WO2005086147A1 - 光ディスク装置の光学ヘッド及びその光検出装置 - Google Patents

光ディスク装置の光学ヘッド及びその光検出装置 Download PDF

Info

Publication number
WO2005086147A1
WO2005086147A1 PCT/JP2005/003379 JP2005003379W WO2005086147A1 WO 2005086147 A1 WO2005086147 A1 WO 2005086147A1 JP 2005003379 W JP2005003379 W JP 2005003379W WO 2005086147 A1 WO2005086147 A1 WO 2005086147A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion element
signal
coefficient
light
Prior art date
Application number
PCT/JP2005/003379
Other languages
English (en)
French (fr)
Inventor
Katsutoshi Tahara
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to JP2006519381A priority Critical patent/JPWO2005086147A1/ja
Priority to US10/554,268 priority patent/US7499388B2/en
Publication of WO2005086147A1 publication Critical patent/WO2005086147A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0943Methods and circuits for performing mathematical operations on individual detector segment outputs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0053Reproducing non-user data, e.g. wobbled address, prepits, BCA
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects

Definitions

  • Optical head for optical disk device and light detecting device therefor
  • the present invention relates to a light detecting device used in an optical head device (optical pickup) for recording and reproducing an optical disk.
  • optical disks so-called optical disks utilizing a phase change film or the like are known! These recordable optical disks have spiral lands and groups formed in the disk. One of the groups is a recording track for recording data.
  • recordable optical discs allow data to be recorded on recording tracks (groups) and, as shown in FIG. 1, recordable edges on recording tracks (boundaries between groups). Signals and LPP (Land Pre Pit) signals are recorded in advance.
  • a pebble signal is a signal recorded by meandering a boundary between a land and a group at a constant period.
  • the meandering shape is formed so as to have a constant period when the disk is reproduced by CLV (Constant Linear Velocity) or CAV (Constant Angler Velocity), and therefore, the wobble signal is used as a clock.
  • CLV Constant Linear Velocity
  • CAV Constant Angler Velocity
  • an address or the like is modulated with respect to the meandering frequency, and in this case, a pebble signal is also used as address information.
  • the LPP signal is a signal recorded by forming a pit in a part of the land.
  • a formed pit string indicates an address, and a reproduced signal is used as address information.
  • the return light power of the laser beam applied to the recording track (group) is also detected from the wobble signal and LPP signal.
  • the wobbled signal component and the LPP signal component are the push-pull components of the return light in the radial direction. Included in the minute (differential component)!
  • the main laser beam irradiated on the recording track (group) is detected by a four-divided photodetector 101 as shown in FIG.
  • the four-divided photodetector 101 is divided into two in a direction corresponding to the radial direction of the optical disk, and is further divided into two in a direction corresponding to the tangential direction. That is, it is divided into four parts in a cross shape.
  • the wobbled signal and the LPP signal are divided into two parts in the radial direction.
  • a signal ((A + D)-(B + C)) indicating the differential component is referred to as a radial push-pull signal.
  • Such a wobble signal and LPP signal must be read out during the recording track force data as well as during the reproduction of the recording track force data.
  • the reflected light of the laser light emitted for recording is detected, and a radial push-pull signal is generated.
  • a disk such as a phase change disk
  • pits are written by emitting a pulse of laser light. Therefore, at the time of recording, there is a timing (at the time of writing) at which pits are formed on the recording track, and a timing (at the time of bias) at which pits are formed.
  • the light level (pit level) at the time of writing increases and the level (read level) at the time of biasing decreases. For this reason, when a wobble signal or LPP signal is detected during recording, signal processing must be performed with due consideration for a change in the amount of return light between writing and biasing.
  • the center of the light spot of the returning light May not match the center position of the four-segment photodetector 101 in some cases.
  • the light amount distribution may not be symmetric with respect to the center of the light spot irradiated on the four-divided photodetector 101, and may be distorted. Therefore, the value obtained by time-averaging the total light amount of the outer detector (A + D) and the total light amount of the inner detector (B + C) when the 4-split photodetector 101 is divided in the radial direction The average value is different, and an offset is added to the radial push-pull signal (A + D— (B + C)).
  • the laser light emitted during recording has a large power difference between writing and biasing. Therefore, as shown in FIG. 5, the offset E of the radial push-pull signal at the time of writing (that is, the pit level difference at the time of writing) and the offset E of the radial push-pull signal at the time of bias (that is, the read delay at the time of bias)
  • Level difference a large level difference occurs. That is, as shown in FIG. 6, the offset of the radial push-pull signal varies with time.
  • An object of the present invention is to provide a method for recording data even when a relative position between a photodetector and return light is shifted in a radial direction, for example, or a difference occurs in an electrical signal due to a difference in return light.
  • an optical disc device an optical head device, and a photodetector device for an optical head capable of reproducing signals (such as a double signal and a land pre-pit signal) contained in a radial push-pull signal with good characteristics.
  • An optical disk device is an optical disk device that records information on an optical disk, wherein the optical disk is irradiated with a laser light emitting device that emits laser light, and the emitted laser light is irradiated with return light.
  • An optical head device having a photodetector that generates an electric signal containing an information component obtained from the optical disc in response to the returned light, and an optical signal output from the optical head device. Recorded on optical disc A signal processing circuit that reproduces the recorded signal and performs recording control on the optical disc.
  • the photodetector includes a photoelectric conversion element that is divided into at least two in a direction corresponding to a radial direction of the optical disc.
  • a multiplication circuit that multiplies the electric signal generated by the photoelectric conversion element on one side of the optical disk divided into two in a direction corresponding to the radial direction of the optical disc by a coefficient t;
  • a difference circuit that calculates a difference between the electric signal generated by the photoelectric conversion element on the other side of the two divided in the direction and the electric signal output from the multiplication circuit to generate a radial push-pull signal;
  • the coefficient t is the amount of return light irradiated to the one side photoelectric conversion element and the amount of return light irradiated to the other side photoelectric conversion element. It is characterized in that it is set to a value corresponding to the ratio to the amount.
  • the photodetector for an optical head is a photodetector provided in an optical head device for emitting a laser beam to the optical disc in order to record and reproduce a signal on and from the optical disc.
  • a multiplication circuit that multiplies the coefficient t by a coefficient t, an electric signal generated by the photoelectric conversion element on the other side of the optical disk divided into two in a direction corresponding to the radial direction of the optical disc, and an electric signal output from the multiplication circuit.
  • a difference circuit that calculates a difference from the signal and generates a radial push-pull signal.
  • the coefficient t is applied to the photoelectric conversion element on one side.
  • the light quantity of the return light is characterized in that it is set to a value corresponding to the ratio of the intensity of the returning light applied against the photoelectric conversion element of the other side.
  • An optical head device is a laser light emitting device that emits laser light to the optical disk, and is irradiated with return light of the emitted laser light, and is obtained from the optical disk according to the emitted return light.
  • a photodetector for generating an electric signal containing an information component wherein the photodetector includes a photoelectric conversion element divided into at least two in a direction corresponding to a radial direction of the optical disc;
  • a multiplication circuit for multiplying the electric signal generated by the photoelectric conversion element on one side of the two divided directions in the direction corresponding to the direction by a coefficient t, and a multiplication circuit divided in the direction corresponding to the radial direction of the optical disc.
  • a difference circuit that calculates a difference between the electric signal generated by the photoelectric conversion element on the other side of the electric signal and the electric signal output from the multiplication circuit to generate a radial push-pull signal;
  • the coefficient t is set to a value corresponding to the ratio of the amount of return light irradiated to the one photoelectric conversion element to the amount of return light irradiated to the other photoelectric conversion element. It is characterized by being.
  • FIG. 1 is a diagram for explaining a pebble signal and a PLL signal.
  • FIG. 2 is a diagram showing a 4-split photodetector.
  • FIG. 3 is a diagram for explaining the amount of return light during recording.
  • FIG. 4 is a diagram for explaining a positional shift between a 4-split photodetector and a light spot.
  • FIG. 5 is a diagram for explaining an offset of the radial push-pull signal at the time of writing and an offset of the radial push-pull signal at the time of noise.
  • Fig. 6 is a diagram for explaining the time variation of the offset of the radial push-pull signal.
  • FIG. 7 is a block diagram of an optical disk drive to which the present invention is applied.
  • FIG. 8 is a diagram showing a configuration of an optical head device in the optical disk drive.
  • FIG. 9A and FIG. 9B are diagrams showing a configuration of a photodetector in the optical head device.
  • FIG. 10 is a diagram showing a signal (A + D) indicating the light amount of the outer photodetector and a signal (B + C) indicating the light amount of the inner photodetector.
  • FIG. 11 is a diagram showing a signal (A + D) indicating the light amount of the outer-side photodetector and a corrected signal (tX (B + C)) indicating the light amount of the inner-side photodetector.
  • FIG. 12 is a diagram showing a radial push-pull signal detected by the optical head device.
  • FIG. 13 is a block diagram of another optical disk drive to which the present invention is applied.
  • FIG. 14 is a diagram showing a configuration of an optical head device in another optical disk drive described above.
  • FIG. 15A and FIG. 15B are diagrams showing a configuration of a light detection device in a head device of another optical disk drive described above.
  • a first optical disk drive to which the present invention is applied will be described.
  • FIG. 7 shows the overall block configuration of the optical disk drive 10 to which the present invention is applied.
  • the optical disk drive 10 is a device that records or reproduces information on a recordable optical disk (DVD-R, DVD-RW, DVD + R, DVD + RW, DVD-RAM) that is a phase-change optical disk or a write-once optical disk. It is.
  • the optical disc 1 has spiral lands and groups formed in the disc, and the groups are recording tracks.
  • data can be recorded on a recording track (group), and in addition, a wobble signal and an LPP signal are recorded in advance at a boundary portion of the recording track.
  • the optical disk 1 is a DVD disk, but the present invention is not limited to a DVD, and may be any disk as long as it is provided with a wobble signal and an LPP signal.
  • the optical disk drive 10 includes an optical head device 11, a spindle motor 12, a preamplifier 13, a modulation / demodulation unit 14, a laser control unit 15, a servo control unit 16, a system controller 17 and an interface 18. I have.
  • the optical head device 11 emits a laser beam to the optical disc 1 to record information, and detects a return beam in which the laser beam emitted to the optical disc 1 reflects also the optical disc power and returns. Light is received to generate various electrical detection signals (detector signals A-D and radial push-pull signal R-PP). The details of the inside of the optical head device 11 and the details of the detection signals (A-D, R-PP) will be described later.
  • the optical head device 11 is also called an optical pickup, but is called an optical head device here.
  • the spindle motor 12 holds the optical disc 1 and rotates the optical disc 1 for recording and reproduction.
  • the preamplifier 13 is based on the detection signals (A-D, R-PP) output from the optical head device 11. Then, a reproduction signal, an error signal, and the like are generated. More specifically, the preamplifier 13 includes an RF signal, a wobbled signal, an LPP signal representing a pit sequence recorded on a recording track of the optical disc 1, and an error signal (focus error signal, tracking error signal) required for servo control. Signal, thread error signal, etc.).
  • the modulation / demodulation unit 14 demodulates and decodes the RF signal generated by the preamplifier 13 to generate a reproduction data sequence.
  • the reproduction data string generated by the modulation / demodulation unit 14 is transferred to a host device provided with the optical disk drive 10 via an interface 18.
  • the modulation / demodulation unit 14 receives the recording data transferred from the host device provided with the optical disk drive 10 via the interface 18.
  • the modulation / demodulation unit 14 converts the input recording data sequence into a recording signal by encoding and modulating the recording data sequence.
  • the recording signal generated by the modem 14 is supplied to a laser controller 15.
  • the laser control unit 15 controls the power of the laser light emitted from the optical head device 11.
  • the laser control unit 15 stabilizes the laser power to a predetermined value. Further, at the time of recording, the laser control unit 15 causes a laser beam to be emitted according to a predetermined write strategy in accordance with the recording signal input from the modulation / demodulation unit 14.
  • the servo control unit 16 Based on the error signal generated by the preamplifier 13 and the control signal from the system controller 17, the servo control unit 16 performs focusing control, tracking control, thread control and skew (tilt) control of the disk recording / reproducing apparatus 1. Controls the rotation speed of the spindle motor 12, and so on.
  • the system controller 17 controls each circuit of the disk drive 10. In addition, the system controller 17 also generates a clock, address information, and the like using the double signal or the LPP signal generated by the preamplifier 13 during recording and reproduction. The system controller 17 controls data write and read positions on the optical disk 1 based on the reproduced address information.
  • the system controller 17 generates a coefficient t, which is a value used when the optical head device 11 generates the radial push-pull signal R-PP.
  • the system controller 17 supplies the calculated coefficient t to the optical head device 11. The method for calculating the coefficient t will be described later. (Optical head device)
  • optical head device 11 Next, the optical head device 11 will be further described.
  • the optical head device 11 emits a laser beam to the optical disc 1 to record information on the optical disc 1, detects return light reflected from the optical disc 1 and returns, and receives the return light. Then, various electrical detection signals (detector signals A-D and radial push-pull signal R-PP) are generated.
  • the optical head device 11 includes a laser diode 21, a collimator lens 22, a polarizing beam splitter 23, a 1Z4 wavelength plate 24, an objective lens 25, and a photodetector 26. .
  • the laser diode 21 is a laser emission source that emits laser light to the optical disc 1.
  • the power of the laser light emitted from the laser diode 21 is controlled by the laser control unit 15 described above.
  • the laser light emitted from the laser diode 21 passes through the collimator lens 22, the polarizing beam splitter 23, the 1Z4 wavelength plate 24, and the objective lens 25 in this order, and is irradiated on the optical disc 1.
  • the collimator lens 22 shapes the incident laser light into a parallel light.
  • the polarization beam splitter 23 separates the incident laser light into an S-polarized light component and a P-polarized light component on the light separation surface 23a. Only the P-polarized light component transmitted through the polarizing beam splitter 23 is incident on the 1Z4 wavelength plate 24, and converts the P-polarized laser light into rotationally polarized light.
  • the objective lens 25 converges the incident laser light as parallel light and irradiates the laser light on the recording surface of the optical disc 1.
  • the objective lens 25 is held by a two-axis actuator driven by the servo control circuit 16.
  • the servo control circuit 16 controls the objective lens 15 to perform force control and tracking control of the laser light focusing position.
  • the laser beam applied to the optical disc 1 is reflected according to the optical characteristics of the recording surface of the optical disc 1.
  • the laser light (also referred to as return light) reflected by the optical disk 1 returns to the same optical path as the incident optical path up to the objective lens 24 and the polarization beam splitter 23. That is, the return light from the optical disk 1 passes through the objective lens 25 and the 1Z4 wavelength plate 24 and is irradiated on the polarization beam splitter 23. 1Z4 wave plate 24 is used for rotating optical disk 1 Is converted into linearly polarized light. Therefore, the S-polarized return light is incident on the light separation surface 23a of the polarization beam splitter 23.
  • the polarizing beam splitter 23 reflects the S-polarized return light on the light separation surface 23a.
  • the return light reflected by the polarization beam splitter 23 enters the photodetector 26.
  • the photodetector 26 receives the return light reflected by the optical disc 1, receives the incident light, and converts the received light into an electric signal corresponding to the amount of light. At the same time, the photodetector 26 generates and outputs various detection signals (A, B, C, D, and R-PP) from the electric signals.
  • the photodetector 26 has these functions packaged in one semiconductor device. Hereinafter, a specific configuration of the photodetector 26 will be described in more detail.
  • FIG. 9 is a diagram illustrating the internal configuration of the photodetector 26.
  • the photodetector 26 includes a four-segment photodetector 30, as shown in FIG. 9B.
  • the quadrant photodetector 30 is a photoelectric conversion element having a substantially square light-receiving surface, and is irradiated with return light reflected from the optical disc 1.
  • the recording tracks (groups) become just focus and just tracks!
  • spots corresponding to the spot L and the spot L on the light receiving surface of the four-segment photodetector 30! Is formed.
  • the four-part photodetector 30 is divided into two parts in a direction optically corresponding to the radial direction of the optical disk 1 (that is, a direction from the center of the disk toward the outer periphery), and the tangential direction of the optical disk 1 (that is, the recording direction). (Parallel to the track) optically divided into two directions. That is, the four-divided photodetector 30 is divided into four in a cross shape in the radial direction and the tangential direction. Each of these photodetectors performs photoelectric conversion independently and outputs an independent detection signal. That is, each of these photodetectors independently outputs a current corresponding to the amount of light irradiated.
  • the four-divided photodetector 30 is divided into four parts: a first photodetector 30A, a second photodetector 30B, a third photodetector 30C, and a fourth photodetector 30D.
  • the first photodetector 30A is located on the front side along the recording direction when divided in the tangential direction and on the outer peripheral side when divided in the radial direction.
  • the second photodetector 30B is located on the front side along the recording direction when divided in the tangential direction, and on the inner peripheral side when divided in the radial direction.
  • the third photodetector 30C is located on the rear side along the recording direction when divided in the tangential direction and on the inner peripheral side when divided in the radial direction.
  • the fourth photodetector 30C is located on the rear side along the recording direction when divided in the tangential direction and on the outer peripheral side when divided in the radial direction.
  • the photodetector 26 includes a first current-voltage conversion circuit 31A, a second current-voltage conversion circuit 31B, a third current-voltage conversion circuit 31C, and a fourth current-voltage conversion circuit 31D. ing.
  • the first current-voltage conversion circuit 31A converts the current output from the first photodetector 30A into a voltage signal A, that is, generates a voltage signal A corresponding to the amount of light irradiated on the first photodetector 30A. .
  • the second current-voltage conversion circuit 31B converts the current output from the second photodetector 30B into a voltage signal B, that is, generates a voltage signal B corresponding to the amount of light irradiated on the second photodetector 30B. I do.
  • the third current-voltage conversion circuit 31C converts the current output from the third photodetector 30C into a voltage signal C, that is, generates a voltage signal C corresponding to the amount of light irradiated on the third photodetector 30C. .
  • the fourth current-voltage conversion circuit 31D converts the current output from the fourth photodetector 30D into a voltage signal D, that is, generates a voltage signal D corresponding to the amount of light irradiated on the fourth photodetector 30D. .
  • the voltage signals A to D generated by the first to fourth current-to-voltage conversion circuits 31A to 31D are output to the preamplifier 13 as detector signals (A to D) via output terminals 32A to 32D.
  • the preamplifier 13 sums up all of these detector signals (A-D) to generate, for example, an RF signal, or calculates the radial push-pull component ((A + D)-(B + C)) to calculate the tracking error. It generates signals and calculates diagonal differential signals (A + C-(B + D)) to generate focus error signals.
  • the photodetector 26 includes a push-pull signal generator 33.
  • Push-pull The signal generation unit 33 generates a radial push-pull signal (R-PP) used for calculating the wobble signal and the LPP signal.
  • R-PP radial push-pull signal
  • the radial push-pull signal (R-PP) is the total light amount (A + D) of the photodetectors A and D on one side (here, the outer circumference side) when divided in the radial direction.
  • This signal is a signal indicating a differential component from the total light amount (B + C) of the photodetectors B and C on the other side (here, the inner side).
  • the radial push-pull signal (R-PP) contains the signal recorded at the boundary (edge) of the recording track. That is, the wobble signal component and the LPP signal component are included in the radial push-pull signal (R-PP).
  • the push-pull signal generation unit 33 includes a first adder 41, a second adder 42, a multiplier 43, and a subtractor 44.
  • the push-pull signal generator 33 receives the voltage signals A to D output from the first to fourth current-to-voltage converters 31A to 31D. Further, the coefficient t is input to the push-pull signal generation unit 33 from the system controller 17 provided outside the photodetector 26.
  • the first adder 41 receives the voltage signal A and the voltage signal D and adds them to generate a signal (A + D). That is, the first adder 41 generates a signal indicating the amount of light emitted to the outer peripheral side photodetectors (30A, 30D) when the four-divided photodetector 30 is divided into two in the radial direction! You.
  • the second adder 42 receives the voltage signal B and the voltage signal C and adds them to generate a signal (B + C). That is, the second adder 42 generates a signal indicating the amount of light emitted to the inner peripheral side photodetectors (30B, 30C) when the four-divided photodetector 30 is divided into two in the radial direction! RU
  • the multiplier 43 multiplies the signal (B + C) generated by the second adder 42 by a coefficient t input from the outside to generate a signal (tX (B + C)). I do.
  • the subtractor 44 subtracts the signal (t X (B + C)) generated by the multiplier 43 from the signal (A + D) generated by the first adder 41, and outputs the signal ((A + D) — generate t X (B + C))
  • the push-pull signal generator 33 outputs the signal generated by the subtractor 44 as a radial push-pull signal (R-PP).
  • the radial push-pull signal ((A + D) —tX (B + C)) is supplied to the preamplifier 13 via the terminal.
  • the radial push-pull signal (R-PP) obtained as described above is used by the preamplifier 13 for calculation of the wobble signal and the LPP signal.
  • the relationship between the spot L on the recording track and the spot formed on the four-segment photodetector 30 is such that the center of the spot L is located at the center of the recording track as shown in FIG. If so, the corresponding spot! It is desirable that the center of the detector is also located at the center of the detector. Also, spots formed on the 4-split photodetector 30! It is desirable that the center of the light receiving surface is symmetrical and the light amount distribution in the radial direction is equal.
  • the coefficient t is set to a value that corrects these deviations.
  • the system controller 17 calculates the coefficient t as follows.
  • the system controller 17 detects the (A + D) signal and the (B + C) signal from the preamplifier 13 at the time of initial operation such as when the optical disc 1 is mounted or when power is turned on. In other words, it indicates the total amount of light (A + D) applied to the outer photodetectors (30A, 30D) and the total amount of light (B + C) applied to the inner photodetectors (30B, 30C). A signal is detected from the preamplifier 13. Subsequently, a ratio ((B + C) Z (A + D)) of the two signals is calculated.
  • the system controller 17 multiplies the calculated ratio ((B + C) Z (A + D)) by To the value corresponding to the multiplier 43 (for example, if the multiplier 43 changes the gain by switching the resistance, the value is used to select a switch), and the value obtained by this conversion is used as the coefficient t. .
  • the system controller 17 supplies the obtained coefficient t to the light detecting device 26 in the optical head device 11, and corrects the radial push-pull signal ((A + D) —t X (B + C )) Is output.
  • the coefficient t is calculated and set by the system controller 17, but a circuit for calculating the signal ratio ((B + C) Z (A + D)) is provided in the photodetector 26.
  • the coefficient t may be set in the photodetector 26.
  • the preamplifier 13 when reproducing or recording data on the optical disk 1, the preamplifier 13 extracts a radial push-pull signal and a wobble signal and an LPP signal.
  • the preamplifier 13 receives the radial push-pull signal (R-PP: ((A + D) —tX (B + C))) output from the optical head device 11. Then, band-pass filtering is performed on this signal (R-PP) to generate a wobble signal and an LPP signal. The preamplifier 13 supplies the generated wobble signal and LPP signal to the system controller 17.
  • R-PP radial push-pull signal
  • the system controller 17 performs clock generation, address calculation processing, and the like based on the wobble signal and the LPP signal.
  • system controller 17 may finely adjust the coefficient t according to the error rate for the wobble signal and the LPP signal.
  • an error detection code of the wobble signal or the LPP signal is calculated, and the error rate of the wobble signal or the LPP signal is calculated. Then, during the recording operation in which the fluctuation of the radial push-pull signal becomes large, the system controller 17 finely adjusts the coefficient t so that the error rate becomes as small as possible. That is, the system controller 17 monitors the error rate of the wobble signal or the LPP signal during the recording operation, and finely adjusts the coefficient t so as to minimize the error rate. By adjusting the coefficient t during recording in this way, a radial push-pull signal can be generated more accurately.
  • the optical disk drive 10 generates the corrected radial push-pull signal ((A + D) -tX (B + C)) in the optical head device 11.
  • the offset of the radial push-pull signal becomes very small.
  • the difference between the offset at the time of writing and the offset at the time of bias is also very small, so that ringing does not occur in the radial push-pull signal (R-PP) and the slew rate does not deteriorate.
  • the optical disk drive 10 can accurately detect the wobble signal and the LPP signal.
  • optical disk drive 50 which is a modification of the optical disk drive 10 will be described.
  • the same components as those of the optical disk drive 10 are denoted by the same reference numerals in the drawings, and a detailed description thereof will be omitted.
  • FIG. 13 shows the overall block configuration of the optical disk drive 50.
  • the optical disc drive 50 is a device that records or reproduces digital information on the recordable optical disc 1.
  • the optical disk drive 50 includes an optical head device 51, a spin-dowel motor 12, a preamplifier 52, a modulation / demodulation unit 14, a laser control unit 15, a servo control unit 16, a system controller 53, and an interface 18. ing.
  • the optical head device 51 emits laser light to the optical disk 1 to record information, and detects return light that is reflected by the laser light emitted from the optical disk 1 and returns. Light is received to generate various electrical detection signals (detector signals A-D, radial push-pull signal R-PP, first correction signal WPP1, and second correction signal WPP2).
  • the preamplifier 52 generates an RF signal, a wobble signal, an LPP signal, and an error signal based on the detection signals (AD, R-PP, WPPI, WPP2) output from the optical head device 51.
  • the system controller 53 controls each circuit of the optical disk drive 50. Further, the system controller 53 also generates a clock, address information, and the like based on the power of the wobble signal or the LPP signal generated by the preamplifier 52 during recording and reproduction. The system controller 53 controls data write and read positions on the optical disk 1 based on the reproduced address information.
  • the system controller 53 generates a coefficient t which is a value used when the optical head device 51 generates the radial push-pull signal R-PP.
  • the system controller 53 supplies the calculated coefficient t to the optical head device 51.
  • the system controller 53 generates a coefficient ⁇ which is a value used when generating WPP1 and WPP2.
  • the system controller 53 supplies the calculated coefficient t to the optical head device 51. The method of calculating the coefficient t and the coefficient ⁇ will be described later.
  • the optical head device 51 includes a laser diode 21, a collimator lens 22, a polarizing beam splitter 23, a 1Z4 wavelength plate 24, an objective lens 25, and a photodetector 54. .
  • the photodetector 54 receives the return light reflected by the optical disc 1, receives the incident light, and converts the received light into an electric signal corresponding to the amount of light. At the same time, the photodetector 54 generates and outputs various detection signals (A, ⁇ , C, D, R-PP, WPP1, WPP2) from the electric signal.
  • the photodetector 54 is packaged in a semiconductor device having these functions. Hereinafter, a specific configuration of the photodetector 54 will be described in more detail.
  • FIG. 15 is a diagram for explaining the internal configuration of the photodetector 54.
  • the photodetector 54 includes a four-division photodetector 30, a first current-to-voltage conversion circuit 31A, a second current-to-voltage conversion circuit 31B, and a third current-to-voltage conversion circuit 31C. And a fourth current-voltage conversion circuit 31D.
  • the light detection device 54 includes a push-pull signal generation unit 55.
  • the push-pull signal generation unit 55 generates a radial push-pull signal (R-PP) used for calculating a wobble signal and an LPP signal, and two correction signals (WPP1, WPP2).
  • R-PP radial push-pull signal
  • WPP1, WPP2 two correction signals
  • the first correction signal (WPP1) is a signal indicating the total light amount (A + D) of the photodetectors A and D on one side (here, the outer peripheral side) when divided in the radial direction into two parts.
  • a signal ((A + D) Z ⁇ ) obtained by dividing the coefficient OC indicating the recording speed of the optical disc 1 or the laser power of the laser beam.
  • the second correction signal (WPP2) is a signal indicating the total light amount (B + C) of the photodetectors ⁇ and C on the other side (here, the inner circumference side) when divided into two in the radial direction. This is a coefficient (signal obtained by dividing X (( ⁇ + C) ⁇ )) indicating the recording speed of the optical disc 1 or the laser power of the laser beam.
  • the push-pull signal generator 55 includes a first adder 61, a second adder 62, a first multiplier 63, a second multiplier 64, and a third multiplier. 65 and a subtractor 66.
  • the push-pull signal generator 55 receives the voltage signals ⁇ -D output from the first to fourth current-to-voltage converters 31A-31D. Further, the coefficient t and the coefficient ⁇ are input to the push-pull signal generation unit 55 from the system controller 17 provided outside the photodetector 54.
  • the first adder 61 receives the voltage signal ⁇ and the voltage signal D, adds them, and generates a signal (A + D). That is, the first adder 61 generates a signal indicating the amount of light emitted to the outer-side photodetectors (30A, 30D) when the 4-split photodetector 30 is split into two in the radial direction! You.
  • the second adder 62 receives the voltage signal B and the voltage signal C, adds them, and generates a signal (B + C). That is, the second adder 62 controls the four-divided photodetector 30 Generates a signal indicating the amount of light applied to the inner photodetectors (30B, 30C) when divided in two in the radial direction.
  • the first multiplier 63 divides the signal (A + D) generated by the first adder 61 by a coefficient (X) input from the outside to generate a signal ((A + D) Z ⁇ ) Is generated.
  • the second multiplier 64 divides the signal (B + C) generated by the second adder 62 by a coefficient (X) input from the outside to generate a signal ((B + C) ⁇ ) Is generated.
  • the push-pull signal generator 55 outputs the signal generated by the first multiplier 63 as a first correction signal (WPP1).
  • the first correction signal (WPP1) is supplied to the preamplifier 52 via the terminal 67.
  • the push-pull signal generator 55 outputs the signal generated by the second multiplier 64 as a second correction signal (WPP2).
  • the second correction signal (WPP 2) is supplied to the preamplifier 52 via the terminal 68.
  • the third multiplier 65 multiplies the second correction signal (WPP2) generated by the second multiplier 64 by a coefficient t to which an external force is also input, to generate a signal (tX (WPP2)).
  • the subtractor 66 subtracts the signal (t X (WPP1)) generated by the third multiplier 65 from the first correction signal (WPP1) generated by the first multiplier 63, and outputs the signal (WPP1 -Generate t XWPP 2).
  • the push-pull signal generator 55 outputs the signal generated by the subtractor 66 as a radial push-pull signal (R-PP).
  • the radial push-pull signal (WPP1—tXWPP2) is supplied to the preamplifier 52 via the terminal 69.
  • the first correction signal (WPP1), the second correction signal (WPP2), and the radial push-pull signal (R-PP) obtained as described above are used for calculation of a wobble signal and an LPP signal.
  • the coefficient t corresponds to the ratio between the first correction signal (WPP1) and the second correction signal (WPP2) when the spot L having an ideal light amount distribution is irradiated at the center of the recording track.
  • the value is set to the coefficient t.
  • the system controller 17 sets the coefficient t as follows. First, the system controller 17 detects a first correction signal (WPP1) signal and a second correction signal (WPP2) signal from the preamplifier 52 during an initial operation such as when the optical disc 1 is mounted or when power is turned on. Subsequently, the ratio of these two signals ((WPP2) Z (WPP1)) is calculated. Then, the system controller 17 compares the calculated ratio ((WPP2) Z (WPP1)) with a value corresponding to the third multiplier 65 (for example, the third multiplier 65 changes the gain by switching the resistance. If it is a method, it is converted to a value for selecting a switch), and the value obtained by this conversion is used as a coefficient t.
  • WPP1 first correction signal
  • WPP2 second correction signal
  • the system controller 17 supplies the obtained coefficient t to the photodetector 54 in the optical head device 51, and causes the photodetector 54 to output a corrected radial push-pull signal (WPP1-tXWPP2).
  • the coefficient ⁇ is a value indicating the recording speed of the optical disc 1 or the power of the laser beam emitted from the optical head device 11.
  • the photodetector 54 corrects the radial push-pull signal (R- ⁇ ) by using a coefficient ⁇ corresponding to the recording speed of the optical disc 1 or the power of the laser beam emitted from the optical head device 11. Te ru.
  • the system controller 17 detects the current speed of the optical disc 1 or the power of the laser beam set according to the speed. Then, the detected value is converted to a value corresponding to the first multiplier 63 and the second multiplier 64 (for example, in the case of changing the gain by switching the resistance, a value for selecting a switch). And convert the value obtained by this conversion into a coefficient.
  • the system controller 17 supplies the obtained coefficient ⁇ to the photodetector 54 in the optical head device 51, and outputs the first correction signal (WPP1) and the second correction signal (W ⁇ 2) from the photodetector 54. Let it.
  • the first and second correction signals (WPP1, WPP2) and the radial push-pull signal ((WPP1) —tX (WPP2)) are generated in the optical head device 51. .
  • the optical disk drive 50 as in the optical disk drive 10, ringing does not occur in the radial push-pull signal (R-PP) and the slew rate does not deteriorate.
  • the signal can be detected.
  • the radial push-pull signal is corrected in the photodetector 54 according to the recording speed or the laser power. Are always output at the same level.
  • the optical disk drive 50 generates a radial push-pull signal (R-PP) based on the first and second correction signals (WPP1, WPP2).
  • R-PP radial push-pull signal
  • WPP1, WPP2 first and second correction signals
  • a + D The radial push-pull signal may be generated by t X (B + C), and only the calculation of the coefficient t may be performed using the first and second correction signals (WPP1, WPP2).

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Head (AREA)

Abstract

 光学ヘッド装置内のフォトディテクタICは、4分割フォトディテクタ30と、プッシュプル信号生成部(33)とを備えている。プッシュプル信号生成部(33)は、外周側のフォトディテクタの合計信号(A+D)と、内周側のフォトディテクタの合計信号(B+C)とを生成する。続いて、合計信号(B+C)に外部から入力された係数tを乗算したのち、減算器によって((A+D)−t×(B+C))を生成し、この信号をラジアルプッシュプル信号(R-PP)として出力する。係数tは、外周側フォトディテクタの光量と内周側フォトディテクタの光量の比に対応した値である。

Description

光ディスク装置の光学ヘッド及びその光検出装置
技術分野
[0001] 本発明は、光ディスクの記録再生用の光学ヘッド装置 (光学ピックアップ)内に用い られる光検出装置に関するものである。
本出願は、日本国において 2004年 3月 4日に出願された日本特許出願番号 2004 061421を基礎として優先権を主張するものであり、これらの出願は参照することに より、本出願に援用される。
背景技術
[0002] 記録型光ディスクとして、相変化膜等を利用した 、わゆる光ディスクが知られて!/、る これらの記録型光ディスクには、ディスク内にらせん状のランド及びグループが形成 されており、そのうちのグループがデータを記録する記録トラックとなっている。
また、これらの記録型光ディスクには、記録トラック(グループ)上にデータが記録可 能とされている他に、図 1に示すように、記録トラックのエッジ部分 (グループとの境界 部分)にゥォブル信号や LPP (Land Pre Pit)信号が予め記録されている。
ゥォブル信号とは、ランド及びグループの境界部分を一定周期で蛇行させることに より記録された信号である。蛇行形状は、ディスクを CLV (Constant Linear Velocity) や CAV (Constant Angler Velocity)で再生した場合に一定周期となるように形成され ており、このため、ゥォブル信号はクロックとして用いられる。また、その蛇行周波数に 対してアドレス等が変調されている場合もあり、この場合にはゥォブル信号がアドレス 情報としても用いられる。
LPP信号は、ランドの一部分にピットが形成されることにより記録された信号である。 LPP信号は、形成されたピット列がアドレスを示しており、再生した信号がアドレス情 報として用いられる。
ゥォブル信号及び LPP信号は、記録トラック(グループ)に照射したレーザ光の戻り 光力も検出される。記録トラック(グループ)に照射したレーザ光の戻り光のうち、ゥォ ブル信号成分及び LPP信号成分は、当該戻り光のラジアル方向のプッシュプル成 分 (差動成分)に含まれて!/ヽる。
具体的には、記録トラック(グループ)に照射したメインレーザ光は、図 2に示すよう な、 4分割フォトディテクタ 101により検出される。 4分割フォトディテクタ 101は、光デ イスクのラジアル方向に対応した方向に 2分割されて 、るとともに、タンジェンシャル 方向に対応した方向に 2分割されている。すなわち、十字型に 4分割されている。ゥォ ブル信号及び LPP信号は、ラジアル方向に 2分割したときの一方側(例えば外周側) のフォトディテクタ A, Dの合計光量 (A+D)と、他方側(例えば内周側)のフォトディ テクタ B, Cの合計光量 (B + C)との差動成分( (A+ D)— (B + C) )に含まれて 、る。 以下、この差動成分を示す信号((A+D)— (B + C) )を、ラジアルプッシュプル信号 という。
このようなゥォブル信号及び LPP信号は、記録トラック力 データを再生して 、る最 中に読み出すのはもちろんのこと、データを記録して 、る最中にも読み出さなければ ならない。
データ記録中にゥォブル信号又は LPP信号を検出するには、記録のため出射した レーザ光の反射光を検出して、ラジアルプッシュプル信号を生成する。
相変化ディスク等のディスクでは、レーザ光をパルス出射をすることにより、ピットの 書き込みが行われる。従って、記録時には、記録トラックにピットを形成しているタイミ ング (書き込み時)と、ピットを形成して ヽな 、タイミング (バイアス時)とが存在すること となり、このことから、記録時における戻り光は、図 3に示すように、書き込み時のレべ ル(ピットレベル)が大きくなり、バイアス時のレベル(リードレベル)が小さくなる。 このため、記録中においてゥォブル信号や LPP信号を検出する場合には、書き込 み時とバイアス時との戻り光の光量変化を充分考慮した信号処理を行わなければな らない。
ところで、光ディスク上に照射されている光スポットが記録トラックの中心に照射され ているとしても、光学系や機械的な誤差等のために、図 4のように、戻り光の光スポッ トの中心が、 4分割フォトディテクタ 101の中心位置と一致しな ヽ場合がある。
また、 4分割フォトディテクタ 101上に照射された光スポットの中心に対して、光量分 布が対称とならず歪んでしまう場合もある。 そのため、 4分割フォトディテクタ 101をラジアル方向に分割したときの外周側ディテ クタ (A+D)の総光量を時間平均したときの値と、内周側ディテクタ (B + C)の総光 量を時間平均したときの値が異なり、ラジアルプッシュプル信号 (A+D— (B+C) )に オフセットが加わってしまう。
さらに、記録中に出射されるレーザ光は、書き込み時とバイアス時とで大きなパワー の差がある。そのため、図 5に示すように、書き込み時におけるラジアルプッシュプル 信号のオフセット E (つまり、書き込み時におけるピットレベルの差)と、バイアス時に おけるラジアルプッシュプル信号のオフセット E (つまり、バイアス時におけるリードレ
2
ベルの差)との間にも、大きなレベル差が生じてしまう。すなわち、図 6に示すように、 ラジアルプッシュプル信号のオフセットが時間変動してしまう。
このオフセットの変動は、 4分割フォトディテクタの検出信号 (A,B,C,D等)を後段回 路に伝送したときにおけるリンギングの発生ゃスリューレートの悪ィ匕につながり、その 結果、ラジアルプッシュプル信号カゝら生成されるゥォブルや LPP信号の再生特性が 悪化する。
特に、光ディスクに対して高倍速記録を行った場合には、このような問題が顕著に 表れてしまう。
発明の開示
発明が解決しょうとする課題
本発明の目的は、フォトディテクタと戻り光との相対位置が例えばラジアル方向に位 置ずれする、若しくは、戻り光に差異がある等の理由で電気信号に差異が生じてい たとしても、記録時において、ラジアルプッシュプル信号に含まれている信号(ゥォブ ル信号やランドプリピット信号等)を特性良く再生することができる光ディスク装置、光 学ヘッド装置、並びに、光学ヘッド用の光検出装置を提供することを目的とする。 本発明に係る光ディスク装置は、光ディスクに対して情報の記録を行う光ディスク装 置において、上記光ディスクに対してレーザ光を出射するレーザ発光装置と、出射し たレーザ光の戻り光が照射され、照射された戻り光に応じて上記光ディスクから得ら れる情報成分が含まれた電気信号を生成する光検出装置とを有する光学ヘッド装置 と、上記光学ヘッド装置から出力された電気信号に応じて、上記光ディスクに記録さ れている信号の再生及び上記光ディスクに対する記録制御を行う信号処理回路とを 備え、上記光検出装置は、上記光ディスクのラジアル方向に対応した方向に少なくと も 2分割されて ヽる光電変換素子と、上記光ディスクのラジアル方向に対応した方向 に 2分割されたうちの一方側の光電変換素子により生成された電気信号に対して係 数 tを乗算する乗算回路と、上記光ディスクのラジアル方向に対応した方向に 2分割 されたうちの他方側の光電変換素子により生成された電気信号と、上記乗算回路か ら出力された電気信号との差を算出して、ラジアルプッシュプル信号を生成する差分 回路とを有し、上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光 の光量と、上記他方側の光電変換素子に対して照射される戻り光の光量との比に対 応した値に設定されて 、ることを特徴とする。
本発明に係る光学ヘッド用の光検出装置は、光ディスクに対して信号の記録及び 再生を行うために当該光ディスクに対してレーザ光を出射する光学ヘッド装置内に 設けられる光検出装置において、上記光ディスクのラジアル方向に対応した方向に 少なくとも 2分割されて ヽる光電変換素子と、上記光ディスクのラジアル方向に対応し た方向に 2分割されたうちの一方側の光電変換素子により生成された電気信号に対 して係数 tを乗算する乗算回路と、上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの他方側の光電変換素子により生成された電気信号と、上記乗算 回路から出力された電気信号との差を算出して、ラジアルプッシュプル信号を生成す る差分回路と有し、上記係数 tは、上記一方側の光電変換素子に対して照射される 戻り光の光量と、上記他方側の光電変換素子に対して照射される戻り光の光量との 比に対応した値に設定されていることを特徴とする。
本発明に係る光学ヘッド装置は、上記光ディスクに対してレーザ光を出射するレー ザ発光装置と、出射したレーザ光の戻り光が照射され、照射された戻り光に応じて上 記光ディスクから得られる情報成分が含まれた電気信号を生成する光検出装置と備 え、上記光検出装置は、上記光ディスクのラジアル方向に対応した方向に少なくとも 2分割されて ヽる光電変換素子と、上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの一方側の光電変換素子により生成された電気信号に対して係数 t を乗算する乗算回路と、上記光ディスクのラジアル方向に対応した方向に 2分割され たうちの他方側の光電変換素子により生成された電気信号と、上記乗算回路から出 力された電気信号との差を算出して、ラジアルプッシュプル信号を生成する差分回 路とを有し、上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の 光量と、上記他方側の光電変換素子に対して照射される戻り光の光量との比に対応 した値に設定されて 、ることを特徴とする。
図面の簡単な説明
[図 1]図 1は、ゥォブル信号及び PLL信号を説明するための図である。
[図 2]図 2は、 4分割フォトディテクタを示す図である。
[図 3]図 3は、記録時における戻り光の光量を説明するための図である。
[図 4]図 4は、 4分割フォトディテクタと光スポットとの位置ずれを説明するための図で ある。
[図 5]図 5は、書き込み時におけるラジアルプッシュプル信号のオフセットと、ノィァス 時におけるラジアルプッシュプル信号のオフセットを説明するための図である。
[図 6]図 6は、ラジアルプッシュプル信号のオフセットが時間変動にっ 、て説明するた めの図である。
[図 7]図 7は、本発明を適用した光ディスクドライブのブロック構成図である。
[図 8]図 8は、上記光ディスクドライブ内の光学ヘッド装置の構成を示す図である。
[図 9]図 9A及び図 9Bは、上記光学ヘッド装置内の光検出装置の構成を示す図であ る。
[図 10]図 10は、外周側フォトディテクタの光量を示す信号 (A+D)及び内周側フォト ディテクタの光量を示す信号 (B+C)を示す図である。
[図 11]図 11は、外周側フォトディテクタの光量を示す信号 (A+D)及び内周側フォト ディテクタの光量を示す補正した信号 (t X (B + C) )を示す図である。
[図 12]図 12は、上記光学ヘッド装置により検出されたラジアルプッシュプル信号を示 す図である。
[図 13]図 13は、本発明を適用した他の光ディスクドライブのブロック構成図である。
[図 14]図 14は、上記他の光ディスクドライブ内の光学ヘッド装置の構成を示す図であ る。 [図 15]図 15A及び図 15Bは、上記他の光ディスクドライブのヘッド装置内の光検出 装置の構成を示す図である。
発明を実施するための最良の形態
第 1の光ディスクドライブ
本発明を適用した第 1の光ディスクドライブについて説明をする。
(光ディスクドライブの全体構成)
本発明を適用した光ディスクドライブ 10の全体ブロック構成を図 7に示す。
光ディスクドライブ 10は、相変化光ディスク又は追記型光ディスクである記録可能な 光ディスク(DVD- R,DVD- RW,DVD+R,DVD+RW,DVD- RAM)に対して情報の記録 又は再生を行う装置である。
光ディスク 1は、ディスク内にらせん状のランド及びグループが形成されており、その うちのグループが記録トラックとなっている。光ディスク 1には、記録トラック(グループ) 上にデータが記録可能とされている他に、記録トラックの境界部分にゥォブル信号及 び LPP信号が予め記録されている。なお、本例では、光ディスク 1は、 DVDディスクと しているが、本発明は DVDに限られず、ゥォブル信号及び LPP信号が設けられてい る光ディスクであればどのようなディスクであってもよい。
光ディスクドライブ 10は、光学ヘッド装置 11と、スピンドルモータ 12と、プリアンプ 1 3と、変復調部 14と、レーザ制御部 15と、サーボ制御部 16と、システムコントローラ 1 7と、インタフェース 18とを備えている。
光学ヘッド装置 11は、光ディスク 1に対してレーザ光を出射して情報を記録するとと もに、光ディスク 1に出射したレーザ光が当該光ディスク力も反射して戻ってくる戻り 光を検出し、当該戻り光を受光して各種の電気的な検出信号 (ディテクタ信号 A— D 及びラジアルプッシュプル信号 R-PP)を生成する。なお、光学ヘッド装置 11の内部 の詳細や検出信号 (A— D, R-PP)の詳細については、後述する。また、光学ヘッド 装置 11は、光学ピックアップとも呼ばれるが、ここでは光学ヘッド装置と呼ぶ。
スピンドルモータ 12は、光ディスク 1を保持するとともに、記録再生時のために光デ イスク 1を回転させる。
プリアンプ 13は、光学ヘッド装置 11から出力された検出信号 (A— D, R-PP)に基 づき、再生信号や誤差信号等を生成する。具体的には、プリアンプ 13は、光ディスク 1の記録トラックに記録されて ヽるピット列を表す RF信号、ゥォブル信号及び LPP信 号、サーボ制御に必要となる誤差信号 (フォーカスエラー信号、トラッキングエラー信 号、スレッドエラー信号等)を生成する。
変復調部 14は、再生時には、プリアンプ 13により生成された RF信号を復調及び復 号し、再生データ列を生成する。変復調部 14により生成された再生データ列は、イン タフエース 18を介して当該光ディスクドライブ 10が設けられたホスト機器に転送され る。また、変復調部 14は、記録時には、当該光ディスクドライブ 10が設けられたホスト 機器からインタフェース 18を介して転送された記録データが入力される。変復調部 1 4は、入力された記録データ列を符号ィ匕及び変調することにより、記録信号に変換す る。変復調部 14により生成された記録信号は、レーザ制御部 15に供給される。 レーザ制御部 15は、光学ヘッド装置 11から出射されるレーザ光のパワーを制御す る。レーザ制御部 15は、再生時には、レーザパワーを所定の値に安定ィ匕させる。ま た、レーザ制御部 15は、記録時には、変復調部 14から入力された記録信号に応じ て、所定のライトストラテジーに従ってレーザ光をパルス出射させる。
サーボ制御部 16は、プリアンプ 13により生成された誤差信号及びシステムコント口 ーラ 17からの制御信号に基づき、ディスク記録再生装置 1のフォーカシング制御、ト ラッキング制御、スレッド制御及びスキュー(チルト)制御、スピンドルモータ 12の回転 速度制御等を行う。
システムコントローラ 17は、当該ディスクドライブ 10の各回路の制御を行う。また、シ ステムコントローラ 17は、記録時及び再生時に、プリアンプ 13により生成されたゥォブ ル信号又は LPP信号力もクロックやアドレス情報等を生成する。システムコントローラ 17は、再生したアドレス情報に基づき、光ディスク 1に対するデータの書き込み及び 読み出し位置を制御する。
さらに、システムコントローラ 17は、光学ヘッド装置 11がラジアルプッシュプル信号 R-PPを生成する際に用 、る値である係数 tを生成する。システムコントローラ 17は、 算出した係数 tを光学ヘッド装置 11に供給する。なお、この係数 tの算出方法につい ては後述する。 (光学ヘッド装置)
つぎに、光学ヘッド装置 11についてさらに説明をする。
光学ヘッド装置 11は、光ディスク 1に対してレーザ光を出射して当該光ディスク 1に 対して情報を記録するとともに、当該光ディスク 1から反射して戻ってくる戻り光を検 出し、当該戻り光を受光して各種の電気的な検出信号 (ディテクタ信号 A— D及びラ ジアルプッシュプル信号 R-PP)を生成するものである。
光学ヘッド装置 11は、図 8に示すように、レーザダイオード 21と、コリメータレンズ 2 2と、偏光ビームスプリッタ 23と、 1Z4波長板 24と、対物レンズ 25と、光検出装置 26 とを備えている。
レーザダイオード 21は、光ディスク 1に対してレーザ光を出射するレーザ発光源で ある。レーザダイオード 21から出射されるレーザ光のパワーは、上述したレーザ制御 部 15により制御される。
レーザダイオード 21から出射されたレーザ光は、コリメータレンズ 22、偏光ビームス プリッタ 23、 1Z4波長板 24及び対物レンズ 25を順番に透過して、光ディスク 1に照 射される。
コリメータレンズ 22は、入射されたレーザ光を平行光に波形成形する。偏光ビーム スプリッタ 23は、入射されたレーザ光を、光分離面 23aで S偏光成分と P偏光成分と に分離する。 1Z4波長板 24には、偏光ビームスプリッタ 23を透過した P偏光成分だ けが入射され、 P偏光のレーザ光を回転偏光に変換する。対物レンズ 25は、平行光 として入射されたレーザ光を集光して、光ディスク 1の記録面上に照射する。対物レン ズ 25は、サーボ制御回路 16から駆動される 2軸ァクチユエータにより保持されている 。サーボ制御回路 16は、対物レンズ 15を制御して、レーザ光の集光位置のフォー力 ス制御及びトラッキング制御を行う。
光ディスク 1に照射されたレーザ光は、光ディスク 1の記録面の光学特性に従って 反射する。光ディスク 1により反射されたレーザ光 (戻り光ともいう。)は、対物レンズ 24 力も偏光ビームスプリッタ 23までは、入射光路と同一の光路に戻る。すなわち、光デ イスク 1からの戻り光は、対物レンズ 25及び 1Z4波長板 24を透過して、偏光ビームス プリッタ 23に照射される。 1Z4波長板 24は、回転偏光とされている光ディスク 1から の戻り光を直線偏光に変換する。このため偏光ビームスプリッタ 23の光分離面 23aに は、 S偏光とされた戻り光が入射する。偏光ビームスプリッタ 23は、その光分離面 23a で、 S偏光とされた戻り光を反射する。偏光ビームスプリッタ 23により反射された戻り 光は、光検出装置 26に入射される。
光検出装置 26は、光ディスク 1により反射された戻り光が入射され、入射された光を 受光して、その光量に応じた電気信号に変換する。それとともに、光検出装置 26は、 その電気信号から、各種の検出信号 (A, B, C, D, R-PP)を生成して出力する。光 検出装置 26は、これらの機能が 1つの半導体装置内にパッケージングされている。 以下、光検出装置 26の具体的な構成についてさらに詳細に説明する。
(光検出装置)
図 9に、光検出装置 26の内部構成を説明するための図を示す。
光検出装置 26は、図 9Bに示すように、 4分割フォトディテクタ 30を備えている。 4分 割フォトディテクタ 30は、受光面がほぼ正方形の光電変換素子であり、光ディスク 1 から反射された戻り光が照射される。図 9Aに示すように記録トラック(グループ)にジ ヤストフォーカス及びジャストトラックとなって!/、るスポット Lに対して、 4分割フォトディ テクタ 30の受光面には、図 9Bに示すように対応したスポット! が形成される。
4分割フォトディテクタ 30は、光ディスク 1のラジアル方向(すなわち、ディスク中心か ら外周へ向かう方向)に光学的に対応した方向に 2分割されているとともに、光デイス ク 1のタンジェンシャル方向(すなわち、記録トラックに平行な方向)に光学的に対応 した方向に 2分割されている。つまり、 4分割フォトディテクタ 30は、ラジアル方向及び タンジェンシャル方向に十字型に 4分割されている。これらの各フォトディテクタは、そ れぞれ独立に光電変換を行い、それぞれ独立した検出信号を出力する。つまり、こ れらの各フォトディテクタは、それぞれが独立に、照射された光量に応じた電流を出 力する。
なお、 4分割フォトディテクタ 30は、第 1のフォトディテクタ 30A、第 2のフォトディテク タ 30B、第 3のフォトディテクタ 30C及び第 4のフォトディテクタ 30Dの 4つに分割され ているものとする。第 1のフォトディテクタ 30Aは、タンジェンシャル方向に分割したと きの記録方向に沿って前側、ラジアル方向に分割したときの外周側に位置して 、る。 第 2のフォトディテクタ 30Bは、タンジェンシャル方向に分割したときの記録方向に沿 つて前側、ラジアル方向に分割したときの内周側に位置している。第 3のフォトディテ クタ 30Cは、タンジェンシャル方向に分割したときの記録方向に沿って後側、ラジア ル方向に分割したときの内周側に位置している。第 4のフォトディテクタ 30Cは、タン ジェンシャル方向に分割したときの記録方向に沿って後側、ラジアル方向に分割した ときの外周側に位置して 、る。
また、光検出装置 26は、第 1の電流電圧変換回路 31Aと、第 2の電流電圧変換回 路 31Bと、第 3の電流電圧変換回路 31Cと、第 4の電流電圧変換回路 31Dとを備え ている。
第 1の電流電圧変換回路 31Aは、第 1のフォトディテクタ 30Aから出力された電流 を電圧信号 Aに変換する、つまり、第 1のフォトディテクタ 30A上に照射された光量に 応じた電圧信号 Aを生成する。
第 2の電流電圧変換回路 31Bは、第 2のフォトディテクタ 30Bから出力された電流を 電圧信号 Bに変換する、つまり、第 2のフォトディテクタ 30B上に照射された光量に応 じた電圧信号 Bを生成する。
第 3の電流電圧変換回路 31Cは、第 3のフォトディテクタ 30Cから出力された電流 を電圧信号 Cに変換する、つまり、第 3のフォトディテクタ 30C上に照射された光量に 応じた電圧信号 Cを生成する。
第 4の電流電圧変換回路 31Dは、第 4のフォトディテクタ 30Dから出力された電流 を電圧信号 Dに変換する、つまり、第 4のフォトディテクタ 30D上に照射された光量に 応じた電圧信号 Dを生成する。
これら第 1一第 4の電流電圧変換回路 31A— 31Dにより生成された電圧信号 A— Dは、出力端子 32A— 32Dを介して、ディテクタ信号 (A— D)としてプリアンプ 13に 出力される。プリアンプ 13では、これらのディテクタ信号 (A— D)を全て合計して例え ば RF信号を生成したり、ラジアルプッシュプル成分( (A + D)— (B + C) )を演算して トラッキングエラー信号を生成したり、対角方向の差動信号 ( A + C— (B + D) )を演算 してフォーカスエラー信号を生成したりする。
また、光検出装置 26は、プッシュプル信号生成部 33を備えている。プッシュプル信 号生成部 33は、ゥォブル信号及び LPP信号の算出に用いられるラジアルプッシュプ ル信号 (R-PP)を生成する
ここで、ラジアルプッシュプル信号 (R-PP)とは、ラジアル方向に 2分割したときの一 方側(ここでは外周側とする。)のフォトディテクタ A, Dの合計光量 (A+D)と、他方 側(ここでは内周側とする)のフォトディテクタ B, Cの合計光量 (B + C)との差動成分 を示す信号である。
ラジアルプッシュプル信号 (R-PP)には、記録トラックの境界部分 (エッジ部分)に 記録されている信号が含まれている。すなわち、ゥォブル信号成分及び LPP信号成 分がラジアルプッシュプル信号 (R-PP)に含まれて!/、る。
具体的には、プッシュプル信号生成部 33は、第 1の加算器 41と、第 2の加算器 42 と、乗算器 43と、減算器 44とを備えている。
プッシュプル信号生成部 33には、第 1一第 4の電流電圧変換回路 31A— 31Dから 出力された電圧信号 A— Dが入力される。さらに、プッシュプル信号生成部 33には、 当該光検出装置 26の外部に設けられているシステムコントローラ 17から係数 tが入 力される。
第 1の加算器 41は、電圧信号 Aと電圧信号 Dとが入力され、これらを加算して、信 号 (A+D)を生成する。すなわち、第 1の加算器 41は、 4分割フォトディテクタ 30をラ ジアル方向に 2分割したときの、外周側フォトディテクタ(30A, 30D)に照射された光 の光量を示す信号を生成して!/、る。
第 2の加算器 42は、電圧信号 Bと電圧信号 Cとが入力され、これらを加算して、信 号 (B + C)を生成する。すなわち、第 2の加算器 42は、 4分割フォトディテクタ 30をラ ジアル方向に 2分割したときの、内周側フォトディテクタ(30B, 30C)に照射された光 の光量を示す信号を生成して!/、る。
乗算器 43は、第 2の加算器 42により生成された信号 (B + C)に対して、外部から入 力された係数 tを乗算して、信号 (t X (B + C) )を生成する。
減算器 44は、第 1の加算器 41により生成された信号 (A+D)から、乗算器 43によ り生成された信号 (t X (B + C) )を減算し、信号( ( A + D)— t X (B + C) )を生成する プッシュプル信号生成部 33は、この減算器 44により生成された信号を、ラジアルプ ッシュプル信号 (R-PP)として出力する。ラジアルプッシュプル信号((A + D)— t X ( B + C) )は、端子 34を介して、プリアンプ 13に供給される。
以上のように求められたラジアルプッシュプル信号 (R-PP)は、プリアンプ 13によつ てゥォブル信号及び LPP信号の算出に用いられる。
(係数 tの算出方法)
つぎに、係数 tについて説明をする。
記録トラック上のスポット Lと 4分割フォトディテクタ 30上に形成されるスポット! との 関係は、理想的には、図 9に示したように、スポット Lの中心が記録トラックの中心に位 置して 、れば、対応するスポット! の中心もディテクタ中心に位置するのが望まし ヽ 。また、 4分割フォトディテクタ 30上に形成されるスポット! は、受光面の中心を対称 として、ラジアル方向の光量分布が等 、ことが望ま 、。
し力しながら、実際には、光学系や機械的な誤差等のために、スポット! の中心位 置にはラジアル方向のずれがあり、また、スポット! のラジアル方向の光量分布も等 しくはならない。
そこで、係数 tは、これらのずれを補正するような値に設定がされている。
すなわち、記録トラックの中心に理想的な光量分布のスポット Lが照射されていると したとする。このような場合における、 4分割フォトディテクタ 30をラジアル方向に 2分 割した場合の外周側フォトディテクタ(30A, 30D)に照射される光の総光量 (A+D) と、内周側フォトディテクタ(30B, 30C)に照射される光の総光量 (B+C)との比に対 応した値に、係数 tは設定されている。
具体的に、システムコントローラ 17は、次のように係数 tを算出する。
まず、システムコントローラ 17は、光ディスク 1の装着時や電源投入時等の初期動 作時において、プリアンプ 13から (A+D)信号及び (B + C)信号を検出する。つまり 、外周側フォトディテクタ(30A, 30D)に照射される光の総光量 (A+D)と、内周側 フォトディテクタ(30B, 30C)に照射される光の総光量 (B + C)とを示す信号を、プリ アンプ 13から検出する。続いて、この 2つ信号の比((B+C)Z(A+D) )を算出する 。そして、システムコントローラ 17は、この算出した比((B + C)Z(A+D) )を、乗算 器 43に対応した値 (例えば、乗算器 43が抵抗を切り換えてゲインを変化させる方式 であれば、スィッチを選択するための値)に変換し、この変換して求めた値を係数 tと する。
システムコントローラ 17は、求めた係数 tを光学ヘッド装置 11内の光検出装置 26に 供給し、当該光検出装置 26から補正されたラジアルプッシュプル信号((A+D)— t X (B + C) )を出力させる。
なお、本装置では、係数 tをシステムコントローラ 17が算出して設定するようにして いるが、光検出装置 26内に信号比((B + C)Z(A+D) )を算出する回路を設けて、 係数 tを光検出装置 26内で設定するようにしてもょ ヽ。
(ゥォブル信号及び LPP信号の処理方法、及び、係数 tの微調整)
以上のような構成の光ディスクドライブ 10では、光ディスク 1に対してデータを再生 又は記録する際に、プリアンプ 13によりラジアルプッシュプル信号力もゥォブル信号 及び LPP信号の抽出が行われる。
具体的には、再生及び記録時において、プリアンプ 13は、光学ヘッド装置 11から 出力されたラジアルプッシュプル信号 (R-PP : ( (A+D)— t X (B + C) ) )が入力され 、この信号 (R-PP)に対してバンドパスフィルタリングを行い、ゥォブル信号及び LPP 信号を生成する。プリアンプ 13は、生成したゥォブル信号及び LPP信号を、システム コントローラ 17に供給する。
システムコントローラ 17は、ゥォブル信号及び LPP信号に基づき、クロック生成及び アドレス算出処理等を行う。
さらに、システムコントローラ 17は、ゥォブル信号及び LPP信号にエラーレートに応 じて係数 tを微調整してもよ ヽ。
具体的には、ゥォブル信号又は LPP信号のエラー検出コードを演算して、当該ゥォ ブル信号及び LPP信号のエラーレートを算出する。そして、システムコントローラ 17 は、ラジアルプッシュプル信号の変動が大きくなる記録動作中に、そのエラーレート がなるベく小さくなるように、係数 tを微調整する。すなわち、システムコントローラ 17 は、記録動作中にゥォブル信号又は LPP信号のエラーレートをモニタし、このエラー レートが最も小さくなるように係数 tを微調整する。 このように記録中に係数 tを調整することによって、より正確にラジアルプッシュプル 信号を生成することができる。
(光ディスクドライブに本発明を適用した効果)
以上のように光ディスクドライブ 10では、補正したラジアルプッシュプル信号( (A+ D)-t X (B+C) )を、光学ヘッド装置 11内で生成している。
このため、例えば図 10に示すように、光学的又は機械的な誤差により外周側フォト ディテクタ(30A, 30D)に照射されている光量を示す信号 (A+D)と、内周側フォト ディテクタ(30B, 30C)に照射されている光量を示す信号 (B + C)との間にレベル差 (E , E )が生じていても、一方側(ここでは、内周側)信号 (B + C)がそのレベル比に
1 2
応じて補正されるので、図 11に示すように、両者の信号の平均的なレベル、若しくは
、所定のタイミングでサンプリングされたレベルが一致することとなる。
その結果、図 12に示すように、ラジアルプッシュプル信号 (R— PP)のオフセットが非 常に小さくなる。すなわち、書き込み時のオフセットと、バイアス時のオフセットとの差 も非常に小さくなり、ラジアルプッシュプル信号 (R— PP)にリンギングが発生したり、ス リューレートが悪ィ匕したりしなくなる。
このようなこと〖こより、光ディスクドライブ 10では、正確にゥォブル信号及び LPP信号 を検出することが可能となる。
第 2のディスクド イブ
つぎに、光ディスクドライブ 10を変形した光ディスクドライブ 50につ ヽて説明をする 。なお、光ディスクドライブ 50を説明するにあたり、光ディスクドライブ 10と同一の構成 要素には図面中に同一の符号を付けてその詳細な説明を省略する。
(全体構成)
光ディスクドライブ 50の全体ブロック構成を図 13に示す。
光ディスクドライブ 50は、記録可能な光ディスク 1に対してデジタル情報の記録又は 再生を行う装置である。
光ディスクドライブ 50は、光学ヘッド装置 51と、スピンドノレモータ 12と、プリアンプ 5 2と、変復調部 14と、レーザ制御部 15と、サーボ制御部 16と、システムコントローラ 5 3と、インタフェース 18とを備えている。 光学ヘッド装置 51は、光ディスク 1に対してレーザ光を出射して情報を記録するとと もに、光ディスク 1に出射したレーザ光が当該光ディスク力 反射して戻ってくる戻り 光を検出し、当該戻り光を受光して各種の電気的な検出信号 (ディテクタ信号 A— D 、ラジアルプッシュプル信号 R-PP、第 1の補正信号 WPP1及び第 2の補正信号 WP P2)を生成する。
プリアンプ 52は、光学ヘッド装置 51から出力された検出信号 (A— D, R-PP, WP PI, WPP2)に基づき、 RF信号、ゥォブル信号及び LPP信号及び誤差信号を生成 する。
システムコントローラ 53は、当該光ディスクドライブ 50の各回路の制御を行う。また、 システムコントローラ 53は、記録時及び再生時に、プリアンプ 52により生成されたゥォ ブル信号又は LPP信号力もクロックやアドレス情報等を生成する。システムコントロー ラ 53は、再生したアドレス情報に基づき、光ディスク 1に対するデータの書き込み及 び読み出し位置を制御する。
さらに、システムコントローラ 53は、光学ヘッド装置 51がラジアルプッシュプル信号 R-PPを生成する際に用 、る値である係数 tを生成する。システムコントローラ 53は、 算出した係数 tを光学ヘッド装置 51に供給する。また、システムコントローラ 53は、 W PP1, WPP2を生成する際に用いる値である係数 αを生成する。システムコントロー ラ 53は、算出した係数 tを光学ヘッド装置 51に供給する。なお、この係数 t及び係数 αの算出方法については後述する。
(光学ヘッド装置並びに光検出装置)
光学ヘッド装置 51は、図 14に示すように、レーザダイオード 21と、コリメータレンズ 22と、偏光ビームスプリッタ 23と、 1Z4波長板 24と、対物レンズ 25と、光検出装置 5 4とを備えている。
光検出装置 54は、光ディスク 1により反射された戻り光が入射され、入射された光を 受光して、その光量に応じた電気信号に変換する。それとともに、光検出装置 54は、 その電気信号から、各種の検出信号 (A, Β, C, D, R-PP, WPP1, WPP2)を生成 して出力する。光検出装置 54は、これらの機能力^つの半導体装置内にパッケージ ングされている。 以下、光検出装置 54の具体的な構成についてさらに詳細に説明する。
図 15に、光検出装置 54の内部構成を説明するための図を示す。
光検出装置 54は、図 15Bに示すように、 4分割フォトディテクタ 30と、第 1の電流電 圧変換回路 31Aと、第 2の電流電圧変換回路 31Bと、第 3の電流電圧変換回路 31C と、第 4の電流電圧変換回路 31Dとを備えている。
さらに、光検出装置 54は、プッシュプル信号生成部 55を備えている。プッシュプル 信号生成部 55は、ゥォブル信号及び LPP信号の算出に用いられるラジアルプッシュ プル信号 (R-PP)、並びに、 2つの補正信号 (WPP1, WPP2)を生成する。
ここで、第 1の補正信号 (WPP1)は、ラジアル方向に 2分割したときの一方側(ここ では外周側とする。)のフォトディテクタ A, Dの合計光量 (A+D)を示す信号に対し て、光ディスク 1の記録速度又はレーザ光のレーザパワーを示す係数 OCを除算した 信号( (A + D) Z α )である。第 2の補正信号 (WPP2)は、ラジアル方向に 2分割した ときの他方側(ここでは内周側とする。)のフォトディテクタ Β, Cの合計光量 (B + C)を 示す信号に対して、光ディスク 1の記録速度又はレーザ光のレーザパワーを示す係 数 (Xを除算した信号( (Β + C) Ζ α )である。
具体的には、プッシュプル信号生成部 55は、第 1の加算器 61と、第 2の加算器 62 と、第 1の乗算器 63と、第 2の乗算器 64と、第 3の乗算器 65と、減算器 66とを備えて いる。
プッシュプル信号生成部 55には、第 1一第 4の電流電圧変換回路 31A— 31Dから 出力された電圧信号 Α— Dが入力される。さらに、プッシュプル信号生成部 55には、 当該光検出装置 54の外部に設けられているシステムコントローラ 17から係数 t及び 係数 αが入力される。
第 1の加算器 61は、電圧信号 Αと電圧信号 Dとが入力され、これらを加算して、信 号 (A+D)を生成する。すなわち、第 1の加算器 61は、 4分割フォトディテクタ 30をラ ジアル方向に 2分割したときの、外周側フォトディテクタ(30A, 30D)に照射された光 の光量を示す信号を生成して!/、る。
第 2の加算器 62は、電圧信号 Bと電圧信号 Cとが入力され、これらを加算して、信 号 (B + C)を生成する。すなわち、第 2の加算器 62は、 4分割フォトディテクタ 30をラ ジアル方向に 2分割したときの、内周側フォトディテクタ(30B, 30C)に照射された光 の光量を示す信号を生成して!/、る。
第 1の乗算器 63は、第 1の加算器 61により生成された信号 (A+D)に対して、外部 から入力された係数 (Xを除算して、信号( (A+D) Z α )を生成する。
第 2の乗算器 64は、第 2の加算器 62により生成された信号 (B+C)に対して、外部 から入力された係数 (Xを除算して、信号( (B + C) Ζ α )を生成する。
プッシュプル信号生成部 55は、第 1の乗算器 63により生成された信号を、第 1の補 正信号 (WPP1)として出力する。第 1の補正信号 (WPP1)は、端子 67を介してプリ アンプ 52に供給される。また、プッシュプル信号生成部 55は、第 2の乗算器 64により 生成された信号を、第 2の補正信号 (WPP2)として出力する。第 2の補正信号 (WPP 2)は、端子 68を介してプリアンプ 52に供給される。
第 3の乗算器 65は、第 2の乗算器 64により生成された第 2の補正信号 (WPP2)に 対して、外部力も入力された係数 tを乗算して、信号 (t X (WPP2) )を生成する。 減算器 66は、第 1の乗算器 63により生成された第 1の補正信号 (WPP1)から、第 3 の乗算器 65により生成された信号 (t X (WPP1) )を減算し、信号 (WPP1 - t XWPP 2)を生成する。
プッシュプル信号生成部 55は、この減算器 66により生成された信号を、ラジアルプ ッシュプル信号 (R-PP)として出力する。ラジアルプッシュプル信号 (WPP1— t X WP P2)は、端子 69を介して、プリアンプ 52に供給される。
以上のように求められた第 1の補正信号 (WPP1)、第 2の補正信号 (WPP2)及び ラジアルプッシュプル信号 (R-PP)は、ゥォブル信号及び LPP信号の算出に用いら れる。
(係数 t及び係数 αの算出方法)
つぎに、係数 tについて説明をする。
係数 tは、記録トラックの中心に理想的な光量分布のスポット Lが照射されているとし た場合における、第 1の補正信号 (WPP1)と第 2の補正信号 (WPP2)との比に対応 した値に、係数 tは設定される。
具体的に、システムコントローラ 17は、次のように係数 tを設定する。 まず、システムコントローラ 17は、光ディスク 1の装着時や電源投入時等の初期動 作時において、プリアンプ 52から第 1の補正信号 (WPP1)信号及び第 2の補正信号 (WPP2)信号を検出する。続いて、この 2つ信号の比((WPP2) Z (WPP1) )を算出 する。そして、システムコントローラ 17は、この算出した比((WPP2) Z (WPP1) )を、 第 3の乗算器 65に対応した値 (例えば、第 3の乗算器 65が抵抗を切り換えてゲイン を変化させる方式であれば、スィッチを選択するための値)に変換し、この変換して求 めた値を係数 tとする。
システムコントローラ 17は、求めた係数 tを光学ヘッド装置 51内の光検出装置 54に 供給し、当該光検出装置 54から補正されたラジアルプッシュプル信号 (WPP1— t X WPP2)を出力させる。
係数 αは、光ディスク 1の記録速度又は光学ヘッド装置 11から出射されるレーザ光 のパワーを示す値である。
光ディスク 1に対して記録をする場合、通常の記録速度で記録するのみならず、 2 倍速、 4倍速、 8倍速 · · ·といったような高倍速記録が行われる場合がある。高倍速記 録を行う場合、その記録速度に伴いレーザ光のパワーを大きくする必要がある。その ため、記録時の戻り光により検出されるラジアルプッシュプル信号 (R-PP)も記録速 度に応じてレベルが大きくなる。し力しながら、ゥォブル信号や LPP信号は SZNが 厳しぐ他の検出信号に比べて、ダイナミックレンジを大きく取ることはできない。従つ て、ラジアルプッシュプル信号 (R-PP)は、高倍速を行ったとしても、同じレベルで出 力されるのが望ましい。
そこで、光検出装置 54では、光ディスク 1の記録速度又は光学ヘッド装置 11から出 射されるレーザ光のパワーに応じた係数 αを用いて、ラジアルプッシュプル信号 (R— ΡΡ)を補正するようにして 、る。
具体的には、システムコントローラ 17は、現在の光ディスク 1の倍速数又は倍速数 に伴い設定されるレーザ光のパワーを検出する。そして、その検出した値を、第 1の 乗算器 63及び第 2の乗算器 64に対応した値 (例えば、抵抗を切り換えてゲインを変 化させる方式であれば、スィッチを選択するための値)に変換し、この変換して求めた 値を係数ひとする。 システムコントローラ 17は、求めた係数 αを光学ヘッド装置 51内の光検出装置 54 に供給し、当該光検出装置 54から第 1の補正信号 (WPP1)及び第 2の補正信号 (W ΡΡ2)を出力させる。
(光ディスクドライブに本発明を適用した効果等)
以上のように光ディスクドライブ 50では、第 1及び第 2の補正信号 (WPP1, WPP2 )並びにラジアルプッシュプル信号((WPP1)— t X (WPP2) )を、光学ヘッド装置 51 内で生成している。
このため、光ディスクドライブ 50では、光ディスクドライブ 10と同様に、ラジアルプッ シュプル信号 (R— PP)にリンギングが発生したり、スリューレートが悪ィ匕したりしなくな り、正確にゥォブル信号及び LPP信号を検出することが可能となる。
さらに、光ディスクドライブ 50では、記録速度に応じてレーザ光量が増加した場合 であっても、光検出装置 54内で記録速度又はレーザパワーに応じてラジアルプッシ ュプル信号を補正するので、ラジアルプッシュプル信号が常に同じレベルで出力され る。
このこと〖こより、記録速度が早くなつても、正確にゥォブル信号及び LPP信号を検出 することが可能となる。
なお、光ディスクドライブ 50では、ラジアルプッシュプル信号 (R— PP)を、第 1及び 第 2の補正信号 (WPP1, WPP2)に基づき生成している力 先に説明した光ディスク ドライブ 10と同様に、(A+D)— t X (B + C)によりラジアルプッシュプル信号を生成し 、係数 tの演算のみを第 1及び第 2の補正信号 (WPP1, WPP2)を用いて行ってもよ い。
本発明は、図面を参照して説明した上述の実施例に限定されるものではなぐ添付 の請求の範囲及びその主旨を逸脱することなぐ様々な変更、置換又はその同等の ものを行うことができることは当業者にとって明らかである。

Claims

請求の範囲
[1] 1.光ディスクに対して情報の記録を行う光ディスク装置において、
上記光ディスクに対してレーザ光を出射するレーザ発光装置と、出射したレーザ光 の戻り光が照射され、照射された戻り光に応じて上記光ディスクから得られる情報成 分が含まれた電気信号を生成する光検出装置とを有する光学ヘッド装置と、 上記光学ヘッド装置から出力された電気信号に応じて、上記光ディスクに記録され ている信号の再生及び上記光ディスクに対する記録制御を行う信号処理回路とを備 え、
上記光検出装置は、
上記光ディスクのラジアル方向に対応した方向に少なくとも 2分割されて 、る光電 変換素子と、
上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの一方側の光電 変換素子により生成された電気信号に対して係数 tを乗算する乗算回路と、 上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの他方側の光電 変換素子により生成された電気信号と、上記乗算回路から出力された電気信号との 差を算出して、ラジアルプッシュプル信号を生成する差分回路とを有し、
上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の光量と、上 記他方側の光電変換素子に対して照射される戻り光の光量との比に対応した値に設 定されていること
を特徴とする光ディスク装置。
[2] 2.上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の平均的な 光量と、上記他方側の光電変換素子に対して照射される戻り光の平均的な光量との 比に対応した値、又は、上記一方側の光電変換素子に対して照射される戻り光を所 定のタイミングでサンプリングした光量と、上記他方側の光電変換素子に対して照射 される戻り光を上記所定のタイミングでサンプリングした光量との比に対応した値に設 定されていること
を特徴とする請求の範囲第 1項記載の光ディスク装置。
[3] 3.上記光検出装置は、外部から係数 tが設定可能とされており、 上記信号処理回路は、上記一方側の光電変換素子に対して照射される戻り光と、 上記他方側の光電変換素子に対して照射される戻り光による電気信号の平均値、若 しくは、所定のタイミングでサンプリングして得られた信号との比に対応した値を算出 し、算出した値に基づき上記係数 tを生成し、上記係数 tを上記光検出装置に設定す ること
を特徴とする請求の範囲第 1項記載の光ディスク装置。
[4] 4.上記信号処理回路は、上記光ディスクの記録トラックの境界成分に含まれている 信号のエラーレートに応じて、上記係数 tを調整すること
を特徴とする請求の範囲第 3項記載の光ディスク装置。
[5] 5.上記信号処理回路は、上記光ディスクのゥォブル信号に含まれている信号のエラ 一レートに応じて、上記係数 tを調整すること
を特徴とする請求の範囲第 3項記載の光ディスク装置。
[6] 6.上記信号処理回路は、上記光ディスクのランドプリピット信号に含まれている信号 のエラーレートに応じて、上記係数 tを調整すること
を特徴とする請求の範囲第 3項記載の光ディスク装置。
[7] 7.上記光検出装置は、
上記光ディスクに対して信号の記録を行う際に照射するレーザ光のパワー又は上 記光ディスクの回転速度に応じた増幅率により、上記一方側の光電変換素子により 生成された電気信号を増幅する第 1の増幅回路と、
上記増幅率により、上記他方側の光電変換素子により生成された電気信号を増幅 する第 2の増幅回路とを備え、
上記乗算回路は、上記第 1の増幅回路力 出力された電気信号に対して係数 tを 、
上記差分回路は、上記第 2の増幅回路から出力された電気信号と、上記乗算回路 力 出力された電気信号との差を算出して、ラジアルプッシュプル信号を生成するこ と
を特徴とする請求の範囲第 1項記載の光ディスク装置。
[8] 8.光ディスクに対して信号の記録及び再生を行うために当該光ディスクに対してレ 一ザ光を出射する光学ヘッド装置内に設けられる光検出装置において、 上記光ディスクのラジアル方向に対応した方向に少なくとも 2分割されて 、る光電 変換素子と、
上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの一方側の光電 変換素子により生成された電気信号に対して係数 tを乗算する乗算回路と、 上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの他方側の光電 変換素子により生成された電気信号と、上記乗算回路から出力された電気信号との 差を算出して、ラジアルプッシュプル信号を生成する差分回路と有し、
上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の光量と、上 記他方側の光電変換素子に対して照射される戻り光の光量との比に対応した値に設 定されていること
を特徴とする光学ヘッド用の光検出装置。
[9] 9.上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の平均的な 光量と、上記他方側の光電変換素子に対して照射される戻り光の平均的な光量との 比に対応した値、又は、上記一方側の光電変換素子に対して照射される戻り光を所 定のタイミングでサンプリングした光量と、上記他方側の光電変換素子に対して照射 される戻り光を上記所定のタイミングでサンプリングした光量との比に対応した値に設 定されていること
を特徴とする請求の範囲第 8項記載の光学ヘッド用の光検出装置。
[10] 10.上記係数 tは、装置外部から設定されること
を特徴とする請求の範囲第 8項記載の光学ヘッド用の光検出装置。
[11] 11.上記光ディスクに対して信号の記録を行う際に照射するレーザ光のパワー又は 上記光ディスクの回転速度に応じた増幅率により、上記一方側の光電変換素子によ り生成された電気信号を増幅する第 1の増幅回路と、
上記増幅率により、上記他方側の光電変換素子により生成された電気信号を増幅 する第 2の増幅回路とを備え、
上記乗算回路は、上記第 1の増幅回路力 出力された電気信号に対して係数 tを 、 上記差分回路は、上記第 2の増幅回路から出力された電気信号と、上記乗算回路 力 出力された電気信号との差を算出して、ラジアルプッシュプル信号を生成するこ と
を特徴とする請求の範囲第 8項記載の光学ヘッド用の光検出装置。
[12] 12.光ディスクに対してレーザ光を出射するレーザ発光装置と、
出射したレーザ光の戻り光が照射され、照射された戻り光に応じて上記光ディスク から得られる情報成分が含まれた電気信号を生成する光検出装置と備え、
上記光検出装置は、
上記光ディスクのラジアル方向に対応した方向に少なくとも 2分割されて 、る光電 変換素子と、
上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの一方側の光電 変換素子により生成された電気信号に対して係数 tを乗算する乗算回路と、 上記光ディスクのラジアル方向に対応した方向に 2分割されたうちの他方側の光電 変換素子により生成された電気信号と、上記乗算回路から出力された電気信号との 差を算出して、ラジアルプッシュプル信号を生成する差分回路とを有し、
上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の光量と、上 記他方側の光電変換素子に対して照射される戻り光の光量との比に対応した値に設 定されていること
を特徴とする光学ヘッド装置。
[13] 13.上記係数 tは、上記一方側の光電変換素子に対して照射される戻り光の平均的 な光量と、上記他方側の光電変換素子に対して照射される戻り光の平均的な光量と の比に対応した値、又は、上記一方側の光電変換素子に対して照射される戻り光を 所定のタイミングでサンプリングした光量と、上記他方側の光電変換素子に対して照 射される戻り光を上記所定のタイミングでサンプリングした光量との比に対応した値に 設定されていること
を特徴とする請求の範囲第 12項記載の光学ヘッド装置。
[14] 14.上記光検出装置は、
上記光ディスクに対して信号の記録を行う際に照射するレーザ光のパワー又は上 記光ディスクの回転速度に応じた増幅率により、上記一方側の光電変換素子により 生成された電気信号を増幅する第 1の増幅回路と、
上記増幅率により、上記他方側の光電変換素子により生成された電気信号を増幅 する第 2の増幅回路とを備え、
上記乗算回路は、上記第 1の増幅回路力 出力された電気信号に対して係数 tを
"し、
上記差分回路は、上記第 2の増幅回路から出力された電気信号と、上記乗算回路 から出力された電気信号との差を算出して、ラジアルプッシュプル信号を生成するこ と
を特徴とする請求の範囲第 12項記載の光学ヘッド装置。
PCT/JP2005/003379 2004-03-04 2005-03-01 光ディスク装置の光学ヘッド及びその光検出装置 WO2005086147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519381A JPWO2005086147A1 (ja) 2004-03-04 2005-03-01 光ディスク装置の光学ヘッド及びその光検出装置
US10/554,268 US7499388B2 (en) 2004-03-04 2005-03-01 Optical disc device optical head and photo-detection device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004061421 2004-03-04
JP2004-061421 2004-03-04

Publications (1)

Publication Number Publication Date
WO2005086147A1 true WO2005086147A1 (ja) 2005-09-15

Family

ID=34918060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003379 WO2005086147A1 (ja) 2004-03-04 2005-03-01 光ディスク装置の光学ヘッド及びその光検出装置

Country Status (6)

Country Link
US (1) US7499388B2 (ja)
JP (1) JPWO2005086147A1 (ja)
KR (1) KR20060115575A (ja)
CN (1) CN1771542A (ja)
TW (1) TW200601312A (ja)
WO (1) WO2005086147A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070091756A1 (en) * 2005-10-24 2007-04-26 Chi-Jui Lee Method and apparatus of calibrating parameters utilized for determining servo signals
KR100793231B1 (ko) * 2006-06-27 2008-01-10 엘지전자 주식회사 파이널라이즈 디스크의 재생 제어방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151600A (ja) * 1991-11-28 1993-06-18 Matsushita Electric Ind Co Ltd 光デイスク装置
JPH0969234A (ja) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp 光ディスク駆動制御装置
JPH09180213A (ja) * 1995-12-22 1997-07-11 Pioneer Electron Corp トラッキングエラー信号の波形制御装置
JPH09259451A (ja) * 1996-03-21 1997-10-03 Toshiba Corp ディスク再生装置用トラッキングバランス回路及びディスク再生装置
JP2000298853A (ja) * 1999-04-12 2000-10-24 Matsushita Electric Ind Co Ltd トラッキングエラー信号検出装置
JP2000306253A (ja) * 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd トラッキング制御方法及び光ディスク装置
JP2001266371A (ja) * 2000-03-24 2001-09-28 Ricoh Co Ltd 情報記録再生装置
JP2002288855A (ja) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd 光ディスク装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750162A (en) * 1985-07-16 1988-06-07 Victor Company Of Japan, Ltd. Optical tracking system utilizing three photo-detectors
US5291466A (en) * 1989-03-22 1994-03-01 Goldstar Co., Ltd. Automatic control system for a tracking servo unbalance of optical disk player
JPH07114738A (ja) * 1993-10-19 1995-05-02 Sharp Corp マルチビーム記録再生装置
JP3963037B2 (ja) * 1997-03-19 2007-08-22 ソニー株式会社 記録装置及び再生装置
JP3852498B2 (ja) * 1997-03-21 2006-11-29 ソニー株式会社 情報記録装置、情報再生装置及び情報記録媒体
JP3537662B2 (ja) * 1998-03-24 2004-06-14 パイオニア株式会社 光ビームの記録パワー制御装置
EP0973155A3 (en) * 1998-07-15 2001-12-12 Matsushita Electric Industrial Co., Ltd. Optical disk and optical disk apparatus employing the same
JP3929207B2 (ja) * 1999-07-08 2007-06-13 パイオニア株式会社 光学式記録媒体のプリピット検出装置
TW508569B (en) * 2001-05-15 2002-11-01 Media Tek Inc Gain calibration device and method for differential push-pull tracking error signal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151600A (ja) * 1991-11-28 1993-06-18 Matsushita Electric Ind Co Ltd 光デイスク装置
JPH0969234A (ja) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp 光ディスク駆動制御装置
JPH09180213A (ja) * 1995-12-22 1997-07-11 Pioneer Electron Corp トラッキングエラー信号の波形制御装置
JPH09259451A (ja) * 1996-03-21 1997-10-03 Toshiba Corp ディスク再生装置用トラッキングバランス回路及びディスク再生装置
JP2000298853A (ja) * 1999-04-12 2000-10-24 Matsushita Electric Ind Co Ltd トラッキングエラー信号検出装置
JP2000306253A (ja) * 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd トラッキング制御方法及び光ディスク装置
JP2001266371A (ja) * 2000-03-24 2001-09-28 Ricoh Co Ltd 情報記録再生装置
JP2002288855A (ja) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd 光ディスク装置

Also Published As

Publication number Publication date
US20060262680A1 (en) 2006-11-23
CN1771542A (zh) 2006-05-10
US7499388B2 (en) 2009-03-03
TW200601312A (en) 2006-01-01
JPWO2005086147A1 (ja) 2008-01-24
KR20060115575A (ko) 2006-11-09

Similar Documents

Publication Publication Date Title
JP3566701B2 (ja) 光ディスク記録再生装置
US7218580B2 (en) Skew detection method, optical pickup, and optical disc device
US6567368B1 (en) Optical recording medium and method and apparatus of reproducing the same
WO2005086147A1 (ja) 光ディスク装置の光学ヘッド及びその光検出装置
JP2002117536A (ja) 光ディスク装置
US20050117503A1 (en) Data reading device and pre-pit detection circuit
JP4520906B2 (ja) タンジェンシャルチルト検出装置および光ディスク装置
WO2005101388A1 (ja) 光ディスク記録再生装置
JP4179201B2 (ja) 光ディスク装置及びスキュー検出方法
KR100587268B1 (ko) 광 기록매체의 기록재생 방법 및 그 장치
US8953424B2 (en) Optical recording medium driving apparatus, and method of generating tracking error signal
US20060209621A1 (en) Optical disk recording/reproducing apparatus
JP4206705B2 (ja) スキュー検出方法及びスキュー検出装置並びに光ピックアップ及び光ディスク装置
JP2009070436A (ja) 光情報処理装置および光検出装置
JP4341342B2 (ja) 光ピックアップ装置及び記録再生装置
JP2005353195A (ja) ウォブル信号検出回路及び光ディスク装置
JP2001266381A (ja) チルト検出方法、装置およびこれを用いた光ディスク装置
JP2009500779A (ja) 可変帯域幅を備える光学ドライブ
JP2005056512A (ja) スキュー検出方法及びスキュー検出装置、並びに光ピックアップ及び光ディスク装置
US20090219791A1 (en) Optical disc apparatus and tracking control method
JP2006147014A (ja) 光ピックアップ
JP2001126283A (ja) 記録媒体、記録媒体駆動装置及びチルト検出方法
JP2004192740A (ja) プリピット検出装置およびプリピット検出方法
JP2000090450A (ja) フォーカスバイアス設定装置
JP2001118273A (ja) 記録媒体駆動装置及びチルト検出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006519381

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006262680

Country of ref document: US

Ref document number: 10554268

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20058002237

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057021028

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020057021028

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10554268

Country of ref document: US

122 Ep: pct application non-entry in european phase