WO2022124792A1 - 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품 - Google Patents

압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품 Download PDF

Info

Publication number
WO2022124792A1
WO2022124792A1 PCT/KR2021/018537 KR2021018537W WO2022124792A1 WO 2022124792 A1 WO2022124792 A1 WO 2022124792A1 KR 2021018537 W KR2021018537 W KR 2021018537W WO 2022124792 A1 WO2022124792 A1 WO 2022124792A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
piezoelectric
piezoelectric single
composition
phase
Prior art date
Application number
PCT/KR2021/018537
Other languages
English (en)
French (fr)
Inventor
이호용
백원선
김동호
김문찬
Original Assignee
주식회사 세라콤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210171666A external-priority patent/KR102664918B1/ko
Application filed by 주식회사 세라콤 filed Critical 주식회사 세라콤
Priority to JP2023534611A priority Critical patent/JP2023549422A/ja
Priority to US17/928,604 priority patent/US12031232B2/en
Priority to CN202180082720.5A priority patent/CN116569675A/zh
Publication of WO2022124792A1 publication Critical patent/WO2022124792A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Definitions

  • the present invention relates to a piezoelectric single crystal, a manufacturing method thereof, and piezoelectric and dielectric application parts using the piezoelectric single crystal, and more particularly, in the perovskite crystal structure ([A][B]O 3 ), the [A] site
  • the properties of the piezoelectric single crystal are improved, resulting in a high dielectric constant (K 3 T ⁇ 4,000 to 15,000), a high piezoelectric constant (d 33 ⁇ 1,400 to 6,000 pC/N), and a high coercive field (EC ⁇ 4).
  • the piezoelectric single crystals of the perovskite crystal structure exhibit significantly higher dielectric constants (K 3 T ) and piezoelectric constants (d 33 and k 33 ) compared to conventional piezoelectric polycrystalline materials, It is used in high-performance parts such as piezoelectric actuators, ultrasonic transducers, piezoelectric sensors and dielectric capacitors, and its application is expected as a substrate material for various thin film devices.
  • the piezoelectric single crystals with perovskite crystal structure developed so far include PMN-PT (Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 ), PZN-PT (Pb(Zn 1/3 Nb 2/) 3 )O 3 -PbTiO 3 ), PInN-PT (Pb(In 1/2 Nb 1/2 )O 3 -PbTiO 3 ), PYbN-PT (Pb(Yb 1/2 Nb 1/2 )O 3 -PbTiO 3 ), PSN-PT (Pb(Sc 1/2 Nb 1/2 )O 3 -PbTiO 3 ), PMN-PInN-PT, PMN-PYbN-PT and BiScO 3 -PbTiO 3 (BS-PT), etc. .
  • These single crystals undergo a congruent melting behavior during melting, and have been typically manufactured by conventional single crystal growth methods, such as the flux method, the Bridgman method, and the like.
  • the previously developed piezoelectric single crystals of PMN-PT and PZN-PT have the advantage of showing high dielectric and piezoelectric properties (K 3 T >4,000, d 33 >1,400 pC/N, k 33 >0.85) at room temperature, Due to defects such as low phase transition temperatures (TC and T RT ), low coercive field (EC ) and brittleness, the operating temperature range and operating voltage conditions of the piezoelectric single crystal are greatly limited, and the manufacturing conditions for piezoelectric single crystal application parts are greatly limited .
  • piezoelectric single crystals having a perovskite-type crystal structure are known to have the highest dielectric and piezoelectric properties in the region near the rhombohedral phase and tetragonal phase boundary, that is, near the morphotropic phase boundary (MPB) composition.
  • MPB morphotropic phase boundary
  • piezoelectric single crystals with a perovskite crystal structure generally show the best dielectric and piezoelectric properties when they are rhombohedral
  • the application of rhombohedral piezoelectric single crystals is most active, but rhombohedral piezoelectric single crystals are rhombohedral and tetrahedral. Since it is stable only below the phase transition temperature (T RT ) of Therefore, when the T RT phase transition temperature is low, the operating temperature of the rhombohedral piezoelectric single crystal is lowered, and the manufacturing temperature and operating temperature of the piezoelectric single crystal application part are also limited to T RT or less.
  • phase transition temperatures (TC and T RT ) and the coercive field (EC ) are low, the piezoelectric single crystals are easily depolated under machining, stress, heat generation and driving voltage and exhibit excellent dielectric and piezoelectric properties. will lose Therefore, piezoelectric single crystals with low phase transition temperatures (TC and T RT ) and coercive field ( EC ) are limited in single crystal application part manufacturing conditions, operating temperature conditions, and driving voltage conditions.
  • T C ⁇ 150 °C, T RT ⁇ 80 °C and E C ⁇ 2.5 kV/cm are generally; for PZN-PT single crystals, T C ⁇ 170 °C, T RT ⁇ 100 °C and E C ⁇ 3.5 kV/cm.
  • dielectric and piezoelectric application parts made of these piezoelectric single crystals have limited manufacturing conditions, operating temperature range, and operating voltage conditions, which has been an obstacle to the development and practical use of piezoelectric single crystal application parts.
  • Non-Patent Document 1 the phase transition temperatures (TC ) of the tetragonal and cubic phases of the perovskite-type structured piezoelectric ceramic polycrystals are presented in Table 1. Since the Curie temperature of the piezoelectric single crystal is similar to the Curie temperature of the polycrystal having the same composition, the Curie temperature of the piezoelectric single crystal can be estimated from the Curie temperature of the polycrystal.
  • the Curie temperature ( TC ) Since the decrease is inevitable, it is difficult to simultaneously increase the Curie temperature (TC ) and the phase transition temperature (T RT ) of the rhombohedral and tetragonal phases.
  • phase transition temperature simply does not increase in proportion to the composition, or the dielectric and piezoelectric properties are lowered. Because.
  • Non-Patent Document 1 the Relaxor-PT-based single crystals presented in Non-Patent Document 1 are mainly manufactured by the flux method and Bridgman method, which are conventional single crystal growth methods using a melting process.
  • flux method and Bridgman method which are conventional single crystal growth methods using a melting process.
  • commercialization has not yet been successful due to the high cost and difficulty in mass production.
  • piezoelectric ceramic single crystals have lower mechanical strength and fracture toughness than piezoelectric ceramic polycrystalline ceramics, so they are easily broken even by a small mechanical impact.
  • the brittleness of the piezoelectric single crystal easily causes the destruction of the piezoelectric single crystal during the manufacture of application parts using the piezoelectric single crystal and the use of the applied parts, which has been a big limitation on the use of the piezoelectric single crystal. Therefore, in order to commercialize the piezoelectric single crystal, it is necessary to improve the dielectric and piezoelectric properties of the piezoelectric single crystal and simultaneously improve the mechanical properties of the piezoelectric single crystal.
  • the present inventors have consistently made efforts to improve the conventional problems and provide a piezoelectric single crystal at a level applicable to the high-performance and high-precision high value-added market.
  • the perovskite crystal structure ([A][B]O 3 ) to improve the piezoelectric properties of And by confirming the manufacture of a piezoelectric single crystal having improved piezoelectric properties and mechanical properties at the same time, the present invention was completed.
  • Patent Document 1 Korean Patent No. 0564092 (published on March 27, 2006)
  • Patent Document 2 Korean Patent No. 0743614 (published on July 30, 2007)
  • Non-Patent Document 1 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 5, 1997, pp. 1140-1147.
  • An object of the present invention is to provide a piezoelectric single crystal of a perovskite-type crystal structure ([A][B]O 3 ) having a novel compositional formula.
  • Another object of the present invention is to provide a method for manufacturing the piezoelectric single crystal.
  • Another object of the present invention is to apply it to a piezoelectric component or a dielectric component using the piezoelectric single crystal.
  • the present invention provides a piezoelectric single crystal having a composition formula of the following formula (1).
  • A is Pb or Ba
  • B is at least one selected from the group consisting of Ba, Ca, Co, Fe, Ni, Sn and Sr,
  • C is at least one selected from the group consisting of Co, Fe, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
  • L is a single or mixed form selected from Zr or Hf
  • M is at least one selected from the group consisting of Ce, Co, Fe, In, Mg, Mn, Ni, Sc, Yb and Zn,
  • N is at least one selected from the group consisting of Nb, Sb, Ta and W,
  • A, B, C, M and N are the same as defined in Formula 1 above, and a, b, x and y are also the same. However, 0.01 ⁇ w ⁇ 0.20.
  • the composition satisfies 0.01 ⁇ a ⁇ 0.10 and 0.01 ⁇ b ⁇ 0.05, and more preferably satisfies a/b ⁇ 2 in the above formula.
  • the piezoelectric single crystal having the composition formula of Chemical Formula 1 of the present invention has a compositional gradient of 0.2 to 0.5 mol% inside the single crystal, thereby imparting uniformity characteristics.
  • the piezoelectric single crystal composition may further include a reinforced secondary phase (P) in an amount of 0.1 to 20% by volume, and the reinforced secondary phase P is a metal phase, an oxide phase, or a pore.
  • P a reinforced secondary phase
  • the reinforced secondary phase P is at least one selected from the group consisting of Au, Ag, Ir, Pt, Pd, Rh, MgO, ZrO 2 and pores, and the reinforced secondary phase P is a piezoelectric single crystal It is uniformly distributed in the form of particles in the interior or is regularly distributed with a certain pattern.
  • x and y are 10 mol% from the phase boundary (MPB) composition of the rhombohedral phase and the tetragonal phase, more preferably, the x and y are from the phase boundary (MPB) composition of the rhombohedral phase and the tetragonal phase It falls within the range of 5 mol%.
  • the above piezoelectric single crystal provides a piezoelectric single crystal having a Curie temperature (Tc) of 180 °C or higher and a phase transition temperature between rhombohedral phase and tetragonal phase (T RT ) of 100 °C or higher at the same time. .
  • the piezoelectric single crystal has a longitudinal electromechanical coupling coefficient (k 33 ) of 0.85 or more, and a coercive electric field (Ec) of 3.5 to 12 kV/cm is satisfied.
  • the piezoelectric single crystal satisfies a dielectric constant (K 3 T ) of 4,000 to 15,000 and a piezoelectric constant (d 33 ) of 1,400 to 6,000 pC/N.
  • the present invention provides a method for producing the piezoelectric single crystal
  • step (b) heat-treating the polycrystal having a reduced number density of abnormal particles obtained in step (a) to grow abnormal particles, wherein the powder of the composition constituting the piezoelectric single crystal is heated to less than 800 to 900° C.
  • a method for producing a piezoelectric single crystal in which a powder compact is obtained by calcining at a temperature, and a primary heat treatment process for sintering the powder compact and a secondary heat treatment process for single crystal growth are performed.
  • a method for manufacturing a piezoelectric single crystal in which the polycrystal is heat-treated under conditions for reducing the number density of abnormal particles by controlling the average size of matrix particles of the polycrystal having the above composition.
  • a single crystal can be obtained by continuously growing only a small number of abnormal particles generated in a state in which the number density of the abnormal particles of the polycrystal is reduced.
  • the average size (R) of matrix particles of the polycrystal is 0.5 to 2 of the critical size at which abnormal particle generation occurs (average size of matrix particles at which the number density of abnormal particles becomes “0 (zero), R c )” It is controlled within the size range (0.5R c ⁇ R ⁇ 2R c ).
  • the present invention provides a piezoelectric application part and a dielectric application part using the piezoelectric single crystal or a piezoelectric body in which the piezoelectric single crystal and a polymer are complexed.
  • Piezoelectric application parts and dielectric application parts using the piezoelectric body include ultrasonic transducers, piezoelectric actuators, piezoelectric sensors, dielectric capacitors, and electric field generating transducers. ) and electric field-can be applied to any one selected from the group consisting of vibration radiation transducers (Electric Field and Vibration Generating Transducers).
  • the piezoelectric single crystal according to the present invention has a high dielectric constant (K 3 T ) , a high piezoelectric constant (d 33 and k 33 ), high phase transition temperatures (TC and T RT ), and high coercive field ( EC ) can significantly improve dielectric properties.
  • the piezoelectric single crystal of the present invention is uniform even without a composition gradient even with a complex chemical composition by the solid-phase single-crystal growth method, and the piezoelectric properties can be improved. It is possible to provide a manufacturing method that can be provided in a form that is large and easy to machine.
  • the present invention has the advantage of simultaneously having mechanical properties and enabling it to be used in a wide temperature range and operating voltage conditions, and can be applied to fields requiring high performance, high precision and high added value based on high dielectric properties.
  • piezoelectric single crystals are manufactured using a solid-phase single crystal growth method suitable for mass production of single crystals, and a single crystal composition that does not contain expensive raw materials is developed to enable commercialization of piezoelectric single crystals. can be used to manufacture and use piezoelectric application parts and dielectric application parts in a wide temperature range.
  • the present invention provides a piezoelectric single crystal having the composition formula of the following Chemical Formula 1.
  • A is Pb or Ba
  • B is at least one selected from the group consisting of Ba, Ca, Co, Fe, Ni, Sn and Sr,
  • C is at least one selected from the group consisting of Co, Fe, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu,
  • L is a single or mixed form selected from Zr or Hf
  • M is at least one selected from the group consisting of Ce, Co, Fe, In, Mg, Mn, Ni, Sc, Yb and Zn,
  • N is at least one selected from the group consisting of Nb, Sb, Ta and W,
  • the piezoelectric single crystal having the composition formula of Formula 1 of the present invention is based on the tendency of the piezoelectric properties to further increase as the chemical composition is compounded, and in the perovskite crystal structure ([A][B]O 3 ), [A]
  • the site ions are made up of complex compositions.
  • the complex composition of the [A] site ion in the piezoelectric single crystal having the composition formula of Formula 1 may be composed of [A 1-(a+1.5b) B a C b ], and the A composition is flexible or In the embodiment of the present invention containing lead-free element and A is Pb, but will be described limited to the flexible-based piezoelectric single crystal, but will not be limited thereto.
  • the B composition is a metal divalent element, preferably at least one selected from the group consisting of Ba, Ca, Co, Fe, Ni, Sn and Sr, and the C composition is a metal trivalent element. If it is an element, use it.
  • the lanthanide element is used as one type or a mixture of two types.
  • the C composition in the [A] site ion, is described as a single or a mixed composition including La, Sm, and Bi, but it will not be limited thereto.
  • the [A 1-(a+1.5b) B a C b ] composition corresponding to the site ion [A] has the desired physical properties.
  • A is a lead-based or lead-free piezoelectric single crystal, it is characterized in that it is composed of a combination of a metal divalent element and a metal trivalent element.
  • 0.01 ⁇ a ⁇ 0.10 and 0.01 ⁇ b ⁇ 0.05 must be satisfied, and more preferably a/b ⁇ 2 is satisfied.
  • a is less than 0.01 in the above, there is a problem that the perovskite phase is unstable, and if it exceeds 0.10, the phase transition temperature is too low, which makes practical use difficult, which is not preferable.
  • [A][MN]O 3 -PbTiO 3 -PbZrO 3 phase diagram shows a compositional region exhibiting excellent dielectric and piezoelectric properties around the rhombohedral phase and the tetragonal phase boundary (MPB).
  • MB tetragonal phase boundary
  • dielectric and piezoelectric properties are maximized at the rhombohedral and tetragonal phase boundary compositions, and the dielectric and piezoelectric properties gradually decrease as the composition moves away from the MPB composition.
  • the dielectric and piezoelectric properties were small, and very high dielectric and piezoelectric properties were maintained. Although the dielectric and piezoelectric properties decreased continuously, they showed high enough dielectric and piezoelectric properties for applications in dielectric and piezoelectric applications.
  • the composition is changed from the MPB composition to the tetragonal region, the dielectric and piezoelectric properties decrease more rapidly than in the rhombohedral region.
  • dielectric and piezoelectric properties continuously decreased even within 5 mol% composition or within 10 mol% composition.
  • high dielectric and piezoelectric properties were maintained within the range of 5 mol% composition in the rhombohedral and tetragonal regions, respectively, and within the range of 10 mol% in the rhombohedral and tetragonal regions in the MPB composition, respectively. It exhibits sufficiently high dielectric and piezoelectric properties for applications in dielectric and piezoelectric applications.
  • the phase transition temperatures (Tc and T RT ), piezoelectric constants (d 33 , k 33 ) or coercive field (Ec) are low, and when x exceeds 0.58, the dielectric constant (K 3 T ) ), the piezoelectric constants (d 33 , k 33 ) or the phase transition temperature (T RT ) are low.
  • the piezoelectric single crystal having the composition formula of Formula 1 of the present invention includes a metal tetravalent element in the [B] site ion in the perovskite crystal structure ([A][B]O 3 ), in particular for the L composition, It is limited to a single or mixed form selected from Zr or Hf.
  • A, B, C, M and N are the same as defined in Formula 1 above, and a, b, x and y are also the same, provided that 0.01 ⁇ w ⁇ 0.20.
  • the w is less than 0.01, there is a problem that the dielectric and piezoelectric properties are not maximized, and when it exceeds 0.20, it is not preferable because the dielectric and piezoelectric properties are rapidly reduced.
  • the piezoelectric single crystal having the composition formula of Formula 1 above has the Curie temperature ( It is a piezoelectric single crystal with a Curie temperature (Tc) of 180°C or higher and a phase transition temperature between rhombohedral phase and tetragonal phase (T RT ) of 100°C or higher at the same time. At this time, if the Curie temperature is less than 180 °C, there is a problem that it is difficult to raise the coercive field (Ec) to 5 kV/cm or more or the phase transition temperature (T RT ) to 100 °C or more.
  • Ec coercive field
  • T RT phase transition temperature
  • the piezoelectric single crystal having the composition formula of Formula 1 according to the present invention has an electromechanical coupling coefficient (k 33 ) of 0.85 or more, and when the electromechanical coupling coefficient is less than 0.85, the properties are similar to those of the piezoelectric polycrystalline ceramics and the energy conversion efficiency is It is undesirable because it is lowered.
  • the piezoelectric single crystal according to the present invention preferably has a coercive field ( EC ) of 3.5 to 12 kV/cm, and if the coercive field is less than 3.5 kV/cm, easily polling during processing of a piezoelectric single crystal or when manufacturing or using a piezoelectric single crystal application part There is a problem that (poling) is eliminated.
  • EC coercive field
  • the piezoelectric single crystal according to the present invention simultaneously satisfies a high dielectric constant (K 3 T ⁇ 4,000 to 15,000) and a high piezoelectric constant (d 33 ⁇ 1,400 to 6,000 pC/N).
  • the piezoelectric single crystal having the composition formula of Chemical Formula 1 of the present invention may provide a uniform single crystal by having a composition gradient within the single crystal of 0.2 to 0.5 mol%.
  • Lead zirconate not only has a high phase transition temperature of 230°C, but also has the effect of making the MPB more perpendicular to the temperature axis, maintaining a high Curie temperature while maintaining high rhombohedral and tetragonal phase transition temperatures (T RT ), allowing development of compositions with high Tc and T RT at the same time.
  • the piezoelectric single crystal of the perovskite type crystal structure containing zirconium (Zr) or lead zirconate can overcome the problems of the conventional piezoelectric single crystals.
  • zirconia (ZrO 2 ) or lead zirconate is used as a main component in an existing piezoelectric polycrystalline material and is an inexpensive raw material, the object of the present invention can be achieved without increasing the raw material price of a single crystal.
  • the perovskite-type piezoelectric single crystal containing lead zirconate does not show a congruent melting behavior and exhibits an incongruent melting behavior, unlike PMN-PT and PZN-PT, when melting. Therefore, if the non-eutectic behavior is shown, the liquid phase and the solid phase ZrO 2 are separated when the solid phase is melted, and the solid zirconia particles in the liquid phase interfere with single crystal growth and thus use the melting process, such as the flux method and the Bridgman method, which are general single crystal growth methods. cannot be manufactured with
  • the present invention manufactures piezoelectric single crystals including a reinforced secondary phase by using a solid-phase single crystal growth method that does not use a melting process.
  • a solid-phase single crystal growth method since single crystal growth occurs below the melting temperature, the chemical reaction between the reinforced secondary phase and the single crystal is suppressed, and the reinforced secondary phase can stably exist in an independent form inside the single crystal.
  • single crystal growth occurs in a polycrystal including a reinforced secondary phase, and there is no change in volume fraction, size, shape, arrangement and distribution of the reinforced secondary phase during single crystal growth. Therefore, in the process of making a polycrystal including a reinforced secondary phase, if the volume fraction, size, shape, arrangement and distribution of the reinforced secondary phase inside the polycrystal are adjusted and the single crystal is grown, as a result, a single crystal including a reinforced secondary phase of a desired shape That is, second phase-reinforced single crystals can be manufactured.
  • a piezoelectric single crystal cannot be manufactured with a composite composition by the flux method and the Bridgman method, which are conventional single crystal growth methods.
  • the flux method including the melting process and the Bridgman method
  • the composition gradient inside the single crystal is produced in an amount of 1 to 5 mol% or more in the manufacturing process
  • the composition gradient inside the single crystal is It can be prepared in a uniform composition of 0.2 to 0.5 mol%.
  • the complex composition of the [A] site ion and the [B] site ion By making the piezoelectric single crystal grow uniformly even with a complex composition, the dielectric constant (K 3 T ⁇ 4,000 to 15,000) and piezoelectric constant (d 33 ⁇ 1,400 to 6,000 pC/N) and higher coercive field compared to conventional piezoelectric single crystals It is possible to provide a novel piezoelectric single crystal with significantly higher (EC ⁇ 4 to 12 kV/cm).
  • the method for producing a piezoelectric single crystal according to the solid-phase single crystal growth method of the present invention can be mass-produced at a lower process cost compared to the flux method and the Bridgman method.
  • the method for producing a piezoelectric single crystal according to the solid-phase single crystal growth method of the present invention is
  • step (b) heat-treating the polycrystal having a reduced number density of abnormal particles obtained in step (a) to grow the abnormal particles.
  • a method for manufacturing a piezoelectric single crystal in which the polycrystal is heat-treated under conditions for reducing the number density of abnormal particles by controlling the average size of matrix particles of the polycrystal having the above composition.
  • a single crystal can be obtained by continuously growing only a small number of abnormal particles generated in a state in which the number density of the abnormal particles of the polycrystal is reduced.
  • the powder having a composition constituting the piezoelectric single crystal is calcined at a temperature of 800 to 900° C. to obtain a powder compact, and a primary heat treatment step of sintering the powder compact and a secondary heat treatment process when growing the single crystal to produce a piezoelectric single crystal.
  • the first and second heat treatment processes are performed at 900 to 1,300° C. for 1 to 100 hours at a temperature increase rate of 1 to 20° C./min. More preferably, a single crystal is grown by primary heat treatment at 1,000 to 1,200° C. and then secondary heat treatment.
  • the average size (R) of matrix particles of the polycrystal is 0.5 to 2 times the critical size at which abnormal particle generation occurs (average size of matrix particles at which the number density of abnormal particles becomes “0 (zero), R c )” It is controlled within the range (0.5R c ⁇ R ⁇ 2R c ). At this time, when the average size of matrix particles of the polycrystal is smaller than 0.5Rc (0.5Rc> R), the number density of abnormal particles is too high, so that single crystals cannot grow, and the average size of matrix particles of the polycrystal is less than 2Rc In a large case (2Rc ⁇ R), the number density of the abnormal grains is "0", but the growth rate of the single crystal is too slow to produce a large single crystal.
  • the present invention provides a piezoelectric body in which the piezoelectric single crystal alone or a piezoelectric single crystal and a polymer are composited.
  • the polymer is not particularly limited, but as a representative example, when an epoxy resin is mixed, it may be provided in a form having high resistance to mechanical shock and easy machining.
  • the present invention provides a piezoelectric component and a dielectric application component using a piezoelectric body made of a perovskite-type piezoelectric single crystal having the composition formula of Formula 1 or a piezoelectric body in which the piezoelectric single crystal and a polymer are complexed.
  • piezoelectric application parts include ultrasonic transducers (medical ultrasonic diagnostic device, sonar transducer, non-destructive test transducer, ultrasonic cleaner, ultrasonic motor, etc.), piezoelectric actuators (d 33 actuator, d 31 actuator, d 15 type).
  • piezoelectric actuators for fine position control, piezoelectric pumps, piezoelectric valves and piezoelectric speakers, etc.
  • piezoelectric sensors piezoelectric accelerometers, etc.
  • Electric Field Generating Transducers and Electric Field and Vibration Generating Transducers Electric Field and Vibration Generating Transducers
  • dielectric application components include high-efficiency capacitors, infrared sensors, dielectric filters, and the like.
  • MgO and Nb 2 O 5 powder are mixed by ball milling and calcined to prepare a MgNb 2 O 6 phase [Columbite method is applied], and additionally, raw powders are mixed again in a quantitative ratio and calcined to perovsky.
  • a gel-like powder was prepared.
  • Mixed powders were prepared by adding excess PbO and MgO to the prepared powder. After molding the mixed powders, they were press-molded with a hydrostatic pressure of 200 MPa, and the powder compacts were heat-treated at various temperatures between 900° C. and 1300° C. at 25° C. intervals for up to 100 hours, respectively.
  • the average size (R) of matrix particles of the polycrystal is at least 0.5 times the critical size at which the generation of abnormal particles occurs (the average size of matrix particles at which the number density of abnormal particles becomes “0 (zero)”, R c ) 2 or more
  • the size range (0.5R c ⁇ R ⁇ 2R c ) was adjusted to less than double, the seed single crystals grew continuously into the polycrystals.
  • the average size (R) of matrix particles of the polycrystal could be adjusted to a size range of 0.5 times or more and 2 times or less of the critical size at which abnormal particles were generated.
  • the piezoelectric single crystals of Examples 7 to 9 shown in Table 1 below satisfying the complex composition of [B] site ions were prepared by the same solid-phase single crystal growth method as in Example 1.
  • 2 vol% of the MgO secondary phase and the pore strengthening phase were included in the prepared single crystal.
  • the dielectric and piezoelectric properties of the piezoelectric single crystals of Examples 1 to 9 prepared by the solid-phase single crystal growth method were analyzed using an impedance analyzer and a d 33 meter.
  • the prepared [Pb 1-(a+1.5b) Sr a La b ][(Mg 1/3 Nb 2/3 ) 0.4 Zr 0.25 Ti 0.35 ]O 3 (a 0.02; 0.0 ⁇ b ⁇ 0.1) dielectric constant, phase transition temperatures (T C and T RT ), according to changes in b[La( +3 ) content] and a/b[Sr( +2 )/La( +3 ) ratio] in a single crystal; Changes in the characteristics of the piezoelectric constant and the coercive field ( EC ) were measured by the IEEE method using an impedance analyzer, etc., respectively, and are shown in Table 2 below.
  • the single crystal growth rate and the state of the grown single crystal in the composition region of "a/b ⁇ 2" were also relatively excellent. These results showed that the piezoelectric single crystals of the “a/b ⁇ 2” composition have high practical application potential due to superior piezoelectric properties and single crystal growth properties.
  • the single crystal growth rate and the state of the grown single crystal were also relatively excellent in the composition region where "a/b ⁇ 2". These results showed that piezoelectric single crystals of the “a/b ⁇ 2” composition have high practical application potential due to superior piezoelectric properties and single crystal growth properties.
  • the single crystal growth rate and the state of the grown single crystal in the composition region of "(a+c)/b ⁇ 2" were also relatively excellent. These results showed that the piezoelectric single crystals of the "(a+c)/b ⁇ 2" composition have high practical application potential due to superior piezoelectric properties and single crystal growth properties.
  • the single crystal growth rate and the state of the grown single crystal were also relatively excellent in the composition region of "(a+c)/b ⁇ 2". These results showed that the piezoelectric single crystals of the "(a+c)/b ⁇ 2" composition have high practical application potential with better piezoelectric properties and single crystal growth properties.
  • the single crystal growth rate and the state of the grown single crystal in the composition region of "a/b ⁇ 2" were also relatively excellent. These results showed that the piezoelectric single crystals of the “a/b ⁇ 2” composition have high practical application potential due to superior piezoelectric properties and single crystal growth properties.
  • the single crystal growth rate and the state of the grown single crystal in the composition region of "a/b ⁇ 2" were also relatively excellent. These results showed that the piezoelectric single crystals of the “a/b ⁇ 2” composition have high practical application potential due to superior piezoelectric properties and single crystal growth properties.
  • the piezoelectric properties are maximized by the composition of the piezoelectric single crystal, and the mechanical properties of the single crystal are increased by using reinforcing phases, thereby maintaining the high piezoelectric properties of the piezoelectric single crystal and improving the mechanical brittleness properties.
  • excellent piezoelectric single crystals were prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 압전 단결정, 그 제조방법 및 상기 압전 단결정을 이용한 압전 및 유전 응용 부품에 관한 것이다. 본 발명의 압전 단결정은 페로브스카이트형 결정 구조([A][B]O3)에서, [A] 자리 이온들의 조성 제어를 통해 압전 단결정의 특성을 극대화하고, 고상 단결정 성장법에 의해 복잡한 화학적 조성이라도, 조성 구배없이 균일한 조성의 단결정을 제공할 수 있으며, 특히 본 발명의 압전 단결정은 기계적 충격에 대한 저항성이 크고 기계 가공이 용이한 형태로 제공함으로써, 압전 단결정을 이용한 초음파 트랜스듀서, 압전 액추에이터, 압전 센서, 유전 캐패시터를 포함하는 압전 응용 부품 및 유전 응용 부품 분야에 유용하게 적용할 수 있다.

Description

압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
본 발명은 압전 단결정, 그 제조방법 및 상기 압전 단결정을 이용한 압전 및 유전 응용 부품에 관한 것으로서, 더욱 상세하게는 페로브스카이트형 결정 구조([A][B]O3)에서, [A] 자리 이온들의 조성 제어를 통해 압전 단결정의 특성을 향상시켜, 높은 유전 상수(K3 T≥4,000∼15,000), 높은 압전 상수(d33≥1,400∼6,000 pC/N), 높은 항전계(EC≥4∼12 kV/㎝)를 동시에 구현하고, 나아가, 고상 단결정 성장법에 의해 제조됨에 따라 복합한 화학 조성이라도 조성 구배없이 균일한 압전 단결정을 제공하고, 기계적 특성을 동시에 가지는 페로브스카이트형 결정 구조의 압전 단결정, 그 제조방법 및 상기 압전 단결정을 이용한 압전 및 유전 응용 부품에 관한 것이다.
페로브스카이트형 결정 구조([A][B]O3)의 압전 단결정들은 기존의 압전 다결정체 재료에 비하여 월등히 높은 유전 상수(K3 T)와 압전 상수(d33과 k33)를 나타내어, 압전 액추에이터, 초음파 트랜스듀서, 압전 센서와 유전 캐페시터 등과 같은 고성능 부품에 이용되며 각종 박막 소자의 기판 재료로서도 그 응용이 기대된다.
현재까지 개발된 페로브스카이트형 결정 구조의 압전 단결정들에는 PMN-PT (Pb(Mg1/3Nb2/3)O3-PbTiO3), PZN-PT (Pb(Zn1/3Nb2/3)O3-PbTiO3), PInN-PT (Pb(In1/2Nb1/2)O3-PbTiO3), PYbN-PT (Pb(Yb1/2Nb1/2)O3-PbTiO3), PSN-PT (Pb(Sc1/2Nb1/2)O3-PbTiO3), PMN-PInN-PT, PMN-PYbN-PT와 BiScO3-PbTiO3 (BS-PT) 등이 있다. 이러한 단결정들은 용융(melting)시에 공융(congruent melting) 거동을 하여, 통상적으로 기존의 단결정 성장법인 플럭스법(flux method), 브리지만법(Bridgman method) 등으로 제조되어 왔다.
그러나 기존에 개발된 PMN-PT와 PZN-PT의 압전 단결정들은 상온에서 높은 유전 및 압전 특성들(K3 T>4,000, d33>1,400 pC/N, k33>0.85)을 보이는 장점이 있으나, 낮은 상전이 온도들(TC와 TRT), 낮은 항전계(EC)와 취성(brittleness) 등의 결점으로 압전 단결정의 사용 온도 범위나 사용 전압 조건 등과 압전 단결정 응용 부품 제작 조건 등이 크게 제한된다.
일반적으로 페로브스카이트형 결정 구조의 압전 단결정들은 능면체상과 정방정상의 상경계 즉, MPB(morphotropic phase boundary) 조성 부근 영역에서 유전 및 압전 특성이 가장 높다고 알려져 있다.
그러나 페로브스카이트형 결정 구조의 압전 단결정들은 일반적으로 능면체상일 때 가장 우수한 유전 및 압전 특성을 보이기 때문에 능면체상의 압전 단결정들의 응용이 가장 활발하나, 능면체상의 압전 단결정들은 능면체상과 정방정상의 상전이 온도(TRT) 이하에서만 안정하기 때문에, 능면체상이 안정할 수 있는 최대 온도인 TRT 이하에서만 사용이 가능하다. 따라서, TRT 상전이 온도가 낮은 경우에는 능면체상의 압전 단결정의 사용 온도가 낮아지고, 압전 단결정 응용 부품의 제작 온도와 사용 온도도 TRT 이하로 제한된다.
또한 상전이 온도들(TC와 TRT)과 항전계(EC)가 낮은 경우에는 기계가공, 응력, 열 발생과 구동 전압 하에서 압전 단결정들이 쉽게 폴링이 제거(depoling)되고 우수한 유전 및 압전 특성을 상실하게 된다. 따라서 상전이 온도들(TC와 TRT)과 항전계(EC)가 낮은 압전 단결정들은 단결정 응용 부품 제작 조건, 사용 온도 조건과 구동 전압 조건 등이 제한된다. PMN-PT 단결정의 경우 일반적으로 TC <150℃, TRT<80℃와 EC<2.5 kV/cm이고, PZN-PT 단결정의 경우 일반적으로 TC <170℃, TRT<100℃와 EC<3.5 kV/cm이다. 그리고 이러한 압전 단결정들로 제작된 유전 및 압전 응용 부품들도 제조 조건, 사용 온도 범위나 사용 전압 조건 등이 제한되어 압전 단결정 응용 부품의 개발과 실용화에 장애가 되어 왔다.
압전 단결정의 단점을 극복하기 위하여 PInN-PT, PSN-PT와 BS-PT 등과 같은 새로운 조성의 단결정이 개발되었고, 또한 PMN-PInN-PT와 PMN-BS-PT 등과 같이 서로 혼합한 단결정 조성들도 연구되고 있다.
그러나 이러한 단결정들의 경우 유전 상수, 압전 상수, 상전이 온도들, 항전계와 기계적 특성 등을 동시에 개선하지는 못하였고, Sc와 In 등과 같이 비싼 원소를 주성분으로 하는 조성의 압전 단결정들은 높은 단결정 제조 원가로 인하여 단결정의 실용화에 장애가 되는 문제가 있다.
현재까지 개발된 PMN-PT를 포함하는 페로브스카이트형 결정 구조의 압전 단결정들이 낮은 상전이 온도를 보이는 이유를 크게 세 가지로 나눌 수 있는데, 첫째, PT와 함께 주된 구성 성분이 되는 릴랙서(relaxor; PMN이나 PZN 등)의 상전이 온도가 낮다는 점이다.
비특허문헌 1에는 페로브스카이트형 구조 압전 세라믹 다결정체들의 정방정상과 입방정상의 상전이 온도(TC)가 표 1에 제시되어 있다. 압전 단결정의 큐리온도는 같은 조성의 다결정체의 큐리온도와 유사하기 때문에, 다결정체의 큐리온도로부터 압전 단결정의 큐리온도를 추정할 수 있다.
둘째, 정방정상과 능면체상이 경계를 이루는 MPB가 온도 축에 대하여 수직으로 되지 못하고 완만하게 기울어져 있기 때문에, 능면체상과 정방정상의 상전이 온도(TRT)를 올리기 위해서는 큐리온도(TC) 감소가 필연적이기 때문에 큐리온도(TC)와 능면체상과 정방정상의 상전이 온도(TRT)를 동시에 높이기 어렵다.
셋째, 상전이 온도가 비교적 높은 릴랙서(PYbN, PInN나 BiScO3 등)를 PMN-PT 등에 섞어 주는 경우에도 상전이 온도가 조성에 비례하여 단순히 증가하지 않거나 또는 유전 및 압전 특성이 저하되는 문제를 발생시키기 때문이다.
나아가, 비특허문헌 1에 제시된 Relaxor-PT계 단결정들은 주로 용융 공정을 이용하는 기존의 단결정 성장법인 플럭스법과 브리지만법 등으로 제조되는데, 단결정 제조 공정상의 이유로 조성이 균일한 큰 단결정을 제조하기 어렵고 제조원가가 높고 대량 생산이 어려워 상용화에 아직 성공하지 못하고 있다.
또한, 일반적으로 압전 세라믹 단결정들은 압전 세라믹 다결정체(polycrystalline ceramics)에 비하여 기계적 강도 및 파괴 인성이 낮아 작은 기계적 충격에도 쉽게 깨어지는 결점이 있다. 이러한 압전 단결정의 취성은 압전 단결정을 이용한 응용 부품의 제작과 응용 부품의 사용 중에 쉽게 압전 단결정의 파괴를 유발하여, 압전 단결정의 사용에 큰 제한이 되어왔다. 따라서 압전 단결정의 상용화를 위해서는 압전 단결정의 유전 및 압전 특성 향상과 함께 동시에 압전 단결정의 기계적 특성 향상이 필요하다.
이에, 본 발명자들은 종래 문제점을 개선하고 고성능 및 고정밀의 고부가가치 시장에 적용가능한 수준의 압전 단결정을 제공하기 위하여 꾸준히 노력한 결과, 압전 단결정을 구성하는 화학조성이 복잡해지면서 압전 특성이 향상되는 결과로부터 단결정의 압전 특성을 향상시키고자 페로브스카이트형 결정 구조([A][B]O3)에서, [A] 자리 이온들의 조성을 설계하고, 고상 단결정 성장법에 의해 복합한 화학 조성이라도 조성 구배없이 균일하고 압전 특성이 개선되고 기계적 특성을 동시에 가지는 압전 단결정 제조를 확인함으로써, 본 발명을 완성하였다.
(특허문헌 1) 대한민국특허 제0564092호 (2006.03.27 공고)
(특허문헌 2) 대한민국특허 제0743614호 (2007.07.30 공고)
(비특허문헌 1)IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 5, 1997, pp. 1140-1147.
본 발명의 목적은 신규한 조성식을 가지는 페로브스카이트형 결정 구조([A][B]O3)의 압전 단결정을 제공하는 것이다.
본 발명의 다른 목적은 상기 압전 단결정의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 압전 단결정을 이용한 압전 부품 또는 유전 부품에 적용하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명은 하기 화학식 1의 조성식을 가지는 압전 단결정을 제공한다.
화학식 1
[A1-(a+1.5b)BaCb][(MN)1-x-y(L)yTix]O3
상기 식에서, A는 Pb 또는 Ba이고,
B는 Ba, Ca, Co, Fe, Ni, Sn 및 Sr으로 이루어진 군에서 선택된 적어도 1종 이상이며,
C는 Co, Fe, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 이루어진 군에서 선택된 1종 이상이며,
L은 Zr 또는 Hf에서 선택된 단독 또는 혼합 형태이고,
M은 Ce, Co, Fe, In, Mg, Mn, Ni, Sc, Yb 및 Zn로 이루어지는 군에서 선택된 적어도 한 종 이상이며,
N은 Nb, Sb, Ta 및 W로 이루어지는 군에서 선택된 적어도 한 종 이상이며,
0<a≤0.10,
0<b≤0.05,
0.05≤x≤0.58,
0.05≤y≤0.62이다.
이때, 상기 L이 혼합 형태일 때, 하기 화학식 2의 조성식을 가지는 압전 단결정을 제공한다.
화학식 2
[A1-(a+1.5b)BaCb][(MN)1-x-y(Zr1-w,Hfw)yTix]O3
상기에서, A, B, C, M 및 N은 상기 화학식 1의 정의와 동일하고, a, b, x 및 y도 동일하다. 다만, 0.01≤ w≤0.20를 나타낸다.
본 발명의 화학식 1의 조성식을 가지는 압전 단결정에 있어서, 0.01≤a≤0.10 및 0.01≤b≤0.05을 충족하는 조성이며, 더욱 바람직하게는 상기 식에서 a/b≥2를 충족하는 것이다.
본 발명의 화학식 1의 조성식을 가지는 압전 단결정에 있어서, 0.10≤x≤0.58 및 0.10≤y≤0.62를 총족하는 것이 더욱 바람직하다.
또한, 본 발명의 화학식 1의 조성식을 가지는 압전 단결정은 단결정 내부의 조성 구배가 0.2 내지 0.5몰%로 이루어진 것으로 균일성의 특징을 부여한다.
상기 압전 단결정 조성에 부피비로 0.1 내지 20%의 강화 이차상(P)을 더 포함할 수 있으며, 상기 강화 이차상 P는 금속상, 산화물상 또는 기공(pore)인 것이다.
보다 구체적으로, 상기 강화 이차상 P는 Au, Ag, Ir, Pt, Pd, Rh, MgO, ZrO2 및 기공(pore)으로 이루어지는 군에서 선택된 적어도 한 종 이상이며, 상기 강화 이차상 P는 압전 단결정 내에서 입자의 형태로 균일하게 분포하거나 또는 일정한 패턴을 가지면서 규칙적으로 분포한다.
또한, 압전 단결정에서, 상기 x와 y는 능면체상과 정방정상의 상경계(MPB) 조성으로부터 10 mol%, 더욱 바람직하게는 상기 x와 y는 능면체상과 정방정상의 상경계(MPB) 조성으로부터 5 mol% 이내의 범위에 속하는 것이다.
이상의 압전 단결정은 큐리온도(Curie temperature, Tc)가 180℃ 이상이며 동시에 능면체상과 정방정상의 상전이온도(phase transition temperature between rhombohedral phase and tetragonal phase, TRT)가 100℃ 이상인 압전 단결정을 제공한다.
또한, 상기 압전 단결정이 전기기계결합계수(longitudinal electromechanical coupling coefficient, k33)가 0.85 이상이며, 항전계(coercive electric field, Ec)가 3.5 내지 12kV/cm를 충족한다.
특히, 상기 압전 단결정은 유전 상수(K3 T) 4,000 내지 15,000 및 압전 상수(d33) 1,400 내지 6,000pC/N를 충족한다.
본 발명은 상기의 압전 단결정을 제조하는 방법으로서,
(a) 상기 조성을 가지는 다결정체의 기지상 입자들(matrix grains)의 평균 크기를 조절하여 비정상 입자의 개수 밀도(number density: number of abnormal grains/unit area)를 감소시키는 단계 및
(b) 상기 단계(a)를 통해 얻어진 비정상 입자의 개수 밀도가 감소된 다결정체를 열처리하여 비정상 입자를 성장시키는 단계를 포함하되, 상기 압전 단결정을 구성하는 조성의 분말을 800 내지 900℃ 미만의 온도에서 하소하여 분말 성형체를 수득하고, 상기 분말 성형체를 소결하는 1차 열처리공정 및 상기 단결정 성장 시 2차 열처리공정을 수행하는 압전 단결정의 제조방법을 제공한다.
또 다른 제조방법으로서, 상기 조성을 가지는 다결정체의 기지상 입자들의 평균 크기를 조절하여 비정상 입자의 개수 밀도를 감소시키는 조건하에서 다결정체를 열처리하는, 압전 단결정의 제조방법을 제공한다.
상기에서 다결정체의 비정상 입자의 개수 밀도는 감소된 상태에서 발생된 소수의 비정상 입자만을 계속하여 성장시켜 단결정을 얻을 수 있다.
상기 다결정체의 열처리 전에 다결정체에 종자 단결정을 접합시켜 열처리 중에 종자 단결정을 다결정체 안으로 계속 성장시키는 압전 단결정의 제조방법을 제공할 수 있다. 이때, 상기 다결정체의 기지상 입자들의 평균 크기(R)는 비정상 입자 생성이 일어나는 임계 크기(비정상 입자의 개수 밀도가 "0 (zero)"이 되는 기지상 입자들의 평균 크기, Rc)의 0.5 내지 2배 크기 범위(0.5Rc≤R≤2Rc)내로 조절되는 것이다.
나아가, 본 발명은 상기의 압전 단결정 또는 상기 압전 단결정과 폴리머가 복합화된 압전체를 이용한 압전 응용 부품 및 유전 응용 부품을 제공한다.
상기 압전체를 이용한 압전 응용 부품 및 유전 응용 부품은 초음파 트랜스듀서 (ultrasonic transducers), 압전 액추에이터 (piezoelectric actuators), 압전 센서 (piezoelectric sensors), 유전 캐패시터 (dielectric capacitors), 전기장 방사 트랜스듀서 (Electric Field Generating Transducers) 및 전기장-진동 방사 트랜스듀서 (Electric Field and Vibration Generating Transducers)로 이루어진 군에서 선택된 어느 하나에 적용할 수 있다.
본 발명에 따른 압전 단결정은 페로브스카이트형 결정 구조([A][B]O3)에서, [A] 자리 이온들의 복합조성을 통해, 높은 유전 상수(K3 T), 높은 압전 상수(d33과 k33), 높은 상전이 온도들(TC와 TRT) 및 높은 항전계(EC)의 유전특성을 현저히 개선할 수 있다.
또한, 본 발명의 압전 단결정은 고상 단결정 성장법에 의해 복합한 화학 조성이라도 조성 구배없이 균일하고 압전 특성을 향상시킬 수 있으며, 동시에 고상 단결정 성장법 과정에서 생성되는 기공에 의해 기계적 충격에 대한 저항성이 크고 기계 가공이 용이한 형태로 제공할 수 있는 제조방법을 제공할 수 있다.
나아가, 본 발명은 기계적 특성을 동시에 가져 넓은 온도 영역과 사용 전압 조건에서 사용 가능하게 하는 장점이 있으며, 높은 유전 특성을 기반으로 고성능, 고정밀의 고부가가치가 요구되는 분야에 적용될 수 있다.
따라서, 단결정 대량 생산에 적합한 고상 단결정 성장법을 이용하여 압전 단결정들을 제조하고 값비싼 원료를 포함하지 않는 단결정 조성을 개발하여 압전 단결정 상용화를 가능하게 하며, 본 발명에 의한 응용 부품은 우수한 특성의 압전 단결정을 이용하여 넓은 온도 영역에서 압전 응용 부품 및 유전 응용 부품들을 제작하고 사용할 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명은 하기 화학식 1의 조성식을 가지는 압전 단결정을 제공한다.
화학식 1
[A1-(a+1.5b)BaCb][(MN)1-x-y(L)yTix]O3
상기 식에서, A는 Pb 또는 Ba이고,
B는 Ba, Ca, Co, Fe, Ni, Sn 및 Sr으로 이루어진 군에서 선택된 적어도 1종 이상이며,
C는 Co, Fe, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 이루어진 군에서 선택된 1종 이상이며,
L은 Zr 또는 Hf에서 선택된 단독 또는 혼합 형태이고,
M은 Ce, Co, Fe, In, Mg, Mn, Ni, Sc, Yb 및 Zn로 이루어지는 군에서 선택된 적어도 한 종 이상이며,
N은 Nb, Sb, Ta 및 W로 이루어지는 군에서 선택된 적어도 한 종 이상이며,
0<a≤0.10,
0<b≤0.05,
0.05≤x≤0.58,
0.05≤y≤0.62이다.
본 발명의 화학식 1의 조성식을 가지는 압전 단결정은 화학적 조성이 복합해지면서 압전 특성이 더욱 증가하는 경향에 기반하여, 페로브스카이트형 결정 구조([A][B]O3)에서, [A] 자리 이온들을 복합 조성으로 구성한다.
이때, 화학식 1의 조성식을 가지는 압전 단결정에서 [A] 자리 이온의 복합조성을 구체적으로 살피면, [A1-(a+1.5b)BaCb]로 구성될 수 있으며, 상기 A 조성은 유연 또는 무연 원소를 포함하며 본 발명의 실시예에서는 A가 Pb인 유연계 압전 단결정에 한정하여 설명하나, 이에 한정되지는 아니할 것이다.
상기 [A] 자리 이온에 있어서, B 조성은 금속 2가 원소, 바람직하게는 Ba, Ca, Co, Fe, Ni, Sn 및 Sr으로 이루어진 군에서 선택된 적어도 1종 이상이며, C 조성은 금속 3가의 원소라면 사용하다.
바람직하게는 Co, Fe, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 이루어진 군에서 선택된 1종 이상이며, 더욱 바람직하게는 란탄계 원소를 1종 또는 2종 혼합형태로 사용하는 것이다.
본 발명의 실시예에서는 [A] 자리 이온에 있어서, C 조성은 La, Sm, Bi를 포함한 단독 또는 1종이상의 혼합조성으로 설명하고 있으나 이에 한정되지는 아니할 것이다.
상기 화학식 1의 조성식을 가지는 압전 단결정에서 [A] 자리 이온의 복합조성에 있어서, [A] 자리 이온에 해당되는 [A1-(a+1.5b)BaCb] 조성은 목표하는 물성을 구현하기 위한 요건으로서, A가 유연계 또는 무연계 압전 단결정일 때, 금속 2가 원소 및 금속 3가 원소의 조합하여 구성되는 것을 특징으로 한다.
즉, 0.01≤a≤0.10 및 0.01≤b≤0.05을 충족해야 하며, 더욱 바람직하게는 a/b≥2를 충족하는 것이다. 이때, 상기에서 a가 0.01 미만이면, 페로브스카이트 상이 불안정한 문제가 있고, 0.10을 초과하면 상전이 온도가 너무 낮아져 실제 사용이 어려워져 바람직하지 않다.
또한, a/b≥2 요건을 벗어나면, 유전 및 압전 특성이 최대화되지 않거나 단결정 성장이 제한되는 문제가 있다.
이때, 화학식 1의 조성식을 가지는 압전 단결정에서 [A] 자리 이온의 복합조성에 있어서 금속 3가 원소 또는 금속 2가 원소 단독으로 구성된 경우 대비, 복합조성일 때, 우수한 유전 상수를 구현할 수 있다.
일반적으로 알려진 [A][MN]O3-PbTiO3-PbZrO3 상태도에 따르면, 능면체상과 정방정상의 상경계(MPB) 주위에서 우수한 유전 및 압전 특성을 나타내는 조성 영역을 나타낸다. [A][MN]O3-PbTiO3-PbZrO3 상태도에서 능면체상과 정방정상의 상경계 조성에서 유전 및 압전 특성이 최대화되고 MPB 조성에서 조성이 멀어질수록 유전 및 압전 특성이 점차 감소한다. 그리고 MPB 조성에서 능면체상 영역으로 5mol% 조성 이내의 경우에는 유전 및 압전 특성의 감소가 적어 아주 높은 유전 및 압전 특성 값을 유지하였고, MPB 조성에서 능면체상 영역으로 10mol% 조성 이내의 경우에는 유전 및 압전 특성이 연속적으로 감소하였지만 유전 및 압전 응용 부품에 적용하기에 충분히 높은 유전 및 압전 특성 값을 보였다. MPB 조성에서 정방정상 영역으로 조성이 변하는 경우에는 능면체상 영역에서 보다 유전 및 압전 특성의 감소가 보다 빠르게 일어난다. 그러나 정방정상 영역으로 5 mol% 조성 이내의 경우나 10 mol% 조성 이내의 경우에도 유전 및 압전 특성이 연속적으로 감소하였지만 유전 및 압전 응용 부품에 적용하기에 충분히 높은 유전 및 압전 특성 값을 보인다.
PbTiO3와 PbZrO3의 상경계(MPB)는 PbTiO3: PbZrO3 = x: y = 0.48: 0.52 (몰비)으로 알려져 있다.
MPB 조성에서 능면체상과 정방정상 영역으로 각각 5 mol% 조성이 변하는 경우에는 x와 y의 최대값은 각각 0.53과 0.57(다시 말하면, x가 최대인 경우의 x: y= 0.53: 0.47이고, y가 최대인 경우의 x: y = 0.43: 0.57)이 된다. 그리고 MPB 조성에서 능면체상과 정방정상 영역으로 각각 10 mol% 조성이 변하는 경우에는 x와 y의 최대값은 각각 0.58과 0.62(다시 말하면, x가 최대인 경우의 x: y = 0.58: 0.42이고, y가 최대인 경우의 x: y = 0.38: 0.62)가 된다. MPB 조성에서 능면체상과 정방정상 영역으로 각각 5 mol% 조성 이내의 범위에서 높은 유전 및 압전 특성 값을 유지하였고, MPB 조성에서 능면체상과 정방정상 영역으로 각각 10 mol% 조성 이내의 범위에서는 유전 및 압전 응용 부품에 적용하기에 충분히 높은 유전 및 압전 특성 값을 보인다.
또한, PbTiO3와 PbZrO3의 함량 즉, x와 y 값이 0.05 이하인 경우에는 능면체상과 정방정상의 상경계를 만들 수 없거나 상전이 온도들과 항전계가 너무 낮아 본 발명에 적합하지 않다.
상기 화학식 1에서 바람직하게는 0.05≤x≤0.58이고, 더욱 바람직하게는 0.10≤x≤0.58이다. 이때, x가 0.05 미만인 경우에는 상전이 온도(Tc와 TRT), 압전 상수(d33, k33) 또는 항전계(Ec)가 낮으며, x가 0.58을 초과하는 경우에는 유전 상수(K3 T), 압전 상수(d33, k33) 또는 상전이 온도(TRT)가 낮기 때문이다.
한편, 화학식 1에서 바람직하게는 0.05≤y≤0.62이고, 더욱 바람직하게는 0.10≤y≤0.62를 충족하는 것이다. 그 이유는 y가 0.05 미만인 경우에는 상전이 온도(Tc와 TRT), 압전 상수(d33, k33) 또는 항전계(Ec)가 낮으며 0.62를 초과하는 경우에는 유전 상수(K3 T) 또는 압전 상수(d33, k33)가 낮기 때문이다.
본 발명의 화학식 1의 조성식을 가지는 압전 단결정은 페로브스카이트형 결정 구조([A][B]O3)에서, [B] 자리 이온에서 금속 4가 원소를 포함하되, 특히 L 조성에 대하여, Zr 또는 Hf에서 선택된 단독 또는 혼합 형태로 한정한다.
상기 혼합 형태이면, 하기 화학식 2의 조성식을 가지는 압전 단결정을 제공한다.
화학식 2
[A1-(a+1.5b)BaCb][(MN)1-x-y(Zr1-w,Hfw)yTix]O3
상기에서, A, B, C, M 및 N은 상기 화학식 1의 정의와 동일하고, a, b, x 및 y도 동일하며, 다만 0.01≤w≤0.20를 나타낸다.
이때, 상기 w가 0.01 미만이면, 유전 및 압전 특성이 최대화되지 않는 문제가 있고, 0.20를 초과하면, 유전 및 압전 특성이 급격히 감소하여 바람직하지 않다.
이상의 화학식 1의 조성식을 가지는 압전 단결정은 페로브스카이트형 결정 구조([A][B]O3)에서, [A] 자리 이온의 복합조성과 [B] 자리 이온의 조성을 조합함으로써, 큐리온도(Curie temperature, Tc)가 180℃ 이상이며 동시에 능면체상과 정방정상의 상전이온도(phase transition temperature between rhombohedral phase and tetragonal phase, TRT)가 100℃ 이상인 압전 단결정이다. 이때, 큐리온도가 180℃ 미만이면 항전계(Ec)를 5 kV/cm 이상 또는 상전이 온도(TRT)를 100℃ 이상으로 올리기 어려운 문제가 있다.
또한, 본 발명에 의한 화학식 1의 조성식을 가지는 압전 단결정은 전기기계결합계수(k33)가 0.85 이상인 것이며, 상기 전기기계결합계수가 0.85 미만이면 압전 다결정체 세라믹스와 특성이 유사하고 에너지 변환 효율이 낮아지기 때문에 바람직하지 않다.
본 발명에 의한 압전 단결정은 항전계(EC)가 3.5 내지 12 kV/㎝인 것이 바람직하고, 상기 항전계가 3.5 kV/cm 미만이면 압전 단결정 가공시 또는 압전 단결정 응용 부품 제작 또는 사용 시에 쉽게 폴링(poling)이 제거되는 문제가 있다.
또한, 본 발명에 의한 압전 단결정은 높은 유전 상수(K3 T≥4,000∼15,000) 및 높은 압전 상수(d33≥1,400∼6,000 pC/N)를 동시에 충족한다.
또한, 본 발명의 화학식 1의 조성식을 가지는 압전 단결정은 단결정 내부의 조성 구배가 0.2 내지 0.5몰%로 이루어져 균일성있는 단결정을 제공할 수 있다.
지르콘산납(PbZrO3)은 230℃의 높은 상전이 온도를 가질 뿐 만 아니라, MPB가 온도 축에 대해서 더욱 수직하게 만드는 효과가 있어 높은 큐리온도를 유지하면서 높은 능면체상과 정방정상의 상전이온도(TRT)를 얻는 것이 가능하여, Tc와 TRT가 동시에 높은 조성을 개발할 수 있다.
종래 압전 단결정 조성에 지르콘산납을 섞어 주는 경우에도 상전이 온도가 지르콘산납의 함량에 비례하여 증가하기 때문이다. 따라서 지르코늄(Zr) 또는 지르콘산납을 포함하는 페로브스카이트형 결정 구조의 압전 단결정은 기존의 압전 단결정들의 문제점들을 극복할 수 있다. 또한, 지르코니아(ZrO2) 또는 지르콘산납은 기존의 압전 다결정 재료에서 주성분으로 사용되고 있고 또한 저렴한 원료이기 때문에 단결정의 원료 가격을 높이지 않고 본 발명의 목적을 달성할 수 있다.
반면에, 지르콘산납을 포함하는 페로브스카이트형 압전 단결정은 용융 시에 PMN-PT와 PZN-PT 등과 달리 공융(congruent melting) 거동을 보이지 않고 비공융(incongruent melting) 거동을 보인다. 따라서 비공융 거동을 보이면 고상의 용융 시에 액상과 고상 지르코니아(solid phase ZrO2)로 분리되고, 액상 내의 고상 지르코니아 입자들이 단결정 성장을 방해하여 용융 공정을 이용하는 일반적인 단결정 성장법인 플럭스법과 브리지만법 등으로는 제조할 수 없다.
또한, 용융 공정을 이용하는 일반적인 단결정 성장법으로는 강화 이차상을 포함하는 단결정 제조가 어렵고 아직까지 보고된 바가 없다. 왜냐하면 용융 온도 이상에게 강화 이차상이 액상과 화학적으로 불안정하여 반응하므로 독립적인 이차상 형태를 유지하지 못하고 소멸하기 때문이다. 또한 액상 내에서 이차상과 액상의 밀도 차이로 인하여 이차상과 액상의 분리가 일어나서, 이차상을 포함하는 단결정 제조가 어렵고 더욱이 단결정 내부에 강화 이차상의 부피 분율(volume fraction), 크기(size), 형태(shape), 배열(arrangement) 및 분포(distribution) 등을 조절할 수 없다.
이에, 본 발명은 용융 공정을 이용하지 않는 고상 단결정 성장법을 이용하여 강화 이차상을 포함하는 압전 단결정들을 제조한다. 고상 단결정 성장법에서는 단결정 성장이 용융 온도 이하에서 일어나므로 강화 이차상과 단결정과의 화학적 반응이 억제되고 강화 이차상은 단결정 내부에 독립적인 형태로 안정하게 존재할 수 있게 된다.
또한, 단결정 성장이 강화 이차상을 포함하는 다결정체에서 일어나고 단결정 성장 중에 강화 이차상의 부피 분율, 크기, 형태, 배열 및 분포 등의 변화가 없다. 따라서 강화 이차상을 포함하는 다결정체를 만드는 공정에서 다결정 내부의 강화 이차상의 부피 분율, 크기, 형태, 배열 및 분포 등을 조절하고 단결정을 성장시키면, 결과적으로 원하는 형태의 강화 이차상을 포함하는 단결정 즉, 강화 압전 단결정(second phase-reinforced single crystals)을 제조할 수 있다.
따라서, 종래 단결정 성장법인 플럭스법과 브리지만 법으로는 페로브스카이트형 결정 구조([A][B]O3)에 있어서, 복합조성으로 압전 단결정을 제조할 수 없다. 특히, 용융 공정을 포함하는 플럭스법과 브리지만 법의 경우 제조공정에서 단결정 내부의 조성 구배가 1 내지 5몰% 이상으로 제조되는 반면, 본 발명의 고상 단결정 성장법으로는, 단결정 내부의 조성 구배가 0.2 내지 0.5 몰%의 균일한 조성으로 제조될 수 있다.
따라서, 본 발명의 고상 단결정 성장법에 의해, 지르콘산납을 포함하는 페로브스카이트형 결정 구조([A][B]O3)에 있어서, [A] 자리 이온의 복합 조성 및 [B]자리 이온간 조합이 복잡한 조성이라도 압전 단결정을 균일하게 성장하게 함으로써, 종래 압전 단결정들에 비하여 유전 상수(K3 T≥4,000∼15,000)와 압전 상수(d33≥1,400∼6,000 pC/N) 및 높은 항전계(EC≥4∼12 kV/㎝)가 현저히 높아진 신규 압전 단결정을 제공할 수 있다.
또한, 본 발명의 고상 단결정 성장법에 따른 압전 단결정의 제조방법은 플럭스법과 브리지만 법 대비, 낮은 공정 가격으로 대량 생산이 가능하다.
구체적으로 본 발명의 고상 단결정 성장법에 따른 압전 단결정의 제조방법은
(a) 상기 조성을 가지는 다결정체의 기지상 입자들(matrix grains)의 평균 크기를 조절하여 비정상 입자의 개수 밀도(number density: number of abnormal grains/unit area)를 감소시키는 단계 및
(b) 상기 단계(a)를 통해 얻어진 비정상 입자의 개수 밀도가 감소된 다결정체를 열처리하여 비정상 입자를 성장시키는 단계를 포함한다.
또 다른 제조방법으로서, 상기 조성을 가지는 다결정체의 기지상 입자들의 평균 크기를 조절하여 비정상 입자의 개수 밀도를 감소시키는 조건하에서 다결정체를 열처리하는, 압전 단결정의 제조방법을 제공한다.
상기에서 다결정체의 비정상 입자의 개수 밀도는 감소된 상태에서 발생된 소수의 비정상 입자만을 계속하여 성장시켜 단결정을 얻을 수 있다.
상기 다결정체의 열처리 전에 다결정체에 종자 단결정을 접합시켜 열처리 중에 종자 단결정을 다결정체 안으로 계속 성장시키는 압전 단결정의 제조방법을 제공할 수 있다.
상기 제조방법에 있어서, 압전 단결정을 구성하는 조성을 가지는 분말을 800 내지 900℃ 미만의 온도에서 하소하여 분말 성형체를 수득하고, 상기 분말 성형체를 소결하는 1차 열처리공정 및 상기 단결정 성장 시 2차 열처리공정을 통해 압전 단결정을 제조한다.
이때, 상기 1차 및 2차 열처리공정이 900 내지 1,300℃에서 1 내지 20℃/분 승온속도로 1 내지 100 시간동안 수행되는 것이 바람직하다. 더욱 바람직하게는 1,000 내지 1,200℃에서 1차 열처리하고 이후 2차 열처리하여 단결정을 성장시킨다.
상기 다결정체의 기지상 입자들의 평균 크기(R)는 비정상 입자 생성이 일어나는 임계 크기(비정상 입자의 개수 밀도가 "0 (zero)"가 되는 기지상 입자들의 평균 크기, Rc)의 0.5 내지 2배 크기 범위(0.5Rc≤R≤2Rc)내로 조절되는 것이다. 이때, 상기 다결정체의 기지상 입자들의 평균 크기가 0.5Rc 보다 작은 경우(0.5Rc> R)에는 비정상 입자들의 개수 밀도가 너무 높아 단결정이 성장을 하지 못하고, 다결정체의 기지상 입자들의 평균 크기가 2Rc 보다 큰 경우(2Rc <R)에는 비정상 입자들의 개수 밀도는 "0"이나 단결정의 성장 속도가 너무 느려서 큰 단결정을 제조할 수 없다.
본 발명은 상기의 압전 단결정 단독 또는 상기 압전 단결정과 폴리머가 복합화된 압전체를 제공한다.
상기 폴리머로는 특별히 한정되지 아니하나, 대표적 일례로 에폭시 수지를 혼용할 때, 기계적 충격에 대한 저항성이 크고 기계 가공이 용이한 형태로 제공될 수 있다.
나아가, 본 발명은 화학식 1의 조성식을 가지는 페로브스카이트형 압전 단결정으로 이루어진 압전체 또는 상기 압전 단결정과 폴리머가 복합화된 압전체를 이용한 압전 응용 부품 및 유전 응용 부품을 제공한다. 구체적으로, 압전 응용 부품들은 초음파 트랜스듀서(의료용 초음파 진단기, 소나용 트랜스듀서, 비파괴 검사용 트랜스듀서, 초음파 세척기, 초음파 모터 등), 압전 액추에이터(d33 형 액추에이터, d31 형 액추에이터, d15 형 액추에이터, 미세위치 제어용 압전 액추에이터, 압전 펌프, 압전 밸브와 압전 스피커 등)와 압전 센서(압전 가속도계 등), 전기장 방사 트랜스듀서 (Electric Field Generating Transducers) 및 전기장-진동 방사 트랜스듀서 (Electric Field and Vibration Generating Transducers) 등이 있다.
또한, 유전 응용 부품들은 고효율 커패시터(capacitor), 적외선 센서, 유전체 필터 등이 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다.
본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예 1∼6> [A] 자리이온의 복합조성을 충족한 압전 단결정 제조
페로브스카이트형 구조([A][B]O3)의 압전 단결정을 고상 단결정 성장법으로 제조하되, 상기 [A] 자리이온의 복합조성으로 이루어진, 표 1에 제시된 실시예 1 내지 실시예 6의 압전 단결정을 제조하였다. 또한, 분말 합성 공정에서 과량의 MgO와 PbO를 추가하여, 제조된 단결정 내부에는 MgO 이차상과 기공 강화상 2 vol% 포함되도록 하였다. 먼저 MgO와 Nb2O5 분말을 볼밀링하여 혼합한 후에 하소하여 MgNb2O6 상을 제조하고[쿨롬바이트(Columbite)법을 적용], 추가적으로 원료 분말들을 정량비로 다시 혼합하고 하소하여 페로브스카이트상 분말을 제조하였다. 상기 제조된 분말에 과량의 PbO와 MgO를 첨가하여 혼합 분말들을 제조하였다. 상기 혼합 분말들을 성형한 후에 200MPa의 정수압으로 가압 성형하였고, 분말 성형체는 900℃와 1300℃ 사이의 여러 온도들에서 25℃ 간격으로 100 시간까지 각각 열처리하였다. 다결정체의 기지상 입자들의 평균 크기(R)를 비정상 입자의 생성이 일어나는 임계 크기의 0.5배 이상 2배 이하인 크기 범위(0.5Rc≤R≤2Rc)로 조절할 수 있는 조건으로서, 첨가되는 과량 PbO의 양이 10∼20 mol% 범위로 결정되었고, 열처리 온도가 1000∼1200℃ 범위로 결정되었다(1차 소결). 이와 같이 제조된 다결정체 위에 Ba(Ti0.7Zr0.3)O3 종자 단결정을 올려놓고 열처리하였고(단결정 성장 열처리), 종자 단결정의 다결정체내로의 연속적인 성장을 이용하여 다결정체 조성의 단결정을 제조하였다.
상기 다결정체의 기지상 입자들의 평균 크기(R)를 비정상 입자의 생성이 일어나는 임계 크기(비정상 입자의 개수 밀도가 "0 (zero)"이 되는 기지상 입자들의 평균 크기, Rc)의 0.5배 이상 2배 이하인 크기 범위(0.5Rc≤R≤2Rc)로 조절하였을 때, 종자 단결정은 다결정체 내부로 연속적으로 성장하였다. 본 실시예에서는 과량 PbO의 양과 열처리 온도를 조절하였을 때, 다결정체의 기지상 입자들의 평균 크기(R)를 비정상 입자의 생성이 일어나는 임계 크기의 0.5배 이상 2배 이하인 크기 범위로 조절할 수 있었다. 다결정체의 기지상 입자들의 평균 크기(R)를 0.5Rc≤R≤2Rc의 범위로 조절하였을 때, 열처리 중에 Ba(Ti0.7Zr0.3)O3 종자 단결정이 다결정체 내부로 연속적으로 성장하여 다결정과 같은 조성의 단결정이 제조되었고, 성장한 단결정의 크기는 20×20㎟ 이상이었다. 그리고 세라믹 분말 성형체의 1차 소결과 단결정 성장 열처리 중에 분위기 내의 산소 분압을 변화시키면서 압전 단결정들을 제조하였다.
<실시예 7∼9> [B] 자리이온의 복합조성을 충족한 압전 단결정 제조
실시예 1과 같은 고상 단결정 성장법으로 [B] 자리이온의 복합 조성을 충족하는 하기 표 1에 제시된 실시예 7 내지 실시예 9의 압전 단결정을 제조하였다. 또한, 분말 합성 공정에서 과량의 MgO와 PbO를 추가하여, 제조된 단결정 내부에는 MgO 이차상과 기공 강화상 2 vol% 포함되도록 하였다.
고상 단결정 성장법으로 제조된 실시예 1 내지 9의 압전 단결정에 대한 유전 및 압전 특성을 임피던스 애널라이저와 d33 메터 등을 이용하여 분석하였다.
Figure PCTKR2021018537-appb-I000001
<실험예 1> (Pb,Sr,La)(Mg1/2Nb2/3)(Zr,Ti)O3 압전 단결정의 유전 및 압전 특성 평가1
상기 실시예 1에서 제조된 (Pb,Sr,La)(Mg1/2Nb2/3)(Zr,Ti)O3 압전 단결정에 대하여, 하기 표 2에서 제시된 바와 같이, [A] 자리이온의 복합조성 중 a/b에 따라 제조된 압전 단결정의 유전 및 압전 특성을 평가하였다.
더욱 구체적으로는, 상기 제조된 [Pb1-(a+1.5b)SraLab][(Mg1/3Nb2/3)0.4Zr0.25Ti0.35]O3 (a=0.02; 0.0≤b≤0.1) 단결정에서 b[La(+3) 함량]와 a/b[Sr(+2)/La(+3) 비율]의 변화에 따른 유전 상수, 상전이 온도들(TC와 TRT), 압전 상수와 항전계(EC)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 2에 기재하였다.
Figure PCTKR2021018537-appb-I000002
상기 표 2의 결과로부터, (001) 압전 단결정(a=0.02; b=0.01; a/b=2)의 압전 전하 상수, 유전 상수와 유전 손실 특성을 평가한 결과, 압전 전하 상수(d33)는 2,650[pC/N]이고, 유전 상수는 8,773이고, 유전 손실(tan δ)은 0.5%이었다.
상기 결과, b[La(+3) 함량]와 a/b[Sr(+2)/La(+3) 비율]의 변화에 따라 압전 단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "a/b <2"인 조성에서는 단결정 성장이 제한적으로 일어났고, 성장한 단결정도 많은 결함들을 포함하였다. 또한, a/b <2"인 조성에서는 유전 손실이 크게 증가하였고, 유전 및 압전 상수도 크게 감소하였다.
따라서 "a/b≥2"인 조성 영역에서 단결정 성장 속도 및 성장한 단결정의 상태도 상대적으로 우수하였다. 이러한 결과들은 "a/b≥2"조성 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
또한, 상기 제조된 [Pb1-(a+1.5b)SraLab][(Mg1/3Nb2/3)0.4Zr0.25Ti0.35]O3 (0.0<a≤0.15, b=0.01) 단결정에서 a[Sr(+2) 함량]와 a/b[Sr(+2)/La(+3) 비율]의 변화에 따른 유전 상수, 상전이 온도들(TC와 TRT), 압전 상수와 항전계(EC)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 3에 기재하였다.
Figure PCTKR2021018537-appb-I000003
상기 표 3에 나타난 바와 같이, a[Sr(+2) 함량]와 a/b[Sr(+2)/La(+3) 비율]의 변화에 따라 압전 단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "a/b <2"인 조성에서는 단결정 성장이 제한적으로 일어났고 또한 성장한 단결정도 많은 결함들을 포함하였다. 또한, a/b <2"인 조성에서는 유전 및 압전 상수도 크게 감소하였고, 유전 손실이 크게 증가하였다.
따라서 "a/b≥ 2"인 조성 영역에서 단결정 성장 속도 및 성장한 단결정의 상태도 상대적으로 우수하였다. 이러한 결과들은 "a/b≥ 2"조성 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
상기 실시예 1에서 제조된 [Pb1-(a+1.5b)SraLab][(Mg1/3Nb2/3)0.4Zr0.25Ti0.35]O3 단결정에서 a[Sr(+2) 함량], b[La(+3) 함량]와 a/b[Sr(+2)/La(+3) 비율]의 변화에 따른 압전 단결정의 성장(Growth)와 압전 물성을 평가하면, "0.01≤a≤0.10"와 "0.01≤b≤0.05"의 조성 영역에서 단결정 성장과 물성이 우수하였다. 더 바람직하게는 a/b≥2인 경우에 가장 우수한 압전 단결정을 개발할 수 있었다.
<실험예 2> (Pb,Ca,Sr,Sm)(Mg1/2Nb2/3)(Zr,Ti)O3 압전 단결정의 유전 및 압전 특성 평가2
상기 실시예 2에서 제조된 [Pb1-(a+1.5b+c)CacSraSmb][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1, 0.0≤c≤0.1) 조성의 압전 단결정에 대하여, [A] 자리이온의 복합조성 중 a[Sr(+2) 함량], c[Ca(2+) 함량]와 (a+c)/b[(Sr(+2)+Ca(2+))/Sm(+3) 비율]의 변화에 따른 유전 상수, 상전이 온도들(TC와 TRT), 압전 상수와 항전계(EC)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 4에 기재하였다.
Figure PCTKR2021018537-appb-I000004
상기 표 4의 결과로부터, (001) 압전 단결정(a=0.02, b=0.01, c=0.00)의 압전 전하 상수, 유전 상수와 유전 손실 특성을 평가한 결과, 압전 전하 상수(d33)는 4,457[pC/N]이고, 유전 상수는 14,678이고, 유전 손실(tan δ)은 1.0%이었다.
상기 표 4에 나타난 바와 같이, a[Sr(+2) 함량], c[Ca(2+) 함량]와 (a+c)/b[(Sr(+2)+Ca(2+))/Sm(+3) 비율]의 변화에 따라 압전 단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "(a+c)/b <2"인 조성에서는 단결정 성장이 제한적으로 일어났고 성장한 단결정도 많은 결함들을 포함하였다. 또한, (a+c)/b <2"인 조성에서는 유전 손실이 크게 증가하였고, 유전 및 압전 상수도 크게 감소하였다.
따라서 "(a+c)/b≥2"인 조성 영역에서 단결정 성장 속도 및 성장한 단결정의 상태도 상대적으로 우수하였다. 이러한 결과들은 "(a+c)/b≥2"조성 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
또한, 상기 실시예 2에서 제조된 [Pb1-(a+1.5b+c)CacSraSmb][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1, c=0.01) 단결정에서 a[Sr(+2) 함량], b[Sm(3+) 함량]와 (a+c)/b[(Sr(+2)+Ca(2+))/Sm(+3) 비율]의 변화에 따른 유전 상수, 상전이 온도들(TC와 TRT), 압전 상수와 항전계(EC)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 5에 기재하였다.
Figure PCTKR2021018537-appb-I000005
상기 표 5에 나타난 바와 같이, 단결정에서 a[Sr(+2) 함량], b[Sm(3+) 함량]와 (a+c)/b[(Sr(+2)+Ca(2+))/Sm(+3) 비율]의 변화에 따라 압전 단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "(a+c)/b<2"인 조성에서는 단결정 성장이 제한적으로 일어났고 또한 성장한 단결정도 많은 결함들을 포함하였다. 또한 (a+c)/b <2"인 조성에서는 유전 손실이 크게 증가하였고, 유전 및 압전 상수도 크게 감소하였다.
따라서 "(a+c)/b≥2"인 조성 영역에서 단결정 성장 속도 및 성장한 단결정의 상태도 상대적으로 우수하였다. 이러한 결과들은 "(a+c)/b≥2"조성 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
또한, 상기 실시예 2에서 제조된 [Pb1-(a+1.5b+c)CacSraSmb][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1, 0.0≤c≤0.1) 단결정에서 a[Sr(+2) 함량], b[Sm(+3) 함량], c[Ca[+2] 함량]와 (a+c)/b의 변화에 따른 압전 단결정의 성장(Growth)와 압전 물성을 평가하면, "0.01≤(a+c)≤0.10"와 "0.01≤b≤0.05"의 조성 영역에서 단결정 성장과 물성이 우수하였다. 더 바람직하게는 (a+c)/b≥2인 경우에 가장 우수한 압전 단결정을 개발할 수 있었다.
<실험예 3> (Pb,Ni,Sm)(Mg1/2Nb2/3)(Zr,Ti)O3 압전 단결정의 유전 및 압전 특성 평가3
상기 실시예 3에서 제조된 [Pb1-(a+1.5b)NiaSmb][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1) 조성의 압전 단결정에 대하여, a=0.02, 0.0≤b≤0.1 조성의 단결정에서 a[Ni 함량]와 a/b[Ni/Sm 비율]의 변화에 따른 유전 상수, 압전 상수와 전기기계결합계수(k33)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 6에 기재하였다.
Figure PCTKR2021018537-appb-I000006
상기 표 6에 나타난 바와 같이, a[Ni 함량]와 a/b[Ni/Sm 비율]의 변화에 따라 압전단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "a/b <2"인 조성에서는 단결정 성장이 제한적으로 일어났고 또한 성장한 단결정도 많은 결함들을 포함하였다. 또한, a/b <2"인 조성에서는 유전 손실이 크게 증가하였고, 유전 및 압전 상수도 크게 감소하였다.
따라서 "a/b≥2"인 조성 영역에서 단결정 성장 속도 및 성장한 단결정의 상태도 상대적으로 우수하였다. 이러한 결과들은 "a/b≥2"조성 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
또한, 상기 실시예 3에서 제조된 [Pb1-(a+1.5b)NiaSmb][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1) 단결정에서 a[Ni 함량], b[Sm 함량]와 a/b의 변화에 따른 압전 단결정의 성장(Growth)와 압전 물성을 평가하면, "0.01≤a≤0.10"와 "0.01≤b≤0.05"의 조성 영역에서 단결정 성장과 물성이 우수하였다. 더 바람직하게는 a/b≥2인 경우에 가장 우수한 압전 단결정을 개발할 수 있었다.
<실험예 4> (Pb,Sr,Bi)(Mg1/2Nb2/3)(Zr,Ti)O3 압전 단결정의 유전 및 압전 특성 평가4
상기 실시예 4에서 제조된 [Pb1-(a+1.5b)SraBib][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1) 조성의 압전 단결정에 대하여, a=0.02, 0.0≤b≤0.1 조성의 단결정에서 a[Sr 함량]와 a/b[Sr/Bi 비율]의 변화에 따른 유전 상수, 압전 상수와 전기기계결합계수(k33)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 7에 기재하였다.
Figure PCTKR2021018537-appb-I000007
상기 표 7에 나타난 바와 같이, a[Sr 함량]와 a/b[Sr/Bi 비율]의 변화에 따라 압전단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "a/b <2"인 조성에서는 단결정 성장이 제한적으로 일어났고 또한 성장한 단결정도 많은 결함들을 포함하였다. 또한, a/b <2"인 조성에서는 유전 손실이 크게 증가하였고, 유전 및 압전 상수도 크게 감소하였다.
따라서 "a/b≥2"인 조성 영역에서 단결정 성장 속도 및 성장한 단결정의 상태도 상대적으로 우수하였다. 이러한 결과들은 "a/b≥2"조성 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
또한, 상기 실시예 4에서 제조된 [Pb1-(a+1.5b)SraBib][(Mg1/3Nb2/3)0.35Zr0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1) 단결정에서 a[Sr 함량], b[Bi 함량]와 a/b의 변화에 따른 압전 단결정의 성장(Growth)와 압전 물성을 평가하면, "0.01≤a≤0.10"와 "0.01≤b≤0.05"의 조성 영역에서 단결정 성장과 물성이 우수하였다. 더 바람직하게는 a/b≥2인 경우에 가장 우수한 압전 단결정을 개발할 수 있었다.
<실험예 5> (Pb,Sr,Sm)(Mg1/2Nb2/3)(Zr,Hf)TiO3 압전 단결정의 유전 및 압전 특성 평가5
상기 실시예 7에서 제조된 [Pb0.98-1.5xSraSmb][(Mg1/3Nb2/3)0.35(Zr1-xHfx)0.30Ti0.35]O3 (0.0≤a≤0.15, 0.0≤b≤0.1, 0.0≤x≤0.5) 압전 단결정에 대하여, a[Sr 함량], b[Sm 함량], a/b[Sr/Sm 비율]와 x[Hf 함량]의 변화에 따른 유전 상수, 압전 상수와 전기기계결합계수(k33)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 8에 기재하였다.
Figure PCTKR2021018537-appb-I000008
상기 표 8에 나타난 바와 같이, a[Sr 함량], b[Sm 함량], a/b[Sr/Sm 비율]와 x[Hf 함량]의 변화에 따라 압전단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "0.0≤x≤0.5"인 조성에서는 단결정 성장이 보다 빠르게 일어나고 또한 성장한 단결정내에서 결함들도 감소하였다. 또한, "0.0≤x≤0.2"인 조성에서는 유전 및 압전 상수도 증가하였다. 이러한 결과들은 "0.0≤x≤0.5"인 조성에서는 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
<실험예 6> (Pb,Ni,Sm)(Mg1/2Nb2/3)(Zr,Hf)TiO3 압전 단결정의 유전 및 압전 특성 평가6
상기 실시예 9에서 제조된 [Pb0.98-1.5xNiaSmb][(Mg1/3Nb2/3)0.35(Zr1-xHfx)0.30Ti0.35]O3 (0.0≤a≤0.1, 0.0≤b≤0.1, 0.0≤x≤0.5) 압전 단결정에 대하여, a[Ni 함량], b[Sm 함량], a/b[Ni/Sm 비율]와 x[Hf 함량]의 변화에 따른 유전 상수, 압전 상수와 전기기계결합계수(k33)의 특성 변화를 각각 임피던스 분석기 등을 이용하여 IEEE 법으로 측정하여 하기 표 9에 기재하였다.
Figure PCTKR2021018537-appb-I000009
상기 표 9에 나타난 바와 같이, a[Ni 함량], b[Sm 함량], a/b[Ni/Sm 비율]와 x[Hf 함량]의 변화에 따라 압전단결정의 물성이 크게 변화하는 것을 관찰하였다. 특히, "0.0≤x≤0.5"인 조성에서는 단결정 성장이 보다 빠르게 일어나고 또한 성장한 단결정내에서 결함들도 감소하였다. 또한, "0.0≤x≤0.2"인 조성에서는 유전 및 압전 상수도 증가하였다. 이러한 결과들은 "0.0≤x≤0.5"인 조성에서는 압전 단결정들이 보다 우수한 압전 특성과 단결정 성장 특성으로 실제 응용 가능성이 높은 것을 보여주었다.
<실험예 7> 파괴 강도의 측정
상기 실시예 1에서 제조된 [Pb1-(a+1.5b)SraLab][(Mg1/3Nb2/3)0.4Zr0.25Ti0.35]O3 (0.0≤a≤0.15, b=0.01) 조성의 압전 단결정에 대하여, 단결정 내의 기공의 함량에 따른 파괴 강도(Fracture Strength)와 파괴 인성(Fracture Toughness) 등의 기계적 특성을 비교 평가하였다. 이때, 파괴강도 값들을 ASTM 법에 따라 4점 굽힘 강도 측정법으로 측정하였고, 그 결과를 하기 표 10(a=0.02, b=0.01)와 표 11(a=0.04, b=0.01)에 기재하였다.
Figure PCTKR2021018537-appb-I000010
Figure PCTKR2021018537-appb-I000011
상기 결과로부터 고상 단결정 성장법으로 제조된 [Pb1-(a+1.5b)SraLab][(Mg1/3Nb2/3)0.4Zr0.25Ti0.35]O3 (0.0≤a≤0.15, b=0.01) 압전 단결정은 단결정 내부에 기공을 포함하는 경우에 파괴 강도와 파괴 인성이 증가하는 경향을 보였고 기공의 햠량이 20% 이내일 때 높은 파괴 강도와 파괴 인성의 값을 보였다. 특히, 기공의 형상이 구형에 가까울수록 기계적 특성 향상의 효과는 증가하였다. 따라서, 단결정 내부에 기공과 MgO 등의 강화상을 포함시키는 경우는 단결정이 외부의 기계적 충격에 대한 저항성이 증가하여, 결과적으로 복합체의 단결정의 기계적 성능이 크게 향상된 결과를 보였다.
이상의 결과로부터, 압전 단결정의 조성으로 압전 특성을 최대화하고, 또한 강화상들을 이용하여 단결정의 기계적 특성을 높여서, 압전 단결정의 높은 압전 특성을 유지하고 기계적 취성(Brittleness) 특성을 개선한, 두 가지 특성에 모두 우수한 압전 단결정을 제작하였다.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (22)

  1. 하기 화학식 1의 조성식을 가지는 페로브스카이트형 구조의 압전 단결정:
    화학식 1
    [A1-(a+1.5b)BaCb][(MN)1-x-y(L)yTix]O3
    상기 식에서,
    A는 Pb 또는 Ba이고,
    B는 Ba, Ca, Co, Fe, Ni, Sn 및 Sr으로 이루어진 군에서 선택된 적어도 1종 이상이며,
    C는 Co, Fe, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu로 이루어진 군에서 선택된 1종 이상이며,
    L은 Zr 또는 Hf에서 선택된 단독 또는 혼합 형태이고,
    M은 Ce, Co, Fe, In, Mg, Mn, Ni, Sc, Yb 및 Zn로 이루어지는 군에서 선택된 적어도 한 종 이상이며,
    N은 Nb, Sb, Ta 및 W로 이루어지는 군에서 선택된 적어도 한 종 이상이며,
    0<a≤0.10, 0<b≤0.05, 0.05≤x≤0.58 및 0.05≤y≤0.62이다.
  2. 제1항에 있어서, 상기 압전 단결정에서 L이 혼합 형태일 때, 화학식 2의 조성식을 가지는 것을 특징으로 하는 압전 단결정:
    화학식 2
    [A1-(a+1.5b)BaCb][(MN)1-x-y(Zr1-w, Hfw)yTix]O3이고, 상기에서 0.01≤w≤0.20이다.
  3. 제1항에 있어서, 상기 식에서
    0.01≤a≤0.10,
    0.01≤b≤0.05인 것을 특징으로 하는 압전 단결정.
  4. 제1항에 있어서, 상기 식에서 a/b≥2인 것을 특징으로 하는 압전 단결정.
  5. 제1항에 있어서, 상기 식에서
    0.10≤x≤0.58 및 0.10≤y≤0.62인 것을 특징으로 하는 압전 단결정.
  6. 제1항에 있어서, 상기 압전 단결정이 단결정 내부의 조성 구배가 0.2 내지 0.5몰%로 이루어진 것을 특징으로 하는 압전 단결정.
  7. 제1항에 있어서, 압전 단결정 조성에 부피비로 0.1 내지 20%의 강화 이차상(P)을 더 포함하는 것을 특징으로 하는 압전 단결정.
  8. 제8항에 있어서, 상기 강화 이차상 P는 금속상, 산화물상 또는 기공(pore)인 것을 특징으로 하는 압전 단결정.
  9. 제8항에 있어서, 상기 강화 이차상 P는 Au, Ag, Ir, Pt, Pd, Rh, MgO, ZrO2 및 기공(pore)으로 이루어지는 군에서 선택된 적어도 한 종 이상인 것을 특징으로 하는 압전 단결정.
  10. 제8항에 있어서, 상기 강화 이차상 P는 압전 단결정 내에서 입자의 형태로 균일하게 분포하거나 또는 일정한 패턴을 가지면서 규칙적으로 분포하는 것을 특징으로 하는 압전 단결정.
  11. 제1항에 있어서, 상기 x와 y는 능면체상과 정방정상의 상경계(MPB) 조성으로부터 10 mol% 이내의 범위에 속하는 것을 특징으로 하는 압전 단결정.
  12. 제1항에 있어서, 상기 x와 y는 능면체상과 정방정상의 상경계(MPB) 조성으로부터 5 mol% 이내의 범위에 속하는 것을 특징으로 하는 압전 단결정.
  13. 제1항에 있어서, 상기 압전 단결정이 큐리온도(Curie temperature, Tc)가 180℃ 이상이며 동시에 능면체상과 정방정상의 상전이온도(phase transition temperature between rhombohedral phase and tetragonal phase, TRT)가 100℃ 이상인 것을 특징으로 하는 압전 단결정.
  14. 제1항에 있어서, 상기 압전 단결정이 전기기계결합계수(longitudinal electromechanical coupling coefficient, k33)가 0.85 이상인 것을 특징으로 하는 압전 단결정.
  15. 제1항에 있어서, 상기 압전 단결정이 항전계(coercive electric field, Ec)가 3.5 내지 12kV/cm인 것을 특징으로 하는 압전 단결정.
  16. 제1항에 있어서, 상기 압전 단결정이
    유전 상수(K3 T) 4,000 내지 15,000 및
    압전 상수(d33) 1,400 내지 6,000pC/N를 충족하는 것을 특징으로 하는 압전 단결정.
  17. (a) 제1항의 압전 단결정을 구성하는 조성을 가지는 다결정체의 기지상 입자들(matrix grains)의 평균 크기를 조절하여 비정상 입자의 개수 밀도(number density: number of abnormal grains/unit area)를 감소시키는 단계 및
    (b) 상기 단계(a)를 통해 얻어진 비정상 입자의 개수 밀도가 감소된 다결정체를 열처리하여 비정상 입자를 성장시키는 단계를 포함하되,
    상기 압전 단결정을 구성하는 조성의 분말을 800 내지 900℃ 미만의 온도에서 하소하여 분말 성형체를 수득하고, 상기 분말 성형체를 소결하는 1차 열처리공정 및 상기 단결정 성장 시 2차 열처리공정을 수행하는 압전 단결정의 제조방법.
  18. 제17항에 있어서, 상기 1차 및 2차 열처리공정이 900 내지 1,300℃에서 수행된 것을 특징으로 하는 압전 단결정의 제조방법.
  19. 제18항에 있어서, 상기 열처리가 1 내지 20℃/분 승온속도로 1 내지 100 시간동안 수행된 것을 특징으로 하는 압전 단결정의 제조방법.
  20. 제17항에 있어서, 상기 다결정체의 기지상 입자들의 평균 크기(R)는, 비정상 입자 생성이 일어나는 임계 크기(비정상 입자의 개수 밀도가 "0 (zero)"이 되는 기지상 입자들의 평균 크기, Rc)의 0.5배 이상 2배 이하인 크기 범위(0.5Rc≤R≤2Rc)로 조절되는 것을 특징으로 하는 압전 단결정의 제조방법.
  21. 제1항 내지 제16항 중 어느 한 항에 따른 압전 단결정으로 이루어진 압전체 또는 상기 압전 단결정과 폴리머가 복합화된 압전체를 이용한 압전 응용 부품 및 유전 응용 부품.
  22. 제21항에 있어서, 상기 압전 응용 부품 및 유전 응용 부품이 초음파 트랜스듀서 (ultrasonic transducers), 압전 액추에이터 (piezoelectric actuators), 압전 센서 (piezoelectric sensors), 유전 캐패시터 (dielectric capacitors), 전기장 방사 트랜스듀서 (Electric Field Generating Transducers) 및 전기장-진동 방사 트랜스듀서 (Electric Field and Vibration Generating Transducers)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 압전 응용 부품 및 유전 응용 부품.
PCT/KR2021/018537 2020-12-11 2021-12-08 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품 WO2022124792A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023534611A JP2023549422A (ja) 2020-12-11 2021-12-08 圧電単結晶、その製造方法、並びにそれを用いた圧電及び誘電応用部品
US17/928,604 US12031232B2 (en) 2020-12-11 2021-12-08 Piezoelectric single crystal, fabrication method therefor, and piezoelectric and dielectric application parts using same
CN202180082720.5A CN116569675A (zh) 2020-12-11 2021-12-08 压电单晶、其制造方法及使用其的压电及介电应用部件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200173604 2020-12-11
KR10-2020-0173604 2020-12-11
KR1020210171666A KR102664918B1 (ko) 2020-12-11 2021-12-03 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
KR10-2021-0171666 2021-12-03

Publications (1)

Publication Number Publication Date
WO2022124792A1 true WO2022124792A1 (ko) 2022-06-16

Family

ID=81974697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018537 WO2022124792A1 (ko) 2020-12-11 2021-12-08 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품

Country Status (2)

Country Link
JP (1) JP2023549422A (ko)
WO (1) WO2022124792A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743614B1 (ko) * 2005-11-04 2007-07-30 주식회사 세라콤 압전 단결정 및 그 제조방법, 그리고 그 압전 단결정을이용한 압전 및 유전 응용 부품
US20090212667A1 (en) * 2004-05-06 2009-08-27 Jfe Mineral Company, Ltd Piezoelectric single crystal device and fabrication method thereof
KR20120131193A (ko) * 2010-03-02 2012-12-04 캐논 가부시끼가이샤 압전 재료 및 이를 사용하는 장치
US20150372219A1 (en) * 2013-03-25 2015-12-24 Kabushiki Kaisha Toshiba Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method
KR101779899B1 (ko) * 2016-11-03 2017-09-19 국방과학연구소 압전 단결정을 구비하는 적층형 압전 액추에이터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090212667A1 (en) * 2004-05-06 2009-08-27 Jfe Mineral Company, Ltd Piezoelectric single crystal device and fabrication method thereof
KR100743614B1 (ko) * 2005-11-04 2007-07-30 주식회사 세라콤 압전 단결정 및 그 제조방법, 그리고 그 압전 단결정을이용한 압전 및 유전 응용 부품
KR20120131193A (ko) * 2010-03-02 2012-12-04 캐논 가부시끼가이샤 압전 재료 및 이를 사용하는 장치
US20150372219A1 (en) * 2013-03-25 2015-12-24 Kabushiki Kaisha Toshiba Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method
KR101779899B1 (ko) * 2016-11-03 2017-09-19 국방과학연구소 압전 단결정을 구비하는 적층형 압전 액추에이터

Also Published As

Publication number Publication date
JP2023549422A (ja) 2023-11-24
US20230399769A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
Harada et al. Crystal growth and electrical properties of Pb ((Zn1/3Nb2/3) 0.91 Ti0. 09) O3 single crystals produced by solution Bridgman method
Wada et al. Dielectric and piezoelectric properties of (A0. 5Bi0. 5) TiO3–ANbO3 (A= Na, K) systems
US5637542A (en) Dielectric ceramic composition
Park et al. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals
Hosono et al. Dielectric and piezoelectric properties of Pb (In1/2Nb1/2) O3–Pb (Mg1/3Nb2/3) O3–PbTiO3 ternary ceramic materials near the morphotropic phase boundary
Yamashita Piezoelectric properties of niobium-doped [Pb (Sc1/2Nb1/2) 1-xTix] O3 ceramics material near the morphotropic phase boundary
Yamashita Improved ferroelectric properties of niobium-doped Pb [(Sc1/2Nb1/2) Ti] O3 ceramic material
US5527480A (en) Piezoelectric ceramic material including processes for preparation thereof and applications therefor
US6299815B1 (en) Process for producing piezoelectric ceramics
Guo et al. Growth and electrical properties of Pb (Sc1/2Nb1/2) O3–Pb (Mg1/3Nb2/3) O3–PbTiO3 ternary single crystals by a modified Bridgman technique
WO2022124792A1 (ko) 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
KR20110043339A (ko) 저온 소성용 무연 압전세라믹 조성물 및 제조방법
Park et al. Relaxor-based ferroelectric single crystals for electromechanical actuators
WO2022124793A1 (ko) 압전 단결정-다결정 세라믹 복합체, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
Haertling Compositional study of PLZT Rainbow ceramics for piezo actuators
Harada et al. Growth of Pb [(Zn1/3Nb2/3) 0.91 Tio. 09] 03 single crystal of ultrasonic transducer for medical application
Wang et al. Effects of 30B2O3–25Bi2O3–45CdO glass addition on the sintering of 12Pb (Ni1/3 Sb2/3) O3–40PbZrO3–48PbTiO3 piezoelectric ceramics
WO2023017997A1 (ko) 고변위 압전재료를 구비하는 전기장-진동 방사 트랜스듀서 및 그의 제조방법
WO2022124794A1 (ko) 내부 전기장을 포함하는 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
JPH0516380B2 (ko)
Hosono et al. Crystal growth of Pb (In1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 and Pb (Sc1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 piezoelectric single crystals using the solution bridgman method
KR102663619B1 (ko) 내부 전기장을 포함하는 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
KR102632987B1 (ko) 압전 단결정-다결정 세라믹 복합체, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
KR102664918B1 (ko) 압전 단결정, 그 제조방법 및 그를 이용한 압전 및 유전 응용 부품
Kim et al. Relaxor based fine grain piezoelectric materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180082720.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903838

Country of ref document: EP

Kind code of ref document: A1