JP2001201521A - 電流検出装置及びインピーダンス測定器及び電力測定装置 - Google Patents

電流検出装置及びインピーダンス測定器及び電力測定装置

Info

Publication number
JP2001201521A
JP2001201521A JP2000009082A JP2000009082A JP2001201521A JP 2001201521 A JP2001201521 A JP 2001201521A JP 2000009082 A JP2000009082 A JP 2000009082A JP 2000009082 A JP2000009082 A JP 2000009082A JP 2001201521 A JP2001201521 A JP 2001201521A
Authority
JP
Japan
Prior art keywords
current
terminal
voltage
balun
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000009082A
Other languages
English (en)
Other versions
JP2001201521A5 (ja
Inventor
Toshiyuki Yagi
利幸 矢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Japan Ltd
Original Assignee
Agilent Technologies Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Japan Ltd filed Critical Agilent Technologies Japan Ltd
Priority to JP2000009082A priority Critical patent/JP2001201521A/ja
Priority to US09/764,773 priority patent/US6414476B2/en
Publication of JP2001201521A publication Critical patent/JP2001201521A/ja
Publication of JP2001201521A5 publication Critical patent/JP2001201521A5/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • G01R21/07Arrangements for measuring electric power or power factor by measuring current and voltage in circuits having distributed constants

Abstract

(57)【要約】 【課題】広帯域電流検出を行なう。 【解決手段】電源電流を受信する第1の端子(101)
と出力電流を外部回路に供給しする第2の端子(10
2)と該出力電流と所定の関係を有する監視電流を出力
する第3の端子(103)と基準電位を有する第4の端
子(104)とを備える本発明の電流検出装置は、第
1、第2の端子間に接続された第1の素子(116)、
第1の素子に結合された第1、第2のバラン(120、
122)の縦続と、第1、第2のバランの接続部に設け
た接地容量性素子(124)、及び第2のバランの出力
部に設けた接地容量性素子(128)、を備える。本発
明の電流検出装置を用いインピーダンス測定装置や電力
測定装置の性能を向上できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は概して電気測定に関
し、詳細には広帯域電流検出装置とそれを用いたインピ
ーダンス測定装置及び電力測定装置に関する。
【0002】
【従来の技術】電流測定は基本測定であり、浮動線路を
流れる電流を測定する用途も広範囲にわたる。単に電流
を測定するほか、電気量以外の物理・化学的量の測定や
電力、インピーダンスに関連する量の測定の一部として
電流を測定する場合も多い。最終的な電流値の測定を不
平衡装置である電流検出装置や電圧検出装置で行なうた
め、被測定電流を変成器結合等の平衡・不平衡変換器
(以下バランと称する)により該不平衡装置に導入する
方法が採られていた。特に、例えば1MHzから1GH
zというような広い周波数範囲の電流測定では理想的な
変成器結合が困難となり、比較的周波数特性が良好な伝
送路型バランを用いる。
【0003】伝送路型バランは例えば同軸線路をフェラ
イトコアに巻きつけて構成し、該同軸線路の一方の端子
対を入力端子対とし、他方の端子対を出力端子対として
いる。同軸線路の中心導体と外被は結合係数が極めて1
に近いので非常に優れた周波数特性を示す。バランの自
己インダクタンスにより被測定素子への印加電圧の減少
をもたらすので、これを防ぐために同軸線路をフェライ
トコアに巻くことにより自己インピーダンスを増加させ
て該減少を軽減している。例えば、特開平9−3186
71号に伝送路型バランを使用した例が示してある。
【0004】図1はこのような伝送路型バランを用いた
電流検出装置の好適な実施例であるインピーダンス測定
器の簡略化回路図である。被測定素子18に流れる電流
i1と、該素子18に印加される電圧v2のベクトル比(v
1/i1)として該素子18の複素インピーダンスZxが決定
される。尚、コンデンサ34を介して流れる電流や、そ
の他の寄生インピーダンスを介して流れる電流もi1に影
響するが、本発明の説明のためにはそれらの電流は無視
してもよく、説明を簡略化する意味でそれらの電流を無
視する。直流電源12と交流電源10、電源抵抗14、
電流検出抵抗16、被測定素子18が直列接続されてい
る。電流検出抵抗16は(伝送路型)バラン20の入力
端子対を終端するようにされる。バラン20の出力端子
対の一方は、バラン20を介して電流検出抵抗16の電
源抵抗14側端子に直流結合し、またコンデンサ24を
介して基準電位点4(多くはグランド電位や接地電位を
有する)に結合される。バラン20の出力端子対の他方
は、バラン20を介して電流検出抵抗16の被測定素子
18側端子に直流結合し、またコンデンサ30と抵抗3
2を介して基準電位点4に結合される。
【0005】電圧測定装置36はバラン20を介して抵
抗32に流入した電流i2により抵抗32の端子間に生じ
る電圧V1を測定し、電流i1の値を決定する。また被測定
素子18の端子間電圧はv1はコンデンサ34を介して電
圧測定装置38により測定され、測定値V2がえられ
る。被測定素子18のインピーダンスZx=v1/i1は、測定
値V2、V1の比V2/V1に所定の係数Aを乗じて得られる。ま
た、被測定素子が消費する電力は測定値V2、V1の積比V2
×V1に所定の係数Bを乗じて選られる。係数A、Bが測定
のために較正されたあと安定であるためには、電圧V1を
生じる電流i2とi1の比も安定でなければならない。該安
定を損ねる原因は、被測定素子値の変化の他にバランの
特性の温度変化による変動などがある。
【0006】図1において、電流i1、i2の比を計算する
と、下式のとおりである。 i1/i2=-{(R1+R2+Zc3)/R2}×N1/N2・・・(式1) ただし、N1={1+Zc1/(R1+R2+Zc3)+(Zc1/Z1)×(R3
+Zc3)/(R1+R2+Zc3)}、N2={1−(Zc1/Z1)×(Zx
/R2)}であり、R1、R2、R3はそれぞれ抵抗14,1
6,32の抵抗値であり、Zc1、Zc3はそれぞれコンデン
サ24,30のインピーダンス値であり、Zx、Z1はそれ
ぞれ被測定素子18のインピーダンス値とバラン20の
自己インピーダンス値である。
【0007】上記伝送路型同軸バランの自己インダクタ
ンスはフェライトコアの透磁率に依存するので温度的に
不安定である。そこで自己インピーダンスの値Z1の電流
比i1/i2に与える影響を調べてみる。(式1)において
分母は被測定物のインピーダンスZxの関数になっている
ので、例として被測定素子のインピーダンスが500Ωの
場合について検討する。まず素子値の温度係数が100
ppm/℃以下のコンデンサや抵抗器は容易に手に入る
のでそれらの変化は無視できる。しかしバランの自己イ
ンピーダンスはそこに使われているコアの透磁率に依存
するので0.5%/℃程度になってしまう。20℃の温
度変化に対してバランの自己インピーダンスの絶対値は
10%変化する。
【0008】上記(式1)において、典型的なインピー
ダンス値(R1=R2=R3=50Ω、Zc1=Zc3=−j0.5Ω、Z
x=500Ω、Z1=j100Ω;ただしjは虚数単位である)
を代入すると、バランの自己インダクタンス値Z1の10
%の変化でi1/i2の値に0.5%の変化が生ずることがわか
る。この有り得る変化は直接インピーダンス測定の測定
値の誤差となる。なお、Zc1=0、すなわちC1が短絡され
ている時はN1=0、N2≠0であり、バランの自己インピ
ーダンス値Z1の変化でi1/i2の値に変化が生じないこと
がわかる。しかしながら、Zc1=0である構成では直流
電流を被測定素子に印加することはできない。ここでは
被測定素子18のインピーダンス値Zxとして500Ωの
場合を求めたが、50Ωの場合には i1/i2の変化は 約
0.1%になる。この様にその変化量が被測定素子の値
に大きく依存してしまうので、いわゆる3点校正を正し
く行なえず測定誤差が大きくなる。また温度補正もバラ
ンの自己インダクタンスの絶対値に依存し、現実的でな
い。
【0009】
【発明が解決しようとする課題】本発明の目的は、直流
電流が重畳しても交流電流を広帯域で安定に検出できる
電流検出装置を提供することである。本発明のさらに別
の目的は該電流検出装置を用いた高精度インピーダンス
測定装置を提供することである。本発明のさらに他の目
的は該電流検出装置を用いた電力測定装置を提供するこ
とである。
【0010】
【課題を解決するための手段】本発明の主な構成は以下
のとおりである。本発明の第1の発明では、電源電流を
受信する第1の端子と出力電流を外部回路に供給する第
2の端子と該出力電流と所定の関係を有する監視電流を
出力する第3の端子と基準電位を有する第4の端子とを
備える電流検出装置であって、第1、第2の端子間に接
続された第1の素子、第1、第2の端子を第1の入力端
子対として備え、前記第1の入力端子対に第1の線路で結
合された第1の出力端子対を備える第1のバラン、前記
第1の出力端子対を第2の入力端子対として備え、前記
第2の入力端子対に第2の線路で結合された第2の出力
端子対を備える第2のバラン、前記第1の端子と直流結
合する前記第1の出力端子対の一方の出力端子と第4の
端子間に接続された第1の容量性素子、及び前記第1の
端子と直流結合する前記第2の出力端子対の一方の出力
端子と第4の端子間に接続された第2の容量性素子、を
備え、前記第2の端子と直流結合する前記第2の出力端
子対の他方の出力端子を第3の端子としたことを特徴と
する電流検出装置が与えられる.
【0011】本発明の第2の発明では、前記第1の素子
が抵抗素子である。本発明の第3の発明では、前記第
1、第2のバランの少なくとも一方がフェライト・コア
に該少なくとも一方に応じる前記第1、第2の線路を巻回
したバランであるまた、本発明の第4の発明では前記第
1、第2の線路の少なくとも一方が同軸線路である。更
に、本発明の第5の発明では、前記第1、第2の線路ただ
一本の同軸線路を共通に用いて成る。
【0012】本発明の第6の発明では、前記第1の端子
は前記同軸線路の外部導体と直流結合するようにされ
る。そして、本発明の第7の発明ではさらに、前記第3
の端子に接続され、該第3の端子からの電流を受信して
前記監視電流に応じた測定値を与えるための電流測定装
置を備える。
【0013】本発明の第8の発明では、前記電流測定装
置が前記第3の端子に接続された一方の端子を有する第
3の容量素子と、該第3の容量素子の他方の端子と第4
の端子との間に接続された入力抵抗素子と、該入力抵抗
素子に結合され、該入力抵抗素子に生じる電圧を測定す
るための電圧測定装置を有する。
【0014】そして、本発明の第9の発明では前記電流
検出装置と、前記第2、第4の端子間に接続され、該前
記第2、第4の端子間に生じる電圧に応じた測定値を与
える電圧検出装置と、前記電圧に応じた測定値と前記電
流に応じた測定値とから前記第2、第4の端子間に接続
された被測定インピーダンスに関連する測定値を算出す
る制御計算手段とを備えるインピーダンス測定装置が与
えられる。
【0015】本発明の第10の発明では前記電流検出装
置と、前記第2、第4の端子間に接続され、該前記第
2、第4の端子間に生じる電圧に応じた測定値を与える
電圧検出装置と、前記電圧に応じた測定値と前記電流に
応じた測定値とから前記第2、第4の端子間に接続され
た被測定素子が消費する電力に関連する測定値を算出す
る制御計算手段とを備える電力測定装置が与えられる。
その他の発明とその効果は本明細書の以下の説明から容
易に理解できるであろう。
【0016】
【発明の実施の形態】図2を参照すると、本発明の電流
検出装置、インピーダンス測定装置および電力測定装置
の技術思想が明快に理解される。図2には、本発明の電
流検出装置の一実施例と、該電流検出装置を使用しイン
ピーダンス測定装置および電力測定装置として機能する
複合装置の一実施例の概略構成が示されている。
【0017】図2の複合装置100において、伝送路型
バラン122と容量素子128、制御装置140を明示
的に記載した点を除けば、図1のインピーダンス測定装
置と実質的に同じである。なお、本発明の各装置は例え
ば1MHz〜1GHzにわたる広帯域の測定を実現しようとす
るものである。
【0018】外部回路であってもよい被測定素子118
に直流バイアスを与えるための直流電源112と交流イ
ンピーダンスの測定のための交流信号を発生する交流電
源110、電源抵抗114、電流検出抵抗116、被測
定素子118が直列接続されている。電流検出抵抗11
6は(伝送路型)バラン20の入力端子対(101,1
02)を終端するようにされる。バラン120の出力端
子対の一方は、バラン120を介して電流検出抵抗11
6の電源抵抗114側端子101に直流結合し、またコ
ンデンサ124を介して基準電位点104(多くはグラ
ンド電位や接地電位を有する)に結合されるとともに、
第2のバラン122の入力端子対の一方の入力端子10
5に結合される。バラン120の出力端子対の他方は、
バラン120を介して電流検出抵抗116の被測定素子
118側端子102に直流結合し、第2のバラン122
の入力端子対の他方の端子に結合されている。バラン1
22の出力端子対の一方の端子106は、バラン122
を介してバラン120の一方の入力端子105と直流結
合し、またコンデンサ128を介して基準電位点104
に結合される。第2のバラン122の出力端子対の他方
の端子103は、またコンデンサ130と抵抗132を
介して基準電位点4に結合される。
【0019】電圧測定装置136は第2のバラン122
を介して抵抗132に流入した電流i2により抵抗132
の端子間に生じる電圧v1を測定し、被測定素子118
に流れる電流i1を決定するための電圧測定値V1を決定す
る。また被測定素子118の端子間電圧v1はコンデンサ
134を介して電圧測定装置138により測定され、測
定値V2がえられる。
【0020】制御装置140は、手動入力部142ある
いは遠隔入力部146から入力される、あるいは内蔵さ
れた記憶装置から読み出される所望の測定条件に応じて
直流電源112と交流電源110の設定を行ない、電圧
測定装置136、138から電圧V1,V2の測定値V1,V2を
読み取る。制御装置140がインピーダンス測定装置と
して機能するように構成されている場合は、制御装置1
40は、つぎに、被測定素子118のインピーダンスの
値Zx=v1/i1を求めるため、測定値V2、V1の比V2/V1に所
定の係数A1を乗じる。必要に応じて、その計算結果であ
るZxが周知のインピーダンス測定装置におけると同様に
表示部144に表示される。
【0021】被測定素子が消費する電力は測定値V2、V1
の積比V2×V1に所定の係数B1を乗じてi1×v2として与え
られる。係数A1、B1が測定のために較正されたあと安定
であるためには、電圧V1を生じる電流i2と被測定素子に
流れる電流i1の比が安定でなければならない。本発明の
電流検出装置においても該安定を損ねる原因は、被測定
素子値の変化の他に特にバランの特性の温度変化による
変動などがある。
【0022】図1の従来例についてi1/i2を求めたのと
同様の計算を、図2の複合装置について、被測定素子1
18のインピーダンス値が500Ωの場合について行な
う。なお、同種の量については(式1)において用いた
記号を流用する。
【0023】図2において、電流i1、i2の比を計算する
と、下式のとおりである。 i1/i2=-{(R1+R2+Zc3)/R2}×N1/N2・・・(式2) ただし、N1={1+(Zc1+Zc2)/Z2+Zc1/Z1+Zc2/(R1
+R2+Zc3)+(Zc1/Z1)×(Zc2/Z2)×(R1+Zc3+Z1+Z
2)/(R1+R2+Zc3)}、N2={1+(Zc1+Zc2)/Z2+Zc1
/Z1−(Zc1/Z1)×(Zc2/Z2)×(Zx/R2)}であり、R
1、R2、R3はそれぞれ抵抗114,116,132の抵
抗値であり、Zc1、Zc2、Zc3はそれぞれコンデンサ12
4,128、130のインピーダンス値であり、Zx、Z
1、Z2はそれぞれ被測定素子118のインピーダンス値
とバラン120の自己インピーダンス値及びバラン12
2の自己インピーダンス値である。
【0024】上記伝送路型同軸バランの自己インダクタ
ンスはフェライトコアの透磁率に依存するので温度的に
不安定である。そこで自己インピーダンスの値Z1、Z2の
電流比i1/i2に与える影響を調べてみる。(式2)にお
いて分母は被測定物のインピーダンスZxの関数になって
いるので、例として被測定素子のインピーダンスが500
Ωの場合について検討する。
【0025】上記(式1)において、典型的なインピー
ダンス値(R1=R2=R3=50Ω、Zc1==Zc2=Zc3=−j
0.5Ω、Zx=500Ω、Z1=Z2=j100Ω;ただしjは虚数
単位である)を代入すると、バランの自己インピーダン
ス値Z1、Z2の10%の変化でi1/i2の値に約0.05%の変
化が生ずることがわかる。又 Zx が50Ωの場合は、前
記変化は0.048%でZxの変化に対してもi1/i2が図1の電
流検出装置と比較して安定であることが分かる。この有
り得る変化は直接インピーダンス測定の測定値に誤差を
与えるが、図1に記載の装置における変化量の10分の1
である。なお、コンデンサ128の容量値Zc2を下げる
ことによって該誤差をさらに低下させることができる。
【0026】図1の電流検出装置で同程度の効果を期待
するにはコンデンサのインピーダンスZc1の絶対値を
0.05Ωにする必要がある。このような低いインピー
ダンスを広い周波数範囲で実現するのは、計算上は可能
であるが実際のコンデンサでは難しい。例えば、1MH
zで0.05Ωとするのには3.2uFの容量が必要であ
る。一方、1GHzで0.05Ωとする為には、コンデン
サ自身が持っている直列インダクタンス成分は約8pH
にする必要がある。実際の小型コンデンサは数百pHの
インダクタンスがあるので複数個並列にしても非常に多
くのコンデンサが必要になり現実的ではない。又コンデ
ンサの容量が大きいと直流バイアスや交流信号のレベル
変化に対する装置の応答を遅くし、測定速度を低下させ
るので好ましくない。図1の従来技術による電流検出装
置では3.2uFのコンデンサが必要であるが、図2の本
発明による複合装置100では0.64uFの容量でよ
い。本実施例の複合装置ではこの点でも有利である。
【0027】バラン120,122はツイスト・ペア
線、同軸線路、あるいはそれらを磁芯(コアとも称す
る。)に巻回したものであるが、広帯域性能を確保する
ためには、前述のように同軸線路を磁芯たとえばフェラ
イト・コアに巻回したものが好ましい。フェライト・コ
アは低域特性を向上させ且つ高域でもその損失により顕
著な共振現象の招来を防ぐ。巻数は磁芯に応じて分数回
から数回が好ましい。図3の(A)はそのような構成の
一例を示すもので、コア121,123に同軸線(10
1,102;103,106)が巻回されている。ま
た、同軸線路の外部導体(101,106)にコンデン
サ124,128(不図示)を接続するように構成すれ
ば、作業がし易いので好もしい。また、また一本の同軸
線路を図3の(A)のように両バランに共通に使用する
ことも、別々にすることもできる。コア121を両バラ
ンに共通にしてコアの個数を節約できる場合もある(図
3の(B))。さらに、バランと接地コンデンサの組を
3段など多段縦続してさらに効果を上げることもでき
る。
【0028】上記の実施例ではバラン120の自己イン
ピーダンス Z1としてj100Ωとしたが、この値は図
2の信号源抵抗114の値 R1と、印加電圧の減少をど
の程度に押さえるかに依存する。50Ω系の場合、信号
レベルの減衰を3dB以下にする為には、バランの自己
インピーダンスはj50Ω以上が必要である。その時、
コンデンサ124のインピーダンスZc1は使用周波数範
囲で Z1/50以下が好ましい。バラン122、コンデ
ンサ128のインピーダンスZc2も、バラン114、コ
ンデンサ124と同程度の値とするのがよい。
【0029】
【発明の効果】以上のように、本発明を用いると、下記
の主な効果がえられる。前記第1の発明の構成により、
外部回路に直流バイアスを供給しつつ広帯域で出力交流
電流と所定の関係を有する監視電流をえることができ
る。また、従来に比べて同じ交流電流帯域でも低容量の
第1の容量性素子が使えるので、直流バイアスをより高
速で変化させることができる。また、装置の回路規模も
小さくなる。
【0030】前記第2の発明の構成によれば、前記第1
の素子が抵抗素子であり、広帯域の電流検出がおこなえ
る。前記第3の発明の構成では、前記第1、第2のバラ
ンの少なくとも一方がフェライト・コアを備えるので、
バランの帯域が広くかつ共振しにくいので、広帯域で高
精度の電流検出ができる。
【0031】また、前記第4の発明の構成では、前記第
1、第2の線路の少なくとも一方が同軸線路であるか
ら、バランの特性が向上しより広帯域の電流検出ができ
る。更に、前記第5の発明では、前記第1、第2の線路た
だ一本の同軸線路を共通に用いて成るので、バランの特
性がさらに向上し、また同軸線路を裁断、結合する手間
が省けるためより低価格の電流検出装置が得られる。。
【0032】前記第6の発明では、前記第1の端子は前
記同軸線路の外部導体と直流結合するようにされるの
で、容量素子を外部導体に結合できるので作業がし易
く、電流検出コスト低減に役立つ。そして、前記第7の
発明ではさらに、前記監視電流に応じた測定値を与える
ための電流測定装置を備えるので、該測定値を表示した
り他の値を計算するのに用いることができる。
【0033】前記第8の発明の構成では、簡単な構成で
監視電流を不平衡電圧に変換し、該電圧を測定するので
容易に広帯域精密電流測定がおこなえる。
【0034】そして、前記第9の発明のインピーダンス
を測定装置では本発明の前記電流検出装置を用いて、被
測定素子に流れる電流を測定し、その結果から被測定イ
ンピーダンスを測定する。この構成を採ったので、広帯
域で直流バイアスを印加しつつ、高速で被測定素子を次
々と測定することが可能となる。
【0035】前記第10の発明の電力測定装置では前記
電流検出装置を用いて、外部回路の電流を測定できるの
で、外部回路が消費する交流電力のみを広帯域で測定で
きる。
【0036】また、本発明の説明において、電源と外部
回路の構成の違いは本質的ではなく、外部回路に電池、
発振器等の電力発生源を有する場合もある。また、例え
ば外部回路が測定されるべき電流を発生している場合で
も本発明を利用できる。その他の発明とその効果は本明
細書の前記全ての説明から容易に理解できるであろう。
【図面の簡単な説明】
【図1】本発明に関連する従来技術の電流検出装置を含
むインピーダンス測定装置の概略回路図である。
【図2】本発明を説明するための複合装置の概略回路図
である。
【図3】本発明で使用されるバランの例を示す概略構造
図である。
【符号の説明】
100:複合装置 104:端子 106:出力端子 116、132:抵抗 118:被測定素子 120,122:バラン 130:容量性素子 136,138:電圧測定装置 140:制御装置

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】電源電流を受信する第1の端子と出力電流
    を外部回路に供給する第2の端子と該出力電流と所定の
    関係を有する監視電流を出力する第3の端子と基準電位
    を有する第4の端子とを備える電流検出装置であって、
    第1、第2の端子間に接続された第1の素子、第1、第
    2の端子を第1の入力端子対として備え、前記第1の入
    力端子対に第1の線路で結合された第1の出力端子対を
    備える第1のバラン、前記第1の出力端子対を第2の入
    力端子対として備え、前記第2の入力端子対に第2の線
    路で結合された第2の出力端子対を備える第2のバラ
    ン、前記第1の端子と直流結合する前記第1の出力端子
    対の一方の出力端子と第4の端子間に接続された第1の
    容量性素子、及び前記第1の端子と直流結合する前記第
    2の出力端子対の一方の出力端子と第4の端子間に接続
    された第2の容量性素子、を備え、 前記第2の端子と直流結合する前記第2の出力端子対の
    他方の出力端子を第3の端子としたことを特徴とする電
    流検出装置。
  2. 【請求項2】前記第1の素子が抵抗素子である請求項1
    に記載の電流検出装置。
  3. 【請求項3】前記第1、第2のバランの少なくとも一方
    がフェライト・コアに該少なくとも一方に応じる前記第
    1、第2の線路を巻回したバランであることを特徴とする
    請求項1あるいは請求項2のいずれかに記載の電流検出
    装置。
  4. 【請求項4】前記第1、第2の線路の少なくとも一方が
    同軸線路であることを特徴とする請求項1〜請求項3の
    いずれかに記載の電流検出装置。
  5. 【請求項5】前記第1、第2の線路ただ一本の同軸線路を
    共通に用て成ることを特徴とする請求項4に記載の電流
    検出装置。
  6. 【請求項6】前記第1の端子は前記同軸線路の外部導体
    と直流結合することを特徴とする請求項4あるいは請求
    項5のいずれかに記載の電流検出装置。
  7. 【請求項7】さらに、第3の端子に接続され、該第3の
    端子からの電流を受信して前記監視電流に応じた測定値
    を与えるための電流測定装置を備えることを特徴とする
    請求項2〜請求項6のいずれかに記載の電流検出装置。
  8. 【請求項8】前記電流測定装置が第3の端子に接続され
    た一方の端子を有する第3の容量素子と、該第3の容量
    素子の他方の端子と第4の端子との間に接続された入力
    抵抗素子と、該入力抵抗素子に結合され、該入力抵抗素
    子に生じる電圧を測定するための電圧測定装置を有する
    ことを特徴とする請求項7に記載の電流検出装置。
  9. 【請求項9】請求項7あるいは請求項8のいずれかに記
    載の電流検出装置と、前記第2、第4の端子間に接続さ
    れ、該前記第2、第4の端子間に生じる電圧に応じた測
    定値を与える電圧検出装置と、前記電圧に応じた測定値
    と前記電流に応じた測定値とから前記第2、第4の端子
    間に接続された被測定インピーダンスに関連する測定値
    を算出する制御計算手段とを備えるインピーダンス測定
    装置。
  10. 【請求項10】請求項7あるいは請求項8のいずれかに
    記載の電流検出装置と、前記第2、第4の端子間に接続
    され、該前記第2、第4の端子間に生じる電圧に応じた
    測定値を与える電圧検出装置と、前記電圧に応じた測定
    値と前記電流に応じた測定値とから前記第2、第4の端
    子間に接続された被測定素子が消費する電力に関連する
    測定値を算出する制御計算手段とを備える電力測定装
    置。
JP2000009082A 2000-01-18 2000-01-18 電流検出装置及びインピーダンス測定器及び電力測定装置 Pending JP2001201521A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000009082A JP2001201521A (ja) 2000-01-18 2000-01-18 電流検出装置及びインピーダンス測定器及び電力測定装置
US09/764,773 US6414476B2 (en) 2000-01-18 2001-01-17 Current detecting device, impedance measuring instrument and power measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009082A JP2001201521A (ja) 2000-01-18 2000-01-18 電流検出装置及びインピーダンス測定器及び電力測定装置

Publications (2)

Publication Number Publication Date
JP2001201521A true JP2001201521A (ja) 2001-07-27
JP2001201521A5 JP2001201521A5 (ja) 2007-03-08

Family

ID=18537274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009082A Pending JP2001201521A (ja) 2000-01-18 2000-01-18 電流検出装置及びインピーダンス測定器及び電力測定装置

Country Status (2)

Country Link
US (1) US6414476B2 (ja)
JP (1) JP2001201521A (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554829B2 (en) 1999-07-30 2009-06-30 Micron Technology, Inc. Transmission lines for CMOS integrated circuits
US7031267B2 (en) * 2000-12-21 2006-04-18 802 Systems Llc PLD-based packet filtering methods with PLD configuration data update of filtering rules
US7013482B1 (en) 2000-07-07 2006-03-14 802 Systems Llc Methods for packet filtering including packet invalidation if packet validity determination not timely made
US20020080784A1 (en) * 2000-12-21 2002-06-27 802 Systems, Inc. Methods and systems using PLD-based network communication protocols
US20020083331A1 (en) * 2000-12-21 2002-06-27 802 Systems, Inc. Methods and systems using PLD-based network communication protocols
US7101770B2 (en) * 2002-01-30 2006-09-05 Micron Technology, Inc. Capacitive techniques to reduce noise in high speed interconnections
US6846738B2 (en) 2002-03-13 2005-01-25 Micron Technology, Inc. High permeability composite films to reduce noise in high speed interconnects
US7235457B2 (en) * 2002-03-13 2007-06-26 Micron Technology, Inc. High permeability layered films to reduce noise in high speed interconnects
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US6750752B2 (en) * 2002-11-05 2004-06-15 Werlatone, Inc. High power wideband balun and power combiner/divider incorporating such a balun
US6970053B2 (en) * 2003-05-22 2005-11-29 Micron Technology, Inc. Atomic layer deposition (ALD) high permeability layered magnetic films to reduce noise in high speed interconnection
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
CA2885445C (en) * 2014-03-21 2017-09-19 Guildline Instruments Limited Methods and devices for ac current sources, precision current transducers and detectors
CN113030572A (zh) * 2021-02-26 2021-06-25 佛山市中研非晶科技股份有限公司 一种磁芯阻抗特征分析方法及应用其的磁芯阻抗测试系统
US20230358790A1 (en) * 2022-05-05 2023-11-09 Applied Materials, Inc. Rf measurement from a transmission line sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164167A (ja) * 1985-01-17 1986-07-24 Shiojiri Kogyo Kk デイジタルマルチメーター
JPS61230417A (ja) * 1985-04-03 1986-10-14 Nippon Ferrite Ltd ノイズフイルタ
JPH04232877A (ja) * 1990-07-10 1992-08-21 Rohde & Schwarz Gmbh & Co Kg 反射係数測定用ブリッジ
JPH05312859A (ja) * 1991-10-31 1993-11-26 Yokogawa Hewlett Packard Ltd インピーダンス・メータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES244069Y (es) * 1979-06-21 1980-04-01 Circuito detector de corriente.
DK149238C (da) * 1983-09-15 1987-01-19 Danfysik As Detektorkredslaeb til brug ved straemmaaling
EP0205120B1 (en) * 1985-06-07 1994-09-14 Hitachi, Ltd. Superconducting current detecting circuit employing DC flux parametron circuit
JP3329555B2 (ja) 1993-12-28 2002-09-30 アジレント・テクノロジー株式会社 インピーダンス・メータ
US6018238A (en) * 1995-03-03 2000-01-25 Bell Technologies Inc. Hybrid non-contact clamp-on current meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164167A (ja) * 1985-01-17 1986-07-24 Shiojiri Kogyo Kk デイジタルマルチメーター
JPS61230417A (ja) * 1985-04-03 1986-10-14 Nippon Ferrite Ltd ノイズフイルタ
JPH04232877A (ja) * 1990-07-10 1992-08-21 Rohde & Schwarz Gmbh & Co Kg 反射係数測定用ブリッジ
JPH05312859A (ja) * 1991-10-31 1993-11-26 Yokogawa Hewlett Packard Ltd インピーダンス・メータ

Also Published As

Publication number Publication date
US20010008375A1 (en) 2001-07-19
US6414476B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP3110827B2 (ja) インピーダンス・メータ
JP2001201521A (ja) 電流検出装置及びインピーダンス測定器及び電力測定装置
US3800218A (en) R. f. impedance bridge for measuring reflection coefficient
Abdi-Jalebi et al. High-performance low-cost Rogowski transducers and accompanying circuitry
US11050401B2 (en) Current sensor and measurement device
US6458611B1 (en) Integrated circuit device characterization
JP2002055126A (ja) 非接触式電圧測定方法および装置
JP2023024575A (ja) 電流検出装置および電流測定装置
JP3329555B2 (ja) インピーダンス・メータ
US20040100248A1 (en) Constant input impedance AC coupling circuit for a current probe system
US7282903B2 (en) Longitudinal balance measuring bridge circuit
US5216373A (en) Circuit element measuring apparatus and method for measuring a parameter of a DUT including a compensation network having an admittance characteristic
US4739515A (en) Voltage standing wave ratio bridge measuring circuit
US4013949A (en) Return loss test set
JP2975389B2 (ja) 回路素子測定装置
JP3131857B2 (ja) 擬似通信回路網
JP2675583B2 (ja) イミュニティ試験回路
Huntley et al. Lumped parameter impedance measurements
JP2957596B2 (ja) 回路素子測定装置
CN115792343B (zh) 一种准确度可调电压传感器及其准确度调整方法
JP4525391B2 (ja) π型インピーダンス回路網のインピーダンス測定方法および測定装置
JP3102709B2 (ja) 電子素子測定装置
Waltrip et al. The design and self-calibration of inductive voltage dividers for an automated impedance scaling bridge
JP3126220B2 (ja) フリンジ容量の測定方法
JP2675584B2 (ja) イミュニティ試験回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100326