WO2022030294A1 - 伝送特性測定装置及び伝送特性測定方法 - Google Patents

伝送特性測定装置及び伝送特性測定方法 Download PDF

Info

Publication number
WO2022030294A1
WO2022030294A1 PCT/JP2021/027648 JP2021027648W WO2022030294A1 WO 2022030294 A1 WO2022030294 A1 WO 2022030294A1 JP 2021027648 W JP2021027648 W JP 2021027648W WO 2022030294 A1 WO2022030294 A1 WO 2022030294A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance
inductor
circuit
impedance element
transmission characteristic
Prior art date
Application number
PCT/JP2021/027648
Other languages
English (en)
French (fr)
Inventor
啓雄 五十嵐
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022541448A priority Critical patent/JP7235176B2/ja
Publication of WO2022030294A1 publication Critical patent/WO2022030294A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/04Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • G01R27/06Measuring reflection coefficients; Measuring standing-wave ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/50Systems for transmission between fixed stations via two-conductor transmission lines

Definitions

  • the present invention relates to a transmission characteristic measuring device and a transmission characteristic measuring method.
  • Patent Document 1 describes a differential communication device that communicates using a differential signal on which DC power is superimposed.
  • a pair of bias tee circuits (regulator circuit in Patent Document 1) are provided between the communication circuit and the power circuit and the common mode choke coil.
  • a communication device that transmits signals on multiple lines
  • the characteristics of multiple lines will become unbalanced and the amount of mode conversion will increase due to variations in the characteristics of the elements included in the bias tee circuit provided on each line. ..
  • it is required to measure the mode conversion amount in advance in the manufacturing process and select a non-defective product or a defective product for the element included in the bias tee circuit.
  • a method for measuring the amount of mode conversion a method using a mixed mode S parameter using a network analyzer is known.
  • network analyzers are expensive and their operating speed is slow, so it is difficult to use them for product selection.
  • An object of the present invention is to provide a transmission characteristic measuring device and a transmission characteristic measuring method capable of measuring a mode conversion amount inexpensively and efficiently.
  • the transmission characteristic measuring device is a transmission characteristic of an electronic device including a power supply circuit, a plurality of lines, and a plurality of impedance elements arranged in each of the plurality of lines and used for power superposition.
  • a transmission characteristic measuring device for measuring the above wherein the real part detection circuit for measuring the real part of each impedance of the first impedance element and the second impedance element, and the first impedance element and the second impedance element.
  • An imaginary part detection circuit that measures the imaginary part of each impedance, and the first reflection coefficient of the first impedance element with respect to the characteristic impedance of the line by acquiring the real part of the impedance and the imaginary part of the impedance. It has a second reflection coefficient of the second impedance element with respect to the characteristic impedance of the line, and an arithmetic circuit for calculating a value based on the difference.
  • the arithmetic circuit calculates a value obtained by adding a correction value to a value based on the difference.
  • the arithmetic circuit calculates the mode conversion amount based on the following equation (1).
  • Re1 is the real part of the first impedance element
  • Im1 is the imaginary part of the first impedance element
  • Re2 is the real part of the second impedance element
  • Im2 is the imaginary part of the second impedance element
  • Zo is the characteristic impedance.
  • C are correction values.
  • the transmission characteristic measuring device on one aspect of the present invention further includes a display device that displays the calculation result of the arithmetic circuit.
  • the transmission characteristic measurement method of one aspect of the present invention measures transmission characteristics of an electronic device including a power supply circuit and a plurality of impedance elements arranged in each of a plurality of lines and used for power superposition.
  • the step of measuring the real part and the imaginary part of the impedance of the first impedance element and the second impedance element, respectively, and the real part and the imaginary part of the impedance are acquired, and the first impedance element It has a step of calculating a value based on the difference between the first reflection coefficient with respect to the characteristic impedance of the line and the second reflection coefficient of the second impedance element with respect to the characteristic impedance of the line.
  • the transmission characteristic measuring device and the transmission characteristic measuring method of the present invention it is possible to measure the mode conversion amount inexpensively and efficiently.
  • FIG. 1 is a circuit diagram schematically showing a transmission characteristic measuring device and an electronic device used in the transmission characteristic measuring method according to the embodiment.
  • FIG. 2 is a block diagram showing a configuration example of the transmission characteristic measuring device according to the embodiment.
  • FIG. 3 is a graph showing the relationship between the mode conversion amount measured by the transmission characteristic measuring device according to the embodiment and the S parameter Scd21.
  • FIG. 4 is a circuit diagram schematically showing an electronic device according to a comparative example.
  • FIG. 5 is a graph showing the relationship between the mode conversion amount measured by the comparative formula and the S parameter Scd21.
  • FIG. 6 is a flowchart showing a transmission characteristic measurement method according to the embodiment.
  • FIG. 1 is a circuit diagram schematically showing a transmission characteristic measuring device and an electronic device used in the transmission characteristic measuring method according to the embodiment.
  • the electronic device 20 is a device that communicates with another electronic device 100 via cables 111 and 112.
  • the electronic device 20 includes a power supply circuit 21, a communication circuit 22, a plurality of power supply lines 23 and 24, a plurality of signal lines 25 and 26, a first bias tee circuit 30a, and a second bias tee circuit 30b.
  • the power supply circuit 21 is a circuit that supplies DC power via a plurality of power supply lines 23 and 24.
  • the communication circuit 22 is a circuit for transmitting and receiving AC communication signals via a plurality of signal lines 25 and 26.
  • the communication circuit 22 can transmit and receive a differential communication signal as a communication signal, for example.
  • the first bias tee circuit 30a and the second bias tee circuit 30b are circuits used for superimposing DC power on a communication signal.
  • the first bias tee circuit 30a includes a first inductor 31 and a first capacitor 33.
  • One end of the first inductor 31 is connected to the power supply line 23, and the other end of the first inductor 31 is connected to the signal line 25.
  • the first capacitor 33 is connected in series with the signal line 25 between the communication circuit 22 and the other end of the first inductor 31.
  • the second bias tee circuit 30b includes a second inductor 32 and a second capacitor 34.
  • One end of the second inductor 32 is connected to the power supply line 24, and the other end of the second inductor 32 is connected to the signal line 26.
  • the second capacitor 34 is connected in series with the signal line 26 between the communication circuit 22 and the other end of the second inductor 32.
  • the first inductor 31 and the second inductor 32 pass the DC power from the power supply circuit 21 and cut off the AC component contained in the power. Further, since the first inductor 31 and the second inductor 32 have high impedance with respect to the communication signal from the communication circuit 22, the communication signal is blocked from flowing to the power supply circuit 21 side.
  • the first capacitor 33 and the second capacitor 34 pass the communication signal from the communication circuit 22 and cut off the DC component contained in the communication signal. Further, the first capacitor 33 and the second capacitor 34 cut off the supply of DC power from the power supply circuit 21 to the communication circuit 22 side.
  • FIG. 2 is a block diagram showing a configuration example of the transmission characteristic measuring device according to the embodiment.
  • the transmission characteristic measuring device 10 is a device for measuring the transmission characteristic of the electronic device 20. More specifically, the transmission characteristic measuring device 10 measures the impedance of the impedance element (first inductor 31 and second inductor 32), and modifies the mode based on the real number parts Re1 and Re2 and the imaginary number parts Im1 and Im2 of the impedance. It is a device that calculates the amount.
  • the mode conversion amount is the mode conversion amount between the differential mode and the common mode. For example, if the mode conversion amount increases due to the imbalance of the first inductor 31 and the second inductor 32 or the imbalance of the signal lines 25 and 26, common mode noise may occur.
  • the transmission characteristic measuring device 10 includes a detection circuit 11, an arithmetic circuit 12, a determination circuit 13, a display device 14, a memory 15, and terminals 16 and 17.
  • the detection circuit 11 includes a real number part detection circuit 11a and an imaginary number part detection circuit 11b.
  • the real number part detection circuit 11a is a circuit for measuring the real number parts Re1 and Re2 of the respective impedances of the first inductor 31 (first impedance element) and the second inductor 32 (second impedance element).
  • the imaginary part detection circuit 11b is a circuit for measuring the imaginary parts Im1 and Im2 of the respective impedances of the first inductor 31 (first impedance element) and the second inductor 32 (second impedance element).
  • the detection circuit 11 for example, an impedance analyzer or an LCR meter can be used.
  • the real number part detection circuit 11a and the imaginary number part detection circuit 11b may be separate circuits in the detection circuit 11, or the real number part detection circuit 11a and the imaginary number part detection circuit 11b are provided as one circuit. May be good.
  • the first inductor 31 and the second inductor 32 to be measured are composed of, for example, a winding coil and a laminated coil.
  • the types of the first inductor 31 and the second inductor 32 are not limited to these, and any inductor may be used.
  • One end side of the first inductor 31 (or the second inductor 32) is connected to the terminal 16, and the other end side is connected to the terminal 17.
  • the detection circuit 11 measures the impedances of the first inductor 31 and the second inductor 32.
  • the measurement frequency of the first inductor 31 and the second inductor 32 by the detection circuit 11 is, for example, 30 MHz.
  • the measurement frequency is not particularly limited, and it is preferable to actually measure at the transmission frequency of the differential mode of the differential communication signal or the frequency at which common mode noise is generated in the electronic device 20. Further, it is not limited to a single frequency, and it is preferable to measure it as a frequency characteristic for a certain frequency range.
  • the arithmetic circuit 12 is a circuit that calculates the mode conversion amount based on the impedances of the first inductor 31 and the second inductor 32.
  • the arithmetic circuit 12 calculates the mode conversion amount based on the following equation (2).
  • Re1 is the real part of the impedance of the first inductor
  • Im1 is the imaginary part of the impedance of the first inductor
  • Re2 is the real part of the impedance of the second inductor 32
  • Im2 is.
  • the imaginary part of the impedance of the second inductor 32, A, B, and C are correction values.
  • the correction values A and B are the characteristic impedance Zo in the transmission line of the electronic device 20.
  • the correction value C is a value preset from the past measurement results.
  • the arithmetic circuit 12 calculates the mode conversion amount by substituting the real number parts Re1 and Re2 and the imaginary number parts Im1 and Im2 measured by the detection circuit 11 into the equation (3).
  • the following equation (4) shows the first reflection coefficient ⁇ 1 of the first inductor 31 with respect to the characteristic impedance Zo of the transmission line of the electronic device 20.
  • the following equation (5) shows the second reflection coefficient ⁇ 2 of the second inductor 32 with respect to the characteristic impedance Zo of the transmission line of the electronic device 20.
  • the mode conversion amount is the first reflection coefficient ⁇ 1 with respect to the characteristic impedance Zo of the transmission line of the electronic device 20 of the first inductor 31, and the transmission line of the electronic device 20 of the second inductor 32. In other words, it is a value calculated based on the difference between the characteristic impedance Zo and the second reflection coefficient ⁇ 2. From the equation (6), it can be said that the smaller the difference between the first reflection coefficient ⁇ 1 of the first inductor 31 and the second reflection coefficient ⁇ 2 of the second inductor 32, the smaller the mode conversion amount.
  • the arithmetic circuit 12 calculates a value based on the difference between the first reflection coefficient ⁇ 1 and the second reflection coefficient ⁇ 2, plus the correction value C.
  • the determination circuit 13 is a circuit that compares the mode conversion amount calculated by the arithmetic circuit 12 with the preset threshold value TH (see FIG. 3). When the calculated mode conversion amount is equal to or less than the threshold value TH, the determination circuit 13 selects the first inductor 31 and the second inductor 32 as non-defective products. On the other hand, when the calculated mode conversion amount is larger than the threshold value TH, the determination circuit 13 selects the first inductor 31 and the second inductor 32 as defective products.
  • the determination circuit 13 is, for example, a comparator circuit. However, the determination circuit 13 may be any circuit, and may have a configuration in which the mode conversion amount and the threshold value TH can be compared.
  • the mode conversion amount calculated by the equation (7) is ⁇ 47.66 (dB).
  • the display device 14 is a monitor that displays the calculation result of the mode conversion amount of the arithmetic circuit 12 and the selection result of the determination circuit 13. The user sees the information displayed on the display device 14, and mounts the first inductor 31 and the second inductor 32 on the electronic device 20. Alternatively, measurements of other inductors may be performed.
  • the memory 15 is a circuit that stores various information such as a program used for the transmission characteristic measurement method, information related to the equation (2), and correction values A, B, and C. Further, the measurement results of the impedances of the first inductor 31 and the second inductor 32 are also stored in the memory 15.
  • the arithmetic circuit 12, the determination circuit 13, the display device 14, and the memory 15 may be provided as one device integrally with the detection circuit 11, or may be formed as a device separate from the detection circuit 11.
  • the arithmetic circuit 12, the determination circuit 13, the display device 14, and the memory 15 may be composed of, for example, a personal computer or a tablet terminal.
  • FIG. 3 is a graph showing the relationship between the mode conversion amount measured by the transmission characteristic measuring device according to the embodiment and the S parameter Scd21.
  • Graph 1 shown in FIG. 3 shows the relationship between the mode conversion amount calculated by the equation (3) and the S parameter Scd21 when the impedance of the first inductor 31 and the impedance of the second inductor 32 are variously different. I'm plotting.
  • the vertical axis of the graph 1 is the mode conversion amount calculated by the above equation (3), and the horizontal axis is the mode conversion amount (Scd21) by the simulation of the S parameter.
  • the reference line L1 shown in FIG. 3 shows a virtual line in which the mode conversion amount calculated by the above equation (3) and the mode conversion amount (Scd21) by the simulation of the S parameter are equal values.
  • FIG. 4 is a circuit diagram schematically showing an electronic device according to a comparative example.
  • FIG. 5 is a graph showing the relationship between the mode conversion amount measured by the comparative formula and the S parameter Scd21.
  • the electronic device 120 of the comparative example has a plurality of lines 125 and 126, a first inductor 131 connected to the line 125, and a second inductor 132 connected to the line 126 as equivalent circuits. , Have.
  • Graph 2 shown in FIG. 5 plots the relationship between the mode conversion amount calculated by the comparative equation (8) and the S parameter Scd21 when the inductances of the first inductor 131 and the second inductor 132 are variously different. is doing.
  • the vertical axis of the graph 2 is the mode conversion amount calculated by the following comparative formula (8), and the horizontal axis is the mode conversion amount (Scd21) by the simulation of the S parameter.
  • the mode conversion amount (Scd21) was Scd21 from ports 121 and 122 (D port) in FIG. 4 to ports 123 and 124 (C port).
  • the real part Re1 of the impedance of the first inductor 131 is changed in the range of 0 ⁇ or more and 7000 ⁇ or less, and the imaginary part Im1 of the impedance of the first inductor 131 is changed in the range of -16000 ⁇ or more and 7000 ⁇ or less. Changed. Further, the real part Re2 of the impedance of the second inductor 132 was changed in the range of 0 ⁇ or more and 7,000 ⁇ or less, and the imaginary part Im2 of the impedance of the second inductor 132 was changed in the range of -16000 ⁇ or more and 7,000 ⁇ or less.
  • the mode conversion amount calculated by the comparative formula (8) and the S parameter Scd21 are significantly different.
  • the comparative equation (8) it is shown that an appropriate mode conversion amount cannot be calculated when the difference between the impedance of the first inductor 131 and the impedance of the second inductor 132 is simply calculated. rice field.
  • the transmission characteristic measuring device 10 of the present embodiment is arranged in the power supply circuit 21, a plurality of lines (power supply lines 23, 24 and signal lines 25, 26), and each of the plurality of lines.
  • the real part detection circuit 11a for measuring the real parts Re1 and Re2 of the respective impedances
  • the imaginary part detection circuit 11b for measuring the imaginary parts Im1 and Im2 of the respective impedances of the first inductor 31 and the second inductor 32.
  • the real part Re1 and Re2 of the impedance and the imaginary part Im1 and Im2 are acquired, and the first reflection coefficient ⁇ 1 with respect to the characteristic impedance Zo of the line of the first inductor 31 and the characteristic impedance Zo of the line of the second inductor 32. It has a second reflection coefficient ⁇ 2 and an arithmetic circuit 12 for calculating a value based on the difference between the two.
  • the transmission characteristic measuring device 10 can inexpensively and efficiently calculate the mode conversion amount based on the measurement results of the impedances of the first inductor 31 and the second inductor 32. More specifically, in this embodiment, the impedances of the first inductor 31 and the second inductor 32 are measured by an inexpensive device, as compared with the case where the mixed mode S parameter (Scd21) is calculated using a network analyzer. Further, based on the above-mentioned equation (3), a mode conversion amount equivalent to the mode conversion amount (Scd21) by S-parameter simulation can be calculated.
  • FIG. 6 is a flowchart showing a transmission characteristic measurement method according to the embodiment.
  • the detection circuit 11 measures the real part Re1 and the imaginary part Im1 of the impedance of the first inductor 31 (step ST11).
  • the measurement results of the real number part Re1 and the imaginary number part Im1 are stored in the memory 15 in association with the information regarding the first inductor 31.
  • the information regarding the first inductor 31 is stored, for example, in association with a lot number indicating the identification number of the first inductor 31, measurement conditions (for example, measurement frequency), and the like.
  • the detection circuit 11 measures the real part Re2 and the imaginary part Im2 of the impedance of the second inductor 32 (step ST12).
  • the measurement results of the real part Re2 and the imaginary part Im2 are stored in the memory 15 in association with the information regarding the second inductor 32.
  • the arithmetic circuit 12 calculates the mode conversion amount based on the above-mentioned equation (3) (step ST13). Specifically, the arithmetic circuit 12 acquires information on the real part Re1 and the imaginary part Im1 of the impedance of the first inductor 31 and information on the real part Re2 and the imaginary part Im2 of the impedance of the second inductor 32 from the detection circuit 11. Then, these values are substituted into the equation (3) to calculate the mode conversion amount.
  • the determination circuit 13 compares the mode conversion amount received from the arithmetic circuit 12 with the threshold value TH stored in advance in the memory 15 (step ST14). When the mode conversion amount is equal to or less than the threshold value TH (step ST14, Yes), the determination circuit 13 determines that the first inductor 31 and the second inductor 32 are non-defective products (step ST15).
  • the determination circuit 13 determines that the first inductor 31 and the second inductor 32 are defective products (step ST16).
  • the display device 14 displays the mode conversion amount calculated by the arithmetic circuit 12 and the selection result of the determination circuit 13 (step ST17). The user can select an inductor having a small mode conversion amount based on the display of the display device 14.
  • an inductor (first inductor 31 and second inductor 32) is shown as an example of an impedance element.
  • the impedance element may be, for example, a resistor or a capacitor.
  • the determination circuit 13 determines whether the first inductor 31 and the second inductor 32 are good products or defective products, but the determination circuit 13 is not limited to this.
  • one of the first inductors 31 may be used as a reference element to select a second inductor 32 that matches the reference element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

伝送特性測定装置は、電源回路と、複数の線路と、複数の線路のそれぞれに配設され、電力重畳に用いられる複数のインピーダンス素子と、を含む電子機器の伝送特性を測定する伝送特性測定装置であって、第1インピーダンス素子及び第2インピーダンス素子の、それぞれのインピーダンスの実数部を測定する実数部検出回路と、第1インピーダンス素子及び第2インピーダンス素子の、それぞれのインピーダンスの虚数部を測定する虚数部検出回路と、インピーダンスの実数部及びインピーダンスの虚数部を取得して、第1インピーダンス素子の、線路の特性インピーダンスに対する第1反射係数と、第2インピーダンス素子の、線路の特性インピーダンスに対する第2反射係数と、の差分に基づく値を算出する演算回路と、を有する。

Description

伝送特性測定装置及び伝送特性測定方法
 本発明は、伝送特性測定装置及び伝送特性測定方法に関する。
 下記特許文献1には、直流電力が重畳される差動信号を用いて通信を行う差動通信装置が記載されている。特許文献1の差動通信装置では、通信回路及び電力回路と、コモンモードチョークコイルとの間に、1対のバイアスティー回路(特許文献1ではレギュレータ回路)が設けられている。
特開2019-47165号公報
 複数の線路で信号を伝送する通信装置では、各線路に設けられたバイアスティー回路に含まれる素子の特性ばらつきによって、複数の線路特性がアンバランスになってモード変換量が増大する可能性がある。このような通信装置では、バイアスティー回路に含まれる素子に関して、製造工程であらかじめモード変換量を測定して良品又は不良品の選別をすることが要求される。モード変換量の測定方法としては、ネットワークアナライザを使用したミックスドモードSパラメータによる方法が知られている。しかし、ネットワークアナライザは高価であり、また、動作スピードが遅いため製品の選別に採用することは、困難である。
 本発明は、安価でかつ効率的にモード変換量を測定することができる伝送特性測定装置及び伝送特性測定方法を提供することを目的とする。
 本発明の一側面の伝送特性測定装置は、電源回路と、複数の線路と、前記複数の線路のそれぞれに配設され、電力重畳に用いられる複数のインピーダンス素子と、を含む電子機器の伝送特性を測定する伝送特性測定装置であって、第1インピーダンス素子及び第2インピーダンス素子の、それぞれのインピーダンスの実数部を測定する実数部検出回路と、前記第1インピーダンス素子及び前記第2インピーダンス素子の、それぞれのインピーダンスの虚数部を測定する虚数部検出回路と、前記インピーダンスの実数部及び前記インピーダンスの虚数部を取得して、前記第1インピーダンス素子の、前記線路の特性インピーダンスに対する第1反射係数と、前記第2インピーダンス素子の、前記線路の特性インピーダンスに対する第2反射係数と、の差分に基づく値を算出する演算回路と、を有する。
 本発明の一側面の伝送特性測定装置において、前記演算回路は、前記差分に基づく値に補正値を加えた値を算出する。
 本発明の一側面の伝送特性測定装置において、前記演算回路は、下記の式(1)に基づいてモード変換量を算出する。
Figure JPOXMLDOC01-appb-M000002
 ただし、Re1は、第1インピーダンス素子の実数部、Im1は、第1インピーダンス素子の虚数部、Re2は、第2インピーダンス素子の実数部、Im2は、第2インピーダンス素子の虚数部、Zoは特性インピーダンス、Cは補正値である。
 本発明の一側面の伝送特性測定装置において、さらに、前記演算回路の算出結果を表示する表示装置を有する。
 本発明の一側面の伝送特性測定方法は、電源回路と、複数の線路のそれぞれに配設され、電力重畳に用いられる複数のインピーダンス素子と、を含む電子機器の伝送特性を測定する伝送特性測定方法であって、第1インピーダンス素子及び第2インピーダンス素子の、それぞれのインピーダンスの実数部及び虚数部を測定するステップと、前記インピーダンスの実数部及び虚数部を取得して、前記第1インピーダンス素子の、前記線路の特性インピーダンスに対する第1反射係数と、前記第2インピーダンス素子の、前記線路の特性インピーダンスに対する第2反射係数と、の差分に基づく値を算出するステップと、を有する。
 本発明の伝送特性測定装置及び伝送特性測定方法によれば、安価でかつ効率的にモード変換量を測定することが可能である。
図1は、実施形態に係る伝送特性測定装置及び伝送特性測定方法で用いられる電子機器を模式的に示す回路図である。 図2は、実施形態に係る伝送特性測定装置の構成例を示すブロック図である。 図3は、実施形態に係る伝送特性測定装置により測定されたモード変換量と、SパラメータScd21との関係を示すグラフである。 図4は、比較例に係る電子機器を模式的に示す回路図である。 図5は、比較式により測定されたモード変換量と、SパラメータScd21との関係を示すグラフである。 図6は、実施形態に係る伝送特性測定方法を示すフローチャートである。
 以下に、本発明の伝送特性測定装置及び伝送特性測定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2実施形態以降では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 図1は、実施形態に係る伝送特性測定装置及び伝送特性測定方法で用いられる電子機器を模式的に示す回路図である。図1に示すように、電子機器20は、他の電子機器100との間でケーブル111、112を介して通信を行う機器である。電子機器20は、電源回路21と、通信回路22と、複数の電源線路23、24と、複数の信号線路25、26と、第1バイアスティー回路30aと、第2バイアスティー回路30bと、を有する。
 電源回路21は、複数の電源線路23、24を介して直流電力を供給する回路である。通信回路22は、複数の信号線路25、26を介して、交流の通信信号を送受信する回路である。通信回路22は、例えば通信信号として差動通信信号の送受信を行うことができる。
 第1バイアスティー回路30a及び第2バイアスティー回路30bは、通信信号に直流電力を重畳させるために用いられる回路である。具体的には、第1バイアスティー回路30aは、第1インダクタ31と第1コンデンサ33とを含む。第1インダクタ31の一端は、電源線路23に接続され、第1インダクタ31の他端は、信号線路25に接続される。第1コンデンサ33は、通信回路22と、第1インダクタ31の他端との間で、信号線路25に直列に接続される。
 第2バイアスティー回路30bは、第2インダクタ32と第2コンデンサ34とを含む。第2インダクタ32の一端は、電源線路24に接続され、第2インダクタ32の他端は、信号線路26に接続される。第2コンデンサ34は、通信回路22と、第2インダクタ32の他端との間で、信号線路26に直列に接続される。
 第1インダクタ31及び第2インダクタ32は、電源回路21からの直流電力を通過させるとともに、電力に含まれる交流成分を遮断する。また、第1インダクタ31及び第2インダクタ32は、通信回路22からの通信信号に対して高いインピーダンスを有するので、通信信号が電源回路21側に流れることを遮断する。
 第1コンデンサ33及び第2コンデンサ34は、通信回路22からの通信信号を通過させるとともに、通信信号に含まれる直流成分を遮断する。また、第1コンデンサ33及び第2コンデンサ34は、電源回路21からの直流電力が通信回路22側に供給されることを遮断する。
 このような構成によって、ケーブル111、112に伝送される通信信号には直流電力が重畳し、電子機器20内では、第1バイアスティー回路30a及び第2バイアスティー回路30bによって通信信号と直流電力とが分離される。
 図2は、実施形態に係る伝送特性測定装置の構成例を示すブロック図である。図2に示すように、伝送特性測定装置10は、電子機器20の伝送特性を測定する装置である。より具体的には、伝送特性測定装置10は、インピーダンス素子(第1インダクタ31及び第2インダクタ32)のインピーダンスを測定し、インピーダンスの実数部Re1、Re2及び虚数部Im1、Im2に基づいてモード変換量を算出する装置である。
 本実施形態では、モード変換量とは、ディファレンシャルモードとコモンモードとのモード変換量である。例えば、第1インダクタ31及び第2インダクタ32のアンバランスや、信号線路25、26のアンバランスによりモード変換量が増加すると、コモンモードノイズが生じる可能性がある。
 図2に示すように、伝送特性測定装置10は、検出回路11と、演算回路12と、判定回路13と、表示装置14と、メモリ15と、端子16、17とを有する。検出回路11は、実数部検出回路11aと、虚数部検出回路11bと、を含む。実数部検出回路11aは、第1インダクタ31(第1インピーダンス素子)及び第2インダクタ32(第2インピーダンス素子)の、それぞれのインピーダンスの実数部Re1、Re2を測定する回路である。虚数部検出回路11bは、第1インダクタ31(第1インピーダンス素子)及び第2インダクタ32(第2インピーダンス素子)の、それぞれのインピーダンスの虚数部Im1、Im2を測定する回路である。検出回路11は、例えば、インピーダンスアナライザやLCRメータを用いることができる。なお、実数部検出回路11aと虚数部検出回路11bは、検出回路11内で別々の回路であってもよいし、実数部検出回路11aと虚数部検出回路11bが一つの回路として設けられていてもよい。
 測定対象である第1インダクタ31及び第2インダクタ32は、例えば巻線コイルや、積層コイルで構成される。ただし、第1インダクタ31及び第2インダクタ32の種類は、これに限定されずどのようなインダクタであってもよい。第1インダクタ31(又は第2インダクタ32)の一端側は端子16に接続され、他端側は端子17に接続される。これにより、検出回路11は、第1インダクタ31及び第2インダクタ32のインピーダンスを測定する。
 検出回路11による第1インダクタ31及び第2インダクタ32の測定周波数は、例えば30MHzである。測定周波数は、特に限定されず、実際に電子機器20において、差動通信信号が有するディファレンシャルモードの伝送周波数や、コモンモードノイズが発生する周波数で測定することが好ましい。また、単一の周波数に限定されず、一定の周波数範囲に対する周波数特性として測定することが好ましい。
 演算回路12は、第1インダクタ31及び第2インダクタ32のインピーダンスに基づいてモード変換量を算出する回路である。演算回路12は、下記の式(2)に基づいてモード変換量を算出する。ここで、式(2)における、Re1は、第1インダクタ31のインピーダンスの実数部、Im1は、第1インダクタ31のインピーダンスの虚数部、Re2は、第2インダクタ32のインピーダンスの実数部、Im2は、第2インダクタ32のインピーダンスの虚数部、A、B、Cは補正値である。
Figure JPOXMLDOC01-appb-M000003
 下記の式(3)は、式(2)において補正値A、B=50、補正値C=-18としたモード変換量の算出式である。ここで、補正値A、Bは、電子機器20の伝送線路における特性インピーダンスZoである。補正値Cは、過去の測定実績からあらかじめ設定された値である。
Figure JPOXMLDOC01-appb-M000004
 演算回路12は、検出回路11が測定した実数部Re1、Re2及び虚数部Im1、Im2を式(3)に代入してモード変換量を算出する。
 ここで、下記の式(4)は、第1インダクタ31の、電子機器20の伝送線路の特性インピーダンスZoに対する第1反射係数Γ1を示す。同様に、下記の式(5)は、第2インダクタ32の、電子機器20の伝送線路の特性インピーダンスZoに対する第2反射係数Γ2を示す。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記の式(3)は、式(4)及び式(5)を用いると、下記の式(6)のように表される。式(6)に示すように、モード変換量は、第1インダクタ31の、電子機器20の伝送線路の特性インピーダンスZoに対する第1反射係数Γ1と、第2インダクタ32の、電子機器20の伝送線路の特性インピーダンスZoに対する第2反射係数Γ2との差分に基づいて算出された値であると言い換えることができる。式(6)から、第1インダクタ31の第1反射係数Γ1と、第2インダクタ32の第2反射係数Γ2の差が小さいほど、モード変換量が小さくなるといえる。
Figure JPOXMLDOC01-appb-M000007
 また、式(6)に示すように、演算回路12は、第1反射係数Γ1と第2反射係数Γ2との差分に基づく値に、補正値Cを加えた値を算出する。これにより、モード変換量の精度を向上させることができる。補正値C=-18は、あくまで一例であり、過去の実績や要求される伝送特性に応じて適宜設定することができる。
 判定回路13は、演算回路12で算出されたモード変換量と、あらかじめ設定された閾値TH(図3参照)とを比較する回路である。判定回路13は、算出されたモード変換量が閾値TH以下の場合には、第1インダクタ31及び第2インダクタ32を良品として選別する。一方、判定回路13は、算出されたモード変換量が閾値THよりも大きい場合には、第1インダクタ31及び第2インダクタ32を不良品として選別する。判定回路13は、例えばコンパレータ回路である。ただし、判定回路13は、どのような回路であってもよく、モード変換量と閾値THとを比較できる構成であればよい。
 下記の式(7)は、上記の式(3)に、第1インダクタ31のインピーダンスの実数部Re1=100(Ω)、第1インダクタ31のインピーダンスの虚数部Im1=200(Ω)、第2インダクタ32のインピーダンスの実数部Re2=110(Ω)、第2インダクタ32のインピーダンスの虚数部Im2=220(Ω)を代入したモード変換量の式を示す。式(7)で算出されたモード変換量は、-47.66(dB)となる。閾値TH=-45(dB)(図3参照)に設定されている場合には、モード変換量-47.66(dB)は、閾値TH以下である。この場合には、第1インダクタ31及び第2インダクタ32は良品であると判定される。
Figure JPOXMLDOC01-appb-M000008
 表示装置14は、演算回路12のモード変換量の算出結果や、判定回路13の選別結果を表示するモニタである。ユーザは、表示装置14に表示された情報を見て、第1インダクタ31及び第2インダクタ32の電子機器20への実装を行う。あるいは、他のインダクタの測定を行ってもよい。
 メモリ15は、伝送特性測定方法に用いられるプログラムや、式(2)に関する情報、補正値A、B、C等の各種情報を記憶する回路である。また、第1インダクタ31及び第2インダクタ32のインピーダンスの測定結果も、メモリ15に格納される。
 演算回路12、判定回路13、表示装置14及びメモリ15は、検出回路11と一体に1つの装置として設けられていてもよいし、検出回路11と別体の装置として形成されていてもよい。演算回路12、判定回路13、表示装置14及びメモリ15は、例えば、パーソナルコンピュータやタブレット端末で構成されてもよい。
 図3は、実施形態に係る伝送特性測定装置により測定されたモード変換量と、SパラメータScd21との関係を示すグラフである。図3に示すグラフ1は、第1インダクタ31のインピーダンス及び第2インダクタ32のインピーダンスを種々に異ならせた場合の、式(3)により算出されたモード変換量と、SパラメータScd21との関係をプロットしている。グラフ1の縦軸は、上記の式(3)により算出されたモード変換量であり、横軸は、Sパラメータのシミュレーションによるモード変換量(Scd21)である。
 図3に示す基準線L1は、上記の式(3)により算出されたモード変換量と、Sパラメータのシミュレーションによるモード変換量(Scd21)と、が等しい値となる仮想線を示している。図3に示すように、第1インダクタ31のインピーダンス及び第2インダクタ32のインピーダンスを種々に異ならせた場合の各プロットは、基準線L1に重なっており、式(3)により算出されたモード変換量は、Scd21とほぼ一致することが示された。
 図4は、比較例に係る電子機器を模式的に示す回路図である。図5は、比較式により測定されたモード変換量と、SパラメータScd21との関係を示すグラフである。図4に示すように、比較例の電子機器120は、等価回路として、複数の線路125、126と、線路125に接続された第1インダクタ131と、線路126に接続された第2インダクタ132と、を有する。
 図5に示すグラフ2は、第1インダクタ131及び第2インダクタ132のインダクタンスを種々に異ならせた場合の、比較式(8)により算出されたモード変換量と、SパラメータScd21との関係をプロットしている。グラフ2の縦軸は、下記の比較式(8)により算出されたモード変換量であり、横軸は、Sパラメータのシミュレーションによるモード変換量(Scd21)である。モード変換量(Scd21)は、図4におけるポート121、122(Dポート)からポート123、124(Cポート)へのScd21とした。
Figure JPOXMLDOC01-appb-M000009
 図5に示すグラフ2では、第1インダクタ131のインピーダンスの実数部Re1は、0Ω以上7000Ω以下の範囲で変化させ、第1インダクタ131のインピーダンスの虚数部Im1は、-16000Ω以上7000Ω以下の範囲で変化させた。また、第2インダクタ132のインピーダンスの実数部Re2は、0Ω以上7000Ω以下の範囲で変化させ、第2インダクタ132のインピーダンスの虚数部Im2は、-16000Ω以上7000Ω以下の範囲で変化させた。
 図5に示すように、比較式(8)により算出されたモード変換量と、SパラメータScd21とは、大きく異なっている。これにより、比較式(8)に示すように、単純に第1インダクタ131のインピーダンスと第2インダクタ132のインピーダンスとの差分を演算した場合には、適切なモード変換量が算出できないことが示された。
 以上説明したように、本実施形態の伝送特性測定装置10は、電源回路21と、複数の線路(電源線路23、24及び信号線路25、26)と、複数の線路のそれぞれに配設され、電力重畳に用いられる複数のインダクタ(第1インダクタ31及び第2インダクタ32)と、を含む電子機器20の伝送特性を測定する伝送特性測定装置10であって、第1インダクタ31及び第2インダクタ32の、それぞれのインピーダンスの実数部Re1、Re2を測定する実数部検出回路11aと、第1インダクタ31及び第2インダクタ32の、それぞれのインピーダンスの虚数部Im1、Im2を測定する虚数部検出回路11bと、インピーダンスの実数部Re1、Re2及び虚数部Im1、Im2を取得して、第1インダクタ31の、線路の特性インピーダンスZoに対する第1反射係数Γ1と、第2インダクタ32の、線路の特性インピーダンスZoに対する第2反射係数Γ2と、の差分に基づく値を算出する演算回路12と、を有する。
 これによれば、伝送特性測定装置10は、第1インダクタ31及び第2インダクタ32のインピーダンスの測定結果に基づいて、安価でかつ効率的にモード変換量を算出することができる。より具体的には、ネットワークアナライザを用いてミックスドモードSパラメータ(Scd21)を算出する場合に比べて、本実施形態では、安価な装置で第1インダクタ31及び第2インダクタ32のインピーダンスを測定することができ、また、上述した式(3)に基づいて、Sパラメータのシミュレーションによるモード変換量(Scd21)と同等のモード変換量を算出することができる。
 次に、図2及び図6を参照して、伝送特性測定方法について説明する。図6は、実施形態に係る伝送特性測定方法を示すフローチャートである。図6に示すように、検出回路11は、第1インダクタ31のインピーダンスの実数部Re1及び虚数部Im1を測定する(ステップST11)。実数部Re1及び虚数部Im1の測定結果は、第1インダクタ31に関する情報と対応づけて、メモリ15に格納される。第1インダクタ31に関する情報は、例えば、第1インダクタ31の識別番号を示すロット番号や、測定条件(例えば測定周波数)等が関連づけて記憶される。
 次に、検出回路11は、第2インダクタ32のインピーダンスの実数部Re2及び虚数部Im2を測定する(ステップST12)。実数部Re2及び虚数部Im2の測定結果は、第2インダクタ32に関する情報と対応づけて、メモリ15に格納される。
 演算回路12は、上述した式(3)に基づいてモード変換量を算出する(ステップST13)。具体的には、演算回路12は、第1インダクタ31のインピーダンスの実数部Re1及び虚数部Im1に関する情報及び第2インダクタ32のインピーダンスの実数部Re2及び虚数部Im2に関する情報を検出回路11から取得して、これらの値を式(3)に代入してモード変換量を算出する。
 判定回路13は、演算回路12から受け取ったモード変換量と、メモリ15にあらかじめ格納された閾値THとを比較する(ステップST14)。判定回路13は、モード変換量が閾値TH以下である場合(ステップST14、Yes)、第1インダクタ31及び第2インダクタ32が良品であると判断する(ステップST15)。
 判定回路13は、モード変換量が閾値THよりも大きい場合(ステップST14、No)、第1インダクタ31及び第2インダクタ32が不良品であると判断する(ステップST16)。
 表示装置14は、演算回路12で算出されたモード変換量及び判定回路13の選別結果を表示する(ステップST17)。ユーザは、表示装置14の表示に基づいて、モード変換量が小さいインダクタを選別することができる。
 なお、伝送特性測定装置10及び伝送特性測定方法では、インピーダンス素子の一例としてインダクタ(第1インダクタ31及び第2インダクタ32)を示している。ただしこれに限定されず、インピーダンス素子は、例えば抵抗やコンデンサであってもよい。
 また、判定回路13は、第1インダクタ31及び第2インダクタ32が良品であるか不良品であるかを判定しているが、これに限定されない。例えば、一方の第1インダクタ31を基準素子として、基準素子に適合する第2インダクタ32の選別を行ってもよい。
 なお、上記した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。
 10 伝送特性測定装置
 11 検出回路
 11a 実数部検出回路
 11b 虚数部検出回路
 12 演算回路
 13 判定回路
 14 表示装置
 15 メモリ
 16、17 端子
 20 電子機器
 21 電源回路
 22 通信回路
 23、24 電源線路
 25、26 信号線路
 31、131 第1インダクタ
 32、132 第2インダクタ
 33 第1コンデンサ
 34 第2コンデンサ
 100 電子機器
 111、112 ケーブル
 120 比較例の電子機器
 Re1、Re2 実数部
 Im1、Im2 虚数部

Claims (5)

  1.  電源回路と、複数の線路と、前記複数の線路のそれぞれに配設され、電力重畳に用いられる複数のインピーダンス素子と、を含む電子機器の伝送特性を測定する伝送特性測定装置であって、
     第1インピーダンス素子及び第2インピーダンス素子の、それぞれのインピーダンスの実数部を測定する実数部検出回路と、
     前記第1インピーダンス素子及び前記第2インピーダンス素子の、それぞれのインピーダンスの虚数部を測定する虚数部検出回路と、
     前記インピーダンスの実数部及び前記インピーダンスの虚数部を取得して、前記第1インピーダンス素子の、前記線路の特性インピーダンスに対する第1反射係数と、前記第2インピーダンス素子の、前記線路の特性インピーダンスに対する第2反射係数と、の差分に基づく値を算出する演算回路と、を有する
     伝送特性測定装置。
  2.  請求項1に記載の伝送特性測定装置であって、
     前記演算回路は、前記差分に基づく値に補正値を加えた値を算出する
     伝送特性測定装置。
  3.  請求項2に記載の伝送特性測定装置であって、
     前記演算回路は、下記の式(1)に基づいてモード変換量を算出する
     伝送特性測定装置。
    Figure JPOXMLDOC01-appb-M000001
     ただし、Re1は、第1インピーダンス素子の実数部、Im1は、第1インピーダンス素子の虚数部、Re2は、第2インピーダンス素子の実数部、Im2は、第2インピーダンス素子の虚数部、Zoは特性インピーダンス、Cは補正値である。
  4.  請求項1から請求項3のいずれか1項に記載の伝送特性測定装置であって、
     さらに、前記演算回路の算出結果を表示する表示装置を有する
     伝送特性測定装置。
  5.  電源回路と、複数の線路のそれぞれに配設され、電力重畳に用いられる複数のインピーダンス素子と、を含む電子機器の伝送特性を測定する伝送特性測定方法であって、
     第1インピーダンス素子及び第2インピーダンス素子の、それぞれのインピーダンスの実数部及び虚数部を測定するステップと、
     前記インピーダンスの実数部及び虚数部を取得して、前記第1インピーダンス素子の、前記線路の特性インピーダンスに対する第1反射係数と、前記第2インピーダンス素子の、前記線路の特性インピーダンスに対する第2反射係数と、の差分に基づく値を算出するステップと、を有する
     伝送特性測定方法。
PCT/JP2021/027648 2020-08-06 2021-07-27 伝送特性測定装置及び伝送特性測定方法 WO2022030294A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541448A JP7235176B2 (ja) 2020-08-06 2021-07-27 伝送特性測定装置及び伝送特性測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020134006 2020-08-06
JP2020-134006 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030294A1 true WO2022030294A1 (ja) 2022-02-10

Family

ID=80117327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027648 WO2022030294A1 (ja) 2020-08-06 2021-07-27 伝送特性測定装置及び伝送特性測定方法

Country Status (2)

Country Link
JP (1) JP7235176B2 (ja)
WO (1) WO2022030294A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271917A (en) * 1975-12-08 1977-06-15 Westinghouse Electric Corp Polyphase power distribution network power line carrierfrequency communication system
JPH10502453A (ja) * 1994-07-05 1998-03-03 モトローラ・インコーポレーテッド 差動回路の特性を求めるための方法および装置
JP2002280939A (ja) * 2001-03-21 2002-09-27 Toyo Commun Equip Co Ltd 電力線通信装置
JP2005269265A (ja) * 2004-03-18 2005-09-29 Hitachi Ltd 電力線搬送通信システム
JP2006279214A (ja) * 2005-03-28 2006-10-12 Mitsubishi Electric Corp 信号注入・抽出装置
JP2007020113A (ja) * 2005-07-11 2007-01-25 Sumitomo Electric Ind Ltd 電力線通信装置
JP2007235363A (ja) * 2006-02-28 2007-09-13 Denso Corp 特性決定方法,コモンモードフィルタおよび通信システム
JP2011244388A (ja) * 2010-05-21 2011-12-01 Sharp Corp 有線通信システム及びこれに用いられる終端装置
JP2011252810A (ja) * 2010-06-02 2011-12-15 Sharp Corp 屋内配線終端状態判定装置、plcアダプタ、屋内配線終端状態判定方法
JP2017150886A (ja) * 2016-02-23 2017-08-31 日本電信電話株式会社 平衡度推定装置及び平衡度推定方法
JP2018151211A (ja) * 2017-03-10 2018-09-27 株式会社UL Japan 高周波インピーダンス測定方法
JP2019047165A (ja) * 2017-08-29 2019-03-22 株式会社Soken 差動通信装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271917B2 (ja) 2007-01-12 2013-08-21 メルク・シャープ・アンド・ドーム・コーポレーション スピロクロマノン誘導体
JP2021189252A (ja) 2020-05-27 2021-12-13 国立大学法人東京工業大学 光トランシーバ
JP2022028469A (ja) * 2020-08-03 2022-02-16 アズビル株式会社 インピーダンス測定システム及びインピーダンス測定方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271917A (en) * 1975-12-08 1977-06-15 Westinghouse Electric Corp Polyphase power distribution network power line carrierfrequency communication system
JPH10502453A (ja) * 1994-07-05 1998-03-03 モトローラ・インコーポレーテッド 差動回路の特性を求めるための方法および装置
JP2002280939A (ja) * 2001-03-21 2002-09-27 Toyo Commun Equip Co Ltd 電力線通信装置
JP2005269265A (ja) * 2004-03-18 2005-09-29 Hitachi Ltd 電力線搬送通信システム
JP2006279214A (ja) * 2005-03-28 2006-10-12 Mitsubishi Electric Corp 信号注入・抽出装置
JP2007020113A (ja) * 2005-07-11 2007-01-25 Sumitomo Electric Ind Ltd 電力線通信装置
JP2007235363A (ja) * 2006-02-28 2007-09-13 Denso Corp 特性決定方法,コモンモードフィルタおよび通信システム
JP2011244388A (ja) * 2010-05-21 2011-12-01 Sharp Corp 有線通信システム及びこれに用いられる終端装置
JP2011252810A (ja) * 2010-06-02 2011-12-15 Sharp Corp 屋内配線終端状態判定装置、plcアダプタ、屋内配線終端状態判定方法
JP2017150886A (ja) * 2016-02-23 2017-08-31 日本電信電話株式会社 平衡度推定装置及び平衡度推定方法
JP2018151211A (ja) * 2017-03-10 2018-09-27 株式会社UL Japan 高周波インピーダンス測定方法
JP2019047165A (ja) * 2017-08-29 2019-03-22 株式会社Soken 差動通信装置

Also Published As

Publication number Publication date
JP7235176B2 (ja) 2023-03-08
JPWO2022030294A1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
JPWO2005111635A1 (ja) 電気回路パラメータの測定方法および装置
US20130054169A1 (en) Method and a system for determining the place of origin of passive intermodulation products
US7405576B2 (en) Method and apparatus for measuring high-frequency electrical characteristics of electronic device, and method for calibrating apparatus for measuring high-frequency electrical characteristics
JP5483132B2 (ja) 電子部品の高周波特性誤差補正方法
US6573733B2 (en) Capacitance measuring technique for estimating cable length
CA2906755C (en) Downhole quartz gauge with minimal electronics
JP2002055126A (ja) 非接触式電圧測定方法および装置
WO2022030294A1 (ja) 伝送特性測定装置及び伝送特性測定方法
JPH0862316A (ja) 回路網測定装置の校正方法
JP2001201521A (ja) 電流検出装置及びインピーダンス測定器及び電力測定装置
US9372248B2 (en) Method for evaluating reliability of electrical power measuring device
US10942201B2 (en) Current detector and current meter
JP2014010067A (ja) インピーダンス測定方法及び測定装置
CN104777413B (zh) 去嵌入的测试结构及其测试方法和芯片
CN104777360B (zh) 去嵌入的测试方法
JP4703435B2 (ja) 特性決定方法,コモンモードフィルタおよび通信システム
JP2017151027A (ja) 平衡度推定装置およびその方法
JP2019211314A (ja) ベクトルネットワークアナライザを用いた反射係数の測定方法
JP6405707B2 (ja) 差動ケーブルの評価方法
Curry How to calibrate through balun transformers to accurately measure balanced systems
CN110470909B (zh) 介电常数的测试方法及装置
JP6957168B2 (ja) インピーダンス測定装置および測定方法
KR20080095118A (ko) 전기적 특성 측정 장치
JP5458817B2 (ja) 電子部品の電気特性測定誤差の補正方法及び電子部品特性測定装置
JP2013117482A (ja) 電子回路検査装置、電子回路検査方法、回路基板検査装置および回路基板検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852575

Country of ref document: EP

Kind code of ref document: A1