JP2018151211A - 高周波インピーダンス測定方法 - Google Patents

高周波インピーダンス測定方法 Download PDF

Info

Publication number
JP2018151211A
JP2018151211A JP2017046445A JP2017046445A JP2018151211A JP 2018151211 A JP2018151211 A JP 2018151211A JP 2017046445 A JP2017046445 A JP 2017046445A JP 2017046445 A JP2017046445 A JP 2017046445A JP 2018151211 A JP2018151211 A JP 2018151211A
Authority
JP
Japan
Prior art keywords
line
measured
frequency impedance
high frequency
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017046445A
Other languages
English (en)
Inventor
理宏 花澤
Masahiro Hanazawa
理宏 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ul Japan
Ul Japan Inc
Original Assignee
Ul Japan
Ul Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ul Japan, Ul Japan Inc filed Critical Ul Japan
Priority to JP2017046445A priority Critical patent/JP2018151211A/ja
Publication of JP2018151211A publication Critical patent/JP2018151211A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】線路インピーダンスの正確な値が既知でなくとも、線路インピーダンスダンスに比べて十分に小さい高周波インピーダンスを有する被測定物の高周波インピーダンスを正確に測定できるようにすること。
【解決手段】第1線路11と第2線路12とを平行に配設し、高周波インピーダンスを測定する被測定物40を、第1線路と電磁結合するように配置し、第1線路及び第2線路の入力端から第1線路及び第2線路の出力端への伝送における、又は、入力端の反射における、コモンモードとディファレンシャルモード間のモード転換量Scd21、Sdc21、Scd11、又は、Sdc11を測定し、モード転換量に基づいて被測定物の高周波インピーダンスを測定する。
【選択図】図1

Description

本発明は導電性テープなどの高周波抵抗の小さい被測定物のインピーダンスを精度良く測定可能とする高周波インピーダンス測定方法に関する。
従来、下記特許文献1〜3に開示のように、ネットワークアナライザを用いて散乱行列の要素(Sパラメータ)の伝達係数S21と反射係数S11とを測定して、両者と線路インピーダンスとから被測定物の高周波インピーダンスを測定することが知られている。
特開2014−10067号公報 特開2006−250743号公報 特開2016−31327号公報
ところが、上記の何れの特許文献による技術もネットワークアナライザを用いてSパラメータを測定しているが、測定値はシングルエンデッドSバラメータである。そのため、線路インピーダンス(例えば、50Ω)に比べて、被測定物のインピーダンスが非常に小さいと、インピーダンスダンスの値を正確に決定することができない。例えば、粘着性のある導電性シートは、電磁遮蔽のために高周波機器の隙間を塞ぐことに用いられ、製品化されている多数の導電性シートの遮蔽性を評価するためには、粘着物質が塗布された状態での導電性シートの小さい高周波インピーダンスを正確に求める必要がある。また、測定される高周波インピーダンスは、線路インピーダンスによって影響を受ける。このため、線路インピーダンス値が正確でないと、測定に誤差を生じる。
そこで、本発明の目的とするところは、線路インピーダンスの正確な値が既知でなくとも、線路インピーダンスダンスに比べて十分に小さい高周波インピーダンスを有する被測定物の高周波インピーダンスを正確に測定できるようにすることである。
上記目的を達成するための本発明は、高周波インピーダンスの測定方法において、第1線路と第2線路とを平行に配設し、高周波インピーダンスを測定する被測定物を、第1線路と電磁結合するように配置し、第1線路及び第2線路の入力端から第1線路及び第2線路の出力端への伝送における、又は、入力端の反射における、コモンモードとディファレンシャルモード間のモード転換量を測定し、モード転換量に基づいて被測定物の高周波インピーダンスを測定することを特徴とする高周波インピーダンス測定方法である。モード転換量として、ミックスド・モードSパラメータの伝達係数と反射係数とが考えられる。伝達係数としてのモード転換量は、入力端にコモンモードの信号を入力して、出力端からディファレンシャルモードの出力を得る場合の伝達係数、又は、逆に、入力端にディファレンシャルモードの信号を入力して、出力端からコモンモードの出力を得る場合の伝達係数である。SパラメータのうちScd21、Sdc21のことである。また、反射係数としてのモード転換量は、入力端にコモンモードの信号を入力して、入力端でのディファレンシャルモードの反射出力を得る場合の反射係数、又は、逆に、入力端にディファレンシャルモードの信号を入力して、入力端でのコモンモードの出力を得る場合の反射係数である。SパラメータのうちScd11、Sdc11のことである。
本発明において、第1線路及び第2線路は、誘電体基板の表面に配設され誘電体基板の裏面にはグランド導体が配設されたマイクロストリップ線路とすることができる。さらには、第1線路及び第2線路は誘電体基板の表面に配設された平衡線路であり、入力端に不平衡−平衡変換器、出力端に平衡−不平衡変換器を用いるようにしても良い。さらには、第1線路と第2線路は、それらの線路間を除く外側にグランド導体が存在するコプレーナ線路であっても良い。
また、被測定物を第1線路側に設ける方法は幾つか存在する。第1線路は欠落部を有し、その欠落部に被測定物を設けて、被測定物を欠落部の両端に接続するようにしても良い。この方法では、信号は第1線路の分割された片側から被測定物に伝搬し、被測定物から第1線路の他方側に伝搬する。被測定物は欠落部の両端の第1線路に直流的に接続している。被測定物の両端と第1線路の欠落部の両端との間に間隙が存在し、第1線路と被測定物とが電磁結合するように第1線路と被測定物とを配置しても良い。また、第1線路に欠落部を設けることなく、被測定物を第1線路と微小間隙を設けて配設し、被測定物と第1線路とを電磁結合させるようにしても良い。例えば、第1線路の信号伝搬方向の片側、又は、上部に微小間隙を設けて被測定物を配置しても良い。また、第1線路の幅は一定であっても良いが、一定でなくとも良い。例えば、第1線路を、欠落部において、被測定物の幅に等しい幅に拡幅するようにしても良い。
一方、第2線路については次の構成を採用することができる。第2線路は欠落部を有し、その欠落部に基準インピーダンス素子を設けて、基準インピーダンス素子を欠落部の両端に接続するようにしても良い。この場合には、被測定物の高周波インピーダンスが基準インピーダンスに対する偏差として測定することができる。また、被測定物と第1線路との関係と同様に、第2線路の欠落部の両端と基準インピーダンス素子の両端との間に間隙を設けて、両者を電磁結合させても良い。さらには、第2線路に欠落部を設けることなく、基準インピーダンス素子を第2線路と微小間隙を設けて配設し、基準インピーダンス素子と第2線路とを電磁結合させるようにしても良い。例えば、第2線路の信号伝搬方向の片側、又は、上部に微小間隙を設けて基準インピーダンス素子を配置しても良い。また、第2線路の幅は一定であっても良いが、一定でなくとも良い。例えば、第2線路を、欠落部において、基準インピーダンス素子の幅に等しい幅に拡幅するようにしても良い。
また、被測定物や基準インピーダンス素子を設けない状態で、第1線路の線路インピーダンスと第2線路の線路インピーダンスとを等しくすることが望ましい。被測定物のより正確な高周波インピーダンスを測定することが可能となる。また、被測定物は特に限定されないが、被測定物は粘着物が設けられた導電性シートとすることができる。導電性シートの抵抗は線路インピーダンスに比べて非常に小さいが、第1線路と第2線路とにおけるコモンモードとディファレンシャルモードとの間のモード転換量を測定することで、高周波インピーダンスを正確に測定することができる。さらに、測定する高周波インピーダンスは抵抗、容量、インダクタンスであり、一般には複素数である。
モード転換量から被測定物の高周波インピーダンスを求める方法は、例えば、次の方法がある。被測定物を高周波インピーダンスが既知で異なる複数の標準素子とする。これらの複数の標準素子についてそれぞれのモード転換量を測定して、各標準素子の既知の高周波インピーダンスと測定されたモード転換量との関係を示す較正特性を求める。この較正特性を用いて被測定物の測定されたモード転換量に対応すると高周波インピーダンスを求めることができる。較正特性は標準素子の高周波インピーダンスとモード転換量との対応表としても良い。被測定物の測定されたモード転換量に最も近いモード転換量と次に近いモード転換量との2つのモード転換量を対応表から求め、それらの2つの高周波インピーダンスを両端とする内挿補間又は外挿補間から被測定物の高周波インピーダンスを求めるようにしても良い。又は、較正特性を、標準素子の既知の高周波インピーダンスと測定されたモード転換量との関係を最小自乗近似関数として、その関数に被測定物の測定されたモード転換量を代入して、対応する高周波インピーダンスを求めるようにしても良い。また、モード転換量はネットワークアナライザにより測定することができる。
本発明によると、被測定物が電磁結合している第1線路と第1線路に平行な第2線路の間におけるコモンモードとディファレンシャルモード間のモード転換量により、被測定物の高周波インピーダンスを測定している。モード転換量は回路の非対称性を反映しており、被測定物の高周波インピーダンスが第2線路のインピーダンスに対する差分で測定される。したがって、被測定物の高周波インピーダンスが線路インピーダンスに比べて非常に小さい場合であっても、高周波インピーダンスを精度良く測定することができる。また、第1線路と第2線路の線路インピーダンスが一致していなくとも、それらの値が正確に知られていなくとも、被測定物の高周波インピーダンスを正確に測定することができる。被測定物は特に限定されないが、特に、粘着物が塗布された抵抗が極めて小さい導電性シートの高周波インピーダンスを精度良く測定することができる。
本発明の具体的な一実施例に係る高周波インピーダンス測定方法を実施する装置全体を示す構成図。 シミュレーションによる同実施例において被測定物の導電率を変化させた時のモード変換量の周波数特性を示した特性図。 他の例に係る第1線路及び第2線路と被測定物との関係を示した構成図。 他の例に係る第1線と被測定物との関係を示した構成図。 他の例に係る第1線路と被測定物との関係を示した構成図。 実施例1において異なる導電率を有する被測定物のモード変換量の周波数特性を測定して得られた特性図。
以下、本発明を実施例に基づいて説明する。本発明は以下の実施例に限定されるものではない。
1.全体の構成
図1は本発明の一実施例に係る高周波インピーダンス測定方法を示している。平板状の誘電体基板10の上面に第1線路11と第2線路12とが平行に配設されている。第1線路11と第2線路12とは電磁的に結合している。誘電体基板10の裏面の全面にはグランド導体13が配設されている。したがって、第1線路11と第2線路12とはマイクロストリップ線路である。第1線路11は信号が伝搬する方向の中央部で上流第1線路11aと下流第1線路11bとに2分割されている。そして、上流第1線路11aと下流第1線路11bとの間は、線路が存在せず欠落部14を構成している。この欠落部14に被測定物40が配設され、被測定物40の一端が上流第1線路11aの端部に接続され、他端が下流第1線路11bの端部に接続されている。上流第1線路11a、被測定物40、下流第1線路11baは直流での導通がある。
第1線路11の一端は信号が入力する入力端15、他端は信号が出力する出力端16であり、第2線路12の一端は信号が入力する入力端17、他端は信号が出力する出力端18である。そして、入力端15、17は、それぞれ、同軸ケーブル21、22によりネットワークアナライザ30の信号出力端31、32と接続されている。一方、出力端16、18は、それぞれ、同軸ケーブル23、24によりネットワークアナライザ30の信号入力端33、34と接続されている。同軸ケーブル21、22、23、24、第1線路11、第2線路12の線路インピーダンス、ネットワークアナライザ30の出力端子31、32の出力インピーダンス、入力端子33、34の入力インピーダンスはいずれも50Ωである。被測定物40は裏面に粘着物が塗布された導電性シートである。
2.モード転換量の測定
本実施例は、このような構成において、次のようにして被測定物40の高周波インピーダンスが測定される。
第1線路11の入力端15と第2線路12の入力端17とをネットワークアナライザ30によりディファレンシャルモードで励起する。すなわち、入力端17の入力信号と入力端15の入力信号との位相がπ(rad) となるように、端子間電圧Vd で励振する。そして、第1線路11の出力端16と第2線路12の出力端18から出力される信号からネットワークアナライザ30によりコモンモードの信号を得る。すなわち、出力端16の出力信号と出力端18の出力信号との和電圧Vc を求める。Vd とVc とから、ミックスド・モードSパラメータのディファレンシャルモードからコモンモードへの伝達係数Scd21が、Vc /Vd により求められる。ただし、Vd 、Vc 、Scd21は、位相と振幅を含む複素数(ベクトル)である。
3.シミュレーション及び測定
本発明の測定原理を確証するために、以下のようにシミュレーションを行った。第1線路11は欠落部14を有しない直線線路、第2線路12は第1線路と平行で幅と長さが等しい直線線路である。両者の材質は銅である。誘電体基板10の長さ(信号の伝搬方向)は60mm、基板表面上長さ方向に垂直な方向の幅は30mmであり、誘電率は2.0−j0.0である。第1線路11及び第2線路12の線路長は60mm、線路幅は0.64mm、第1線路11と中心線と第2線路12の中心線との間隔は0.64mmである。線路インピーダンスは50Ωである。第2線路12の導電率は6.0×107 S/mである。第1線路11の導電率を6.0×107 S/m、1.0×107 S/m、1.0×106 S/m、1.0×105 S/mと異なる値として、4種の平行マイクロストリップ線路を想定した。このシミュレーションは、第2線路12が基準線路、第1線路11全体が被測定物の導電性シートを模倣したものである。
上記の4種のマイクロストリップ線路について、ディファレンシャルモードからコモンモードへのモード転換量Scd21を求めた。そのシミュレーション結果を図2に示す。
第1線路11と第2線路12とが同一導電率である場合には、測定周波数範囲0.2GHz〜8GHzにおいて、−80dB〜−50dBと極めて小さい値である。すなわち、2つのマイクロストリップ線路の対称性が高く、モード転換は生じていないことが分かる。第1線路11の導電率が1.0×107 S/m、1.0×106 S/m、1.0×105 S/mと1桁づづ小さくなるに連れて、モード転換量Scd21は測定周波数範囲において−40.0dB〜−36.3dB、−27.5dB〜−23.8dB、−17.5dB〜−13.75dBと、10dB程度順次増加している。2つのマイクロストリップ線路の非対称性が大きくなり、ディファレンシャルモードからコモンモードへのモード転換量Scd21が増加していることが分かる。
実際に図1の配置において、銅シート、粘着物が塗布された異なる2種類の導電性シートの3試料を被測定物40として、モード転換量Scd21を測定した。測定結果を図6に示す。第1線路11及び第2線路12の導電率、線路インピーダンス、幅、長さ、誘電体基板10の長さ、幅、誘電率は上記と同一である。第1線路11には欠落部14を設け、その欠落部14の上に第1線路11に両端が接触するように被測定物を置いて測定した。その測定結果を図6に示す。2種類の粘着性導電性シートは明らかに特性の差異を有し、銅シートとも明確に差異があることが分かる。このように本発明の高周波インピーダンス測定方法によると、種類の異なる粘着性導電性シートの高周波特性、高周波インピーダンスを精度良く評価できることが実験からも分かる。
4.被測定物の高周波インピーダンスの決定
図1に示すように、第1線路11の中央部に欠落部14を設けて、欠落部14に被測定物である粘着物が塗布された導電性シートを設けて、モード転換量Scd21を測定すれば、この値から被測定物の高周波インピーダンスを求めることができる。上記のシミュレーションから、モード転換量Scd21の値の大きさは、被測定物の導電率は第2線路12の導電率に対する偏差を表していることが分かる。そこで、被測定物と同一大きさで、高周波インピーダンスが既知の標準素子を複数準備する。この複数の標準素子を第1線路11の欠落部14に配設してそれぞれのモード転換量Scd21を測定する。これにより、高周波インピーダンスzと、その時のモード転換量Scd21(z)との対応表が得られる。これを記憶しておく。
次に、現実の測定すべき被測定物に対してモード転換量Scd21(x)を測定する。対応表からモード転換量Scd21(x)を挟む2点のモード転換量Scd21(za )、Scd21(zb )を求める。2点間においては、モード転換量Scd21と高周波インピーダンスとが比例関係にあるとすると、次式が成立する。
Figure 2018151211
Figure 2018151211
(2)式により、被測定物の高周波インピーダンスxを求めることができる。すなわち、2点間の内挿演算により高周波インピーダンスxを求めることができる。被測定物のモード転換量Scd21(x)が対応表の2点間の外に位置する場合には、同様に、モード転換量Scd21(x)に最近接の2点間は直線として、外挿演算により高周波インピーダンスxを求めることができる。
さらに、標準素子についての対応表から、最小自乗近似により、高周波インピーダンスxとモード転換量Scd21との関係を示す関数x=f(Scd21)を求め、被測定物の測定されたモード転換量Scd21(x)を関数fに代入して、被測定物の高周波インピーダンスxを求めるようにしても良い。
なお、上記の例ではモード転換量として、ディファレンシャルモードからコモンモードへの転換量Scd21を測定したが、逆に、コモンモードからディファレンシャルモードへのモード転換量Sdc21を測定するようにしても良い。
5.反射係数としてのモード転換量
上述の説明では入力端子15、17と出力端子16、18間の伝達係数としてのモード転換量Scd21、Sdc21を測定した。しかし、入力端子15、17における反射係数としてのモード転換量Scd11、Sdc11を測定するようにしても良い。線路の非対称によるモード転換量は反射係数にも表れるので、上述したモード転換量と高周波インピーダンスとの関係がそのまま成立する。また、伝達係数としてのモード転換量Scd21、モード転換量Sdc21、反射係数としてのモード転換量Scd11、Sdc11の4 つの値の組み合わせにより被測定物の高周波インピーダンスを測定するようにしても良い。さらには、第1線路11及び第2線路の線路インピーダンスが等しく、それが正確に知られている場合には、モード転換量Scd21、モード転換量Scd11と線路インピーダンスZ0 とから、又は、モード転換量Sdc21、モード転換量Sdc11と線路インピーダンスZ0 とから被測定物の高周波インピーダンスを求めるようにしても良い。
6.伝送線路の他の例
図3(a)に示すように、第1線路11の分割された上流第1線路11aと下流第1線路11bはそれらの線幅が欠落部14に向かうに連れて幅が広くなるテーパ状にしても良い。このようにすると、被測定物40の幅が広い場合にも第1線路11と被測定物40とを大きく結合させることができる。第2線路12は被測定物40の幅に合わせて被測定物40の配設位置に対応させて線幅を広くしている。第1線路11と第2線路12との高周波特性を一致させるためである。しかし、上記のように標準素子を用いてモード転換量と高周波インピーダンスとの関係は較正されるので、第2線路12の幅は一定であっても良い。
また、図3(b)に示すように、第2線路12に、第1線路11と同様に欠落部51を設けて、この欠落部51に被測定物40と同一形状で抵抗値が近い基準素子50を設けても良い。被測定物40と基準素子50との高周波インピーダンスダンス偏差に対応するモード転換量Scd21、Sdc21が測定される。
また、図4に示すように、被測定物40は上流第1線路11a及び/又は下流第1線路11bの端面と間隙42を隔てて配設されても良い。被測定物40と第1線路11とが容量結合していれば良い。要は、被測定物40と第1線路11とが直接接続されていても間隙により容量結合していての、その他電磁結合していれば良い。同様に、対称性を満たすために、第2線路12も第1線路11と同一に構成して、両端面が間隙を隔て、被測定物40と同一形状で抵抗値が近い基準素子50を設けても良い。
また、図5(a)に示すように、第1線路11を線幅が一定の線路として、被測定物40を第1線路11に平行に一定の間隙43を設けて配設しても良い。対称性を満たすために、第2線路12も第1線路11と同一に構成して、第2線路12の長辺に平行に一定間隙を隔て、被測定物40と同一形状で抵抗値が近い基準素子50を設けても良い。さらには、図5(b)に示すように、第1線路11の上に薄い絶縁体60を設け、この上に被測定物40を配設しても良い。この場合にも、第2線路12の上にも上記絶縁体60を設けても良い。さらに対称性を満たすために、第2線路12の上に配置した絶縁体の上に、被測定物40と同一形状で抵抗値が近い基準素子50を設けても良い。いずれの場合も、要するに、被測定物40と第1線路11とが電磁的に結合しておりさえすれば良い。
上記実施例では、第1線路11と第2線路12とは誘電体基板10の裏面にグランド導体13を有するマイクロストリップ線路としたが、この裏面のグランド導体13を設けないようにしても良い。その場合は、第1線路11と第2線路12は平衡線路となるが、この入力端子にバランを用いて同軸ケーブルから不平衡−平衡変換して、ディファレンシャルモード電圧又はコモンモード電圧を印加するようにしても良い。出力端子にも、同様、バランを設けて平衡−不平衡変換して、コモンモード電圧又はディファレンシャルモード電圧として同軸ケーブルにより出力するようにしても良い。
さらには、裏面のグランド導体13を設けずに、第1線路11と第2線路12とを平行に配置して、線間ではない第1線路11と第2線路12のそれぞれの外側に、それらと間隔を設けてグランド導体を設けも良い。すなわち、第1線路11と第2線路12とをコプレーナ線路としても良い。この場合には、第1線路11と第2線路12とを独立して同軸ケーブルからコプレーナ線路への変換を行ってディファレンシャルモード電圧又はコモンモード電圧を印加することになる。出力端はこれとは逆に第1線路11と第2線路12とを独立してコプレーナ線から同軸ケーブルへの変換を行うようにする。
本発明は高周波遮蔽シートなどの抵抗の極めて小さい物質の高周波インピーダンスを測定するのに用いることができる。
10…誘電体基板
11…第1線路
12…第2線路
11a…上流第1線路
11b…下流第1線路
13…グランド導体
14…欠落部
15,17…入力端
16,18…出力端
40…被測定物

Claims (11)

  1. 高周波インピーダンスの測定方法において、
    第1線路と第2線路とを平行に配設し、
    高周波インピーダンスを測定する被測定物を、前記第1線路と電磁結合するように配置し、
    前記第1線路及び前記第2線路の入力端から前記第1線路及び前記第2線路の出力端への伝送における、又は、前記入力端の反射における、コモンモードとディファレンシャルモード間のモード転換量を測定し、
    前記モード転換量に基づいて前記被測定物の高周波インピーダンスを測定することを特徴とする高周波インピーダンス測定方法。
  2. 前記第1線路及び前記第2線路は、誘電体基板の表面に配設され前記誘電体基板の裏面にはグランド導体が配設されたマイクロストリップ線路であることを特徴とする請求項1に記載の高周波インピーダンス測定方法。
  3. 前記第1線路及び前記第2線路は前記誘電体基板の表面に配設された平衡線路であり、前記入力端に不平衡−平衡変換器、前記出力端に平衡−不平衡変換器を用いることを特徴とする請求項1に記載の高周波インピーダンス測定方法。
  4. 前記第1線路は欠落部を有し、その欠落部に前記被測定物を設けて、前記被測定物を欠落部の両端に接続したことを特徴とする請求項1乃至請求項3の何れか1項に記載の高周波インピーダンス測定方法。
  5. 前記被測定物は前記第1線路に微小間隙を設けて配設され、前記被測定物と前記第1線路とは電磁結合していることを特徴とする請求項1乃至請求項3の何れか1項に記載の高周波インピーダンス測定方法。
  6. 前記第2線路は欠落部を有し、その欠落部に基準イピダンス素子を設けて、前記基準インピーダンス素子を欠落部の両端に接続したことを特徴とする請求項1乃至請求項5の何れか1項に記載の高周波インピーダンス測定方法。
  7. 基準インピーダンス素子を前記第2線路と微小間隙を設けて配設し、前記基準インピーダンス素子と前記第2線路とを電磁結合させたことを特徴とする請求項1乃至請求項5の何れか1項に記載の高周波インピーダンス測定方法。
  8. 前記第1線路の線路インピーダンスと前記第2線路の線路インピーダンスとは等しいことを特徴とする請求項1乃至請求項7の何れか1項に記載の高周波インピーダンス測定方法。
  9. 前記被測定物は粘着物が設けられた導電性シートであることを特徴とする請求項1乃至請求項8の何れか1項に記載の高周波インピーダンス測定方法。
  10. 前記被測定物を、高周波インピーダンスが既知で異なる複数の標準素子とし、この標準素子についてそれぞれの前記モード転換量を測定して、前記標準素子の高周波インピーダンスと測定された前記モード転換量との関係を示す較正特性を求め、この較正特定を用いて前記被測定物の測定された前記モード転換量に対応すると高周波インピーダンスを求めることを特徴とする請求項1乃至請求項9の何れか1項に記載の高周波インピーダンス測定方法。
  11. 前記モード転換量はネットワークアナライザにより測定されることを特徴とする請求項1乃至請求項10の何れか1項に記載の高周波インピーダンス測定方法。
JP2017046445A 2017-03-10 2017-03-10 高周波インピーダンス測定方法 Pending JP2018151211A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017046445A JP2018151211A (ja) 2017-03-10 2017-03-10 高周波インピーダンス測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017046445A JP2018151211A (ja) 2017-03-10 2017-03-10 高周波インピーダンス測定方法

Publications (1)

Publication Number Publication Date
JP2018151211A true JP2018151211A (ja) 2018-09-27

Family

ID=63679530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017046445A Pending JP2018151211A (ja) 2017-03-10 2017-03-10 高周波インピーダンス測定方法

Country Status (1)

Country Link
JP (1) JP2018151211A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030294A1 (ja) * 2020-08-06 2022-02-10 株式会社村田製作所 伝送特性測定装置及び伝送特性測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030294A1 (ja) * 2020-08-06 2022-02-10 株式会社村田製作所 伝送特性測定装置及び伝送特性測定方法
JPWO2022030294A1 (ja) * 2020-08-06 2022-02-10
JP7235176B2 (ja) 2020-08-06 2023-03-08 株式会社村田製作所 伝送特性測定装置及び伝送特性測定方法

Similar Documents

Publication Publication Date Title
US20070029990A1 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP4650487B2 (ja) 伝送路材料の誘電率測定方法およびこの誘電率測定方法を用いた電子部品の電気特性測定方法
WO2005111635A1 (ja) 電気回路パラメータの測定方法および装置
JP4941304B2 (ja) 被検体の散乱係数の測定方法および測定装置
JP2007509343A (ja) プローブテスト構造
US10001521B1 (en) Transistor test fixture with integrated couplers and method
JPH0634686A (ja) 回路網解析装置の較正方法
US20150168446A1 (en) Vertical/horizontal probe system and calibration kit for the probe system
US20030115008A1 (en) Test fixture with adjustable pitch for network measurement
JPH10502453A (ja) 差動回路の特性を求めるための方法および装置
US7375534B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
TW201531728A (zh) 利用頻域內校正之時域測量方法
US10041986B2 (en) Balanced bridge
JP4984769B2 (ja) 高周波特性測定用プローブの校正方法、およびこのプローブを用いた電子デバイスの高周波特性測定方法
JP2018151211A (ja) 高周波インピーダンス測定方法
US7769555B2 (en) Method for calibration of a vectorial network analyzer
US20120092032A1 (en) Device for characterising electric or electronic components
WO2003046589A1 (en) Measuring probe device and measurement method
Curry How to calibrate through balun transformers to accurately measure balanced systems
US9529027B2 (en) Method for estimating PCB radiated emissions
TW583409B (en) Impedance standard substrate and correction method for vector network analyzer
JP3912428B2 (ja) 電子部品の高周波電気特性測定方法および装置、高周波電気特性測定装置の校正方法
Azeez et al. Establishing a new form of primary impedance standard at millimeter-wave frequencies
JP3590932B2 (ja) Emiプローブ
Katkevicius et al. Analysis of rejection properties of meander systems