WO2005089651A1 - 画像データ収集制御方法及び画像データ収集装置 - Google Patents

画像データ収集制御方法及び画像データ収集装置 Download PDF

Info

Publication number
WO2005089651A1
WO2005089651A1 PCT/JP2005/004305 JP2005004305W WO2005089651A1 WO 2005089651 A1 WO2005089651 A1 WO 2005089651A1 JP 2005004305 W JP2005004305 W JP 2005004305W WO 2005089651 A1 WO2005089651 A1 WO 2005089651A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
data collection
image
range
control method
Prior art date
Application number
PCT/JP2005/004305
Other languages
English (en)
French (fr)
Inventor
Hiroto Kokubun
Osamu Miyazaki
Tetsuo Nakazawa
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006511171A priority Critical patent/JP4889482B2/ja
Priority to US10/593,359 priority patent/US8055045B2/en
Publication of WO2005089651A1 publication Critical patent/WO2005089651A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion

Definitions

  • the present invention relates to an image data acquisition control method and an image data acquisition device, and more particularly to an image data acquisition control method and an image data acquisition device that reduce motion artifact due to heartbeat in a heart region.
  • ECG electro cardiogram
  • segment reconstruction which is a type of ECG-gated imaging, based on ECG data recorded together with image data, image data collected during diastole with relatively few heart movements is extracted.
  • image reconstruction it is possible to obtain an image with good temporal resolution and few heartbeat motion artifacts.
  • image data acquisition conditions such as scan speed are set and fixed in accordance with the heart rate of the subject, so that the heart rate is stable in order to maintain good image quality of the obtained image. U, that is desirable.
  • Patent Document 1 JP-A-2000-189412
  • the heart rate tends to fluctuate more often than at rest! The tendency of the heart rate to rise or fall due to breath holding
  • the fluctuation of the heart rate causes a change in the time resolution of an image obtained by ECG-gated imaging.
  • the image data acquisition conditions are set to be suitable for the heart rate at rest, and if the heart rate during image data acquisition is almost the same as at rest, the time resolution of the image obtained under the image data acquisition conditions will be Good and constant.
  • the heart rate during image data collection deviates from the value at rest, so that satisfactory images cannot be obtained with image data collection conditions suitable for the heart rate at rest! / ⁇ and ⁇ ⁇ There's a problem.
  • the present invention has been made in view of such circumstances, and an image data collection control method and image data capable of obtaining good image data even if the heart rate of a subject fluctuates during image data collection. It is intended to provide a collection device.
  • an image data acquisition control method for acquiring a plurality of image data including a region where a subject moves periodically.
  • the image data collection device is an image data collection device that collects a plurality of pieces of image data from an image data collection range including a region where a subject moves periodically.
  • Periodic motion data acquisition means for acquiring periodic motion data indicating a change with time in motion; and image data for setting conditions for acquiring the image data for setting the time resolution of the image data in the image data acquisition range to a desired range.
  • Acquisition condition setting means based on the image data acquisition condition, for acquiring image data in the image data acquisition range.
  • Image data acquisition position control means for relatively moving at least a part of the image data acquisition range and the acquisition position of the image data within a time when the time resolution falls within a desired range;
  • Image data collecting means for collecting at least a part of image data of the image data collection range at the image data collection position.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an image data collection device according to the present invention.
  • FIG. 2 is a flowchart showing a flow of a series of cardiac region radiographic examinations performed by the image data collecting apparatus of FIG.
  • FIG. 3 is a graph showing an example of a change with time in a subject's heart rate in breath holding practice starting force.
  • FIG. 4 is a graph showing a relationship among a time resolution of an image obtained by ECG-gated imaging, image data acquisition conditions, and a heart rate.
  • FIG. 5 is a time resolution graph showing a predicted variation of the time resolution of an image with respect to the elapsed time of breath holding.
  • FIG. 6 is a diagram showing an example in which a projection image of a subject and a time resolution graph are superimposed on a screen of a display device.
  • FIG. 7 is a diagram showing an example of moving and displaying the time resolution graph of FIG. 6.
  • FIG. 8 is a block diagram showing an X-ray CT apparatus according to a second embodiment.
  • FIG. 9 is a flowchart showing a process for obtaining a tomographic image by the line CT apparatus shown in FIG.
  • FIG. 10 is a schematic diagram showing an example of a screen presented by a heart rate variability factor presenting means.
  • FIG. 11 is a schematic diagram showing an example of heart rate variability presented by heart rate variability presenting means.
  • FIG. 12 is a schematic diagram showing an example of heart rate information registered by heart rate information registration means.
  • FIG. 13 is a schematic diagram showing an example of heart rate information registered by heart rate information presenting means.
  • FIG. 14 is a block diagram showing an MRI apparatus according to a third embodiment.
  • FIG. 15 (a) is a schematic diagram showing an example of a body movement navigating sequence.
  • FIG. 15 (b) is a schematic diagram showing an example of a body movement navigating sequence.
  • ⁇ X-ray tube 102 ⁇ ⁇ ⁇ scanner gantry, 203 ⁇ ⁇ ⁇ subject table, 104 ⁇ ⁇ ⁇ X-ray detector, 105 ⁇ display device, 106 ⁇ ⁇ ⁇ periodic motion data recording means (electrocardiograph ), 107 ... Image processing device, 108 ... Rotating disk, 109 ... Collimator, 110 ... Rotary drive device, 111 ... Measurement control device, 112 ... Computer (control device), 113 ... Input Device, 114 ⁇ Photographing information transmission device, 115 ⁇ Storage device, 201 ⁇ Magnet, 202 ⁇ Subject, 203 ⁇ Bed, 204-RF coil, 205... Gradient magnetic field generating coil , 206 ...
  • gradient magnetic field generating coil 207 ... gradient magnetic field generating coil, 208 ... high frequency power supply, 209 ... gradient magnetic field power supply, 210 ... gradient magnetic field power supply, 211 ... gradient magnetic field power supply, 212 ... synthesizer 213 ... Modulation circuit, 214 ... Amplifier, 215 ... Receiver, 216 ... Sequencer, 217 ... Storage device, 218 ... Computer, 219 ... Display device,
  • FIG. 1 is a schematic configuration diagram of an image data collection device according to an embodiment of the present invention.
  • the image data collecting apparatus 10 mainly includes a scanner 20 for collecting image creation data from a subject 1, an arithmetic processing of data collected by the scanner 20, and image data collection.
  • a controller 50 controls the entire device 10.
  • the scanner 20 may be any device that collects image creation data from the subject 1.
  • X-ray, infrared, ultrasonic, nuclear magnetic resonance, positron emission, radioisotope Devices that use such radiation emission are generally used, but the following description will be made using an X-ray CT device as an example.
  • the scanner 20 mainly includes an X-ray generator 22 for generating X-rays, a subject table 24 on which the subject 1 is placed, and a body axis of the subject 1 (Hereinafter simply referred to as “body axis”), a subject table moving device 26 for moving in the direction, an X-ray detector 28 for detecting X-rays transmitted through the subject 1, an X-ray generating device 22 and X
  • the scanner rotating device 32 that continuously rotates the scanner main body 30 including the line detector 28 around the body axis, and the heart of the subject 1 through the electrocardiographic electrode 34 that contacts the body surface of the subject 1.
  • an electrocardiographic data acquisition device 36 for acquiring electrocardiographic data.
  • the controller 50 mainly includes a CPU 52 for controlling the entire image data collecting apparatus 10, a scanner control unit 54 for controlling the scanner 20, and an image for processing image data obtained by the X-ray detector 28.
  • an operation unit 64 including input devices such as a keyboard, a pointing device such as a mouse and a trackball, and a touch panel, and a bus 66 that mediates data transmission and reception of each unit in the image data collection device 10.
  • the data recording device 60 includes a storage device such as a memory and a magnetic disk built in or external to the controller 50, a device for writing and reading data to and from an external medium that can be taken out, and an external storage device and a network. A device that transmits and receives data via a network is also acceptable.
  • the data recording device 60 stores a program for causing the CPU 52 to control the image data collection device 10.
  • FIG. 2 is a flowchart illustrating a flow of a series of cardiac region imaging tests performed by the image data collection device 10 of the present embodiment. First, the subject 1 is placed on the subject table 24, and a radiographic examination is started (S200), and an electrocardiographic electrode is placed on the body surface of the subject 1 to obtain electrocardiographic data of the subject 1. 34 is attached (S202).
  • the subject 1 is trained to hold his / her breath before image data collection. It is preferable that the subject 1 is inhaled with high oxygen concentration air in advance so that the subject 1 can hold his / her breath as stably as possible (S204), but this step may be omitted in some cases. good.
  • the subject 1 is stopped from breathing (S206), during which time the electrocardiographic data acquisition device 36 obtains electrocardiographic data including the electrocardiographic waveform and heart rate of the subject 1 via the electrocardiographic electrodes 34. It is acquired (S208). The acquired electrocardiogram data is processed by the electrocardiogram data processing unit 58 and recorded in the data recording device 60.
  • a projected image of the subject 1 is photographed (S212). Then, based on the electrocardiographic data obtained during the breath-hold training obtained in S208 and the projection image obtained in S212, the elapsed time from the breath-hold start time to the image data collection start time (called a delay time). Then, image data collection conditions such as an image data collection start position, an image data collection end position, a scan speed, and a subject table feed amount are set (S214). This setting may be automatically performed by the CPU 52 according to a predetermined program, or may be performed by the operator using the display device 62 and the operation unit 64 as interfaces.
  • the CPU 52 determines whether to end the radiographic examination (S226).
  • the subject 1 take a break and return to a resting state such as a heart rate before returning to S216 (S228). .
  • the image data processing unit 56 and the electrocardiographic data processing unit 58 re-create the image based on the obtained image data and electrocardiographic data.
  • the data is configured (S230) and recorded in the data recording device 60, and a series of inspections is completed (S232).
  • S208 for example, data indicating the temporal change of the heart rate of the subject 1 from the start of breath-hold training (S206) as shown in FIG. 3 is obtained.
  • the heart rate at the start of breath-hold training is about 64 (the number of strokes Z)
  • the heart rate rises after the breath-hold time elapses and the heart rate rises to about 89 after 30 seconds.
  • the tendency of the heart rate to fluctuate due to breath holding is large, and the heart rate does not always increase monotonically with the elapsed breath holding time, but may also fall or fall.
  • the electrocardiogram data processing unit 58 uses, for example, a linear approximation method based on the change in heart rate over time from 30 seconds after the start of breath-hold training to the change in heart rate over 30 seconds to 40 seconds. It may have a function of predicting by such a method. In addition, by repeating the steps from S204 to S210 several times and averaging the obtained data of the change of the heart rate with time, the tendency of the change in the heart rate with respect to the elapsed breath holding time can be grasped more accurately. You can do it.
  • Figure 4 illustrates how the time resolution of an image obtained by ECG-gated imaging changes depending on the relationship between the image data acquisition conditions and the heart rate.
  • Fig. 4 is a graph showing the relationship between heart rate and time resolution of images when performing ECG-gated imaging by segment reconstruction using two types of scan times using multi-slice CT. .
  • the number of force segments using the segment reconstruction method including four segments is not limited to four segments, and may be other than four segments. If the heart rate is in the range indicated by A in the figure, the image is reconstructed at scan time A. If the heart rate is in the range indicated by B in the figure, the image is reconstructed at scan time B. Two types of scan time Not limited to this, one or three or more scan times may be prepared.
  • scan time B 0.8 seconds
  • scan time A 1.0 seconds
  • segment at scan time B 0.8
  • the time resolution deteriorates (the numerical value increases). If the heart rate is 68, the time resolution of the image obtained at scan time B is about 270 ms. When the heart rate is higher than 68, the time resolution of the image obtained at scan time B is even worse, and the image obtained by performing image reconstruction at scan time A has better time resolution. Furthermore, when the heart rate is higher than 83, scan time B is more suitable. As described above, the temporal resolution of an image greatly differs depending on the heart rate.
  • the relationship between the heart rate and the time resolution of the image is shown by the segment reconstruction shown in FIG.
  • the heart rate should be about 64 at the time of the breath hold of 0 seconds, that is, the start time of the breath hold, and about 74 at the time of the breath hold of 10 seconds. Is predicted from Figure 3.
  • the time resolution of the image is about 140 ms
  • the time resolution of the image is about 185 ms.
  • the relationship between the elapsed breath-hold time when performing image data collection, the heart rate, and the time resolution of the image is determined. Can be predicted. Summarizing these relationships, a temporal resolution graph showing the predicted variation of the temporal resolution of the image with respect to the elapsed breath-hold time as shown in Fig. 5 is obtained. In FIG. 5, the display of the heart rate may be omitted.
  • the temporal resolution of the image greatly varies depending on the elapsed breath-holding time. If the temporal resolution of successive images is significantly different, the analysis of the image may be defective.Therefore, in the example of Fig. 5, the elapsed time of breath holding is predicted to be stable with a good temporal resolution.
  • the range between 8.5 and 19.0 seconds (heart rate between 74 and 80) is the range of elapsed breath-hold time recommended for image data collection (hereinafter referred to as the recommended range). That is, it is preferable to set the image data collection conditions so that the image data collection starts 8.5 seconds after the start of breath holding and the image data collection ends 19.0 seconds after the start of breath holding. Therefore, in the present embodiment, the time resolution graph shown in FIG. 5 and the recommended range marker R indicating the recommended range are displayed on the display device 62. As a result, the operator can appropriately set the image data collection conditions with reference to the recommended range.
  • the recommended range may be automatically set by the CPU 52 according to a predetermined program, or may be calculated by the operator by setting the range of time resolution or the range of elapsed breathing time. .
  • the display of the recommended range is not limited to the example shown in Fig. 5.For example, the color, density, shape, size, etc. of the plot of the recommended range, and the color, density, thickness, etc. of the line connecting the plots of the recommended range, etc. It may be displayed differently. Further, even if only the time resolution graph is displayed on the display device 62 without setting and displaying the recommended range, the operator can appropriately set the image data collection conditions with reference to the time resolution graph.
  • the elapsed breath-hold time is preferably shorter in consideration of the burden on the subject 1, but in some cases, in the example of FIG.
  • the recommended range may be 22 seconds to 30 seconds of elapsed breath hold time.
  • the image data collection is performed only within the recommended range, the amount of data obtained by one image data collection is limited. Therefore, as described in S226 and S228, it is necessary to repeat the image data collection many times. Although the time for the whole radiographic examination may increase due to the occurrence of an image, the exposure of the subject 1 can be reduced because an image with good temporal resolution can be obtained stably in a planned manner.
  • each part becomes a target of image data collection.
  • the elapsed time from the image data collection start time at a given time differs depending on the distance of each part from the image data collection start position. That is, since each part is subject to image data collection at different elapsed breath-hold times, the time resolution of images obtained by each part is different.
  • the degree of time resolution of an image obtained by obtaining a certain part force of the subject 1 is predicted as follows in an easily understandable manner.
  • FIG. 6 is an example in which the projection image P of the subject 1 obtained in S212 and the time resolution graph G are superimposed on the screen of the display device 62.
  • the time resolution graph G shows the temporal change of the time resolution predicted as described above on a time axis and a coordinate system defined by the time resolution axis.
  • the start marker S indicates the scheduled start time of the image data collection on the time resolution graph G, and indicates the scheduled start position of the image data collection on the projection image P. That is, image data collection is started at a time corresponding to the coordinates on the time axis of the time resolution graph G of the start marker S, and the subject 1 corresponding to the position of the start marker S on the projection image P at that time. Will be targeted for image data collection.
  • the end marker E indicates the scheduled end time of the image data collection on the time resolution graph G
  • the image data collection position in the projection image P indicates the expected end position of the image data collection.
  • the breath-holding force, the elapsed time until the start time of image data collection (ECG imaging delay after breath-hold), the image data collection start position (ECG imaging start position), and the image data collection end position (ECG shooting end position) is preferably displayed on the numerical display N according to the positions of the time resolution graph G, the start marker S and the end marker E.
  • the operator operates the operation unit 64 and drags the start marker S and the end marker E displayed on the screen of the display device 62.
  • the start marker S and the end marker E can be moved with respect to the projection image P and the time resolution graph G, and the numerical display N is changed with this movement.
  • the operator can also directly change the numerical display N by operating the operation unit 64. With this change, the start marker S and the end marker E are moved and displayed with respect to the projection image P and the time resolution graph G.
  • the position of the start marker S or the end marker E is input on the projected image P, or a numerical value is input for the “ECG imaging start position” and the “ECG imaging end position” of the numerical display N. You may specify the image data collection range.
  • the image data acquisition conditions can be set so that the image acquisition range is targeted for image data acquisition at the time when the predicted time resolution falls within the preferred range. I do.
  • the image collection range marker I indicates a suitable time for image data collection on the time resolution graph G, and indicates the image collection range on the projection image P. That is, at the time corresponding to the coordinates on the time axis of the time resolution graph G of the image collection range marker I, the part of the subject 1 corresponding to the position of the image collection range marker I on the projection image P Are scheduled to be image data collection targets, and it is expected that the temporal resolution of the images obtained therefrom will be suitable.
  • the point indicating the best time resolution among the points on the time resolution graph G may be used as the image acquisition range marker, and the image acquisition range marker may not be particularly displayed.
  • the operator drags the time resolution graph G displayed on the screen of the display device 62 using the operation unit 64 to thereby display the time resolution graph G and the image acquisition range marker I on the projection image P.
  • the operator simply sets the image acquisition range by pointing the projection image P via the operation unit 64 or the like, and accordingly sets the time resolution Dura G and the image acquisition range marker I with respect to the projection image P. You may move it.
  • the operator can directly change the numerical display N indicating the image collection range position by operating the operation unit 64. With this change, the time resolution graph G and the image acquisition range marker I are moved and displayed with respect to the projection image P.
  • the image data collection start marker S and the image data collection end marker E move with the movement of the time resolution graph G and the image collection range marker I, but they must be selected and moved as described in Fig. 6. You can also.
  • the time resolution graph G and the image acquisition range marker I are moved from the state shown in FIG. 6 without changing the position of the projection image P on the screen of the display device 62.
  • the projection image P may be moved without changing the positions of the time resolution graph G and the image acquisition range marker I on the screen of the display device 62.
  • the time resolution graph G and the image acquisition range marker I are fixedly displayed on the screen of the display device 62, for example, at the center, and the operator can drag and scroll the projected image P, point in the image acquisition range, and display a numerical value N
  • the projected image P is moved and displayed with respect to the time resolution graph G and the image acquisition range marker I.
  • the force indicating the straight line I as the image acquisition range marker is not limited thereto.
  • a portion where the time resolution is predicted to be within a predetermined suitable range is represented by a rectangle on the projection image P.
  • the image collection range marker can also be displayed by displaying it or displaying the part and the other parts with different brightness and color.
  • the image acquisition range marker I and the time resolution graph G are displayed.
  • the display of the time resolution graph G is omitted, and only the image acquisition range marker is displayed on the projection image P.
  • image data collection The operator's intention that the image collection range is targeted for image data collection at the optimal collection time can be achieved.
  • the breath-hold start time is used as the origin of the time axis
  • the elapsed breath-hold time is used as the time-axis coordinate.
  • the image data collection elapsed time may be used as the time axis coordinate as the origin.
  • the position of the origin of the time resolution axis and the direction and scale of the time resolution axis may be appropriately adjusted so that the predicted temporal change of the time resolution can be easily read.
  • the time resolution is used as the coordinate of the time resolution axis! /, So the time resolution becomes worse as the numerical value increases in the direction of the time resolution axis.
  • the reciprocal of the time resolution is used as the time resolution axis coordinate, the higher the numerical value in the time resolution axis direction, the better the time resolution.
  • the image data collection start time, the image data collection start position, and the image data collection end marker E indicated by the image data collection start force S are indicated as described above.
  • the CPU 52 controls the scanner 20 via the scanner control unit 54 to perform image data collection according to the settings of the image data collection end time and the image data collection end position. First, the position of the subject table 24 is adjusted such that the image data collection start position of the subject 1 becomes the target of image data collection at the image data collection start time.
  • the image data collection start position of the subject 1 and the image data collection position of the scanner body 30 are matched, and after the start of breath holding, the image data collection start time
  • the movement of the subject table 24 may be started together with the start of the image data collection.
  • a point indicating the breath holding start time on the time resolution graph G indicates the position of the subject 1 shown on the projection image P and the image data collection position of the scanner body 30 before the start of breath holding.
  • the subject table 24 is moved at a speed that maintains the relationship between the elapsed breath-hold time and the image data collection target site shown in FIG. 6 or 7. This allows the image
  • the image collection range of the subject 1 coincides with the image data collection position of the scanner body 30 and becomes the subject of image data collection.
  • the image data collection end portion of the image coincides with the image data collection position of the scanner body 30.
  • the image data collection ends (S222).
  • the force that moves the subject 1 and the scanner body 30 relative to each other during image data collection The image is obtained by non-herical scanning that does not move the subject 1 and the scanner body 30 relative to each other. Data collection may be performed. In this case, the image data collection start marker S and the image data collection end marker E are unnecessary, and the part of the subject 1 indicated by the image collection range marker and the image data collection position of the scanner body 30 before the start of breath holding. After the start of breath holding, image data collection is performed at the elapsed breath holding time indicated by the image collection range marker.
  • the method of moving the image data collection position of the scanner main body 30 in order to change the part of the subject 1 for which the image data is to be collected is not limited to moving the subject table 24,
  • the scanner table 24 may be fixed and the scanner body 30 may be moved, or the image data collection position of the scanner body 30 may be moved.
  • the heart rate variability when the subject 1 holds his / her breath is analyzed, but for example, when the subject 1 administers a drug or gives a stimulus.
  • Heart rate variability may be recorded to predict the heart rate variability and time resolution of the resulting image when administering the same drug or providing the same stimulus when performing image data acquisition.
  • FIG. 8 is a diagram showing a schematic configuration of an X-ray CT apparatus according to the second embodiment.
  • 101 is an X-ray tube
  • 102 scanner gantry 103 is a subject table
  • 104 is an X-ray detector
  • 105 is a display device
  • 106 is an electrocardiograph
  • 107 is an image processing device
  • 108 is a rotating disk
  • Reference numeral 109 denotes a collimator
  • 110 denotes a rotation driving device
  • 111 denotes a measurement control device
  • 112 denotes a computer
  • 113 denotes an input device
  • 114 denotes a photographing information transmitting device.
  • the scanner gantry 102 performs X-ray irradiation and detection.
  • the image processing device 107 also creates imaging data based on the measurement data detected by the scanner gantry 102, and converts the imaging data into a CT image signal. [0050]
  • the display device 105 outputs and outputs a CT image.
  • the scanner gantry 102 has a rotating disk 108, an X-ray tube 101 mounted on the rotating disk 108, a collimator 109 mounted on the X-ray tube 101 for controlling the direction of an X-ray beam, and a rotating disk 108.
  • An X-ray detector 104 is included.
  • the rotating disk 108 is rotated by a rotation driving device 110, and the rotation driving device 110 is controlled by a measurement control device 111.
  • the intensity of X-rays generated from X-ray tube 101 is controlled by measurement control device 111.
  • the measurement control device 111 controls the rotation of these rotating disks 108, X-ray irradiation and X-ray detection, and is operated by a computer 112.
  • Reference numeral 106 denotes periodic motion recognition means for recognizing a periodic motion of the subject.
  • the computer 112 as a control device prevents imaging when the heart rate fluctuation during imaging is excessive. As a result, a heart image with an optimal time resolution is created.
  • the computer 112 includes a photographing procedure setting unit 112a, a simulation photographing unit 112b, a heart rate fluctuation presenting unit 112c, a heart rate fluctuation factor presenting unit 112d, a heart rate information registering unit 112e, and a heart rate information presenting unit 112f. included.
  • the imaging procedure setting means 112a sets an imaging procedure for cardiac imaging.
  • the simulation imaging means 112b follows the heart imaging procedure set by the imaging procedure setting means 112a.
  • the heart rate fluctuation presenting means 112c presents the heart rate fluctuation during the cardiac imaging or the simulation imaging to the operator via the display device 115.
  • the heart rate variability factor presenting means 112d presents the information causing the heart rate variability to the subject by the radiographic information transmission device 114 during the heart radiography or the simulated radiography.
  • the heart rate information registration means 112e registers in the storage device 115 the heart rate fluctuation tendency found during the cardiac imaging.
  • the heart rate information presenting means 112f searches the heart rate information registered in the storage device 115 for the heart rate fluctuation tendency of the subject to be subjected to cardiac imaging, and provides the operator with the display device 105 through the display device 105. Present.
  • the fluctuation factors of the heart rate will be described.
  • Breath holding is performed to prevent motion artifacts caused by breathing. However, if the cessation continues, the heart rate rises, causing a change in heart rate.
  • a simulated imaging is performed in the same procedure as the main imaging without irradiating X-rays before the main imaging as described below.
  • (B) Relieve the tension of the scan by actually causing the subject to experience the scanner rotation noise and the bed vibration accompanying the scan before the main scan. In addition, it is possible to prevent the subject's heart rate from fluctuating due to the operation of the CT device.
  • a heart rate fluctuation factor assumed during imaging is presented to the subject in advance.
  • the subject Before performing work that may cause heart rate variability, such as the start of rotation of the scanner, the movement of the couch, and the start of injection of the contrast agent, the subject can be presented to the subject in advance through voice or a monitor so that the subject's It can relieve tension and prevent heart rate fluctuations caused by the operation of the CT device.
  • FIG. 9 is a flowchart showing the steps up to creation of a heart image with optimal time resolution by preventing fluctuations in heart rate using the above-mentioned X-ray CT apparatus.
  • step S900 the process of creating a heart image is started.
  • step S902 the heart rate of the subject to be imaged is measured using the electrocardiograph 6.
  • step S904 based on the heart rate measured in step S902, the imaging procedure setting unit 112a performs rotation speed of the rotating disk 108, moving speed of the subject table 203, imaging range, tube current, tube voltage, and the like. Determine the imaging conditions necessary for cardiac imaging and the imaging procedure such as the presence or absence of injection of contrast agent.
  • the photographing conditions and the photographing procedure can be corrected by the operator using the input device 113.
  • step S906 the output of the X-ray tube 101 is turned off so that X-rays are not emitted.
  • step S908 the simulated photographing means 112b performs simulated photographing according to the photographing conditions determined in step S904.
  • the simulated imaging procedure is similar to the actual heart imaging procedure, except that there is no X-ray exposure.
  • the heart rate fluctuation factor presenting means 112d presents the heart rate fluctuation factor to the subject through the imaging information transmitting device 114.
  • FIG. 10 shows an example of a heart rate variability factor displayed on the imaging information transmission device 114.
  • the table in the center of the screen shows the heart rate fluctuation factors presented to the subject.
  • This portion is displayed for each shooting step, such as "shooting preparation”, “contrast”, “shooting”, and the like.
  • the steps being executed are specified by coloring, blinking, shading, etc., so that the photographing steps being executed are helped.
  • hatching is displayed at the “photographing preparation” step to indicate that the “photographing preparation” is a photographing step being performed.
  • the heart rate variability factor may be transmitted to the subject by voice using an acoustic facility provided in the imaging information transmission device 114.
  • step S910 the heart rate variability presenting means 112c uses the electrocardiograph 10 during the simulation imaging.
  • the heart rate variability measured by 6 is presented to the operator via the display device 105.
  • FIG. 11 shows an example of heart rate variability displayed on the display device 105.
  • the horizontal axis indicates the elapsed time from the start of imaging, and the vertical axis indicates the heart rate of the subject.
  • the solid line in the figure represents the heart rate fluctuation, and the occurrence time of a heart rate fluctuation factor such as "bed movement”, “gantry rotation”, “breath hold”, etc. is specified.
  • a broken line in the figure indicates a heart rate region capable of achieving a desired time resolution.
  • This heart rate region can be set in advance by the operator.
  • the time resolution determined by the combination of the heart rate, scan time, and scan speed of the subject during imaging changes with the heart rate fluctuation.
  • the heart rate variability presenting means 112c is a heart rate range in which the desired time resolution can be realized based on the time resolution desired by the operator and the scan time determined in step S904, input by the input device 113. Is calculated and displayed on the display device 105.
  • a combination of the fluctuation width of the heart rate as the periodic motion for achieving a desired time resolution and the table feed speed, which is a scan time or a scan speed, may be calculated and displayed. Good. In this case, the calculation is performed, for example, by the heart rate information presenting means 112f.
  • step S912 if the operator determines that the expected time resolution can be obtained based on the heart rate fluctuation presented in step S910, the process proceeds to the next step.
  • step S904 and return step S904-S908 are repeatedly executed.
  • step S914 the output of the X-ray tube 1 is turned ON, and the X-ray irradiation is enabled.
  • step S916 actual shooting is performed according to the shooting conditions determined in step S904.
  • the heart rate variability factor presenting means 112d presents the heart rate variability factor to the subject through the imaging information transmitting device 114 in the same manner as in step S908.
  • step S918 the heart rate information registration unit 112e registers the subject's heart rate information in the storage device 115 based on the heart rate measured by the electrocardiograph 116 in step S916.
  • FIG. 12 shows an example of heart rate information registered in the storage device 115.
  • Heart rate information Is registered in association with the subject ID and the subject name, and the heart rate information items include an increase or decrease in heart rate due to breath holding, and an increase or decrease in heart rate due to imaging. Further, as a specific heart rate fluctuation, a time-series change of the heart rate at the time of the simulation imaging may be registered as a graph.
  • the start time of the heart rate variability factor such as the breath holding start time and the contrast start time may be registered.
  • the breath-hold start time is represented by “Brth”
  • the contrast start time is represented by “Cnt”.
  • heart rate information for the number of times of imaging may be registered.
  • the subject's breath holding time may be registered as heart rate information.
  • step S920 the image processing apparatus 117 reconstructs a tomographic image of the heart from the imaging data acquired from the electrocardiograph 116 and the X-ray detector 203.
  • image reconstruction using electrocardiographic information for example, in a multi-slice X-ray CT apparatus, retroactive ECG gating is also applied to a spiral scan, and discontinuity of projection data generated at that time is reduced, for example, to 180 °. Interpolation is used to reduce motion artifacts using the data of the heartbeat phase in the degree-opposition relationship, and the projection data of any slice position and cardiac phase is obtained by using the continuity divided projection data obtained by this. It can be performed by forming, appropriately combining, or synthesizing.
  • the heart rate information registered by the heart rate information registration unit 112e in step S918 is used at the next imaging of the same subject.
  • the heart rate information presenting means 112f presents the heart rate information of the imaging subject to the display device 105 in step S904.
  • FIG. 13 shows an example of the presented heart rate information.
  • the heart rate information items to be presented are the heart rate fluctuation tendency force before shooting, the calculated heart rate rises / stables due to breath holding, the average number of heart rate fluctuations due to breath holding, and contrast The number of times the heart rate increased and stabilized / decreased due to the administration of the contrast agent, the average value of the heart rate variability due to the administration of the contrast agent, and the average value of the time during which breath holding was possible.
  • the operator can determine the imaging conditions for efficiently obtaining the optimal time resolution. It can be set. In addition, it becomes easy to determine the imaging range by determining the time during which the subject can hold his / her breath.
  • FIG. 14 is a diagram showing an overall outline of an MRI apparatus according to the third embodiment.
  • the MRI apparatus includes a magnet 201 for generating a uniform static magnetic field in a space where a subject 202 such as a patient is placed, a bed 203 for carrying a subject 102 into this space, and a RF coil 204 that irradiates the subject with a high-frequency magnetic field and detects nuclear magnetic resonance signals (echo signals) generated from the subject, and generates static, magnetic field gradients in the X, y, and z directions.
  • the gradient magnetic field generating coils 205, 206, and 207 are provided, and a control system for controlling these operations is provided.
  • a horizontal magnetic field type MRI apparatus using a magnet that generates a static magnetic field in the body axis direction (horizontal direction) of the subject is shown, but a static magnetic field is generated in a direction orthogonal to the body axis direction. It may be a vertical magnetic field type MRI apparatus.
  • the RF coil 204 has a force indicating both irradiation of a high-frequency magnetic field and detection of an echo signal. These forces may be separately provided.
  • the RF coil 204 is connected to a high-frequency magnetic field transmitting unit and a high-frequency magnetic field receiving unit via a switching circuit (not shown) in the case of a dual-purpose type as shown in the figure.
  • the high-frequency magnetic field transmission unit mainly includes a synthesizer 212 that generates a high-frequency signal of a predetermined frequency, a modulation circuit 213 that modulates a high-frequency signal generated by the synthesizer 212 into a signal of a predetermined envelope, and a power supply to the RF coil 204. And a high frequency power supply 208 to be supplied.
  • the high-frequency magnetic field receiving unit includes an amplifier 214 and a receiver 215 including a quadrature phase detector, an AZD converter, and the like.
  • the gradient magnetic field generating coils 205, 206, 207 in three directions are connected to power sources 209, 2210, 211, respectively.
  • the operations of the gradient magnetic field power supplies 209, 210, 211, the high frequency magnetic field transmitting unit and the high frequency magnetic field receiving unit are controlled by a control system according to a timing chart called a pulse sequence.
  • the control system performs various calculations such as correction calculation and Fourier transform on the measured echo signal and also controls a computer 218 which controls the entire apparatus, and inputs calculation results such as images and spectra and user power.
  • the computer 218 includes an input device (not shown), and can register and call a subject, select a pulse sequence according to an imaging method, input imaging parameters, and the like.
  • a signal reflecting body movement information that is, a body movement navigating echo is used as the periodic movement data recording means.
  • the body movement navigation signal is acquired, and the acquired image reconstruction signal is successively obtained from the position information (phase information) of the body movement navigation signal. Correction to remove the body motion component of the configuration signal.
  • FIG. 15 shows an example of such a body movement navigation sequence. In the body movement navigation sequence shown in Fig. 15 (a), first, a slice to be imaged is selected and excited, and then a unidirectional gradient magnetic field (here, a readout gradient magnetic field Gx) is applied without phase encoding.
  • a unidirectional gradient magnetic field here, a readout gradient magnetic field Gx
  • the navigation signal is measured by marking and the signal for image reconstruction is obtained while phase encoding is applied with.
  • body motion correction in the X direction can be performed.
  • RF excitation pulse and slice selection for body movement navigation echo detection and RF excitation pulse and slice selection for image reconstruction signal detection are separately performed.
  • the amount of movement in the two directions is detected using the gradient magnetic fields in two directions (here, the gradient magnetic field in the reading direction Gx and the gradient magnetic field in the phase encoding direction Gy).
  • the gradient magnetic fields in two directions here, the gradient magnetic field in the reading direction Gx and the gradient magnetic field in the phase encoding direction Gy.
  • a simulated MRI imaging for obtaining a body movement navigating echo signal is performed prior to the MRI main imaging of the subject. Then, the time resolution is predicted based on the body movement navigation echo signal obtained by the simulated imaging, and the image data of the image collection range (the image is obtained and the region) is collected at a time suitable for performing the image collection. Perform
  • the image of the subject before and after the injection of the contrast agent is photographed using the image data acquisition device such as the X-ray CT device or the MRI device according to the first to third embodiments, and the injection of the contrast agent is performed.
  • a difference image may be generated by subtracting a set of images obtained before and after.
  • simulation training may be performed on the subject injected with the contrast agent, and the time resolution may be predicted based on the periodic motion data (heart rate) acquired during the simulation training.
  • image data collection control can be performed in consideration of the effect of the contrast agent on the periodic motion of the subject.
  • periodic movement data is obtained prior to the main imaging, and the imaging time of the impressed part is determined based on the periodic movement data.
  • the imaging time of the impressed part is determined based on the periodic movement data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

画像データを収集する対象となる被検体における周期的運動の経時変化を示す周期運動データの入力を受付ける周期運動データ入力工程S208と、前記周期運動データに基づいて、前記画像データの時間分解能の経時変化を予測し、前記被検体における画像収集範囲を指定し、予測される前記時間分解能が所定の好適範囲に入る画像データ収集好適時刻において、前記画像収集範囲が前記画像データの収集の対象となるように、前記画像データの収集位置を調整する工程S214と、前記画像データ収集条件に基づいて、前記画像データ収集範囲の画像データの時間分解能が前記所望の範囲内に入る時間内に、該画像データ収集範囲の少なくとも一部とその画像データの収集位置とが互いに重なるように相対移動させる画像データ収集位置制御工程S216と、を含む。

Description

明 細 書
画像データ収集制御方法及び画像データ収集装置
技術分野
[0001] 本発明は、画像データ収集制御方法及び画像データ収集装置に係り、特に心臓 領域において心拍動によるモーションアーチファクトを低減する画像データ収集制御 方法及び画像データ収集装置に関する。
背景技術
[0002] 被検体の心臓領域から画像データを収集し、それに基づ!/ヽて画像を再構成すると き、心拍動に起因する心拍モーションアーチファクト及び呼吸に伴う胸郭の動きに起 因する呼吸モーションアーチファクトが画質劣化の要因となる。
[0003] 従来、心拍モーションアーチファクトを低減するために心電データを取得しそれを 基準として心拍動に同期又は心拍動に対して位相をずらしながら画像データ収集及 び画像再構成を行う、心電同期撮影又は ECG (electro cardio gram)撮影と呼ばれ る撮影方法がある (例えば特許文献 1参照)。例えば、心電同期撮影の一種であるセ グメント再構成によれば、画像データと共に記録された心電データに基づいて、比較 的心臓の動きの少ない拡張期に収集された画像データを抽出してそれによつて画像 再構成を行うことで、時間分解能が良好で心拍モーションアーチファクトが少な 、画 像を得ることができる。画像データ収集中は、スキャン速度等の画像データ収集条件 を被検体の心拍数に合わせて設定して固定するので、得られる画像の画質を良好に 保っためには心拍数が安定して 、ることが望ま U、。
[0004] また、呼吸モーションアーチファクトを防ぐために、画像データ収集中は被検体に 胸郭を動力さな 、ように息止めを行わせるのが通例である。
特許文献 1:特開 2000-189412号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、被検体が息止めを行うと、安静時に比べて心拍数が変動しやすくな ることが多!、。息止めによって心拍数が上昇したり下降したりする変動の傾向には個 体差があるが、いずれにしろこの心拍数の変動は心電同期撮影で得られる画像の時 間分解能が変動する要因となる。例えば、画像データ収集条件を安静時の心拍数に 適するように設定した場合、画像データ収集中の心拍数が安静時とほぼ同じであれ ば、その画像データ収集条件で得られる画像の時間分解能は良好で一定となる。し かし実際には、画像データ収集中の心拍数は安静時の値から乖離するので、安静 時の心拍数に適した画像データ収集条件では満足な画像が得られな!/ヽと ヽぅ問題が ある。
[0006] 本発明はこのような事情に鑑みてなされたもので、画像データ収集中に被検体の 心拍数が変動しても良好な画像データを得ることができる画像データ収集制御方法 及び画像データ収集装置を提供することを目的とする。
課題を解決するための手段
[0007] 前記目的を達成するために、本発明に係る画像データ収集制御方法は、被検者の 周期的運動する部位を含む画像データ収集範囲力 複数の画像データを収集する 画像データ収集制御方法であって、前記周期的運動の経時変化を示す周期運動デ ータを取得する周期運動データ取得工程と、前記画像データ収集範囲の画像デー タの時間分解能を所望の範囲内にするための該画像データの収集条件を設定する 画像データ収集条件設定工程と、前記画像データ収集条件に基づいて、前記画像 データ収集範囲の画像データの時間分解能が前記所望の範囲内に入る時間内に、 該画像データ収集範囲の少なくとも一部とその画像データの収集位置とが互いに重 なるように相対移動させる画像データ収集位置制御工程と、前記画像データ収集位 置で前記画像データ収集範囲の少なくとも一部の画像データを収集する画像データ 収集工程と、を含む。
[0008] また、本発明に係る画像データ収集装置は、被検者の周期的運動する部位を含む 画像データ収集範囲カゝら複数の画像データを収集する画像データ収集装置におい て、前記周期的運動の経時変化を示す周期運動データを取得する周期運動データ 取得手段と、前記画像データ収集範囲の画像データの時間分解能を所望の範囲内 にするための該画像データの収集条件を設定する画像データ収集条件設定手段と 、前記画像データ収集条件に基づいて、前記画像データ収集範囲の画像データの 前記時間分解能が所望の範囲に入る時間内に、該画像データ収集範囲の少なくと も一部とその画像データの収集位置とが互いに重なるように相対移動させる画像デ ータ収集位置制御手段と、前記画像データ収集位置で前記画像データ収集範囲の 少なくとも一部の画像データを収集する画像データ収集手段と、を含む。
発明の効果
[0009] 本発明によれば、画像データ収集中の被検体の周期運動する部位における周期 運動の変動を予測して、それに応じて画像データの収集を制御することにより、時間 分解能の良好な画像データを収集することができる。
図面の簡単な説明
[0010] [図 1]図 1は本発明に係る画像データ収集装置の実施の形態を示す概略構成図であ る。
[図 2]図 2は図 1の画像データ収集装置により行う一連の心臓領域撮影検査の流れを 示すフローチャートである。
[図 3]図 3は被検体の心拍数の息止め練習開始力 の経時変化の一例を表すグラフ である。
[図 4]図 4は心電同期撮影で得られる画像の時間分解能、画像データ収集条件、及 び心拍数の関係を表すグラフである。
[図 5]図 5は画像の時間分解能の息止め経過時間に対する予測変動を表す時間分 解能グラフである。
[図 6]図 6は表示装置の画面上に被検体の投影画像と時間分解能グラフとを重畳表 示した例を示す図である。
[図 7]図 7は図 6の時間分解能グラフを移動して表示した例を示す図である。
[図 8]図 8は第二実施形態に係る X線 CT装置を示すブロック構成図である。
[図 9]図 9は図 8に示した線 CT装置により断層像を得るための処理を示すフローチヤ ートである。
[図 10]図 10は心拍数変動要因提示手段によって提示される画面の一例を示す模式 図である。
[図 11]図 11は心拍数変動提示手段によって提示される心拍数変動の一例を示す模 式図である。
[図 12]図 12は心拍数情報登録手段によって登録される心拍数情報の一例を示す模 式図である。
[図 13]図 13は心拍数情報提示手段によって登録される心拍数情報の一例を示す模 式図である。
[図 14]図 14は第三実施形態に係る MRI装置を示すブロック構成図である。
[図 15(a)]図 15 (a)は体動ナビゲートシーケンスの一例を示す模式図である。
[図 15(b)]図 15 (b)は体動ナビゲートシーケンスの一例を示す模式図である。
符号の説明
[0011] 1…被検者、 10···画像データ収集装置、 20…スキャナ、 22〜X線発生装置、 24··· 被検者テーブル、 26…被検者テーブル移動装置、 28〜X線検出器、 30···スキャナ 本体、 32···スキャナ回転装置、 34···心電電極、 36···心電データ取得装置、 50···コ ントローラ、 52"'CPU、 54···スキャナ制御部、 56…画像データ処理部、 58···心電 データ処理部、 60···データ記録装置、 62···表示装置、 64…操作部、 66···バス、 E …画像データ収集終了マーカ、 G…時間分解能グラフ、 I···画像収集範囲マーカ、 N …数値表示、 P…投影画像、 R…推奨範囲マーカ、 S…画像データ収集開始マーカ 、 101···Χ線管、 102···スキャナガントリー、 203···被検者テーブル、 104· "X線検出 器、 105…表示装置、 106···周期運動データ記録手段 (心電計)、 107···画像処理 装置、 108···回転円盤、 109···コリメータ、 110…回転駆動装置、 111…測定制御 装置、 112···コンピュータ (制御装置)、 113···入力装置、 114···撮影情報伝達装置 、 115···記憶装置、 201···磁石、 202···被検者、 203···ベッド、 204- RFコイル、 20 5…傾斜磁場発生コイル、 206···傾斜磁場発生コイル、 207…傾斜磁場発生コイル 、 208···高周波電源、 209···傾斜磁場電源、 210…傾斜磁場電源、 211···傾斜磁 場電源、 212…シンセサイザ、 213…変調回路、 214…増幅器、 215···受信器、 21 6…シーケンサ、 217…記憶装置、 218…計算機、 219…表示装置、
発明を実施するための最良の形態
[0012] 以下、添付図面に従って本発明に係る画像データ収集装置の好ましい実施の形 態について詳説する。 [0013] [第一実施形態]
図 1は、本発明の実施の形態による画像データ収集装置の概略構成図である。図 1に示すように、この画像データ収集装置 10は、主に、被検者 1から画像作成用デー タを収集するスキャナ 20と、スキャナ 20によって収集されたデータの演算処理や画 像データ収集装置 10全体の制御を行うコントローラ 50とから構成される。
[0014] スキャナ 20は、被検者 1から画像作成用データを収集する装置であればどのような 装置でも良ぐ X線、赤外線、超音波、核磁気共鳴、陽電子放出、放射性同位元素 力ゝらの放射線放出などを利用する装置が一般に用いられるが、以下では X線 CT装 置を例として説明する。
[0015] スキャナ 20は、主として、 X線を発生させる X線発生装置 22と、被検者 1が載置され る被検者テーブル 24と、被検者テーブル 24を被検者 1の体軸(以下、単に「体軸」と 呼ぶ)方向に移動させる被検者テーブル移動装置 26と、被検者 1を透過した X線を 検出する X線検出器 28と、 X線発生装置 22と X線検出器 28とを含むスキャナ本体 3 0を体軸を中心にして連続回転させるスキャナ回転装置 32と、被検者 1の体表に接 する心電電極 34を介して被検者 1の心電データを取得する心電データ取得装置 36 と、を有する。
[0016] コントローラ 50は、主に、画像データ収集装置 10全体を制御する CPU52と、スキ ャナ 20を制御するスキャナ制御部 54と、 X線検出器 28によって得られた画像データ を処理する画像データ処理部 56と、心電データ取得装置 36によって得られた心電 データを処理する心電データ処理部 58と、各種データを保存するデータ記録装置 6 0と、各種画像を表示する表示装置 62と、キーボード、マウスやトラックボールなどの ポインティングデバイス、タツチパネルなどの入力手段を含む操作部 64と、画像デー タ収集装置 10内の各部のデータ送受信を仲介するバス 66と、を有する。データ記録 装置 60は、コントローラ 50に内蔵又は外付けされたメモリ、磁気ディスク等の記憶装 置や、取り出し可能な外部メディアに対してデータの書き込み及び読み出しを行う装 置や、外部記憶装置とネットワークを介してデータを送受信する装置などでも良 ヽ。 また、データ記録装置 60は、 CPU52に画像データ収集装置 10を制御させるための プログラムを格納している。 [0017] 図 2は、本実施の形態の画像データ収集装置 10により行う一連の心臓領域撮影検 查の流れを示すフローチャートである。まず、被検者 1が被検者テーブル 24に載置さ れて撮影検査が開始され (S200)、被検者 1の心電データを得るために被検者 1の 体表に心電電極 34が取り付けられる(S202)。
[0018] 呼吸モーションアーチファクトを防ぐために画像データ収集中は被検者 1が息を止 めていることが必要なので、画像データ収集に先立って被検者 1に息止めの練習を させる。被検者 1ができるだけ長く安定して息止めを行えるように、予め被検者 1に酸 素濃度の高い空気を吸わせておくと好ましいが(S204)、このステップは場合により 省略しても良い。次に、被検者 1に息を止めさせ (S206)、その間に心電データ取得 装置 36が心電電極 34を介して被検者 1の心電波形や心拍数などを含む心電データ を取得する(S208)。取得された心電データは、心電データ処理部 58により処理さ れ、データ記録装置 60に記録される。
[0019] 息止め練習が終了したら(S210)、被検者 1の投影画像を撮影する(S212)。そし て、 S208で得られた息止め練習時の心電データや S212で得られた投影画像に基 づいて、息止め開始時刻から画像データ収集の開始時刻までの経過時間(ディレイ タイムと呼ばれる)、画像データ収集開始位置、画像データ収集終了位置、スキャン 速度、被検者テーブル送り量などの画像データ収集条件を設定する(S214)。この 設定は、 CPU52が所定のプログラムにしたがって自動的に行っても良いし、表示装 置 62及び操作部 64をインターフェースとして操作者に行わせても良い。
[0020] 画像データ収集中に被検者 1に息止めを行わせる準備として、被検者 1に酸素濃 度の高い空気を吸わせると好ましいが(S216)、このステップは S204と同様に行うこ と力 子ましく、 S204が省略された場合には S216も省略することが好ましい。次に、被 検者 1に息を止めさせ(S218)、CPU52がスキャナ制御部 54を介してスキャナ 20を 制御して、 S214で設定した画像データ収集条件にしたがって画像データ収集を開 始し (S220)、被検者 1の画像データを収集すると共に心電データを取得して記録 装置 60に記録する。画像データ収集が終了したら(S222)被検者 1に息止めを終了 させる(S224)。
[0021] 画像データ収集を何回かに分けて実行するという設定が S216でなされる場合があ るので、 CPU52は撮影検査を終了するかどうか判断する(S226)。撮影検査を終了 しないで画像データ収集を繰り返す場合には、 S216へ戻る前に、被検者 1に休憩を 取らせて心拍数などの体調を安静時の状態に戻させることが好ましい(S228)。
[0022] S226で撮影検査を終了する判断がなされたら、画像データ処理部 56及び心電デ ータ処理部 58は、得られた画像データ及び心電データに基づ!/ヽて画像を再構成し て(S230)データ記録装置 60に記録し、一連の検査を終了する(S232)。
[0023] 以下、図 2のいくつかのステップについて詳述する。
[0024] まず、息止め練習時の心電データ取得(S208)について説明する。 S208により、 例えば図 3に示すような、被検者 1の心拍数の息止め練習開始 (S206)からの経時 変化を示すデータが得られる。図 3の例では、息止め練習開始時刻の心拍数が約 6 4 (回 Z分)で、息止め時間が経過すると心拍数が上昇し、息止め練習開始力も 30秒 後に心拍数が約 89になって 、る。息止めによって心拍数が変動する傾向は個体差 が大きぐ心拍数が息止め経過時間に対して単調上昇するとは限らず下降したり上 下したりすることもある。心電データ処理部 58は、例えば、息止め練習開始から 30秒 後までの心拍数の経時変化のデータから、息止め経過時間が 30秒力も 40秒までの 心拍数の経時変化を直線近似法などの手法により予測する機能を備えていても良い 。また、 S204から S210までのステップを何回か繰り返して、得られた心拍数の経時 変化のデータの平均を取ることにより、心拍数の息止め経過時間に対する変動の傾 向をより正確に把握するようにしても良 、。
[0025] 次に、息止め練習時の心電データに基づく画像データ収集条件の設定 (S214)に ついて説明する。図 4に、心電同期撮影で得られる画像の時間分解能が、画像デー タ収集条件と心拍数との関係によりどのように変化するかを例示する。図 4は、マルチ スライス CTを用いて二種類のスキャンタイムを組み合わせたセグメント再構成法によ り心電同期撮影を行うときの、心拍数と画像の時間分解能との関係を示すグラフであ る。なお、本実施の形態では 4セグメントからなるセグメント再構成法を用いた力 セグ メント数は 4セグメントに限定されず、 4セグメント以外でも可能である。図中 Aで示す 範囲に心拍数があるときはスキャンタイム Aで画像再構成を行 ヽ、図中 Bで示す範囲 に心拍数があるときはスキャンタイム Bで画像再構成を行う。スキャンタイムは二種類 に限らず、一種類又は三種類以上のスキャンタイムを用意しても良い。
[0026] 上記「セグメント再構成法」としては、例えば雑誌「画像診断」(第 21卷 2001年第 12号 第 1307乃至 1317ページ)に掲載の論文「心臓'冠動脈における CT最前線」 (木村文子他 6名著)において開示された技術を適用することができる。この技術は、 ガントリー 1回転時間 GC (本実施形態のスキャンタイムに相当する)と 1心周期 HCと の差に基づ 、て下記の数 1式により temporal window (本実施形態の時間分解能に相 当する)を求める。
[数 1]
temporal winaow= | Gし— Hし |
例えば心拍数が 64 (HC = 60/64)であれば、スキャンタイム B (0. 8秒)がスキヤ ンタイム A(l. 0秒)より適していて、スキャンタイム B (0. 8)でセグメント再構成した結 果得られる画像の時間分解能は上記数 1式を適用すると I 0. 8-60/64 I =0. 1 38 (秒)、約 140msである。このときのセグメント数は、ハーフ再構成の場合 180° + ファン角 60° = 240° のデータが必要であるため、数 2式により求まる。
[数 2]
セグメント数 = 240/360GC÷temporal window
上記数値例を数 2式に適用すると、
[数 3]
(240/360) X 0. 8÷0. 138 = 3. 9
となり、時間分解能 138msで 4セグメント再構成が可能となる。
[0027] 心拍数が 64よりもわずかでも多 、と時間分解能は悪化 (数値は上昇)し、心拍数が 68であればスキャンタイム Bで得られる画像の時間分解能は約 270msである。心拍 数が 68より多い場合には、スキャンタイム Bで得られる画像の時間分解能は更に悪く 、スキャンタイム Aで画像再構成を行って得られる画像の方が時間分解能が良い。更 に、心拍数が 83より多い場合にはスキャンタイム Bの方が適している。このように、心 拍数によって画像の時間分解能は大きく異なる。
[0028] ここで、心拍数の息止め練習開始からの経時変化が図 3に示される被検者 1につい て、心拍数と画像の時間分解能との関係が図 4に示されるセグメント再構成によって 心電同期撮影を行うことを考える。画像データ収集を実行する際、例えば、息止め経 過時間が 0秒即ち息止め開始時刻には心拍数は約 64であり、息止め経過時間が 10 秒のとき心拍数は約 74であることが、図 3から予測される。そして、心拍数が約 64の とき画像の時間分解能は約 140msであり、心拍数が約 74のとき画像の時間分解能 は約 185msであること力 図 4から分かる。このように、息止め練習時に得られた心拍 数の経時変化のデータに基づ ヽて、画像データ収集を実行する際の息止め経過時 間と、心拍数及び画像の時間分解能との関係を予測することができる。これらの関係 をまとめると、図 5に示すような、画像の時間分解能の息止め経過時間に対する予測 変動を表す時間分解能グラフが得られる。なお、図 5において心拍数の表示は省略 しても良い。
[0029] 図 5に明らかなように、画像の時間分解能は、息止め経過時間により大きく変動す る。連続して得られた画像の時間分解能が大きく異なると画像の解析に不具合があ ることがあるので、図 5の例では、時間分解能が良好で安定して推移すると予測され る息止め経過時間が 8. 5秒から 19. 0秒(心拍数が 74から 80)の範囲を、画像デー タ収集に推奨する息止め経過時間の範囲 (以下、推奨範囲と呼ぶ)とする。即ち、息 止め開始から 8. 5秒後に画像データ収集を開始して息止め開始から 19. 0秒後まで に画像データ収集を終了するように、画像データ収集条件を設定すると好ましい。そ こで、本実施の形態では、図 5に示す時間分解能グラフ及び推奨範囲を示す推奨範 囲マーカ Rを表示装置 62に表示させる。これにより、操作者は推奨範囲を参考にし て画像データ収集条件を適切に設定することができる。
[0030] 推奨範囲は、 CPU52が所定のプログラムにしたがって自動的に設定しても良いし 、時間分解能の範囲や息止め経過時間の範囲を操作者に設定させてそれに応じて 算出しても良い。推奨範囲の表示は、図 5の例に限らず、例えば推奨範囲のプロット の色、濃さ、形、大きさなどや、推奨範囲のプロットを結ぶ線の色、濃さ、太さなどを他 と違えて表示することによつても良い。また、推奨範囲の設定及び表示は行わずに、 時間分解能グラフのみを表示装置 62に表示させても、操作者は時間分解能グラフを 参考にして画像データ収集条件を適切に設定することができる。息止め経過時間は 被検者 1の負担を考慮すると短い方が好ましいが、場合によっては図 5の例において 息止め経過時間が 22秒から 30秒の範囲を推奨範囲としても良い。
[0031] 画像データ収集を推奨範囲だけで行うこととすると、一回の画像データ収集で得ら れるデータ量は限定されるので、 S226及び S228で説明したように画像データ収集 を何回力繰り返す必要が生じて撮影検査全体の時間が増すことも有り得るが、時間 分解能が良好な画像を計画的に安定して得ることができるので、被検者 1の被曝量 は減らすことができる。
[0032] 被検者テーブル 24とスキャナ本体 30とを体軸方向に相対移動しながら被検者 1の 複数部位にっ ヽて画像データ収集を行うとき、各部位が画像データ収集の対象とな る時刻の画像データ収集開始時刻からの経過時間は、各部位の画像データ収集開 始位置からの距離に応じて異なる。即ち、各部位はそれぞれ異なる息止め経過時間 にお 、て画像データ収集の対象となるので、各部位にっ 、て得られる画像の時間分 解能はそれぞれ異なる。そこで、本実施の形態では、被検者 1のある部位力 得られ る画像がどの程度の時間分解能を持つと予測されるかを、次のように分力りやすく表 示する。
[0033] 図 6は、表示装置 62の画面上に、 S212で得られた被検者 1の投影画像 Pと時間分 解能グラフ Gとを重畳表示した例である。時間分解能グラフ Gは、上述のように予測さ れる時間分解能の経時変化を、時間軸及び時間分解能軸で規定される座標系上に 表したものである。開始マーカ Sは、時間分解能グラフ G上では画像データ収集開始 予定時刻を示して ヽて、投影画像 P上では画像データ収集開始予定位置を示して ヽ る。即ち、開始マーカ Sの時間分解能グラフ Gの時間軸上における座標に相当する 時刻に画像データ収集が開始され、その時刻に開始マーカ Sの投影画像 P上におけ る位置に相当する被検者 1の部位が画像データ収集の対象となる予定である。同様 に、終了マーカ Eは、時間分解能グラフ G上では画像データ収集終了予定時刻を示 し、投影画像 Pにおける画像データ収集位置では画像データ収集終了予定位置を 示している。これにより、被検者 1の画像データ収集対象部位と息止め経過時間との 関係を表示することができる。このように、表示装置 62の画面上で、投影画像 Pと時 間分解能グラフ Gの時間軸の原点の位置並びに時間軸の方向及び尺度とを相対的 に調整して、投影画像 Pにおける画像データ収集位置と時間分解能グラフ Gとを関 連付けて表示すると、被検者 1のある部位力 得られる画像がどの程度の時間分解 能を持つと予測されるかを、視覚的に分力りやすく表示することができる。
また、図 6に示すように、息止め開始力 画像データ収集の開始時刻までの経過時 間 (息止め後 ECG撮影ディレイ)、画像データ収集開始位置 (ECG撮影開始位置) 及び画像データ収集終了位置 (ECG撮影終了位置)を、時間分解能グラフ G、開始 マーカ S及び終了マーカ Eの位置に合わせて数値表示 Nによって表示すると好まし い。
[0034] 操作者は、操作部 64を操作して、表示装置 62の画面上に表示された開始マーカ Sや終了マーカ Eをドラッグする。これにより、開始マーカ Sや終了マーカ Eを投影画 像 P及び時間分解能グラフ Gに対して移動させることができ、この移動に伴って数値 表示 Nが変更される。また操作者は、操作部 64操作して、数値表示 Nを直接変更す ることもできる。この変更に伴って開始マーカ Sや終了マーカ Eは投影画像 P及び時 間分解能グラフ Gに対して移動して表示される。
[0035] または、投影画像上 Pに開始マーカ Sや終了マーカ Eの位置を入力したり、数値表 示 Nの「ECG撮影開始位置」及び「ECG撮影終了位置」に数値を入力したりして画 像データ収集範囲を指定してもよ ヽ。
[0036] 図 6の例では、時間分解能が最良であると予測される息止め経過時間が 8. 5秒の 時刻には、心臓上端付近力 画像データが収集される予定であり、これは開始マー 力 Sや終了マーカ Eが移動されても変わらない。例えば冠動脈のステント術を施行し た部位のように特に画像収集範囲がある場合には、その画像収集範囲について得ら れる画像の時間分解能が特に良好であることが望ましい。そこで、本実施の形態で は、予測される時間分解能が好適範囲に入る画像データ収集好適時刻において画 像収集範囲が画像データ収集の対象となるように、画像データ収集条件を設定でき るようにする。
[0037] 図 7において、画像収集範囲マーカ Iは、時間分解能グラフ G上では画像データ収 集好適時刻を示していて、投影画像 P上では画像収集範囲を示している。即ち、画 像収集範囲マーカ Iの時間分解能グラフ Gの時間軸上における座標に相当する時刻 に、画像収集範囲マーカ Iの投影画像 P上における位置に相当する被検者 1の部位 が画像データ収集の対象となる予定であり、そこカゝら得られる画像の時間分解能が 好適となると予測される。なお、図 6に示すように、時間分解能グラフ G上の点のうち 最良の時間分解能を示す点を画像収集範囲マーカとして利用して、画像収集範囲 マーカを特に表示しなくても良い。
[0038] 操作者は、操作部 64を用いて表示装置 62の画面上に表示される時間分解能ダラ フ Gをドラッグすることにより、時間分解能グラフ G及び画像収集範囲マーカ Iを投影 画像 Pに対して移動させることができる。操作者が画像収集範囲を投影画像 P上で操 作部 64を介してポイントするなどして設定するだけで、それに応じて時間分解能ダラ フ G及び画像収集範囲マーカ Iを投影画像 Pに対して移動させても良い。また操作者 は、操作部 64を操作して、画像収集範囲位置を示す数値表示 Nを直接変更すること もできる。この変更に伴って時間分解能グラフ G及び画像収集範囲マーカ Iは投影画 像 Pに対して移動して表示される。画像データ収集開始マーカ S及び画像データ収 集終了マーカ Eは、時間分解能グラフ G及び画像収集範囲マーカ Iの移動に伴って 移動するが、図 6で説明したようにそれらを選択して移動させることもできる。
[0039] 図 7の例では、図 6に示す状態から、投影画像 Pの表示装置 62の画面上での位置 を変えずに時間分解能グラフ G及び画像収集範囲マーカ Iを移動して 、るが、時間 分解能グラフ G及び画像収集範囲マーカ Iの表示装置 62の画面上での位置を変え ずに投影画像 Pを移動しても良い。この場合、時間分解能グラフ G及び画像収集範 囲マーカ Iは表示装置 62の画面上例えば中央に固定して表示され、操作者が投影 画像 Pのドラッグやスクロール、画像収集範囲のポイント、数値表示 Nの変更などをす ると、投影画像 Pが時間分解能グラフ G及び画像収集範囲マーカ Iに対して移動して 表示される。
[0040] 図 7の例では画像収集範囲マーカとして直線 Iを表示している力 それに限らず、例 えば時間分解能が所定の好適範囲に入ると予測される部位を投影画像 P上におい て長方形で表示したり、その部位とそれ以外とを明るさや色を違えて表示したりするこ とによっても画像収集範囲マーカを表示することができる。また、図 7の例では画像収 集範囲マーカ Iと時間分解能グラフ Gとを表示しているが、時間分解能グラフ Gの表 示を省略して画像収集範囲マーカのみを投影画像 P上に表示しても、画像データ収 集好適時刻にお 、て画像収集範囲が画像データ収集の対象になるようにした 、と ヽ う操作者の意図は達成できる。
[0041] 図 6及び 7の時間分解能グラフ Gの例では、息止め開始時刻を時間軸の原点とし息 止め経過時間を時間軸座標として用いて ヽるが、画像データ収集開始時刻を時間 軸の原点とし画像データ収集経過時間を時間軸座標として用いても良 ヽ。時間分解 能軸の原点の位置並びに時間分解能軸の方向及び尺度は、時間分解能の予測経 時変化が読み取りやすいように適宜調整して良い。例えば図 5、 6及び 7では時間分 解能を時間分解能軸座標として用いて!/、るので、時間分解能軸方向に数値が増え るほど時間分解能が悪いことになる。これに対し、例えば時間分解能の逆数を時間 分解能軸座標として用いれば、時間分解能軸方向に数値が増えるほど時間分解能 が良いことになる。
[0042] 画像データ収集を実行する際は(S220)、以上のように画像データ収集開始マー 力 Sが示す画像データ収集開始時刻及び画像データ収集開始位置並びに画像デ ータ収集終了マーカ Eが示す画像データ収集終了時刻及び画像データ収集終了位 置の設定にしたがって画像データ収集を行うように、 CPU52がスキャナ制御部 54を 介してスキャナ 20を制御する。まず、画像データ収集開始時刻に被検者 1の画像デ ータ収集開始位置が画像データ収集の対象となるように、被検者テーブル 24の位置 を調整する。例えば、息止め開始 (S218)の前に被検者 1の画像データ収集開始位 置とスキャナ本体 30の画像データ収集位置とを一致させておき、息止め開始の後、 画像データ収集開始時刻に画像データ収集を開始すると共に被検者テーブル 24の 移動を開始しても良い。また、例えば図 6又は 7において時間分解能グラフ G上で息 止め開始時刻を示す点が投影画像 P上で示す被検者 1の部位とスキャナ本体 30の 画像データ収集位置とを息止め開始の前に一致させておき、息止め開始時刻に被 検者テーブル 24の移動を開始することによつても、画像データ収集開始時刻におい て被検者 1の画像データ収集開始位置とスキャナ本体 30の画像データ収集位置と がー致する。
[0043] 画像データ収集中は、図 6又は 7において示した息止め経過時間と画像データ収 集対象部位との関係を保つ速度で被検者テーブル 24を移動する。これにより、画像 データ収集好適時刻にお 、て被検者 1の画像収集範囲がスキャナ本体 30の画像デ ータ収集位置と一致して画像データ収集の対象となり、画像データ収集終了時刻に おいて被検者 1の画像データ収集終了部位がスキャナ本体 30の画像データ収集位 置と一致する。以上で画像データ収集を終了する(S222)。
[0044] 以上の実施の形態では、画像データ収集中に被検者 1とスキャナ本体 30とを相対 移動させている力 被検者 1とスキャナ本体 30とを相対移動させないノンへリカルスキ ヤンによって画像データ収集を行っても良い。その場合、画像データ収集開始マー 力 S及び画像データ収集終了マーカ Eは不要であり、息止め開始の前に、画像収集 範囲マーカが示す被検者 1の部位とスキャナ本体 30の画像データ収集位置とを一 致させておき、息止め開始の後、画像収集範囲マーカが示す息止め経過時刻に画 像データ収集を行う。
[0045] 被検者 1の画像データ収集の対象となる部位を変更するためにスキャナ本体 30の 画像データ収集位置を移動する方法は、被検者テーブル 24を移動することに限らず 、被検者テーブル 24は固定してスキャナ本体 30を移動したりスキャナ本体 30の画像 データ収集位置を移動したりすることによつても良い。
[0046] 以上の実施の形態では、被検者 1が息止めを行うときの心拍数変動を解析対象とし ているが、例えば被検者 1に薬剤を投与したり刺激を与えたりしたときの心拍数変動 を記録して、画像データ収集を実行する際に同薬剤を投与したり同刺激を与えたり するときの心拍数変動及び得られる画像の時間分解能を予測しても良い。
[0047] [第二実施形態]
図 8は第二実施形態に係る X線 CT装置の概略構成を示す図である。図中、 101は X線管、 102スキャナガントリ、 103は被検者テーブル、 104は X線検出器、 105は表 示装置、 106は心電計、 107は画像処理装置、 108は回転円盤、 109はコリメータ、 110は回転駆動装置、 111は測定制御装置、 112はコンピュータ、 113は入力装置 、 114は撮影情報伝達装置をそれぞれ示す。
[0048] スキャナガントリ 102は X線照射および検出を行う。
[0049] 画像処理装置 107はスキャナガントリ 102で検出された計測データ力も撮影データ を作成し、その撮影データを CT画像信号に変換処理する。 [0050] 表示装置 105には、 CT画像を表示出力する。
[0051] スキャナガントリ 102には、回転円盤 108、回転円盤 108に搭載された X線管 101、 X線管 101に取り付けられた X線束の方向を制御するコリメータ 109、回転円盤 108 に搭載された X線検出器 104が含まれている。回転円盤 108は回転駆動装置 110に よって回転し、回転駆動装置 110は測定制御装置 111によって制御される。
[0052] また、 X線管 101から発生する X線の強度は測定制御装置 111によって制御される
[0053] 測定制御装置 111は、これら回転円盤 108の回転、 X線照射や X線検出を制御し ており、コンピュータ 112によって操作される。
[0054] 106は、被検者における周期的運動を認識する周期運動認識手段である。
[0055] 以下周期運動認識手段 106は心電計である場合について説明する。
[0056] 制御装置としてのコンピュータ 112が撮影中の心拍数の変動が過剰である時の撮 影を防ぐ。これによつて、最適な時間分解能の心臓画像が作成される。
[0057] 本実施形態を図面に基づいて説明する。
[0058] コンピュータ 112には、撮影手順設定手段 112a、模擬撮影手段 112b、心拍数変 動提示手段 112c、心拍数変動要因提示手段 112d、心拍数情報登録手段 112e、 および心拍数情報提示手段 112fが含まれる。
[0059] 撮影手順設定手段 112aは心臓撮影の撮影手順を設定する。
[0060] 模擬撮影手段 112bは撮影手順設定手段 112aで設定された心臓撮影手順に従い
、模擬撮影 (模擬訓練)を実施する。
[0061] 心拍数変動提示手段 112cは心臓撮影、あるいは模擬撮影中の心拍数変動を表 示装置 115経由で操作者に提示する。
[0062] 心拍数変動要因提示手段 112dは心臓撮影あるいは模擬撮影中に心拍数変動の 原因となる情報を撮影情報伝達装置 114により被検者に提示する。
[0063] 心拍数情報登録手段 112eは、心臓撮影中に判明した心拍数の変動傾向を記憶 装置 115に登録する。
[0064] 心拍数情報提示手段 112fは、記憶装置 115に登録された心拍数情報から心臓撮 影対象となる被検者の心拍数変動傾向を検索し、表示装置 105を通して操作者に 提示する。ここで、心拍数の変動要因について説明する。
[0065] 撮影中の心拍数変動要因として以下のような項目が挙げられる。
(1)撮影中の息止め
息止めは呼吸に起因するモーションアーチファクトを防ぐために行われる。しかしき、 止めが継続すると心拍数は上昇し、心拍数変動の要因となる。
[0066] (2)寝台移動による振動やスキャナの回転音など CT装置の動作に起因するもので ある。これらの動作は被検者の緊張を引き起こし、心拍数変動の要因となる。
[0067] (3)造影剤の注入などこれは、撮影手法に起因するものである。造影剤の注入は被 検者の身体に違和感を引き起こし、心拍数変動の要因となる。
[0068] 本実施形態では、上記の心拍数変動要因を取り除く方法として以下のように、本撮 影の前に X線を曝射することなぐ本撮影と同様の手順の模擬撮影を行う。
[0069] (A)この模擬撮影によって、被検者は息止めの練習を行うことが可能となり、息止め を原因とする心拍数変動を防ぐことが可能となる。
(B)撮影に伴うスキャナ回転音や寝台の振動などを、本撮影前に実際に被検者に体 験させることによって撮影に対する緊張を和らげさせる。また、 CT装置の動作に起因 する被検者の心拍数変動を防ぐことができる。
[0070] (C)心拍数変動要因を取り除く別の手段としては、撮影中に想定される心拍数変動 要因を予め被検者に対して提示する。スキャナの回転開始、寝台の移動開始、造影 剤の注入開始など心拍数変動の要因となる作業を行う前に音声やモニターを介して 予め被検者に提示することで、被検者の撮影に対する緊張を和らげることができ、 C T装置の動作に起因する心拍数変動を防ぐことができる。
[0071] (D)またこの模擬撮影は X線を曝射しな!/ヽことを除けば実際の心臓撮影と同じ手順 で実施されることから、模擬撮影中の被検者の心拍数変動を観察することによって心 臓撮影時の被検者の心拍数変動を予測することが可能となる。
[0072] 図 9は上述した X線 CT装置を用いて、心拍数の変動を防ぐことにより最適な時間分 解能の心臓画像を作成するまでの工程を示すフローチャートである。
[0073] 以下では図 9の処理ステップについて説明する。
[0074] ステップ S900で心臓画像の作成処理を開始する。 [0075] ステップ S902では、心電計 6を用い撮影対象となる被検者の心拍数を計測する。
[0076] ステップ S904では、ステップ S902で計測した心拍数を元に、撮影手順設定手段 1 12aが回転円盤 108の回転速度、被検者テーブル 203の移動速度、撮影範囲、管 電流、管電圧など心臓撮影に必要な撮影条件及び造影剤注入の有無などの撮影手 順を決定する。
[0077] 撮影条件及び撮影手順は入力装置 113を用いて操作者による修正が可能である。
[0078] ステップ S906では、 X線管 101の出力を OFFにし、 X線が曝射されないようにする
[0079] ステップ S908では、模擬撮影手段 112bはステップ S 904にお 、て決定した撮影 条件に従い、模擬撮影を実施する。模擬撮影の手順は実際の心臓撮影の手順と同 様であるが、 X線の曝射が無い点でのみ異なる。
[0080] ここで心拍数変動要因提示手段 112dは、撮影情報伝達装置 114を通じて被検者 に対し、拍数変動要因を提示する。
[0081] 図 10は、撮影情報伝達装置 114に表示される心拍数変動要因の一例を示したも のである。
まず、画面の上部には、現在の撮影練習中、つまり模擬撮影であることが明示される
[0082] 画面中央の表が被検者に提示する心拍数変動要因を示している。
[0083] この部分は、「撮影準備」、「造影」、「撮影」等、撮影ステップごとに分けて表示され る。
[0084] また、実行中の撮影ステップが分力るように、実行中のステップは、色付け、点滅、 網掛けなどにより明示化される。図 10では、「撮影準備」のステップに網掛け表示を 行 、、この「撮影準備」が実施中の撮影ステップであることを示す。
[0085] また、心拍数変動要因は撮影情報伝達装置 114に装備された音響設備により音声 によって被検者に伝達しても良い。
[0086] ステップ S910では、心拍数変動提示手段 112cは、模擬撮影実施中に心電計 10
6によって計測された心拍数変動を表示装置 105経由で操作者に提示する。
[0087] 図 11は表示装置 105に表示される心拍数変動の一例を示したものである。 [0088] 横軸に撮影開始からの経過時間を、縦軸に被検者の心拍数を取っている。
[0089] 図中の実線は心拍数変動を表しており、「寝台移動」「ガントリー回転」「息止め」等 の心拍数変動要因の発生時刻が明示されている。
[0090] 図中の破線が、所望の時間分解能を実現可能な心拍数領域を示して 、る。
[0091] この心拍数領域は操作者が予め設定しておくことができる。
[0092] 前述の通り、心電同期再構成の場合、撮影中の被検者の心拍数とスキャンタイムと スキャンスピードとの組み合わせによって決まる時間分解能は、心拍数の変動に伴!ヽ 変化する。
[0093] 心拍数変動提示手段 112cは入力装置 113によって入力した、操作者が所望の時 間分解能と、ステップ S904で決定されたスキャンタイムを元に、所望の時間分解能 が実現可能な心拍数範囲を算出し表示装置 105に表示する。
[0094] あるいは、所望の時間分解能を実現するためのこの周期運動としての心拍数の変 動幅とスキャンタイムないしスキャンスピードである上記テーブル送り速度との組み合 わせを算出して表示してもよい。この場合、算出はたとえば心拍数情報提示手段 11 2fで行われる。
[0095] ステップ S912では、操作者がステップ S910で提示された心拍数変動を元に期待 した時間分解能が得られると判断した場合は、次のステップに進む。
[0096] 得られないと判断した場合は、ステップ S904〖こ戻りステップ S904— S908のステツ プを繰り返し実行する。
[0097] 以上の手順によって模擬撮影の手順は完了する。
[0098] ステップ S914では、 X線管 1の出力を ONにし、 X線の曝射が可能な状態にする。
[0099] ステップ S916では、ステップ S904で決定した撮影条件に従い本撮影を実施する
[0100] ここで、心拍数変動要因提示手段 112dは、ステップ S908と同様に撮影情報伝達 装置 114を通じ、被検者に対して心拍数変動要因を提示する。
[0101] ステップ S918では、心拍数情報登録手段 112eは、ステップ S916で心電計 116に よって計測された心拍数を元に被検者の心拍数情報を記憶装置 115に登録する。
[0102] 図 12は記憶装置 115に登録される心拍数情報の一例を示している。心拍数情報 は被検者 IDや被検者名と対応して登録され、心拍数情報項目としては、息止めによ る心拍数の上昇や下降、造影による心拍数の上昇や下降などが挙げられる。また、 具体的な心拍数変動として、模擬撮影時の心拍数の時系列変化をグラフとして登録 してもよい。その場合、息止め開始時刻や造影開始時刻などの心拍数変動要因開 始時刻を登録してもよい。図 12では息止め開始時刻が「Brth」、造影開始時刻が「C nt」で表現されている。また、被検者の心臓撮影回数が複数に及ぶ場合は、撮影回 数分の心拍数情報を登録してもよい。また、心拍数情報として被検者の息止め可能 時間が登録されても良い。
[0103] ステップ S920では、画像処理装置 117は心電計 116と X線検出器 203から取得さ れた撮影データから心臓の断層像を画像再構成する。心電情報を用いた画像再構 成は、たとえばマルチスライス X線 CT装置において、レトロぺクティブ ECGゲート撮 影を螺旋スキャンにも適用し、その時に発生する投影データの不連続を、例えば 18 0度対向関係の心拍時相のデータなどを用いて補間してモーションアーチファクトを 低減し、また、これにより得られる連続性の分割投影データを利用し、任意のスライス 位置及び心時相の投影データを形成し、適宜組み合わせ、あるいは、合成すること により行なうことができる。
[0104] ステップ S918で心拍数情報登録手段 112eによって登録された心拍数情報は、同 ー被検者の次回撮影時に利用される。
[0105] 次回の撮影が図 9に示されるフローに従うならば、ステップ S904において心拍数情 報提示手段 112fは表示装置 105に対し、撮影対象被検者の心拍数情報を提示す る。
[0106] 図 13は提示される心拍数情報の一例を示したものである。提示する心拍数情報項 目としては、撮影前までの心拍数変動傾向力 算出された、息止めにより心拍数が 上昇 ·安定'下降した回数、及び息止めによる心拍数変動量の平均値、造影剤投与 により心拍数が上昇 ·安定'下降した回数、及び造影剤投与による心拍数変動量の 平均値、また息止め可能時間の平均値などがある。
[0107] ステップ S904の撮影条件の設定時に過去の撮影における心拍数情報を操作者に 対して提示することで、操作者は効率良く最適な時間分解能が得られる撮影条件を 設定することが可能となる。また、被検者の息止め可能時間が判明することによる撮 影範囲の決定が容易となる。
[0108] [第三実施形態]
図 14は、第三実施形態に係る MRI装置の全体概要を示す図である。この MRI装 置は、患者などの被検者 202が置かれる空間に均一な静磁場を発生するための磁 石 201と、この空間に被検者 102を搬入するためのベッド 203と、被検者に高周波磁 場を照射し、被検者から発生する核磁気共鳴信号 (エコー信号)を検出する RFコィ ル 204と、静磁場に X方向、 y方向及び z方向の磁場勾配を発生させるための傾斜磁 場発生コイル 205、 206、 207と、これらの動作を制御する制御系とを備えている。な お、ここでは被検者の体軸方向(水平方向)に静磁場を発生する磁石を採用した水 平磁場方式 MRI装置を示したが、体軸方向と直交する方向に静磁場を発生する垂 直磁場方式の MRI装置であってもよい。また RFコイル 204は、高周波磁場の照射と エコー信号の検出を兼ねたものを示した力 これらは別個に備えられていてもよい。
[0109] RFコイル 204は、図示するような両用タイプの場合、図示しない切り替え回路を介 して高周波磁場送信部と高周波磁場受信部とに接続されている。高周波磁場送信 部は、主として、所定の周波数の高周波信号を発生するシンセサイザ 212と、シンセ サイザ 212が発生する高周波信号を所定のエンベロープの信号に変調する変調回 路 213と、 RFコイル 204に電源を供給する高周波電源 208とから構成される。また高 周波磁場受信部は、増幅器 214及び直交位相検波回路、 AZD変換器などを含む 受信器 215から構成される。 3方向の傾斜磁場発生コイル 205、 206、 207はそれぞ れ電源 209、 2210、 211に接続されている。これら傾斜磁場電源 209、 210、 211、 高周波磁場送信部及び高周波磁場受信部の動作は、パルスシーケンスと呼ばれる タイミングチャートに従い制御系で制御される。制御系は、計測されたエコー信号に 対し補正計算、フーリエ変換など種々の計算を行うとともに装置全体の制御を行う計 算機 218と、計算結果である画像やスペクトル等及びユーザー力もの入力を行うため の GUI等を表示する表示装置 219と、計算機 218の計算に必要なデータや計算後 のデータを記憶する記憶装置 217と、計算機 218の指令に基づきあらかじめ選択さ れたパルスシーケンスに従い、傾斜磁場電源 209、 210、 211、高周波磁場送信部 及び高周波磁場受信部を制御するシーケンサ 216とを備えている。また計算機 218 は、図示しない入力装置を備えており、被検者の登録、呼び出し、撮影法に応じたパ ルスシーケンスの選択、撮影パラメータの入力等を行うことができる。
[0110] 本実施の形態に係る MRI装置では、周期運動データ記録手段として、体動情報を 反映した信号すなわち体動ナビゲートエコーを用いる。具体的には、画像再構成用 信号の取得に先立って、体動ナビゲート信号を取得し、この体動ナビゲート信号が有 する位置情報 (位相情報)から、続 、て取得された画像再構成用信号の体動成分を 除去する補正を行う。図 15に、このような体動ナビゲートシーケンスの例を示す。図 1 5 (a)に示す体動ナビゲートシーケンスでは、まず画像ィ匕しょうとするスライスを選択 励起した後、位相エンコードを付与せずに一方向の傾斜磁場 (ここでは読み出し傾 斜磁場 Gx)を印カロしてナビゲート信号を計測し、っ 、で位相エンコードを付与しなが ら画像再構成用信号を取得する。このシーケンスでは X方向の体動補正を行うことが できる。また図 15 (b)に示す体動ナビゲートシーケンスでは、体動ナビゲートエコー 検出のための RF励起パルス及びスライス選択と、画像再構成用信号検出のための RF励起パルス及びスライス選択を別途行うとともに、 2方向の傾斜磁場 (ここでは読 み出し方向傾斜磁場 Gx及び位相エンコード方向傾斜磁場 Gy)を用いて、 2方向の 移動量を検出している。これによりスライス面内の体動補正を行うことができる。
[0111] 第三実施形態では、被検者の MRI本撮影に先立ち、体動ナビゲートエコー信号を 得るための模擬 MRI撮影が行なわれる。そして、模擬撮影で得られた体動ナビゲー トエコー信号に基づ 、て時間分解能を予測し、画像収集を行なうのに適した時刻に 画像収集範囲(画像を得た 、部位)の画像データの収集を行なう。
[0112] 上記第一実施形態乃至第三実施形態にかかる X線 CT装置又は MRI装置などの 画像データ収集装置を用いて造影剤の注入前後にわたる被検者の画像を撮影し、 造影剤の注入前後に得られる一組の画像を差分して、差分画像を生成しても良い。 その場合には、造影剤を注入した被検者に模擬訓練を実行し、模擬訓練時に取得し た周期運動データ (心拍数)に基づいて時間分解能を予測してもよい。これにより、 造影剤が被検者の周期運動に及ぼす影響を考慮して、画像データの収集制御を行 うことができる。 産業上の利用可能性
医用画像撮影装置により周期的運動を行なう被検者の部位を撮影する際に、本撮 影に先立ち周期運動データを求め、その周期運動データに基づいて感心部位の撮 影時刻を決定することにより、モーションアーチファクトを低減した医用画像を得ること ができる。

Claims

請求の範囲
[1] 被検者の周期的運動する部位を含む画像データ収集範囲から複数の画像デー タを収集する画像データ収集制御方法であって、
前記周期的運動の経時変化を示す周期運動データを取得する周期運動データ 取得工程と、
前記画像データ収集範囲の画像データの時間分解能を所望の範囲内にするため の該画像データの収集条件を設定する画像データ収集条件設定工程と、
前記画像データ収集条件に基づ!ヽて、前記画像データ収集範囲の画像データの 時間分解能が前記所望の範囲内に入る時間内に、該画像データ収集範囲の少なく とも一部とその画像データの収集位置とが互いに重なるように相対移動させる画像デ ータ収集位置制御工程と、
前記画像データ収集位置で前記画像データ収集範囲の少なくとも一部の画像デ ータを収集する画像データ収集工程と、
を含むことを特徴とする画像データ収集制御方法。
[2] 請求項 1記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集条件設定工程は、前記被検者の投影画像を取得する投影 画像取得工程と、
前記投影画像に基づいて前記画像データ収集範囲を指定する画像データ収集 範囲指定工程と、
を含むことを特徴とする画像データ収集制御方法。
[3] 請求項 2記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集範囲指定工程では、前記投影画像において、前記画像デ ータ収集の開始位置と終了位置とが指定されることによって、前記画像データ収集 範囲が指定される、
ことを特徴とする画像データ収集制御方法。
[4] 請求項 2記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集条件設定工程は、前記画像データ収集範囲指定工程の前 に、前記周期運動データに基づいて前記画像データの時間分解能の経時変化を予 測する時間分解能予測工程を含み、
前記画像データ収集範囲指定工程では、前記画像データの時間分解能の経時 変化を示す時間分解能グラフと前記投影画像とが重畳表示される、
ことを特徴とする画像データ収集制御方法。
[5] 請求項 4記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集範囲指定工程では、前記時間分解能グラフにおける前記所 望の時間分解能範囲が、前記投影画像における前記画像データ収集範囲に対応づ けられて重畳表示される、
ことを特徴とする画像データ収集制御方法。
[6] 請求項 4記載の画像データ収集制御方法にぉ 、て、
前記時間分解能グラフは、少なくとも該時間分解能グラフにおける前記画像デー タ収集の開始時刻に対応する開始点から終了時刻に対応する終了点迄が、それぞ れ前記投影画像における該画像データ収集の開始位置カゝら終了位置迄に対応づけ られて重ね合わせられる、
ことを特徴とする画像データ収集制御方法。
[7] 請求項 4記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集範囲指定工程では、前記時間分解能グラフの位置又はそ の一部の位置の内の少なくとも一方を指定又は変更する入力を受け付け、該入力に 基づいて前記画像データ収集範囲と前記所望の時間分解能範囲の内の少なくとも 一方が指定又は変更される、
ことを特徴とする画像データ収集制御方法。
[8] 請求項 4記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集範囲指定工程では、前記時間分解能グラフの少なくとも一 つの点の前記投影画像上での位置を表す数値が表示されるとともに、該数値を変更 する入力を受け付け、該入力に基づいて該時間分解能グラフと該点の内の少なくと も一つと前記投影画像との相対位置が変更される、
ことを特徴とする画像データ収集制御方法。
[9] 請求項 1記載の画像データ収集制御方法にぉ 、て、 前記周期運動データ取得工程では、前記画像データ収集工程における画像デ ータ生成のための工程を行わずに前記周期運動データが取得される、
ことを特徴とする画像データ収集制御方法。
[10] 請求項 4記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集位置制御工程は、前記時間分解能グラフにおける経過時間 と前記投影画像における前記画像データ収集範囲との位置関係を保つ様に、前記 画像データ収集範囲と前記画像データ収集位置とを相対移動させ、
前記相対移動と前記画像データ収集工程が同時に行われる、
ことを特徴とする画像データ収集制御方法。
[11] 請求項 1記載の画像データ収集制御方法において、
前記画像データ収集条件設定工程は、前記画像データ収集範囲の画像データ の時間分解能が所望の範囲内となる前記周期運動データの好適変動幅を求めるェ 程と、
前記周期運動データの経時変化と前記好適変動幅を表示する工程と、 を含むことを特徴とする画像データ収集制御方法。
[12] 請求項 11記載の画像データ収集制御方法にぉ 、て、
前記画像データ収集条件設定工程は、前記好適変動幅と前記相対移動の速度 との組み合わせを算出し、前記画像データ収集位置制御工程では、前記相対移動 速度に基づ!、て、前記画像データ収集範囲とその画像データの収集位置とを相対 移動させる、
ことを特徴とする画像データ収集制御方法。
[13] 請求項 11記載の画像データ収集制御方法にぉ 、て、
前記周期運動データ取得工程が、前記周期運動データの変動幅が所定値よりも 小さくなるまで繰り返される、
ことを特徴とする画像データ収集制御方法。
[14] 請求項 1記載の画像データ収集制御方法において、
前記周期運動データ取得工程と前記画像データ収集工程の内の少なくとも一方 において、前記周期的運動を変動させる要因の少なくとも一つを少なくとも前記被検 者に伝達することを特徴とする画像データ収集制御方法。
[15] 請求項 1記載の画像データ収集制御方法において、
前記周期的運動する部位が心臓であり、
前記周期運動データが、息止め可能時間又は平均息止め可能時間、息止めによ り心拍数又は脈拍数が上昇又は安定又は下降した模擬訓練回数、息止めによる心 拍数又は脈拍数の変動量又は平均変動量、造影剤投与により周期運動数が上昇又 は安定又は下降した模擬訓練回数、造影剤投与による周期運動数の変動量又は平 均変動量、過去に実施された心臓撮影における心拍数又は脈拍数の時系列変化、 のうちの少なくとも一つである、
ことを特徴とする画像データ収集制御方法。
[16] 被検者の周期的運動する部位を含む画像データ収集範囲から複数の画像デー タを収集する画像データ収集装置において、
前記周期的運動の経時変化を示す周期運動データを取得する周期運動データ取 得手段と、
前記画像データ収集範囲の画像データの時間分解能を所望の範囲内にするため の該画像データの収集条件を設定する画像データ収集条件設定手段と、
前記画像データ収集条件に基づ!ヽて、前記画像データ収集範囲の画像データの 前記時間分解能が所望の範囲に入る時間内に、該画像データ収集範囲の少なくと も一部とその画像データの収集位置とが互いに重なるように相対移動させる画像デ ータ収集位置制御手段と、
前記画像データ収集位置で前記画像データ収集範囲の少なくとも一部の画像デ ータを収集する画像データ収集手段と、
を含むことを特徴とする画像データ収集装置。
[17] 請求項 16記載の画像データ収集装置において、
前記画像データ収集条件設定手段は、前記画像データ収集範囲指定工程の前 に、前記周期運動データに基づいて前記画像データの時間分解能の経時変化を予 測し、
前記画像データ収集条件設定手段は、前記画像データの時間分解能の経時変 化を示す時間分解能グラフと前記投影画像とを重畳表示する、
ことを特徴とする画像データ収集装置。
[18] 請求項 16記載の画像データ収集装置において、
周期運動データ取得手段は、前記画像データの生成を行わずに前記周期運動デ ータを取得し、
前記周期運動データの経時変化と前記周期運動データ取得の手順とを同期させ て記録する周期運動データ記録手段と、
記録された前記周期運動データの経時変化と前記周期運動データ取得手順の情 報を同期させて表示する情報表示手段と、
を備えたことを特徴とする画像データ収集装置。
[19] 請求項 18記載の画像データ収集装置において、
前記周期運動データ記録手段は、更に前記被検者の情報も合わせて記録し、 前記画像データ収集手段は、前記周期運動データ記録手段に前記被検者の周 期運動データが記録されている場合には、該周期運動データを用いて前記画像デ ータの収集を行う、
ことを特徴とする画像データ収集装置。
[20] 前記画像データ収集手段は、
X線を照射する X線源と、被検者をはさんで前記 X線源に対向して配置され、 X線 を検出して X線透過データを出力する X線検出器と、前記 X線源及び前記 X線検出 器を搭載して回転可能な回転手段と、前記被検者を載置するテーブルと、前記テー ブルを移動させるテーブル送り速度を制御するテーブル制御装置と、前記 X線透過 データに基づいて被検者の断層像を生成する画像処理手段と、前記断層像を表示 する表示手段と、
を備えた X線 CT装置であり、
前記周期運動データ取得手段は、前記被検者の心拍数を測定して取得する心 拍計であり、
前記画像データ収集条件設定手段は、所望する前記時間分解能を実現するた めの前記周期運動データの変動幅と前記テーブル送り速度との組合せを算出し、 前記テーブル制御装置が、前記テーブル送り速度に基づ 、て前記テーブルを移 動させる、
ことを特徴とする請求項 16に記載の画像データ収集装置。
前記画像データ収集手段は、
所定の撮影シーケンスを備えた制御部と、前記制御部の制御に従 、被検者が置 かれる静磁場空間に傾斜磁場及び高周波磁場を発生する各磁場発生手段と、前記 被検者が発生する NMR信号を計測し、画像化する信号処理手段とを備えた磁気共 鳴イメージング装置であり、
前記周期運動データ取得手段は、前記被検者の体動ナビゲート信号を取得する ことを特徴とする請求項 16に記載の画像データ収集装置。
PCT/JP2005/004305 2004-03-19 2005-03-11 画像データ収集制御方法及び画像データ収集装置 WO2005089651A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006511171A JP4889482B2 (ja) 2004-03-19 2005-03-11 画像データ収集制御方法、画像データ収集装置、及び画像データ収集装置の制御装置
US10/593,359 US8055045B2 (en) 2004-03-19 2005-03-11 Method and system for collecting image data from image data collection range including periodically moving part

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-080939 2004-03-19
JP2004080939 2004-03-19
JP2004110756 2004-04-05
JP2004-110756 2004-04-05

Publications (1)

Publication Number Publication Date
WO2005089651A1 true WO2005089651A1 (ja) 2005-09-29

Family

ID=34993404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004305 WO2005089651A1 (ja) 2004-03-19 2005-03-11 画像データ収集制御方法及び画像データ収集装置

Country Status (3)

Country Link
US (1) US8055045B2 (ja)
JP (1) JP4889482B2 (ja)
WO (1) WO2005089651A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151118A (zh) * 2010-01-15 2011-08-17 奥林巴斯株式会社 图像处理装置、内窥镜系统以及图像处理方法
JP2014138910A (ja) * 2014-05-07 2014-07-31 Toshiba Corp X線コンピュータ断層撮影装置
WO2017130657A1 (ja) * 2016-01-29 2017-08-03 株式会社日立製作所 X線ct装置、撮影条件設定方法及び撮影条件設定プログラム
JP2017144238A (ja) * 2016-02-16 2017-08-24 東芝メディカルシステムズ株式会社 医用画像診断装置、サーバおよびプログラム
WO2020065761A1 (ja) * 2018-09-26 2020-04-02 株式会社島津製作所 放射線撮影装置
US11375934B2 (en) * 2017-12-01 2022-07-05 Ricoh Company, Ltd. Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028121A1 (de) * 2004-06-09 2006-01-05 Siemens Ag Verfahren zur Rekonstruktion von Schnittbildern von einem sich zyklisch und komplex bewegenden Untersuchungsobjekt aus Detektormessdaten eines Tomographiegerätes
US20100218140A1 (en) * 2005-09-08 2010-08-26 Feke Gilbert D Graphical user interface for multi-modal images at incremental angular displacements
US20100220836A1 (en) 2005-09-08 2010-09-02 Feke Gilbert D Apparatus and method for multi-modal imaging
US20090281383A1 (en) * 2005-09-08 2009-11-12 Rao Papineni Apparatus and method for external fluorescence imaging of internal regions of interest in a small animal using an endoscope for internal illumination
EP1958155A2 (en) * 2005-11-24 2008-08-20 Philips Intellectual Property & Standards GmbH Motion compensated ct reconstruction of high contrast objects
DE102006032991B4 (de) * 2006-07-17 2015-03-26 Siemens Aktiengesellschaft Verfahren und Rechnereinheit zur Einstellung einer Spritzenpumpe für eine Bildaufnahme
US8090166B2 (en) 2006-09-21 2012-01-03 Surgix Ltd. Medical image analysis
CN101161203B (zh) * 2006-10-11 2011-01-26 株式会社东芝 X射线计算机断层及医用图像摄影装置、呼吸指示装置
IL184151A0 (en) 2007-06-21 2007-10-31 Diagnostica Imaging Software Ltd X-ray measurement method
DE102007037380A1 (de) * 2007-08-08 2009-02-19 Siemens Ag Verfahren und Röntgen-Computertomographie-System zur Visualisierung der mindestens zwei Gewebearten gesundes Gewebe und erkranktes Gewebe an einem Herzen
CN102124320A (zh) * 2008-06-18 2011-07-13 苏尔吉克斯有限公司 用于将多个图像拼接成全景图像的方法和系统
US8442292B2 (en) * 2008-07-01 2013-05-14 Hitachi Medical Corporation X-ray CT apparatus
JP5317580B2 (ja) * 2008-08-20 2013-10-16 株式会社東芝 X線ct装置
EP2408374B1 (en) * 2009-03-19 2017-08-30 Koninklijke Philips N.V. Functional imaging
DE102010010055A1 (de) * 2010-03-03 2011-09-08 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Reduzierung der Herzrate eines Patienten sowie Einrichtung, aufweisend die Vorrichtung
JP2012200287A (ja) * 2011-03-23 2012-10-22 Canon Inc X線撮影システム、x線撮影システムの制御方法、情報処理装置、x線撮影装置、およびプログラム
DE102011083387A1 (de) * 2011-09-26 2013-03-28 Siemens Aktiengesellschaft Medizinisches Bildgebungsverfahren sowie ein medizinisches Bildgebungssystem, das zu einem Ausführen des medizinischen Bildgebungsverfahrens ausgelegt ist
CN103813752B (zh) * 2012-01-27 2017-11-10 东芝医疗系统株式会社 医用图像处理装置
WO2013115389A1 (ja) * 2012-02-01 2013-08-08 株式会社東芝 医用画像診断装置
JP6108695B2 (ja) * 2012-06-15 2017-04-05 キヤノン株式会社 X線撮影制御装置および方法
US20140016847A1 (en) * 2012-07-13 2014-01-16 General Electric Company Multi-phase computed tomography image reconstruction
US9517036B2 (en) * 2012-08-20 2016-12-13 Varian Medical Systems, Inc. Radiation imaging using very slow rotational technique
CN102945364A (zh) * 2012-10-31 2013-02-27 黑龙江省电力有限公司信息通信分公司 基于运动图像识别的人员工位状态探测系统
US9526468B2 (en) * 2014-09-09 2016-12-27 General Electric Company Multiple frame acquisition for exposure control in X-ray medical imagers
CN112492298B (zh) * 2020-11-17 2022-12-09 北京三快在线科技有限公司 一种采集图像的方法及装置
WO2022120734A1 (zh) * 2020-12-10 2022-06-16 深圳先进技术研究院 一种基于gan的无造影剂医学图像增强方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189412A (ja) * 1998-12-28 2000-07-11 Ge Yokogawa Medical Systems Ltd 放射線断層撮影方法および装置
WO2002026135A1 (en) * 2000-09-29 2002-04-04 Ge Medical Systems Global Technology Company, Llc Phase-driven multisector reconstruction for multislice helical ct imaging

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422344A (ja) * 1990-05-17 1992-01-27 Toshiba Corp 医用撮影機器の動作制御装置
JP3275948B2 (ja) * 1997-01-31 2002-04-22 株式会社島津製作所 X線ct装置
JP4698780B2 (ja) * 1998-09-15 2011-06-08 シーメンス アクチエンゲゼルシヤフト 像再構成方法及び測定データ取得方法
JP4250251B2 (ja) * 1999-04-13 2009-04-08 株式会社日立メディコ 磁気共鳴画像診断装置
JP4161468B2 (ja) * 1999-05-18 2008-10-08 株式会社島津製作所 X線ct装置
US6522712B1 (en) * 1999-11-19 2003-02-18 General Electric Company Reconstruction of computed tomographic images using interpolation between projection views
JP4489228B2 (ja) * 2000-02-07 2010-06-23 Geヘルスケア・ジャパン株式会社 X線ctシステム及びその制御方法及び記憶媒体
US6539074B1 (en) * 2000-08-25 2003-03-25 General Electric Company Reconstruction of multislice tomographic images from four-dimensional data
US7209779B2 (en) * 2001-07-17 2007-04-24 Accuimage Diagnostics Corp. Methods and software for retrospectively gating a set of images
US7006862B2 (en) * 2001-07-17 2006-02-28 Accuimage Diagnostics Corp. Graphical user interfaces and methods for retrospectively gating a set of images
US7142703B2 (en) * 2001-07-17 2006-11-28 Cedara Software (Usa) Limited Methods and software for self-gating a set of images
JP2003210456A (ja) * 2002-01-21 2003-07-29 Toshiba Corp 時系列画像の処理装置
JP4309677B2 (ja) * 2002-02-27 2009-08-05 株式会社東芝 X線コンピュータ断層撮影装置
US6763082B2 (en) * 2002-02-27 2004-07-13 Kabushiki Kaisha Toshiba X-ray computer tomography apparatus
US7848790B2 (en) * 2002-02-28 2010-12-07 General Electric Company System and method of imaging using a variable speed for thorax imaging
US7182083B2 (en) * 2002-04-03 2007-02-27 Koninklijke Philips Electronics N.V. CT integrated respiratory monitor
WO2004006771A1 (ja) * 2002-07-12 2004-01-22 Nihon University School Juridical Person X線コンピューター断層撮影装置とその投影データ収集方法
US7343193B2 (en) * 2003-06-16 2008-03-11 Wisconsin Alumni Research Foundation Background suppression method for time-resolved magnetic resonance angiography
DE10333074A1 (de) * 2003-07-21 2005-02-24 Siemens Ag Verfahren zur Untersuchung eines eine periodische Bewegung in Form ausführenden Körperbereichs eines Untersuchungsobjektes und Diagnostik-Gerät zur Durchführung eines solchen Verfahrens
JP4393137B2 (ja) * 2003-08-25 2010-01-06 株式会社東芝 X線コンピュータ断層撮影装置
US7308299B2 (en) * 2003-10-22 2007-12-11 General Electric Company Method, apparatus and product for acquiring cardiac images
US20050100126A1 (en) * 2003-11-07 2005-05-12 Mistretta Charles A. Computed tomography with z-axis scanning
DE10354214A1 (de) * 2003-11-20 2005-06-02 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern eines sich periodisch bewegenden Objektes mit mehreren Fokus-Detektor-Kombinationen
DE10354900A1 (de) * 2003-11-24 2005-06-30 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern eines sich periodisch bewegenden Objektes mit mehreren Fokus-Detektor-Kombinationen
JP4639143B2 (ja) * 2005-11-30 2011-02-23 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置およびその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189412A (ja) * 1998-12-28 2000-07-11 Ge Yokogawa Medical Systems Ltd 放射線断層撮影方法および装置
WO2002026135A1 (en) * 2000-09-29 2002-04-04 Ge Medical Systems Global Technology Company, Llc Phase-driven multisector reconstruction for multislice helical ct imaging

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151118A (zh) * 2010-01-15 2011-08-17 奥林巴斯株式会社 图像处理装置、内窥镜系统以及图像处理方法
CN102151118B (zh) * 2010-01-15 2014-12-03 奥林巴斯株式会社 图像处理装置、内窥镜系统以及图像处理方法
JP2014138910A (ja) * 2014-05-07 2014-07-31 Toshiba Corp X線コンピュータ断層撮影装置
WO2017130657A1 (ja) * 2016-01-29 2017-08-03 株式会社日立製作所 X線ct装置、撮影条件設定方法及び撮影条件設定プログラム
JP2017144238A (ja) * 2016-02-16 2017-08-24 東芝メディカルシステムズ株式会社 医用画像診断装置、サーバおよびプログラム
US11375934B2 (en) * 2017-12-01 2022-07-05 Ricoh Company, Ltd. Biomagnetic measurement apparatus, biological information measurement apparatus, and biomagnetic measurement method
WO2020065761A1 (ja) * 2018-09-26 2020-04-02 株式会社島津製作所 放射線撮影装置
JPWO2020065761A1 (ja) * 2018-09-26 2021-08-30 株式会社島津製作所 放射線撮影装置
JP7088295B2 (ja) 2018-09-26 2022-06-21 株式会社島津製作所 放射線撮影装置

Also Published As

Publication number Publication date
JP4889482B2 (ja) 2012-03-07
JPWO2005089651A1 (ja) 2008-01-31
US20080056547A1 (en) 2008-03-06
US8055045B2 (en) 2011-11-08

Similar Documents

Publication Publication Date Title
JP4889482B2 (ja) 画像データ収集制御方法、画像データ収集装置、及び画像データ収集装置の制御装置
JP4340533B2 (ja) コンピュータ断層撮影
US7668585B2 (en) Respiration monitor for computed tomography
JP4567130B2 (ja) Ct像発生方法
US20170215830A1 (en) Medical installation, and method for controlling a medical apparatus therein
US8351565B2 (en) X-ray CT apparatus
JP4429677B2 (ja) 周期的に運動する器官のct画像形成方法
US20110286574A1 (en) X-ray computed tomography apparatus
JP2013223724A (ja) 検査領域内の磁気共鳴緩和パラメータを高速で空間分解して決定する方法
US11471065B2 (en) Medical image diagnosis apparatus
JP2010046212A (ja) X線ct装置
JPH1189830A (ja) 放射線断層撮影方法および装置
JP2008539414A (ja) 心動態のモデル化におけるecgゲートの時間サンプリング
JPWO2013094483A1 (ja) 医用画像診断装置及び医用画像診断装置を用いた位相決定方法
US8909321B2 (en) Diagnostic imaging apparatus, magnetic resonance imaging apparatus, and X-ray CT apparatus
JP5132774B2 (ja) X線ct装置
JP2004209084A (ja) 核磁気共鳴を用いた検査装置
JP4571429B2 (ja) Ct断層像の生成方法及びその装置
CN100515341C (zh) 图像数据收集控制方法以及图像数据收集装置
JP6827813B2 (ja) 医用画像診断装置
WO2006085253A2 (en) Computer tomography apparatus, method of examining an object of interest with a computer tomography apparatus, computer-readable medium and program element
JP2004313513A (ja) X線ct装置
JP4745029B2 (ja) X線ct装置
JP6286220B2 (ja) X線ct装置
JP2000189412A (ja) 放射線断層撮影方法および装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511171

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10593359

Country of ref document: US

Ref document number: 200580008514.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10593359

Country of ref document: US