WO2005098071A1 - 水素処理により合金の結晶粒を微細化する方法 - Google Patents

水素処理により合金の結晶粒を微細化する方法 Download PDF

Info

Publication number
WO2005098071A1
WO2005098071A1 PCT/JP2005/005587 JP2005005587W WO2005098071A1 WO 2005098071 A1 WO2005098071 A1 WO 2005098071A1 JP 2005005587 W JP2005005587 W JP 2005005587W WO 2005098071 A1 WO2005098071 A1 WO 2005098071A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
alloy
elements
crystal grain
affinity
Prior art date
Application number
PCT/JP2005/005587
Other languages
English (en)
French (fr)
Inventor
Masuo Okada
Hitoshi Takamura
Atsunori Kamegawa
Junya Takahashi
Takao Funayama
Original Assignee
Tohoku Techno Arch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co., Ltd. filed Critical Tohoku Techno Arch Co., Ltd.
Priority to EP05721514A priority Critical patent/EP1749896A4/en
Priority to JP2006512039A priority patent/JPWO2005098071A1/ja
Publication of WO2005098071A1 publication Critical patent/WO2005098071A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to an alloy mainly composed of an element having a low affinity for hydrogen, and provides a method for ultra-fine crystal grains by hydrogen treatment and an effective alloy therefor.
  • the crystal grain refinement method using these methods has a crystal grain size of about 1 ⁇ m, and there is a limit to further improving the crystal grain refinement effect.
  • alloys whose main component is an element with low affinity for hydrogen are expected to have even higher strength due to the refinement of crystal grains (Fig. 1).
  • An object of the present invention is to provide a technique for causing an alloy mainly containing an element having a low affinity for hydrogen to contain an element having a high affinity for hydrogen, thereby exhibiting a crystal grain refining effect. .
  • the inventors of the present invention have conducted various studies to achieve the above object. As a result, the inventors have found that an alloy containing an element having a low affinity for hydrogen as a main component and an alloy containing an element having a high affinity for hydrogen is contained. On the other hand, when the melting point of a metal (or alloy) expressed in absolute temperature is expressed as T, By placing the alloy in a hydrogen atmosphere at a temperature range of 0 ° C to 0.8T, hydrogen is absorbed, and elements contained in the alloy and having a strong affinity for hydrogen react with the absorbed hydrogen. And found.
  • alloy systems to which the heat treatment for absorption and desorption of hydrogen can be applied include alloys mainly composed of elements having low affinity for hydrogen, alkali metals having strong affinity for hydrogen, such as Li and Na, and Mg. Alkaline earth metals such as Ca and Ca, rare earth metals such as La and Ce, periodic table of elements represented by Ti, V, etc.
  • Group 3-5 transition metal and Pd force Group force At least one or more selected It is characterized by including.
  • the alloy For an alloy containing an element with a low affinity for hydrogen as a main constituent element and containing an element with a high affinity for hydrogen, the alloy has a temperature range of 0 ° C to 0.8T. (T is the melting point of the metal or alloy expressed in absolute temperature), and the heat that absorbs and desorbs hydrogen, including releasing hydrogen in the temperature range of 0 ° C-0.8T.
  • a method for refining the crystal grain of an alloy, comprising performing a treatment.
  • the elements with weak affinity for hydrogen include the elements in the Periodic Table Group 6-10 of the elements represented by Cr, Mn, Fe, Co, and Ni (however, And elements other than Pd), and alloys containing a range of elements selected from the periodic table 11-15 elements of the periodic table of elements represented by Cu, Ag, Au, Zn, and Al.
  • alkali metals with strong affinity for hydrogen such as alkali metals such as Li and Na, alkaline earth metals such as Mg and Ca, rare earth metals such as La and Ce, Ti, Periodic table of elements represented by V, etc.
  • Group 3-5 transition metal and Pd group power At least one selected from the group consisting of crystals of the alloy according to [1] or [2] above Grain refining method.
  • the present invention provides an alloy mainly composed of an element having a weak affinity for hydrogen by absorbing and desorbing hydrogen, so that a crystal of several tens of millimeters, which was impossible with the conventional method, was obtained. It offers an innovative way to achieve grain.
  • the crystal grains of the alloy can be refined, and an alloy material having high strength and an alloy material having improved workability can be obtained.
  • FIG. 1 is a correlation diagram between the crystal grain size and the material strength, which indicates that the strength is further increased by refining the crystal grains.
  • FIG. 2 is a powder X-ray diffraction diagram showing appearance phases depending on the treatment temperature after hydrogen absorption treatment of a 7.8 wt% Mg alloy of A alloy.
  • FIG. 3 is a powder X-ray diffraction diagram showing appearance phases depending on a treatment time after hydrogen absorption treatment of a 7.8 wt% Mg alloy.
  • FIG. 5 is a powder X-ray diffraction diagram showing appearance phases depending on a release treatment time after hydrogen absorption and release treatment of a 7.8 wt% Mg alloy.
  • FIG. 6 is a transmission micrograph of a 7.8 wt% Mg alloy after hydrogen absorption / release treatment, and the alloy structure is refined to about 10 nm.
  • FIG. 8 shows the change in the V content of the parent phase with the treatment temperature after the hydrogen absorption treatment of the Fe_10wt% V alloy.
  • FIG. 9 is a transmission micrograph of a Fe-10 wt% V alloy after a hydrogen absorption treatment at 250 ° C., where fine V-containing precipitates of about 10 nm are present.
  • FIG. 10 is a powder X-ray diffraction diagram before, after hydrogen absorption treatment and after hydrogen release treatment of an Fe-10wt% V alloy.
  • FIG. Ll is a powder X-ray diffraction diagram before, after hydrogen absorption, and after hydrogen release treatment of a Cu-5wt% Mg alloy.
  • the present invention provides a technique for subjecting an alloy mainly composed of an element having a low affinity for hydrogen to a hydrogen treatment to refine crystal grains of the alloy.
  • This alloy grain refinement technology includes ultrafine graining technology with a refined grain size of lOnm-l ⁇ m, and in some cases 10 nm-0.5 ⁇ m.
  • Further suitable alloy systems are (A) alloys containing (1) an element having a weak affinity for hydrogen as a main component and (2) containing an element having a strong affinity for hydrogen, and (B) )
  • the alloys of (A) also include alloys which have been subjected to the present hydrogen absorption / hydrogen release treatment to have a refined crystal grain size.
  • This alloy crystal grain refinement technology involves blending an element having a strong affinity for hydrogen by vigorously utilizing the properties of an alloy having an element having a weak affinity for hydrogen as a main constituent element. This includes selecting an appropriate blending amount and selecting a metal species to be blended appropriately, and also includes a technique for selecting processing conditions for the hydrogen absorption / hydrogen release treatment. In short, all alloys that have an element with a low affinity for hydrogen as the main component and that obtain the desired results (techniques, methods, etc.) by applying the alloy grain refinement described in this specification are all It may be included.
  • An element having a low affinity for hydrogen or an alloy composed of only such an element is a force that makes it difficult to absorb hydrogen.
  • an alloy capable of absorbing hydrogen is obtained.
  • the alloy usually forms a single phase solid solution or a mixed phase structure of two or more phases including the solid solution.
  • the present invention provides a technique for refining the crystal grains of an alloy mainly composed of an element having a low affinity for hydrogen.
  • the main component is a V ⁇ element that has a low affinity for hydrogen.
  • heat treatment for absorbing and releasing hydrogen can make the alloy crystal grains ultra-fine, It can be super-strengthened. It is possible to improve the properties of the alloy.
  • the element has a weak affinity for hydrogen!
  • the elements are the periodicities of elements represented by Cr, Mn, Fe, Co, and Ni.
  • Table 6-10 Group elements (however, elements other than Pd) and Cu
  • the group force can be selected from the range of elements in the Periodic Table 11-15 elements of the periodic table of elements represented by Ag, Au, Zn, and Al.
  • the element which has a low affinity for hydrogen in the present alloy may include one kind in the alloy! /, And two or more kinds include more elements. You can! /.
  • Periodic Table of Elements 6 Group 10 elements include Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co,
  • the elements of the 11th to 15th groups of the periodic table include Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi.
  • the main component is selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ag, Au, Zn, Al, etc. Things.
  • Cr-based alloy Mn-based alloy, Fe-based alloy, Co-based alloy, Ni-based alloy, Cu-based alloy, Zn-based alloy, A1-based alloy, Ag-based alloy, Au-based alloy, N-to-Cr-based alloy, N-to-Co-based alloys, Cr-Mn-based alloys, N-to-Fe-based alloys and the like may be included.
  • Elements having a strong affinity for hydrogen include alkali metals such as Li and Na, alkaline earth metals such as Mg and Ca, rare earth metals such as La and Ce, and periods of elements represented by Ti and V. Table 3—Group strength consisting of Group 5 transition metals and Pd ranges can be selected.
  • the alloy having a high affinity for hydrogen to be added to the alloy for the application of the grain refinement technology of the present alloy may include one kind in the alloy, or two or more kinds. It may be included.
  • Examples of the alkali metal element include Li, Na, K, Rb, and Cs.
  • Examples of the alkaline earth metal element include Mg, Ca, Sr, and Ba.
  • transition metals of Group 3-5 of the Periodic Table of Elements include Sc, Y, Ti, Zr, Hf, V, Nb, Ta, rare earth metals, and misch metals.
  • Rare earth metals include lanthanoids and actinoids, and examples of lanthanoids include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Examples include Ac and Th.
  • it can be selected from those that do not adversely affect the base material, and can be appropriately selected in consideration of inexpensive materials, materials having high affinity for hydrogen, and the like.
  • Li It can be selected from the group consisting of Na, Mg, Ca, La, Ce, misch metal, Ti, V, etc.
  • the content of the element having a strong affinity for hydrogen in the alloy system to which the present invention can be applied may be 0.1% or more in total.
  • the content of elements with strong affinity for hydrogen is 0.1-45 wt%, in other cases 0.1-35 wt%, or 0.1-25 wt%, typically 1-145 wt%, in other cases May be 2 to 35 wt%, or 5 to 25 wt%, or even 4 to 25 wt%, and in other cases, 5 to 20 wt%, or 5 to 15 wt%. It is possible to determine an appropriate value as appropriate by conducting experiments in accordance with the disclosure of the above, and it is also possible to change it according to the combination (an element having a low affinity for hydrogen) to be combined, Preferred
  • the alloys to which the present invention can be applied include B, C, Si, N, P, As, O, S, Se, Te, and B in the periodic table of elements as long as the intended purpose, effect, or action can be obtained. It may include one selected from the group consisting of F, C, B, I, and Be. In the case where the present invention is applied to obtain excellent physical properties, the contents of these elements are not particularly limited.
  • Nd-Fe-B-based compound magnets Ti_A V-based alloys, Mg_Al-based alloys, etc. have a strong affinity with hydrogen!
  • For intermetallic compounds containing many elements there are known examples of crystal grain refinement using the method of absorbing and releasing hydrogen.However, alloys mainly composed of elements that have a low affinity for hydrogen are not suitable for hydrogen. There is no disclosure of a specific example based on the absorption / release method of the above.
  • the alloy crystal grain refining technology includes a process of absorbing hydrogen into the alloy. In order for this alloy to absorb hydrogen, the alloy must be placed in a hydrogen atmosphere of at least one atmosphere. Process at 0 ° C-0.8T.
  • the minimum temperature is defined as a value that has a reaction rate at which hydrogen absorption proceeds sufficiently, and the maximum temperature is determined by the alloy phase related to the element having strong affinity with hydrogen contained in each alloy. It is desirable to perform the reaction at a temperature lower than the temperature at which the gasification proceeds.
  • Typical temperature ranges in this hydrogen absorption process include 10-800 ° C, and in some cases, 50-700 ° C, 100-600 ° C, or 200-500 ° C. Of course, an appropriate range can be selected depending on the alloy composition. Examples of suitable temperature ranges for the hydrogen absorption treatment include 200 to 450 ° C, or 300 to 400 ° C.
  • the hydrogen can be subjected to a hydrogen absorption treatment in a hydrogen atmosphere of at least 1 atm.
  • an appropriate value of the pressure of the hydrogen-containing atmosphere or the like can be selected according to an element having a strong affinity for hydrogen.
  • an appropriate value of the pressure of the hydrogen-containing atmosphere or the like can be selected according to an element having a strong affinity for hydrogen.
  • 0.1-20 MPa hydrogen atmosphere, or 0.1-lOMPa hydrogen atmosphere 0.1-5 MPa hydrogen atmosphere, 0.1-IMPa hydrogen atmosphere, 0.2-2 MPa hydrogen atmosphere, 5-lOMPa hydrogen atmosphere, etc.
  • the time taken for the hydrogen absorption treatment may be appropriately set as long as the intended purpose, effect, or action is obtained, or may be set appropriately as appropriate for the target alloy system. It can be set to an appropriate time depending on other conditions such as the hydrogen pressure and the processing temperature.
  • the processing time can be determined taking into account the economics and efficiency.For example, 0.1 hours and 1 month, in some cases 0.5 hours and 12 weeks or 1 hour and 1 week, and in a preferred example, 1 hour and 1 week Hours – 5 days or 1.5 hours – 5 days, typical examples are 10-120 hours, 15-100 hours or 20-75 hours.
  • the present alloy crystal grain refinement technology includes a process of releasing hydrogen from an alloy that has absorbed hydrogen.
  • the above hydrogen-absorbed alloy is subsequently released under a thermodynamic equilibrium pressure, preferably under a hydrogen pressure of 1 atmosphere or less, in a temperature range of 0 ° C-0.8T.
  • hydrogen can be released in the temperature range of 200 ° C-0.8T.
  • Atmosphere should be evacuated if possible, and as much as possible considering crystal grain growth It is desirable to release hydrogen at low temperatures.
  • the crystal grains are refined to 1 m or less.
  • the crystal grain size of the alloy can be reduced to the submicron order, for example, to about 0.1 to 0.2 m.
  • the alloy obtained by the treatment according to the present invention is, for example, one having a refined grain size of 10 nm-1 ⁇ m. Further, examples of the obtained alloy include those having a refined crystal grain size of 0.1 to 0.5 m.
  • Typical examples of alloy systems to which the heat treatment for absorbing and releasing hydrogen of the present invention can be applied are as follows:
  • Mg-based alloy will be described.
  • the amount of Mg can be, for example, 10 wt% or less, and in other cases, it may be about 3 wt%.
  • Strengthening, the Mg content may be 0.1-10 wt%, typically 3-8 wt%, in other cases 3-5 wt%, or 2-4 wt%! / ,.
  • the blending amount of V can be, for example, 15 wt% or less, and in other cases, it can be about 5%.
  • the V content may be 0.1-15 wt%, typically 3-10 wt%, in other cases 4-1 10 wt%, or 416 wt%.
  • the compounding amount of Mg may be, for example, 10 wt% or less, and may be about 6 wt% in another case.
  • the Mg content may be 0.1-10 wt%, typically 3-8 wt%, in other cases 3-6 wt%, or 4-5 wt%.
  • a material in which it is difficult to reduce the crystal grain size of the alloy using the alloy crystal grain size reduction technology of the present invention the crystal grain size can be reduced, or the crystal grain size is extremely reduced. This greatly improves the mechanical properties, such as electromagnetic properties, workability, and hydrogen absorption / desorption characteristics.
  • the material having the fine crystal grains is used as a nanotechnology material by utilizing the fine grains, or the coating particles, catalyst particles, and electrodes are used by utilizing the ultra-fine crystal grains themselves. It is expected that it can be used as a thin wire material, compounding material, etc.
  • alloy powder It can be expected that the properties described above can be significantly improved for the properties near the surface of the alloy and fine wires.
  • the mechanical properties of an alloy (material) 'workability' refers to the mechanical response exhibited by the alloy material and the simplicity of product manufacturing using the alloy material 'reliability'
  • the degree of aesthetics Examples include heat resistance, high temperature strength, corrosion resistance, ultra-high strength, including elastic limit, yield stress, tensile strength, elongation, cross-sectional reduction, hardness, impact value, creep rate, fatigue limit, and so on.
  • the electromagnetic properties may include electrical conductivity, resistance properties, magnetic properties, and the like.
  • the hydrogen storage / release characteristics may include a hydrogen storage / release speed, a hydrogen storage / release temperature, durability, and the like.
  • A1 was selected as an element having a low affinity for hydrogen
  • Mg was selected as an element having a high affinity
  • an alloy powder was prepared for a 7.8 wt% Mg alloy mainly composed of A1.
  • the obtained alloy powder was subjected to a hydrogen absorption treatment under a hydrogen atmosphere of 7.5 MPa in a temperature range of 250 to 450 ° C. for 72 hours.
  • FIG. 2 shows the result of measuring the appearance phase of the obtained alloy by powder X-ray diffraction.
  • FIG. 4 shows a transmission electron microscope image after the hydrogen absorption treatment at 350 ° C., 72 h, and 7.5 MPa.
  • MgO phase resulting from 2 is finely dispersed, and it is considered that this phase was formed by oxidation of the MgH phase during the preparation of the sample for electron microscopic observation. Therefore, MgH is finely dispersed in A1
  • Fig. 5 shows the results of measurement of the appearance phase of the obtained alloy by powder X-ray diffraction. More than 2 hours, it became the same as the appearance phase before hydrogen absorption
  • FIG. 6 shows a transmission electron microscope image of the alloy that has been subjected to the evacuation at 350 ° C. for 4 hours in this hydrogen release treatment. It was clarified that the grain size of the structure of the obtained alloy was reduced to several tens of millimeters.
  • the X-ray powder diffraction pattern after the absorption treatment is shown. MgH phase appeared in all compositions and only 3 wt% in A1
  • a Fe_10wt% V alloy having low affinity for hydrogen, Fe as an element, strong affinity !, V as an element, and Fe as the main composition was selected as the hydrogenation treatment of the present invention at 7.5MPa hydrogen. Hydrogen absorption treatment was performed in an atmosphere at a temperature range of 100 to 450 ° C for 72 hours.
  • FIG. 8 shows the V content of the mother phase of the obtained alloy, which was calculated from the lattice constant of the powder X-ray diffraction measurement.
  • FIG. 9 shows a transmission electron microscope image of the alloy obtained by the hydrogen absorption treatment. It was clarified that about 10 mm fine precipitates containing more V than the parent phase showing white contrast existed.
  • FIG. 10 shows the results of X-ray diffraction measurement of the alloy before the treatment, after the hydrogen absorption treatment at 250 ° C., and subsequently subjected to the hydrogen release treatment by forced exhaustion.
  • the lattice constant was reduced by the hydrogen absorption treatment where the lattice constant before the treatment was 0.2876 nm, and the lattice constant was restored to the original lattice constant of 0.2876 by the hydrogen release treatment.
  • Cu is selected as an element having a low affinity for hydrogen
  • Mg is selected as an element having a high affinity.
  • Cu is mainly composed of a Cu-5% Mg alloy.
  • Fig. 11 shows the results of X-ray diffraction measurement after the hydrogen absorption treatment and the hydrogen release treatment. Before processing It can be seen that a phase with a smaller lattice constant than this phase newly appeared after the hydrogen absorption treatment in which only the Cu-5% Mg phase was observed, and was restored to the original alloy phase by the subsequent hydrogen release treatment. Therefore, a case in which a similar phase change occurs also in this alloy system was obtained.
  • the crystal grain size of an aluminum alloy expected as a lightweight practical alloy can be reduced to the submicron order, for example, to about 0.1-10 / zm, or even more. Can be miniaturized to about 0.05-1.0 / zm.
  • the crystal grain size of a copper alloy expected as a functional practical alloy can be reduced to the submicron order, for example, to about 0.1 to 10 m, or even more. It can be miniaturized to about 0.1-1.5 / zm.
  • the crystal grain size of iron group alloys expected as various functional alloys' superalloys as steel materials is on the order of submicron, for example, 0.01-5. m, or even down to about 0.01-0.2 ⁇ m.
  • the present invention it is possible to reduce the crystal grain size of a material in which it was difficult to reduce the crystal grain size of the alloy, and as a result, mechanical properties such as “electromagnetic properties” and “workability” were reduced. Since it is possible to greatly improve the material, it can be expected to be effective in using promising materials that were difficult to process and use in the past.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

 水素との親和力の弱い元素を主たる構成要素とする合金の結晶粒を微細化する技術を提供する。水素との親和力の弱い元素を主たる構成要素とする合金に対し、水素との親和力の強い元素がそこに存在するようにせしめ、結果、水素との親和力の弱い元素を主たる構成要素とする合金であって且つ水素との親和力の強い元素を含有させてある合金では、該合金を水素吸収放出する熱処理に付すことにより、合金中の結晶粒を超微細化できて、超強度化することができる。該合金の諸性質を改善・向上させることが可能である。

Description

水素処理により合金の結晶粒を微細化する方法
技術分野
[0001] 本発明は、水素との親和力の弱い元素を主たる構成要素とする合金に関し、水素 処理により結晶粒を超微細化する方法とその為の効果的な合金を提供する。
背景技術
[0002] 合金の機械的性質'加工性を改善する方法として結晶粒径の微細化がある。合金 の結晶粒微細化方法として、冷間圧延と再結晶の組み合わせ、 ECAP (Equal C hannel Angular pressing)法、繰り返し重ね圧延などの強ひずみ加工、液体急冷法な どの、高温からの急冷熱処理や機械加工の後に熱処理を施す方法が知られて!/、る。
[0003] しかし、これらの方法を用いた結晶粒微細化方法では結晶粒径が 1 μ m程度であり 、これ以上の結晶粒微細化効果の向上には限界がある。一方、水素との親和力の弱 い元素を主たる構成要素とする合金は、結晶粒微細化により、さらなる高強度化する と予想されている(図 1)。
[0004] 結晶粒微細化の方法として、水素との親和力の強い元素を主元素とした Nd-Fe-B 系化合物磁石、 Ti-A卜 V系合金、 Mg-Al系合金などにおいて、水素を吸放出せしめ る熱処理 (水素吸放出熱処理)を施すことにより結晶粒を微細化する方法が報告され ている。しかし、これまで、水素との親和力の弱い元素を主元素とする合金において 、その方法の有効性は全く確かめられていない。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、水素との親和力の弱い元素を主とした合金に、水素との親和力の強い 元素を含有せしめて、結晶粒微細化効果を発揮せしめる技術を提供することを目的 とする。
[0006] 発明者らは、前記目的を達成すべく種々検討の結果、水素との親和力の弱い元素 を主たる構成成分とする合金であって且つ水素との親和力の強い元素を含有せしめ た合金に対して、絶対温度で表される金属(又は合金)の融点を Tと表した場合に、 該合金を 0°C— 0.8Tの温度範囲で水素雰囲気に合金をおくことで、水素が吸収され て、合金に含まれ且つ水素との親和力の強い元素が該吸収された水素と反応するこ とを見い出した。
[0007] さらに、上記知見による水素を吸収し且つ水素との親和力の弱い元素を主たる構 成要素としている合金から、 0°C— 0.8Tの温度範囲で水素を放出させることで、該合 金の結晶粒径を 1 IX m以下に微細化できることを認めるに至った。
[0008] すなわち、該水素の吸放出熱処理が適用可能な合金系は、水素との親和力の弱 い元素を主とした合金中に、水素との親和力の強い Li、 Naなどのアルカリ金属、 Mg、 Caなどのアルカリ土類金属、 La、 Ceなどの希土類金属、 Ti、 Vなどに代表される元素 の周期表 3— 5族遷移金属および Pd力 なる群力 選択されたものの少なくとも 1種以 上を含むことを特徴とする。
[0009] 本発明では、次なる態様が提供される。
〔1〕 水素との親和力の弱い元素を主たる構成要素とする合金であって且つ水素と の親和力の強い元素を含有させてある合金に対して、合金を 0°C— 0.8Tの温度範 囲 (Tは、絶対温度で表される金属または合金の融点を表す)で水素を吸蔵させ、次 に 0°C— 0.8Tの温度範囲で水素を放出させることを含む、水素を吸放出させる熱処 理を行うことを特徴とする合金の結晶粒微細化方法。
〔2〕 水素の吸放出熱処理が適用可能な合金系として、水素との親和力の弱い元素 としては、 Cr、 Mn、 Fe、 Co、 Niに代表される元素の周期表 6— 10族元素(但し、 Pd以 外の元素)および、 Cu、 Ag、 Au、 Zn、 Alに代表される元素の周期表 11一 15族元素か ら選択された元素の範囲を含有する合金を主とすることを特徴とする上記〔1〕記載の 合金の結晶粒微細化方法。
〔3〕 水素の吸放出熱処理が適用可能な合金系として、水素との親和力の強い Li、 Naなどのアルカリ金属、 Mg、 Caなどのアルカリ土類金属、 La、 Ceなどの希土類金属、 Ti、 Vなどに代表される元素の周期表 3— 5族遷移金属および Pdなる群力 選択され たものの少なくとも 1種以上を含むことを特徴とする上記〔1〕又は〔2〕記載の合金の結 晶粒微細化方法。
〔4〕 上記〔1〕一〔3〕記載の合金の結晶粒微細化方法を行うことにより得られ且つ該 熱処理で合金の結晶粒が微細化せしめられているものであることを特徴とする結晶 粒微細化合金。
発明の効果
[0010] 本発明は、水素との親和力が弱い元素を主たる成分とする合金に対して、水素を 吸放出させることで、従来の方法では不可能とされていた数 10應ー 1 mの結晶粒 を達成できる画期的な方法を提供している。本発明で処理することにより、合金の結 晶粒を微細化でき、高強度化された合金材料、加工性の改善された合金材料を得る ことが可能である。
[0011] 本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当 業者にとっては明白であろう。し力しながら、以下の記載及び具体的な実施例等の記 載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のた めにのみ示されて 、るものであることを理解された!、。本明細書に開示した本発明の 意図及び範囲内で、種々の変化及び Z又は改変(あるいは修飾)をなすことは、以 下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明ら かであろう。
図面の簡単な説明
[0012] [図 1]図 1は、結晶粒微細化によりさらなる高強度化することを示す結晶粒径と材料強 度の相関図である。
[図 2]A卜 7.8wt%Mg合金の水素吸収処理した後の処理温度による出現相を示す粉末 エックス線回折図である。
[図 3]A卜 7.8wt%Mg合金の水素吸収処理した後の処理時間による出現相を示す粉末 エックス線回折図である。
[図 4]A卜 7.8wt%Mg合金水素吸収処理した後の透過顕微鏡写真であり、微細な MgH
2 相が存在する。
[図 5]A卜 7.8wt%Mg合金の水素吸放出処理した後の放出処理時間による出現相を示 す粉末エックス線回折図である。
[図 6]A卜 7.8wt%Mg合金の水素吸放出処理した後の透過顕微鏡写真であり、約 10nm に合金組織が微細化する。 [図 7]A卜 x wt%Mg合金 (x=3, 5, 7.8)の水素吸収処理した後の出現相を示す粉末エツ タス線回折図である。全ての組成で MgH相が出現し本処理方法が有効であることを
2
示している
[図 8]Fe_10wt%V合金を水素吸収処理した後の処理温度による母相の V含有量の変 化を示す。
[図 9]Fe-10wt%V合金を 250°C水素吸収処理した後の透過顕微鏡写真であり、約 10nmの微細な V含有析出物が存在する。
[図 10]Fe-10wt%V合金の処理前、水素吸収処理後および水素放出処理後の粉末ェ ックス線回折図である。
[図 ll]Cu-5wt%Mg合金の処理前、水素吸収処理後および水素放出処理後の粉末ェ ックス線回折図である。
発明を実施するための最良の形態
[0013] 本発明は、水素との親和力の弱い元素を主たる構成要素とする合金を、水素処理 することにより、その合金の結晶粒を微細化する技術を提供する。本合金結晶粒微 細化技術には、微細化された結晶粒径力 lOnm-l ^ m,ある場合には 10nm— 0.5 μ mである結晶粒超微細化技術が包含されるものであり、さらにそれに適した合金系 、すなわち、 (A)(1)水素との親和力の弱い元素を主な構成要素とし且つ (2)水素との 親和力の強い元素を含有させてある、合金、並びに (B)該 (A)の合金系で本水素吸収 •水素放出処理されて微細化された結晶粒径を有することになつている合金をも包含 する。本合金結晶粒微細化技術は、水素との親和力の弱い元素を主たる構成要素と する合金の有する特性を活力ゝして、水素との親和力の強 ヽ元素を配合することを含 む、すなわち、適切な配合量を選択したり、適切な配合すべき金属種を選択すること を含むし、該水素吸収 ·水素放出処理の処理条件と選択する技術も含んでいる。要 は、水素との親和力の弱い元素を主たる構成要素とする合金が、本明細書で説明す る合金結晶粒微細化を適用されて、所望の結果を得るもの(技術,方法など)すべて が含まれるものであってよ 、。
[0014] 水素との親和力の弱い元素単体もしくは、そのような元素のみで構成される合金に 水素を吸収させることは困難である力 それらに水素との親和力の強い元素を、例え ば、 0.1wt%以上含有させることで、水素吸収可能な合金とする。この合金は、通常、 固溶体 1相または固溶体を含む 2相以上の混相組織を形成する。本発明は、水素と の親和力の弱い元素を主たる構成要素とする合金の結晶粒を微細化する技術を提 供する。水素との親和力の弱い元素を主たる構成要素とする合金に対し、水素との 親和力の強い元素や相がそこに存在するようにせしめ、結果、水素との親和力の弱 Vヽ元素を主たる構成要素とする合金であって且つ水素との親和力の強!、元素を含 有させてある合金では、該合金を水素吸収放出する熱処理に付すことにより、合金 中の結晶粒を超微細化できて、超強度化するなどのことができる。該合金の諸性質 を改善 ·向上させることが可能である。
[0015] 水素との親和力の弱!、元素としては、 Cr、 Mn、 Fe、 Co、 Niに代表される元素の周期 表 6— 10族元素(但し、 Pd以外の元素である)および、 Cu、 Ag、 Au、 Zn、 Alに代表さ れる元素の周期表 11一 15族元素の範囲からなる群力 選択されることができる。本 合金を構成する水素との親和力の弱い元素は、該合金中に一種のものが含まれるも のであってもよ!/、し、二種ある 、はそれ以上のものが含まれるものであってもよ!/、。
[0016] 元素の周期表 6— 10族元素としては、 Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co,
Rh, Ir, Ni, Ptなどが挙げられる。元素の周期表 11一 15族元素としては、 Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Biなどが挙げられる。典型的には、構造 材としての利用の上からは、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ag、 Au、 Zn、 Alなどからなる群 力 選択されたものを主な構成要素とするものが挙げられる。力べして、 Cr基合金、 Mn基合金、 Fe基合金、 Co基合金、 Ni基合金、 Cu基合金、 Zn基合金、 A1基合金、 Ag 基合金、 Au基合金、 Nト Cr基合金、 Nト Co基合金、 Cr- Mn基合金、 Nト Fe基合金など が含まれてよい。
[0017] 水素と親和力の強い元素としては、 Li、 Naなどのアルカリ金属、 Mg、 Caなどのアル カリ土類金属、 La、 Ceなどの希土類金属、 Ti、 Vなどに代表される元素の周期表 3— 5族遷移金属および Pdの範囲からなる群力 選択されることができる。本合金結晶粒 微細化技術適用のため合金に配合される水素と親和力の強い元素は、該合金中に 一種のものが含まれるものであってもよ 、し、二種あるいはそれ以上のものが含まれ るものであってもよい。 [0018] アルカリ金属元素としては、 Li, Na, K, Rb, Csなどが挙げられる。アルカリ土類金属 元素としては、 Mg, Ca, Sr, Baなどが挙げられる。元素の周期表 3— 5族遷移金属とし ては、 Sc, Y, Ti, Zr, Hf, V, Nb, Ta,希土類金属、ミッシュメタルなどが挙げられる。希 土類金属は、ランタノイド、ァクチノイドを含み、ランタノイドとしては、 La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luが挙げられ、ァクチノイドとしては、 Ac, Thなどが挙げられる。典型的には、母材に悪影響を及ぼさないものより選択できるし 、価格の安いもの、水素との親和性の高いものなどを考慮して適宜選択できるが、好 適には、例えば、 Li、 Na、 Mg、 Ca、 La、 Ce、ミッシュメタル、 Ti、 Vなどからなる群から選 択されることができる。
[0019] 本発明が適用できる合金系における水素と親和力の強い元素の含有量は、総量で 、 0.1 %以上であればよい。ある場合には、その水素と親和力の強い元素の含有量 は、 0.1— 45wt%、別の場合には 0.1— 35wt%、あるいは 0.1— 25wt%、代表的には 1一 45wt%、別の場合には 2— 35wt%、あるいは 5— 25wt%、さらには 4一 25wt%、別の場合に は 5— 20wt%、あるいは 5— 15wt%などであってもよいし、該量は、本明細書の開示に従 つて実験を行って、適宜、適切な値を決定することが可能であるし、組み合わせる相 手 (水素との親和力の弱い元素)に応じてそれを変えることも可能であるし、好ましい
[0020] 本発明を適用できる合金は、所期の目的,効果あるいは作用が得られる限り、元素 の周期表の、 B, C, Si, N, P, As, O, S, Se, Te, F, C, B, I, Beからなる群から選択され ものが含まれていてもよい。本発明を適用して、優れた物性のものが得られる場合に あっては、これらの元素の含有量は特に限定されな 、。
[0021] 上述の通り、 Nd-Fe-B系化合物磁石、 Ti_A卜 V系合金、 Mg_Al系合金など、水素と の親和力の強!、元素を主とした合金や水素との親和力の強!、元素を多く含む金属 間化合物においては、これまで水素の吸放出方法を利用した結晶粒の微細化に関 する公知例はあるものの、水素との親和力の弱い元素を主とした合金について、水 素の吸放出方法による具体例を開示するものはない。
[0022] 本合金結晶粒微細化技術は、合金に水素を吸収せしめる処理を含んで 、る。この 合金に水素を吸収させるために、少なくとも 1気圧以上の水素雰囲気下に合金をお き、 0°C— 0.8T の温度範囲で処理を施す。最低温度は水素吸収が十分に進行する 反応速度を有する値で規定され、最高温度はそれぞれの合金に含有される水素と親 和力の強い元素に関連する合金相が、印加水素圧力下で水素化が進行する温度以 下の範囲で行うことが望まし 、。本水素吸収工程における代表的な温度範囲として は、 10— 800°C、ある場合には、 50— 700°C、あるいは 100— 600°C、又は 200— 500°C などが挙げられるが、対象合金組成に応じて、適切な範囲を選択できることはもちろ んである。好適な水素吸収処理の温度範囲の例としては、 200— 450°C、あるいは 300 一 400°Cなどが挙げられる。
[0023] 当該水素については、少なくとも 1気圧以上の水素雰囲気下で水素吸収処理がで きるが、水素と親和力の強い元素に応じて水素含有雰囲気の圧力などは、適切な値 を選択できる。例えば、 0.1— 20MPa水素雰囲気、あるいは 0.1— lOMPa水素雰囲気、 0.1— 5MPa水素雰囲気、 0.1— IMPa水素雰囲気、 0.2— 2MPa水素雰囲気、 5— lOMPa水素雰囲気と 、つた条件が採用できるし、好ま 、場合もある。
[0024] 本水素吸収処理に付す時間としては、所期の目的 ·効果あるいは作用が得られる 限り、適宜、適切な時間とすることが可能であるし、対象合金系に応じて、適宜、適切 な時間とすることができるし、他の水素圧とか処理温度などの条件に応じて、適宜、 適切な時間とすることができる。処理時間は、経済性、効率性を勘案しても、それを 決定でき、例えば、 0.1時間一 1ヶ月、ある場合には 0.5時間一 2週間あるいは 1時間一 1週間、好適な例では、 1時間一 5日間あるいは 1.5時間一 5日間、代表的な例では、 10— 120時間あるいは 15— 100時間とか 20— 75時間などが挙げられる。
[0025] この合金が水素を吸収することにより、水素と親和力の強い元素に関連する合金相 の一部または全てが、水素化物または水素固溶体相を形成するような化学反応が進 行することが望ましい。
[0026] 本合金結晶粒微細化技術は、水素を吸収した合金から、水素を放出せしめる処理 を含んでいる。例えば、上記の水素吸収した合金を、引き続き熱力学的平衡圧力以 下で可能ならば水素圧 1気圧以下の条件下において、 0°C— 0.8Tの温度範囲で水 素を放出させる。もちろん、 200°C— 0.8T の温度範囲で水素を放出させることもでき る。雰囲気は可能ならば真空排気が望ましい、また結晶粒成長を考慮し、出来るだけ 低温度で水素を放出させることが望ま 、。
[0027] 上述のようにして、水素を吸放出させた合金は、水素吸収反応前と同様の出現相 に一部または全てが再形成されることが望ま U 、。
[0028] 上述のようにして、水素を吸収させることにより、合金中に水素化物または水素固溶 体相が形成され、水素放出後は水素吸収反応前と同様の出現相に一部または全て が再形成されることにより、結晶粒が 1 m以下に微細化される。本発明を適用するこ とにより、合金の結晶粒径をサブミクロンオーダー、例えば、 0.1— 0.2 m程度まで微 細化できる。ある場合には、本発明で処理して得られた合金は、例えば、微細化され た結晶粒径力 10nm— 1 μ mであるものである。また、得られた合金としては、例えば 、微細化された結晶粒径力 0.1— 0.5 mであるものが挙げられる。
[0029] 本発明の水素の吸放出熱処理が適用可能な合金系として、代表的な例である、
A卜 Mg系合金について説明する。本 A卜 Mg系合金においては、 Mgの配合量は、例え ば、 10wt%以下とすることができ、別の場合には 3wt%程度であってよい。力くして、 Mg 含有量は、 0.1— 10wt%、代表的には 3— 8wt%、別の場合には 3— 5wt%、あるいは 2— 4wt%などであってもよ!/、。
[0030] 同様に、 Fe-V系合金においては、 Vの配合量は、例えば、 15wt%以下とすることが でき、別の場合には 5 %程度であってよい。力べして、 Vの含有量は、 0.1— 15wt%、代 表的には 3— 10wt%、別の場合には 4一 10wt%、あるいは 4一 6wt%などであってもよい。
[0031] また、 Cu-Mg系合金においては、 Mgの配合量は、例えば、 10wt%以下とすることが でき、別の場合には 6wt%程度であってよい。力くして、 Mg含有量は、 0.1— 10wt%、代 表的には 3— 8wt%、別の場合には 3— 6wt%、あるいは 4一 5wt%などであってもよい。
[0032] 本発明の合金結晶粒径微細化技術で、合金の結晶粒径の微細化が困難であった 材料を、結晶粒径微細化できたり、極めて結晶粒径が微細化されているものにするこ とができ、機械的性質 '電磁気的性質,加工性 ·水素吸放出特性などを大幅に改善- 向上することが可能となる。また、当該微細化された結晶粒を有する材料を、微細粒 であることを利用して、ナノテクノロジー用材料としたり、超微細化結晶粒そのものを 利用して、コーティング粒子、触媒粒子、電極用細線材料、配合成分材料などとして も利用可能と期待される。また、本発明の合金結晶粒径微細化技術で、合金粉末、 合金の表面近傍、細線などを対象にして、上記したような性状 '特性などを大幅に改 善'向上することができると期待できる。
[0033] 本明細書で合金 (材料)の機械的性質'加工性とは、その合金材料が示す力学的 応答やそれを使用しての製品製造の簡便さ '信頼性'審美性の程度を指してよぐ例 えば、弾性限界,降伏応力、引張り強さ、伸び、断面減少率、硬さ、衝撃値、クリープ 速度、疲労限界などが含まれてよぐ耐熱性、高温強度、耐食性、超硬性、耐脆性破 壊性、耐疲労性、耐低温脆性、超塑性、溶接性、耐候性、プレス加工性,意匠性、印 刷性,耐指紋性、潤滑性、接着性、耐磨耗性、耐久性、材料の信頼性向上に関連し た性状を指していてもよい。また、電磁気的性質とは、電気伝導性、抵抗特性、磁気 特性などが含まれていてよい。また水素吸放出特性とは、水素吸蔵又は放出速度、 水素吸蔵又は放出温度、耐久性などが含まれてもよい。
[0034] 本明細書において、「元素の周期表」とは、 1989年に国際純正応用化学連合会 (International Union of Pure Applied Chemistry: IUPAC)の無機化学命名法の改訂 にともない採用された表記方法に従ったものを指す。
実施例
[0035] 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の 説明のため、その具体的な態様の参考のために提供されているものである。これらの 例示は、本願で開示する発明の範囲を限定したり、あるいは制限することを表すもの ではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であること は理解されるべきである。
[0036] 全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用いて実施し たもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なも のである。
[0037] 水素と親和力の弱い元素として A1を、親和力の強い元素として Mgを選択し、 A1を主 たる組成 A卜 7.8wt%Mg合金について、合金粉末を作製した。得られた合金粉末を 7.5MPa水素雰囲気下、 250— 450°Cの温度範囲で 72時間の水素吸収処理を施した。 得られた合金の出現相を粉末エックス線回折により測定した結果を図 2に示す。 300 一 400°Cの温度範囲の水素雰囲気に A卜 7.8wt%Mg合金を供することにより、 MgH相 が出現し、固溶している Mgが MgHに水素化し、合金は A1と MgHに不均化することが
2 2
明らかとなった。
[0038] 次に水素化の進行する 350°Cにおいて 24— 72時間の水素吸収処理を施し、最適時 間を求めた。得られた合金の出現相を粉末エックス線回折により測定した結果を図 3 に示す。時間を増加させることによる A1の格子定数の変化から、 A1固溶体相の Mg含 有量も変化していることが明ら力となった。特に 24時間以上の水素雰囲気処理により A卜 7.8wt%Mg合金中の Mg量が減少して!/、ることが、 A1合金の格子定数力 推測でき る(表 1)。
[0039] [表 1] 水素吸収処理時間による AIの格子定数の変化と Mg固溶量
Figure imgf000012_0001
[0040] 350°C、 72h、 7.5MPaの水素吸収処理後の透過電子顕微鏡像を図 4に示す。 MgH
2 に起因する MgO相が微細に分散して 、るが、この相は電子顕微鏡観察用の試料作 製中に MgH相が酸化されて形成されたと考えられる。従って MgHは A1中に微細に
2 2
分散していると判断される。
[0041] 水素吸収処理に引き続き 350°C、 30分一 5時間の真空排気により、合金における水 素の放出処理を行った。得られた合金の出現相を粉末エックス線回折により測定し た結果を図 5に示す。 2時間以上で水素吸収前の出現相と同様となることが分力つた
[0042] この水素放出処理を 350°C、 4時間の真空排気を施した合金の透過電子顕微鏡像 を図 6に示す。得られた合金の組織の結晶粒径は数 10應まで微細化されることが明 らかとなつた。
[0043] 本発明の例として、 350°Cで水素を吸蔵させ、 350°Cで水素を放出させる事例を示し たが、水素化物を微細に分散させ、出来るだけ低温度で水素を放出させれば結晶粒 はさらに微細化する。
[0044] 本発明が水素と親和力の低い元素の含有量が少なくとも有効である事例として、図 7に Mg量を変化させた A卜 X wt%Mg合金 (x=3, 5, 7.8)の水素吸収処理した後の粉末 エックス線回折図を示す。全ての組成で MgH相が出現し、 A1中に 3wt%というわずか
2
な Mg量でも本処理方法が有効であることを示して 、る。さらに X線回折測定結果から 、その後の水素放出熱処理により、合金の格子定数は水素処理前の値に戻ることか ら、水素化物を形成した Mg元素は、元の合金組成に再固溶することが分力つた。 Mg 力 S3wt%でも、本発明が有効であることが分かる。
[0045] 水素と親和力の弱!、元素として Feを、親和力の強!、元素として Vを選択し、 Feを主 たる組成とする Fe_10wt%V合金について、本発明の水素化処理として 7.5MPa水素雰 囲気下、 100— 450°Cの温度範囲で 72時間の水素吸収処理を施した。得られた合金 の粉末エックス線回折測定の格子定数より算出した母相の V含有量を図 8に示す。 250°Cの水素雰囲気に Fe-10wt%V合金を供することにより、他の処理温度と比較し、 顕著に母相の V含有量が減少することが分力つた。これより 250°Cの水素吸収処理に よって Fe-10wt%V合金相から Feより原子半径の大きな Vを多く含む相が析出したこと が分かった。水素吸収処理により得られた合金の透過電子顕微鏡像を図 9に示す。 白いコントラストを示す母相より Vを多く含む約 10應の微細な析出物が存在すること が明らかとなった。
[0046] 処理前および 250°Cの水素吸収処理後、およびこれに引き続き強制排気による水 素放出処理を施した合金のエックス線回折測定の結果を図 10に示す。処理前の格 子定数が 0.2876nmであった力 水素吸収処理により図 8の通り格子定数が減少し、 その後の水素放出処理によりもとの格子定数である 0.2876應に復元したことが分か つた。これは、水素吸収処理により水素親和力の強い V元素を多く含む相が析出し、 その後の水素放出処理によって、この析出相が消失し、もとの合金組成に復元可能 なことを示す事例である。
[0047] これらの他の合金の事例として、水素と親和力の弱!、元素として Cuを、親和力の強 い元素として Mgを選択し、 Cuを主たる組成 Cu-5%Mg合金について、処理前、水素吸 収処理後、水素放出処理後のエックス線回折測定の結果を図 11に示す。処理前に は Cu-5%Mg相のみが観察された力 水素吸収処理後にこの相より格子定数の小さな 相が新たに出現し、引き続く水素放出処理によって元の合金相に復元していることが わかる。よってこの合金系についても、同様の相変化が生じる事例が得られた。
[0048] 本発明の合金の結晶粒微細化技術を実施することで、軽量実用合金として期待さ れるアルミニウム合金の結晶粒径をサブミクロンオーダー、例えば、 0.1— 10 /z m程度 まで、あるいは、さらには 0.05— 1.0 /z m程度まで微細化できる。また、本発明の合金 の結晶粒微細化技術を実施することで、機能性実用合金として期待される銅合金の 結晶粒径をサブミクロンオーダー、例えば、 0.1— 10 m程度まで、あるいは、さらに は 0.1— 1.5 /z m程度まで微細化できる。同様に、本発明の合金の結晶粒微細化技術 を実施することで、鋼材として様々な機能性合金'超合金として期待される鉄族合金 の結晶粒径をサブミクロンオーダー、例えば、 0.01— 5 m程度まで、あるいは、さらに は 0.01— 0.2 μ m程度まで微細化できる。
[0049] 本発明によれば、合金の結晶粒径の微細化が困難であった材料を、結晶粒微細 化することが可能であり、その結果、機械的性質'電磁気的性質'加工性などを大幅 に改善することが可能となるので、従来加工'利用などが困難であった有望視された 材料の利用を図るのに有効であると期待できる。
産業上の利用可能性
[0050] 軽量化、高機能化、超強度、美観触感性などの観点から、新規材料の開発が強く 求められ、その観点から有望視される合金材料でありながら、その製造'加工などが 困難なことから利用 ·応用ができな力つたものに付き、合金の結晶粒径の微細化を図 ることにより、そうした問題を解決できることとなり、広範な合金材料応用の途が拓ける 。本発明により、水素との親和力の弱い元素を主たる構成要素とする合金の機械的 性質'加工性などを改善できるようになるので、様々な応用に使用可能となる。
[0051] 本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らか である。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従って それらも本件添付の請求の範囲の範囲内のものである。

Claims

請求の範囲
[1] 水素との親和力の弱 、元素を主たる構成要素とする合金であって且つ水素との親 和力の強い元素を含有させてある合金に対して、合金を 0°C— 0.8Tの温度範囲 (T は、絶対温度で表される金属または合金の融点を表す)で水素を吸蔵させ、次に 0°C 一 0.8Tの温度範囲で水素を放出させることを含む、水素を吸放出させる熱処理を行 うことを特徴とする合金の結晶粒微細化方法。
[2] 水素の吸放出熱処理が適用可能な合金系として、水素との親和力の弱い元素とし ては、 Cr、 Mn、 Fe、 Co、 Niに代表される元素の周期表 6— 10族元素(但し、 Pd以外 の元素)および、 Cu、 Ag、 Au、 Zn、 Alに代表される元素の周期表 11一 15族元素から 選択された元素の範囲を含有する合金を主とすることを特徴とする請求項 1記載の 合金の結晶粒微細化方法。
[3] 水素の吸放出熱処理が適用可能な合金系として、水素との親和力の強い Li、 Naな どのアルカリ金属、 Mg、 Caなどのアルカリ土類金属、 La、 Ceなどの希土類金属、 Ti、 Vなどに代表される元素の周期表 3— 5族遷移金属および Pdなる群力 選択されたも のの少なくとも 1種以上を含むことを特徴とする請求項 1又は 2記載の合金の結晶粒 微細化方法。
[4] 水素との親和力の弱!、元素を主たる構成要素とする合金であって且つ水素との親 和力の強い元素を含有させてある合金であり、該合金に対して、合金を 0°C— 0.8T の温度範囲 (Tは、絶対温度で表される金属または合金の融点を表す)で水素を吸 蔵させ、次に 0°C— 0.8Tの温度範囲で水素を放出させることを含む、水素を吸放出 させる熱処理を行うことにより得られ且つ該熱処理で合金の結晶粒が微細化せしめら れているものであることを特徴とする結晶粒微細化合金。
[5] 水素の吸放出熱処理が適用可能な合金系として、水素との親和力の弱い元素とし ては、 Cr、 Mn、 Fe、 Co、 Niに代表される元素の周期表 6— 10族元素(但し、 Pd以外 の元素)および、 Cu、 Ag、 Au、 Zn、 Alに代表される元素の周期表 11一 15族元素から 選択された元素の範囲を含有する合金を主とすることを特徴とする請求項 4記載の 合金。
[6] 水素の吸放出熱処理が適用可能な合金系として、水素との親和力の強い Li、 Naな どのアルカリ金属、 Mg、 Caなどのアルカリ土類金属、 La、 Ceなどの希土類金属、 Ti、 Vなどに代表される元素の周期表 3— 5族遷移金属および Pdなる群力 選択されたも のの少なくとも 1種以上を含むことを特徴とする請求項 4又は 5記載の合金。
微細化された結晶粒径力 10nm— 10 mであることを特徴とする請求項 4一 6のい ずれか一に記載の合金。
PCT/JP2005/005587 2004-04-08 2005-03-25 水素処理により合金の結晶粒を微細化する方法 WO2005098071A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05721514A EP1749896A4 (en) 2004-04-08 2005-03-25 PROCESS FOR ATOMIZING ALLOY CRYSTAL GRAIN BY HYDROGEN TREATMENT
JP2006512039A JPWO2005098071A1 (ja) 2004-04-08 2005-03-25 水素処理により合金の結晶粒を微細化する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004113782 2004-04-08
JP2004-113782 2004-04-08

Publications (1)

Publication Number Publication Date
WO2005098071A1 true WO2005098071A1 (ja) 2005-10-20

Family

ID=35125103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005587 WO2005098071A1 (ja) 2004-04-08 2005-03-25 水素処理により合金の結晶粒を微細化する方法

Country Status (5)

Country Link
US (1) US20070006950A1 (ja)
EP (1) EP1749896A4 (ja)
JP (1) JPWO2005098071A1 (ja)
CN (1) CN1942600A (ja)
WO (1) WO2005098071A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136706A1 (fr) 2009-05-29 2010-12-02 bioMérieux Nouveau procede de quantification de proteines par spectrometrie de masse
WO2011036378A1 (fr) 2009-09-25 2011-03-31 bioMérieux Procede de detection de molecules par spectrometrie de masse
WO2011045544A2 (fr) 2009-10-15 2011-04-21 bioMérieux Procede de caracterisation d'au moins un microorganisme par spectrometrie de masse
WO2012143534A2 (fr) 2011-04-21 2012-10-26 Biomerieux Inc. Procede de detection d'au moins un mecanisme de resistance aux cephalosporines par spectrometrie de masse
WO2012143535A2 (fr) 2011-04-21 2012-10-26 Biomerieux Inc. Procede de detection d'au moins un mecanisme de resistance aux carbapenemes par spectrometrie de masse
WO2013038022A1 (fr) 2011-09-16 2013-03-21 bioMérieux Procede de caracterisation de bacteries, par detection de proteines non-structurales de bacteriophages
WO2013164427A1 (fr) 2012-05-03 2013-11-07 Biomerieux Procédé d'obtention de peptides
KR20140138331A (ko) * 2010-10-13 2014-12-03 캐논 덴시 가부시키가이샤 금속재의 제조 방법 및 금속재
US9874570B2 (en) 2011-04-21 2018-01-23 Biomerieux, Inc. Method of detecting at least one mechanism of resistance to cephalosporins by mass spectrometry
CN107815561A (zh) * 2017-10-24 2018-03-20 王书杰 钛合金制备方法
WO2023285653A2 (en) 2021-07-15 2023-01-19 Universite Claude Bernard Lyon 1 Identification of microorganisms based on identification of peptides using a liquid separation device coupled with a mass spectrometer and processing means

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120111B (zh) 2004-12-07 2012-02-22 昆士兰州大学 用于储氢的镁合金
JP5993307B2 (ja) 2010-02-24 2016-09-14 ハイドレキシア ピーティーワイ リミテッド 水素放出システム
CN103680793B (zh) * 2013-12-19 2016-01-20 南京信息工程大学 一种含铑高磁能积功能材料及其制备方法
CN103882253A (zh) * 2014-04-16 2014-06-25 黄学志 稀土无氧铜基合金及其生产工艺
CN107848027A (zh) 2015-07-23 2018-03-27 海德瑞克斯亚股份有限公司 用于储氢的Mg基合金
JP7187920B2 (ja) * 2018-09-21 2022-12-13 住友金属鉱山株式会社 多結晶希土類遷移金属合金粉末およびその製造方法
CN109128172B (zh) * 2018-11-07 2021-01-01 沈阳航空航天大学 一种细化增材制造钛合金晶粒的方法
CN112322924B (zh) * 2020-10-16 2022-05-20 中南大学 一种无氧铜、制备方法及应用
CN114507787B (zh) * 2020-11-17 2022-12-20 上海交通大学包头材料研究院 细化铝合金铸态组织的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180801A (ja) * 1997-09-05 1999-03-26 Sanyo Electric Co Ltd 多結晶水素吸蔵合金粒子の製法
JP2001131723A (ja) * 1999-11-11 2001-05-15 Daido Steel Co Ltd チタン合金製鋳造材の延性改善方法
JP2002118010A (ja) * 1998-03-27 2002-04-19 Toshiba Corp 磁石材料とそれを用いたボンド磁石
JP2002180174A (ja) * 2000-12-14 2002-06-26 Japan Metals & Chem Co Ltd Mg系高吸蔵量水素吸蔵合金
JP2003193208A (ja) * 2001-12-28 2003-07-09 Toshiba Corp 磁石材料及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348918A (en) * 1976-10-16 1978-05-02 Agency Of Ind Science & Technol Mm ni5-xcox material for storing hydrogen
EP0750050A4 (en) * 1993-12-22 1997-09-24 Toshiba Kk HYDROGEN ABSORBENT ALLOY AND ALKALINE SECONDARY CELL USING THIS
JPH1131610A (ja) * 1997-07-11 1999-02-02 Mitsubishi Materials Corp 磁気異方性に優れた希土類磁石粉末の製造方法
CN1144240C (zh) * 1998-03-27 2004-03-31 东芝株式会社 磁性材料
US6444052B1 (en) * 1999-10-13 2002-09-03 Aichi Steel Corporation Production method of anisotropic rare earth magnet powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180801A (ja) * 1997-09-05 1999-03-26 Sanyo Electric Co Ltd 多結晶水素吸蔵合金粒子の製法
JP2002118010A (ja) * 1998-03-27 2002-04-19 Toshiba Corp 磁石材料とそれを用いたボンド磁石
JP2001131723A (ja) * 1999-11-11 2001-05-15 Daido Steel Co Ltd チタン合金製鋳造材の延性改善方法
JP2002180174A (ja) * 2000-12-14 2002-06-26 Japan Metals & Chem Co Ltd Mg系高吸蔵量水素吸蔵合金
JP2003193208A (ja) * 2001-12-28 2003-07-09 Toshiba Corp 磁石材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1749896A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170263B2 (en) 2009-05-29 2015-10-27 Biomerieux Method for quantifying proteins by mass spectrometry
WO2010136706A1 (fr) 2009-05-29 2010-12-02 bioMérieux Nouveau procede de quantification de proteines par spectrometrie de masse
WO2011036378A1 (fr) 2009-09-25 2011-03-31 bioMérieux Procede de detection de molecules par spectrometrie de masse
WO2011045544A2 (fr) 2009-10-15 2011-04-21 bioMérieux Procede de caracterisation d'au moins un microorganisme par spectrometrie de masse
US10077461B2 (en) 2009-10-15 2018-09-18 Biomerieux S.A. Method for characterizing at least one microorganism by means of mass spectrometry
US9627108B2 (en) 2010-10-13 2017-04-18 Canon Denshi Kabushiki Kaisha Method and apparatus for manufacturing metal material and metal material
KR101658300B1 (ko) * 2010-10-13 2016-09-22 캐논 덴시 가부시키가이샤 금속재의 제조 방법 및 금속재
KR20140138331A (ko) * 2010-10-13 2014-12-03 캐논 덴시 가부시키가이샤 금속재의 제조 방법 및 금속재
US9874568B2 (en) 2011-04-21 2018-01-23 Biomerieux, Inc. Method of detecting at least one mechanism of resistance to carbapenems by mass spectrometry
US9506932B2 (en) 2011-04-21 2016-11-29 Biomerieux, Inc. Method of detecting at least one mechanism of resistance to cephalosporins by mass spectrometry
US9551020B2 (en) 2011-04-21 2017-01-24 Biomerieux, Inc. Method of detecting at least one mechanism of resistance to carbapenems by mass spectrometry
EP3156496A1 (fr) 2011-04-21 2017-04-19 Biomérieux Inc. Procede de detection d'au moins un mecanisme de resistance aux cephalosporines par spectrometrie de masse
US9874570B2 (en) 2011-04-21 2018-01-23 Biomerieux, Inc. Method of detecting at least one mechanism of resistance to cephalosporins by mass spectrometry
WO2012143535A2 (fr) 2011-04-21 2012-10-26 Biomerieux Inc. Procede de detection d'au moins un mecanisme de resistance aux carbapenemes par spectrometrie de masse
WO2012143534A2 (fr) 2011-04-21 2012-10-26 Biomerieux Inc. Procede de detection d'au moins un mecanisme de resistance aux cephalosporines par spectrometrie de masse
WO2013038022A1 (fr) 2011-09-16 2013-03-21 bioMérieux Procede de caracterisation de bacteries, par detection de proteines non-structurales de bacteriophages
WO2013164427A1 (fr) 2012-05-03 2013-11-07 Biomerieux Procédé d'obtention de peptides
US10190148B2 (en) 2012-05-03 2019-01-29 bioMérieux Method for obtaining peptides
US10407711B2 (en) 2012-05-03 2019-09-10 bioMérieux Method for obtaining peptides
CN107815561A (zh) * 2017-10-24 2018-03-20 王书杰 钛合金制备方法
WO2023285653A2 (en) 2021-07-15 2023-01-19 Universite Claude Bernard Lyon 1 Identification of microorganisms based on identification of peptides using a liquid separation device coupled with a mass spectrometer and processing means

Also Published As

Publication number Publication date
EP1749896A1 (en) 2007-02-07
JPWO2005098071A1 (ja) 2008-02-28
US20070006950A1 (en) 2007-01-11
CN1942600A (zh) 2007-04-04
EP1749896A4 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2005098071A1 (ja) 水素処理により合金の結晶粒を微細化する方法
JP6839213B2 (ja) ボロンドーピングされた高エントロピー合金およびその製造方法
CN100383271C (zh) 高强耐热稀土镁合金
Straumal et al. Diffusive and displacive phase transitions in Ti–Fe and Ti–Co alloys under high pressure torsion
WO2006036033A1 (ja) 高強度高靭性金属及びその製造方法
Hwang et al. Compressive mechanical properties of Mg-Ti-C nanocomposite synthesised by mechanical milling
JP2014512452A5 (ja)
JP2018110162A (ja) 希土類磁石及びその製造方法
CN111004957B (zh) 一种非等原子比高熵合金及其制备方法
Adelfar et al. Amorphization and mechano-crystallization of high-energy ball milled FeTi alloys
Lityńska-Dobrzyńska et al. Microstructure and mechanical properties of aluminium matrix composites reinforced by Al62Cu25. 5Fe12. 5 melt spun ribbon
Yamabe-Mitarai et al. Phase stability of Ti-containing high-entropy alloys with a bcc or hcp structure
Yi et al. The microstructure and martensitic transformation behaviors in Ti-Ni-Hf-X (Ag, Sn) high temperature shape memory alloys
WO2012160956A1 (ja) 医療用具用複合材料およびその製造方法
Ao et al. Microstructure and mechanical properties of zinc matrix composites reinforced with copper coated multiwall carbon nanotubes
Young et al. Studies of Ti1. 5Zr5. 5V0. 5 (MxNi1− x) 9.5 (M= Cr, Mn, Fe, Co, Cu, Al): Part 1. Structural characteristics
Yin et al. Hydriding-dehydriding properties of Mg-rich Mg-Ni-Nd alloys with refined microstructures
Miyazawa et al. Grain size refinements of Mg alloys (AZ61, AZ91, ZK60) by HDDR treatment
CN109722559B (zh) 一种氧合金化的铜锆/铪基非晶合金及其制备方法
CN109273184B (zh) 一种低成本耐腐蚀的单晶磁粉及其制备方法与应用
Lobry et al. Effect of rapid solidification on structure and mechanical properties of Al-6Mn-3Mg alloy
Inoue et al. Thermal stability and crystallization behaviour of amorphous Zr-M-Si (M= IV–VIII group transition metals) alloys
CN104213054B (zh) 液相分离双相块体金属玻璃材料及其制备方法
Igrevskaya et al. Influence of Annealing at Various Temperatures on the Structure and Hardness of Amorphous Ribbons of the Al 85 Y 8 Ni 5 Co 2 Alloy
EP3418406A1 (en) Method for producing porous member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512039

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580011961.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005721514

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005721514

Country of ref document: EP