WO2005089939A1 - Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement - Google Patents

Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement Download PDF

Info

Publication number
WO2005089939A1
WO2005089939A1 PCT/JP2004/003795 JP2004003795W WO2005089939A1 WO 2005089939 A1 WO2005089939 A1 WO 2005089939A1 JP 2004003795 W JP2004003795 W JP 2004003795W WO 2005089939 A1 WO2005089939 A1 WO 2005089939A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nitrogen oxides
exhaust gas
producing
firing
Prior art date
Application number
PCT/JP2004/003795
Other languages
English (en)
Japanese (ja)
Inventor
Hideo Kameyama
Yu Kaku
Original Assignee
Tokyo University Of Agriculture And Technology Tlo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University Of Agriculture And Technology Tlo Co., Ltd. filed Critical Tokyo University Of Agriculture And Technology Tlo Co., Ltd.
Priority to PCT/JP2004/003795 priority Critical patent/WO2005089939A1/fr
Priority to JP2006511099A priority patent/JPWO2005089939A1/ja
Priority to TW093108490A priority patent/TW200531740A/zh
Publication of WO2005089939A1 publication Critical patent/WO2005089939A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles

Definitions

  • the present invention relates to a catalyst for reducing nitrogen oxides, a catalyst using the same, and a method for reducing nitrogen oxides in exhaust gas.
  • the present invention relates to a catalyst suitable for reduction and removal of nitrogen oxides and a catalyst body carrying the same, and more particularly, to a catalyst suitable for reduction and removal of nitrogen oxides in exhaust gas discharged from a diesel engine.
  • 11-6 catalyst a catalyst body having the catalyst supported on a substrate surface, and its production
  • the present invention relates to a method and a method for removing nitrogen oxides, which is effective under a high-concentration oxygen atmosphere and in the presence of sulfur oxides and steam, using the catalyst.
  • Nitrogen oxides emitted from various types of combustion equipment are air pollutants that are harmful to humans and the environment, and their reduction is desired.
  • the three-way catalytic method and selective catalytic reduction using NH 3 have been used to reduce nitrogen oxides (NO x) contained in exhaust gas from diesel engines, which is a major source of air pollution.
  • NO x nitrogen oxides
  • the actual exhaust gas contains a high concentration of oxygen or coexists with a large amount of steam sulfuric acid and yellow oxide. Did not.
  • the use of a noble metal as a denitration catalyst is often disadvantageous in that the catalyst is expensive.
  • Yoshinari et al. (Tomohiro Yoshinari, Application of Alumina Catalyst to NOx Removal of Diesel Engine Exhaust Gas, Catalyst, 39, 222-22-27 (19997)) used anoremina catalyst.
  • the effect of the presence of sulfur on the removal of nitric oxide using methanol as a reducing agent was examined.If the sulfur content in the exhaust gas was 100 ppm or more, the initial removal rate was 70% in 5 to 10 hours. Reported a decrease to 40% (see especially Figure 3).
  • the present inventors have intensively studied a reduction catalyst for nitrogen oxides in order to solve the conventional drawbacks.
  • the catalyst activity is only maintained for a long period of time. It was found that the reduction rate of nitrogen oxides was improved when sulfur compounds and steam coexisted, and the present invention was reached.
  • a first object of the present invention is to efficiently reduce nitrogen oxides (NO x) to nitrogen even in a high-concentration oxygen atmosphere, and to have high-concentration sulfur oxides and water vapor in exhaust gas. Even in such a case, it is an object of the present invention to provide a nitrogen oxide reduction catalyst that does not decrease the reduction reaction efficiency for a long period of time.
  • a second object of the present invention is to efficiently reduce nitrogen oxides (NO 2) to nitrogen even in a high-concentration oxygen atmosphere, and to have high-concentration sulfur oxides and water vapor in exhaust gas.
  • Another object of the present invention is to provide a nitrogen oxide reduction catalyst which is effective for a long period of time and is effective for making the temperature distribution in the reactor uniform.
  • a third object of the present invention is to provide a method for efficiently reducing nitrogen oxides in exhaust gas discharged from a diesel engine.
  • a fourth object of the present invention is to provide an apparatus suitable for efficiently reducing nitrogen oxides in exhaust gas discharged from a diesel engine. Disclosure of the invention
  • the present invention provides a selective reduction catalyst for nitrogen oxides comprising two metals, Cu—Ce, and a selective reduction of nitrogen oxides having this catalyst supported on an anodized metal surface.
  • the weight ratio of Cu to Ce in the catalyst is preferably 90: 1 to 14: 3. Moreover, the catalyst body 2 per apparent lm, the amount of supported Cu is 7. 0 ⁇ 9. O g of is preferably carried amount of C e is 0. 1 to 1. 5 g, catalyst-carrying
  • the surface is preferably a porous surface formed by subjecting an aluminum surface formed by anodization to a hydration treatment and then firing the aluminum surface.
  • Such a catalyst body is obtained by anodizing the surface of a substrate having an anodizable metal surface, hydrating the anodized surface formed thereby, and then firing, followed by Cu and C
  • the substrate is immersed in an aqueous solution containing e, dried, and fired to produce the substrate.
  • a nitrogen-containing high-concentration exhaust gas containing nitrogen oxides is introduced into a reaction chamber having such a catalyst body therein, and the nitrogen oxides are reduced at 350 to 500 ° C. while appropriately adding hydrocarbons. Nitrogen oxides in exhaust gas can be reduced and removed. According to this method, the removal rate of nitrogen oxides does not decrease even when the exhaust gas contains a high concentration of sulfur compounds or water vapor.
  • Figure 2 is a graph showing the Cu_C eZA 1 2 0 3 alumite catalysts of the present invention, by supplying 'stop of sulfur dioxide 1-5% water vapor and 500 ppm, the through time changes dependent reduction rate of nitric oxide It is.
  • Copper and cerium used in the catalyst of the present invention are appropriately selected from water-soluble metal salts.
  • Can be used Te in particular, copper nitrate trihydrate (C u (N 0 3) 2 - 3 H 2 0), cerium nitrate hexahydrate (C e (N 0 3) 3 - 6 ⁇ 2 ⁇ ) are preferred.
  • the catalyst of the present invention is preferably used by being supported on a metal substrate having an anodized alumite surface.
  • the above substrate is not particularly limited as long as it has an aluminum-layer or aluminum alloy layer of 40 m or more whose surface can be anodized, but in particular, the whole substrate is made of aluminum or aluminum alloy. Is preferred.
  • the length and shape of the substrate are not particularly limited as long as it is linear or plate-like (including ribbon-like), but it should be a plate-like, mesh-like, or honeycomb-like substrate. It is particularly preferable that these substrates are formed integrally with the reactor.
  • the anodic oxidation of the substrate surface of the catalyst body may be performed by dipping in an acidic solution such as an aqueous oxalic acid solution and according to a known method.
  • the reaction chamber may be formed by using the catalyst body after forming the catalyst body, but it is preferable to form the reaction chamber in advance and then anodize the inside. In order to increase the specific surface area of the anodized surface thus obtained, it is preferred in the present invention that the surface is further hydrated and then fired.
  • the hydration treatment may be performed with hot water or steam at 50 to 350 ° C, but is preferably performed at 60 to 85 ° C from the viewpoint of workability and treatment effect.
  • the treatment time of the hydration treatment depends on the temperature of the treated water. In the present invention, at 60 to 85 ° C
  • the hydration treatment it is preferable to perform the hydration treatment for 1 hour or more, and even if it is 2 hours or more, the surface area will not increase substantially further. After the hydration treatment, it is preferable to air dry at room temperature for 4 hours or more.
  • the firing temperature is preferably from 400 ° C. to 550 ° C. 1S In the present invention, the firing is preferably performed at about 500 ° C. for about 3 hours.
  • the Cu-Ce catalyst of the present invention can be easily supported on the substrate surface by a known impregnation method or the like.
  • the loading of copper and cerium may be simultaneous loading or individual loading. In any case, than to calcination treatment after them supported, C u _ C e / A 1 2 0.
  • Loading amount of copper in the nitrogen oxide selective reduction catalyst of the present invention is 7.5 to 8.5 preferably g is Roh m 2 (apparent area), cerium 0. 1 ⁇ 1. 5 g Zm 2 ( (Visible area).
  • the alumite catalyst body obtained in this way is appropriately installed in, for example, an exhaust gas passage of a diesel engine, the installed location becomes a reaction chamber, and unburned hydrocarbons present in the exhaust gas and replenishment from the outside. Nitrogen oxides in the exhaust gas can be reduced to harmless nitrogen by using the hydrocarbons added as a reducing agent.
  • the reaction temperature is preferably around 450 ° C., but can be appropriately adjusted depending on other reaction conditions.
  • a reaction chamber having the catalyst body therein may be manufactured and installed in the exhaust gas passage, or the exhaust gas may be introduced into the reaction chamber.
  • the above-mentioned hydrocarbon as a reducing agent to be supplementarily added can be appropriately selected from known saturated or unsaturated hydrocarbons which are gaseous at 400 ° C. These hydrocarbons may be used alone or as a mixture of two or more, and may be mineral hydrocarbon oils such as gasoline, kerosene, gas oil, and heavy oil.
  • the ratio of oxygen and hydrocarbons contained in normal exhaust gas deviates from 1 far from 1. Essentially, all exhaust gas is converted into nitrogen gas, carbon dioxide gas, and water by complete combustion. However, it is essentially necessary to add hydrocarbons. In the present invention, it is preferable to adjust the amount of hydrocarbon to be added so that the rate of reduction of nitrogen oxide is maximized around 450 ° C. As a result, the nitrogen oxide reduction rate Can be reduced to about 40%.
  • an oxidation reaction chamber having an oxidation catalyst is provided at the latter stage of the reduction reaction so as not to exhaust the carbonization as it is.
  • the particulate matter contained in the exhaust gas of the diesel engine was removed before the reduction reaction chamber. It is preferable to provide a filter for performing the operation.
  • the present invention can be made suitable for treating exhaust gas from a diesel engine.
  • Example 1 the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
  • Example 1
  • a commercially available aluminum plate (JIS A1050) having a thickness of 0.5 mm is degreased with a 20% aqueous sodium hydroxide solution at room temperature for 3 minutes, and then immersed in a 30% nitric acid aqueous solution for 1 minute to perform surface treatment. I went. Next, using a 4% aqueous oxalic acid solution, anodic oxidation was performed at a liquid temperature of 20 ° C. and a voltage density of 50. OAZm 2 for 16 hours. Thereafter, in order to remove oxalic acid remaining in the anodized acid film, the film was baked at 350 ° C. for 1 hour.
  • the alumite catalyst body having an apparent surface area of 2 ⁇ 2 cm 2 was finely cut into 80 pieces (0.5 mm3 ⁇ 4), diluted with quartz sand, and filled in a reaction tube having an inner diameter of 15 mm.
  • a reaction tube having an inner diameter of 15 mm. Contains 15% oxygen, 0.5% propylene and 1 000 ppm nitric oxide Helium gas was flowed through the reaction tube at a space velocity of 10,000 / hour to a gas flow rate of 150 ml.
  • the temperature range of 200 ° C ⁇ 500 ° C the result of examining the C uC e / A l 2 O 3 anodized catalytic denitration activity of the present invention shown in FIG. As is evident from Fig.
  • the nitric oxide reduction rate did not reach 20% at temperatures below 300 ° C, but within a wide temperature range from 350 ° C to 450 ° C, a 30% reduction rate was observed. Obtained. In particular, a nitric oxide reduction rate of about 40% was obtained in the temperature range of 400 to 450 ° C. In addition, a reaction selectivity to nitrogen of more than 90% was obtained over the entire temperature range.
  • NOx nitrogen oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

La présente invention a trait à un catalyseur pour la réduction sélective d'oxydes d'azote, caractérisé en ce qu'il comporte deux métaux à base de Cu-Ce ; à un produit catalytique comportant un métal présentant une surface ayant été soumise à une oxydation anodique et ledit catalyseur porté sur la surface ayant été soumise à une oxydation anodique ; à un procédé pour la fabrication du produit catalytique ; et à un procédé et un dispositif pour la réduction d'oxydes d'azote dans un gaz d'échappement à l'aide du produit catalytique. La surface du produit catalytique destinée au support du catalyseur est, de préférence, une surface poreuse formée par l'oxydation anodique d'une surface en aluminium suivie d'un traitement d'hydratation, et la cuisson de la surface obtenue. L'invention a trait à un procédé comprenant l'introduction d'un gaz d'échappement contenant des oxydes d'azote et ayant une teneur élevée en oxygène dans une chambre de réaction renfermant disposé à l'intérieur le produit catalytique, et la réduction des oxydes d'azote à une température comprise entre 350 et 500 °C, en ajoutant une quantité appropriée d'un composé hydrocarboné, permettant la réduction et l'élimination d'oxydes d'azote dans le gaz d'échappement avec une bonne efficacité, même dans le cas d'un gaz d'échappement contenant un composé soufré et de la vapeur en de concentrations élevées.
PCT/JP2004/003795 2004-03-19 2004-03-19 Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement WO2005089939A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/003795 WO2005089939A1 (fr) 2004-03-19 2004-03-19 Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement
JP2006511099A JPWO2005089939A1 (ja) 2004-03-19 2004-03-19 窒素酸化物の還元触媒体、その製造方法、それを用いた排ガス中の窒素酸化物低減方法及びそのための装置
TW093108490A TW200531740A (en) 2004-03-19 2004-03-29 Nitrogen oxide selective reduction catalyst, catalyst body using the same, method of manufacturing catalyst body, method of eliminating nitrogen oxides and device for decreasing nitrogen oxides in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003795 WO2005089939A1 (fr) 2004-03-19 2004-03-19 Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement

Publications (1)

Publication Number Publication Date
WO2005089939A1 true WO2005089939A1 (fr) 2005-09-29

Family

ID=34993490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003795 WO2005089939A1 (fr) 2004-03-19 2004-03-19 Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement

Country Status (3)

Country Link
JP (1) JPWO2005089939A1 (fr)
TW (1) TW200531740A (fr)
WO (1) WO2005089939A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055855A (ja) * 2010-09-10 2012-03-22 Tokyo Univ Of Agriculture & Technology 触媒担体、触媒体及びこれらの製造方法
WO2018150823A1 (fr) * 2017-02-17 2018-08-23 住友精化株式会社 Procédé de production d'un catalyseur structuré et procédé de production d'hydrogène à l'aide d'un catalyseur structuré
CN113816470A (zh) * 2021-10-18 2021-12-21 重庆工商大学 Cu/无定型Al2O3催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097047A (ja) * 1983-11-01 1985-05-30 Toyota Central Res & Dev Lab Inc 酸化触媒
JPH05200255A (ja) * 1992-01-28 1993-08-10 Riken Corp 排ガス浄化方法
JPH05285387A (ja) * 1992-04-13 1993-11-02 Hitachi Ltd 排ガス浄化触媒及び方法
JP2002119856A (ja) * 2000-10-13 2002-04-23 Hideo Kameyama Bet比表面積が高められたアルマイト触媒担体及びその製造方法
JP2003206733A (ja) * 2002-01-16 2003-07-25 Hitachi Ltd 内燃機関用排気ガス浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097047A (ja) * 1983-11-01 1985-05-30 Toyota Central Res & Dev Lab Inc 酸化触媒
JPH05200255A (ja) * 1992-01-28 1993-08-10 Riken Corp 排ガス浄化方法
JPH05285387A (ja) * 1992-04-13 1993-11-02 Hitachi Ltd 排ガス浄化触媒及び方法
JP2002119856A (ja) * 2000-10-13 2002-04-23 Hideo Kameyama Bet比表面積が高められたアルマイト触媒担体及びその製造方法
JP2003206733A (ja) * 2002-01-16 2003-07-25 Hitachi Ltd 内燃機関用排気ガス浄化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055855A (ja) * 2010-09-10 2012-03-22 Tokyo Univ Of Agriculture & Technology 触媒担体、触媒体及びこれらの製造方法
WO2018150823A1 (fr) * 2017-02-17 2018-08-23 住友精化株式会社 Procédé de production d'un catalyseur structuré et procédé de production d'hydrogène à l'aide d'un catalyseur structuré
JPWO2018150823A1 (ja) * 2017-02-17 2019-12-12 住友精化株式会社 構造体触媒の製造方法、および構造体触媒を用いた水素の製造方法
CN113816470A (zh) * 2021-10-18 2021-12-21 重庆工商大学 Cu/无定型Al2O3催化剂及其制备方法和应用

Also Published As

Publication number Publication date
TW200531740A (en) 2005-10-01
JPWO2005089939A1 (ja) 2008-01-31

Similar Documents

Publication Publication Date Title
ES2542510T3 (es) Catalizadores de zeolita CHA de cobre
US7005116B2 (en) Process for reducing nitrogen oxides
JP5354903B2 (ja) 触媒および窒素酸化物の還元方法
ES2633320T5 (es) Método y sistema para la purificación de gases de escape procedentes de un motor de combustión interna
JP2008002451A (ja) ディーゼルエンジン用排気ガス浄化装置およびディーゼルエンジンの排気ガスの浄化方法
EP1994982A1 (fr) Corps de catalyseur qui utilise une couche anodisée
RU2515727C2 (ru) Способ получения наноструктурных каталитических покрытий на керамических носителях для нейтрализации отработавших газов двигателей внутреннего сгорания
JP2017140614A (ja) 触媒および触媒の製造方法
JP2023026798A (ja) アンモニアエンジンの排ガス処理システム及びアンモニアエンジンの排ガス処理方法
JP4189337B2 (ja) 排ガス浄化システム
JP2005291071A (ja) 排気ガス浄化システムおよび排気ガス浄化方法
JP2021155276A (ja) 多孔質セラミック構造体および多孔質セラミック構造体の製造方法
JP2006320893A (ja) 窒素酸化物の選択的還元触媒
WO2005089939A1 (fr) Catalyseur pour la reduction d'oxydes d'azote, produit catalytique utilisant un tel catalyseur et procede de reduction d'oxydes d'azote dans le gaz d'echappement
JP4537392B2 (ja) 窒素酸化物の処理方法
Karthikeyan Research on Metal Doped Zeolite as Catalyst to Reduce NO X Emission from Lean Burn Gasoline Engines
JP4822374B2 (ja) 排ガス浄化用触媒の製造方法
JP2849133B2 (ja) 窒素酸化物の接触分解方法
JP2004068717A (ja) 窒素酸化物を接触的に除去するための方法とそのための装置
JP3623255B2 (ja) エンジン排気ガス中の窒素酸化物除去触媒および除去方法
RU2005138180A (ru) Способ получения платинового катализатора выхлопных газов двс
JP3302036B2 (ja) 窒素酸化物除去方法
KR100506717B1 (ko) 자동차의 배압저감용 촉매계 및 이의 제조방법
JPS631449A (ja) 排ガスの浄化用触媒
JP2003117353A (ja) 窒素酸化物を接触還元する方法とそのための触媒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511099

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase