WO2005093437A1 - 電気特性測定方法及び電気特性測定装置 - Google Patents

電気特性測定方法及び電気特性測定装置 Download PDF

Info

Publication number
WO2005093437A1
WO2005093437A1 PCT/JP2004/017074 JP2004017074W WO2005093437A1 WO 2005093437 A1 WO2005093437 A1 WO 2005093437A1 JP 2004017074 W JP2004017074 W JP 2004017074W WO 2005093437 A1 WO2005093437 A1 WO 2005093437A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
impedance
measuring
measurement
measured
Prior art date
Application number
PCT/JP2004/017074
Other languages
English (en)
French (fr)
Inventor
Naoya Tamaki
Eiji Hankui
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/599,243 priority Critical patent/US7504837B2/en
Priority to JP2006511386A priority patent/JPWO2005093437A1/ja
Publication of WO2005093437A1 publication Critical patent/WO2005093437A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06766Input circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes

Definitions

  • the present invention relates to an electric characteristic measuring method and an electric characteristic measuring apparatus for performing calibration by opening, short-circuiting or connecting a load between a signal end and a ground end of an electric characteristic measuring probe, and particularly to a printed circuit board circuit.
  • the present invention relates to an electrical characteristic measuring method and an electrical characteristic measuring device for measuring reflection characteristics of devices and the like.
  • FIG. 8 is a diagram schematically showing a conventional electric characteristic measuring device.
  • one end of a coaxial cable 105 is connected to a measuring instrument 106, and the other end of the coaxial cable 105 is connected to a printed circuit board or the like.
  • a probe 101 having a signal end 102 in contact with a conductor pattern 109 formed on an object 108 to be measured and a ground end 103 in contact with the conductor pattern 110 and having a ground potential is connected.
  • the probe 101 has a resistance element 104 provided in the vicinity of a signal end 102, and its impedance is fixed.
  • a measuring instrument having an input impedance of 50 ⁇ (a 50 ⁇ measuring instrument) is used as the measuring instrument 106
  • the impedance of the measuring instrument 106 and the impedance are measured.
  • a coaxial cable with a characteristic impedance of 50 ⁇ and a probe with an input impedance of 50 ⁇ (50 ⁇ type probe) are used.
  • the 50 ⁇ type probe has a problem that the input impedance affects the circuit operation of the object to be measured and the measurement error increases.
  • a high-impedance probe in which the load effect is suppressed by increasing the input impedance has a smaller effect on the circuit operation of the object to be measured than a 50-ohm probe. Cannot be matched. For this reason, 50 ⁇ measurement If it is necessary to perform impedance matching between the measuring instrument and the probe and open, short-circuit, and connect a load between the signal end 102 and the ground end 103 of the probe tip, and calibrate the entire measurement device, use the 50 ⁇ type. Although a probe can be used, there is a problem that a high impedance type probe cannot be used.
  • Patent Document 1 Japanese Patent Laid-Open No. 4 206845
  • Patent Document 2 JP 2001-133482 A
  • Patent Document 3 JP-A-58-90176
  • Patent Document 4 Japanese Utility Model Application Laid-Open No. 2-32064
  • the conventional technique described above has the following problems.
  • the impedance of the probe In order to reduce the effect on the circuit operation of the measurement object and to reduce the measurement error sufficiently, the impedance of the probe must be sufficiently higher than the impedance of the measurement object.
  • the impedance is unknown, and in the case of the conventional electrical characteristic measuring device shown in Fig. 8, the impedance of the probe 101 is fixed, so that the impedance of the probe is not always sufficiently higher than the impedance of the object to be measured. Absent.
  • the impedance applied from the measuring object 108 that is, the contact force between the signal end 102 and the ground end 103 and the measuring object 108 (conductor patterns 109 and 110) also depends on the impedance looking at the measuring object 108 side.
  • the present invention has been made in view of a powerful problem, and has been made in consideration of a circuit operation of an object to be measured. It is an object of the present invention to provide a method and an apparatus for measuring electrical characteristics with high accuracy even when calibrating the probe by reducing its influence and opening, short-circuiting and connecting a load to a probe tip.
  • the electrical characteristic measuring method includes a signal end and at least one ground end, and a variable impedance element is provided near one of the signal end and the ground end.
  • the impedance of the variable impedance element is measured to be larger than a predetermined value. It can be adjusted to a sufficiently high value according to the impedance of the object. As a result, the input current to the measuring instrument connected to the probe becomes too small because the impedance of the probe is too high, and the influence on the circuit operation of the object to be measured is reduced without the adverse effect of reducing the measurement accuracy. Therefore, the measurement error can be sufficiently reduced.
  • the step of measuring the electric characteristics a parameter for evaluating a measurement error of the electric characteristics of the object to be measured is set such that the smaller the value is, the smaller the measurement error is, and the parameter is set in advance. Then, the impedance of the variable impedance element may be increased until the impedance becomes equal to or less than the allowable value. Thereby, the measurement error can be further reduced.
  • the step of performing the calibration includes, for example, a step of performing open calibration of the signal end and the ground end at a place away from a surrounding object, and a method of conducting the signal end and the ground end to one conductor and short-circuiting. Calibrating the signal end and the doller Conducting a load connection calibration by connecting the terminal end to a terminal of a resistor of approximately 50 ⁇ .
  • An electrical characteristic measuring apparatus includes a measuring instrument, and a probe connected to the measuring instrument and having one signal end and at least one ground end.
  • variable impedance element is provided near the signal end or the ground end of the probe, the input impedance of the probe is variable, and the tip of the probe is opened and short-circuited.
  • the distance between the variable impedance element and the tip of the signal end and the ground end on which the variable impedance element is provided is determined by measuring the electrical characteristic of the measurement object. It may be less than one tenth of the measurement wavelength. Thereby, the influence of the wavelength on the measured electrical characteristics can be made extremely small.
  • the electrical characteristic measuring apparatus has an input unit for inputting a permissible value of a parameter for evaluating a measurement error of the electrical characteristic of the object to be measured, an impedance of the variable impedance element, and the probe.
  • a storage unit for storing the measured values and their related characteristics, calculating a parameter for evaluating a measurement error based on the related characteristics, and comparing the parameter with the allowable value;
  • an output unit for outputting the result of the operation unit.
  • the impedance of the variable impedance element can be made sufficiently high in accordance with the impedance of the object to be measured. Since it can be adjusted, the effect of the probe's input impedance on the circuit operation of the object under measurement is reduced, and calibration is required especially at the open, short, and load termination conditions at the probe tip. Electrical characteristics can be measured easily and with high accuracy.
  • FIG. 1 is a view schematically showing an electric characteristic measuring device according to a first embodiment of the present invention.
  • FIG. 2 is a view schematically showing a slip wire resistor.
  • FIG. 3 is a flowchart showing an electric characteristic measuring method by the electric characteristic measuring device according to the first embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram showing a method for measuring electric characteristics by the electric characteristic measuring device according to the first embodiment of the present invention.
  • FIG. 5 is a Draft diagram showing the relationship between the input impedance of the probe and the electrical characteristics of the measurement object, with the horizontal axis representing the input impedance of the probe and the vertical axis representing the electrical characteristics of the measurement object.
  • FIG. 6 is a diagram schematically showing an electric characteristic measuring device according to a second embodiment of the present invention.
  • FIG. 7 is a view schematically showing an electric characteristic measuring device according to a third embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing a conventional electrical characteristic measuring device.
  • FIG. 1 is a view schematically showing an electric characteristic measuring device according to a first embodiment of the present invention.
  • one end of a coaxial cable 5 is connected to a measuring instrument 6, and the other end of the coaxial cable 5 is connected to an electrical characteristic measuring device.
  • Probe 1 is connected.
  • the measuring device 6 is connected to, for example, a force or recording 'calculation unit provided with a measurement unit, a storage' calculation unit, an input unit and an output unit, an input unit and an output unit.
  • the input impedance of the measuring instrument 6 is, for example, 50 ⁇
  • the characteristic impedance of the coaxial cable 5 is, for example, 50 ⁇ .
  • the probe 1 in the electrical characteristic measuring apparatus of the present embodiment includes a signal end 2 and a ground end 3, and the signal end 2 is provided on a measurement object 8 such as a printed circuit board.
  • the ground end 3 comes into contact with the conductor pattern 10 provided on the measuring object 8 and takes a ground potential.
  • a variable resistance element 4 is provided as a variable impedance element, whereby the impedance near the signal terminal 2 of the probe 1 is variable.
  • the distance H between the variable resistance element 4 and the signal end 2 be sufficiently shorter than the measurement wavelength.
  • the distance H is preferably 1Z10 or less of the measurement wavelength. Accordingly, it is not necessary to consider the relationship between the electrical length and the wavelength between the variable resistance element 4 and the object 8 to be measured, and the electrical characteristics of the object 8 can be easily and accurately measured.
  • Fig. 2 is a diagram schematically showing a slide wire resistor.
  • the slip wire resistor has an insulator 22 wound around the resistor wire 21, and the contact 23 is brought into contact with the resistor wire 21 at an appropriate position in the longitudinal direction of the insulator 22.
  • the impedance between the terminal 24 connected to the end of the resistance wire 21 and the terminal 25 connected to the contact 23 can be changed.
  • FIG. 3 is a flowchart showing an electric characteristic measuring method by the electric characteristic measuring device of the present embodiment
  • FIG. 4 is an equivalent circuit diagram showing the electric characteristic measuring method.
  • a case where the tip of the probe 1 is brought into contact between the output signal line of the CMOS driver IC 41 connected to the receiver IC 43 and the ground and the impedance Zxo is measured is described as an example. I do.
  • the impedance Za near the tip of the probe 1 is reduced to approximately 0 by changing the resistance value of the variable resistance element 4 (step S301).
  • the probe 1 is matched with the coaxial cable 5 and the measuring instrument 6.
  • calibration is performed by opening, short-circuiting and connecting a load between the signal end 2 and the ground end 3 of the probe tip (step S302). Specifically, open and calibrate the signal end 2 and the ground end 3 with a sufficient distance from the surrounding objects, conduct short-circuit calibration by conducting to one conductor, and conduct to the terminal of a resistor of approximately 50 ⁇ . Calibrate the load connection.
  • the signal end 2 and the ground end 3 of the probe 1 are brought into contact with the conductor patterns 9 and 10 provided on the measuring object 8 (step S303).
  • the signal captured by the probe 1 is transmitted to the measuring instrument 6 via the coaxial cable 5, and the impedance ⁇ ( ⁇ ) is measured in the measuring instrument 6.
  • the impedance ⁇ ( ⁇ ) loaded from the measurement object 8 that is, The contact force between the signal end 2 and the ground end 3 of the probe 1 and the conductor patterns 9 and 10 can also determine the impedance when looking at the measurement object 8 side.
  • the variable resistance element 4 is provided near the tip of the probe 1 and the impedance of the probe 1 is made variable. No need to replace parts. For this reason, the input impedance of the probe 1 can be easily changed.
  • Probe 1 Since the impedance Za near the end and the impedance Zxo ( ⁇ ) of the measuring object 8 are in a series relationship, the impedance ⁇ ( ⁇ ) of the measuring object 8 can be easily obtained by the above equation 1.
  • the distance H between the measuring object 8 and the variable resistance element 4 is sufficiently shorter than the measurement wavelength, that is, is not more than 1/10 of the measurement wavelength.
  • the impedance ⁇ ( ⁇ ) of the measuring object 8 can be obtained with high accuracy by using a lumped constant simple formula such as the above-described formula 1.
  • the probe 1 When the circuit is operating, the probe 1 is brought into contact with the conductor patterns 9 and 10 so that the load impedance of the driver IC 41 when the measuring instrument 6 is viewed from the line 42 shown in FIG.
  • One dance ⁇ 1 ( ⁇ ) changes from the input impedance ⁇ ( ⁇ ) of the Recino IC 43 to ZrX (Za + 50) / ⁇ Zr + (Za + 50) ⁇ (Q). That is, the load impedance Z1 ( ⁇ ) of the driver IC 41 is the sum of the input impedance ⁇ ( ⁇ ) of the receiver IC 43, the impedance Za ( ⁇ ) near the tip of the probe 1, and the impedance (50 ⁇ ) of the measuring instrument 106.
  • the input impedance Za + 50 ( ⁇ ) of a certain probe 1 is connected in parallel and expressed as follows.
  • the input impedance of probe 1 50 & + 50 ( ⁇ ) is preferably larger.
  • the load impedance of the dry cell IC 41 (1 ( ⁇ ) approaches the input impedance of the receiver IC 43 ⁇ ( ⁇ ), so that the impedance error during measurement is reduced.
  • the input impedance of the probe 1 ⁇ & + 50 ( ⁇ ) is too large, the input current to the measuring instrument 6 becomes extremely small, and as a result, the measurement accuracy may be reduced.
  • the input impedance of probe 1 ⁇ & + 50 ( ⁇ ) be sufficiently larger than the input impedance Zr ( ⁇ ) of the receiver IC 43, but the input impedance Zr ( ⁇ ) of the receiver IC 43 is Since it is unknown, if the input impedance of the probe is fixed as in the conventional electrical characteristic measuring device shown in FIG. 8, the measurement accuracy may be reduced.
  • a variable impedance element such as a variable resistance element 4 is provided near the tip of the probe 1, and the impedance Za near the tip of the probe 1 is set.
  • ( ⁇ ) is made variable
  • the input impedance Za + 50 ( ⁇ ) of the probe 1 is set to a value sufficiently larger than the input impedance Zr ( ⁇ ) of the receiver IC43 and not too large
  • the impedance of the object 8 to be measured is set.
  • ⁇ ( ⁇ ) is the input impedance of probe 1.
  • the measurement accuracy is improved as compared with the conventional electrical characteristic measuring device in which the impedance of the probe is fixed. This is not limited to this specific example, but can be applied to any measurement object.
  • Step S304 derives a relationship characteristic between the impedance ⁇ ( ⁇ ) of the measuring object 8 and the input impedance Za + 50 ( ⁇ ) of the probe 1 (step S305).
  • This process is repeated until the impedance of the object 8 to be measured ⁇ ( ⁇ ) is almost independent of the input impedance ⁇ & +50 ( ⁇ ) of the probe 1.
  • the impedance ⁇ ⁇ ( ⁇ ) of the object 8 becomes almost independent of the input impedance Za + 50 ( ⁇ ) of the probe 1
  • the impedance ⁇ ⁇ ( ⁇ ) of the object 8 is By increasing the impedance Za ( ⁇ ) near the tip of the probe 1 from a predetermined value, the influence of the input impedance Za + 50 ( ⁇ ) of the probe 1 on the circuit operation of the measuring object 8 is reduced.
  • the predetermined value is a value determined by the impedance ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ( ⁇ ) of the measuring object 8.
  • Figure 5 shows the relationship between the input impedance Za + 50 of the probe and the impedance Zxo of the measurement object, with the input impedance Za + 50 of the probe 1 on the horizontal axis and the impedance Zxo of the object 8 on the vertical axis.
  • FIG. 5 For example, if the input impedance Za + 50 of the probe 1 and the impedance Zxo of the measuring object 8 have the relationship shown in Fig. 5, if the input impedance Za + 50 of the probe 1 is less than 300 ⁇ , The effect on the circuit operation when the probe 1 with a relatively large inclination is brought into contact is considered to be large.
  • the input impedance Za + 50 of the probe 1 becomes 300 ⁇ or more, the slope of the characteristic becomes small, and the influence of the probe 1 on the circuit operation becomes relatively small.
  • the input impedance Za + 50 of the probe 1 is set to 100 ⁇ , 200 ⁇ , 300 ⁇ and 400 ⁇ , respectively.
  • the slope of the graph showing the relationship between the input impedance Za + 50 of the probe 1 and the impedance Zxo of the measurement object is used as a parameter for measuring error evaluation (step S306), and the measuring error is evaluated.
  • the permissible values of the parameters to be used are input in advance (step S307), and the parameters derived in step S306 are compared with the permissible values input in step S307 (step S308).
  • step S307 when the allowable value is input as 0.2 / 100, when this value is compared with the parameter for evaluating the measurement error, by setting the input impedance Za + 50 of the probe 1 to 400 ⁇ or more, “ The condition of “the allowable value of the parameter of step S307 for evaluating the measurement error” ⁇ “the parameter of step S306 for evaluating the measurement error” is satisfied, and an acceptable measurement accuracy is obtained.
  • the process returns to step S304 again, and the tip of the probe 1 Increase the nearby impedance Za and repeat the subsequent steps.
  • the measuring device 6 is provided with a measuring unit, a storage unit, an arithmetic unit, an input unit, and an output unit.
  • the measuring unit stores steps S301, S302, S303, and S304.
  • the calculation unit executes steps S305, S306 and S308, the input unit executes step S307, and the output unit executes step S309.
  • variable resistance element 4 is provided near the signal terminal 2 of the probe 1, the input impedance Za + 50 ( ⁇ ) of the probe 1 Can be easily changed.
  • the variable resistance element 4 is provided near the signal end 2 of the probe 1 so that the distance ⁇ between the measurement object 8 and the variable resistance element 4 is sufficiently shorter than the measurement wavelength. There is no need to consider the relationship between the electrical length and the wavelength between the resistance element 4 and the object 8 to be measured, and the measurement can be facilitated.
  • the impedance near the signal terminal 2 is set to 0, and calibration is performed by opening (infinity), short circuit ( ⁇ ) and load connection (resistance).
  • the resistance value of the variable resistance element 4 it is possible to set the impedance near the signal end 2 to a value larger than the impedance that can be expected of the object to be measured. Therefore, by using the electric measurement device of the present embodiment, it is possible to easily and accurately measure the reflection characteristics of the measurement object.
  • FIG. 6 is a diagram schematically showing the electrical characteristic measuring device of the present embodiment.
  • the same components as those of the electrical characteristic measuring device of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description is omitted. As shown in FIG.
  • a probe 11 is connected to a measuring instrument 6 having an input impedance of, for example, 50 ⁇ via a coaxial cable 5 having a characteristic impedance of, for example, 50 ⁇ . Connected!
  • the probe 11 has a signal end 12 and a ground end 13, and the signal end 12 contacts a conductor pattern 9 provided on a measurement target 8 such as a printed circuit board, and Is in contact with the conductor pattern 10 provided on the measuring object 8 to take the ground potential.
  • a variable resistance element 14 is provided as a variable impedance element near the ground end 13 of the probe 11, so that the impedance near the ground end 13 of the probe 11 is variable.
  • variable resistance element 4 is provided near the ground end 13 of the probe 11 connected to the coaxial cable 5
  • the input impedance of the probe 11 ⁇ & + 50 ( ⁇ ) can be easily changed.
  • variable resistance element 14 Since it is not necessary to consider the relationship between the electrical length and the wavelength between the variable resistance element 14 and the object 8 whose distance is sufficiently shorter than the measurement wavelength, the impedance of the object 8 can be easily measured. Can be.
  • FIG. 7 is a diagram schematically showing the electrical characteristic measuring device of the present embodiment.
  • the same components as those of the electrical characteristic measuring device of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the electrical characteristic measuring apparatus of the present embodiment has a probe 15 connected to a measuring instrument 6 having an input impedance of, for example, 50 ⁇ via a coaxial cable 5 having a characteristic impedance of, for example, 50 ⁇ . Been!
  • the probe 15 is provided with one signal terminal 16 and two ground terminals 17a and 17b, and a variable resistance element 18 is provided near the signal terminal 16 as a variable impedance element.
  • This electric characteristic measuring device is used, for example, when measuring a measurement object 28 provided with two conductor patterns 29a and 29b having the same potential and a conductor pattern 30 having a different potential from those conductor patterns, and a probe.
  • the 15 signal ends 16 come into contact with the conductor pattern 30 of the object 28 to be measured, and the ground ends 17a and 17b come into contact with the conductor pattern 17, respectively, to take the ground potential.
  • the configuration and operation of the electronic characteristic measuring device of the present embodiment other than those described above are the same as those of the above-described electric characteristic measuring device of the first embodiment.
  • variable resistance element 18 is provided near the signal terminal 16 of the probe 15 and the impedance near the signal terminal 16 of the probe 15 is variable. Can easily be changed. Also, since the variable resistance element 18 is provided near the signal end 16, the distance between the measurement object 28 and the variable resistance element 18 is sufficiently shorter than the measurement wavelength between the variable resistance element 18 and the measurement object 28. Since there is no need to consider the relationship between the electrical length and the wavelength, the impedance of the measurement object 28 can be easily measured. [0042] In the electrical characteristic measuring devices of the first to third embodiments described above, the variable resistance element is provided near the signal end or the ground end of the probe, but the present invention is not limited to this.
  • the variable impedance element provided in the non-probe probe may be a variable reactance element, for example, as long as it can change the impedance.
  • the present invention it is possible to accurately measure the reflection characteristics of an object to be measured such as a printed circuit board.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 測定器6に、同軸ケーブル5を介して、信号端2及びグラウンド端3を備え信号端2の近傍に可変抵抗素子4が設けられたプローブ1が接続されている電気特性測定装置を使用して、測定対象物8の電気特性を測定する。その際、プローブ1の校正は、可変抵抗素子の抵抗値を調節してプローブ1の先端付近のインピーダンスを実質的に0にし、同軸ケーブル5及び測定器6と整合させる。また、測定対象物8の電気特性を測定するときには、測定対象物8と信号端2及びグラウンド端3との接点から測定対象物8側を見たインピーダンスに応じて、可変抵抗素子4の抵抗値を変更し、プローブ1の入力インピーダンスを測定対象物8の回路動作に影響を与えない値に設定する。

Description

明 細 書
電気特性測定方法及び電気特性測定装置
技術分野
[0001] 本発明は、電気特性測定用プローブの信号端とグラウンド端との間を開放、短絡又 は負荷接続して校正を行う電気特性測定方法及び電気特性測定装置に関し、特に 、プリント基板回路及びデバイス等の反射特性を測定する電気特性測定方法及び電 気特性測定装置に関する。
背景技術
[0002] 一般的に、高周波信号を扱うプリント基板回路及びデバイス等の電気特性測定に 使用される従来の電気特性測定装置には、 1つの信号端と少なくとも 1つのグラウンド 端とを備えたプローブが設けられている (例えば、特許文献 1乃至 3参照)。図 8は従 来の電気特性測定装置を模式的に示す図である。図 8に示すように、従来の電気特 性測定装置には、測定器 106に同軸ケーブル 105の一方の端部が接続されており、 同軸ケーブル 105の他方の端部には、プリント回路基板等の測定対象物 108に形成 されている導体パターン 109に接触する信号端 102と、導体パターン 110に接触して グラウンド電位をとるグラウンド端 103とを備えたプローブ 101が接続されている。この プローブ 101は、信号端 102の近傍に抵抗素子 104が設けられており、そのインピ 一ダンスは固定である。
[0003] このような従来の電気特性測定装置においては、一般に、測定器 106として入カイ ンピーダンスが 50 Ωである測定器 (50 Ω系測定器)を使用する場合は、測定器 106 とインピーダンスを整合させるために、特性インピーダンスが 50 Ωの同軸ケーブル及 び入力インピーダンスが 50 Ωであるプローブ(50 Ω型プローブ)が使用される。しか しながら、 50 Ω型プローブは、入力インピーダンスが測定対象物の回路動作に影響 し、測定誤差が大きくなるという問題点がある。
[0004] 一方、入力インピーダンスを高くすることにより負荷効果を抑制したハイインピーダ ンス型プローブは、 50 Ω型プローブに比べて測定対象物の回路動作に与える影響 は小さいが、 50 Ω系測定器とのインピーダンス整合がとれない。このため、 50 Ω系測 定器とプローブとをインピーダンス整合させて、プローブ先端の信号端 102とグラウン ド端 103との間を開放、短絡及び負荷接続して測定装置全体の校正を行う必要があ る場合、 50 Ω型プローブは使用できるが、ハイインピーダンス型プローブは使用でき ないという問題点がある。
[0005] また、従来、入力インピーダンスが相互に異なる 2つの回路と、これらを切替えるス イッチとを備えた切替型プローブもある(特許文献 4参照)。従来の切替型プローブに おいては、一方の回路を 50 Ωとし、他方の回路をハイインピーダンスとし、スィッチに より校正時及び測定時のインピーダンスを切替えることによって、 50 Ω系測定器との 整合性及び測定対象物の回路動作に与える影響の両立を図っている。
[0006] 特許文献 1:特開平 4 206845号公報
特許文献 2 :特開 2001— 133482号公報
特許文献 3:昭 58-90176号公報
特許文献 4:実開平 2— 32064号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、前記の従来の技術には、以下に示すような問題点がある。測定対象 物の回路動作に与える影響を低減し、測定誤差を十分に小さくするためには、プロ ーブのインピーダンスが測定対象物のインピーダンスに比べて十分に高くなければ ならないが、測定対象物のインピーダンスは未知であり、また、図 8に示す従来の電 気特性測定装置の場合、プローブ 101のインピーダンスが固定であるため、プローブ のインピーダンスが測定対象物のインピーダンスに比べて十分に高いとは限らない。 このため、測定対象物 108から負荷されるインピーダンス、即ち、信号端 102及びグ ラウンド端 103と測定対象物 108 (導体パターン 109及び 110)との接点力も測定対 象物 108側を見たインピーダンスによっては、前述の切替型プローブを使用しても充 分な測定精度が得られないことがあるという問題点がある。また、プローブのインピー ダンスが高すぎると、プローブに接続する測定器への入力電流が小さくなるため、測 定精度が低下するという問題点もある。
[0008] 本発明は力かる問題点に鑑みてなされたものであって、測定対象物の回路動作に 与える影響を低減し、プローブの先端を開放、短絡及び負荷接続して校正する場合 でも、電気特性の測定を高精度で行うことができる電気特性測定方法及び装置を提 供することを目的とする。
課題を解決するための手段
[0009] 本願第 1発明に係る電気特性測定方法は、 1つの信号端と少なくとも 1つのグラウン ド端とを備え、前記信号端及び前記グラウンド端のうちいずれか一方の近傍に可変ィ ンピーダンス素子が設けられているプローブを使用して測定対象物の電気特性を測 定する電気特性測定方法であって、前記可変インピーダンス素子のインピーダンス を実質的に 0にして前記プローブの先端で信号端とグラウンド端との間を開放、短絡 及び負荷接続して校正を行う工程と、前記可変インピーダンス素子のインピーダンス を所定値より大きくし前記信号端及び前記グラウンド端を夫々前記測定対象物に接 触させてその電気特性を測定する工程と、を有することを特徴とする。なお、インピー ダンスが実質的に 0とは、インピーダンスを略 0にすることであり、厳密に 0にする必要 はない。
[0010] 本発明においては、信号端及びグラウンド端のうちいずれか一方の近傍に可変ィ ンピーダンス素子が設けられているプローブを使用するため、可変インピーダンス素 子のインピーダンスを所定値より大きくして測定対象物のインピーダンスに合わせて 十分高いものに合わせることができる。これにより、プローブのインピーダンスが高す ぎてプローブに接続する測定器への入力電流が小さくなるため、測定精度が低下す るという弊害が生じることなぐ測定対象物の回路動作に与える影響を低減し、測定 誤差を十分に小さくすることができる。
[0011] 前記電気特性を測定する工程において、前記測定対象物の電気特性の測定誤差 を評価するパラメータであって、その値が小さいほど測定誤差が小さくなるパラメータ を設定し、前記パラメータが予め設定してぉ 、た許容値以下となるまで前記可変イン ピーダンス素子のインピーダンスを大きくしてもよい。これにより、測定誤差をより小さ くすることができる。また、前記校正を行う工程は、例えば、前記信号端及び前記ダラ ゥンド端を周囲物から離れた場所で開放校正する工程と、前記信号端及び前記ダラ ゥンド端を 1つの導体に導通させて短絡校正する工程と、前記信号端及び前記ダラ ゥンド端を略 50 Ωの抵抗器の端子に導通させて負荷接続校正する工程と、を有する
[0012] 本願第 2発明に係る電気特性測定装置は、測定器と、前記測定器に接続され 1つ の信号端と少なくとも 1つのグラウンド端とを備えたプローブとを有し、測定対象物の 電気特性を測定する電気特性測定装置であって、前記プローブの前記信号端及び 前記グラウンド端のうちのいずれか一方の近傍には可変インピーダンス素子が設けら れていることを特徴とする。
[0013] 本発明にお 、ては、プローブの信号端又はグラウンド端の近傍に可変インピーダン ス素子が設けられているため、プローブの入力インピーダンスが可変であり、プロ一 ブの先端を開放、短絡及び負荷接続して校正する際、及び測定対象物の電気特性 測定時に適切な入力インピーダンスを設定することができる。
[0014] また、前記信号端及び前記グラウンド端のうち前記可変インピーダンス素子が設け られている方の先端と前記可変インピーダンス素子との間の距離を、前記測定対象 物の電気特性を測定する際の測定波長の 10分の 1以下にしてもよい。これにより、測 定される電気特性に及ぼす波長の影響を極めて小さくすることができる。
[0015] 更に、この電気特性測定装置には、前記測定対象物の電気特性の測定誤差を評 価するパラメータの許容値を入力する入力部と、前記可変インピーダンス素子のイン ピーダンス、前記プローブにより得られる測定値及びこれらの関係特性を記憶し、こ の関係特性カゝら測定誤差を評価するためのパラメータを算出し、前記パラメータと前 記許容値とを比較する記憶'演算部と、前記記憶,演算部の結果を出力する出力部 とを設けることができる。
発明の効果
[0016] 本発明によれば、プローブの信号端又はグラウンド端の近傍に可変インピーダンス 素子が設けられて 、るため、この可変インピーダンス素子のインピーダンスを測定対 象物のインピーダンスに合わせて十分高いものに合わせることができるため、プロ一 ブの入力インピーダンスが測定対象物の回路動作に与える影響を低減し、特にプロ ーブの先端で開放、短絡、負荷接続の各終端条件での校正を必要とする電気特性 を簡便に高精度で測定することができる。 図面の簡単な説明
[0017] [図 1]本発明の第 1の実施形態の電気特性測定装置を模式的に示す図である。
[図 2]すべり線抵抗器を模式的に示す図である。
[図 3]本発明の第 1の実施形態の電気特性測定装置による電気特性測定方法を示 すフローチャート図である。
[図 4]本発明の第 1の実施形態の電気特性測定装置による電気特性測定方法を示 す等価的回路図である。
[図 5]横軸にプローブの入力インピーダンスをとり、縦軸に測定対象物の電気特性を とって、プローブの入力インピーダンスと測定対象物の電気特性との関係を示すダラ フ図である。
[図 6]本発明の第 2の実施形態の電気特性測定装置を模式的に示す図である。
[図 7]本発明の第 3の実施形態の電気特性測定装置を模式的に示す図である。
[図 8]従来の電気特性測定装置を模式的に示す図である。
符号の説明
[0018] 1、 11、 15、 101;プローブ
2、 12、 16、 102;信号端
3、 13、 17、 103;グラウンド端
4、 14、 18;可変抵抗素子
5、 105;同軸ケーブル
6、 106;測定器
8、 28、 108;測定対象物
9、 10、 29、 30、 109、 110;導体パターン
21;抵抗線
22;絶縁体
23;接触子
24、 25;端子
41;ドライバ IC
42;線 43 ;レシーバ IC
104 ;抵抗素子
発明を実施するための最良の形態
[0019] 以下、本発明の実施形態について添付の図面を参照して具体的に説明する。先 ず、本発明の第 1の実施形態について説明する。図 1は本発明の第 1の実施形態の 電気特性測定装置を模式的に示す図である。図 1に示すように、本実施形態の電気 特性測定装置は、測定器 6に同軸ケーブル 5の一方の端部が接続されており、同軸 ケーブル 5の他方の端部には、電気特性測定用プローブ 1が接続されている。また、 測定器 6には、例えば、測定部、記憶'演算部、入力部及び出力部が設けられている 力 又は記録'演算部、入力部及び出力部が接続されている。なお、測定器 6の入力 インピーダンスは例えば 50 Ωであり、同軸ケーブル 5の特性インピーダンスは例えば 50 Ωである。
[0020] 更に、本実施形態の電気特性測定装置におけるプローブ 1には、信号端 2及びグ ランド端 3を備えており、信号端 2は例えばプリント回路基板等の測定対象物 8に設け られている導体パターン 9に接触し、グランド端 3は測定対象物 8に設けられている導 体パターン 10に接触してグラウンド電位をとる。このプローブ 1の信号端 2の近傍には 、可変インピーダンス素子として可変抵抗素子 4が設けられており、これにより、プロ ーブ 1の信号端 2付近のインピーダンスが可変になっている。可変抵抗素子 4と信号 端 2との距離 Hは、測定波長よりも十分短くすることが好ましぐ具体的には、測定波 長の 1Z10以下であることが好ましい。これにより、可変抵抗素子 4と測定対象物 8と の間の電気長と波長との関係を考慮する必要がなくなり、測定対象物 8の電気特性 を、容易に且つ精度よく測定することができる。
[0021] なお、プローブ 1に設けられる可変抵抗素子 4としては、例えばすベり線抵抗器等 のように抵抗値が調変更可能である素子を使用することができる。図 2はすべり線抵 抗器を模式的に示す図である。図 2に示すように、すべり線抵抗器は、絶縁体 22〖こ 抵抗線 21が巻き付けられており、接触子 23を絶縁体 22の長手方向の適宜位置で 抵抗線 21に接触させることにより、抵抗線 21の端部に接続された端子 24と接触子 2 3に接続された端子 25との間のインピーダンスを変化させることができる。 [0022] 次に、前述の如く構成された本実施形態の電気特性測定装置の動作、即ち、この 電気特性測定装置による電気特性測定方法につ!ヽて説明する。図 3は本実施形態 の電気特性測定装置による電気特性測定方法を示すフローチャート図であり、図 4 はその電気特性測定方法を示す等価的回路図である。本実施形態においては、図 4に示すように、レシーバ IC43に接続する CMOSドライバ IC41の出力信号ラインと グラウンド間にプローブ 1の先端を接触させてそのインピーダンス Zxoを測定する場 合を例にして説明する。
[0023] 図 3に示すように、先ず、可変抵抗素子 4の抵抗値を変化させてプローブ 1の先端 付近のインピーダンス Zaを略 0にする(ステップ S301)。これにより、プローブ 1と同軸 ケーブル 5及び測定器 6とを整合させる。次に、プローブ先端の信号端 2とグラウンド 端 3との間を開放、短絡及び負荷接続して校正を行う(ステップ S302)。具体的には 、信号端 2とグラウンド端 3を、周囲物から十分離れた状態で開放校正し、また 1つの 導体に導通させて短絡校正し、更に略 50 Ωの抵抗器の端子に導通させ負荷接続校 正する。
[0024] その後、測定対象物 8に設けられている導体パターン 9及び 10に、夫々プローブ 1 の信号端 2及びグラウンド端 3を接触させる (ステップ S303)。これにより、プローブ 1 力 取り込まれた信号が同軸ケーブル 5を経由して測定器 6に伝達され、測定器 6に おいてインピーダンス Ζχ ( Ω )が測定される。そして、下記数式 1により、測定器 6で測 定されたインピーダンス Ζχ ( Ω )及びプローブ 1の先端付近のインピーダンス Za ( Ω ) から、測定対象物 8から負荷されたインピーダンス Ζχο ( Ω )、即ち、プローブ 1の信号 端 2及びグラウンド端 3と導体パターン 9及び 10との接点力も測定対象物 8側を見たと きのインピーダンスを求めることができる。
[0025] [数 1]
Z x o = x— Z a
[0026] 本実施形態の電気特性測定装置のように、プローブ 1の先端付近に可変抵抗素子 4を設け、プローブ 1のインピーダンスを可変にすることにより、インピーダンスがネ目互 に異なる複数のプローブ先端のパーツを交換する作業が不要になる。このため、容 易にプローブ 1の入力インピーダンスを変化させることができる。また、プローブ 1の先 端付近のインピーダンス Zaと測定対象物 8のインピーダンス Zxo ( Ω )とが直列の関 係にあるため、上記数式 1により容易に測定対象物 8のインピーダンス Ζχο ( Ω )を求 めることができる。なお、本実施形態の電気特性測定装置においては、測定対象物 8 と可変抵抗素子 4との距離 Hを測定波長よりも十分短ぐ即ち、測定波長の 10分の 1 以下とすることが好ましい。これにより、上記数式 1のような集中定数的な簡便な式で 精度よく測定対象物 8のインピーダンス Ζχο ( Ω )を求めることができる。
[0027] また、回路が動作している場合は、導体パターン 9及び 10にプローブ 1を接触させ ることにより、図 3に示す線 42から測定器 6側を見たときのドライバ IC41の負荷インピ 一ダンス Ζ1(Ω)は、レシーノ IC43の入力インピーダンス ΖΓ(Ω)から、 ZrX (Za+50 )/{Zr+ (Za+50)}(Q)に変化する。つまり、ドライバ IC41の負荷インピーダンス Z1 (Ω)は、レシーバ IC43の入力インピーダンス ΖΓ(Ω)と、プローブ 1の先端付近のィ ンピーダンス Za ( Ω )と測定器 106のインピーダンス(50 Ω )との和であるプローブ 1の 入力インピーダンス Za + 50 ( Ω )とが並列に接続されて!ヽる形で表される。
[0028] 理想的には、プローブ 1の入力インピーダンス Ζ&+50(Ω)はより大きい方が好まし い。これにより、ドライノく IC41の負荷インピーダンス Ζ1(Ω)がレシーノ IC43の入カイ ンピーダンス ΖΓ(Ω)に近付くため、測定時のインピーダンス誤差が小さくなる。しかし ながら、現実的にはプローブ 1の入力インピーダンス Ζ& + 50(Ω)を大きくし過ぎると 、測定器 6への入力電流が極めて小さくなり、結果的に測定精度が低下する可能性 がある。また、プローブ 1の入力インピーダンス Ζ&+50(Ω)は、レシーバ IC43の入 力インピーダンス Zr ( Ω )よりも十分大き 、値にすることが望まし 、が、レシーバ IC43 の入力インピーダンス Zr( Ω )が未知であるため、図 8に示す従来の電気特性測定装 置のようにプローブの入力インピーダンスが固定であると、測定精度が低下する可能 '性がある。
[0029] そこで、本実施形態の電気特性測定方法にお!、ては、プローブ 1の先端付近に可 変抵抗素子 4等の可変インピーダンス素子を設けて、プローブ 1の先端付近のインピ 一ダンス Za ( Ω )を可変とし、プローブ 1の入力インピーダンス Za+ 50 ( Ω )をレシ一 バ IC43の入力インピーダンス Zr ( Ω )より十分に大きぐ且つ大き過ぎない値に設定 すると共に、測定対象物 8のインピーダンス Ζχο(Ω)が、プローブ 1の入力インピーダ ンス Ζ& + 50 ( Ω )にほとんど依存しなくなるまで、プローブ 1の先端付近のインピーダ ンス Ζ& ( Ω )を段階的に大きくする。これにより、プローブのインピーダンスが固定であ る従来の電気特性測定装置よりも測定精度が向上する。このことは、本具体例に限ら ず、任意の測定対象物にいえることである。
[0030] 具体的には、可変抵抗素子 4の抵抗値を変えることによりプローブ 1の先端付近の インピーダンス Za ( Ω )を大きくして、再度測定対象物 8のインピーダンス Ζχο ( Ω )を 測定し (ステップ S304)、測定対象物 8のインピーダンス Ζχο ( Ω )と、プローブ 1の入 力インピーダンス Za + 50 ( Ω )との関係特性を導出する (ステップ S305)。この工程( ステップ S304及びステップ S305)は、測定対象物 8のインピーダンス Ζχο ( Ω )力 プローブ 1の入力インピーダンス Ζ& + 50 ( Ω )に殆ど依存しなくなるまで、繰り返し行
[0031] そして、測定対象物 8のインピーダンス Ζχο ( Ω )力 プローブ 1の入力インピーダン ス Za + 50 ( Ω )に殆ど依存しなくなった後、測定対象物 8のインピーダンス Ζχο ( Ω ) に応じて、プローブ 1の先端付近のインピーダンス Za ( Ω )を所定値より増大させて、 プローブ 1の入力インピーダンス Za + 50 ( Ω )が測定対象物 8の回路動作に与える影 響を低減する。なお、この所定値とは、測定対象物 8のインピーダンス Ζχο ( Ω )により 決まる値である。図 5は横軸にプローブ 1の入力インピーダンス Za + 50をとり、縦軸 に測定対象物 8のインピーダンス Zxoをとつて、プローブの入力インピーダンス Za+ 5 0と測定対象物のインピーダンス Zxoとの関係を示すグラフ図である。例えば、プロ一 ブ 1の入力インピーダンス Za + 50と測定対象物 8のインピーダンス Zxoと力 図 5に 示すような関係であった場合、プローブ 1の入力インピーダンス Za + 50が 300 Ω未 満では特性の傾きが比較的大きぐプローブ 1を接触させたときに回路動作に与える 影響が大きいと考えられる。一方、プローブ 1の入力インピーダンス Za+ 50が 300 Ω 以上になると、特性の傾きが小さくなり、プローブ 1が回路動作に与える影響が比較 的小さくなる。
[0032] プローブ 1の入力インピーダンス Za+ 50を、夫々 100 Ω、 200 Ω、 300 Ω及び 400
Ωにして、 4回の測定を行った場合、各測定点間を直線で結んだ特性の傾きは順に 、 1. 5/100, 0. 6Z100及び 0. 2Z100となり、測定回数を増すごとに測定対象物 8のインピーダンス Zxoは真値に漸近する。これらの数値が小さくなることは、即ち、 測定精度が向上していることである。従って、プローブ 1の入力インピーダンス Za + 5 0と測定対象物のインピーダンス Zxoとの関係を示すグラフ図の傾きが小さ 、程、測 定誤差が小さ ヽと判断することができる。
[0033] そこで、プローブ 1の入力インピーダンス Za+ 50と測定対象物のインピーダンス Zx oとの関係を示すグラフ図の傾きを測定誤差評価のためのパラメータとし (ステップ S3 06)、また、測定誤差を評価するためのパラメータの許容値を予め入力しておき (ステ ップ S307)、ステップ S306で導出したパラメータと、ステップ S307において入力し た許容値とを比較する (ステップ S 308)。例えば、ステップ S307において、許容値を 0. 2/100と入力した場合、この値と測定誤差評価のためのパラメータと比較すると 、プローブ 1の入力インピーダンス Za+ 50を 400 Ω以上にすることで、「測定誤差を 評価するためのステップ S307のパラメータの許容値」≥「測定誤差を評価するため のステップ S306のパラメータ」の条件が満たされ、許容できる測定精度が得られるこ とになり、測定器 6からインピーダンス Ζχ( Ω )が出力される。
[0034] 一方、「測定誤差を評価するためのステップ S307のパラメータの許容値」く「測定 誤差を評価するためのステップ S306のパラメータ」の場合には、再びステップ S304 に戻り、プローブ 1の先端付近のインピーダンス Zaを大きくして、その後の工程を繰り 返す。なお、本実施形態の電気特性測定装置においては、測定器 6に測定部、記憶 •演算部、入力部及び出力部が設けられており、測定部ではステップ S301、 S302、 S303及び S304を、記憶 ·演算部ではステップ S305、 S306及び S308を、入力部 ではステップ S307を、出力部ではステップ S309を夫々実行する。
[0035] このように、本実施形態の電気特性測定装置においては、プローブ 1の信号端 2近 傍に可変抵抗素子 4が設けられているため、プローブ 1の入力インピーダンス Za + 5 0 ( Ω )を容易に変えることができる。また、この可変抵抗素子 4はプローブ 1の信号端 2の近傍に設けることにより、測定対象物 8と可変抵抗素子 4との距離 Ηが測定波長よ り十分に短くなるようにしているため、可変抵抗素子 4と測定対象物 8との間の電気長 と波長との関係を考慮する必要がなくなり、測定を容易にすることができる。例えば、 この電気特性測定装置を使用して、上述の方法により反射特性を測定する場合、先 ず、可変抵抗素子 4の抵抗値を調節することにより信号端 2付近のインピーダンスを 0 にして、開放 (無限大)、短絡 (Ο Ω )及び負荷接続 (抵抗)にて校正を行い、その後、 可変抵抗素子 4の抵抗値を変えることにより、信号端 2付近のインピーダンスを測定 対象物の予測され得るインピーダンスよりも大きい値に設定して測定を行うことができ る。このため、本実施形態の電気測定装置を使用することにより、簡便に精度良く測 定対象物の反射特性を測定することが可能となる。
[0036] 次に、本発明の第 2の実施形態に係る電気特性測定装置について説明する。前述 の第 1の実施形態の電気特性測定装置においては、プローブの信号端の近傍に可 変抵抗素子を設けている力 本発明はこれに限定されるものではなぐプローブの先 端付近にインピーダンスを可変にする素子が設けられていればよぐ例えば、グランド 端の近傍に可変インピーダンス素子を設けることもできる。図 6は本実施形態の電気 特性測定装置を模式的に示す図である。なお、図 6においては、図 1に示す第 1の実 施形態の電気特性測定装置の構成要素と同じものには同じ符号を付し、詳細な説 明は省略する。図 6に示すように、本実施形態の電気特性測定装置は、入力インピ 一ダンスが例えば 50 Ωである測定器 6に、特性インピーダンスが例えば 50 Ωである 同軸ケーブル 5を介して、プローブ 11が接続されて!、る。
[0037] このプローブ 11は、信号端 12とグラウンド端 13とを備えており、信号端 12はプリン ト回路基板等の測定対象物 8に設けられている導体パターン 9に接触し、グラウンド 端 13は測定対象物 8に設けられている導体パターン 10に接触してグラウンド電位を とる。また、プローブ 11のグラウンド端 13の近傍には、可変インピーダンス素子として 可変抵抗素子 14が設けられており、これにより、プローブ 11のグラウンド端 13付近の インピーダンスが可変になっている。なお、本実施形態の電子特性測定装置におけ る上記以外の構成及び動作は、前述の第 1の実施形態の電気特性測定装置と同様 である。
[0038] 本実施形態の電気特性測定装置は、同軸ケーブル 5に接続されたプローブ 11の グラウンド端 13近傍に可変抵抗素子 4が設けられているため、プローブ 11の入カイ ンピーダンス Ζ& + 50 ( Ω )を容易に変更することができる。また、可変抵抗素子 14は グラウンド端 13の近傍に設けられているため、測定対象物 8と可変抵抗素子 14との 距離が測定波長より十分短ぐ可変抵抗素子 14と測定対象物 8との間の電気長と波 長との関係を考慮する必要がないため、測定対象物 8のインピーダンスを容易に測 定することができる。
[0039] 次に、本発明の第 3の実施形態に係る電気特性測定装置について説明する。前述 の第 1及び第 2の実施形態の電気特性測定装置においては、信号端及びグラウンド 端を夫々 1個ずつ備えたプローブを使用しているが、本発明はこれに限定されるもの ではなぐ複数個のグラウンド端を備えたプローブを使用することもできる。図 7は本 実施形態の電気特性測定装置を模式的に示す図である。なお、図 7においては、図 1に示す第 1の実施形態の電気特性測定装置の構成要素と同じものには同じ符号を 付し、詳細な説明は省略する。図 7に示すように、本実施形態の電気特性測定装置 は、入力インピーダンスが例えば 50 Ωである測定器 6に、特性インピーダンスが例え ば 50 Ωである同軸ケーブル 5を介して、プローブ 15が接続されて!、る。
[0040] このプローブ 15には、 1つの信号端 16と 2つのグラウンド端 17a及び 17bとが設けら れており、信号端 16の近傍には可変インピーダンス素子として可変抵抗素子 18が設 けられている。この電気特性測定装置は、例えば電位が等しい 2つの導体パターン 2 9a及び 29bとこれらの導体パターンとは電位が異なる導体パターン 30とが設けられ た測定対象物 28を測定する場合に使用され、プローブ 15の信号端 16が測定対象 物 28の導体パターン 30に接触し、グラウンド端 17a及び 17bが夫々導体パターン 17 に接触してグラウンド電位をとる。なお、本実施形態の電子特性測定装置における上 記以外の構成及び動作は、前述の第 1の実施形態の電気特性測定装置と同様であ る。
[0041] 本実施形態の電気特性測定装置においては、プローブ 15の信号端 16の近傍に 可変抵抗素子 18が設けられ、プローブ 15の信号端 16付近のインピーダンスが可変 になっているため、プローブ 15の入力インピーダンスを容易に変更することができる 。また、可変抵抗素子 18は信号端 16の近傍に設けられているため、測定対象物 28 と可変抵抗素子 18との距離が測定波長より十分短ぐ可変抵抗素子 18と測定対象 物 28との間の電気長と波長との関係を考慮する必要がないため、測定対象物 28の インピーダンスを容易に測定することができる。 [0042] なお、前述の第 1乃至第 3の実施形態の電気特性測定装置においては、プローブ の信号端又はグラウンド端の近傍に可変抵抗素子を設けているが、本発明はこれに 限定されるものではなぐプローブに設けられる可変インピーダンス素子は、インピー ダンスを変化させることが可能であるものであればよぐ例えば可変リアクタンス素子 等でもよい。
産業上の利用可能性
[0043] 本発明は、プリント回路基板等の測定対象物の反射特性を精度よく測定することが できる。

Claims

請求の範囲
[1] 1つの信号端と少なくとも 1つのグラウンド端とを備え、前記信号端及び前記グラウン ド端のうちいずれか一方の近傍に可変インピーダンス素子が設けられているプロ一 ブを使用して測定対象物の電気特性を測定する電気特性測定方法であって、前記 可変インピーダンス素子のインピーダンスを実質的に 0にして前記プローブの先端で 信号端とグラウンド端との間を開放、短絡及び負荷接続して校正を行う工程と、前記 可変インピーダンス素子のインピーダンスを所定値より大きくし前記信号端及び前記 グラウンド端を夫々前記測定対象物に接触させてその電気特性を測定する工程と、 を有することを特徴とする電気特性測定方法。
[2] 前記電気特性を測定する工程にお!ヽて、前記測定対象物の電気特性の測定誤差を 評価するパラメータであって、その値が小さ!/、ほど測定誤差が小さくなるパラメータを 設定し、前記パラメータが予め設定してぉ 、た許容値以下となるまで前記可変インピ 一ダンス素子のインピーダンスを大きくすることを特徴とする請求項 1に記載の電気 特性測定方法。
[3] 前記校正を行う工程は、前記信号端及び前記グラウンド端を周囲物から離れた場所 で開放校正する工程と、前記信号端及び前記グラウンド端を 1つの導体に導通させ て短絡校正する工程と、前記信号端及び前記グラウンド端を 50 Ωの抵抗器の端子 に導通させて負荷接続校正する工程と、を有することを特徴とする請求項 1又は 2〖こ 記載の電気特性測定方法。
[4] 測定器と、前記測定器に接続され 1つの信号端と少なくとも 1つのグラウンド端とを備 えたプローブを有し、測定対象物の電気特性を測定する電気特性測定装置であって 、前記プローブの前記信号端及び前記グラウンド端のうちの!ヽずれか一方の近傍に は可変インピーダンス素子が設けられていることを特徴とする電気特性測定装置。
[5] 前記信号端及び前記グラウンド端のうち前記可変インピーダンス素子が設けられて いる方の先端と前記可変インピーダンス素子との間の距離が、前記測定対象物の電 気特性を測定する際の測定波長の 10分の 1以下であることを特徴とする請求項 4に 記載の電気特性測定装置。
[6] 前記測定対象物の電気特性の測定誤差を評価するパラメータの許容値を入力する 入力部と、前記可変インピーダンス素子のインピーダンス、前記プローブにより得られ る測定値及びこれらの関係特性を記憶し、この関係特性から測定誤差を評価するた めのパラメータを算出して前記パラメータと前記許容値とを比較する記憶 ·演算部と、 前記記憶'演算部の結果を出力する出力部と、を有することを特徴とする請求項 4又 は 5に記載の電気特性測定装置。
PCT/JP2004/017074 2004-03-26 2004-11-17 電気特性測定方法及び電気特性測定装置 WO2005093437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/599,243 US7504837B2 (en) 2004-03-26 2004-11-17 Electrical characteristics measurement method and electrical characteristics measurement device
JP2006511386A JPWO2005093437A1 (ja) 2004-03-26 2004-11-17 電気特性測定方法及び電気特性測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-093813 2004-03-26
JP2004093813 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005093437A1 true WO2005093437A1 (ja) 2005-10-06

Family

ID=35056309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017074 WO2005093437A1 (ja) 2004-03-26 2004-11-17 電気特性測定方法及び電気特性測定装置

Country Status (3)

Country Link
US (1) US7504837B2 (ja)
JP (1) JPWO2005093437A1 (ja)
WO (1) WO2005093437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064358A (ja) * 2013-09-25 2015-04-09 テクトロニクス・インコーポレイテッドTektronix,Inc. ディエンベッド式プローブ、試験測定システム及び電圧測定方法
JP2015138032A (ja) * 2014-01-24 2015-07-30 テクトロニクス・インコーポレイテッドTektronix,Inc. 試験測定システム及び等化フィルタ計算方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982480B2 (en) * 2008-08-01 2011-07-19 Aes Technologies, Inc. Calibrated wideband high frequency passive impedance probe
CN104884965B (zh) * 2012-12-17 2017-09-08 爱德万测试公司 Rf探头
US11079407B2 (en) * 2017-07-10 2021-08-03 Tektronix, Inc. Probe attenuator for reduced input capacitance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244263A (ja) * 1992-12-14 1994-09-02 Hughes Aircraft Co マイクロ波モノリシック集積回路の試験方法及び回路
JPH11153617A (ja) * 1997-11-21 1999-06-08 Nec Corp 高周波プローブ
JP2001349903A (ja) * 2000-06-07 2001-12-21 Noozeru Engineering Kk 高周波プローブ
JP2003329725A (ja) * 2002-05-08 2003-11-19 Mitsubishi Electric Corp チップ型電子部品の高周波特性試験装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890176A (ja) 1981-11-26 1983-05-28 Anritsu Corp プロ−ブ
JPH0232064A (ja) 1988-07-19 1990-02-01 Teikoku Chem Ind Corp Ltd 液晶化合物
JPH04206845A (ja) 1990-11-30 1992-07-28 Mitsubishi Electric Corp 高周波プローブ針
US6242930B1 (en) * 1997-11-21 2001-06-05 Nec Corporation High-frequency probe capable of adjusting characteristic impedance in end part and having the end part detachable
JP3356736B2 (ja) 1999-11-01 2002-12-16 エヌイーシーワイヤレスネットワークス株式会社 高周波プローブ
JP2001244308A (ja) * 2000-02-25 2001-09-07 Mitsubishi Electric Corp 高周波信号用のプローブ
US6970001B2 (en) * 2003-02-20 2005-11-29 Hewlett-Packard Development Company, L.P. Variable impedance test probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244263A (ja) * 1992-12-14 1994-09-02 Hughes Aircraft Co マイクロ波モノリシック集積回路の試験方法及び回路
JPH11153617A (ja) * 1997-11-21 1999-06-08 Nec Corp 高周波プローブ
JP2001349903A (ja) * 2000-06-07 2001-12-21 Noozeru Engineering Kk 高周波プローブ
JP2003329725A (ja) * 2002-05-08 2003-11-19 Mitsubishi Electric Corp チップ型電子部品の高周波特性試験装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064358A (ja) * 2013-09-25 2015-04-09 テクトロニクス・インコーポレイテッドTektronix,Inc. ディエンベッド式プローブ、試験測定システム及び電圧測定方法
JP2015138032A (ja) * 2014-01-24 2015-07-30 テクトロニクス・インコーポレイテッドTektronix,Inc. 試験測定システム及び等化フィルタ計算方法

Also Published As

Publication number Publication date
US7504837B2 (en) 2009-03-17
US20070182428A1 (en) 2007-08-09
JPWO2005093437A1 (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
US7439748B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP5483131B2 (ja) 電子部品の高周波特性誤差補正方法
JPWO2005111635A1 (ja) 電気回路パラメータの測定方法および装置
CN109239480B (zh) 一种传输线、散射参数测试系统及方法
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
TW201531728A (zh) 利用頻域內校正之時域測量方法
WO2005093437A1 (ja) 電気特性測定方法及び電気特性測定装置
TWI500936B (zh) Rf探針
JP2006317156A (ja) ベクトルネットワークアナライザ、ベクトルネットワークアナライザの校正方法、計算機及び標準器基板
JPH01221678A (ja) 2ポート素子の波動インピーダンスおよび伝播定数の測定法
JP5688036B2 (ja) 誘電率および/または透磁率を測定する方法および装置
JP3912427B2 (ja) 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
JP3912429B2 (ja) 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
JP2004226105A (ja) 測定誤差の補正方法、電子部品の良否判定方法および電子部品特性測定装置
JP2957596B2 (ja) 回路素子測定装置
JP3976866B2 (ja) ハイブリッドトランスの校正方法及び校正装置
CN117169605B (zh) 一种测量设备和测量方法
JP4525391B2 (ja) π型インピーダンス回路網のインピーダンス測定方法および測定装置
JP2018151211A (ja) 高周波インピーダンス測定方法
JP2024003661A (ja) 高周波部品モデル取得方法
Hayden Modal calibration of GSSG probes
JP2001099862A (ja) 伝送特性測定用プローブ及び伝送特性測定装置
JPH0989929A (ja) 高周波プローブのターミネータ構造
Li et al. An approach for microprobe measurement and modeling for millimeter-wave application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511386

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10599243

Country of ref document: US

Ref document number: 2007182428

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10599243

Country of ref document: US