (in particular 0.99 ° C) from room temperature hot even under use environment in which the temperature change of up to, the electromechanical coupling factor k 31 in the lateral vibration mode It can be stably maintained at a high value of 50% or more without lowering.
  • FIG. 1 is a perspective view showing an orientation and a shape of a piezoelectric single crystal element according to the present invention, showing a state when it is polarized.
  • Figure 2 is a schematic perspective view of a pair Ropusukaito crystal structure (RM0 3).
  • FIG. 3 is a view showing various shapes of an end face of the piezoelectric single crystal element according to the present invention utilizing a lateral vibration mode.
  • FIG. 4 PMN-PT (PMNT) phase diagram.
  • FIG. 5 A perspective view showing a state in which the piezoelectric single crystal element 10A is cut out using the (101) plane as the wafer plane (the widest plane) in a three-axis orthogonal coordinate system.
  • FIG. 6 A perspective view showing a state in which the piezoelectric single crystal element 10B is cut out with the (0 1 1) plane as the wafer plane (the widest plane) in a three-axis orthogonal coordinate system.
  • FIG. 7 Bipolar triangular pulse waveform.
  • FIG. 8A is an explanatory diagram when a DC electric field is applied to the piezoelectric single crystal element 10A.
  • FIG. 8B is an explanatory diagram when a DC electric field is applied to the piezoelectric single crystal element 10B.
  • FIG. 9A is a diagram for explaining a direction in which a piezoelectric single crystal element 10A is cut out from a single crystal wafer 11 in a case where a normal direction 1 of a piezoelectric element end face 10c (or T) is in a range of 0 to 90 °.
  • FIG. 9B is a diagram for explaining the direction in which the piezoelectric single crystal element 10B is cut out from the single crystal wafer 11 when the normal direction 1 of the piezoelectric element end face 10c (or T) is in the range of 0 to 90 °.
  • FIG. 10 is a diagram plotting the change in the dielectric constant with respect to temperature for the piezoelectric single crystal devices 10A and 10B of the present invention in which the Ti mole fraction satisfies 0.30 ⁇ X ⁇ 0.40.
  • Figure 11 Plot of the change in dielectric constant with temperature for various piezoelectric single crystal elements 10A and 10B with a Ti mole fraction of 0.30 or less.
  • Figure 12A Plot the piezoelectric single crystal element 10A of the present invention that Ti molar fraction satisfies 0.30 rather X ⁇ 0.40, when repeated thermal cycle test, the change in the value of the electromechanical coupling factor k 31 FIG.
  • Figure 12B Plot the piezoelectric single crystal element 10B of the present invention that Ti molar fraction satisfies 0.30 rather X rather 0.40, when repeated thermal cycle test, the change in the value of the electromechanical coupling factor k 31 FIG.
  • Ti molar fraction X is a piezoelectric single crystal device 10A and 0.30 or less, for the Iotaomikuronbeta, when repeated thermal cycle test, a diagram plotting the change in value of the electromechanical coupling factor k 31 is there.
  • the normal direction of the end face T of the piezoelectric single crystal element 10A 1 force The polarization direction [0 It is preferable that the [0-11] axis including the [0-11] axis, which is a direction substantially orthogonal to [11], be within an angle range of a conical solid angle of ⁇ 25 °.
  • the normal direction n of the widest surface of these piezoelectric single crystal elements is the [011] direction of the polarization direction or the [011] direction. °, it is within the angle range of a conical solid angle within 0 ° ⁇ 25 °.
  • the method of the end face T of a piezoelectric single crystal element utilizing lateral vibration in such an angular range The reason why the line direction 1 is limited is considered as follows. Within the angle range of the solid angle specified above, the transverse vibration in the direction of [_1 0 1] or the transverse vibration in the direction of [0-11] should be dispersed in other directions. , The energy of the axial transverse vibration mode is maintained without reduction,
  • the piezoelectric single crystal element 10A in FIG. 5 and the piezoelectric single crystal element 10B in FIG. 6 are equivalent due to the tetragonal symmetry.
  • the crystal structure of the present invention is tetragonal.
  • the “tetragonal” has a rectangular parallelepiped unit cell, and when the axis having the largest lattice constant is the [011] axis (c-axis), the [100] axis (a axis) and [0 1 0] is a shall of having a crystal structure having an axis (b-axis), Pb referred to above (3) - in [(Mg, Nb ⁇ x Ti x] 0 3 solid solution, When the molar fraction of lead titanate (PT) is close to 0.30, it includes those having a pseudo-cubic portion in its structure that is thermodynamically a low-temperature phase.
  • PT lead titanate
  • the oxygen ion strength S located in the plane center of the unit cell, Mg, Nb, an In, a composite perovskite structure such as M ions such as Ti is positioned on the body center of the unit cell (RM0 3 ).
  • the composition of the piezoelectric single crystal element of the present invention is, for example, Pb [(Mg, X is the mole fraction of Ti when the sum of the mole fractions of Mg, Nb and Ti is set to 1. ) Which satisfies the formula of 0.30 ⁇ X ⁇ 0.40, and has a complex perovskite structure. More preferably, it is set to 0.34 ⁇ X ⁇ 0.38. If the mole fraction X is less than 0.3, as shown in FIG. 4, almost pseudo-cubic crystals occupy most of the solid solution element, and the phase transition temperature T rt exists at a relatively low temperature above room temperature.
  • a phase transition between a tetragonal crystal and a pseudo-cubic crystal is likely to occur, and as a result, the performance as a tetragonal piezoelectric element is reduced.
  • an either et electromechanical coupling factor k 31 may be lowered, if it the molar fraction X is 0.40 or higher, pseudo-cubic crystal and the phase transition temperature of the tetragonal becomes below room, from room temperature Although no phase transition in the range of 0.99 ° C, since the molar fraction of lead titanate is too large, there is a tendency that the piezoelectric properties of the solid solution is degraded, so that the lateral vibration mode electromechanical coupling factor k 31 : 50% or more may not be obtained.
  • the molar ratio of magnesium Nio flop lead Pb (Mg, Nb) 0 3 in the Mg and Nb ratio Mg / Nb is 0.45 to 0. If the range of 54, preservation composite base Ropusukaito structure Therefore, it is within the scope of the present invention.
  • magnesium'lead niobate-lead titanate is used as another piezoelectric element of the present invention.
  • Indium (magnesium) lead niobate lead monotitanate (PIMN-PT) in which (PMN-PT) contains indium In, preferably 0.05 to 30 mol%, can also be used.
  • the composition of the piezoelectric single crystal device further, Sb, La, W, respectively 0. 5 mol ⁇ 1 or more elements of the of the Ta! Up to 5 mol% may be added.
  • the mechanical quality factor Qm one or more elements of Mn and Cr are added to the composition of the piezoelectric single crystal element by 0.5 ⁇ ! Up to 5 mol% may be added.
  • Al and Li contribute to stabilization during the growth of the single crystal.
  • These atoms (Sb, La, W, Ta, Mn, Cr, Al, Li) are located at the body-center position or interstitial position of the unit cell. If the total amount exceeds 5 mol%, it is difficult to obtain a single crystal, and there is a possibility that polycrystal will be obtained.
  • the calcium Need to be added To replace the calcium 0. 05 ⁇ 10 mo l% lead in the composition of the single crystal Ingo' preparative (the crystal lattice), taking into account the evaporation amount of calcium in a single crystal is grown, the calcium Need to be added.
  • the method for adding calcium is not particularly specified.
  • calcium-substituted lead magnesium diobate, calcium-substituted lead niobate, or calcium-substituted lead titanate may be used.
  • a method of adding calcium oxide or calcium carbonate to the raw material may be used.
  • shape of piezoelectric single crystal element is such that a rectangular plate as shown in FIG. 1 has an effect of an electromechanical coupling coefficient k 31 in a direction 1 (transverse vibration mode) substantially perpendicular to the polarization direction 3. It is desirable in terms of increasing the size.
  • a desirable element shape is a rectangular plate having an initial ratio: aZb force S of 2.5 or more (a / b ⁇ 2.5, a >> L, b >> L), and more preferably, an aspect ratio: a / b Are three or more rectangular plates.
  • the shape of both ends (short side b) of the rectangular plate of the present invention may be convexly curved b (dashed line) or concavely curved b "(-) as shown in FIG.
  • the end face of the piezoelectric element referred to in the present invention may be a short plate perpendicular to the long side a in a plan view as shown in FIG.
  • the method for manufacturing a piezoelectric single crystal element according to the present invention comprises the steps of: applying an electric field under a predetermined condition in a [101] or [011] direction of a single crystal ingot or a single crystal block having a tetragonal structure; A main polarization process of polarizing a crystal ingot, and a process of cutting a single crystal element of a predetermined shape from the single crystal ingot in a predetermined direction; A method for manufacturing a piezoelectric single crystal device having.
  • another manufacturing method of the piezoelectric single crystal element of the present invention includes a step of cutting a single crystal element of a predetermined shape from a single crystal ingot having a tetragonal crystal in a predetermined direction, and [101] of the single crystal element or
  • the single crystal block refers to a single crystal block cut out of a single crystal ingot with a wire saw or the like.
  • the polarization treatment is performed by cutting out into a single crystal block which is easy to be polarized.
  • the present invention provides a solid solution comprising Pb [(Mg, Nb x TiJO, where X is a mole fraction of Ti when the sum of the mole fractions of Mg, Nb and ⁇ is 1), X is a single crystal satisfying the formula of 0.30-X-0.40, or, in the above composition, 0.05 to 30 mol% of In, Mn, Cr, Sb, W, Al, La, Li, Ta 0.5 mol ppn of one or more of these elements! Or 5 mol%, or in addition to the above composition, for a single crystal ingot with a composition in which 0.05 mol% of lead in the above composition is replaced with calcium.
  • the former method includes the solution-Pridgeman method or the TSSG method (Top Seeded Solution Growth), and the latter includes the melting Bridgman method and the CZ method (Chiyoklarski method).
  • the invention is not particularly limited.
  • the [101] axis orientation or [011] axis orientation of the single crystal ingot is roughly determined by the Laue method, and at the same time, the [-101] axis orientation and the [-101] axis orientation that is substantially orthogonal to the [101] axis orientation.
  • the axis direction, or the [0-11] axis direction and the [100] axis direction substantially orthogonal to the [011] axis direction are substantially determined.
  • the axis and the [0 1 1] axis are equivalent. .
  • crystallographic plane ⁇ 110 ⁇ plane or ⁇ 100 ⁇ plane perpendicular to any of the crystal axes such as the above-mentioned azimuth axis is polished, and an X-ray direction finder or the like is used. To determine the correct orientation, and correct the deviation of the polished surface described above.
  • Polishing surface of the above-mentioned single crystal ingot The ⁇ 111 ⁇ surface or the ⁇ 100 ⁇ surface is parallel or almost perpendicular to the single crystal ingot, and a wire saw or inner diamond saw etc. To obtain a plate (wafer) or block of an appropriate thickness. In addition, after the cutting, if necessary, a process of chemically etching using an etching solution may be included.
  • the above wafer is ground or polished by a grinding machine such as a lapping machine, a polishing machine or the like, and a wafer of a predetermined thickness is obtained.
  • a chemical etching process using an etchant may be included as necessary.
  • the wafer of the present invention has the (101) plane or the (011) plane as the wafer plane (the widest plane). Note that, as shown in FIGS. 5 and 6, the (101) plane and the (011) plane are equivalent due to the tetragonal symmetry.
  • the wafer surface is the (101) plane
  • the normal direction 1 of the end face ⁇ of the piezoelectric element 10 ⁇ includes the (0 -11) axis.
  • a single crystal element material having a predetermined shape is cut out from the wafer using a precision cutting machine such as a dicing saw or a cutting saw so as to fall within the body angle range.
  • Figure 5 shows that the (101) plane is the wafer plane (the widest plane) and that the normal direction 1 of the end face T of the piezoelectric element 10A using the transverse vibration mode is the [-1 0 1] direction.
  • the state of cutting out a single crystal is shown in a three-axis orthogonal coordinate system.
  • Fig. 6 shows that the (0 1 1) plane is the entire wafer (the widest plane) and the end face T This shows a state in which a single crystal is cut out so that the normal direction 1 of [1] becomes the [0-11] direction in a three-axis orthogonal coordinate system.
  • the single crystal block can be directly cut into dimensions of a piezoelectric element using a precision cutting machine such as a dicing saw or a force saw.
  • the upper and lower surfaces of the prepared single crystal element material ((101) and (-1 0-1) planes in Fig. 5, (0 1 1) and (0 -1- (1) surface), the force to form a Cr-Au film (Cr layer on the first layer: about 50 A in thickness, Au layer on the second layer: about 100-200 A in thickness) by sputtering, gold by plasma deposition After forming a film or forming a silver film by screen printing, baking is performed to produce an electrode.
  • electrodes are formed on the two opposing surfaces perpendicular to the auxiliary polarization direction by the same method as described above.
  • the main polarization process is performed after the auxiliary polarization process, or after the main polarization process.
  • the trapping electrode treatment if the electrode used for the first polarization treatment remains, the subsequent polarization treatment will be unstable, and the electrode will be completely removed with an appropriate chemical etching solution or acid. It is necessary to keep.
  • the electric dipole in the domain consisting of a collection of electric dipoles in the same direction in the polarization direction 3 and in the direction perpendicular to this direction. Since the orientation is in various directions for each domain, it does not exhibit piezoelectricity and is in an unpolarized state.
  • a single crystal ingot, a single crystal cut in a block shape, or a polarization direction 3 of a cut single crystal element 20 to 20 It is preferable to apply a DC electric field of 350 to 1500 VZmm in a temperature range of 200 ° C.
  • the polarization temperature is less than 20 ° C or when the electric field is less than 350 V / mm, the polarization may be insufficient, and the temperature of the electric field exceeds 200 ° C. If the electric field exceeds I SOOVZmm, hyperpolarization (overpole) may occur, which may degrade the piezoelectric characteristics of the piezoelectric single crystal element. In addition, an excessive electric field may increase strain in the crystal and cause cracks in the piezoelectric single crystal element.
  • the polarization time is adjusted according to the polarization processing temperature and the applied electric field selected within the above preferable range, and the upper limit thereof is preferably 180 minutes.
  • a temperature higher than the Curie temperature (Tc line of FIG. 4) of the single crystal element for example, 250 to 5 G0V / Cool down to room temperature while applying DC electric field of mm (Electric field cooling).
  • Tc Curie temperature
  • the existence of the electric dipole is eliminated, and then, the direction of the electric dipole is more precisely aligned by cooling to a Curie temperature or less under application of an electric field.
  • the temperature is lower than the Curie temperature, polarization may be insufficient due to the remaining electric dipole. If the electric field is less than 250 V / mm, polarization may be insufficient. When the electric field exceeds 500 V / mm, hyperpolarization (over pole) is likely to occur. It is desirable that the cooling rate be such that no cracks occur in the element during cooling.
  • the Curie temperature Tc is a transition temperature above which the electric dipoles are oriented in a random direction and do not align, and do not exhibit piezoelectricity or ferroelectricity. This is determined by the composition and structure of the substance (see the Tc line in Figure 4).
  • the main polarization process described above is a process for performing main polarization of the piezoelectric single crystal element. Before or after the main polarization process is performed, the main polarization process is performed in a direction orthogonal to the polarization direction 3 described above, preferably in the transverse vibration direction 1. Auxiliary polarization processing for controlling the alignment of ferroelectric domains in a direction orthogonal to the above polarization direction 3 by applying an electric field is also effective.
  • the types of electric fields applied in the direction orthogonal to the above polarization direction 3 include direct current electric fieia, Norse field, pulse electric field, alternating electric field (alternating current electric field) In addition to the electric field (steady state), there are the attenuation electric field (attenuation electric fiel), etc.
  • Conditions are proper conditions according to the desired value in the direction of the electrical coupling factor k 31 perpendicular to the characteristics and the polarization direction of the individual piezoelectric single crystal device. These can be determined by experiments and the like.
  • the auxiliary polarization processing temperature is preferably from 25 ° C. to a phase transition temperature (eg, the Trt line shown in FIG. 4), and the applied electric field range is preferably ⁇ , ⁇ .
  • the polarization time is preferably adjusted according to the polarization processing temperature and the applied electric field selected within the above-mentioned preferred range, and particularly preferably from 10 minutes to 2 hours.
  • unipolar and bipolar pulses such as an AC triangular wave as shown in FIG. 7 can be used in addition to a rectangular wave.
  • Crystal element 10A and 10B force.
  • Piezoelectric single crystal element 10A whose polarization direction is the [011] direction and piezoelectric single crystal element 10B whose polarization direction is the [011] direction
  • Curie temperature Tc 186 ° C
  • Figures 8A and 8B show the shape of X 4mm width X 0.36mm thickness), respectively.
  • the polarization direction 3 is a tetragonal [101] axis, and the polished surface is (0 1 1).
  • the polarization direction 3 is defined as the tetragonal [0 1 1] axis, and the orientation of the end face T of the piezoelectric single crystal element (more precisely, the normal direction of the end face T) 1) was changed.
  • the specific size of the electromechanical coupling coefficient k 31 when the piezoelectric single crystal device 10A, as shown in FIG.
  • the normal direction 1 of the end face of the piezoelectric single crystal device T (10c) is 0
  • the angle is changed from ° ([-101] direction) to 90 ° ([010] direction) every 5 °
  • the piezoelectric single crystal element 10B as shown in Fig. 9B
  • the normal direction 1 of the end face T (10c) of the cylinder changes from 0 ° ([0-1 1] direction) to 90 ° ([100] direction) every 5 °, and using a dicing saw, I cut it out.
  • Cr-Au coating Cr layer on first layer: approx. 50 A thickness
  • Au layer on second layer approx.
  • a piezoelectric single crystal device 10A, electromechanical binding coefficient k 31 in 10B, the known formula: was calculated by (Electronic Materials Manufacturers Association Standard EMAS- 6008, 6100 reference). Tables 1 and 2 show the measurement results.
  • the [-100] axis direction (FIG. 9A) or [0 11 1]
  • the selection of the range from 0 ° to 90 ° with respect to the axial direction means that information on all directions in the crystal plane perpendicular to the polarization direction is obtained from the symmetry of the tetragonal crystal. This is because the angle range is necessary and sufficient to obtain.
  • lead zirconate titanate which is a conventional example (Pb (Zr, Ti) 0 3)
  • Table 1 ⁇ Pi electromechanical coupling factor k 31 of the piezoelectric element manufactured in the sintered body (PZT) Also shown in Table 2.
  • PZT is a sintered body, since no anisotropy due to crystal orientation as the piezoelectric single crystal shown here, the lateral vibration mode electromechanical coupling factor k 31 regarding the law of the end face T (10c) Regardless of the line direction 1, the value is the same over the entire crystal orientation.
  • the piezoelectric single crystal element 10A has 0 ° to 25 ° including the [-101] axis in the plane orthogonal to the polarization direction 3 (25 ° from the symmetry of the crystal (tetragonal)). Only when the angle is within the angle range (equivalent to the range of ⁇ 25 °), the electromechanical coupling coefficient k 31 is 50% or more, which indicates that the piezoelectric element is suitable as a piezoelectric element utilizing lateral vibration.
  • the [0-11] axis including the [0-11] axis in the plane orthogonal to the polarization direction 3 was within the angle range of ⁇ 25 °. only if it is, the electromechanical coupling factor k 31 represents 50% or more, it is found suitable der Rukoto as an element laterally utilized.
  • the angle was not measured in increments of 5 °, and further, the angle k 31 was measured in detail.As a result, in this range, the electromechanical coupling coefficient k 31 may always be 50% or more. confirmed.
  • the [101] direction of the single crystal element plate is defined as the polarization direction
  • the plane of the maximum area of the piezoelectric single crystal element of 13 mm X 4 in m X 0.36 mm is set to [10 1 1]
  • compositions of the piezoelectric single crystal elements 10A and 10B An element having the same composition as in Example 1 was used. Note that the orientation of the piezoelectric single crystal elements 10A and 10B is the same as in Example 1, with the normal direction 1 of the piezoelectric element end faces T and 10c being the [-101] axis or the [0-11] axis, respectively.
  • a single crystal element material having an element shape: 13 mm length ⁇ 4 mm width ⁇ 0.36 mm thickness was cut out using a dicing saw so as to be 0 ° with respect to.
  • the orientation of the piezoelectric single crystal elements 10A and 10B is such that the normal direction 1 of the piezoelectric element end face 10c is 15 ° with respect to the [-101] axis or the [0-11] axis, as in the first embodiment.
  • a single crystal element material having an element shape: 13 mm length ⁇ 4 mm width ⁇ 0.36 mm thickness was cut out using a dicing saw so as to obtain.
  • Tables (1) to (7) apply a DC electric field of 350 to 1500 VZmm in the temperature range of 25 to 60 ° C. This is a case where a piezoelectric single crystal element is manufactured under polarization processing conditions applied in a range of 30 minutes to 180 minutes.
  • the electromechanical coupling factor k 31 in the direction (lateral vibration mode) orthogonal to the lateral vibration mode utilized min poleward suitable crystals, mug Neshiumu niobate (PMN) -.
  • Titanate In the case of (PT) (Ti mole fraction X: 36 mol%), the ratio was 51.6 to 61.0% for the piezoelectric single crystal element 10A and 52.0 to 61.2% for the piezoelectric single crystal element 10B, all of which were 50% or more.
  • Indium-magnesium lead-niobate (PIMN) + lead titanate (PT) PIMN-PT is also manufactured using the same manufacturing method as magnesium lead-niobate (PMN) -lead titanate (PT).
  • PMN magnesium lead-niobate
  • PT lead titanate
  • Table 5 magnesium 'niobate (PMN) - Examination of electromechanical coupling factor k 31 in the same test conditions as lead titanate (PT), as shown in Table 5, 25 to 60 ° C in the DC electric field at a temperature range 350 ⁇ 1500V / / mm, the electromechanical coupling factor k 31 was obtained 50% higher than the piezoelectric single crystal device.
  • the polarization processing temperature of the single crystal element is set to 25 ° C and the applied electric field is set to If the lower limit of the preferred range of the invention is set to 320 V / mm, the electromechanical coupling coefficient k 31 of the piezoelectric single crystal element 10A and the piezoelectric single crystal element 10B in the 64 PMN-36PT element and the 65PIMN-35PT element of the invention example. could be less than 50%.
  • the temperature of the single crystal element is set to 40 ° C.
  • the piezoelectric single element is used in the 64 PMN-36PT element and the 65PIMN-35PT element of the invention.
  • electromechanical coupling factor k 31 of the crystal element 10A and the piezoelectric single crystal device 10B is sometimes less than 50%, in addition, applied in was or generates cracks in the piezoelectric single crystal device immediately applied termination example There was also.
  • the single-crystal element was heated to room temperature (25 ° C.) over a period of 120 minutes in a 210 ° C. silicon oil at a temperature higher than the Curie temperature Tc shown in FIG.
  • the electromechanical coupling factor k 31 of the piezoelectric single crystal device 10A and the piezoelectric single crystal device 10B is less than 50% There was a case. This is the If the field is less than 200 V / mm, polarization is considered to be insufficient. On the other hand, when the sign pressurized field exceeds 500V / mni, in 64 PMN 36pt element and 65PIMN- 35PT device of the inventive example, an electromechanical binding factor k 31 of the piezoelectric single crystal device 10A and the piezoelectric single crystal device 10B is 50% In some cases, it was less. In addition, cracks sometimes occurred in the piezoelectric single crystal element during or immediately after application of the applied electric field at 600 V / mni.
  • auxiliary polarization processing method for producing a piezoelectric single crystal element suitable for use in the transverse vibration mode.
  • the various auxiliary polarization processing conditions results of measurement of the electromechanical coupling factor k 31 in the lateral vibration mode of the pressure conductive single crystal device was prepared in shown in Table 6. Note that the method of manufacturing the piezoelectric single crystal element, the element dimensions, and the test conditions were the same as in Example 1.
  • the composition of the piezoelectric single crystal elements 10A and 10B was the same as that of Example 1.
  • the orientation of the piezoelectric single crystal elements 10A and 10B is the same as in the first embodiment, and the normal direction 1 of the piezoelectric element end face 10c (T) is set to the [-101] axis or the [0-11] axis, respectively.
  • Crystals suitable for use in the transverse vibration mode manufactured in the same manner as in Example 1 A Cr-Au film (Cr layer on the first layer: about 50 A in thickness, Au layer on the second layer: about 100 to 200 A in thickness) is formed on both end faces 10c (T) by sputtering to produce electrodes.
  • the auxiliary polarization treatment was performed at an auxiliary polarization temperature of 25 to 40 ° C, a DC applied electric field of 320 to 1700 VZmm, and an application time of 10 to 150 minutes.
  • the upper and lower surfaces 10a and 10b of the single crystal element material 10 are coated with a Cr-Au film (one layer) by sputtering.
  • Tables (1) to (5) show the fabrication of a piezoelectric single crystal element under the auxiliary polarization treatment conditions in which a 350 to 1500 V / mm DC electric field is applied for 10 to 120 minutes at a temperature range of 25 to 40 ° C. This is the case.
  • the electromechanical coupling factor k 31 is magnesium 'niobate (PMN) one lead titanate (PT) (Ti molar fraction X: 36 mol%) in the auxiliary polarization processing performed not in Table 6 (9 ) k 31 of the untreated indicated 59.8% in the piezoelectric single crystal device 10A, whereas was 59.1% in the piezoelectric single crystal device 10B, it has been made in both 60%.
  • the auxiliary polarization processing, higher electromechanical coupling factor k 31 was obtained.
  • the piezoelectric single crystal element 10A had a high 62.4%, and the piezoelectric single crystal element 10B had a high 62.8%. electromechanical coupling factor k 31 was obtained.
  • the electromechanical coupling coefficient k 31 becomes -In 36PT element and 65PIMN-35PT element, the piezoelectric single crystal element 10A and the piezoelectric single crystal element 10B were less than 50% in some cases.
  • the temperature of the piezoelectric single crystal material manufactured by the same method as in Example 1 was set to 40.
  • Is C when the applied electric field was OOVZmm exceeding the upper limit of the preferable range of the present invention, the electromechanical coupling factor k 31 is, 64P ⁇ of the inventive example - in 36PT device and 65PIMN-35PT device, a piezoelectric single crystal device 10A And the piezoelectric single crystal element 10B was less than 50% in some cases. In addition, cracks were sometimes generated in the piezoelectric single crystal element.
  • the prepared magnesium 'niobate according to the invention (PMN) + lead titanate (PT) (PMN-PT) ( composition formula: Pb [(M g, Nb ) 1 _ x Ti x] 0 3 of Single-crystal elements 10A, 10B, and 10V, and various piezoelectric single-crystal elements ⁇ , ⁇ ⁇ satisfying Ti mole fraction of 0.30-X-0.40 (more than 30 mol% and less than 40 mol%) were fabricated.
  • the change in the dielectric constant was measured to determine the Curie temperature Tc and the phase transition temperature Trt.
  • the orientation of the piezoelectric single crystal elements 10A and 10B was the same as in Example 1 in the direction normal to the piezoelectric element end face 10c.
  • the element shape 13 ⁇ length X 4mm width X 0.36mm thickness, and a dicing saw were used to make the element 1 be 0 ° with respect to the [-101] axis or the [0-11] axis. It was cut out and used to make it.
  • Figure 10 shows the results.
  • various piezoelectric single crystal elements with a Ti mole fraction of 0.3 or less (30 mol% or less) were fabricated in the same manner, and the change in the dielectric constant with respect to temperature was measured. The temperature T rt was determined.
  • Figure 11 shows the results.
  • the piezoelectric single-crystal elements 10A and 10B of the present invention satisfying the Ti mole fraction of 0.30 ⁇ X ⁇ 0.40 (more than 30 mol% and less than 40 mol%) have, as shown in FIG. F)
  • the temperature is as high as 160 ° C or higher, and the phase transition temperature T ⁇ t is lower than room temperature because the tetragonal structure is superior to the pseudo-cubic structure. This is because, even when used in the temperature range between room temperature and high temperature (for example, 150 ° C), the same crystal structure (tetragonal) can always be maintained at room temperature and high temperature without phase transition. This means that the piezoelectric characteristics of the piezoelectric single crystal elements 10A and 10B are not easily deteriorated even at a high temperature.
  • FIG. 12A shows that the piezoelectric single crystal element 10A of the present invention in which the Ti mole fraction satisfies 0.30 ′ ⁇ X ⁇ 0.40 (more than 30 mol% and less than 40 mol%) has room temperature and high temperature (100 ° C., 120 ° C. of ° C, 140 ° C) when subjected repeatedly to a heat cycle test between, plots the change in the value of the electromechanical binding coefficient k 31, FIG.
  • Each of the piezoelectric single crystal elements 10A and 10B of the present invention satisfying the Ti mole fraction X of 0.30 ⁇ X ⁇ 0.40 (more than 30 mol% and less than 40 mol%) has a transverse vibration mode even after repeated thermal cycle tests. This numerical values of the electromechanical coupling coefficient k 31 of is not substantially decrease I understand.
  • electromechanical coupling factor k 31 in the direction perpendicular to the polarization direction (lateral vibration mode) for example, a magnetic head precise positioning Akuchiyue over data, piezoelectric gyro element, the hand of the digital camera shake prevention
  • piezoelectric single crystal elements devices used for applications such as sensors and cardiac pacemaker sensors.
  • the piezoelectric single crystal device of the present invention even in an environment using (0.99 ° C in particular) high temperature, stable electromechanical coupling factor k 31 in the lateral vibration mode without reducing 50 % Can be maintained at a high value.

Abstract

室温から高温(具体的には150℃)までの温度変化のある使用環境下であっても、横方向振動モードの電気機械結合係数k31を低下させずに安定して50%以上の高い値に維持できる、耐熱性に優れた圧電単結晶素子とその製造方法を提供する。具体的には、 〔0 0 1〕軸をC軸(最も格子定数の大きな軸)とする正方晶の〔1 0 1〕軸を分極方向3としたとき、圧電素子端面Tの法線方向1が、分極方向3にほぼ直交する方向である〔-1 0 1〕軸を含んで該〔-1 0 1〕軸±25°の立体角の角度範囲内にあり、または、前記正方晶の〔0 1 1〕軸を分極方向3としたとき、圧電素子端面Tの法線方向1が、分極方向3にほぼ直交する方向である〔0 -1 1〕軸を含んで該〔0 -1 1〕軸±25°の立体角の角度範囲内にあり、いずれの場合も、分極方向3と直交する方向、いわゆる横方向の振動モードの電気機械結合係数k31が50%以上であることを特徴とする。

Description

明細書 · ' 圧電単結晶素子およびその製造方法
技術分野
本発明は、圧電単結晶素子 (piezoelectric single crystal device)及 ぴその製造方法に関する。さらに詳しくは、 Pb[(Mg, Nb)1_xTix]03で表わされる マグネシウムニオブ酸 Pb ( g, Nb) 03(lead magnesium niobate)とチタン酸鉛 PbTi03(lead titanate)からなる固溶体(solid solution) (PMN-PT 又は PMNTと呼称する。)であって、正方晶(tetragonal system)の複合ぺロプスカイト 構造(complex perovskite structure)の圧電体単結晶素子材料からなり、高温 (具体的には 150°C)使用環境下であっても、分極方向(polarization direction) とほぼ直交する方向、いわゆる横方向の振動モード (lateral vibration mode)の 電気機械結合係数 (electromechanical coupling factor) k3iを低下させず に安定して 50%以上の高い値に維持できる、耐熱性に優れた圧電単結晶素子、 及び該圧電単結晶素子の製造方法に関する。 背景技術
横方向の振動モードの電気機械結合係数 k31は、例えば、図 1に示すように、 アスペクト比(aspect ratio) :a/bが 2.5以上の長方形板(aZb≥2.5, a>>L, b >>L)について、分極方向 3に電圧をかけた時の分極方向 3に直交する方向 1 の振動(横方向振動)の大きさに関する電気的エネルギーと機械的エネルギー の変換効率の平方根に比例し、この数値が大きいほど効率が良いことを意味す る。なお、圧電単結晶素子は、前述の長方形板のほか、方形板や円板や棒状 体等の形状でもよく、それぞれの形状についても同様に、電気機械結合係数 k31を求めることができる。
上記圧電素子を構成する材料として、従来は、 T. Ogawa, M.Matsushita, Y. Tachi and K. Echizenya, Program Summary and Extended Abstracts of the 10th US-Japan Seminar on Dielectric and Piezoelectric Ceramics" (Sept.26- 29, (2001) pp245- 248)に記載されているようなジルコン チタン酸鉛(lead zircon titanate, Pb(Zr, Ti) 03 ) (PZT)が広く用いられて いた。しかしながら、上記の Ogawa らの文献に記載されたジルコンチタン酸鉛 (PZT)では、電気機械結合係数 k31は、 30%程度である。
上述した PZT.より高い k31を得るために、例えば特開平 11 - 171644号公報に は、 x(Pb2Me207)l/2'
Figure imgf000004_0001
、副成分として Crと Si を添カロし 7こ圧亀 器組成物 piezoelectric porcelain composition)力 S開 示されている。しかしながら、特開平 11-171644号公報に開示された圧電磁器 組成物の電気機械結合係数 k31は、 40%以下である。
また、 Jpn. J.Appl.Phys.90 (2001) ( p.3471-3475) には、電気機械結合 係数 k31が 59%(0.59)と高い値をもつ 0.67Pb(Mgl/3Nb2/3)O3— 0.33PbTi〇3 単 結晶の [001]方向を分極方向とし、 [100]方向または、 [010]方向への横振 動モード k31を測定した圧電特性等が開示されている。
しかしながら、 Jpn. J.Appl.Phys.90 (2001) (p.3471-3475) 記載の電気機 械結合係数 k31は、室温で測定したときのものであり、高温(具体的には 150°C) 環境下で使用した場合の電気機械結合係数 k31の値は定かではない。例えば、 圧電素子として使用するに際しては、はんだ付けを行なったり、樹脂などと接合 することによって、圧電素子が室温と高温(具体的には 150°C)までの温度変化 のある環境下で使用される場合があり、力かる場合には、圧電素子が劣化して、 電気機械結合係数 k31 の値が低下する傾向があるが、かかる点について、 Jpn. J. Appl. P ys. 90 (2001) (p. 3471-3475) には示唆や開示がない。 発明の開示】
本発明は、 Pb[(Mg,
Figure imgf000005_0001
で表わされるマグネシウムニオブ酸鉛とチタ ン酸鉛からなる固溶体(PMN— PT又は PMNTと呼称する。)であって、正方晶の 複合ぺロプスカイト構造を有する圧電体単結晶素子材料からなり、室温から高 温(具体的には 150°C)までの温度変化のある使用環境下であっても、電気機 械結合係数 k31を低下させずに安定して 50 %以上の高い値に維持できる、耐 熱性に優れた圧電単結晶素子とその製造方法を提供することを目的とする。 上記目的を達成するため、本発明の要旨は以下のとおりである。
( 1) CO 0 1〕軸を C軸(最も格子定数の大きな軸)とする正方晶の〔1 0 1〕軸を分 極方向としたとき、圧電単結晶素子端面の法線方向が、分極方向にほぼ直交 する方向である〔-1 0 1〕軸を含んで該〔- 1 0 1〕軸 ± 25° の立体角の角度範囲 内にあり、分極方向とほぼ直交する方向、いわゆる横方向の振動モードの電気 機械結合係数 k31が 50%以上である圧電単結晶素子。
(2)〔0 0 1〕軸を C軸(最も格子定数の大きな軸)とする正方晶の〔0 1 1〕軸を分 極方向としたとき、圧電単結晶素子端面の法線方向が、分極方向にほぼ直交 する方向である〔0 -1 1〕軸を含んで該〔0 -1 1〕軸 ± 25° の立体角の角度範囲 内にあり、分極方向とほぼ直交する方向、いわゆる横方向の振動モードの電気 機械結合係数 k31が 50%以上である圧電単結晶素子。
( 3 )上記( 1 )または(2 )において、前記圧電単結晶素子が、 Pb[(Mg, Nb)^ xTix]03 (伹し、 Xは、 Mg, Nbおよび Tiのモル分率の合計を 1としたときの、 Τί のモル分率とする。)からなる固溶体であって、前記 Xが、 0.30 <Χ< 0.40 の 式を満足し、かつ、複合べロプスカイト構造を有する単結晶素子材料からなる圧 電単結晶素子。
なお、ここでいう「正方晶」は、直方体の単位格子を持ち、最も大きな格子定 数を有する軸を〔0 0 1〕軸(c軸)としたときに、それに直交する等しい長さの 〔100〕軸(a軸)及び〔0 1 0〕軸(b軸)を有する結晶構造を有するものである力 上記 (3)でいう固溶体において、チタン酸鉛(PT)のモル分率が 0.30に近い場合 は、熱力学的に低温相である擬立方晶を示す部分をその構造中に有するもの を含む。
また、「ぺロブスカイト構造」とは、固溶体単結晶の単位格子が図 2に模式的に 示したように、 Rイオンが、単位格子の角に位置し、酸素イオンが、単位格子の 面心に位置し、 Mイオンが単位格子の体心に位置するような構造(RM03)をな していることを言う。なお.、本発明が対象としている「複合べロプスカイト構造」と は、図 2の体心位置にある Mイオンが、 1種類の元素イオンでなく、 2種類以上の 複数の元素イオンのいずれかの元素からなることを言う。
(4)上記(1 ) 〜 (3 ) において、 前記圧電単結晶素子が、 さらに、 前記 固溶体に Inを 0. 05mol °/o〜30mol %含有する圧電単結晶素子。
( 5)上記(1 )〜(4)のいずれか記載の圧電単結晶素子を製造する方法であつ て、単結晶インゴットから所定形状の単結晶素子材料を所定方向に切り出す処 3 理の前後に、 単結晶のイ ンゴッ トのまたは、 切り出された単結晶ブロッ クあるいは、 切り出された単結晶素子の分極すべき方向である〔1 0 1〕ま たは〔0 1 1〕方向に、所定の条件で電界を印加して分極する主分極処理とを有 する圧電単結晶素子の製造方法。
(6) 上記 (5) において、 前記単結晶インゴットまたは、 前記単結晶 プロ ックの 〔1 0 1〕 または 〔0 1 1〕 方向に、 所定の条件で電界を印加 して分極する主分極処理と、 前記単結晶インゴジ トまたは、 前記単結晶 プロックから所定形状の単結晶素子を所定方向に切り出す処理とを有す る圧電単結晶素子の製造方法。
(7) 上記 (5) あるいは、 ( 6) において、 前記主分極処理は、 前記単 結晶ィンゴッ トまたは、 前記単結晶プロックの〔10 1〕または〔0 1 1〕方向 に、 20〜200DCの温度範囲で βδΟ ΙδΟθνΖηιηιの直流電界を印加する処理、 または前記単結晶ィンゴッ トまたは、 前記単結晶プロックのキュリー温 度(Tc)より高い温度で 250〜500V/mm の直流電界を印加したまま室温 まで冷却する処理である圧電単結晶素子の製造方法。
(8) 上記 (5) において、 前記単結晶インゴッ トから所定形状の単結 晶素子を所定方向に切り出す処理と、前記単結晶素子の〔101〕または〔01 1〕方向に、 所定の条件で電界を印加して分極する主分極処理とを有する 圧電単結晶素子の製造方法。
(9) 上記 (5) あるいは、 (8) において、 前記主分極処理は、切り出し た単結晶素子の〔101〕または〔011〕方向に、 20〜200°Cの温度範囲で 350〜 1500V/mmの直流電界を印加する処理、または前記単結晶素子のキュリー温 度 (Tc)より高い温度で 250〜500VZmmの直流電界を印加したまま室温まで冷 却する処理とを有する圧電単結晶素子の製造方法。
(10)上記 (5 ) 〜 (9 ) において、 前記主分極処理の前後いずれかに、分 極方向と直交する方向に電界を印加して分極する'補助分極処理をさらに有す る圧電単結晶素子の製造方法。
分極方向 3と直交する方向 1に印加する電界の種類としては、直流電界、パ ルス電界、交流電界、またこれらの定常電界のほか、減衰電界などがあり、電界 の強さや印加時間、温度条件等は、個々の圧電単結晶素子の特性及び分極 方向 3に直交する方向 1の電気機械結合係数 k31の所望の値に応じて適正条 件がある。これらは、実験等によって定めることができる。また、前記のパルス電 界としては、直角波のほか、交流三角波などュニポーラ及ぴバイポーラパルスを 用いることができる。
本発明によれば、分極方向 3に直交する方向 1 (横方向振動モード)の電気 機械結合係数 k31を積極的に利用する、例えば磁気ヘッド(magnetic head)の 精密位置決めァクチユエータ(accurate positioning actuator)、圧電ジャィ 口素子、 piezoelectric gyro device)、デジタル 7メフ、 digital still camera)の手振れ防止センサー (image stabilizer) 、心臓ペースメーカー 用セン^ー(cardiac pacemaker sensor)等の用途に使用される圧電単結晶 素子(デバイス)の製造が可能である。特に、本発明の圧電単結晶素子は、室 温から高温(具体的には 150°C)までの温度変化のある使用環境下であっても、 横方向振動モードの電気機械結合係数 k31を低下させずに安定して 50%以上 の高い値に維持できる。 図面の簡単な説明
図 1: 本発明に従う圧電単結晶素子の方位と形状を示す斜視図であり、分極 するときの状態で示す。
図 2: ぺロプスカイト結晶構造(RM03)の模式的斜視図である。
図 3: 本発明に従う圧電単結晶素子の横方向振動モードを利用する端面の 種々の形状を示す図である。
図 4: PMN- PT(PMNT)の相図である。
図 5: (1 0 1)面をウェハー面(もっとも広い面)として圧電単結晶素子 10Aを切 り出す状態を 3軸直交座標系で示したときの斜視図である。
図 6: (0 1 1)面をウェハー面(もっとも広い面)として圧電単結晶素子 10Bを切 り出す状態を 3軸直交座標系で示したときの斜視図である。
図 7: バイポーラ三角波パルスの波形図である。
図 8A: 圧電単結晶素子 10Aに直流電界を印加するときの説明図である。 図 8B: 圧電単結晶素子 10Bに直流電界を印加するときの説明図である。 図 9A: 単結晶ウェハー 11 から、圧電素子端面 10c (または、 T)の法線方向 1 が 0〜90° の範囲で圧電単結晶素子 10Aを切り出す方向を説明するための図 である。
図 9B: 単結晶ウェハー 11 から、圧電素子端面 10c (または、 T)の法線方向 1 が 0~90° の範囲で圧電単結晶素子 10Bを切り出す方向を説明するための図 である。
図 10: Tiモル分率 が 0.30<X<0.40を満足する本発明の圧電単結晶素子 10Aおよび, 10Bについて、温度に対する誘電率の変化をプロットした図である。 16473 図 1 1 : Ti モル分率 が 0.30 以下である種々の圧電単結晶素子 10A およ び, 10Bについて、温度に対する誘電率の変化をプロットした図である。
図 12A : Tiモル分率 が 0.30く X < 0.40を満足する本発明の圧電単結晶素 子 10Aに対して、熱サイクル試験を繰り返したときの、電気機械結合係数 k31の 数値の変化をプロットした図である。
図 12B : Tiモル分率 が 0.30く Xく 0.40を満足する本発明の圧電単結晶素 子 10Bに対して、熱サイクル試験を繰り返したときの、電気機械結合係数 k31の 数値の変化をプロットした図である。
図 13 : Tiモル分率 Xが 0.30以下である圧電単結晶素子 10Aおよび , ΙΟΒ に 対して、熱サイクル試験を繰り返したときの、電気機械結合係数 k31の数値の変 化をプロットした図である。
(符号の説明)
10 圧電単結晶素子
10a 圧電単結晶素子の上面(又は電極面)
10b 圧電単結晶素子の下面(又は電極面)
10cまたは、 T 圧電単結晶素子の横方向振動モードを利用する端面
11 単結晶ウェハー
10A 分極方向が〔1 0 1〕方向である圧電単結晶素子
10B 分極方向が〔0 1 1〕方向である圧電単結晶素子
a 圧電単結晶素子の横方向(横振動の方向 1)寸法 、 b 圧電単結晶素子の端面の(奥行き(方向 2) )寸法 T/JP2004/016473 b '圧電単結晶素子の凸状の端面
b"圧電単結晶素子の凹状の端面
L 圧電単結晶素子の縦方向(分極の方向 3)寸法
V 直流電圧
1 圧電単結晶素子端面の法線方向(横振動方向)
3 分極方向(縦振動方向) 発明を実施するための最良の形態
以下、本発明の圧電単結晶素子の限定理由について、説明する。
( 1)分極方向と圧電素子端面の法線方向との関係:
図 5に示すように、 〔0 0 1〕軸を C軸(最も格子定数の大きな軸)とする正方 晶の〔1 0 1〕軸を分極方向としたとき、 圧電単結晶素子 10Aの端面 Tの法 線方向 1が、 分極方向〔1 0 1〕にほぼ直交する方向である〔- 1 0 1〕軸を含ん で該〔- 1 0 1〕軸 ± 25° の円錐状の立体角の角度範囲内であるか、または、図 6に示すように、 前記正方晶の〔0 1 1〕軸を分極方向としたとき、圧電単結晶 素子 10Aの端面 Tの法線方向 1力 分極方向〔0 1 1〕にほぼ直交する方向で ある〔0 -1 1〕軸を含んで該〔0 -1 1〕軸 ± 25° の円錐状の立体角の角度範囲内 にあることが好ましい。 ここで、 これらの圧電単結晶素子の最も広い面 の法線方向 nは、 図 5と図 6に示すように分極方向の〔1 0 1〕方向あるい は、 〔0 1 1〕方向を 0 ° としたときに、 0 ° ± 25° 以内の円錐状の立体角 の角度範囲内となる。
このような角度範囲に横方向振動を利用する圧電単結晶素子の端面 Tの法 線方向 1が限られることの理由は、以下のように考えられる。上記で規定された 立体角の角度範囲内では、 〔_1 0 1〕軸方向の横方向の振動あるいは、 〔0 -1 1〕軸方向の横方向の振動がそれらの軸方向以外に分散することがないの で、該軸方向の横振動モードのエネルギーが減少することなく維持され、
50%以上の高い電気機械結合係数 k31が得られる。 しかし、 圧電単結晶 素子の端面 Tの法線方向 1が、上記で規定された立体角の角度範囲外では、 前者の圧電単結晶素子 10Aの場合は、〔- 1 0 1〕軸方向に対し約 35° の角度 をなす〔- 1 1 1〕軸又は〔-1 - 1 1〕軸の影響により、横方向振動が分散される。ま た、後者の圧電単結晶素子 10Bの場合は、〔0 -1 1〕軸方向に対し約 35° の角 度をなす〔1 -1 1〕軸又は〔- 1 -1 1〕軸の影響により、横方向振動が分散される。 このことは、該〔- 1 0 1〕方向又は〔0 -1 1〕方向の横方向振動モードのエネルギ 一が減少することを意味する。その結果、横振動モードの電気機械結合係数 k 3 i: 50 %以上が得られなくなるもの考えられる。なお、正方晶の対称性から図 5 の圧電単結晶素子 10Aと図 6の圧電単結晶素子 10Bは、等価なものである。
( 2)圧電単結晶素子の結晶構造(正方晶の複合べロプスカイト構造): 本発明の結晶構造は、正方晶である。「正方晶」は、直方体の単位格子を持 ち、最も大きな格子定数を有する軸を〔0 0 1〕軸(c軸)としたときに、それに直交 する等しい長さの〔100〕軸(a軸)及び〔0 1 0〕軸(b軸)を有する結晶構造を有す るものであるが、上記 (3)でいう Pb [(Mg, Nb^— xTix]03の固溶体において、チタン 酸鉛(PT)のモル分率が 0.30に近い場合は、熱力学的に低温相である擬立方 晶を示す部分をその構造中に有するものを含む。
また、本発明の結晶構造は、図 2の単位格子において、 Pb イオンが、単位格 子の角に位置し、酸素イオン力 S、単位格子の面心に位置し、 Mg, Nb, In、Ti 等の Mイオンが単位格子の体心に位置するような複合ぺロブスカイト構造 (RM03)である。
(3)単結晶素子の組成:
本発明の圧電単結晶素子の組成は、例えば、 Pb[(Mg,
Figure imgf000013_0001
X は、 Mg, Nb および Ti のモル分率の合計を 1としたときの、 Ti のモル分率とす る。)からなる固溶体であって、前記 が、 0.30く Xく 0.40 の式を満足し、かつ、 複合べロプスカイト構造である。 より好適には、 0.34く Xく 0.38 とする。前記モ ル分率 Xが 0.3 以下だと、図 4に示すように、ほぼ擬立方晶が固溶体素子の大 部分を占め、しかも、相転移温度 Trtが室温以上の比較的低温に存在するため、 室温から高温(例えば 150 °C )までの温度範囲にわたって使用する場合には、 正方晶と擬立方晶との間で相転移が生じやすくなり、その結果、正方晶圧電素 子としての性能が劣化して、電気機械結合係数 k31が低下するおそれがあるか らであり、前記モル分率 Xが 0.40以上だと、擬立方晶と正方晶の相転移温度は 室温以下になり、室温から 150°Cの範囲で相転移は生じないが、チタン酸鉛の モル分率が大きすぎるため、固溶体としての圧電特性が劣化する傾向があり、 その結果、横振動モードの電気機械結合係数 k31 : 50 %以上が得られなくなる おそれがあるからである。
なお、マグネシウムニォプ酸鉛 Pb (Mg, Nb) 03中の Mgと Nbの比率 Mg/Nb のモル比は、 0. 45〜0. 54の範囲であれば、複合べロプスカイト構造が維持さ れるので、本発明の範囲である。
また、本発明の他の圧電素子として、マグネシウム'ニオブ酸鉛一チタン酸鉛 (PMN-PT)にインジウム Inを、好適には 0.05〜30mol%含有させた、インジウム' マグネシウム'ニオブ酸鉛一チタン酸鉛(PIMN-PT)を用いることもできる。ィン ジゥム (In) のイオン半径は、 マグネシウム (Mg) よりは大きいがニォ プ (Nb) よりは小さいイオン半径を有するため、 ぺロプスカイ ト構造の 単位格子の体心位置に配置されるニオブ (Nb) とマグネシウム (Mg) と のイオン半径の差に起因する格子歪が緩和され、 単結晶育成時のクラッ ク発生ゃ圧電素子加工時のチッビング発生が生じにく くする作用を有す る。 このため本発明では、 上記作用を発揮させるため、 インジウムは 0. 05mol %以上添加することが必要であるが、 30ιιιΟ1 %を超える添加は、 単結晶を育成時の原料の融点が上昇し、 製造に当たり処理管理が難しく なるため好ましくない。
さらに、比誘電率 ε rを大きくする必要がある場合は、上記圧電単結晶素子の 組成に、さらに、 Sb, La, W , Taの内の 1又は複数の元素をそれぞれ 0. 5 mol ρρπ!〜 5 mol %添加しても良い。 また、 機械的品質係数 Qmを大きくする必 要がある場合には、さらに、上記圧電単結晶素子の組成に、 Mn, Cr のうちの 1又は複数の元素をそれぞれ 0. 5ρρπ!〜 5 mol %添加しても良い。
また Al、 Liは、 単結晶の成長時の安定化に寄与する。 その効果を得る ためには、 Al、Liの一種以上を合計で、 0. 05mol%以上の添加が好ましい。 これらの原子(Sb, La, W , Ta 、 Mn, Cr、 Al、 Li) は、単位格子の体心 位置または、格子間位置に配置される。合計で、 5 mol %を超える添加は、 単結晶を得るのが難しく、 多結晶となる恐れがある。
また、原料中に酸化カルシウムを添加した場合は、単結晶を育成中に、 酸化カルシウム中のカルシウム (Ca) は、 鉛系ぺロブスカイ ト構造化合 物 (マグネシウムニオブ酸鉛およびチタン酸鉛、インジウムニオブ酸鉛) の固溶体からなる結晶格子の鉛 (Pb) サイ ト (図 2の Rイオン) の一部 に置換型原子として配置され、 高温での酸化鉛の蒸発を抑止する作用が ある。この Caの作用によって、パイ口クロァ相の生成が抑制できる結果、 所望の複合べロプスカイ ト相の単結晶の生成を容易にする。本発明では、 上記 Caの作用を発揮させるため、カルシウムは 0. 05mo l %以上置換する ことが必要であるが、 10mo l °/oを超える置換は、単結晶の育成が困難とな る。 このため、 結晶格子中の鉛の 0. 05mo l %〜: 10mol %がカルシウムと置 換されているのが、 好ましい。 さらに、 0. 05mo l %〜 5mo l %がカルシゥ ムと置換されているのが、 好ましい。
単結晶インゴッ トの組成物中 (結晶格子中) の鉛の 0. 05〜10mol %を カルシウムと置換させるためには、 単結晶を育成中のカルシウムの蒸発 量を考慮して、 カルシウムを添加する必要がある。 カルシウムを添加す る方法は、 特に規定されない。 例えば、 カルシウム置換マグネシウム二 ォブ酸鉛やカルシウム置換亜鈴ニオブ酸鉛あるいは、 カルシウム置換チ タン酸鉛を使用しても良い。 あるいは、 酸化カルシゥゥムや炭酸カルシ ゥムを原料に添加する方法でも良い。
また、 Fe、 Pt、 Au、 Pd、 Rhなどの不純物は、圧電単結晶の製造過程で、 原料やルツポ等から混入する可能性があるが、 これらの不純物は単結晶 の生成を妨げるので、合計で 0. 5mol %以下に抑えておく ことが望ましい。 (4)圧電単結晶素子の形状 本発明が対象とする「圧電単結晶素子」の形状は、図 1に示すような長方形 板が、分極方向 3にほぼ直交する方向 1 (横方向振動モード)の電気機械結合 係数 k31を効果的に大きくする点で望ましい。特に、望ましい素子の形状は、ァ スぺタト比: aZb力 S 2.5以上の長方形板(a/b≥2.5 , a> > L, b > > L)、さらに 望ましくは、アスペクト比: a/bが 3以上の長方形板である。なお、本発明の長方 形板の両端部(短辺 b)の形状は、用途に応じて、図 3に示すように凸状に湾曲 b一(破線)あるいは、凹状に湾曲 b " (—点鎖線)していても良い。また、 a= b の 方形板であっても良い。なお、本発明でいう圧電素子端面は、図 3のような平面 視で、長辺 aに直角な短辺 bで示される。従って、圧電素子端面の法線方向 1 は、圧電素子の長辺 aに平行である。 次に、本発明の圧電単結晶素子の好適な製造方法について、説明する。 本発明の圧電単結晶素子の製造方法は、 正方晶を有する単結晶ィンゴ ッ トまたは、 単結晶ブロックの〔1 0 1〕または〔0 1 1〕方向に、 所定の条件 で電界を印加して単結晶インゴッ トを分極する主分極処理と、 前記単結 晶インゴッ トから所定形状の単結晶素子を所定方向に切り出す処理と、 を有する圧電単結晶素子の製造方法である。
また、 本発明の圧電単結晶素子の別の製造方法は、 正方晶を有する単 結晶ィンゴッ トから所定形状の単結晶素子を所定方向に切り出す処理 と、 前記単結晶素子の〔1 0 1〕または〔0 1 1〕方向に、 所定の条件で電界を 印加して単結晶素子を分極する主分極処理とを有する圧電単結晶素子 の製造方法である。 なお、ここで単結晶ブロックは、単結晶インゴットからワイヤーソ一等でブロック 状に切り出されたものを言う。単結晶インゴットの形状から分極処理が困難な場 合に、分極処理が容易な単結晶ブロック状に切り出して分極処理する。
以下、各処理における本発明の製造方法の限定理由を説明する。
( 1 )単結晶インゴットの製造:
本発明は、 Pb[(Mg, Nb xTiJO 但し、 Xは、 Mg, Nbおよび Τίのモル分率 の合計を 1としたときの、 Tiのモル分率とする。)からなる固溶体であって、前記 X が、 0.30く Xく 0.40 の式を満足する単結晶、あるいは、さらに、 上記組成に、 Inを 0. 05〜30mol %、 Mn, Cr, Sb, W, Al , La, Li , Taのうちの 1又は 複数の元素を 0. 5 mol ppn!〜 5 mol %添加した組成に、 あるいは、 さら に、 上記組成物中の鉛の 0. 05〜: I0mol %がカルシウムと置換されている 組成にした単結晶のインゴッ トには、 上記の組成に調整された原料をフ ラックス中に溶解させた後、 降温させて凝固させる方法か、 融点以上に 加熱して融解させた後、 一方向に凝固させる方法がある。 前者の方法と しては、 溶液プリ ッジマン法、 または、 TSSG 法 (Top Seeded solut ion Growth) などがあり、 後者としては、 融解ブリッジマン法、 CZ法 (チヨ クラルスキー法) などがあるが、 本発明では、 特に限定しない。
( 2 )単結晶インゴットの結晶学的方位の決定:
単結晶インゴットの〔1 0 1〕軸方位または〔0 1 1〕軸方位をラウエ法によって概 ね決定し、同時に〔1 0 1〕軸方位とほぼ直交する〔- 1 0 1〕軸方位及び〔0 1 0〕 軸方位、または〔0 1 1〕軸方位とほぼ直交する〔0 -1 1〕軸方位及び〔1 0 0〕軸方 位を概ね決定する。なお、正方晶の対称性から図 5と図 6に示すように、〔1 0 1〕 軸と〔0 1 1〕軸は、等価なものである。 .
さらに、上記方位軸等のいずれかの結晶軸に直交する結晶学的面 { 1 1 0 }面 や { 1 0 0 }面を研磨し、エックス線方位測定機 (X- ray direction finder)などを用 いて正確な方位を決定し、上記の研磨面のズレを修正する。
(3)粗切断(適当な厚さのウェハーやプロックの作製):
上記の単結晶インゴットの研磨面 { 1 1 0 }面や { 1 0 0 }面に平行又はほぼ直交 して単結晶インゴットをワイヤーソー(wire saw)又は内周刃切断機(inner diamond saw)などの切断機を用いて切断し、適当な厚さの板材(ウェハー (wafer))やプロックを得る。尚、切断後に、必要に応じてエッチング液を用いて 化学エッチングする処理を含むこともできる。
(4)研磨(所定厚さのウェハー作製):
上記のウェハーをラッピング機(lapping machine) ,ポリツシング機(polishing machine)などの研削機又は研磨機 (grinding machine)によって研削又は研磨し、 所定厚さのウェハーを得る。尚、研削、研磨後に、必要に応じてエッチング液を 用いて化学エッチングする処理を含むこともできる。
( 5)単結晶素子の製作:
本発明のウェハーは、 (1 0 1)面又は (0 1 1)面をウェハー面(もっとも広い面) に持つ。なお、正方晶の対称性から図 5と図 6に示すように、(1 0 1)面と(0 1 1) 面は、等価なものである。ウェハー面が(1 0 1)面の場合には、圧電素子 10Aの 端面 Tの法線方向 1 f 〔- 1 0 1〕軸を含んで該〔-1 0 1〕軸 ± 25° の立体角の 角度範囲内になるように、また、ウェハー面が (0 1 1)面の場合には、圧電素子 1 0Βの端面 Τの法線方向 1が、 〔0 -1 1〕軸を含んで該〔0 -1 1〕軸 ± 25° の立 体角の角度範囲内になるように、それぞれウェハーから所定形状の単結晶素子 材料を、ダイシングソー(dicing saw)やカッティングソー(cutting saw)などの精密 切断機を用いて切り出して作製する。
図 5は、(1 0 1)面をウェハー面(もっとも広い面)とし、横方向振動モードを利用 する圧電素子 10Aの端面 Tの法線方向 1が〔-1 0 1〕方向となるように単結晶を 切り出す状態を 3軸直交座標系で示したものであり、図 6は、(0 1 1)面をウェハ 一面(もっとも広い面)とし、横方向振動モードを利用する圧電 10Bの端面 Tの 法線方向 1が〔0 - 1 1〕方向となるように単結晶を切り出す状態を 3軸直交座標 系で示したものである。また、上記の単結晶プロックをダイシングソーや力 ッティングソ一などの精密切断機を用いて直接、 圧電素子の寸法に切り 出して作製することもできる。
(6)電極の作製:
主分極処理あるいは、さらに、補助分極処理で、印加電界を掛けるために必 要な電極を事前に作製する必要がある。
主分極処理前に、作製した単結晶素子材料の上下面(図 5では (1 0 1)面と (-1 0 - 1)面、図 6では (0 1 1)面と (0 -1 - 1)面)に、スパッタ法で Cr- Au被膜(1 層目に Cr層:厚み約 50 A、 2層目に Au層:厚み約 100〜200 A)を形成する力、 プラズマ蒸着で、金被膜を形成するか、あるいは、スクリーン印刷で銀被膜を形 成した後、焼成して電極を作製する。
また、補助分極処理前では、補助分極方向に垂直な対向する 2つの面に、上 記と同じ方法で電極を形成する。
なお、補助分極処理後に主分極処理する場合、あるいは、主分極処理後に 捕助極処理する場合には、最初の分極処理に使用した電極が残っていると、 後の分極処理を不安定にするので、適当な化学エッチング液あるいは、または、 酸で完全に電極を除去しておく必要がある。
( 7)主分極処理:
育成後の単結晶インゴットから切り出された単結晶のままでは、分極方向 3及 ぴこれと直交する方向において、同一方向の電気双極子(electric dipole)の集 合からなるドメイン内の電気双極子の向きがドメイン毎に種々の方向を向いてい るため、圧電性を示さず、未分極の状態にある。
したがって、分極する必要があるが、本発明の組成の圧電素子では、単結晶 インゴットのまま、また、 ブロック状に切断された単結晶、 あるいは、切り出し た単結晶素子の分極方向 3に、 20〜200°Cの温度範囲で 350〜1500VZmmの 直流電界を印加するのが好適である。すなわち、分極処理の温度が、 20°C未 満の場合や電界が、 350V/mm 未満の場合には、分極が不十分になる場合が あり、また、電界の温度が、 200°Cを超える場合や電界が、 I SOOVZmm を超える 場合には、過分極(オーバーポール)が起こり、圧電単結晶素子の圧電特性を 劣化させる場合がある。また、過度の電界により、結晶中の歪が増大し、圧電単 結晶素子にクラックが発生する恐れもある。
なお、分極時間は、上記の好適範囲内で選ばれた分極処理温度と印加電界 に応じて調整し、その上限を 180分とすることが好ましい。
あるいは、 分極方向 3に、 該単結晶素子のキュリー温度(Curie temperature)Tc (例えば、 図 4の T c線) より高い温度、好適には、 190〜 220°Cの温度範囲で 250〜5G0V/mmの直流電界を印加したまま室温まで冷却 (電界冷却(electric field cooling))してもょレ、。キュリー温度 Tcより高い温度に することで、電気双極子の存在をー且無くし、その後、電界の印加下でキュリー 温度以下に冷却することで、電気双極子の向きが、よりきれいに揃うためである。 キュリー温度以下の低い温度の場合には、一部に、電気双極子が残るために、 分極が不十分になる場合がある。また、電界が、 250V/mm 未満の場合には、 分極が不十分となる可能性がある。 また、電界が、 500V/mmを超えた場合に は、過分極(オーバーポール (over pole))を発生しやすくなる。 なお、冷却速度 は、冷却中に素子にクラックが生じない冷却速度が望ましい。
なお、キュリー温度 Tcは、それ以上の温度になると電気双極子がそれぞれ無 秩序な方向を向いて整列しなくなり、圧電性または、強誘電性を示さなくなる転 移温度である。これは、組成や物質の構造により決まっている(図 4の T c線参 照)。
( '8 )補助分極処理:
上述した主分極処理は、圧電単結晶素子の主たる分極を行う処理であるが、 該主分極処理の実施前あるいは実施後に、上記の分極方向 3と直交する方向、 望ましくは、横振動方向 1 に電界を印加し、上記の分極方向 3と直交する方向 の強誘電体ドメイン (ferroelectric domain)の整列状態を制御する補助分極処 理も有効である。
上記の分極方向 3と直交する方向に印加する電界の種類としては、直流電界 (direct current electric fieia)、ノヽルス fe界、 pulse electric field)、交 i¾電界 (alternating current electric field) またこれらの定常電界(steady state)のほか、 減衰電界(attenuation electric fiel などがあり、電界の強さや印加時間、温度 条件等は、個々の圧電単結晶素子の特性及び分極方向に直交する方向の電 気機械結合係数 k31の所望の値に応じて適正条件がある。これらは、実験等に よって定めることができる。補助分極の効果を得るためには、補助分極処理温 度は、 25°C〜相転移温度(例えば、図 4に示す Trt線)以下、印加電界範囲は、 βδθ ΐδθθν,πιπι が好ましい。なお、分極時間は、上記の好適範囲内で選ば れた分極処理温度と印加電界に応じて調整することが好ましいが、特に、 10 分 〜2時間が望ましい。
また、前記のパルス電界としては、直角波のほか、図 7に示すような交流三角 波などュニポーラ及ぴバイポーラパルスを用いることができる。
実施例 1
実施例に使用した単結晶素子は、マグネシウム ·ニオブ酸鉛(ΡΜΝ) +チタン 酸鉛(ΡΤ) (ΡΜΝ-ΡΤ) (組成式: Pb[(Mg, Nb xTgo 但し、 X = 0.36) )の単結 晶素子 10Aおよび、 10B力^なる。分極方向が〔1 0 1〕方向である圧電単結晶 素子 10A, と分極方向が〔0 1 1〕方向である圧電単結晶素子 10B (キュリー温 度 Tc= 186°C、素子形状: 13mm長さ X 4mm幅 X 0.36mm厚み)の形状等を、そ れぞれ図 8Aおよび図 8Bに示す。
この圧電単結晶素子 10A および、 10B の製造は、以下のように行った。 Pb[(Mg, Nb xTix]03 (伹し、 X = 0.36)の組成になるように原料を調整した後、 前述の融液ブリッジマン法により、単結晶インゴットを得た。次に、この単結晶ィ ンゴットの正確な結晶学的方位を決定し、研磨し、この研磨面である(1 0 1)面と (0 1 1)面とにそれぞれ平行して単結晶インゴットをワイヤーソ一で切断し、 0.5mm 厚みの板材を得た。この板材をポリツシング機によって研磨し、 0.36mm厚みのゥ ェハーを得た。このウェハーから素子形状: 13mm長さ X 4mm幅 X 0.36mm厚み の形状にダイシングソーを用いて切り出して作製した。
このとき、前記研磨面が (1 0 1)面である圧電単結晶素子 10Aの場合には、分 極方向 3を正方晶の〔1 0 1〕軸とし、前記研磨面が (0 1 1)面である圧電単結晶 素子 10B.の場合には、分極方向 3を正方晶の〔0 1 1〕軸とし、圧電単結晶素子 の端面 Tの方位(より厳密には、端面 Tの法線方向 1)を変化させた。具体的な 電気機械結合係数 k31の大きさを調べるため、圧電単結晶素子 10A の場合に は、図 9Aに示すように、圧電単結晶素子の端面 T ( 10c)の法線方向 1が 0° (〔- 1 0 1〕方向)から 5° ごとに 90° ( [0 1 0〕方向)まで変化させ、圧電単結晶 素子 10Bの場合には、図 9Bに示すように、圧電単結晶素子の端面 T ( 10c)の 法線方向 1が 0° (〔0 - 1 1〕方向)から 5° ごとに 90° (〔1 0 0〕方向)まで変化さ せて、ダイシングソーを用いて、切り出した。作製した単結晶素子の対向する上 下面 10a及び 10bに、スパッタ法で Cr- Au被膜(1層目に Cr層:厚み約 50 A、 2層目に Au層:厚み約 100〜200A)を形成して金電極を作製した。また、上記 分極は、 25°Cの大気中で 700V/mmの直流電界を 60分間印加する条件で行 なった。その後、 25°Cの大気中で 700VZmmの直流電界を 60分間印加する分 極法を用いて図 9A及ぴ 9Bの紙面にそれぞれ垂直な方向(それぞれ〔1 0 1〕方 向及び〔0 1 1〕方向)に分極した。圧電単結晶素子 10Aと, 10Bの電気機械結 合係数 k31は、既知の計算式(電子材料工業会標準規格: EMAS- 6008, 6100 参照)によって算出した。その測定結果を表 1及び表 2に示す。
ここで、分極方向 3とほぼ直交する面内の〔-1 0 1〕軸方向(図 9A)または〔0 -1 1〕軸方向(図 9B)に対して 0° から 90° の範囲を選択したことは、正方晶の 対称性から、分極方向と直交する前記結晶平面内のすべての方向に関する情 報を得るに必要十分な角度範囲であるためである。なお、参考のため、従来例 であるジルコン酸チタン酸鉛(Pb (Zr, Ti) 03)焼結体(PZT)で作製した圧電素 子についての電気機械結合係数 k31を表 1及ぴ表 2に併記した。 PZT は焼結体 であり、ここに示した圧電単結晶のように結晶方位に伴う異方性を持たないので、 横方向振動モードに関する電気機械結合係数 k31は、端面 T ( 10c)の法線方 向 1とは無関係で全結晶方位にわたって同じ値である。
表 1に示す結果から、圧電単結晶素子 10Aでは、分極方向 3と直交する面内 の〔- 1 0 1〕軸を含んで 0〜25° (結晶(正方晶)の対称性から一 25° 〜十 25° の範囲と同等)の角度範囲内である場合だけ、電気機械結合係数 k31が 50 % 以上を示し、横方向振動利用の圧電素子として好適であることがわかる。
また、表 2に示す結果から、圧電単結晶素子 10Bでは、分極方向 3と直交する 面内の〔0 -1 1〕軸を含んで該〔0 -1 1〕軸 ± 25° の角度範囲内である場合だけ、 電気機械結合係数 k31が 50%以上を示し、横方向利用の素子として好適であ ることがわかる。
更に、前記角度範囲内において、角度を 5° 刻みでなく更に、その間の角度 についても k31を詳細に測定した結果、該範囲において、電気機械結合係数 k31は常に 50%以上であることも確認した。
また、 上記実施例では、 単結晶素子板の [ 1 0 1 ] 方向を分極方向と して、13 m m X 4 in m X 0. 36m mの圧電単結晶素子の最大面積の面を〔 1 0 1〕 方向に直交する ( 1 0 1 ) 面内について好適な方位、 あるいは、 単結晶板の [011] 方向を分極方向として、 13mmX 4 mmX0.36mmの 圧電単結晶素子の最大面積の面を 〔011〕 方向に直交する (011) 面內に ついて好適な方位を確認したが、 図 5に示す端面 Tの法線方向 1が〔-10 1〕軸 ±25° の立体角の角度範囲内である(101)面と直交する(010)面上の [- 101]軸 +15° において k31が 54.3%と高い値が得られた。 また、 図 6に 示す端面 Tの法線方向 1が〔0 -1 1〕軸 ±25° の立体角の角度範囲内であ る (011) 面と直交する(100)面上の [0-11]軸 +15° において k31が 55.2% と高い値が得られた。
また、インジウム ·マグネシウム.ニオブ酸鉛(PIMN) +チタン酸鉛(PT) (65PIMN-35PT)についても、上記と同様の製造方法で圧電単結晶素子を作 製し、上記と同様の試験条件で電気機械結合係数 k31を調べたところ、表 1と表 2に示すように、 64PMN- 36PTとほぼ同様に高い電気機械結合係数 k31が得ら れることが確かめられた。なお、インジウム含有量は、 20mol%であった。 実施例 2
次に、分極方向が〔1 0 1〕方向である圧電単結晶素子 10A と分極方向が〔0 11〕方向である圧電単結晶素子 10Bとして、それぞれ表 3及ぴ表 4に示すような Tiモル分率の異なる Pb[(Mg,
Figure imgf000025_0001
の各単結晶素子 No.l〜: 11を、実 施例 1と同様な方法で作製し、電気機械結合係数 k31を実施例 1と同様の方 法によって算出した。その結果を表 3及び表 4に示す。尚、表 3及び表 4に示す 電気機械結合係数 k31の数値は、各単結晶素子について、サンプル数 n=5で ある場合の平均値である。また、圧電単結晶素子 10Aと 10Bの組成は、実施例 1と同じ組成の素子を用いた。なお、圧電単結晶素子 10Aと 10Bの方位は、実 施例 1と同じように圧電素子端面 T,10c の法線方向 1が、それぞれ [-101]軸あ るいは、 [0-11]軸に対して 0° になるように、素子形状: 13mm長さ X 4mm幅 X 0.36mm厚みの単結晶素子材料を、ダイシングソーを用いて切り出して作製し た。
表 3およぴ表 4の結果から、圧電単結晶素子 10Aおよび 10B はいずれも、 Ti のモル分率 Xが 0.30 < X < 0.40 の式を満足する発明例は、いずれも電気機械 結合係数 k31が 50 %以上の高い値が安定して得られている。 実施例 3
次に、横方向振動モード利用に好適な圧電単結晶素子を製造する好適な分 極処理方法について説明する。種々の分極処理条件で製造した分極方向が 〔1 0 1〕方向である圧電単結晶素子 10A, と分極方向が〔0 1 1〕方向である圧 電単結晶素子 10B の電気機械結合係数 k31を測定した結果を表 5に示す。な お、圧電単結晶素子の製造方法や素子寸法および、試験条件は、実施例 1と 同様に行った。 また、圧電単結晶素子 10Aと 10B の組成は、実施例 1と同じ 組成の素子を用いた。なお、圧電単結晶素子 10Aと 10Bの方位は、実施例 1と 同じように圧電素子端面 10c の法線方向 1が、それぞれ [-101]軸あるいは、 [0-11]軸に対して 15 ° になるように、素子形状: 13mm 長さ X 4mm 幅 X 0.36mm 厚みの単結晶素子材料を、ダイシングソーを用いて切り出して作製し た。
表 5の(1)〜(7)は、 25〜60°Cの温度範囲で 350〜1500VZmmの直流電界を 30分から 180分の範囲で印加する分極処理条件で圧電単結晶素子を作製し た場合である。この場合において、横方向振動モード利用に好適な結晶の分 極方向に直交する方向(横方向振動モード)の電気機械結合係数 k31は、マグ ネシゥム.ニオブ酸鉛(PMN)—チタン酸鉛(PT) (Ti モル分率 X : 36mol%)では、 圧電単結晶素子 10Aで 51.6〜61.0 %、圧電単結晶素子 10Bで 52.0〜61.2 % といずれも 50 %以上であった。
また、インジウム ·マグネシウム 'ニオブ酸鉛(PIMN ) +チタン酸鉛(PT ) (PIMN-PT)についても、マグネシウム'ニオブ酸鉛(PMN)—チタン酸鉛(PT)と 同様の製造方法で圧電単結晶素子を作製し、マグネシウム 'ニオブ酸鉛 (PMN)—チタン酸鉛(PT)と同様の試験条件で電気機械結合係数 k31を調べた ところ、表 5に示すように、 25〜60°Cの温度範囲で 350〜1500V//mm の直流電 界において、電気機械結合係数 k31が 50%以上の高い圧電単結晶素子が得 られた。このように、マグネシウム 'ニオブ酸鉛(PMN) —チタン酸鉛(PT) (Tiモル 分率 X : 45mol%)に、適正範囲内で In (20mol%)を含有させた組成の圧電単結 晶素子において、いずれもマグネシウム ·ニオブ酸鉛( PMN) —チタン酸鉛( PT ) (Tiモル分率 X : 36mol%)と同じ結果が得られた。
なお、 主分極処理条件の温度範囲と電界範囲が、 上記の好適範囲を外 れた場合も本発明の範囲であるが、単結晶素子の分極処理温度を 25°Cと し、 印加電界を本発明の好適範囲の下限値を下回る 320V/mmとした場 合は、 発明例の 64PMN- 36PT素子と 65PIMN- 35PT素子において、 圧電単 結晶素子 10Aと圧電単結晶素子 10Bの電気機械結合係数 k31は、 50 %未 満になる場合があった。 また、単結晶素子の温度を 40°Cとし、印加電界を本発明の好適範囲の上限 値を超える 1700V/ mm にした場合は、発明例の 64PMN- 36PT 素子と 65PIMN- 35PT素子において、 圧電単結晶素子 10A と圧電単結晶素子 10B の電気機械結合係数 k31は、 50 %未満となる場合があり、 加えて、印加中ま たは印加終了直後に圧電単結晶素子中にクラックを発生する例もあった。 さらに、単結晶素子を、図 4に示すキュリー温度 Tcより高い温度である 210°C のシリコンオイル中で、 400VZmmの直流電界を印加したまま、 120分かけて、 シリコンオイルの温度を室温(25°C)まで降下させると、表 5の(8)に示すように、 分極方向に直交する方向(横方向振動モード)の電気機械結合係数 k31は、マ グネシゥム'ニオブ酸鉛(PMN)—チタン酸鉛(PT) (Tiモル分率 X : 36mol%)では、 圧電単結晶素子 10Aで 58.6°/。、圧電単結晶素子 10Bで 58.4%であった。ま た、マグネシウム'ニオブ酸鉛(PMN)—チタン酸鉛(PT) (Tiモル分率 X:
45mol%)に、適正範囲内で In (30mol%)を含有させた組成の圧電単結晶素子 (PIMN-PT)についても、マグネシウム ·ニオブ酸鉛(PMN)—チタン酸鉛(PT)と 同様の試験条件で電気機械結合係数 k31を調べたところ、表 5の (8 ) に示す ように、圧電単結晶素子 10Aで 57.3 %、圧電単結晶素子 10Bで 58.1 %であり、 マグネシウム 'ニオブ酸鉛(PMN)—チタン酸鉛(PT)と同様に向上した。
このことは、電界を印加したまま冷却する方法(電界冷却)が有効であること を示している。
なお、印加電界が 250V/mm未満では、発明例の 64PMN- 36PT素子と 65PIMN-35PT素子において、 圧電単結晶素子 10Aと圧電単結晶素子 10B の電気機械結合係数 k31は、 50%未満となる場合があった。 これは、印加電 16473 界が 200V/mm未満では、分極が不十分なためであると考えられる。一方、印 加電界が 500V/mniを超えると、発明例の 64PMN- 36PT素子と 65PIMN- 35PT 素子において、圧電単結晶素子 10Aと圧電単結晶素子 10Bの電気機械結 合係数 k31は、 50%未満となる場合もあった。加えて、印加電界が 600V/mni で印加中または印加終了直後に圧電単結晶素子中にクラックを発生する場合 もあった。
上記のように、発明例の 64PMN- 36PT素子と 65PIMN-35PT素子において、 圧電単結晶素子 10Aと圧電単結晶素子 10B共に本発明の好適な分極条件 の範囲において、 良好な電気機械結合係数 k31値が安定して得られた。 実施例 4
次に、横方向振動モード利-用に好適な圧電単結晶素子を製造する好適な補 助分極処理方法について説明する。種々の補助分極処理条件で製造した圧 電単結晶素子の横方向振動モードの電気機械結合係数 k31を測定した結果を 表 6に示す。なお、圧電単結晶素子の製造方法や素子寸法および、試験条件 は、実施例 1と同様に行った。 また、圧電単結晶素子 10Aと 10B の組成は、 実施例 1と同じ組成の素子を用いた。なお、圧電単結晶素子 10Aと 10Bの方位 は、実施例 1と同じように圧電素子端面 10c (T)の法線方向 1が、それぞれ [- 101]軸あるいは、 [0-11]軸に対して 15° になるように、素子形状: 13imn 長さ X 4mm幅 X 0.36mm厚みの単結晶素子材料を、ダイシングソーを用いて切 り出して作製した。
実施例 1と同様の方法で製造された横方向振動モード利用に好適な結晶の 両端面 10c (T)に、スパッタ法で Cr- Au被膜(1層目に Cr層:厚み約 50 A、 2 層目に Au層:厚み約 100〜200A)を形成して電極を作製し、補助分極処理温 度を 25〜40°Cとし、直流の印加電界を 320〜1700VZmm、印加時間を 10分〜 150分とし、補助分極処理を行った。その後、上記の電極を化学エッチング液あ るいは、または酸で完全に溶かして除去した後、単結晶素子材料 10 の対向す る上下面 10a及び 10bに、スパッタ法で Cr- Au被膜(1層目に Cr層:厚み約 50A、 2層目に Au 層:厚み約 100~20θΑ)を形成して電極を作製し、主分極 処理で、 25°Cの大気中で 700VZminの直流電界を 60分間印加した。電気機 械結合係数 k31を表 6に示す。表 6の(1)〜(5)は、 25〜40°Cの温度範囲で 350 〜1500V/mmの直流電界を 10分から 120分の範囲で印加する補助分極処理 条件で圧電単結晶素子を作製した場合である。
この場合において、電気機械結合係数 k31 は、マグネシウム'ニオブ酸鉛 (PMN)一チタン酸鉛(PT) (Ti モル分率 X : 36mol%)では、補助分極処理を行わ ない表 6の( 9 )示す未処理の場合の k31が、圧電単結晶素子 10Aで 59.8 %、 圧電単結晶素子 10Bで 59.1 %であったのに対して、いずれも 60%以上であつ た。この補助分極処理により、さらに高い電気機械結合係数 k31が得られた。ま た、主分極処理の後に上記(2)と同様の条件で補助分極処理を行った(6)の 場合も、圧電単結晶素子 10Aで 62.4%、圧電単結晶素子 10B で 62.8%と、 高い電気機械結合係数 k31が得られた。
また、図 7に示すようなバイポーラ三角波パルス電界を主分極処理の前後に 10分間印加した場合も (7 ) 及び (8 ) に示すように、高い電気機械結合係 数 k31が得られた。 16473 また、マグネシウム.ニオブ酸鉛(PMN)—チタン酸鉛(PT) (Ti モル分率 X: 45mol%)に、適正範囲内で In (30mol% )を含有させた組成の圧電単結晶素子 (PIMN-PT)についても、マグネシウム 'ニオブ酸鉛(PMN)—チタン酸鉛(PT)同 様の製造方法で圧電単結晶素子を作製し、マグネシウム ·ニオブ酸鉛(PMN) 一チタン酸鉛(PT)と同様の試験条件で電気機械結合係数 k31を調べたところ、 表 6の ( 1 ) 〜 ( 8 ) に示すように、横方向振動モード利用に好適な結晶では、 主分極処理の前後において行われた補助分極処理条件の 25〜40°Cの温度範 囲で 350〜1500VZmniの直流電界の範囲やバイポーラ三角波パルス電界によ る印加電界処理において、電気機械結合係数 k31力 マグネシウム'ニオブ酸 鉛(PMN)—チタン酸鉛(PT)と同様に向上した。
一方、 圧電単結晶素子の補助分極処理温度を 25°Cとし、 印加電界を本 発明の好適範囲の下限値を下回る 320V/鹿とした場合は、電気機械結合 係数 k31は、 発明例の 64PMN- 36PT素子と 65PIMN-35PT素子において、 圧 電単結晶素子 10Aと圧電単結晶素子 10Bが、 50%未満となる場合があつ た。
また、 実施例 1 と同様の方法で製造された圧電単結晶材料の温度を 40。Cとし、 印加電界を本発明の好適範囲の上限値を超える OOVZmmに した場合は、 電気機械結合係数 k31 は、 発明例の 64P丽- 36PT 素子と 65PIMN-35PT素子において、 圧電単結晶素子 10A と圧電単結晶素子 10B が、 50 %未満となる場合があった。 また、 圧電単結晶素子中にクラック を発生する場合もあった。 6473 実施例 5
次に、本発明に従って製造されたマグネシウム'ニオブ酸鉛(PMN) +チタン酸 鉛(PT) (PMN-PT) (組成式: Pb[(Mg, Nb)1_xTix]03 の単結晶素子 10A およ ぴ, 10B力らなり、 Ti モル分率 が 0.30く Xく 0.40 (30mol%超え、 40mol%未満) を満足する種々の圧電単結晶素子 ΙΟΑ, ΙΟΒを作製し、温度に対する誘電率の 変化を測定し、キュリー温度 Tc と相転移温度 Trtを求めた。なお、圧電単結晶 素子 10Aと 10B の方位は、実施例 1と同じように圧電素子端面 10c の法線方 向 1が、それぞれ [-101]軸あるいは、 [0-11]軸に対して 0° になるように、素 子形状: 13ππη長さ X 4mm幅 X 0.36mm厚みの単結晶素子を、ダイシングソーを 用いて切り出して作製した。
その結果を図 10 に示す。 なお、参考のため、 Ti モル分率 が 0.3 以下 (30mol%以下)である種々の圧電単結晶素子についても同様に作製し、温度に 対する誘電率の変化を測定し、キュリー温度 Tc と相転移温度 Trtを求めた。そ の結果を図 11に示す。
Tiモル分率 が 0.30 <X< 0.40(30mol%超え、 40mol%未満)を満足する本発 明の圧電単結晶素子 10Aおよび, 10Bは、図 10に示すように、いずれも、キユリ 一温度 Tc カ 160°C以上と高く、しかも、正方晶構造が擬立方晶構造に優越し て存在するため、相転移温度 T\tが室温以下である。これは、室温と高温(例え ば 150°C)との温度範囲で使用した場合であっても、相転移することなぐ室温と 高温で常に同じ結晶構造(正方晶)を維持することができるため、高温において も圧電単結晶素子 10A,10Bの圧電特性が劣化しにくいことを意味する。
一方、 Tiモル分率 が 0.3以下 (30mol%以下)である圧電単結晶素子は、図 1 1に示すように、キュリー温度 Tcが 130〜155°Cと低く、しかも、相転移温度 Trtが 90°C以下の低温に存在する。これは、室温と高温(例えば 150°C)との温度範囲 で使用した場合に、室温では菱面晶が優越した構造であるが、高温では正方 晶が優越した構造に相転移し、室温と高温で同じ結晶構造を維持することがで きなくなるため、高温において圧電単結晶素子 10Aおよび, 10Bの圧電特性が 劣化することを意味する。
また、図 12Aは、 Ti モル分率 が 0.30'<X< 0.40(30mol%超え、 40mol%未満) を満足する本発明の圧電単結晶素子 10A に対して、室温と高温(100°C、 120°C、 140°C)との間で熱サイクル試験を繰り返し行なったときの、電気機械結 合係数 k31の数値の変化をプロットしたものであり、図 12Bは、 Ti モル分率 が 0.30 <X< 0.40(30mol%超え、 40mol%未満)を満足する本発明の圧電単結晶素 子 10Bに対して、室温と高温(100°C、 120°C、 140°C)との間で熱サイクル試験を 繰り返し行なったときの、横方向振動モードの電気機械結合係数 k31 の数値の 変化をプロットしたものである。なお、熱サイクル試験は、室温から、それぞれ 100°C (保持時間: 60分)、 120°C (保持時間: 30分)及ぴ 140°C (保持時間: 15 分)まで昇温保持後、室温まで冷却して測定した後、さらに同じ条件で熱処理 するという条件で行なった。参考のため、 Tiモル分率 Xが 0.3以下 (30mol%以下) である圧電単結晶素子についても、同様に熱サイクル試験を行い、横方向振動 モードの電気機械結合係数 k31の数値の変化をプロットしたものを図 13に示す。
Tiモル分率 Xが 0.30 <X< 0.40(30mol%超え、 40mol%未満)を満足する本発明 の圧電単結晶素子 10A、 10Bはいずれも、熱サイクル試験を繰り返し行なっても、 横方向振動モードの電気機械結合係数 k31の数値がほとんど低下していないこ とがわかる。
一方、 Tiモル分率 Xが 0.3以下(30mol%以下)である圧電単結晶素子は、熱サ イタル試験を繰り返し行なうことによって、図 13に示すように横方向振動モード の電気機械結合係数 k31の数値が顕著に低下している。 産業上の利用可能性
本発明によれば、分極方向に直交する方向(横方向振動モード)の電気機械 結合係数 k31を積極的に利用する、例えば磁気ヘッド精密位置決めァクチユエ ータ、圧電ジャイロ素子、デジタルカメラの手振れ防止センサー、心臓ペースメ 一力一用センサー等の用途に使用される圧電単結晶素子(デバイス)の製造が 可能である。特に、本発明の圧電単結晶素子は、高温(具体的には 150°C)使 用環境下であっても、横方向振動モードの電気機械結合係数 k31を低下させず に安定して 50%以上の高い値に維持できる。
角度 圧電単結晶素子 10Aの電気機械結合係数 k 31 (%) 結晶方位
64PMN-36PT
(。 ) Pb (Zr, Ti)03
(Ti: 36mol%)
〔- 1 0 1〕 0 62. 0 61. 5
5 62. 1 62. 3
10 61. 8 61. 3
15 59. 8 58. 2
2ひ 54. 3 55. 4
O C
25 51. 3 52 ΟO. L
曰曰 0
¾ ο ο
30 41. 2 39. 8
35 30. 0 30. 1
40 28. 3 27. 6
45 27. 3 27. 0 30
50 27. 1 26. 7
55 25. 1 24. 3
60 26. 8 24. 2
65 24. 8 23. 0
70 24. 9 24. 9
75 25. 0 25. 1
80 23. 7 23. 3
85 23. 5 23. 6
〔0 1 0〕 90 23. 8 23. 7 角度 圧電単結晶素子 10Bの電気機械結合係数 k 3! (%) 結晶方位
(。 ) Pb(Zr, Ti)03
Figure imgf000036_0001
Co -1 ι〕 0 6 2. 1 6 1. 8
5 ド,- 6 2. 0 6 1. 9
1 0 6 1. 3 6 0. 3
σ¾
1 5 5 9. 1 6 0. 2
20 54. 2 5 3. 6
2 5 5 1. 4 5 1 t CO. 2
o αι
3 0 4 2. 6 4 1. 6
3 5 3 1. 0 3 1. 3
4 0 2 9. 6 2 9. 5
4 5 2 6. 1 2 5. 8 3 0
5 0 2 6. 3 2 6. 0
5 5 2 5. 2 2 5. 0
6 0 2 6. 0 24. 6
6 5 24. 2 24. 1
70 24. 8 24. 2
7 5 2 3. 7 2 3. 0
8 0 2 3. 6 2 3. 2
8 5 2 3. 5 2 3. 1
〔1 0 0〕 9 0 2 3. 8 2 3. 5 圧電単結晶素子 10A 評価結果
サンプル
PM PT Ti 電気機械結
No. 備考 合係数 k si mol mol% mol% (%)
1 72. 0 28. 0 28. 0 47. 3 比較例
2 69. 9 30. 1 30. 1 53. 0 発明例
3 67. 9 32. 1 32. 1 57. 0 発明例
4 66. 7 33, 3 33. 3 59. 8 発明例
5 64. 3 35. 6 35. 6 60. 3 発明例
6 63. 7 36. 3 36. 3 61. 8 発明例
7 62. 6 37. 4 37. 4 62. 0 発明例
8 61. 5 38. 5 38. 5 57. 0 発明例
9 60. 1 39. 9 39. 9 53. 0 発明例
10 59. 5 40. 5 40. 5 46. 8 比較例
11 56. 0 44. 0 44. 0 40. 2 比較例
Figure imgf000038_0001
圧電単結晶素子 10B 評価結果
サンプル
P應 PT Ti 電気機械結
No. 備考 合係数 k31 mol% mol% mol (%)
1 71. 9 28. 1 28. 1 47. 6 比較例
2 69. 7 30. 3 30. 3 53. 2 発明例
3 67. 4 32. 6 32. 6 57. 3 発明例
4 66. 5 33. 5 33. 5 59. 7 発明例
5 64. 3 35. 7 35. 7 60. 5 発明例
6 63. 7 36. 3 36. 3 61. 8 発明例
7 62. 5 37. 5 37. 5 62. 1 発明例
8 61. 4 38. 6 38. 6 57. 3 発明例
9 59. 9 39. 9 39. 9 53. 2 発明例
10 59. 7 40. 3 40. 3 46. 3 比較例
11 56. 0 44. 0 44. 0 39. 8 比較例
Figure imgf000039_0001
分極条件 電気機械結合係数 k31 (%)
65PIMN-35PT
64PMN-36PT
温度 電界 時間 (Ti: 35mol°/o)
(Ti: 36mol°/o)
(In: 20mol%) 備考 圧電単 圧電単 圧電単 圧電単
。C V/mm min 結晶素 結 s日 ; j¾B曰;? if
子 10A 子 10B 子 10A 子 10B
(1) 25 350 180 51. 6 52. 0 51. 5 50. 8 発明例
(2) 60 400 180 56. 8 56. 5 56. 4 56. 9 発明例
(3) 25 700 100 60. 6 61. 2 60. 4 60. 8 発明例
(4) 25 700 60 59. 8 59. 1 59. 2 59. 3 発明例
(5) 40 900 70 6 1. 0 60. 3 60. 4 60. 4 発明例
(6) 30 1200 60 60. 9 60. 8 6 1. 0 60. 4 発明例
(7) 40 1500 30 59. 6 57. 8 58. 3 58. 4 発明例
210→25
(8) 電界冷 400 120 58. 6 58. 4 57. 3 58. 1 発明例 却
補助分極条件 電気機械結合係数 k 3丄 (¾)
65PIMN-35PT
曰 64PMN-36PT
電界 時間 (Ti: 35mol )
補助分 (Ti: 36mol%)
電界 (In: 20mol%) 備考 極
処理の
時期 圧電単 圧電単 圧電単 圧電単
°C V/mm min 結晶素 結晶桌 ¾ίΒ曰糸 ¾B-S曰: A
子皿 子 10B 子 10A 子 10B
(1) 40 直流 350 120 前処理 60. 4 60. 3 60. 2 60. 4 発明例
(2) 25 直流 700 100 前処理 62. 5 63. 0 62. 7 62. 1 発明例
(3) 40 直流 900 70 前処理 62. 4 62. 5 6 2. 3 62. 5 発明例
(4) 30 .直流 1200 60 前処理 61. 8 6 1. 8 6 1. 3 61. 5 発明例
(5) 40 直流 1500 10 前処理 61. 4 60. 8 60. 4 6 1. 3 発明例
(6) 25 直流 700 100 後処理 62. 4 62. 8 6 2. 3 62. 4 発明例 ピ ク値
(7) 25 三角 500V/腿,間 前処理 6 1. 2 60. 8 60. 4 6 1. 0 発明例 波
パル 隔
(8) 25 800msec, 10
ス 後処理 6 1. 4 60. 9 60. 5 60. 6 発明例 分
(9) 未処理 59. 8 59. 1 59. 2 59. 3 発明例

Claims

請求の範囲
1. [0 0 1〕軸を C軸(最も格子定数の大きな軸)とする正方晶の〔1 0 1〕軸を分 極方向としたとき、圧電単結晶素子端面の法線方向が、分極方向にほぼ直交 する方向である〔-1 0 1〕軸を含んで該〔- 1 0 1〕軸 ± 25° の立体角の角度範囲 内にあり、分極方向とほぼ直交する方向、いわゆる横方向の振動モードの電気 機械結合係数 k31が 50%以上である圧電単結晶素子。
2. [0 0 1〕軸を C軸(最も格子定数の大きな軸)とする正方晶の〔0 1 1〕軸を分 極方向としたとき、圧電単結晶素子端面の法線方向が、分極方向にほぼ直交 する方向である〔0 -1 1〕軸を含んで該〔0 -1 1〕軸 ± 25° の立体角の角度範囲 内にあり、分極方向とほぼ直交する方向、いわゆる横方向の振動モードの電気 機械結合係数 k31が 50%以上である圧電単結晶素子。
3 . 請求項 1または 2において、 前記圧電単結晶素子が、 Pb[(Mg, ?^)1_)^ ]〇3 (伹し、 は、 Mg, Nbおよび Tiのモル分率の合計を 1としたときの、 Ti のモル分率とする。)からなる固溶体であって、前記 Xが、 0·30 < Χ< 0.40 の 式を満足し、かつ、複合べロプスカイト構造を有する単結晶素子材料からなる圧 電単結晶素子。
4.請求項 1〜 3の任意の請求項において、 前記圧電単結晶素子が、 さら に、 前記固溶体に Inを 0. 05mol °/。〜30mol %含有する圧電単結晶素子。
5. 請求項 1〜3のいずれか 1項記載の圧電単結晶素子を製造する方法であ つて、
単結晶インゴットから所定形状の単結晶素子を所定方向に切り出す処理の 前後に、 単結晶のインゴッ トまたは、 切り出された単結晶ブロックある いは、 切り出した単結晶素子の分極すべき方向である〔1 0 1〕または〔0 1 1〕方向に、所定の条件で電界を印加して分極する主分極処理とを有する圧電 単結晶素子の製造方法。
6. 請求項 5において、 前記単結晶インゴッ トまたは、 前記単結晶プロ ックの〔1 0 1〕または〔0 1 1〕方向に、 所定の条件で電界を印加して分極す る主分極処理と、
前記単結晶ィンゴットまたは、 前記単結晶プロックから所定形状の単. 結晶素子を所定方向に切り出す処理とを有する圧電単結晶素子の製造方 法。
7 .請求項 5あるいは、 6の任意の請求項において、前記主分極処理は、 前記単結晶インゴッ トまたは、 前記単結晶プロックの〔1 0 1〕または〔0 1 1〕方向に、 20〜200°Cの温度範囲で 350〜1500 V /mmの直流電界を印加す る処理、 または前記単結晶ィンゴッ トのキユリ一温度(Tc)より高い温度 で 250〜500 ¥ノ1!1111 の直流電界を印加したまま室温まで冷却する処理で ある圧電単結晶素子の製造方法。
8 . 請求項 5において、 前記単結晶インゴッ トから所定形状の単結晶素 子を所定方向に切り出す処理と、
前記単結晶素子の〔1 0 1〕または〔0 1 1〕方向に、 所定の条件で電界を印 加して単結晶素子を分極する主分極処理とを有する圧電単結晶素子の製 造方法。
9 . 請求項 5あるいは、 請求項 8の任意の請求項において、 前記主分極 処理は、 前記単結晶素子の〔1 0 1〕または〔0 1 1〕方向に、 20〜200°Cの温度 範囲で 350〜: Ι δΟθ ν ΖΐΜΐの直流電界を印加する処理、 または前記単結晶 素子のキュリー温度(Tc)より高い温度で 250〜500V Zmni の直流電界を 印加したまま室温まで冷却する処理とを有する圧電単結晶素子の製造方 法。
10. 前記主分極処理の前後いずれかに、分極方向と直交する方向に電界を 印加して分極する補助分極処理をさらに有する請求項 5〜9記載の圧電単結 晶素子の製造方法。
PCT/JP2004/016473 2004-05-06 2004-10-29 圧電単結晶素子およびその製造方法 WO2005109537A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20040793393 EP1744378B1 (en) 2004-05-06 2004-10-29 Piezoelectric single crystal element and method for fabricating the same
US11/578,953 US7888848B2 (en) 2004-05-06 2004-10-29 Piezoelectric single crystal device and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004137300A JP4613032B2 (ja) 2004-05-06 2004-05-06 圧電単結晶素子およびその製造方法
JP2004-137300 2004-05-06

Publications (1)

Publication Number Publication Date
WO2005109537A1 true WO2005109537A1 (ja) 2005-11-17

Family

ID=35320489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016473 WO2005109537A1 (ja) 2004-05-06 2004-10-29 圧電単結晶素子およびその製造方法

Country Status (5)

Country Link
US (1) US7888848B2 (ja)
EP (1) EP1744378B1 (ja)
JP (1) JP4613032B2 (ja)
CN (1) CN100448048C (ja)
WO (1) WO2005109537A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888848B2 (en) * 2004-05-06 2011-02-15 Jfe Mineral Company, Ltd. Piezoelectric single crystal device and fabrication method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021608A2 (en) 2010-08-10 2012-02-16 Trs Technologies, Inc. Temperature and field stable relaxor-pt piezoelectric single crystals
US9608589B2 (en) * 2010-10-26 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Method of forming acoustic resonator using intervening seed layer
CN102035432B (zh) * 2010-12-23 2012-11-28 南京航空航天大学 一种多方向振动能量回收结构
KR101305271B1 (ko) * 2012-03-22 2013-09-06 한국기계연구원 자기전기 복합체
CN105308496A (zh) * 2012-04-04 2016-02-03 P·韩 电光单晶元件、该元件的制造方法以及使用该元件的系统
JP6420234B2 (ja) * 2012-04-04 2018-11-07 ハン ペンディHAN, Pengdi E−o結晶装置に用いるための電気光学結晶素子を製造する方法
JP6149208B2 (ja) * 2015-07-31 2017-06-21 株式会社ユーテック ポーリング処理方法、磁場ポーリング装置及び圧電体膜
EP3532658A4 (en) 2016-10-31 2020-09-09 Quest Integrated, LLC SOLID SOLUTIONS OF MONOCRISTALLINE PEROVSKITE WITH INDIFFERENT POINTS FOR EPITAXIAL GROWTH OF MONOCRYSTALS
JP6744020B1 (ja) * 2019-03-22 2020-08-19 大口マテリアル株式会社 リードフレーム
WO2022124792A1 (ko) * 2020-12-11 2022-06-16 주식회사 세라콤 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
JP2023553068A (ja) * 2020-12-11 2023-12-20 セラコンプ カンパニー リミテッド 内部電界を有する圧電単結晶、その製造方法、並びにそれを用いた圧電及び誘電応用部品
CN112786776A (zh) * 2020-12-25 2021-05-11 西安交通大学 一种压电单晶驱动器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093154A (ja) * 1996-09-17 1998-04-10 Toshiba Corp 圧電素子
JP2001080995A (ja) * 1999-09-07 2001-03-27 Seiko Epson Corp 強誘電体素子、不揮発性強誘電体メモリ素子、インクジェット式記録ヘッド及びその製造方法並びにインクジェットプリンタ
JP2001148522A (ja) * 1999-09-07 2001-05-29 Matsushita Electric Ind Co Ltd 異方性圧電板及びそれを用いた圧電応用装置
JP2003282986A (ja) * 2002-03-25 2003-10-03 Toshio Ogawa ドメイン制御圧電単結晶素子及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588542B2 (ja) 1997-12-09 2004-11-10 Tdk株式会社 圧電磁器組成物
WO2000016478A1 (fr) * 1998-09-14 2000-03-23 Tdk Corporation Dispositif de traitement des ondes acoustiques de surface
US6465937B1 (en) * 2000-03-08 2002-10-15 Koninklijke Philips Electronics N.V. Single crystal thickness and width cuts for enhanced ultrasonic transducer
JP4568529B2 (ja) * 2004-04-30 2010-10-27 Jfeミネラル株式会社 圧電単結晶素子
JP4613032B2 (ja) * 2004-05-06 2011-01-12 Jfeミネラル株式会社 圧電単結晶素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093154A (ja) * 1996-09-17 1998-04-10 Toshiba Corp 圧電素子
JP2001080995A (ja) * 1999-09-07 2001-03-27 Seiko Epson Corp 強誘電体素子、不揮発性強誘電体メモリ素子、インクジェット式記録ヘッド及びその製造方法並びにインクジェットプリンタ
JP2001148522A (ja) * 1999-09-07 2001-05-29 Matsushita Electric Ind Co Ltd 異方性圧電板及びそれを用いた圧電応用装置
JP2003282986A (ja) * 2002-03-25 2003-10-03 Toshio Ogawa ドメイン制御圧電単結晶素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1744378A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888848B2 (en) * 2004-05-06 2011-02-15 Jfe Mineral Company, Ltd. Piezoelectric single crystal device and fabrication method thereof

Also Published As

Publication number Publication date
JP2005322673A (ja) 2005-11-17
EP1744378B1 (en) 2011-07-27
EP1744378A1 (en) 2007-01-17
US7888848B2 (en) 2011-02-15
US20090212667A1 (en) 2009-08-27
CN1954445A (zh) 2007-04-25
EP1744378A4 (en) 2010-06-02
JP4613032B2 (ja) 2011-01-12
CN100448048C (zh) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5156065B2 (ja) 圧電単結晶素子
KR100852536B1 (ko) 압전단결정, 압전단결정소자 및 그 제조방법
US7015628B2 (en) Piezoelectric single crystal device and fabrication method thereof
WO2005109537A1 (ja) 圧電単結晶素子およびその製造方法
JP4568529B2 (ja) 圧電単結晶素子
JP4508725B2 (ja) 圧電単結晶素子とその製造方法
JP4268111B2 (ja) 圧電単結晶、圧電単結晶素子およびその製造方法ならびに1−3コンポジット圧電素子
JP4658773B2 (ja) 圧電単結晶素子
JP5065763B2 (ja) 圧電単結晶素子
JP4878607B2 (ja) 全率固溶型圧電単結晶インゴットの製造方法及び全率固溶型圧電単結晶インゴット、並びに、圧電単結晶素子
KR20210007146A (ko) 납-금속 화합물 단결정의 개질방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042961.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004793393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004793393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11578953

Country of ref document: US