WO2005096784A2 - Benzotriazine inhibitors of kinases - Google Patents

Benzotriazine inhibitors of kinases Download PDF

Info

Publication number
WO2005096784A2
WO2005096784A2 PCT/US2005/012057 US2005012057W WO2005096784A2 WO 2005096784 A2 WO2005096784 A2 WO 2005096784A2 US 2005012057 W US2005012057 W US 2005012057W WO 2005096784 A2 WO2005096784 A2 WO 2005096784A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
subject
disorder
methyl
Prior art date
Application number
PCT/US2005/012057
Other languages
English (en)
French (fr)
Other versions
WO2005096784A3 (en
Inventor
Glenn Noronha
Kathy Barrett
Jianguo Cao
Colleen Gritzen
Xianchang Gong
John Hood
Chi Ching Mak
Andrew Mcpherson
Ved Prakash Pathak
Joel Renick
Richard Soll
Ute Splittgerber
Wolfgang Wrasidlo
Binqi Zeng
Ningning Zhao
Elena Dneprovskaia
Original Assignee
Targegen, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Targegen, Inc. filed Critical Targegen, Inc.
Priority to CN200580018660.1A priority Critical patent/CN101426772B/zh
Priority to NZ551027A priority patent/NZ551027A/en
Priority to AU2005231507A priority patent/AU2005231507B2/en
Priority to EP05762774.7A priority patent/EP1809614B1/en
Priority to CA2567574A priority patent/CA2567574C/en
Publication of WO2005096784A2 publication Critical patent/WO2005096784A2/en
Priority to IL178908A priority patent/IL178908A/en
Priority to HK08100766.4A priority patent/HK1110578A1/xx
Publication of WO2005096784A3 publication Critical patent/WO2005096784A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/08Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 condensed with carbocyclic rings or ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates generally to the use of compounds to treat a variety of disorders, diseases and pathologic conditions and more specifically to the use of benzotriazine compounds to treat disorders.
  • c-Src plays a major role in the growth, progression and metastasis of a large number of cancers.
  • c-Src can be the transforming element of the oncogenic Rous sarcoma retrovirus. Subsequently, it has been demonstrated that c-Src kinase can have the oncogenic potential. Gene knockout experiments suggest that inhibition of some members of the Src family might have potential therapeutic benefit.
  • Tyrosine kinases phosphorylate tyrosine residues in peptides and proteins. These enzymes are key elements in the regulation of cell signaling including cell proliferation and cell differentiation.
  • Protein TKs comprise the receptor TKs, including the epidermal growth family members (HERl and HER2 for example), platelet derived growth factor (PDGF) and kinases that play a role in angiogenesis (Tie-2 and KDR for example), and the cellular or non-receptor kinases, which include members of the Src family.
  • c-Src TK is one of three members of the Src family expressed ubiquitously.
  • c-Src is expressed at low levels in most cell types and, in the absence of the appropriate extracellular stimuli, maintained in an inactive conformation through phosphorylation of a regulatory tyrosine domain at Tyr530.
  • Activation of c-Src occurs through dephosphorylation of the Tyr530 site and phosphorylation of a second tyrosine, Tyr419, present in the kinase domain of the enzyme.
  • Src kinase modulates signal transduction through multiple oncogenic pathways, including EGFR, HER2, PDGFR, FGFR and NEGFR.
  • blocking signaling through the inhibition of the kinase activity of Src can be an effective means of modulating aberrant pathways that drive the oncogenic transformation of cells.
  • c-Src TK activity has been associated with adhesion and cytoskeletal changes both in tumor cells and otherwise, ultimately resulting in an invasive phenotype that may be motile.
  • c-Src TK activity has been shown to be an important component in the epithelial to mesenchymal transition that occurs in the early stages of invasion of carcinoma cells.
  • c-Src activity is also known to be essential in the turnover of local adhesions, a critical cell-motility component.
  • c-Src inhibition markedly reduces the rate of lymph and liver metastases.
  • Clinical data supports the link between misregulated Src activity and the increased invasive potential of tumor cells, hi colon tumors, increased c-Src TK activity has been shown to correlate to tumor progression, with the highest activity found in metastatie tissue. Increased Src activity in colon tumors might be an indicator of poor prognosis.
  • enhancement of Src kinase activity has been reported, and in transitional cell carcinoma of the bladder, c-Src activity peaked as superficial tumors became muscle invasive.
  • Increased c-Src TK activity results in breakdown of the E-cadherin-mediated epithelial cell-cell adhesion, which can be restored by Src inhibition.
  • Intimate connections between increased NEGF activity, Src activity, and cellular barrier function related to vascular leak have been also demonstrated.
  • Inhibition of Src results in decrease in vascular leak when exogenous NEGF is administered in in vivo studies. Examples where excessive vascular permeability leads to particularly deleterious effects include pulmonary edema, cerebral edema, and cardiac edema.
  • NEGF-mediated edema has been shown to involve intracellular signaling by Src family kinases, protein kinase C, and Akt kinase.
  • Rho-associated kinases have been linked to thrombin-mediated vascular leakage, and protein kinase C to T ⁇ F-induced leakage.
  • MLCK myosin light chain kinase
  • MLC myosin light chain
  • a general approach to the inhibition of vascular leakage can be to interfere with any of the underlying mechanistic pathways, whether by inhibition of kinase signaling or the intercellular contractile apparatus or other cellular processes. This can then lead to potential treatments for edema and its associated pathologies. For example, inhibiting edema formation should be beneficial to overall patient outcome in situations such as inflammation, allergic diseases, cancer, cerebral stroke, myocardial infarction, pulmonary and cardiac insufficiency, renal failure, and retinopathies, to name a few. Furthermore, as edema is a general consequence of tissue hypoxia, it can also be concluded that inhibition of vascular leakage represents a potential approach to the treatment of tissue hypoxia.
  • interruption of blood flow by pathologic conditions such as thrombus formation
  • medical intervention such as cardioplegia, organ transplantation, and angioplasty
  • inhibitors of vascular leakage especially as in the case of Src inhibitors.
  • a small molecule inhibitor of c-Src can be beneficial for the treatment of several disease states.
  • the present invention provides methods of use for certain chemical compounds such as kinase inhibitors for treatment of various diseases, disorders, and pathologies, for example, cancer, and vascular disorders, such as myocardial infarction (MI), stroke, or ischemia.
  • chemical compounds such as kinase inhibitors for treatment of various diseases, disorders, and pathologies, for example, cancer, and vascular disorders, such as myocardial infarction (MI), stroke, or ischemia.
  • the benzotriazine compounds described in this invention may block the enzymatic activity of some or many of the members of the Src family, in addition to blocking the activity of other receptor and non-receptor kinases.
  • Such compounds may be beneficial for treatment of the diseases where disorders affect cell motility, adhesion, and cell cycle progression, and in addition, diseases with related hypoxic conditions, osteoporosis and conditions, which result from or are related to increases in vascular permeability, inflammation or respiratory distress, tumor growth, invasion, angiogenesis, metastases and apoptosis.
  • kinase inhibitors that can be used to bring about beneficial therapeutic results include inhibitors of Src kinase.
  • each of A can be (CH)o- ⁇ . N, N ⁇ , O, S, or a part of a ring fusion to form a second ring, where the second ring can be an aromatic, a heteroaromatic, a bicyclic aromatic, a bicyclic aromatic heterocyclic ring, or a bicyclic with only the first ring being aromatic or heteroaromatic;
  • each of B can be (CH)o- ⁇ , N, NH, O, S, ora part of a ring fusion to form a second ring, where the second ring can be an aromatic, a heteroaromatic, a bicyclic aromatic, a bicyclic aromatic heterocyclic ring, or a bicyclic with only the first ring being aromatic or heteroaromatic, with the further proviso that if each B is (CH)o, R 3 can be any substitutent described below other than hydrogen bonded directly to the position 7 of the adjacent ring;
  • R 0 can be H or lower alkyl
  • L can be a bond, or a substituted or unsubstituted alkyl, alkenyl, or alkynyl linking moiety
  • Ri can be C(R*) 3 , OR, N(R') 2 . NR'C(O)R, NR'C(O)O(R), NR'C(O)N(R') 2 , SR', C(O)(O)R, C(O), C(O)N(R') 2 , SO 3 R, OSO 2 R', SO 2 R, SOR, S(O)N(R) 2 , OS(O)(O)N(R') 2 , S(O)(O)N(R * ) 2 , S(O)N(R) 2 , PO 4 R', OPO 2 R, PO 3 R', PO 2 R', or a 3-6 membered heterocycle with one or more heterocyclic atoms, with each heteroatom being capable of carrying any R' group on it, wherein R' can be hydrogen, lower alkyl, alkyl- hydroxyl, thiol-alkyl, alkyl-thiol, aminoal
  • R 2 is a substitutent situated at position 5,6 or 8 of the ring, wherein R 2 can be methyl, ethyl, n-propyl, wopropyl, n-butyl, z ' so-butyl, tert-butyl, tso-pentyl, phenyl, substituted phenyl, halogen, branched or unbranched alkylamino, branched or unbranched aminoalkyl, branched or unbranched alkyloxo, branched or unbranched oxyalkyl, branched or unbranched thioalkyl, branched or unbranched alkylthiol, CF 3 , sulfonamido, substituted sulfonamido, sulfonate, sulfonate ester, phosphate, phosphate ester, phosphonate, phosphonate ester, carboxo, amido, ureido
  • R 3 can be hydrogen, alkyl, alkoxy, halogen, CF 3 , cyano, substituted alkyl, or hydroxyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocycle, C(R") 3 , OR", N(R") 2 , NR"C(O)R", NR"C(O)NR", R", C(O)(O)R", OC(O)R", C(O)N(R") 2 , C(O), OC(O)N(R") 2 , SO 3 R", OSO 2 R", SO 2 R", SOR", PO 4 R", OPO 2 R", PO 3 R", PO 2 R", wherein R" can be hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, lower alkyl, branched lower alkyl, alkyl-hydroxyl, branched alkyl-hydroxyl, amino-alkyl, branched amino-alkyl, alkyl-a
  • articles of manufacture including packaging material and a pharmaceutical composition contained within the packaging material, wherein the packaging material includes a label which indicates that the pharmaceutical composition can be used for treatment of disorders associated with compromised vasculostasis, and wherein the pharmaceutical composition includes at least one compound of structure (I).
  • articles of manufacture including packaging material and a pharmaceutical composition contained within the packaging material, wherein the packaging material includes a label which indicates that the pharmaceutical composition can be used for treatment of disorders associated with vascular permeability leakage or compromised vasculostasis, such as myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, inflammatory disease, edema, transplant rejection, burn, or acute or adult respiratory distress syndrome (ARDS) and wherein the pharmaceutical composition includes at least one compound of structure (I).
  • disorders associated with vascular permeability leakage or compromised vasculostasis such as myocardial infarction, stroke, congestive heart failure, an ischemia or reperfusion injury, cancer, arthritis or other arthropathy, retinopathy or vitreoretinal disease, macular degeneration, autoimmune disease, vascular leakage syndrome, inflammatory
  • a disorder associated with compromised vasculostasis including the administration of a therapeutically effective amount of at least one compound of structure (I) or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof, to a subject in need of such treatment.
  • methods of treating a disorder associated with compromised vasculostasis including the administration of a therapeutically effective amount of at least one compound of structure (I), or pharmaceutically acceptable salts, hydrates, solvates, crystal forms and individual diastereomers thereof, in combination with an anti-inflammatory, chemotherapeutic agent, immunomodulatory agent, therapeutic antibody or a protein kinase inhibitor, to a subject in need of such treatment.
  • methods of treating a subject having or at risk of having a disorder selected from myocardial infarction, vascular leakage syndrome (NLS), cancer, stroke, ARDS, burns, arthritis, edema, retinopathy or vitreoretinal disease, ischemic or reperfusion related tissue injury or damage, autoimmune disease, transplant rejection, inflammatory disease including administering to the subject a therapeutically effective amount of at least one compound of structure (I), thereby treating the subject.
  • a disorder selected from myocardial infarction, vascular leakage syndrome (NLS), cancer, stroke, ARDS, burns, arthritis, edema, retinopathy or vitreoretinal disease, ischemic or reperfusion related tissue injury or damage, autoimmune disease, transplant rejection, inflammatory disease
  • processes for making a pharmaceutical composition including combining a combination of at least one compound of structure (I) or its pharmaceutically acceptable salts, hydrates, solvates, crystal forms salts and individual diastereomers thereof and a pharmaceutically acceptable carrier.
  • heterocyclic when used to describe an aromatic ring, refer to the aromatic ring containing at least one heteroatom.
  • heteroatom refers to any atom other than carbon, for example, N, O, or S.
  • aromatic refers to a cyclically conjugated molecular entity with a stability, due to delocalization, significantly greater than that of a hypothetical localized structure, such as the Kekule structure.
  • heterocyclic when not used to describe an aromatic ring, refers to cyclic (i.e., ring-containing) groups other than aromatic groups, the cyclic group being formed by between 3 and about 14 carbon atoms and at least one heteroatom described above.
  • substituted heterocyclic refers, for both aromatic and non-aromatic structures, to heterocyclic groups further bearing one or more substituents described above.
  • alkyl refers to a monovalent straight or branched chain hydrocarbon group having from one to about 12 carbon atoms, for example, methyl, ethyl, n-propyl, wopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl (also known as n- amyl), n-hexyl, and the like.
  • substituted alkyl refers to alkyl groups further bearing one or more substituents such as hydroxy, alkoxy, mercapto, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, substituted aryloxy, halogen, cyano, nitro, amino, amido, aldehyde, acyl, oxyacyl, carboxyl, sulfonyl, sulfonamide, sulfuryl, and the like.
  • substituents such as hydroxy, alkoxy, mercapto, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, substituted aryloxy, halogen, cyano, nitro, amino, amido, aldehyde, acyl,
  • lower alkyl refers to alkyl groups having from 1 to about 6 carbon atoms.
  • alkenyl refers to straight-chained or branched hydrocarbyl groups having at least one carbon-carbon double bond, and having between about 2 and about 12 carbon atoms
  • substituted alkenyl refers to alkenyl groups further bearing one or more substituents described above.
  • alkynyl refers to straight-chained or branched hydrocarbyl groups having at least one carbon-carbon triple bond, and having between about 2 and about 12 carbon atoms
  • substituted alkynyl refers to alkynyl groups further bearing one or more substituents described above.
  • aryl refers to aromatic groups having between about 5 and about 14 carbon atoms and the term “substituted aryl” refers to aryl groups further bearing one or more substituents described above.
  • heteroaryl refers to aromatic rings, where the ring structure is formed by between 3 and about 14 carbon atoms and by at least one heteroatom described above, and the term “substituted heteroaryl” refers to heteroaryl groups further bearing one or more substituents described above.
  • alkoxy refers to the moiety — O— alkyl, wherein alkyl is as defined above, and the term “substituted alkoxy” refers to alkoxy groups further bearing one or more substituents described above.
  • cycloalkyl refers to alkyl groups having between 3 and about 8 carbon atoms arranged as a ring, and the term “substituted cycloalkyl” refers to cycloalkyl groups further bearing one or more substituents described above.
  • alkylaryl refers to alkyl-substituted aryl groups and the term “substituted alkylaryl” refers to alkylaryl groups further bearing one or more substituents described above.
  • arylalkyl refers to aryl-substituted alkyl groups and the term “substituted arylalkyl” refers to arylalkyl groups further bearing one or more substituents described above.
  • arylalkenyl refers to aryl-substituted alkenyl groups and the term “substituted arylalkenyl” refers to arylalkenyl groups further bearing one or more substituents described above.
  • arylalkynyl refers to aryl-substituted alkynyl groups and the term “substituted arylalkynyl” refers to arylalkynyl groups further bearing one or more substituents described above.
  • arylene refers to divalent aromatic groups having between 5 and about 14 carbon atoms and the term “substituted arylene” refers to arylene groups further bearing one or more substituents described above.
  • kinase refers to any enzyme that catalyzes the addition of phosphate groups to a protein residue; for example, serine and threonine kinases catalyze the addition of phosphate groups to serine and threonine residues.
  • Src kinase refers to the related homologs or analogs belonging to the mammalian family of Src kinases, including, for example, c-Src, Fyn, Yes and Lyn kinases and the hematopoietic-restricted kinases Hck, Fgr, Lck and Blk.
  • Src kinase signaling pathway and “Src cascade” refer to both the upstream and downstream components of the Src signaling cascade.
  • terapéuticaally effective amount refers to the amount of the compound or pharmaceutical composition that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician, e.g., restoration or maintenance of vasculostasis or prevention of the compromise or loss or vasculostasis; reduction of tumor burden; reduction of morbidity and/or mortality.
  • composition refers to the fact that the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • administration of a compound or “administering a compound” refer to the act of providing a compound of the invention or pharmaceutical composition to the subject in need of treatment.
  • antibody refers to intact molecules of polyclonal or monoclonal antibodies, as well as fragments thereof, such as Fab and F(ab') 2 , Fv and SCA fragments which are capable of binding an epitopic determinant.
  • vasculostasis refers to the maintenance of the homeostatic vascular functioning leading to the normal physiologic functioning.
  • vasculostatic agents refers to agents that seek to address conditions in which vasculostasis is compromised by preventing the loss of or restoring or maintaining vasculostasis.
  • compounds having the structure (I) are provided for treatment of various diseases, disorders, and pathologies, as well as pharmaceutically acceptable salts, hydrates, solvates, crystal forms, N-oxides, and individuals diastereoners of compounds having the structure (I):
  • each of A can be (CH) 0 _ ⁇ , N, NH, O, S, or a part of a ring fusion to form a second ring, where the second ring can be an aromatic, a heteroaromatic, a bicyclic aromatic, a bicyclic aromatic heterocyclic ring, or a bicyclic with only the first ring being aromatic or heteroaromatic;
  • each of B can be (CH) 0 - ⁇ , N, MI, O, S, ora part of a ring fusion to form a second ring, where the second ring can be an aromatic, a heteroaromatic, a bicyclic aromatic, a bicyclic aromatic heterocyclic ring, or a bicyclic with only the first ring being aromatic or heteroaromatic, with the further proviso that if each B is (CH) 0 , R 3 can be any substitutent described below, other than hydrogen, bonded directly to the position 7 of the adjacent ring;
  • R 0 can be H or lower alkyl
  • L can be a bond, or a substituted or unsubstituted alkyl, alkenyl, or alkynyl linking moiety
  • Ri can be C(R') 3 , OR', N(R) 2 , NR'C(O)R, NR'C(O)O(R')- NR'C(O)N(R')2, SR, C(O)(O)R', C(O), C(O)N(R) 2 , SO 3 R, OSO 2 R, SO 2 R', SOR, S(O)N(R') 2 , OS(O)(O)N(R') 2 , S(O)(O)N(R') 2 .
  • R can be hydrogen, lower alkyl, alkyl- hydroxyl, thiol-alkyl, alkyl-thiol, aminoalkyl, alkylamino, branched alkyl, branched alkyl hydroxyl, branched thio-alkyl, branched alkyl-thiol, branched aminoalkyl, branched alkylamino, or a closed 3-6 membered carbocycle or heterocycle, with each heteroatom in the 3-6 membered heterocycle being capable of carrying any R' group on it, and wherein each R can be independent in case there is more than one R';
  • R 2 is a substitutent situated at position 5,6 or 8 of the ring, wherein R 2 can be methyl, ethyl, n-propyl, z ' sopropyl, n-butyl, iso-butyl, tert-butyl, tsopentyl, phenyl, substituted phenyl, halogen, branched or unbranched alkylamino, branched or unbranched aminoalkyl, branched or unbranched alkyloxo, branched or unbranched oxyalkyl, branched or unbranched thioalkyl, branched or unbranched alkylthiol, CF 3 , sulfonamido, substituted sulfonamido, sulfonate, sulfonate ester, phosphate, phosphate ester, phosphonate, phosphonate ester, carboxo, amido, ureido,
  • R 3 can be hydrogen, alkyl, alkoxy, halogen, CF 3 , cyano, substituted alkyl, or hydroxyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocycle, C(R") , OR", N(R") 2 , NR"C(O)R", NR"C(O)NR", R", C(O)(O)R", OC(O)R", C(O)N(R") 2 , C(O), OC(O)N(R") 2 , SO 3 R", OSO 2 R", SO 2 R", SOR", PO 4 R", OPO 2 R", PO 3 R", PO 2 R", wherein R" can be hydrogen, aryl, substituted aryl, heteroaryl, substituted heteroaryl, lower alkyl, branched lower alkyl, alkyl-hydroxyl, branched alkyl-hydroxyl, amino-alkyl, branched amino-alkyl, alkyl-amin
  • n is an integer that can have value between 1 and 5, with the further proviso that if n > 2, then each group R is independent of the other groups R 3 ,
  • the compounds and methods of the present invention are useful in treating a variety of disorders associated with compromised vasculostasis and other disorders, including but not limited to, for example: stroke, cardiovascular disease, myocardial infarction, congestive heart failure, cardiomyopathy, myocarditis, ischemic heart disease, coronary artery disease, cardiogenic shock, vascular shock, pulmonary hypertension, pulmonary edema (including cardiogenic pulmonary edema), cancer, pleural effusions, rheumatoid arthritis, diabetic retinopathy, retinitis pigmentosa, and retinopathies, including diabetic retinopathy and retinopathy of prematurity, inflammatory diseases, restenosis, edema (including edema associated with pathologic situations such as cancers and edema induced by medical interventions such as chemotherapy), asthma, acute or adult respiratory distress syndrome
  • agents e.g., chemotherapeutic agents or protein therapeutic agents described below
  • T-cell mediated hypersensitivity diseases including contact hypersensitivity, delayed- type hypersensitivity, and gluten-sensitive enteropathy (Celiac disease); Type 1 diabetes; psoriasis; contact dermatitis (including that due to poison ivy); Hashimoto's thyroiditis; Sjogren's syndrome; Autoimmune Hyperthyroidism, such as Graves' disease; Addison's disease (autoimmune disease of the adrenal glands); autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome); autoimmune alopecia; pernicious anemia; vitiligo; autoimmune hypopituatarism; Guillain-Barre syndrome; other autoimmune diseases; cancers, including those where kinases such as Src-family kinases are activated or overexpressed, such as colon carcinoma and thymoma, or cancers where kinase activity facilitates tumor growth or survival; glomerulonephritis, serum sickness; uticaria; allergic diseases such as respiratory allergies
  • Src-family tyrosine kinases other than Lck are important in the Fc gamma receptor induced respiratory burst of neutrophils as well as the Fc gamma receptor responses of monocytes and macrophages.
  • the compositions and methods of the present invention may be useful in inhibiting the Fc gamma induced respiratory burst response in neutrophils, and may also be useful in inhibiting the Fc gamma dependent production of TNF alpha.
  • the ability to inhibit Fc gamma receptor dependent neutrophil, monocyte and macrophage responses would result in additional anti-inflammatory activity for the compounds employed in invention methods.
  • compositions and methods of the present invention may also be useful in the treatment of autoimmune glomerulonephritis and other instances of glomerulonephritis induced by deposition of immune complexes in the kidney that trigger Fc gamma receptor responses and which can lead to kidney damage.
  • Fc epsilon receptor induced degranulation of mast cells and basophils that plays an important role in asthma, allergic rhinitis, and other allergic disease.
  • Fc epsilon receptors are stimulated by IgE-antigen complexes.
  • Compounds employed in the methods of the present invention may inhibit the Fc epsilon induced degranulation responses.
  • the ability to inhibit Fc epsilon receptor dependent mast cell and basopbil responses may result in additional anti-inflammatory activity for the present compounds beyond their effect on T cells.
  • the present invention also provides articles of manufacture comprising packaging material and a pharmaceutical composition contained within the packaging material, wherein the packaging material comprises a label which indicates that the pharmaceutical composition can be used for treatment of disorders and wherein the pharmaceutical composition comprises a compound according to the present invention.
  • the invention provides a pharmaceutical composition including a therapeutic agent and a compound of the invention, wherein the compound is present in a concentration effective to reduce vascular leakage associated with indications or therapeutic agents which have vascular leak as a side effect.
  • administration of a compound of the invention can be in conjunction with E -2, immunotoxins, antibodies or chemotherapeutics.
  • IL-2, immunotoxin, antibody or chemotherapeutic concentration can be determined by one having ordinary skill in the art according to standard treatment regimen or, for example, as determined by an in vivo animal assay.
  • the present invention also provides pharmaceutical compositions comprising IL-2, immunotoxin, antibody or chemotherapeutic and at least one invention compound in an amount effective for inhibiting vascular permeability, and a pharmaceutically acceptable vehicle or diluent.
  • the compositions of the present invention may contain other therapeutic agents, and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques known in the art of pharmaceutical formulation.
  • the compounds of the invention may be formulated into therapeutic compositions as natural or salt forms.
  • Pharmaceutically acceptable non-toxic salts include the base addition salts (formed with free carboxyl or other anionic groups) which may be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino-ethanol, histidine, procaine, and the like.
  • Such salts may also be formed as acid addition salts with any free cationic groups and will generally be formed with inorganic acids such as, for example, hydrochloric, sulfuric, or phosphoric acids, or organic acids such as acetic, citric, p-toluenesulfonic, methanesulfonic acid, oxalic, tartaric, mandelic, and the like.
  • Salts of the invention include amine salts formed by the protonation of an amino group with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, and the like.
  • Salts of the invention also include amine salts formed by the protonation of an amino group with suitable organic acids, such as p-toluenesulfonic acid, acetic acid, and the like.
  • suitable organic acids such as p-toluenesulfonic acid, acetic acid, and the like.
  • Additional excipients which are contemplated for use in the practice of the present invention are those available to those of ordinary skill in the art, for example, those found in the United States Pharmacopeia Vol. XXII and National Formulary Vol. XVII, U.S. Pharmacopeia Convention, Inc., Rockville, MD (1989), the relevant contents of which is incorporated herein by reference, i addition, polymorphs of the invention compounds are included in the present invention.
  • compositions of the invention may be administered by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, intrathecal, or intracisternal injection or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents.
  • suitable means for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, intrathecal, or intracisternal injection or infusion techniques (e.g., as
  • the present compounds may, for example, be administered in a form suitable for immediate release or extended release. Immediate release or extended release may be achieved by the use of suitable pharmaceutical compositions comprising the present compounds, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps.
  • the present compounds may also be administered liposomally.
  • mammals including, but not limited to, cows, sheep, goats, horses, dogs, cats, guinea pigs, rats or other bovine, ovine, equine, canine, feline, rodent or murine species can be treated.
  • the method can also be practiced in other species, such as avian species (e.g., chickens).
  • compositions for the administration of the compounds of this embodiment either alone or in combination with IL-2, immunotoxin, antibody or chemotherapeutic may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which constitutes one or more accessory ingredients.
  • the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredient into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired formulation.
  • the active object compound is included in an amount sufficient to produce the desired effect upon the process or condition of diseases.
  • compositions containing the active ingredient may be in a form suitable for oral use, for example, as tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs.
  • Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets.
  • excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; binding agents, for example starch, gelatin or acacia, and lubricating agents, for example magnesium stearate, stearic acid or talc.
  • the tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
  • a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated to form osmotic therapeutic tablets for control release.
  • Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.
  • an inert solid diluent for example, calcium carbonate, calcium phosphate or kaolin
  • water or an oil medium for example peanut oil, liquid paraffin, or olive oil.
  • Aqueous suspensions contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxy- propylmethylcellulose, sodium alginate, polyvinyl-pyrrolidorie, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbit
  • the aqueous suspensions may also contain one or more preservatives, for example ethyl, or n- propyl, ?-hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
  • Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
  • the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
  • Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives.
  • a dispersing or wetting agent e.g., sodium EDTA
  • suspending agent e.g., sodium EDTA
  • preservatives e.g., sodium EDTA, sodium bicarbonate, sodium bicarbonate
  • Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose.
  • Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
  • compositions may be in the form of a sterile injectable aqueous or oleagenous suspension.
  • This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a parenterally-acceptable diluent or solvent or cosolvent or complexing agent or dispersing agent or excipient or combination thereof, for example 1,3-butanediol, polyethylene glycols, polypropylene glycols, ethanol or other alcohols, povidones, various brands of TWEEN surfactant, sodium dodecyl sulfate, sodium deoxycholate, dimethylacetamide, polysorbates, poloxamers, cyclodextrins, lipids, and excipients such as inorganic salts (e.g., sodium chloride), buffering agents (e.g., sodium citrate, sodium phosphate), and sugars (e.g., saccharose and dextrose).
  • a parenterally-acceptable diluent or solvent or cosolvent or complexing agent or dispersing agent or excipient or combination thereof for example 1,3-butan
  • Suitable vehicles and solvents that may be employed are water, dextrose solutions, Ringer's solutions and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid find use in the preparation of injectables.
  • these pharmaceutical compositions may be formulated and administered systemically or locally. Techniques for formulation and administration may be found in the latest edition of "Remington's Pharmaceutical Sciences” (Mack Publishing Co, Easton Pa.). Suitable routes may, for example, include oral or transmucosal administration; as well as parenteral delivery, including intramuscular, subcutaneous, intramedullary, intrathecal, intraventricular, intravenous, intraperitoneal, or intranasal administration.
  • the pharmaceutical compositions of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
  • penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds maybe prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents that increase the solubility of the compounds to allow, for the preparation of highly concentrated solutions.
  • the compounds of the present invention may also be administered in the form of suppositories for rectal administration of the drug.
  • These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the drug.
  • Such materials are cocoa butter and polyethylene glycols.
  • creams, ointments, jellies, solutions or suspensions, etc., containing the compounds of the present invention are employed.
  • topical application shall include mouthwashes and gargles).
  • the invention compounds are administered in combination with an anti-inflammatory agent, antihistamines, chemotherapeutic agent, immunomodulator , therapeutic antibody or a protein kinase inhibitor, e.g., a tyrosine kinase inhibitor, to a subject in need of such treatment.
  • chemotherapeutic agents include antimetabolites, such as methotrexate, DNA cross-linking agents, such as cisplatin/carboplatin; alkylating agents, such as canbusil; topoisomerase I inhibitors such as dactinomicin; microtubule inhibitors such as taxol (paclitaxol), and the like.
  • chemotherapeutic agents include, for example, a vinca alkaloid, mitomycin-type antibiotic, bleomycin-type antibiotic, antifolate, colchicine, demecoline, etoposide, taxane, anthracycline antibiotic, doxorubicin, daunorubicin, carminomycin, epirubicin, idarubicin, mithoxanthrone, 4-dimethoxy-daunomycin, 11-deoxydaunorabicin, 13- deoxydaunorubicin, adriamycin-14-benzoate, adriamycin-14-octanoate, adriamycin-14- naphthaleneacetate, amsacrine, carmustine, cyclophosphamide, cytarabine, etoposide, lovastatin, melphalan, topetecan, oxalaplatin, chlorambucil, methtrex
  • therapeutic antibodies include antibodies directed against the HER2 protein, such as trastuzumab; antibodies directed against growth factors or growth factor receptors, such as bevacizumab, which targets vascular endothelial growth factor, and OSI-774, which targets epidermal growth factor; antibodies targeting integrin receptors, such as Nitaxin (also known as MEDI-522), and the like.
  • Classes of anticancer agents suitable for use in compositions and methods of the present invention include, but are not limited to: 1) alkaloids, including, microtubule inhibitors (e.g., Nincristine, Vinblastine, and Vindesine, etc.), microtubule stabilizers (e.g., Paclitaxel [Taxol], and Docetaxel, Taxotere, etc.), and chromatin function inhibitors, including, topoisomerase inhibitors, such as, epipodophyllotoxins (e.g., Etoposide [VP-16], and Teniposide [VM- 26], etc.), and agents that target topoisomerase I (e.g., Camptothecin and Isirinotecan [CPT-11], etc.); 2) covalent D ⁇ A-binding agents [alkylating agents], including, nitrogen mustards (e.g., Mechlorethamine, Chlorambucil, Cyclophosphamide, Ifosphamide, and Busulfan [
  • the pharmaceutical composition and method of the present invention may further comprise other therapeutically active compounds as noted herein which are usually applied in the treatment of the above mentioned pathological conditions.
  • other therapeutic agents include the following: cyclosporins (e.g., cyclosporin A), CTLA4-Ig, antibodies such as ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-CD80, anti-CD86, agents blocking the interaction between CD40 and gp39, such as antibodies specific for CD40 and/or gp39 (i.e., CD154), fusion proteins constructed from CD40 and gp39 (CD40Ig and CD8gp39), inhibitors, such as nuclear translocation inhibitors, of NF-kappa B function, such as deoxyspergualin (DSG), cholesterol biosynthesis inhibitors such as HMG CoA reductase inhibitors (lovastatin and simvastatin), non-steroidal anti
  • cytokine encompasses chemokines, interleukins, lymphokines, monokines, colony stimulating factors, and receptor associated prqteins, and functional fragments thereof.
  • functional fragment refers to a polypeptide or peptide which possesses biological function or activity that is identified through a defined functional assay.
  • the cytokines include endothelial monocyte activating polypeptide II (EMAP- II), granulocyte-macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF), macrophage- CSF (M-CSF), IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-12, and IL-13, interferons, and the like and which is associated with a particular biologic, morphologic, or phenotypic alteration in a cell or cell mechanism.
  • EMP- II endothelial monocyte activating polypeptide II
  • GM-CSF granulocyte-macrophage-CSF
  • G-CSF granulocyte-CSF
  • M-CSF macrophage- CSF
  • IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-12, and IL-13 interferons
  • an appropriate dosage level can generally be between about 0.01 and about 500 mg per 1 kg of patient body weight per day which can be administered in single or multiple doses.
  • the dosage level can be between about 0.01 and about 250 mg/kg per day; more narrowly, between about 0.5 and about 100 mg/kg per day.
  • a suitable dosage level can be between about 0.01 and about 250 mg/kg per day, between about 0.05 and about 100 mg/kg per day, or between about 0.1 and about 50 mg/kg per day, or about 1.0 mg/kg per day.
  • the dosage can be between about 0.05 and about 0.5 mg/kg per day, or between about 0.5 and about 5 mg/kg per day, or between about 5 and about 50 mg/kg per day.
  • the compositions can be provided in the form of tablets containing between about 1.0 and about 1,000 mg of the active ingredient, for example, about 1.0, about 5.0, about 10.0, about 15.0, about'20.0, about 25.0, about 50.0, about 75.0, about lOO.O, about 150.0, about 200.0, about 250.0, about 300.0, about 400.0, about 500.0, about 600.0, about 750.0, about 800.0, about 900.0, and about 1,000.0 mg of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated.
  • the compounds can be administered on a regimen of 1 to 4 times per day, such as once or twice per day. There may be a period of no administration followed by another regimen of administration.
  • administration of the compound is closely associated with the schedule of IL- 2 administration.
  • administration can be prior to, simultaneously with or immediately following IL-2 administration.
  • Compounds of the present invention can be used, alone or in combination with an effective amount of a therapeutic antibody (or therapeutic fragment thereof), a chemotherapeutic or an immunotoxic agent, for treatment of tumors. While doxorubicin, docetaxel, or taxol are described in the present application as illustrative examples of chemotherapeutic agents, it should be understood that the invention includes combination therapy including a compound of the invention, including but not limited to vasculostatic agents, such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors, and any chemotherapeutic agent or therapeutic antibody.
  • vasculostatic agents such as tyrosine, serine or threonine kinase inhibitors, for example, Src-family inhibitors, and any chemotherapeutic agent or therapeutic antibody.
  • Reverse-phase HPLC chromatography was carried out on Gilson 215 liquid handler equipped with Waters SymmetryShieldTM RP18 7 ⁇ m (40 x 100mm) Prep-Pak cartridge.
  • Mobile phase consisted of standard acetonitrile (ACN) and DI Water, each with 0.1% TFA added. Purification was carried out at a flow rate of 40mL/ min, and a gradient such that the peak of interest was eluted between 12-15 min in a 30 min run.
  • one of three methods A, B, or C can be used for synthesizing some of the compounds of the present invention.
  • Those having ordinary skill in the art can determine, depending on variety of factors, including the particular compound that is sought to be made, whether to selected the method A, B or C.
  • the synthetic method A is shown by the reaction scheme (II). About 1 equivalent of compound 1 was mixed with 2 equivalent of cynamide in a vial. The mixture was heated to about 100°C until the mixture was completely melted. The mixture was cooled down to room temperature and concentrated HCI was added. The mixture was then again heated at about 100°C for about 40 minutes and cooled down in ice water. About 14 moles of NaOH were carefully added to the above reaction mixture followed by heating the mixture at about 100°C for about 2 hours, and by cooling down to room temperature.
  • Compound 3 was dissolved in N, N-dimethylacetamide in a vial with a septum. Catalytic amount of 10% palladium on carbon was added to the mixture. A balloon filled with hydrogen was placed on the top of the vial. The mixture was stirred at room temperature for about 2 hours. Celite was used to remove the palladium and carbon. Solvent was removed under vacuum and compound 4, shown by the reaction scheme (II), was isolated.
  • the synthetic method B is shown by the reaction scheme (III).
  • Compounds 1, 2, 3, and 4 were consecutively prepared and isolated as described in Method A. About 1 equivalent of compound 4 was dissolved in an aniline followed by adding about 2 equivalents of sulfamic acid. The mixture was heated at about 200°C overnight. Compound 5 was isolated by HPLC.
  • the synthetic method C is shown by the reaction scheme (IN).
  • Compounds 1, 2, 3, and 4 were consecutively prepared and isolated as described in Method A. About 1 equivalent of compound 4 was dissolved in substituted phenylarnine followed by adding about 2 equivalent of sulfamic acid. The mixture was heated at about 200°C overnight.
  • Compound 5 was isolated by HPLC and was dissolved in dry CH 2 CI 2 . The mixture was cooled to about -78°C using a dry ice-acetone bath. About 2 equivalents of BBr 3 (IM solution in CH 2 C1 2 ) was added dropwise to the mixture at about -78°C under nitrogen atmosphere.
  • a balloon filled with hydrogen was placed on the top of the vial.
  • the mixture was stirred at room temperature for about 2 hours.
  • Celite was used to remove the palladium and carbon.
  • the crude product and about 200 mg (0.74 mmol) of l-[2-(4- bromo-phenoxy)-ethyl]-pyrrolidine were dissolved in 10 ml of toluene.
  • About 17 mg (0.018 mmol) of Pd(dba) 3 , about 34 mg (0.054 mmol) of BINAP, and about 50 mg (0.226 mmol) of KOt-Bu were added to the solution.
  • the mixture was kept at about 100°C for about 24 hours under argon.
  • the crude product was purified by preparative HPLC.
  • the reactants were flushed with argon and diluted with ethylene glycol dimethyl ether (6 mL), ethanol (1 mL) and DI water (1 mL).
  • the reaction vessel was outfitted with condenser and refluxed for 18 hours.
  • the reaction was cooled to ambient temperature and the crude product was filtered, diluted with ethyl acetate, and washed with brine.
  • the brine layer was back extracted once with fresh ethyl acetate.
  • the organic phases were combined and dried over sodium sulfate (Na 2 SO 4 ). Filtration was followed by evaporation and silica gel chromatography (2:3 EtOAc/hexanes) provided the desired product as a yellow powder (0.08 g, 74% yield).
  • the reactants were flushed with argon, diluted with dioxane (6 mL) and outfitted with reflux condenser. The reaction was heated to reflux for 18 hours, filtered hot, diluted with ethyl acetate and washed with brine. The brine layer was back extracted once with fresh ethyl acetate. The organic phases were combined and dried over sodium sulfate (Na 2 SO 4 ). Filtration followed by evaporation provided crude product, whichwas dissolved in minimum amount of DCM and precipitated out with excess hexanes. Solids were filtered off and dried to yield a yellow powder (0.06 g, 91% yield).
  • the reactants were flushed with argon and diluted with ethylene glycol dimethyl ether (20 mL), ethanol (5 mL) and DI water (5 mL).
  • the reaction vessel was outfitted with condenser and refluxed for 4 hours.
  • the reaction was filtered hot and diluted with ethyl acetate.
  • the Organic layer was isolated and concentrated to a dark residue. This was dissolved in DMF (6 mL) and slowly diluted with water so as to precipitate out the product. Solids were filtered off and dried to yield an orange solid (1 g, 82% yield).
PCT/US2005/012057 2004-04-08 2005-04-07 Benzotriazine inhibitors of kinases WO2005096784A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN200580018660.1A CN101426772B (zh) 2004-04-08 2005-04-07 激酶的苯并三嗪抑制物
NZ551027A NZ551027A (en) 2004-04-08 2005-04-07 Benzotriazine inhibitors of kinases
AU2005231507A AU2005231507B2 (en) 2004-04-08 2005-04-07 Benzotriazine inhibitors of kinases
EP05762774.7A EP1809614B1 (en) 2004-04-08 2005-04-07 Benzotriazine inhibitors of kinases
CA2567574A CA2567574C (en) 2004-04-08 2005-04-07 Benzotriazine inhibitors of kinases
IL178908A IL178908A (en) 2004-04-08 2006-10-26 Benzotriazines kinase inhibitors
HK08100766.4A HK1110578A1 (en) 2004-04-08 2008-01-21 Benzotriazine inhibitors of kinases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US56123704P 2004-04-08 2004-04-08
US60/561,237 2004-04-08
US64343905P 2005-01-12 2005-01-12
US60/643,439 2005-01-12

Publications (2)

Publication Number Publication Date
WO2005096784A2 true WO2005096784A2 (en) 2005-10-20
WO2005096784A3 WO2005096784A3 (en) 2009-02-19

Family

ID=35125563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/012057 WO2005096784A2 (en) 2004-04-08 2005-04-07 Benzotriazine inhibitors of kinases

Country Status (10)

Country Link
US (3) US7456176B2 (US07456176-20081125-C00074.png)
EP (2) EP1809614B1 (US07456176-20081125-C00074.png)
KR (1) KR20070011458A (US07456176-20081125-C00074.png)
AU (1) AU2005231507B2 (US07456176-20081125-C00074.png)
CA (1) CA2567574C (US07456176-20081125-C00074.png)
HK (1) HK1110578A1 (US07456176-20081125-C00074.png)
IL (1) IL178908A (US07456176-20081125-C00074.png)
NZ (2) NZ551027A (US07456176-20081125-C00074.png)
RU (1) RU2006139258A (US07456176-20081125-C00074.png)
WO (1) WO2005096784A2 (US07456176-20081125-C00074.png)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131835A2 (en) * 2005-02-01 2006-12-14 Sentinel Oncology Limited Heterocyclic triazines as hypoxic selective protein kinase inhibitors
EP1799656A1 (en) * 2004-08-25 2007-06-27 Targegen, Inc. Heterocyclic compounds and methods of use
EP1893216A1 (en) * 2005-06-08 2008-03-05 Targegen, Inc. Methods and compositions for the treatment of ocular disorders
WO2010076238A1 (en) 2008-12-29 2010-07-08 Fovea Pharmaceuticals Sa Substituted quinazoline compounds
WO2010092041A1 (en) 2009-02-13 2010-08-19 Fovea Pharmaceuticals Sa [1, 2, 4] triazolo [1, 5 -a] pyridines as kinase inhibitors
US7858782B2 (en) 2006-12-15 2010-12-28 Abraxis Bioscience, Llc Triazine derivatives and their therapeutical applications
WO2011161159A1 (en) 2010-06-22 2011-12-29 Fovea Pharmaceuticals Heterocyclic compounds, their preparation and their therapeutic application
JP2012528136A (ja) * 2009-05-26 2012-11-12 センティネル・オンコロジー・リミテッド p70S6キナーゼの阻害剤としての置換ベンゾトリアジン類およびキノキサリン類
EP2543376A1 (en) * 2004-04-08 2013-01-09 Targegen, Inc. Benzotriazine inhibitors of kinases
US8877924B2 (en) 2009-06-09 2014-11-04 NantBio Inc. Benzyl substituted triazine derivatives and their therapeutical applications
US8969347B2 (en) 2008-06-03 2015-03-03 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
AU2009322346B2 (en) * 2008-12-03 2015-07-02 The Scripps Research Institute Stem cell cultures
US9078902B2 (en) 2009-06-09 2015-07-14 Nantbioscience, Inc. Triazine derivatives and their therapeutical applications
US9359379B2 (en) 2012-10-02 2016-06-07 Intermune, Inc. Anti-fibrotic pyridinones
US9527816B2 (en) 2005-05-10 2016-12-27 Intermune, Inc. Method of modulating stress-activated protein kinase system
US10233195B2 (en) 2014-04-02 2019-03-19 Intermune, Inc. Anti-fibrotic pyridinones
US10246393B2 (en) 2016-10-31 2019-04-02 Tosoh Corporation Method for producing aromatic compound

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050056227A (ko) * 2002-10-03 2005-06-14 탈자진 인코포레이티드 혈관항상성 유지제 및 그의 사용 방법
US20050282814A1 (en) * 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
US8133900B2 (en) 2005-11-01 2012-03-13 Targegen, Inc. Use of bi-aryl meta-pyrimidine inhibitors of kinases
US8604042B2 (en) * 2005-11-01 2013-12-10 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
AU2006309013B2 (en) * 2005-11-01 2012-06-28 Impact Biomedicines, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US8110687B2 (en) * 2005-12-08 2012-02-07 Millennium Pharmaceuticals, Inc. Bicyclic compounds with kinase inhibitory activity
US7691858B2 (en) * 2006-04-25 2010-04-06 Targegen, Inc. Kinase inhibitors and methods of use thereof
WO2010008411A1 (en) * 2007-11-09 2010-01-21 The Salk Institute For Biological Studies Use of tam receptor inhibitors as immunoenhancers and tam activators as immunosuppressors
CA2723358A1 (en) * 2008-05-05 2009-11-12 Allison B. Reiss Method for improving cardiovascular risk profile of cox inhibitors
EP2447256A1 (en) * 2010-10-21 2012-05-02 Laboratorios Lesvi, S.L. Process for obtaining dronedarone
WO2012060847A1 (en) 2010-11-07 2012-05-10 Targegen, Inc. Compositions and methods for treating myelofibrosis
WO2016089208A2 (en) 2014-12-04 2016-06-09 Stichting Maastricht Radiation Oncology "Maastro-Clinic" Sulfonamide, sulfamate and sulfamide derivatives of anti-cancer agents
CN116410159B (zh) * 2023-06-09 2023-08-22 济南国鼎医药科技有限公司 一种恩曲替尼中间体的制备方法及其应用

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003199A (en) 1930-05-31 1935-05-28 Johnson Frank James Automatic coal stoker
US2003149A (en) 1931-05-22 1935-05-28 Autographic Register Co Manifolding
US2003065A (en) 1931-06-20 1935-05-28 John R Ditmars Composition for coating sheets, fibrous stocks, and the like
US2004102A (en) 1932-02-24 1935-06-11 Daniel A Dickey Hollow steel propeller construction
US2004138A (en) 1932-11-30 1935-06-11 Byers A M Co Method of making wrought iron pipe
US2002165A (en) 1933-07-08 1935-05-21 Charles A Winslow Air cleaner
US2003187A (en) 1933-10-02 1935-05-28 Frederick H Shaw Automobile radio device
US2003166A (en) 1933-10-26 1935-05-28 Zancan Ottavio Front drive for motor cars
US2001051A (en) 1933-12-01 1935-05-14 Angelina Mariani Tamperproof meter box with cutout control and fuse drawer for electric meters
US2004092A (en) 1933-12-15 1935-06-11 John L Chaney Device for indicating the temperature of liquids
US2003060A (en) 1934-04-02 1935-05-28 Ernest L Heckert Thermostatic controlling device
US2667486A (en) 1951-05-24 1954-01-26 Research Corp 2,4-diamino pteridine and derivatives
IL26578A (en) 1965-10-04 1970-11-30 Merck & Co Inc Pethridine compounds and their preparation
DE2255947A1 (de) 1972-11-15 1974-05-22 Bayer Ag Substituierte 3-amino-benzo-1,2,4triazin-di-n-oxide (1,4), verfahren zu ihrer herstellung sowie ihre verwendung als antimikrobielle mittel
IL44058A (en) 1973-02-02 1978-10-31 Ciba Geigy Ag 3amino-1,2,4-benzotriazine 1,4-di-noxide derivatives, their preparation and compositions for the control of microorganisms containing them
FR2275461A1 (fr) 1974-06-18 1976-01-16 Labaz Nouveaux stabilisants des polymeres et copolymeres du chlorure de vinyle
AU535258B2 (en) 1979-08-31 1984-03-08 Ici Australia Limited Benzotriazines
EP0059524A1 (en) 1981-02-09 1982-09-08 Smith and Nephew Associated Companies p.l.c. Pharmaceutical composition containing aminopteridines or aminopyrimido(4,5-d)pyrimidines
DE3205638A1 (de) 1982-02-17 1983-08-25 Hoechst Ag, 6230 Frankfurt Trisubstituierte pyrimidin-5-carbonsaeuren und deren derivate, verfahren zu ihrer herstellung und ihre verwendung als schaedlingsbekaempfungsmittel
US4490289A (en) 1982-09-16 1984-12-25 Hoffmann-La Roche Inc. Homogeneous human interleukin 2
US5616584A (en) 1986-09-25 1997-04-01 Sri International 1,2,4-benzotriazine oxides as radiosensitizers and selective cytotoxic agents
JP2598100B2 (ja) 1988-08-31 1997-04-09 キヤノン株式会社 電子写真感光体
US5214059A (en) 1989-07-03 1993-05-25 Hoechst-Roussel Pharmaceuticals Incorporated 2-(aminoaryl) indoles and indolines as topical antiinflammatory agents for the treatment of skin disorders
US5665543A (en) 1989-07-18 1997-09-09 Oncogene Science, Inc. Method of discovering chemicals capable of functioning as gene expression modulators
US5776502A (en) 1989-07-18 1998-07-07 Oncogene Science, Inc. Methods of transcriptionally modulating gene expression
US5062685A (en) 1989-10-11 1991-11-05 Corning Incorporated Coated optical fibers and cables and method
JPH03127790A (ja) 1989-10-11 1991-05-30 Morishita Pharmaceut Co Ltd N―(1h―テトラゾール―5―イル)―2―アニリノ―5―ピリミジンカルボキシアミド類及びその合成中間体
GB9003553D0 (en) 1990-02-16 1990-04-11 Ici Plc Herbicidal compositions
JP2839106B2 (ja) 1990-02-19 1998-12-16 キヤノン株式会社 電子写真感光体
IE74711B1 (en) 1990-07-27 1997-07-30 Ici Plc Fungicides
GB9016800D0 (en) 1990-07-31 1990-09-12 Shell Int Research Tetrahydropyrimidine derivatives
DE4025891A1 (de) 1990-08-16 1992-02-20 Bayer Ag Pyrimidyl-substituierte acrylsaeureester
JPH05345780A (ja) 1991-12-24 1993-12-27 Kumiai Chem Ind Co Ltd ピリミジンまたはトリアジン誘導体及び除草剤
HUT63941A (en) 1992-05-15 1993-11-29 Hoechst Ag Process for producing 4-alkyl-substituted pyrimidine-5-carboxanilide derivatives, and fungicidal compositions comprising same
US5482951A (en) 1992-05-29 1996-01-09 Kumiai Chemical Industry Co., Ltd. Triazole derivatives as well as insecticide and acaricide
US5763441A (en) 1992-11-13 1998-06-09 Sugen, Inc. Compounds for the treatment of disorders related to vasculogenesis and/or angiogenesis
JPH0741461A (ja) 1993-05-27 1995-02-10 Eisai Co Ltd スルホン酸エステル誘導体
JPH0782183A (ja) 1993-09-09 1995-03-28 Canon Inc 液晶中間体化合物、液晶性化合物、高分子液晶化合物、高分子液晶共重合体化合物、それらの組成物、液晶素子および記録装置
DE4338704A1 (de) 1993-11-12 1995-05-18 Hoechst Ag Stabilisierte Oligonucleotide und deren Verwendung
US5530000A (en) 1993-12-22 1996-06-25 Ortho Pharmaceutical Corporation Substituted pyrimidinylaminothiazole derivatives useful as platelet aggreggation inhibitors
GB9506466D0 (en) 1994-08-26 1995-05-17 Prolifix Ltd Cell cycle regulated repressor and dna element
US5597826A (en) 1994-09-14 1997-01-28 Pfizer Inc. Compositions containing sertraline and a 5-HT1D receptor agonist or antagonist
DE19502912A1 (de) 1995-01-31 1996-08-01 Hoechst Ag G-Cap Stabilisierte Oligonucleotide
US6326487B1 (en) 1995-06-05 2001-12-04 Aventis Pharma Deutschland Gmbh 3 modified oligonucleotide derivatives
DE69636837T2 (de) 1995-09-25 2007-10-25 Sanofi-Aventis U.S. Llc 1,2,4-benzotriazinoxid-formulierungen
US5827850A (en) 1995-09-25 1998-10-27 Sanofi Pharmaceuticals, Inc. 1,2,4-benzotriazine oxides formulations
JPH09274290A (ja) 1996-02-07 1997-10-21 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料用の現像液および処理方法
DK0939632T3 (da) 1996-02-23 2006-01-30 Lilly Co Eli Non-peptidyl vasopressin V1a antagonister
DE59707681D1 (de) 1996-10-28 2002-08-14 Rolic Ag Zug Vernetzbare, photoaktive Silanderivate
BR9713368A (pt) 1996-11-20 2001-09-18 Introgen Therapeutics Inc Processo melhorado para a produção e a purificação de vetores adenovirais
JP3734903B2 (ja) 1996-11-21 2006-01-11 富士写真フイルム株式会社 現像処理方法
JPH10153838A (ja) 1996-11-22 1998-06-09 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料の処理方法
JP3720931B2 (ja) 1996-11-26 2005-11-30 富士写真フイルム株式会社 ハロゲン化銀写真感光材料の処理方法
US5935383A (en) 1996-12-04 1999-08-10 Kimberly-Clark Worldwide, Inc. Method for improved wet strength paper
JPH10207019A (ja) 1997-01-22 1998-08-07 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料の処理方法
JPH10213820A (ja) 1997-01-31 1998-08-11 Canon Inc 液晶素子及び液晶装置
DE59807348D1 (de) 1997-02-05 2003-04-10 Rolic Ag Zug Photovernetzbare Silanderivate
JPH10260512A (ja) 1997-03-19 1998-09-29 Fuji Photo Film Co Ltd ハロゲン化銀感光材料の処理方法
US6070126A (en) 1997-06-13 2000-05-30 William J. Kokolus Immunobiologically-active linear peptides and method of identification
US6235736B1 (en) 1997-06-24 2001-05-22 Nikken Chemicals Co., Ltd. 3-anilino-2-cycloalkenone derivatives
US6635626B1 (en) 1997-08-25 2003-10-21 Bristol-Myers Squibb Co. Imidazoquinoxaline protein tyrosine kinase inhibitors
US6685938B1 (en) 1998-05-29 2004-02-03 The Scripps Research Institute Methods and compositions useful for modulation of angiogenesis and vascular permeability using SRC or Yes tyrosine kinases
US6136971A (en) 1998-07-17 2000-10-24 Roche Colorado Corporation Preparation of sulfonamides
US6378526B1 (en) 1998-08-03 2002-04-30 Insite Vision, Incorporated Methods of ophthalmic administration
US6288082B1 (en) 1998-09-29 2001-09-11 American Cyanamid Company Substituted 3-cyanoquinolines
US6297258B1 (en) 1998-09-29 2001-10-02 American Cyanamid Company Substituted 3-cyanoquinolines
CA2348234A1 (en) 1998-10-29 2000-05-11 Chunjian Liu Compounds derived from an amine nucleus that are inhibitors of impdh enzyme
FR2792314B1 (fr) 1999-04-15 2001-06-01 Adir Nouveaux composes aminotriazoles, leur procede de preparation et les compositions pharmaceutiques qui les contiennent
ATE253915T1 (de) * 1999-06-30 2003-11-15 Merck & Co Inc Src-kinase hemmende verbindungen
WO2001002359A1 (fr) 1999-07-01 2001-01-11 Ajinomoto Co., Inc. Composes heterocycliques et leurs applications en medecine
TWI262914B (en) 1999-07-02 2006-10-01 Agouron Pharma Compounds and pharmaceutical compositions for inhibiting protein kinases
BR0012697A (pt) 1999-07-23 2002-04-09 Shionogi & Co Inibidores da diferenciação de th2
US6127382A (en) 1999-08-16 2000-10-03 Allergan Sales, Inc. Amines substituted with a tetrahydroquinolinyl group an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
US6093838A (en) 1999-08-16 2000-07-25 Allergan Sales, Inc. Amines substituted with a dihydro-benzofuranyl or with a dihydro-isobenzofuranyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
JP2001089412A (ja) 1999-09-22 2001-04-03 Otsuka Pharmaceut Co Ltd ベンゼン誘導体またはその医薬的に許容される塩
US6506769B2 (en) 1999-10-06 2003-01-14 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic compounds useful as inhibitors of tyrosine kinases
ATE314362T1 (de) 1999-10-12 2006-01-15 Takeda Pharmaceutical Pyrimidin-5-carboximidverbindungen, verfahren zur herstellung derselben und deren verwendung
US6638929B2 (en) 1999-12-29 2003-10-28 Wyeth Tricyclic protein kinase inhibitors
US6153752A (en) 2000-01-28 2000-11-28 Creanova, Inc. Process for preparing heterocycles
US20020165244A1 (en) 2000-01-31 2002-11-07 Yuhong Zhou Mucin synthesis inhibitors
WO2001064646A2 (en) 2000-03-01 2001-09-07 Tularik Inc. Hydrazones and analogs as cholesterol lowering agents
GB0004887D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
JP2001247411A (ja) 2000-03-09 2001-09-11 Tomono Agrica Co Ltd 有害生物防除剤
US6608048B2 (en) 2000-03-28 2003-08-19 Wyeth Holdings Tricyclic protein kinase inhibitors
CN1431896A (zh) 2000-04-04 2003-07-23 盐野义制药株式会社 含有高脂溶性药物的油性组合物
US6471968B1 (en) 2000-05-12 2002-10-29 Regents Of The University Of Michigan Multifunctional nanodevice platform
DE10024622A1 (de) 2000-05-18 2001-11-22 Piesteritz Stickstoff N-(2-Pyrimidinyl)(thio)phosphorsäuretriamide, Verfahren zu ihrer Herstellung und deren Verwendung als Mittel zur Regulierung bzw. Hemmung der enzymatischen Harnstoff-Hydrolyse
DE60114518T2 (de) 2000-07-06 2006-08-10 Fuji Photo Film Co. Ltd., Minamiashigara Flüssigkristallzusammensetzung, die Flüssigkristallmoleküle und Ausrichtungsmittel enthält
US6489328B2 (en) 2000-08-11 2002-12-03 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic compounds useful as inhibitors of tyrosine kinases
US20020137755A1 (en) 2000-12-04 2002-09-26 Bilodeau Mark T. Tyrosine kinase inhibitors
JP2002221770A (ja) 2001-01-24 2002-08-09 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料およびその処理方法
AU2002314252A1 (en) 2001-05-28 2002-12-09 Aventis Pharma S.A. Chemical derivatives and the use thereof as an anti-telomerase agent
CN100480242C (zh) 2001-05-29 2009-04-22 舍林股份公司 Cdk抑制性嘧啶化合物、其制备方法以及作为药物的应用
US6689778B2 (en) 2001-07-03 2004-02-10 Vertex Pharmaceuticals Incorporated Inhibitors of Src and Lck protein kinases
EP2332924A1 (de) * 2001-10-17 2011-06-15 Boehringer Ingelheim Pharma GmbH & Co. KG Pyrimidinderivate, Arzneimittel enthaltend diese Verbindungen, deren Verwendung und Verfahren zu ihrer Herstellung
EP1453516A2 (de) 2001-10-17 2004-09-08 Boehringer Ingelheim Pharma GmbH & Co.KG 5-substituierte 4-amino-2-phenylamino-pyrimdinderivate und ihre verwendung als beta-amyloid modulatoren
US20060292206A1 (en) * 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
US20030187026A1 (en) 2001-12-13 2003-10-02 Qun Li Kinase inhibitors
US20030166932A1 (en) 2002-01-04 2003-09-04 Beard Richard L. Amines substituted with a dihydronaphthalenyl, chromenyl, or thiochromenyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
CA2477505A1 (en) 2002-03-01 2003-09-12 Smithkline Beecham Corporation Diamino-pyrimidines and their use as angiogenesis inhibitors
MY141867A (en) 2002-06-20 2010-07-16 Vertex Pharma Substituted pyrimidines useful as protein kinase inhibitors
CA2491895C (en) 2002-07-09 2011-01-18 Vertex Pharmaceuticals Incorporated Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases
NZ537752A (en) 2002-07-29 2006-12-22 Rigel Pharmaceuticals Inc Use of 2,4-pyrimidinediamine compounds in the preparation of medicaments for treating autoimmune diseases
EP1525200B1 (en) 2002-08-02 2007-10-10 AB Science 2-(3-aminoaryl)amino-4-aryl-thiazoles and their use as c-kit inhibitors
RU2005106871A (ru) 2002-08-14 2005-10-10 Вертекс Фармасьютикалз Инкорпорейтед (Us) Ингибиторы протеинкиназ и их применение
UY27939A1 (es) 2002-08-21 2004-03-31 Glaxo Group Ltd Compuestos
US7230101B1 (en) 2002-08-28 2007-06-12 Gpc Biotech, Inc. Synthesis of methotrexate-containing heterodimeric molecules
DE10240261A1 (de) 2002-08-31 2004-03-11 Clariant Gmbh Verfahren zur metallorganischen Herstellung organischer Zwischenprodukte über Halogen-Metall-Austauschreaktionen
DE10240262A1 (de) 2002-08-31 2004-03-11 Clariant Gmbh Verfahren zur metallorganischen Herstellung organischer Zwischenprodukte über Aryllithium-Basen
KR20050056227A (ko) * 2002-10-03 2005-06-14 탈자진 인코포레이티드 혈관항상성 유지제 및 그의 사용 방법
US20050282814A1 (en) 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
US20060167021A1 (en) 2002-10-04 2006-07-27 Caritas St. Elizabeth's Medical Center Of Boston, Inc. Inhibition of src for treatment of reperfusion injury related to revascularization
JP2006503081A (ja) 2002-10-10 2006-01-26 スミスクライン ビーチャム コーポレーション 化学化合物
WO2004037176A2 (en) 2002-10-21 2004-05-06 Bristol-Myers Squibb Company Quinazolinones and derivatives thereof as factor xa inhibitors
US7262200B2 (en) 2002-10-25 2007-08-28 Vertex Pharmaceuticals Incorporated Indazolinone compositions useful as kinase inhibitors
DE10250708A1 (de) 2002-10-31 2004-05-19 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Alkin-Verbindungen mit MCH-antagonistischer Wirkung und diese Verbindungen enthaltende Arzneimittel
MXPA05005345A (es) 2002-11-19 2005-08-26 Memory Pharm Corp Inhibidores de fosfodiesterasa 4.
MXPA05005585A (es) 2002-12-06 2005-07-27 Warner Lambert Co Benzoxazin-3-onas y derivados de las mismas como agentes terapeuticos.
JP3837670B2 (ja) 2002-12-12 2006-10-25 富士通株式会社 データ中継装置、連想メモリデバイス、および連想メモリデバイス利用情報検索方法
UA80767C2 (en) 2002-12-20 2007-10-25 Pfizer Prod Inc Pyrimidine derivatives for the treatment of abnormal cell growth
BR0317487A (pt) 2002-12-20 2005-11-29 Pharmacia Corp O r-isÈmero de compostos de aminoácido beta como derivados de antagonistas de receptores de integrina
BR0317600A (pt) 2002-12-20 2005-11-29 Pharmacia Corp ácidos heteroarilalcanóicos como derivados de antagonistas de receptor de integrina
WO2004058782A1 (en) 2002-12-24 2004-07-15 Astrazeneca Ab Therapeutic quinazoline derivatives
US7144911B2 (en) 2002-12-31 2006-12-05 Deciphera Pharmaceuticals Llc Anti-inflammatory medicaments
PL227577B1 (pl) 2003-02-07 2017-12-29 Janssen Pharmaceutica Nv Zastosowanie pochodnych pirymidyny do wytwarzania leku do zapobiegania zakażeniu wirusem HIV oraz kompozycja farmaceutyczna
DE602004015254D1 (de) 2003-02-07 2008-09-04 Janssen Pharmaceutica Nv Hiv-inhibierende1,2,4-triazine
EP1594512A4 (en) 2003-02-11 2007-07-11 Kemia Inc COMPOUNDS FOR THE TREATMENT OF VIRUS INFECTIONS
CL2004000303A1 (es) 2003-02-20 2005-04-08 Tibotec Pharm Ltd Compuestos derivados de pirimidinas y triazinas; proceso de preparacion; composicion farmaceutica; y su uso para inhibir la replicacion del vih.
ES2634840T5 (es) 2003-04-24 2022-12-22 Coopervision Int Ltd Lentes de contacto de hidrogel y sistemas de envase y procedimientos de producción de los mismos
WO2005016894A1 (en) 2003-08-15 2005-02-24 Novartis Ag 2, 4-pyrimidinediamines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders
US20070105839A1 (en) 2003-09-18 2007-05-10 Patricia Imbach 2, 4-Di (phenylamino) pyrimidines useful in the treatment of proliferative disorders
PL2210607T3 (pl) 2003-09-26 2012-01-31 Exelixis Inc N-[3-fluoro-4-({6-(metyloksy)-7-[(3-morfolin-4-ylopropylo)oksy]chinolin-4-ylo} oxy)fenylo]-N'-(4-fluorofenylo)cyklopropano-1,1-dikarboksamid do leczenia raka
WO2005035541A1 (en) 2003-10-07 2005-04-21 Amedis Pharmaceuticals Ltd. Silicon compounds and their use
DE10356579A1 (de) 2003-12-04 2005-07-07 Merck Patent Gmbh Aminderivate
BRPI0507373A (pt) 2004-01-23 2007-07-10 Amgen Inc compostos e método de uso
AU2005231507B2 (en) * 2004-04-08 2012-03-01 Targegen, Inc. Benzotriazine inhibitors of kinases
WO2005108370A1 (ja) 2004-04-16 2005-11-17 Ajinomoto Co., Inc. ベンゼン化合物
CA2578283A1 (en) 2004-08-25 2006-03-02 Targegen, Inc. Heterocyclic compounds and methods of use
US7210697B2 (en) 2004-12-16 2007-05-01 Tricam International, Inc. Convertible handle
EP1841431A4 (en) 2005-01-26 2009-12-09 Irm Llc COMPOUNDS AND COMPOSITIONS AS PROTEIN KINASE INHIBITORS
GB0501999D0 (en) 2005-02-01 2005-03-09 Sentinel Oncology Ltd Pharmaceutical compounds
JP2008533166A (ja) 2005-03-16 2008-08-21 ターゲジェン インコーポレーティッド ピリミジン化合物および使用法
WO2006128129A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating cancer
WO2006128172A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating b cell regulated autoimmune disorders
MX2007008848A (es) 2005-06-08 2008-04-16 Targegen Inc Metodos y composiciones para el tratamiento de desordenes oculares.
WO2007008541A2 (en) 2005-07-08 2007-01-18 Kalypsys, Inc. Cellular cholesterol absorption modifiers
EP1940843A4 (en) 2005-08-11 2010-09-15 Ariad Pharma Inc UNSATURATED HETEROCYCLIC DERIVATIVES
TW200745066A (en) 2005-09-16 2007-12-16 Torrent Pharmaceuticals Ltd Novel PTP1B inhibitors
US20070072682A1 (en) 2005-09-29 2007-03-29 Crawford James T Iii Head to head electronic poker game assembly and method of operation
US8133900B2 (en) 2005-11-01 2012-03-13 Targegen, Inc. Use of bi-aryl meta-pyrimidine inhibitors of kinases
AU2006309013B2 (en) 2005-11-01 2012-06-28 Impact Biomedicines, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US8604042B2 (en) 2005-11-01 2013-12-10 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US20070161645A1 (en) 2005-11-02 2007-07-12 Targegen, Inc. Thiazole inhibitors targeting resistant kinase mutations
US7691858B2 (en) 2006-04-25 2010-04-06 Targegen, Inc. Kinase inhibitors and methods of use thereof
WO2008008234A1 (en) 2006-07-07 2008-01-17 Targegen, Inc. 2-amino-5-substituted pyrimidine inhibitors
WO2009026346A1 (en) 2007-08-20 2009-02-26 Targegen Inc. Thiazolidine compounds, and methods of making and using same
WO2009046416A1 (en) 2007-10-05 2009-04-09 Targegen Inc. Anilinopyrimidines as jak kinase inhibitors
WO2009049028A1 (en) 2007-10-09 2009-04-16 Targegen Inc. Pyrrolopyrimidine compounds and their use as janus kinase modulators
WO2009055674A1 (en) 2007-10-26 2009-04-30 Targegen Inc. Pyrrolopyrimidine alkynyl compounds and methods of making and using same
CA2714426A1 (en) 2008-02-08 2009-08-13 Targegen, Inc. Methods and compositions for treating respiratory disease
MX2011001426A (es) 2008-08-05 2011-03-21 Targegen Inc Metodos para tratar la talasemia.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP1809614A4

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2543376A1 (en) * 2004-04-08 2013-01-09 Targegen, Inc. Benzotriazine inhibitors of kinases
US8481536B2 (en) 2004-04-08 2013-07-09 Targegen, Inc. Benzotriazine inhibitors of kinases
US8372971B2 (en) 2004-08-25 2013-02-12 Targegen, Inc. Heterocyclic compounds and methods of use
EP1799656A1 (en) * 2004-08-25 2007-06-27 Targegen, Inc. Heterocyclic compounds and methods of use
EP1799656A4 (en) * 2004-08-25 2009-09-02 Targegen Inc HETEROCYCLIC COMPOUNDS AND METHODS OF USE
AU2005276974B2 (en) * 2004-08-25 2012-08-02 Targegen, Inc. Heterocyclic compounds and methods of use
EP2532653A1 (en) * 2004-08-25 2012-12-12 Targegen, Inc. Benzo[1,2,4]triazines as protein kinase modulators
US8084618B2 (en) 2004-08-25 2011-12-27 Targegen, Inc. Heterocyclic compounds and methods of use
WO2006131835A3 (en) * 2005-02-01 2007-05-10 Sentinel Oncology Ltd Heterocyclic triazines as hypoxic selective protein kinase inhibitors
WO2006131835A2 (en) * 2005-02-01 2006-12-14 Sentinel Oncology Limited Heterocyclic triazines as hypoxic selective protein kinase inhibitors
US10010536B2 (en) 2005-05-10 2018-07-03 Intermune, Inc. Method of modulating stress-activated protein kinase system
US9527816B2 (en) 2005-05-10 2016-12-27 Intermune, Inc. Method of modulating stress-activated protein kinase system
EP1893216A4 (en) * 2005-06-08 2012-08-08 Targegen Inc METHOD AND COMPOSITIONS FOR THE TREATMENT OF EYE DISEASES
EP1893216A1 (en) * 2005-06-08 2008-03-05 Targegen, Inc. Methods and compositions for the treatment of ocular disorders
US7858782B2 (en) 2006-12-15 2010-12-28 Abraxis Bioscience, Llc Triazine derivatives and their therapeutical applications
EP2923703A1 (en) 2006-12-15 2015-09-30 Abraxis BioScience, Inc. Triazine derivatives and their therapeutical applications
EP2425840A1 (en) 2006-12-15 2012-03-07 Abraxis BioScience, Inc. Triazine derivatives and their therapeutical applications
US8580786B2 (en) 2006-12-15 2013-11-12 Nant Holdings Ip, Llc Triazine derivatives and their therapeutical applications
US8969347B2 (en) 2008-06-03 2015-03-03 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US9290450B2 (en) 2008-06-03 2016-03-22 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
USRE47142E1 (en) 2008-06-03 2018-11-27 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
US10975352B2 (en) 2008-12-03 2021-04-13 The Scripps Research Institute Methods of enhancing cell survival of stem cells
US9896655B2 (en) 2008-12-03 2018-02-20 The Scripps Research Institute Methods of enhancing cell survival of stem cells
AU2009322346B2 (en) * 2008-12-03 2015-07-02 The Scripps Research Institute Stem cell cultures
US10351822B2 (en) 2008-12-03 2019-07-16 The Scripps Research Institute Methods of enhancing cell survival of stem cells
US9340525B2 (en) 2008-12-03 2016-05-17 The Scripps Research Institute Stem cell cultures
WO2010076238A1 (en) 2008-12-29 2010-07-08 Fovea Pharmaceuticals Sa Substituted quinazoline compounds
WO2010092041A1 (en) 2009-02-13 2010-08-19 Fovea Pharmaceuticals Sa [1, 2, 4] triazolo [1, 5 -a] pyridines as kinase inhibitors
US8716473B2 (en) 2009-05-26 2014-05-06 Sentinel Oncology Limited Substituted benzotriazines and quinoxalines as inhibitors of P7OS6 kinase
JP2012528136A (ja) * 2009-05-26 2012-11-12 センティネル・オンコロジー・リミテッド p70S6キナーゼの阻害剤としての置換ベンゾトリアジン類およびキノキサリン類
US8877924B2 (en) 2009-06-09 2014-11-04 NantBio Inc. Benzyl substituted triazine derivatives and their therapeutical applications
US9409903B2 (en) 2009-06-09 2016-08-09 Nantbioscience, Inc. Benzyl substituted triazine derivatives and their therapeutical applications
US9078902B2 (en) 2009-06-09 2015-07-14 Nantbioscience, Inc. Triazine derivatives and their therapeutical applications
WO2011161159A1 (en) 2010-06-22 2011-12-29 Fovea Pharmaceuticals Heterocyclic compounds, their preparation and their therapeutic application
US9675593B2 (en) 2012-10-02 2017-06-13 Intermune, Inc. Anti-fibrotic pyridinones
US9359379B2 (en) 2012-10-02 2016-06-07 Intermune, Inc. Anti-fibrotic pyridinones
US10376497B2 (en) 2012-10-02 2019-08-13 Intermune, Inc. Anti-fibrotic pyridinones
US10898474B2 (en) 2012-10-02 2021-01-26 Intermune, Inc. Anti-fibrotic pyridinones
US10233195B2 (en) 2014-04-02 2019-03-19 Intermune, Inc. Anti-fibrotic pyridinones
US10544161B2 (en) 2014-04-02 2020-01-28 Intermune, Inc. Anti-fibrotic pyridinones
US10246393B2 (en) 2016-10-31 2019-04-02 Tosoh Corporation Method for producing aromatic compound

Also Published As

Publication number Publication date
US8481536B2 (en) 2013-07-09
AU2005231507B2 (en) 2012-03-01
NZ588139A (en) 2012-02-24
KR20070011458A (ko) 2007-01-24
CA2567574A1 (en) 2005-10-20
EP1809614A2 (en) 2007-07-25
US7456176B2 (en) 2008-11-25
US20090275569A1 (en) 2009-11-05
IL178908A0 (en) 2011-08-01
HK1110578A1 (en) 2008-07-18
EP1809614B1 (en) 2014-05-07
EP2543376A1 (en) 2013-01-09
NZ551027A (en) 2011-01-28
US20110294796A1 (en) 2011-12-01
AU2005231507A1 (en) 2005-10-20
CA2567574C (en) 2013-01-08
WO2005096784A3 (en) 2009-02-19
RU2006139258A (ru) 2008-05-20
IL178908A (en) 2015-09-24
US20050245524A1 (en) 2005-11-03
EP1809614A4 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
AU2005231507B2 (en) Benzotriazine inhibitors of kinases
DK1951684T3 (en) BIARYLMETAPYRIMIDIN kinase inhibitors
AU2003282726B2 (en) Vasculostatic agents and methods of use thereof
AU2006227628A1 (en) Pyrimidine compounds and methods of use
WO2007056075A2 (en) Six membered heteroaromatic inhibitors targeting resistant kinase mutations
JP6175139B2 (ja) 新規トリアジン化合物
CN111566100B (zh) 嘧啶类化合物、其制备方法及其医药用途
EP1877398B1 (en) Quinazoline derivatives as egf and/or erbb2 tyrosine kinase inhibitors
CN101426772B (zh) 激酶的苯并三嗪抑制物
AU2012202928A1 (en) Benzotriazine inhibitors of kinases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 178908

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2005231507

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 551027

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 12006502199

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 200609267

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2006139258

Country of ref document: RU

Ref document number: 1020067023392

Country of ref document: KR

Ref document number: 6617/DELNP/2006

Country of ref document: IN

Ref document number: 2005762774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2567574

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2005231507

Country of ref document: AU

Date of ref document: 20050407

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005231507

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580018660.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067023392

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005762774

Country of ref document: EP