WO2005083694A1 - 対物光学系、光ピックアップ装置及び光情報記録再生装置 - Google Patents

対物光学系、光ピックアップ装置及び光情報記録再生装置 Download PDF

Info

Publication number
WO2005083694A1
WO2005083694A1 PCT/JP2005/002591 JP2005002591W WO2005083694A1 WO 2005083694 A1 WO2005083694 A1 WO 2005083694A1 JP 2005002591 W JP2005002591 W JP 2005002591W WO 2005083694 A1 WO2005083694 A1 WO 2005083694A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
optical
light beam
optical system
light
Prior art date
Application number
PCT/JP2005/002591
Other languages
English (en)
French (fr)
Inventor
Mitsuru Mimori
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to EP05710423A priority Critical patent/EP1720161A4/en
Priority to JP2006510407A priority patent/JPWO2005083694A1/ja
Publication of WO2005083694A1 publication Critical patent/WO2005083694A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive

Definitions

  • the present invention relates to an objective optical system, an optical pickup device, and an optical information recording / reproducing device.
  • optical pickup device mounted on the Z recorder an optical disc player for high-density optical discs, records information appropriately while maintaining compatibility with all three types of optical discs: high-density optical discs, DVDs and CDs. It is desired to have reproducible performance.
  • an optical system for a high-density optical disc and an optical system for a DVD or CD are required. It is preferable that the number of optical components constituting the optical pickup device be reduced as much as possible by common use. It is most advantageous to simplify the configuration of the optical pickup device and to reduce the cost by using a common objective optical system disposed to face the optical disk.
  • a phase structure having wavelength dependence of spherical aberration is required. Must be formed in the objective optical system.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-298422
  • the technique disclosed in Patent Document 1 is a configuration in which a diffraction structure is provided on one surface of an objective lens, and the wavelength and the thickness of the protective substrate are different. During recording and playback on two types of optical discs, a sufficient spherical aberration correction function can be obtained.
  • An object of the present invention is to solve the above-mentioned problem.
  • a further object of the present invention is to provide a high-density optical disc using a blue-violet laser light source and compatibility between three types of discs, DVD and CD, and to achieve object optics that ensures both light quantity and spherical aberration correction.
  • System an optical pickup device and an optical information recording / reproducing device.
  • a further object of the present invention is to suppress the occurrence of coma even when recording or reproducing information on or from an optical disk due to a lens shift of the objective optical system due to tracking, and to provide an objective optical system having good off-axis characteristics.
  • System, an optical pickup device, and an optical information recording / reproducing device are provided.
  • the objective optical system is configured to provide an L-order (L is an odd number), a ⁇ -order ( ⁇ is an integer), and a ⁇ -order ( ⁇ is an integer) with respect to the light beams having the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • a first diffractive structure that gives a diffracting action such that the diffracted light has the maximum diffraction efficiency, and substantially at least one of the light beams of the wavelengths ⁇ 1, ⁇ 2 and ⁇ 3.
  • a first optical path difference providing structure that does not provide a phase difference and substantially provides a phase difference to one or two light fluxes.
  • the object of the present invention is to reproduce and Z or record information on a first optical disk having a protective substrate thickness tl by using a light beam of wavelength ⁇ 1 emitted from a first light source
  • a second optical disk having a protective substrate thickness t2 (tl ⁇ t2) information is reproduced and recorded or recorded by using a light beam of a wavelength ⁇ 2 ( ⁇ 1 ⁇ 2) emitted from the second light source
  • the objective optical system is configured to provide an L-order (L is an odd number), a ⁇ -order ( ⁇ is an integer), and a ⁇ -order ( ⁇ is an integer) with respect to the light beams of the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3, respectively.
  • a first diffractive structure that gives a diffracting action such that the diffracted light has the maximum diffraction efficiency, and one or two luminous fluxes among the luminous fluxes of the wavelength ⁇ 1, the wavelengths 2, and the wavelengths 3
  • a first optical path difference providing structure that substantially provides a phase difference
  • the light beam of the wavelength ⁇ 1 When the light beam of the wavelength ⁇ 1 is incident, it passes through the first diffraction structure and the first optical path difference providing structure to form a good condensed spot on the information recording surface of the first optical disc. Then, when the light beam of the wavelength ⁇ 2 is incident, it passes through the first diffraction structure and the first optical path difference providing structure, and a good condensing spot on the information recording surface of the second optical disc.
  • the light beam of the wavelength ⁇ 3 When the light beam of the wavelength ⁇ 3 is incident, the light beam passes through the first diffraction structure and the first optical path difference providing structure, and condenses well on the information recording surface of the third optical disc. This is achieved by an objective optical system that forms a spot.
  • the above object of the present invention is to provide a first light source that emits a light beam of wavelength ⁇ 1, a second light source that emits a light beam of wavelength ⁇ 2, and a third light source that emits a light beam of wavelength ⁇ 3.
  • the above-mentioned objective optical system is achieved by an optical information recording / reproducing device including an optical disk loading mechanism for loading an optical disk, and the optical pickup device.
  • FIG. 1 is a main part plan view showing the configuration of an optical pickup device.
  • FIG. 2 is a side view showing an example of an objective optical system.
  • FIG. 3 (a) is a side view showing an example of a structure formed in the objective optical system.
  • FIG. 3 (b) is a side view showing an example of a structure formed in the objective optical system.
  • FIG. 4 (a) is a side view showing an example of a structure formed in the objective optical system.
  • FIG. 4 (b) is a side view showing an example of a structure formed in the objective optical system.
  • FIG. 5 (a) is a side view showing an example of a structure formed in the objective optical system.
  • FIG. 5 (b) is a side view showing an example of a structure formed in the objective optical system.
  • FIG. 6 is a side view showing an objective optical system in an example.
  • FIG. 7 is a longitudinal spherical aberration diagram in an example.
  • information reproduction and Z or recording are performed on the first optical disk having the protective substrate thickness tl using the first light source and the emitted light beam of the wavelength ⁇ 1.
  • Information is reproduced and recorded or recorded on a second optical disk having a protective substrate thickness of t2 (tl ⁇ t2) using a light beam of wavelength ⁇ 2 ( ⁇ 1 ⁇ 2) emitted from the second light source.
  • the objective optical system is configured to output an L-order (L is an odd number), a ⁇ -order ( ⁇ ) with respect to the light beams of the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3, respectively.
  • L is an odd number
  • ⁇ -order
  • a first diffractive structure giving a diffractive action such that the ⁇ th order ( ⁇ is an integer) diffracted light has the maximum diffraction efficiency
  • the wavelength ⁇ 1 the wavelength
  • a first optical path difference providing structure that does not substantially impart a phase difference to at least one of the luminous fluxes of ⁇ 2 and the wavelength ⁇ 3 and that provides a substantial phase difference to one or two luminous fluxes; It is preferable to provide
  • information reproduction and Z or recording are performed on the first optical disk having the protective substrate thickness tl by using the first light source and the light flux of the emitted wavelength ⁇ 1.
  • Protecting group For a second optical disc with a plate thickness t2 (tl ⁇ t2), information is reproduced and recorded or recorded using a light beam of wavelength ⁇ 2 ( ⁇ 1 ⁇ 2) emitted from the second light source, and the protection substrate
  • the objective optical system is configured to provide L-th order (L is an odd number) and ⁇ -th order ( ⁇ is an integer) with respect to the light beams of the wavelengths ⁇ 1, ⁇ 2 and ⁇ 3, respectively.
  • a first diffractive structure that gives a diffractive action such that the diffracted light of the ⁇ th order ( ⁇ is an integer) has the maximum diffraction efficiency, and a light flux of the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3,
  • a first optical path difference providing structure that substantially provides a phase difference to one or two light fluxes, wherein when the light flux of the wavelength ⁇ 1 is incident, When a good condensed spot is formed on the information recording surface of the first optical disc by passing through the first diffraction structure and the first optical path difference providing structure, the light beam of the second wavelength enters.
  • a good condensed spot is formed on the information recording surface of the third optical disc by passing through the first diffraction structure and the first optical path difference providing structure.
  • the first diffraction structure is used to make the diffraction order of the diffraction light having the maximum diffraction efficiency out of the diffraction light having the wavelength ⁇ 1 an odd number, so that the wavelength
  • An effective diffraction action can be given not only to the light flux of ⁇ 1 but also to the light flux of wavelength 3, and compatibility using the diffraction action can be enhanced.
  • the first optical path difference providing structure can substantially provide a phase difference to one or two of the light beams having the wavelengths ⁇ 1, ⁇ 2 and ⁇ 3, It is possible to appropriately perform aberration correction on one or two light beams that are undercorrected or overcorrected by diffraction by the first diffraction structure.
  • the objective optical system in the objective optical system according to the first or second aspect, information is reproduced from the first optical disc, the second optical disc, and the third optical disc. It is preferable that the imaging magnification of the objective optical system is substantially the same when performing recording.
  • a spherical surface is formed for all the wavelengths of the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3. It is possible to perform aberration correction satisfactorily.
  • a light source in which a plurality of light sources are packaged in one package can be used, so that the number of components of the optical pickup device can be reduced, and the size and cost can be reduced.
  • the imaging magnification is 0.
  • the objective optical system when information is reproduced and Z or recorded on the first optical disc,
  • the light beam of the wavelength ⁇ 1 is incident on the objective optical system as a parallel light beam, and when reproducing and / or recording information on the second optical disk, the wavelength ⁇ 2 is applied to the objective optical system.
  • the light beam having the wavelength ⁇ 3 be incident on the objective optical system as a parallel light beam when reproducing and / or recording information on the third optical disc.
  • the fourth and fifth aspects since all the light beams having the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 enter the objective optical system as parallel light, the Even when the optical system shifts, the amount of coma and astigmatism generated can be suppressed. In other words, it is possible to improve the off-axis characteristics in the shift (lens shift) of the objective optical system during tracking.
  • the first optical path difference providing structure includes the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3. It is preferable that a phase difference is substantially given only to one or two of the light beams.
  • the first optical path difference providing structure includes the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3.
  • a phase difference is substantially given only to the light beam of the wavelength ⁇ 2, and when the light beam of the wavelength ⁇ 2 is incident, the first diffraction structure and the first optical path difference providing structure are provided.
  • the first diffraction structure is a sawtooth structure
  • the orbicular zone having the staircase structure is formed in a concentric shape around the optical axis. It is preferable to form a plurality.
  • the object optical system is configured by one optical element or a combination of two or more optical elements.
  • the first diffraction structure corrects the spherical aberration and ⁇ or the wavefront aberration of the light beams of wavelengths ⁇ 1 and ⁇ 3
  • the first optical path difference providing structure corrects the spherical aberration and the light beam of wavelength ⁇ 2 ⁇ or wavefront aberration can be corrected.
  • the aberration correction function for each wavelength can be shared by a plurality of structures without assigning it to one diffraction structure, the degree of freedom in lens design is increased.
  • the first optical path difference providing structure includes the wavelength ⁇ 1, the wavelength ⁇ 2, It is preferable that a phase difference is substantially given only to the light beam having the wavelength ⁇ 2 among the light beams having the wavelength ⁇ 3.
  • the first diffraction structure corrects the spherical aberration and ⁇ or the wavefront aberration of the light beams of wavelengths ⁇ 1 and ⁇ 3
  • the first optical path difference providing structure corrects the spherical aberration and the light beam of wavelength ⁇ 2 ⁇ or wavefront aberration can be corrected.
  • the degree of freedom in lens design can be increased.
  • the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3 are:
  • the wavelength of the light beam emitted from the light source varies in wavelength (for example, the wavelength ⁇ 1 of the light beam emitted from the light source due to a manufacturing error of the light source or the like).
  • wavelength for example, the wavelength ⁇ 1 of the light beam emitted from the light source due to a manufacturing error of the light source or the like.
  • the change in diffraction efficiency can be kept small. The lower the diffraction order is, the smaller the change in diffraction efficiency due to the change in wavelength can be. Therefore, the above-described thirteenth aspect is more preferable.
  • the diffraction efficiency of the L-order, the M-order, and the N-order diffracted light where ⁇ 1, ⁇ 2 and 3 are respectively 7-1> 70%, 7 ⁇ 2> 70% and 7.3 ⁇ 80%.
  • SZN can be further improved by securing more light quantity of the L-order diffracted light and the ⁇ -order diffracted light.
  • the upper limit of 7-1 and 7-2 and the lower limit of 7-3 are 100% ⁇ ⁇
  • the objective optical system in the objective optical system according to any one of the first to fifteenth aspects, includes a first optical element disposed on a light source side. It is preferable that at least two optical elements of the second optical element arranged on the optical disk side be combined.
  • the degree of freedom of aberration correction can be increased by forming the objective optical system in a two-group configuration including two optical elements.
  • the objective optical system is a first optical element arranged on the light source side. And said It is preferable that the optical disk be configured by combining two optical elements of a second optical element arranged on the optical disk side.
  • the first optical element includes the first optical path difference providing structure, It is preferable that the optical element has the first diffraction structure.
  • the optical surface on the light source side of the first optical element may include the first optical path difference providing structure. I like it.
  • the step amount in the optical axis direction becomes larger than that of the sawtooth diffraction structure, and the light flux
  • vignetting due to oblique incidence is likely to occur, the diffraction efficiency is reduced.
  • the occurrence of such vignetting can be suppressed and the reduction in diffraction efficiency can be suppressed.
  • the first optical element includes the first optical path difference providing structure and the first diffraction structure. It is preferable to provide
  • the optical surface on the light source side of the first optical element may include the first optical path difference providing structure. I like it.
  • the focal length of the first optical element is fl
  • the focal length of the second optical element is fl.
  • the distance is f2
  • the objective according to any one of the sixteenth to twenty-second aspects.
  • the refractive power of the first optical element becomes weak, it is possible to suppress an assembly error between the first optical element and the second optical element.
  • the objective optical system is configured to control the luminous flux of the wavelength ⁇ 1 and the wavelength ⁇ 2.
  • a second optical path difference providing structure for giving substantially no phase difference to the luminous flux of the wavelength ⁇ 3 and for giving a substantial phase difference to the light beam having the wavelength ⁇ 3.
  • the luminous flux of the wavelength ⁇ 1 passes through each of the orbicular zones of the second optical path difference providing structure, it is ⁇ times the wavelength ⁇ 1.
  • the second optical path difference providing structure provided in the objective optical system has the wavelength ⁇ 1 when the light beams of the wavelengths ⁇ 1 and ⁇ 2 pass through each orbicular zone of the second optical path difference providing structure.
  • substantially no phase difference is given to the light beams of the wavelengths ⁇ 1 and ⁇ 2.
  • the spherical aberration caused by the light beam passing through the first diffraction structure and the first optical path difference providing structure is reduced to the second optical path. It can act to offset the spherical aberration caused by passing through the difference providing structure, and can reduce the amount of spherical aberration generated in the entire optical pickup device when the wavelength used fluctuates within a minute range. it can.
  • h is the height of the optical axis force
  • B is the coefficient of the optical path difference function
  • i is a natural number
  • is the coefficient of the optical path difference function
  • the wavelength, hmax is the height from the optical axis corresponding to the numerical aperture on the optical disk side of the first optical disk.
  • the optical element having the second optical path difference providing structure is made of a plastic material in particular.
  • this is achieved, it is possible to suppress the occurrence of aberrations due to a change in the refractive index when the environmental temperature changes.
  • h is the height of the optical axis force
  • A is the coefficient of the optical path difference function
  • i is a natural number
  • is the coefficient of the optical path difference function
  • h is the height of the optical axis force
  • B is the coefficient of the optical path difference function
  • i is a natural number
  • is the coefficient of the optical path difference function
  • the focal position of the unnecessary light is changed to the focal position of the used light.
  • the optical pickup device can be separated from the device, and the detectability of the reflected light in the detector of the optical pickup device can be improved. Note that I B
  • the focal position of the Nth-order diffracted light and the focal position of the (N ⁇ l) th-order diffracted light are separated by at least 0.1 Olmm in the optical axis direction.
  • the reflectivity of the Nth-order diffracted light can be detected by the photodetector of the optical pickup device. Can be increased.
  • the objective optics according to any one of the first to twenty-eighth aspects.
  • the system preferably has an aperture limiting function.
  • the number of components constituting the objective optical system can be reduced, and further downsizing and low cost can be achieved.
  • the aperture limiting function is achieved by a dichroic filter that transmits only a light beam having a specific wavelength. .
  • the aperture limiting function imparts a diffractive effect to a light beam having a predetermined wavelength, thereby providing a light beam having a predetermined wavelength. Is preferably achieved by a function of condensing light outside the information recording surface.
  • At least one optical surface of the objective optical system is concentric about an optical axis.
  • a luminous flux of the wavelength ⁇ 3 that is divided into at least two regions, a first region that is circular and includes an optical axis, and a second region that is located around the first region, and that passes through the second region. It is preferable that the light beam of the wavelength ⁇ 3 that has passed through the second region is condensed outside the information recording surface of the third optical disc by giving a diffractive effect to the light.
  • a third area is provided around the second area, and the wavelength ⁇ 1 having passed through the third area is provided. It is preferable that the light flux of the wavelength ⁇ 2 is focused out of the information recording surface of the first optical disc, or the light flux of the wavelength ⁇ 2 passing through the third area is focused out of the information recording face of the second optical disc. .
  • the first region preferably includes the first diffraction structure.
  • the first area includes the first optical path difference providing structure, and the second area Is divided into a 2 ⁇ region close to the optical axis and a 2 ⁇ region far from the optical axis, and the 2 ⁇ region has a step structure.
  • a second diffraction structure formed by forming a plurality of concentric zones around the optical axis, the second diffraction structure substantially corresponding to the light beam of the wavelength ⁇ 1. It is preferable that a phase difference is not substantially given to the luminous fluxes of the wavelengths ⁇ 2 and ⁇ 3 without giving a phase difference.
  • tl t2.
  • the first light source that emits a light beam of wavelength ⁇ 1 the second light source that emits a light beam of wavelength 2
  • the third light source that emits a light beam of wavelength ⁇ 3 It is preferable that the optical pickup device includes a light source and the objective optical system according to any one of the first to thirty-sixth aspects.
  • the optical information recording / reproducing apparatus includes the optical disc loading mechanism for loading an optical disc and the optical pickup device according to the thirty-seventh aspect.
  • the wavelength ⁇ 1 and the wavelength ⁇ 3 satisfy the following relationship, which is preferable for achieving high interchangeability utilizing high diffraction efficiency and effective diffraction.
  • the wavelength ⁇ 3 is substantially twice the wavelength of the wavelength ⁇ 1
  • the diffraction order of the diffracted light having the maximum diffraction efficiency among the diffracted lights of the wavelength ⁇ 1 is determined by using the first diffraction structure.
  • the light beam of the wavelength ⁇ 1 but also the light beam of the wavelength ⁇ 3 can be given a more effective diffraction effect, and the compatibility using the diffraction effect can be improved. Can be enhanced.
  • an optical disk using a blue-violet semiconductor laser or a blue-violet SHG laser as a light source for recording / reproducing information is collectively referred to as a "high-density optical disk".
  • Information is recorded by an optical system.
  • Z-reproduction is performed.
  • optical discs for example, Blu-ray discs
  • protective layer protective film
  • NAO optical discs
  • optical discs for example, HD DVD
  • a high-density optical disk also includes a magneto-optical disk using a blue-violet semiconductor laser or a blue-violet SHG laser as a light source for recording and reproducing information.
  • DVD is a general term for DVD-series optical discs such as DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM DVD-R, DVD-RW DVD + R and DVD + RW.
  • the CD is a general term for CD-series optical disks such as CD-ROM, CD-Audio, CD-Video, CD-R, and CD-RW.
  • the "objective optical system” refers to a light beam having different wavelengths emitted from a light source and arranged at a position facing an optical disc in an optical pickup device, and having different recording densities.
  • an optical system that includes at least a light-collecting element that has a function of condensing light on each information recording surface of an optical disk.
  • the objective optical system may be composed of only the light condensing element.
  • the optical system composed of the optical element and the light-collecting element is referred to as an objective optical system.
  • substantially no phase difference is applied does not mean only a state where there is no phase change at all, but a phase change in a state after the optical path difference is applied is ⁇ 0.2. It indicates a state within ⁇ . Therefore, in this specification, “substantially giving a phase difference” refers to a state in which the phase change after the optical path difference is applied exceeds ⁇ 0.2 ⁇ (pi).
  • to form a good condensed spot means that the wavefront aberration of the corresponding optical disk on the information recording surface is 0.07 ⁇ rms or less. It refers to that.
  • substantially the same imaging magnification means that the difference in imaging magnification is ⁇ 0.
  • the "optical path difference providing structure” refers to a structure that provides an optical path difference to an incident light beam, and for example, a diffraction that generates a diffracted light beam into a light beam of a specific wavelength. It includes a structure and a structure that gives a phase difference to a light beam of a specific wavelength (phase difference giving structure).
  • FIG. 1 shows a first optical disk capable of recording information and reproducing Z information appropriately on any of a high-density optical disk HD (first optical disk), a DVD (second optical disk), and a CD (third optical disk).
  • FIG. 3 is a diagram schematically showing a configuration of a pickup device PU.
  • the thickness t3 of the protective layer PL3 is 1.2 mm, and the numerical aperture NA3 is 0.45.
  • the relationship among the recording densities 1, p2, and p3) of the first optical disk, the second optical disk, and the third optical disk is p3 ⁇ p2 ⁇ p1, and the first optical disk and the second optical disk And OBJ of the objective optical system (1st magnification Ml, 2nd magnification M2, and 3rd magnification M3) when recording and Z or reproducing information on and from each of the 3rd optical disc.
  • the combination of the wavelength, the thickness of the protective layer, the numerical aperture, the recording density, and the magnification is not limited to this example.
  • the optical pickup device PU emits a laser beam having a wavelength of 408 nm (a first light beam having a first wavelength of ⁇ 1) and emits a blue-violet semiconductor light when recording and reproducing information Z on a high-density optical disk HD.
  • Laser LD1 (first light source), first photodetector PD1 that receives the reflected light beam from the information recording surface RL1 of the high-density optical disk HD, emitted when performing information recording / reproduction on DVD, wavelength 658nm Red semiconductor laser LD2 (second light source) that emits a laser beam (second light beam of the second wavelength ⁇ 2), a laser beam (wavelength of 785 nm) emitted when recording and reproducing information on CD Infrared semiconductor laser LD3 (third light source) that emits third wavelength (third light beam at third wavelength), reflected light beam from DVD information recording surface RL2, and reflected light beam from CD information recording surface RL3 Photodetector PD2 that receives light, aberration correction element A LI (first optical element) and a double-sided aspherical light-collecting element L2 (second optical element) having a function of condensing the laser beam transmitted through the aberration correction element L1 onto the information recording surfaces RL1, RL2, and RL3.
  • Objective optical system OBJ composed of the following components: a two-axis actuator AC1 for driving the objective optical system OBJ during tracking and focusing; a stop STO corresponding to the numerical aperture N A1 of the high-density optical disc HD; and first to fourth polarizations Beam spitter BS1, BS2, BS3, BS4, first to third collimating lenses COLl, COL2, COL3, negative lens El and positive lens E2, beam expander EXP, first sensor lens SEN1, second sensor 1 Lens SEN2 equivalent force Schematically configured.
  • the blue-violet semiconductor laser LD1 when performing Z recording of information on the high-density optical disc HD, the blue-violet semiconductor laser LD1 is used as shown by a solid line in FIG. Flash.
  • the divergent light beam emitted from the blue-violet semiconductor laser LD1 is converted into a parallel light beam by the first collimating lens COL1, and then passes through the first polarizing beam splitter BS1, the beam expander EXP, and the second polarizing beam splitter BS2. Thereafter, the beam diameter is regulated by the stop STO, and the spot is formed on the information recording surface RL1 by the objective optical system OBJ via the first protective layer PL1.
  • the effect of the objective optical system OBJ on the light beam of wavelength ⁇ 1 will be described later.
  • the objective optical system OBJ performs focusing and tracking by a two-axis actuator AC 1 arranged around it.
  • the reflected light flux modulated by the information pits on the information recording surface RL1 passes through the objective optical system OBJ, the second polarizing beam splitter BS2, and the beam expander EXP again, and is reflected by the first polarizing beam splitter BS1.
  • the light is given astigmatism by the sensor lens SEN1, converted into a convergent light beam by the third collimating lens COL3, and converged on the light receiving surface of the first photodetector PD1.
  • information recorded on the high-density optical disk HD can be read using the output signal of the first photodetector PD1.
  • the red semiconductor laser LD2 is caused to emit light.
  • the divergent light beam emitted from the red semiconductor laser LD2 passes through the third polarizing beam splitter and the fourth polarizing beam splitter, as indicated by the dotted line in FIG. 1, and is converted into a parallel light beam by the second collimating lens COL2.
  • the second polarizing beam splitter BS2 After being reflected by the second polarizing beam splitter BS2, information is recorded by the objective optical system OBJ via the second protective layer PL2. It becomes a spot formed on the recording surface RL2. The effect of the objective optical system OBJ on the light beam of wavelength 2 will be described later.
  • the objective optical system OBJ performs focusing / tracking by a two-axis actuator AC 1 arranged around the objective optical system OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 passes through the objective optical system OBJ again, is reflected by the second polarizing beam splitter BS2, is converted to a convergent light beam by the second collimating lens COL2, and The light is reflected by the 4-polarization beam splitter BS4, is given astigmatism by the second sensor lens SEN2, and converges on the light receiving surface of the second photodetector PD2. Then, the information recorded on the DVD can be read using the output signal of the second photodetector PD2.
  • the infrared semiconductor laser LD3 when performing Z recording and reproducing of information on a CD, the infrared semiconductor laser LD3 is caused to emit light.
  • the divergent light beam emitted from the infrared semiconductor laser LD3 is reflected by the third polarizing beam splitter, passes through the fourth polarizing beam splitter, and passes through the second collimating lens, as indicated by the dotted line in FIG.
  • the effect of the objective optical system OBJ on the light beam of wavelength 3 will be described later.
  • the objective optical system OBJ performs focusing and tracking by a two-axis actuator AC1 arranged around it.
  • the reflected light beam modulated by the information pits on the information recording surface RL3 passes through the objective optical system OBJ again, is reflected by the second polarizing beam splitter BS2, is converted by the second collimating lens COL2 into a convergent light beam, and
  • the light is reflected by the polarization beam splitter BS4, is given astigmatism by the second sensor lens SEN2, and converges on the light receiving surface of the second photodetector PD2.
  • the information recorded on the CD can be read using the output signal of the second photodetector PD2.
  • the aberration correcting element L1 is a plastic lens having a refractive index nd at d-line of 1.5091, Abbe number vd force of 6.5, a refractive index of 1.5242 for wavelength 1, and a refraction for wavelength 2
  • the refractive index is 1.5050 and the refractive index for wavelength 3 is 1.5050.
  • the light-collecting element L2 is a plastic lens having a refractive index nd at d-line of 1.5435 and an Abbe number vd force of 6.3.
  • the optical function of the aberration correction element L1 (the area through which the first light beam passes) and the optical function of the condenser L2 Around each of the functional sections (the area where the first light beam passes), there is a flange formed integrally with each optical functional section.
  • the aberration correction element L1 and the condensing element L2 are integrated and configured to be handled as a single objective optical system! RU
  • the optical surface S1 (incident surface) of the aberration correction element L1 on the side of the semiconductor laser light source includes the optical axis L, as shown in Fig. 2, and has an aperture when the aberration correction element L1 is viewed in the direction of the optical axis L.
  • a first area AREA1 which is a circle centered on the optical axis L corresponding to an area of a number NA3 or less, and a concentric circle centered on the optical axis L when viewed in the direction of the optical axis L.
  • One area AREA2 which is an area outside the area AREA1 and has a numerical aperture of NA2 or less, and a concentric circle centered on the optical axis L when viewed in the direction of the optical axis L in the same manner as the second area AREA2. It is divided into a third area AREA3 which is outside and has a numerical aperture of not more than NA1, and a second area AREA2 is further divided into a second A area 2A close to the optical axis L and a second area AREA far from the optical axis L. It is divided into area 2B.
  • the first optical path difference providing structure 10 is formed in the first region, the second diffraction structure 20 is formed in the second A region, and the diffraction structure is also formed in the second B region and the third region. Are formed, and the diffraction structure 2 ( ⁇ , diffraction structure 30) is formed.
  • the first optical path difference providing structure 10, the second diffraction structure 20, and the diffraction structure 2 in the second ⁇ region are each a predetermined number, as schematically shown in FIG. 3).
  • This is a structural force in which a plurality of annular zones 13 each having a staircase structure including a step portion 11 and a discontinuous portion 12 are formed concentrically around the optical axis L.
  • the second diffraction structure 20 has a different number of discontinuous portions 12 as compared with the first optical path difference providing structure 10, and the first optical path difference providing structure 10 and the diffraction structure 2 (2 and Has the same number of discontinuous sites.
  • the first optical path difference providing structure 10 is not limited to the one shown in FIG. 3, but is composed of a plurality of annular zones 15 as schematically shown in FIG. 4, for example, and has a sectional shape including the optical axis L.
  • a cross-sectional shape including the optical axis L may be a stepped shape.
  • the one schematically shown in FIG. 5 (a) shows that the staircase structure is always in the shape of an ascending staircase within the effective diameter centered on the optical axis L, so that the direction of the step of the step 16 is effective.
  • FIG. 5 (b) schematically shows an example in which the staircase structure is always downhill within the effective diameter centered on the optical axis L. This is an example in which the direction of the step of the step 16 is the same within the effective diameter.
  • 3 to 5 schematically show a case where each structure is formed on a plane. Each force may be formed on a spherical surface or an aspheric surface.
  • the second diffraction structure 20, the diffraction structure 2 in the second B region ( ⁇ and the diffraction structure 30 in the third region, as well as those shown in FIG. 3, have a sawtooth cross-sectional shape as shown in FIG. It's a little bit shaped.
  • the first optical path difference providing structure 10 substantially positions only the light beam of the wavelength ⁇ 2 among the light beams of the wavelengths ⁇ 1, ⁇ 2 and ⁇ 3 passing through the discontinuous portion 12.
  • the phase difference is set so that the light beams having the wavelengths ⁇ 1 and ⁇ 3 are not substantially phase difference. Since the luminous flux of wavelength 2 is substantially diffracted by being given a phase difference, the diffracted light having the highest diffraction efficiency among the diffracted light of wavelength 2 generated by this is transferred to a DVD for IJ. it can.
  • the refractive index of the aberration correction element L1 in which the first optical path difference providing structure 10 is formed with respect to the light beam of wavelength 1 is nl
  • the step portion 11 of the staircase structure in the first optical path difference providing structure 10 is Dl (see Fig. 3)
  • the number of discontinuous parts 12 as ml (integer)
  • d ⁇ ⁇ ( ⁇ 1 ⁇ 1), 1.8 X d ⁇ dl ⁇ 2.2 X d and 4 ⁇ ml ⁇ 6.
  • the step amount of the staircase structure in the first optical path difference providing structure 10 is set to a depth that is almost an integral multiple of the wavelength ⁇ 1.
  • a luminous flux of wavelength ⁇ 1 is incident on a staircase structure in which the amount of step (step depth) is set in this way, an optical path difference of almost an integral multiple of ⁇ 1 occurs between adjacent steps.
  • a phase difference is not substantially given to the light beam of the wavelength ⁇ 1, so that the incident light beam of the wavelength ⁇ 1 passes through the first optical path difference providing structure 10 without being diffracted.
  • wavelength ⁇ 3 becomes wavelength ⁇ 3. Since it is approximately twice as large as 1, a light path difference of approximately an integral multiple of 3 is generated between adjacent steps, and the light beam of wavelength ⁇ 3 has substantially the same phase difference as the light beam of wavelength ⁇ 1. It is not provided and is transmitted without being diffracted in the first optical path difference providing structure 10.
  • the second diffraction structure 20 formed in the second A region and the second diffraction structure 20 formed in the second B region are arranged so that the light beam of the wavelength ⁇ 3 that has passed through the second region AREA2 is not focused on the information recording surface RL3 of the CD.
  • This provides a diffractive effect, and flares the diffracted light of the diffraction order that has a relatively high diffraction efficiency (for example, 30% or more) out of the generated diffracted light (so that it does not adversely affect the required condensing spot). And then fly away from the focal spot or disperse). At this time, the diffraction order of the diffracted light having high diffraction efficiency for the light beam of wavelength 3 is higher than the diffraction order of the diffracted light having high diffraction efficiency for the light beam of wavelength 2 It becomes.
  • the objective optical system OBJ can be provided with an aperture limiting function corresponding to the numerical aperture NA3, and the second diffraction structure 20 allows the wavelength ⁇ from the first area AREA1 to the second A area.
  • the vertical spherical aberration of the light beam of No. 3 can be made discontinuous, and the detection accuracy of the reflected light of the CD force of the light beam of wavelength ⁇ 3 in the second photodetector PD2 can be improved.
  • a plurality of diffracted lights (for example, + 1st-order and 1st-order diffracted lights) with respect to a light beam having a wavelength of 3 may have substantially the same diffraction efficiency (for example, about 40%).
  • all of a plurality of diffracted light beams having higher diffraction orders or a diffracted light beam having a diffraction order that may be condensed on the information recording surface RL3 of the CD may be flared.
  • the light beam of wavelength ⁇ 1 passing through the second area AREA2 is substantially given a phase difference. Since the luminous flux of wavelength ⁇ 2 passing through the second area AREA2 is given a substantial phase difference, its diffractive effect is used, for example, the diffracted light of the diffraction order having high diffraction efficiency is used. In addition to being able to record and reproduce information on DVDs, it is also possible to correct chromatic aberration of DVDs and spherical aberration caused by temperature changes.
  • the light beam of wavelength ⁇ 2 and the light beam of wavelength ⁇ 3 that have passed through the third area AREA3 become unnecessary light beams. Therefore, the luminous flux having the wavelength ⁇ 2 that has passed through the third area AREA 3 does not converge on the information recording surface RL2 of the DVD, and the luminous flux having the wavelength ⁇ 3 that has passed the third area AREA 3 falls on the information recording surface RL3 of the CD.
  • the diffraction structure 30 formed in the third area AREA3 provides a diffractive action so as not to converge light, and the diffracted light of the diffraction order having relatively high diffraction efficiency (for example, 30% or more) out of the generated diffracted light is flared. It has become to be. Note that a plurality of diffracted lights (for example, + 1st-order and 1st-order diffracted lights) may have almost the same diffraction efficiency (for example, about 40%). In such a case, the diffraction order of the diffraction order with a high diffraction efficiency is high.
  • a second optical path difference providing structure 40 is formed on the optical surface S2 (output surface) of the aberration correction element L1 on the optical disk side.
  • the second optical path difference providing structure 40 is composed of a plurality of annular zones 17 in which the direction of the step of the step 16 is the same within the effective diameter as shown in FIG.
  • the shape is a staircase shape, and substantially no phase difference is given to the incident light beams of the wavelengths ⁇ 1 and ⁇ 2.
  • the wavelength, hmax is the height from the optical axis L, which is the numerical aperture NA1 of the high-density optical disc HD.
  • the wavelength ⁇ 1 and ⁇ 2 are perpendicularly incident on the optical surface (the output surface S 2 in the present embodiment) on which the second optical path difference providing structure 40 is formed, the wavelength ⁇ 1
  • the difference in the light emission angle due to the second optical path difference providing structure for the light flux having a wavelength of 2 is expressed by the following equations (1) and (2).
  • the influence on the refractive power of an optical element is greater attributable to a change in the wavelength than that attributable to a change in the refractive index of the optical element itself.
  • the bending (emission angle) by the second optical path difference providing structure 40 depends on the wavelength change of the wavelength 1 and the wavelength ⁇ 2.
  • the first diffraction structure 50 is formed.
  • the first diffraction structure 50 is composed of a plurality of orbicular zones 15 as shown in FIG. 4, and has a sawtooth cross section including the optical axis L.
  • the structure shown in Fig. 3 may be used.
  • Each of the light beams having the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 that have passed through the aberration correction element L1 is diffracted by the first diffraction structure 50.
  • the L-order diffracted light (L is an odd number) of the light beam of wavelength ⁇ 1 generated by this is refracted on the exit surface S2 of the condenser L2 and then focused on the information recording surface RL1 of the high-density optical disk HD. A spot is formed.
  • the ⁇ th order diffracted light ( ⁇ is an integer) of the light beam with a wavelength of 2 is refracted on the exit surface of the condenser L2, and then forms a focused spot on the information recording surface RL2 of the DVD. ing.
  • the ⁇ th order diffracted light ( ⁇ is an integer) of the light beam of wavelength 3 is subjected to a refraction effect on the exit surface of the condenser L2, and then forms a focused spot on the information recording surface RL3 of the CD. It has become.
  • the first diffraction structure 50 corrects aberrations so that the L-order diffracted light of the light beam having the wavelength ⁇ 1 forms a good condensed spot on the information recording surface RL1 of the high-density optical disc HD! Due to the phase difference given when the second-order diffracted light of the light beam with wavelength ⁇ 2 passes through the first optical path difference providing structure 10, aberration is formed so as to form a good condensed spot on the information recording surface RL2 of the DVD. It is designed to perform the correction and to correct the aberration so that the ⁇ ⁇ th order diffracted light of the luminous flux of wavelength ⁇ 3 forms a good focusing spot on the information recording surface RL3 of the CD.
  • the amount of diffracted light decreases as the distance from the optical axis L increases.
  • the objective optical system OBJ has a two-group configuration including the aberration correction element L1 and the light-collecting element L2.
  • the diffraction power and the refraction power can be shared between the two optical elements, and there is an advantage that the degree of freedom in design is improved.
  • the present invention is not limited to this, and the objective optical system OBJ may be composed of a single lens, and the optical path difference providing structure and the diffraction structure may be provided on the entrance surface and the exit surface of this lens.
  • the first diffraction structure 50 and the first optical path difference providing structure 10 may be provided in the aberration correction element L1.
  • the condensing element L2 can be a glass lens, aberration due to temperature change Can be suppressed.
  • the first optical path difference providing structure 10 on the incident surface S1 of the aberration correction element L1.
  • the first optical path difference providing structure 10 has a stair structure including a predetermined number of steps 11 and discontinuous portions 12 as shown in FIG. 3, a saw-tooth shape as shown in FIG.
  • the amount of step in the direction of the optical axis L becomes large, and vignetting due to oblique incidence of the light beam occurs, which lowers the diffraction efficiency.
  • the lens is set so as to satisfy I fl / f2 I ⁇ 0.1 and I 1 / fl I ⁇ 0.02, or such that the radius of curvature of at least one surface of the aberration correction element L1 on the paraxial side is almost infinite. It is preferable to perform the measurement. As described above, by reducing the refractive power of the aberration correction element L1, the assembly error between the aberration correction element L1 and the light collection element L2 can be suppressed. Further, when the optical surface has a substantially flat shape, the first optical path difference providing structure 10, the first diffraction structure 50, and the like can be easily formed on the optical surface.
  • the focal position of the Nth-order diffracted light and the focal position of the (N ⁇ l) th-order diffracted light are set to 0. It is preferable that the first diffractive structure 50 be separated from the first diffractive structure 50 by using an optical path difference function ⁇ .
  • h is the height from the optical axis
  • A is the coefficient of the optical path difference function
  • i is a natural number
  • is Wavelength
  • a force third area is provided that divides the entrance surface S1 of the aberration correction element L1 into three areas, a first area AREA1, a second area AREA2, and a third area AREA3.
  • the incident surface S1 is divided into a first area AREA1 and a second area AREA2, and a diffracting action is given to the light beam of the wavelength ⁇ 3 that has passed through the second area AREA2, so that the wavelength ⁇ 3 May be flared.
  • the objective optical system may have an aperture limiting function.
  • the optical pickup device PU described in the above embodiment a rotary drive device that rotatably holds the optical disk, and a control device that controls the driving of these various devices are mounted.
  • a control device that controls the driving of these various devices are mounted.
  • the outline of the configuration of the optical pickup device PU according to the second embodiment is the same as that of the first embodiment as shown in FIG. 1, and therefore, detailed description is omitted.
  • the objective optical system OBJ is composed of two groups, an aberration correction element L1 and a condensing element L2, and the entrance surface S1 (second Surface) and the exit surface S2 (third surface) are flat surfaces, and the entrance surface S1 (fourth surface) and exit surface S2 (fifth surface) of the light-collecting element L2 are aspheric.
  • the entrance surface SI of the aberration correction element LI has a structural force in which a plurality of annular zones having a staircase structure including a predetermined number of steps and discontinuous portions are formed concentrically around the optical axis.
  • a first optical path difference providing structure 10 is formed, and a first diffraction structure 50 having a plurality of orbicular zones 15 and having a sawtooth cross section including an optical axis is formed on an incident surface S1 of the light condensing element L2. It is formed.
  • Table 1 shows lens data of the first example.
  • Ri represents the radius of curvature
  • di represents the i-th surface force
  • ni represents the refractive index of each surface.
  • the high-density optical disc HD The height hmax from the optical axis L at which the numerical aperture NA1 is obtained is 2.015 mm.
  • the amount of phase change is small (substantially no phase difference is applied) to the light beam, and no diffraction effect occurs, and a substantial phase difference is applied only to the light beam of wavelength ⁇ 2, and the diffraction effect is reduced. Occurs.
  • d ⁇ l / (nl ⁇ 1).
  • the incident surface (fourth surface) and the outgoing surface (fifth surface) of the light-collecting element are respectively arranged around the optical axis, which are defined by the following equations (3) and the coefficients shown in Table 1 are substituted. It is formed on an axisymmetric aspheric surface.
  • X (h) is the amount of change in the direction of the optical axis from the plane tangent to the vertex of the aspheric surface on the optical surface (the traveling direction of light is positive), K is the cone coefficient,
  • 2i is the aspherical coefficient
  • h is the height from the optical axis.
  • optical path length given to the light flux of each wavelength by the first optical path difference providing structure and the first diffraction structure is a mathematical expression obtained by substituting the coefficients shown in Table 1 into the optical path difference function of the following expression (4). Stipulated in
  • B is a coefficient of the optical path difference function.
  • Fig. 7 shows a light beam having a wavelength ⁇ 1 (HD), a light beam having a wavelength ⁇ 2 (DVD), and a light beam having a wavelength ⁇ 3 (
  • FIG. 6 is a longitudinal spherical aberration diagram of CD).
  • Ri represents the radius of curvature
  • di represents the position in the optical axis direction up to the (i + 1) th surface force
  • ni represents the refractive index of each surface.
  • the height hmax from the optical axis L at which the numerical aperture NA1 of the high-density optical disc HD is 2.015 mm.
  • ml 5
  • d ⁇ lZ (nl ⁇ 1).
  • the incident surface (fourth surface) and the outgoing surface (fifth surface) of the light-collecting device are defined by the equations obtained by substituting the coefficients shown in Table 2 into the above equation (3), as in the first embodiment. Is formed on an aspherical surface that is axisymmetric about the optical axis.
  • the optical path length given to the light beam of each wavelength by the first optical path difference providing structure and the first diffraction structure is similar to the optical path difference function of the above equation (4), as in the first embodiment. It is defined by a mathematical expression in which the coefficients shown in Table 2 are substituted.
  • the focal position of the ⁇ th order diffracted light and the focal position of the (N ⁇ l) th order diffracted light are separated by 0.1 mm or more in the optical axis direction.
  • the objective optical system according to the second embodiment relating to the HD DVD has been illustrated as a high-density optical disc as a specific example.
  • the present invention can be applied to the first embodiment relating to a BD (Blu-ray Disc), and at that time, the objective optical system can be appropriately designed or changed as needed. It is.
  • an objective optical system that has compatibility between a high-density optical disk using a blue-violet laser light source and three types of disks, DVD and CD, and that ensures both light intensity and spherical aberration correction, An optical pickup device and an optical information recording / reproducing device can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)
  • Lenses (AREA)

Abstract

 青紫色レーザ光源を使用する高密度光ディスクとDVDとCDの3種類のディスク間での互換性を有し、光量確保と球面収差補正を両立した対物光学系、光ピックアップ装置及び光情報記録再生装置を提供する。本発明の対物光学系は、波長λ1~λ3の光束に対してそれぞれL次(Lは奇数)、M次、N次(M,Nは整数)の回折光が最大の回折効率となるような回折作用を与える第1回折構造と、波長λ1~λ3の光束のうち1つ又は2つの光束に対して実質的に位相差を与える第1光路差付与構造を備える。

Description

対物光学系、光ピックアップ装置及び光情報記録再生装置 技術分野
[0001] 本発明は、対物光学系、光ピックアップ装置及び光情報記録再生装置に関する。
[0002] 近年、光ピックアップ装置にお!、て、光ディスクに記録された情報の再生や、光ディ スクへの情報の記録のための光源として使用されるレーザ光源の短波長化が進みつ つある。例えば、青紫色半導体レーザや、第 2高調波発生を利用して赤外半導体レ 一ザの波長変換を行う青紫色 SHGレーザ等の波長 405 のレーザ光源が実用化 されつつある。
[0003] これら青紫色レーザ光源を使用すると、 DVD (デジタルバーサタイルディスク)と同 じ開口数 (NA)の対物レンズを使用する場合には、直径 12cmの光ディスクに対して 15— 20GBの情報の記録が可能となり、対物レンズの NAを 0. 85にまで高めた場 合には、直径 12cmの光ディスクに対して、 23— 25GBの情報の記録が可能となる。 以下、本明細書では、青紫色レーザ光源を使用する光ディスク及び光磁気ディスク を総称して「高密度光ディスク」 t ヽぅ。
[0004] ところで、このような高密度光ディスクに対して適切に情報の記録 Z再生 (記録及び
Z又は再生)ができると言うだけでは、光ディスクプレーヤ Zレコーダの製品としての 価値は十分なものとはいえない。尚、以下において「記録 Z再生」とは、「記録及び Z 又は再生」を意味する。
[0005] 現在にぉ 、て、多種多様な情報を記録した DVDや CD (コンパクトディスク)が販売 されて 、る現実をふまえると、高密度光ディスクに対して情報の記録 Z再生ができる だけでは足りない。例えばユーザが所有している DVDや CDに対しても同様に適切 に情報の記録 Z再生ができるようにすることが、高密度光ディスク用の光ディスクプレ ーャ/レコーダとしての商品価値を高めることに通じるのである。このような背景から
、高密度光ディスク用の光ディスクプレーヤ Zレコーダに搭載される光ピックアップ装 置は、高密度光ディスク、 DVD及び CDの 3種類の光ディスクの何れに対しても互換 性を維持しながら適切に情報を記録 Z再生できる性能を有することが望まれる。
[0006] 高密度光ディスクと DVD、更には CDとの何れに対しても互換性を維持しながら適 切に情報を記録 Z再生できるようにする方法として、高密度光ディスク用の光学系と
DVDや CD用の光学系とをそれぞれ別に備え、情報を記録 Z再生する光ディスクの 記録密度に応じて選択的に切り替える方法が考えられる。しかし、そのような方法で は、複数の光学系が必要となるので、小型化に不利であり、また、コストが増大する。
[0007] 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性 を有する光ピックアップ装置においても、高密度光ディスク用の光学系と DVDや CD 用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減 らすのが好ましい。そして、光ディスクに対向して配置される対物光学系を共通化す ることが光ピックアップ装置の構成の簡素化、低コスト化に最も有利となる。尚、記録 Z再生する際に使用する光束の波長が互 、に異なる複数種類の光ディスクに対して 、共通に使用できる対物光学系を得るためには、球面収差の波長依存性を有する位 相構造を対物光学系に形成する必要がある。
[0008] ところが、この場合、各光ディスクに用いられる光束の波長や保護基板厚が異なる ため、光ディスクの情報記録面上に良好に収差補正のなされた集光スポットを形成 することが困難となる。そのため、このような収差の補正方法として、光ピックアップ装 置を構成する対物レンズの光学面に回折構造を設ける技術が知られている(例えば 、特許文献 1参照)。
特許文献 1 :特開 2002-298422号公報 しかし、収差補正方法として、特許文献 1 に開示された技術は、対物レンズの 1面に回折構造を設ける構成であり、波長や保 護基板厚が異なる 2種類の光ディスクに対する記録 Z再生に際しては、十分な球面 収差補正機能が得られる。
[0009] しかし、 3種類の光ディスク間での充分な互換を達成するには、以下の問題を解消 する必要がある。
[ooio] 高密度光ディスク ZDVDZCDの各光ディスクに使用される光束の波長はそれぞ れ λ 1 =400ηπι程度、 2 = 655nm程度、 3 = 785nm程度となっており、 1 : λ 3 = 1 : 2であるためブレーズ形状の回折構造では回折効率が最大となる回折次数 の比が λ 1: λ 3 = 2: 1となる(例えば λ 1の光束に対して最大の回折効率となる回折 次数が 6次のとき、 λ 3の光束に対して最大の回折効率となる回折次数が 3次となる。 ) o
[0011] また、回折の効果は、波長 X回折次数の差と回折輪帯のピッチで決まるため、 λ 1 と λ 3の回折次数が 2 : 1のときは、 λ 1 X 2— λ 3 X 1の値が小さくなる。そのため、例 えば、ブレーズィ匕波長を波長 λ 1の偶数倍に近い値として回折構造を設計した場合 、波長 λ 1の光束と波長 λ 3の光束における相互の回折作用が小さくなり、高密度光 ディスクと CDとの互換が困難となる。
[0012] つまり、波長 X回折次数の差力 、さい場合であっても、小さい回折作用を利用する ことで互換を達成することが理論上は可能であるが、この場合、回折輪帯のピッチを 小さくする必要が出でくる。回折輪帯のピッチが小さくなると、レンズ等の光学素子の 製造が難しくなるほか、製造された光学素子においては、透過光量が低下したり、レ 一ザ光源の出力変化等による数 nm程度の微小範囲内での波長変動によって、収差 が大きく発生する等の問題が生じてしまう。
発明の開示
[0013] 本発明の目的は、上述の問題を解決するものである。
[0014] さらなる本発明の目的は、青紫色レーザ光源を使用する高密度光ディスクと DVDと CDの 3種類のディスク間での互換性を有し、光量確保と球面収差補正を両立した対 物光学系、光ピックアップ装置及び光情報記録再生装置を提供することである。
[0015] また、さらなる本発明の目的は、光ディスクに対する情報の記録又は再生を行う際、 トラッキングによる対物光学系のレンズシフトによっても、コマ収差の発生を抑制し、 軸外特性が良好な対物光学系、光ピックアップ装置及び光情報記録再生装置を提 供することである。
[0016] これら及びその他の目的は、保護基板厚 tlの第 1光ディスクに対して、第 1光源か ら出射される波長 λ 1の光束を用いて情報の再生及び Z又は記録を行い、保護基 板厚 t2 (tl≤t2)の第 2光ディスクに対して、第 2光源から出射される波長 λ 2 ( λ 1 < λ 2)の光束を用いて情報の再生及び Ζ又は記録を行い、保護基板厚 t3 (t2<t3) の第 3光ディスクに対して、第 3光源から出射される波長 λ 3 ( λ 2< λ 3)の光束を用 いて情報の再生及び Ζ又は記録を行う光ピックアップ装置に用いられる対物光学系 において、 前記対物光学系は、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3の光束に対し て、それぞれ L次 (Lは奇数)、 Μ次 (Μは整数)、 Ν次 (Νは整数)の回折光が最大の 回折効率となるような回折作用を与える第 1回折構造と、前記波長 λ 1、前記波長え 2及び前記波長 λ 3の光束のうち少なくとも 1つ光束に対して実質的に位相差を与え ないとともに 1つ又は 2つの光束に対して実質的に位相差を与える第 1光路差付与構 造とを備える対物光学系、によって達成される。
[0017] また、本発明の上記目的は、保護基板厚 tlの第 1光ディスクに対して、第 1光源か ら出射される波長 λ 1の光束を用いて情報の再生及び Z又は記録を行い、保護基 板厚 t2 (tl≤t2)の第 2光ディスクに対して、第 2光源から出射される波長 λ 2 ( λ 1 < λ 2)の光束を用いて情報の再生及び Ζ又は記録を行い、保護基板厚 t3 (t2<t3) の第 3光ディスクに対して、第 3光源から出射される波長 λ 3 ( λ 2< λ 3)の光束を用 いて情報の再生及び Ζ又は記録を行う光ピックアップ装置に用いられる対物光学系 において、
前記対物光学系は、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3の光束に対し て、それぞれ L次 (Lは奇数)、 Μ次 (Μは整数)、 Ν次 (Νは整数)の回折光が最大の 回折効率となるような回折作用を与える第 1回折構造と、前記波長 λ 1、前記波長え 2及び前記波長え 3の光束のうち、 1つ又は 2つの光束に対して実質的に位相差を与 える第 1光路差付与構造とを備え、
前記波長 λ 1の光束が入射された際には、前記第 1回折構造及び前記第 1光路差 付与構造を通過して、前記第 1光ディスクの情報記録面上に良好な集光スポットを形 成し、前記波長 λ 2の光束が入射された際には、前記第 1回折構造及び前記第 1光 路差付与構造を通過して、前記第 2光ディスクの情報記録面上に良好な集光スポット を形成し、前記波長 λ 3の光束が入射された際には、前記第 1回折構造及び前記第 1光路差付与構造を通過して、前記第 3光ディスクの情報記録面上に良好な集光ス ポットを形成する対物光学系、によって達成される。
[0018] 更に、本発明の上記目的は、波長 λ 1の光束を出射する第 1光源と、波長 λ 2の光 束を出射する第 2光源と、波長 λ 3の光束を出射する第 3光源と、上記対物光学系と を備える光ピックアップ装置によって達成される。 [0019] また更に、本発明の上記目的は、光ディスクを装填するための光ディスク装填機構 と、上記光ピックアップ装置とを備える光情報記録再生装置によって達成される。 図面の簡単な説明
[0020] [図 1]図 1は、光ピックアップ装置の構成を示す要部平面図である。
[図 2]図 2は、対物光学系の一例を示す側面図である。
[図 3(a)]図 3 (a)は、対物光学系に形成される構造の一例を示す側面図である。
[図 3(b)]図 3 (b)は、対物光学系に形成される構造の一例を示す側面図である。
[図 4(a)]図 4 (a)は、対物光学系に形成される構造の一例を示す側面図である。
[図 4(b)]図 4 (b)は、対物光学系に形成される構造の一例を示す側面図である。
[図 5(a)]図 5 (a)は、対物光学系に形成される構造の一例を示す側面図である。
[図 5(b)]図 5 (b)は、対物光学系に形成される構造の一例を示す側面図である。
[図 6]図 6は、実施例における対物光学系を示す側面図である。
[図 7]図 7は、実施例における縦球面収差図である。
発明を実施するための最良の形態
[0021] 本発明の第 1の態様によれば、保護基板厚 tlの第 1光ディスクに対して、第 1光源 力 出射される波長 λ 1の光束を用いて情報の再生及び Z又は記録を行い、保護基 板厚 t2 (tl≤t2)の第 2光ディスクに対して、第 2光源から出射される波長 λ 2 ( λ 1 < λ 2)の光束を用いて情報の再生及び Ζ又は記録を行い、保護基板厚 t3 (t2<t3) の第 3光ディスクに対して、第 3光源から出射される波長 λ 3 ( λ 2< λ 3)の光束を用 いて情報の再生及び Ζ又は記録を行う光ピックアップ装置に用いられる対物光学系 において、前記対物光学系は、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3の光 束に対して、それぞれ L次 (Lは奇数)、 Μ次 (Μは整数)、 Ν次 (Νは整数)の回折光 が最大の回折効率となるような回折作用を与える第 1回折構造と、前記波長 λ 1、前 記波長 λ 2及び前記波長 λ 3の光束のうち少なくとも 1つ光束に対して実質的に位相 差を与えないとともに 1つ又は 2つの光束に対して実質的に位相差を与える第 1光路 差付与構造とを備えることが好まし 、。
[0022] 本発明の第 2の態様によれば、保護基板厚 tlの第 1光ディスクに対して、第 1光源 力 出射される波長 λ 1の光束を用いて情報の再生及び Z又は記録を行い、保護基 板厚 t2 (tl≤t2)の第 2光ディスクに対して、第 2光源から出射される波長 λ 2 ( λ 1 < λ 2)の光束を用いて情報の再生及び Ζ又は記録を行い、保護基板厚 t3 (t2<t3) の第 3光ディスクに対して、第 3光源から出射される波長 λ 3 ( λ 2< λ 3)の光束を用 いて情報の再生及び Ζ又は記録を行う光ピックアップ装置に用いられる対物光学系 において、前記対物光学系は、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3の光 束に対して、それぞれ L次 (Lは奇数)、 Μ次 (Μは整数)、 Ν次 (Νは整数)の回折光 が最大の回折効率となるような回折作用を与える第 1回折構造と、前記波長 λ 1、前 記波長 λ 2及び前記波長 λ 3の光束のうち、 1つ又は 2つの光束に対して実質的に 位相差を与える第 1光路差付与構造とを備え、前記波長 λ 1の光束が入射された際 には、前記第 1回折構造及び前記第 1光路差付与構造を通過して、前記第 1光ディ スクの情報記録面上に良好な集光スポットを形成し、前記波長え 2の光束が入射さ れた際には、前記第 1回折構造及び前記第 1光路差付与構造を通過して、前記第 2 光ディスクの情報記録面上に良好な集光スポットを形成し、前記波長 λ 3の光束が入 射された際には、前記第 1回折構造及び前記第 1光路差付与構造を通過して、前記 第 3光ディスクの情報記録面上に良好な集光スポットを形成することが好ましい。
[0023] これら第 1、第 2の態様によれば、第 1回折構造を用いて、波長 λ 1の回折光のうち 回折効率が最大となる回折光の回折次数を奇数とすることで、波長 λ 1の光束のみ ならず、波長え 3の光束に対しても有効な回折作用を与えることが可能となり、回折 作用を利用した互換性を高めることができる。
[0024] また、第 1光路差付与構造が、波長 λ 1、波長え 2及び波長 λ 3の光束のうち 1つ又 は 2つの光束に対して実質的に位相差を与えることができるので、第 1回折構造によ る回折で補正不足又は過剰補正となる 1つ又は 2つの光束に対して適宜収差補正を おこなうことが可能となる。
[0025] 本発明の第 3の態様によれば、第 1又は第 2の態様に記載の対物光学系において 、前記第 1光ディスク、前記第 2光ディスク及び前記第 3光ディスクに対して情報の再 生及び Ζ又は記録を行う場合における前記対物光学系の結像倍率が実質的に同じ であることが好ましい。
[0026] これによれば、波長 λ 1、波長え 2及び波長 λ 3の全ての波長の光束に対して球面 収差補正を良好に行なうことが可能となる。また、複数の光源が 1パッケージ化された 光源の使用が可能となり、光ピックアップ装置の部品点数の削減、小型化及び低コス ト化を実現できる。
[0027] 本発明の第 4の態様によれば、第 3の態様に記載の対物光学系において、結像倍 率が 0であることが好まし 、。
[0028] 本発明の第 5の態様によれば、第 1乃至第 3の態様のいずれかに記載の対物光学 系において、前記第 1光ディスクに対して情報の再生及び Z又は記録を行う際に、前 記対物光学系に前記波長 λ 1の光束が平行光束として入射され、前記第 2光デイス クに対して情報の再生及び Ζ又は記録を行う際に、前記対物光学系に前記波長 λ 2 の光束が平行光束として入射され、前記第 3光ディスクに対して情報の再生及び Ζ 又は記録を行う際に、前記対物光学系に前記波長 λ 3の光束が平行光束として入射 されることが好ましい。
[0029] これら第 4及び第 5の態様によれば、波長 λ 1、波長 λ 2及び波長 λ 3の全光束が 対物光学系に対して平行光として入射することになるので、トラック方向に対物光学 系がシフトした場合でもコマ収差や非点収差の発生量を抑えることができる。言い換 えれば、トラッキング時の対物光学系のシフト(レンズシフト)における軸外特性を良好 なちのとすることができる。
[0030] 本発明の第 6の態様によれば、第 2の態様に記載の対物光学系において、前記第 1光路差付与構造は、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3の光束のうち、 1つ又は 2つの光束に対してのみに実質的に位相差を与えることが好ましい。
[0031] 本発明の第 7の態様によれば、第 2の態様に記載の対物光学系において、前記第 1光路差付与構造は、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3の光束のうち、 前記波長 λ 2の光束に対してのみに実質的に位相差を与え、前記波長 λ 2の光束 が入射された際には、前記第 1回折構造及び前記第 1光路差付与構造により、前記 第 2光ディスクの情報記録面上に良好な集光スポットを形成することが好ましい。
[0032] 本発明の第 8の態様によれば、第 1乃至第 7の態様のいずれかに記載の対物光学 系において、前記第 1回折構造は鋸歯状の構造であり、
前記第 1光路差付与構造は、階段構造を有する輪帯を光軸を中心とした同心円状 に複数形成することが好ま 、。
[0033] 本発明の第 9の態様によれば、第 8の態様に記載の対物光学系において、前記対 物光学系は、 1つの光学素子により構成され、又は 2つ以上の光学素子を組み合わ せて構成され、前記第 1光路差付与構造が形成されている光学素子の前記波長 λ 1 の光束に対する屈折率を nl、前記第 1光路差付与構造における前記階段構造の光 軸方向における段差量を dl、前記階段構造の不連続部位の数を ml (整数)とし、 d = λ ΐΖ(η1— 1)としたとき、 1. 8 X d≤dl≤2. 2 X d 且つ、 4≤ml≤6を満たすこ とが好ましい。
[0034] これによれば、第 1回折構造で波長 λ 1及び λ 3の光束の球面収差及び Ζ又は波 面収差を補正し、第 1光路差付与構造で波長 λ 2の光束の球面収差及び Ζ又は波 面収差を補正できる。このように、各波長の収差補正機能を、 1つの回折構造に負わ せることなぐ複数の構造で分担できるので、レンズ設計の自由度が増大する。
[0035] 本発明の第 10の態様によれば、第 1乃至 9の態様のいずれかに記載の対物光学 系において、前記第 1光路差付与構造は、前記波長 λ 1、前記波長 λ 2及び前記波 長 λ 3の光束のうち、前記波長 λ 2の光束に対してのみ実質的に位相差を与えること が好ましい。
[0036] これによれば、第 1回折構造で波長 λ 1及び λ 3の光束の球面収差及び Ζ又は波 面収差を補正し、第 1光路差付与構造で波長 λ 2の光束の球面収差及び Ζ又は波 面収差を補正できる。このように、各波長の収差補正機能を、 1つの回折構造に負わ せることなぐ複数の構造で分担できるので、レンズ設計の自由度を増加できる。
[0037] 本発明の第 11の態様によれば、第 1乃至第 10の態様のいずれかに記載の対物光 学系において、前記波長 λ 1、前記波長 λ 2及び前記波長 λ 3が、
370nm≤ λ l≤450nm
620nm≤ 1 2≤690nm
750nm≤ 1 3≤830nm
を満たすことが好ましい。
[0038] 本発明の第 12の態様によれば、第 1乃至第 11の態様のいずれかに記載の対物光 学系において、 L = M= 1であることが好ましい。 [0039] 本発明の第 13の態様によれば、第 1乃至第 11の態様のいずれかに記載の対物光 学系において、 L = M =N= 1であることが好ましい。
[0040] 本発明の第 14の態様によれば、第 1乃至第 11の態様のいずれかに記載の対物光 学系において、 L = 3、 M =N = 2であることが好ましい。
[0041] 上記の第 12乃至 14の態様のいずれかの態様によれば、光源から出射される光束 の波長に波長ばらつき (例えば、光源の製造誤差等により光源から出射される光束 の波長 λ 1が、使用する光源によって数 nm程度ばらついている場合など)や波長変 動があつたとしても、回折効率の変化を小さく抑えることができる。回折次数が低次数 であるほど、波長の変動による回折効率の変化を小さくすることできるので、上記第 1 3の態様であることがより好ま U、。
[0042] 本発明の第 15の態様によれば、第 1乃至第 14の態様のいずれかに記載の対物光 学系において、前記 L次、前記 M次及び前記 N次の回折光の回折効率をそれぞれ η 1、 η 2及び 3としたとき、 7? 1 > 70%、 7? 2 > 70%及び 7? 3く 80%であること力 S 好ましい。
[0043] これによれば、光ディスクに対する情報の記録 Ζ再生に利用しな 、不要な光束、即 ちノイズ成分を抑え、 SZNを向上することができる。
[0044] また更に、 7? 1 > 85%、 7? 2 > 80%及び 7? 3く 75%を満足することがより好ましく、
L次回折光及び Μ次回折光の光量をより確保し、 SZNを更に向上させることができ る。また、以上において、 7? 1及び 7? 2の上限、及び 7? 3の下限としては、 100%≥ η
1、 100%≥ 7? 2、及び 40% < 7? 3であること力 子まし!/ヽ。
[0045] 本発明の第 16の態様によれば、第 1乃至第 15の態様のいずれかに記載の対物光 学系において、前記対物光学系は、光源側に配置される第 1光学素子と、光ディスク 側に配置される第 2光学素子の少なくとも 2つの光学素子を組み合わせて構成される ことが好ましい。
[0046] これによれば、対物光学系を 2つの光学素子からなる 2群構成とすることで収差補 正の自由度を増加できる。
[0047] 本発明の第 17の態様によれば、第 1乃至第 15の態様のいずれかに記載の対物光 学系において、前記対物光学系は、前記光源側に配置される第 1光学素子と、前記 光ディスク側に配置される第 2光学素子の 2つの光学素子を組み合わせて構成され ることが好ましい。
[0048] 本発明の第 18の態様によれば、第 16又は第 17の態様に記載の対物光学系にお いて、前記第 1光学素子が前記第 1光路差付与構造を備え、前記第 2光学素子が前 記第 1回折構造を備えることが好ましい。
[0049] これによれば、 1つの光学素子に 1つの構造を設けることになるので、 1つ光学素子 に 2つの構造を設ける場合と比較して、光学素子単体の成形時における許容誤差を 大きくすることが可能となる。
[0050] 本発明の第 19の態様によれば、第 18の態様に記載の対物光学系において、前記 第 1光学素子の前記光源側の光学面に前記第 1光路差付与構造を備えることが好ま しい。
[0051] これによれば、特に、第 1光路差付与構造を階段状の回折構造で構成する場合に は、鋸歯状の回折構造に比べてより光軸方向の段差量が大きくなり、光束の斜入射 によるケラレが生じ易くなつて、回折効率の低下がおきるが、このようなケラレの発生 を抑制して回折効率の低下を抑制できる。
[0052] 本発明の第 20の態様によれば、第 16又は第 17の態様に記載の対物光学系にお いて、前記第 1光学素子が前記第 1光路差付与構造及び前記第 1回折構造を備える ことが好ましい。
[0053] 本発明の第 21の態様によれば、第 20の態様に記載の対物光学系において、前記 第 1光学素子の前記光源側の光学面に前記第 1光路差付与構造を備えることが好ま しい。
[0054] 本発明の第 22の態様によれば、第 16乃至第 21の態様のいずれかに記載の対物 光学系において、前記第 1光学素子の焦点距離を fl、前記第 2光学素子の焦点距 離を f 2としたとき、 I fl/f2 Iく 0. 1 且つ I 1/fl I < 0. 02を満たすことが好ま しい。
[0055] これによれば、第 1光学素子の屈折力が弱くなるので、第 1光学素子と第 2光学素 子の組み付け誤差を抑えることができる。
[0056] 本発明の第 23の態様によれば、第 16乃至第 22の態様のいずれかに記載の対物 光学系において、前記第 1光学素子の少なくとも 1面は近軸の曲率半径がほぼ無限 大であることが好ましい。
[0057] これによれば、第 1光学素子の屈折力が弱くなるので、第 1光学素子と第 2光学素 子の組み付け誤差を抑えることができる。
[0058] 本発明の第 24の態様によれば、第 1乃至 23の態様のいずれかに記載の対物光学 系において、前記対物光学系は、前記波長 λ 1及び前記波長 λ 2の光束に対して実 質的に位相差を与えないとともに前記波長 λ 3の光束に対して実質的に位相差を与 える第 2光路差付与構造を備え、前記第 2光路差付与構造は、光軸を中心とした同 心円状の輪帯を複数形成することで構成されており、前記波長 λ 1の光束が前記第 2光路差付与構造の各輪帯を通過する際に前記波長 λ 1の Ρ倍の光路差を付与し、 前記波長 λ 2の光束が前記第 2光路差付与構造の各輪帯を通過する際に前記波長 λ 2の Q倍の光路差を付与するように設定され、前記 Ρと Qの組合せ力 (Ρ, Q) = (5 , 3)、 (8, 5)、 (10, 6)の何れかであることが好ましい。
[0059] これによれば、対物光学系が備える第 2光路差付与構造は、波長 λ 1及び波長 λ 2 の光束が第 2光路差付与構造の各輪帯を通過する際に、波長 λ 1の Ρ倍及び波長 λ 2の Q倍の光路差を付与することで、波長 λ 1及び波長 λ 2の光束に対して実質的 に位相差を与えない。これにより、使用波長が微小範囲内 (数 nm程度)で変動した 場合に、この光束が上記第 1回折構造及び第 1光路差付与構造を通過することによ つて生じる球面収差を、第 2光路差付与構造を通過することによって生じる球面収差 で相殺するように作用させることができ、使用波長が微小範囲内で変動した際の光ピ ックアップ装置全体での球面収差の発生量を低減させることができる。
[0060] 本発明の第 25の態様によれば、第 24の態様に記載の対物光学系において、第 2 光路差付与構造を光路差関数 Φ (h)を用いて、 (h) = (B X h2+B X h4+ - - - +
2 4
B X h2i) X X X Pと表し、係数 B =0を代入した場合に、 φ (hmax)〉0となること力 ^
2i 2
好ましい。
[0061] 但し、 hは光軸力 の高さ、 B は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長、 hmaxは第 1光ディスクの光ディスク側の開口数に相当する光軸からの高さ。
[0062] これによれば、第 2光路差付与構造を備える光学素子を特にプラスチック材料で構 成した場合に、環境温度変化時の屈折率変化に伴う収差の発生などを抑制すること が可能となる。
[0063] 本発明の第 26の態様によれば、第 25の態様に記載の対物光学系において、前記 第 1回折構造を光路差関数 Φ を用いて、 φ (h) = (A X h2+A X h4+ - - - +A X
1 1 2 4 2i h2i) x λ X Nと表した場合、係数 A≠0であることが好ましい。
2
[0064] 但し、 hは光軸力 の高さ、 A は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長。
[0065] これによれば、係数 A≠0とすることにより、不要光の焦点位置を、使用光の焦点
2
位置に対して離すことができ、光ピックアップ装置の検出器における反射光の検出性 を高めることができる。なお、 I A
2 I >0. 02の範囲内とすることが、上記検出性をよ り高める観点力も更に好ましい。
[0066] 本発明の第 27の態様によれば、第 24の態様に記載の対物光学系において、第 2 光路差付与構造を光路差関数 Φ (h)を用いて、 (h) = (B X h2+B X h4+ - - - +
2 4
B X h2i) X X X Pと表した場合、係数 B≠0であることが好ましい。
2i 2
[0067] 但し、 hは光軸力 の高さ、 B は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長。
[0068] これによれば、係数 B≠0とすることにより、不要光の焦点位置を、使用光の焦点位
2
置に対して離すことができ、光ピックアップ装置の検出器における反射光の検出性を 高めることができる。なお、 I B
2 I >0. 02の範囲内とすることが、上記検出性をより 高める観点から更に好ましい。
[0069] 本発明の第 28の態様によれば、第 1乃至 27の態様のいずれかに記載の対物光学 系において、前記第 3光ディスクに対して情報の再生及び Z又は記録を行う場合に おける、前記 N次回折光の焦点位置と、(N± l)次回折光の焦点位置とは、光軸方 向に 0. Olmm以上離れていることが好ましい。
[0070] これによれば、 N次回折光の焦点位置と、(N± l)次回折光の焦点位置とを離すこ とにより、光ピックアップ装置の光検出器における N次回折光の反射光の検出性を高 めることができる。
[0071] 本発明の第 29の態様によれば、第 1乃至 28の態様のいずれかに記載の対物光学 系において、開口制限機能を有することが好ましい。
[0072] これによれば、対物光学系を構成する部品点数を低減することができ、更に小型化 や低コストィ匕が可能となる。
[0073] 本発明の第 30の態様によれば、第 29の態様に記載の対物光学系において、前記 開口制限機能が、特定波長の光束のみを透過するダイクロイツクフィルタにより達成 されることが好ましい。
[0074] 本発明の第 31の態様によれば、第 29の態様に記載の対物光学系において、前記 開口制限機能が、所定の波長の光束に対して回折作用を付与することにより、この 光束を情報記録面外に集光させる機能により達成されることが好ましい。
[0075] これによれば、波長選択性を有する特殊なコートを施したダイクロイツクフィルターな どを別途設ける必要がなくなるため、更に小型化や低コストィ匕が可能となる。
[0076] 本発明の第 32の態様によれば、第 1乃至 31の態様のいずれかに記載の対物光学 系において、前記対物光学系の少なくとも 1つの光学面は、光軸を中心とする同心 円状であって光軸を含む第 1領域と、前記第 1領域の周辺に位置する第 2領域の少 なくとも 2つの領域に区分され、前記第 2領域を通過した前記波長 λ 3の光束に対し て回折作用を付与することにより、前記第 2領域を通過した前記波長 λ 3の光束を前 記第 3光ディスクの情報記録面外に集光させることが好ましい。
[0077] 本発明の第 33の態様によれば、第 32の態様に記載の対物光学系において、前記 第 2領域の周辺に第 3領域を備え、前記第 3領域を通過した前記波長 λ 1の光束が 前記第 1光ディスクの情報記録面外に集光する、或いは、前記第 3領域を通過した前 記波長 λ 2の光束が前記第 2光ディスクの情報記録面外に集光することが好ましい。
[0078] これによれば、光ディスクに対して情報の記録 Ζ再生に利用しない不要な光束が、 ノイズとして影響することを防止することができる。
[0079] 本発明の第 34の態様によれば、第 32又は第 33の態様に記載の対物光学系にお いて、前記第 1領域に前記第 1回折構造を備えることが好ましい。
[0080] 本発明の第 35の態様によれば、第 32又は第 33の態様に記載の対物光学系にお いて、前記第 1領域に前記第 1光路差付与構造を備え、前記第 2領域が光軸から近 い第 2Α領域と光軸力 遠い第 2Β領域とに区分され、前記第 2Α領域に、階段構造 を有する輪帯を、光軸を中心とした同心円状に複数形成することで構成された第 2回 折構造を備え、前記第 2回折構造が、前記波長 λ 1の光束に対しては実質的に位相 差を与えず、前記波長 λ 2及び前記波長 λ 3の光束に対しては実質的に位相差を 与えることが好ましい。
[0081] 本発明の第 36の態様によれば、第 1乃至第 35の態様のいずれかに記載の対物光 学系において、 tl =t2であることが好ましい。
[0082] 本発明の第 37の態様によれば、波長 λ 1の光束を出射する第 1光源と、波長え 2 の光束を出射する第 2光源と、波長 λ 3の光束を出射する第 3光源と、第 1乃至第 36 の態様のいずれかに記載の対物光学系とを備える光ピックアップ装置であることが好 ましい。
[0083] 本発明の第 38の態様によれば、光ディスクを装填するための光ディスク装填機構と 、第 37の態様に記載の光ピックアップ装置とを備える光情報記録再生装置であるこ とが好ましい。
また、以上の各態様において、波長 λ 1と波長 λ 3とは以下の関係を満足すること 力 高い回折効率で有効な回折作用を利用した互換を達成する上で好ましい。
[0084] 1. 6≤ λ 3/ λ 1≤2. 3
これによれば、波長 λ 3が波長 λ 1の略 2倍の波長であるため、第 1回折構造を用 いて、波長 λ 1の回折光のうち回折効率が最大となる回折光の回折次数を奇数とし たことに関連して、波長 λ 1の光束のみならず、波長 λ 3の光束に対しても、更に有 効な回折作用を与えることが可能となり、回折作用を利用した互換性をより高めること ができる。
[0085] 本明細書においては、情報の記録 Ζ再生用の光源として、青紫色半導体レーザや 青紫色 SHGレーザを使用する光ディスクを総称して「高密度光ディスク」 t ヽ、 NA 0. 85の対物光学系により情報の記録 Z再生を行い、保護層 (保護膜)の厚さが 0. 1 mm程度である規格の光ディスク(例えば、ブルーレイディスク)の他に、 NAO. 65乃 至 0. 67の対物光学系により情報の記録 Z再生を行い、保護層の厚さが 0. 6mm程 度である規格の光ディスク (例えば、 HD DVD)も含むものとする。また、このような 保護層をその情報記録面上に有する光ディスクの他に、情報記録面上に数一数十 n m程度の厚さの保護層を有する光ディスクや、保護層の厚さが 0の光ディスクも含む ものとする。また、本明細書においては、高密度光ディスクには、情報の記録 Z再生 用の光源として、青紫色半導体レーザや青紫色 SHGレーザを使用する光磁気ディ スクも含まれるものとする。
[0086] 本明細書においては、 DVDとは、 DVD-ROM, DVD-Video, DVD-Audio, DVD— RAM DVD-R, DVD— RW DVD+R DVD+RW等の DVD系列の光 ディスクの総称であり、 CDとは、 CD-ROM, CD-Audio, CD-Video, CD-R, C D— RW等の CD系列の光ディスクの総称である。
[0087] また、本明細書において、「対物光学系」とは、光ピックアップ装置において光ディ スクに対向する位置に配置され、光源から射出された波長が互いに異なる光束を、 記録密度が互いに異なる光ディスクのそれぞれの情報記録面上に集光する機能を 有する集光素子を少なくとも含む光学系を指す。対物光学系は集光素子のみから構 成されていても良い。
[0088] 更に、上述の集光素子と一体となってァクチユエータによりトラッキング及びフォー カシングを行う光学素子がある場合には、これら光学素子と集光素子とから構成され る光学系が対物光学系となる。
[0089] また、本明細書において、「実質的に位相差を与えない」とは、全く位相変化がない 状態のみを指すものではなぐ光路差付与後の状態における位相の変化が ±0. 2 π以内の状態を指すものとする。したがって、本明細書において、「実質的に位相差 を与える」とは、光路差付与後の状態における位相の変化が ±0. 2 π (パイ)を超え る状態を指すものである。
[0090] また、本明細書にお!、て、「良好な集光スポットを形成する」とは、該当する光デイス クの情報記録面上での波面収差が 0. 07 λ rms以下となることを指すものである。
[0091] また、本明細書において、「実質的に結像倍率は同じ」とは、結像倍率の差が ±0.
008以内であることを指すものである。
[0092] また、本明細書において、「曲率半径がほぼ無限大」とは、光軸上での曲率半径が
200mm以上であることを指すものである。より好ましい曲率半径は 500mm以上であ り、更に平面であることがより好ましい。 [0093] また、本明細書にぉ 、て、「光路差付与構造」とは、入射する光束に対して光路差 を付与する構造を指し、例えば、特定波長の光束に回折光を発生する回折構造や、 特定波長の光束に位相差を付与する構造 (位相差付与構造)を含むものである。
[0094] 本発明を実施するための最良の形態について、図面を参照しつつ説明する。
[0095] 図 1は、高密度光ディスク HD (第 1光ディスク)と DVD (第 2光ディスク)と CD (第 3 光ディスク)との何れに対しても適切に情報の記録 Z再生を行える第 1の光ピックアツ プ装置 PUの構成を概略的に示す図である。
[第 1の実施の形態]
高密度光ディスク HDの光学的仕様は、第 1波長 λ l =408nm、第 1保護層 PL1の 厚さ tl = 0. 0875mm,開口数 NA1 =0. 85であり、 DVDの光学的仕様は、第 2波 長え 2 = 658應、第 2保護層 PL2の厚さ t2 = 0. 6mm、開口数 NA2 = 0. 60であり 、 CDの光学的仕様は、第 3波長え 3 = 785nm、第 3保護層 PL3の厚さ t3 = 1. 2m m、開口数 NA3 = 0. 45である。
[0096] 第 1光ディスク、第 2光ディスク、及び第 3光ディスクの記録密度 1、 p 2、 p 3)の 関係は、 p 3< p 2< p 1となっており、第 1光ディスク、第 2光ディスク、及び第 3光デ イスクのそれぞれに対して情報の記録及び Z又は再生を行う際の、対物光学系 OBJ のそれぞれの結像倍率(第 1倍率 Ml、第 2倍率 M2、第 3倍率 M3)は、 M1 = M2 = M3 = 0となっている。但し、本発明において、波長、保護層の厚さ、開口数、記録密 度及び倍率の組合せはこの例に限られるものではない。
[0097] 光ピックアップ装置 PUは、高密度光ディスク HDに対して情報の記録 Z再生を行う 場合に発光され、波長 408nmのレーザ光束 (第 1波長 λ 1の第 1光束)を射出する青 紫色半導体レーザ LD1 (第 1光源)、高密度光ディスク HDの情報記録面 RL1からの 反射光束を受光する第 1光検出器 PD1、 DVDに対して情報の記録 Ζ再生を行う場 合に発光され、波長 658nmのレーザ光束 (第 2波長 λ 2の第 2光束)を射出する赤色 半導体レーザ LD2 (第 2光源)、 CDに対して情報の記録 Ζ再生を行う場合に発光さ れ、波長 785nmのレーザ光束 (第 3波長え 3の第 3光束)を射出する赤外半導体レ 一ザ LD3 (第 3光源)、 DVDの情報記録面 RL2からの反射光束を受光すると共に C Dの情報記録面 RL3からの反射光束を受光する第 2光検出器 PD2、収差補正素子 LI (第 1光学素子)とこの収差補正素子 L1を透過したレーザ光束を情報記録面 RL1 、 RL2、 RL3上に集光させる機能を有する両面非球面の集光素子 L2 (第 2光学素子 )とから構成された対物光学系 OBJ、トラッキング及びフォーカシングの際に対物光学 系 OBJを駆動するための 2軸ァクチユエータ AC1、高密度光ディスク HDの開口数 N A1に対応した絞り STO、第 1乃至第 4偏光ビームスプジッタ BS1、 BS2、 BS3、 BS4 、第 1乃至第 3コリメートレンズ COLl、 COL2、 COL3、負レンズ Elと正レンズ E2と 力 構成されるビームエキスパンダー EXP、第 1センサーレンズ SEN1、第 2センサ 一レンズ SEN2等力 概略構成されて ヽる。
[0098] 光ピックアップ装置 PUにおいて、高密度光ディスク HDに対して情報の記録 Z再 生を行う場合には、図 1において実線でその光線経路を描いたように、青紫色半導 体レーザ LD1を発光させる。青紫色半導体レーザ LD1から射出された発散光束は、 第 1コリメートレンズ COL1により平行光束に変換された後、第 1の偏光ビームスプリツ タ BS1、ビームエキスパンダー EXP、第 2の偏光ビームスプリッタ BS2を透過し、その 後、絞り STOにより光束径が規制され、対物光学系 OBJによって第 1保護層 PL1を 介して情報記録面 RL1上に形成されるスポットとなる。なお、対物光学系 OBJが波長 λ 1の光束に対して与える作用については後述する。対物光学系 OBJは、その周辺 に配置された 2軸ァクチユエータ AC 1によってフォーカシングゃトラッキングを行う。
[0099] 情報記録面 RL1で情報ピットにより変調された反射光束は、再び対物光学系 OBJ 、第 2の偏光ビームスプリッタ BS2、ビームエキスパンダー EXPを通過した後、第 1の 偏光ビームスプリッタ BS1により反射され、センサーレンズ SEN1により非点収差を与 えられ、第 3コリメートレンズ COL3により収斂光束に変換され、第 1光検出器 PD1の 受光面上に収束する。そして、第 1光検出器 PD1の出力信号を用いて、高密度光デ イスク HDに記録された情報を読み取ることができる。
[0100] また、 DVDに対して情報の記録 Z再生を行う場合には、まず赤色半導体レーザ L D2を発光させる。赤色半導体レーザ LD2から射出された発散光束は、図 1において 点線でその光線経路を描いたように、第 3偏光ビームスプリッタ、第 4偏光ビームスプ リツタを通過し、第 2コリメートレンズ COL2により平行光束とされた後、第 2偏光ビーム スプリッタ BS2で反射され、対物光学系 OBJによって第 2保護層 PL2を介して情報記 録面 RL2上に形成されるスポットとなる。なお、対物光学系 OBJが波長え 2の光束に 対して与える作用については後述する。対物光学系 OBJは、その周辺に配置された 2軸ァクチユエータ AC 1によってフォーカシングゃトラッキングを行う。情報記録面 RL 2で情報ピットにより変調された反射光束は、再び対物光学系 OBJを通過し、第 2偏 光ビームスプリッタ BS2で反射され、第 2コリメートレンズ COL2により収斂光束に変 換され、第 4偏光ビームスプリッタ BS4で反射され、第 2センサーレンズ SEN2によつ て非点収差を与えられ、第 2光検出器 PD2の受光面上に収束する。そして、第 2光 検出器 PD2の出力信号を用いて、 DVDに記録された情報を読み取ることができる。
[0101] また、 CDに対して情報の記録 Z再生を行う場合には、赤外半導体レーザ LD3を 発光させる。赤外半導体レーザ LD3から射出された発散光束は、図 1において点線 でその光線経路を描いたように、第 3偏光ビームスプリッタで反射され、第 4偏光ビー ムスプリッタを通過し、第 2コリメートレンズ COL2により平行光束とされた後、第 2偏光 ビームスプリッタ BS2で反射され、対物光学系 OBJによって第 3保護層 PL3を介して 情報記録面 RL3上に形成されるスポットとなる。なお、対物光学系 OBJが波長え 3の 光束に対して与える作用については後述する。対物光学系 OBJは、その周辺に配置 された 2軸ァクチユエータ AC1によってフォーカシングゃトラッキングを行う。情報記 録面 RL3で情報ピットにより変調された反射光束は、再び対物光学系 OBJを通過し 、第 2偏光ビームスプリッタ BS2で反射され、第 2コリメートレンズ COL2により収斂光 束に変換され、第 4偏光ビームスプリッタ BS4で反射され、第 2センサーレンズ SEN2 によって非点収差を与えられ、第 2光検出器 PD2の受光面上に収束する。そして、 第 2光検出器 PD2の出力信号を用いて、 CDに記録された情報を読み取ることがで きる。
[0102] 次に、対物光学系 OBJの構成について説明する。収差補正素子 L1は、 d線での屈 折率 ndが 1. 5091であり、アッベ数 v d力 6. 5のプラスチックレンズであり、波長え 1に対する屈折率は 1. 5242、波長え 2に対する屈折率は 1. 5064、波長え 3に対 する屈折率は 1. 5050である。また、集光素子 L2は、 d線での屈折率 ndが 1. 5435 であり、アッベ数 v d力 6. 3のプラスチックレンズである。なお、図示は省略するが、 収差補正素子 L1の光学機能部 (第 1光束が通過する領域)及び集光素子 L2の光学 機能部 (第 1光束が通過するの領域)のそれぞれの周囲には、それぞれの光学機能 部と一体に成形されたフランジ部を有し、力かるフランジ部の一部同士を接合するこ とで、収差補正素子 L1と集光素子 L2とは一体化され、単一の対物光学系として取り 扱うことができるよう構成されて!、る。
[0103] 尚、収差補正素子 L1と集光素子 L2とを一体ィ匕する場合には、別部材の鏡枠を用 V、て、この鏡枠を介して両者を一体化するよう構成してもよ!/、。
[0104] 収差補正素子 L1の半導体レーザ光源側の光学面 S1 (入射面)は、図 2に示すよう に、光軸 Lを含み、収差補正素子 L1を光軸 Lの方向にみたときに開口数 NA3以下 の領域に対応した、光軸 Lを中心とする円状である第 1領域 AREA1と、同じく光軸 L の方向にみたときに光軸 Lを中心とする同心円状であって、第 1領域 AREA1よりも 外側且つ開口数 NA2以下の領域である第 2領域 AREA2と、同じく光軸 Lの方向に みたときに光軸 Lを中心とする同心円状であって、第 2領域 AREA2よりも外側且つ 開口数 NA1以下の領域である第 3領域 AREA3とに区分されており、さらに、第 2領 域 AREA2は、光軸 Lカゝら近い第 2A領域 2Aと、光軸 Lから遠い第 2B領域 2Bとに区 分されている。
[0105] そして、第 1領域には第 1光路差付与構造 10が形成されており、第 2A領域には第 2回折構造 20が形成されており、第 2B領域及び第 3領域にも回折構造が形成され、 それぞれ回折構造 2(Τ、回折構造 30が形成されている。
[0106] 第 1光路差付与構造 10、第 2回折構造 20、第 2Β領域の回折構造 2(Τ及び第 3領 域の回折構造 30は共に図 3に模式的に示すように、所定数の段部 11と不連続部位 12とからなる階段構造を有する輪帯 13を、光軸 Lを中心とした同心円状に複数形成 した構造力 なる。
[0107] 第 2回折構造 20は、第 1光路差付与構造 10と比較して不連続部位 12の数が異な つており、第 1光路差付与構造 10と第 2Β領域の回折構造 2(Τとは不連続部位の数 が同じになっている。
[0108] 第 1光路差付与構造 10としては、図 3に示したもの以外にも、例えば図 4に模式的 に示すように、複数の輪帯 15から構成され、光軸 Lを含む断面形状が鋸歯形状であ るものや、図 5に模式的に示すように、段部 16の段差の方向が有効径内で同一であ る複数の輪帯 17から構成され、光軸 Lを含む断面形状が階段形状であるものであつ てもよい。例えば、図 5 (a)に模式的に示したものは、光軸 Lを中心にした有効径内で 、階段構造を常に上り階段の形状とすることで、段部 16の段差の方向が有効径内で 同一とした例であり、図 5 (b)〖こ模式的に示したものは、光軸 Lを中心にした有効径内 で、階段構造を常に下り階段の形状とすることで、段部 16の段差の方向が有効径内 で同一とした例である。尚、図 3乃至図 5は、各構造を平面上に形成した場合を模式 的に示したものである力 各構造を球面或いは非球面上に形成しても良い。
[0109] 第 2回折構造 20、第 2B領域の回折構造 2(Τ及び第 3領域の回折構造 30としては 、図 3に示したもの以外にも、図 4に示したような断面形状が鋸歯形状のものであって ちょい。
[0110] そして、第 1光路差付与構造 10は、不連続部位 12を通過する波長 λ 1、波長え 2 及び波長 λ 3の光束のうち、波長 λ 2の光束に対してのみ実質的に位相差を与え、 波長 λ 1と波長 λ 3の光束に対しては実質的に位相差を与えないように設定されて いる。波長え 2の光束は実質的に位相差を与えられることにより回折作用を受けるの で、これにより発生する波長え 2の回折光のうち、最も高い回折効率を有する回折光 を DVDに禾 IJ用できる。
[0111] 具体的には、第 1光路差付与構造 10が形成されている収差補正素子 L1の波長え 1の光束に対する屈折率を nl、第 1光路差付与構造 10における階段構造の段部 11 の光軸 L方向の段差量を dl (図 3を参照)、不連続部位 12の数を ml (整数)とし、 d = λ ΐΖ(η1— 1)としたとき、 1. 8 X d≤dl≤2. 2 X d、及び、 4≤ ml≤ 6を満たすよ うに設計されている。
[0112] これにより、第 1光路差付与構造 10における階段構造の段差量は、波長 λ 1のほ ぼ整数倍の深さに設定されることになる。段差量 (段差の深さ)がこのように設定され た階段構造に対して、波長 λ 1の光束が入射した場合、隣接する段部間では λ 1の ほぼ整数倍の光路差が発生することになり、波長 λ 1の光束には実質的に位相差が 与えられないことになるので、波長 λ 1の入射光束は第 1光路差付与構造 10におい て回折されずにそのまま透過する。
[0113] また、この階段構造に対して、波長 λ 3の光束が入射した場合、波長 λ 3は波長 λ 1の略 2倍であるので、隣接する段部間ではえ 3の略整数倍の光路差が発生し、波 長 λ 3の光束も波長 λ 1の光束と同様に、実質的に位相差が与えられず、第 1光路 差付与構造 10において回折されずにそのまま透過する。
[0114] 一方、波長 λ 2の入射光束に対しては、段差量 (段差の深さ)と不連続部位の数に 応じた位相差が生じるので、その回折作用を利用し、例えば、高い回折効率を有す る回折次数の回折光を利用して、 DVDに対する情報の記録 Ζ再生を行なうことがで きると共に、 DVDの色収差の補正や温度変化に伴う球面収差の補正を行なうように することができる。
[0115] また、 CDに対する情報の記録 Ζ再生には、波長 λ 3の光束のうち第 1領域 AREA 1を通過した光束のみを利用するので、第 2領域 AREA2を通過した波長 λ 3の光束 は不要な光束となる。そこで、第 2領域 AREA2を通過した波長 λ 3の光束が CDの 情報記録面 RL3上に集光しないように、第 2A領域に形成した第 2回折構造 20及び 第 2B領域に形成した回折構造 20Ίこより回折作用を与え、これにより発生する回折 光のうち比較的高い回折効率 (例えば 30%以上)を持つ回折次数の回折光をフレア ィ匕 (本来、必要な集光スポットに悪影響を与えないように、集光スポットから離れるよう 飛ばしたり、分散させたりする)させるようになつている。尚、このとき、波長え 3の光束 に対して、高い回折効率を有する回折光の回折次数は、波長え 2の光束に対して高 V、回折効率を有する回折光の回折次数とは異なる次数となる。
[0116] このフレア化により、対物光学系 OBJに、開口数 NA3に対応した開口制限機能を 持たせることができると共に、第 2回折構造 20により、第 1領域 AREA1から第 2A領 域にかけて波長 λ 3の光束の縦球面収差を不連続なものとすることができ、第 2光検 出器 PD2における波長 λ 3の光束の CD力 の反射光の検出精度を向上させること ができる。
[0117] なお、波長え 3の光束に対する複数の回折光 (例えば + 1次と 1次の回折光)が、 ほぼ同じ回折効率 (例えば 40%程度)を有する場合がある力 このような場合には、 回折効率が高い回折次数の複数の回折光の全て、あるいは CDの情報記録面 RL3 上に集光するおそれがある回折次数の回折光をフレア化するようにすれば良い。
[0118] また、第 2領域 AREA2を通過する波長 λ 1の光束は実質的に位相差が与えられ ずそのまま透過する力 第 2領域 AREA2を通過する波長 λ 2の光束は実質的に位 相差が与えられるので、その回折作用を利用し、例えば、高い回折効率を有する回 折次数の回折光を利用して DVDに対する情報の記録 Ζ再生を行なうことができると 共に、 DVDの色収差の補正や温度変化に伴う球面収差の補正を行なうようにするこ とがでさる。
[0119] また、 DVD及び CDに対する情報の記録 Ζ再生には、第 3領域 AREA3を通過し た波長 λ 2の光束及び波長 λ 3の光束は不要な光束となる。そこで、第 3領域 AREA 3を通過した波長 λ 2の光束が DVDの情報記録面 RL2上に集光しないとともに、第 3領域 AREA3を通過した波長 λ 3の光束が CDの情報記録面 RL3上に集光しない ように、第 3領域 AREA3に形成した回折構造 30により回折作用を与え、これにより 発生する回折光のうち比較的高い回折効率 (例えば 30%以上)を持つ回折次数の 回折光をフレア化させるようになつている。なお、複数の回折光 (例えば + 1次と 1次 の回折光)がほぼ同じ回折効率 (例えば 40%程度)を有する場合があるが、このよう な場合には、回折効率が高い回折次数の複数の回折光の全て、あるいは DVD及び Z又は CDの情報記録面 RL2、RL3上に集光するおそれがある回折次数の回折光 をフレア化する。これにより、対物光学系 OBJに NA2に関する開口制限機能を持た せることができる。
[0120] 収差補正素子 L1の光ディスク側の光学面 S2 (出射面)には、第 2光路差付与構造 40が形成されている。
[0121] 第 2光路差付与構造 40は、図 5に示したような、段部 16の段差の方向が有効径内 で同一である複数の輪帯 17から構成され、光軸 Lを含む断面形状が階段形状となつ ており、波長 λ 1及び波長 λ 2の入射光束に対して実質的に位相差を与えないように なっている。
[0122] 具体的には、第 2光路差付与構造 40は、波長 λ 1の入射光束が前記各輪帯 17を 通過する際に波長 λ 1の Ρ倍の光路差を付与し、前記波長 λ 2の入射光束が前記各 輪帯を通過する際に波長 λ 2の Q倍の光路差を付与するように設定されており、光路 差関数 φ (h)を用いると、 (h) = (B X h2+B X h4+ - - - +B X h2i) X X Pで規
2 4 2i
定され、係数 B =0を代入した場合に、 φ (hmax) >0となるように設計されている。 [0123] 但し、 hは光軸力 の高さ、 B は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長、 hmaxは高密度光ディスク HDの開口数 NA1となる光軸 Lからの高さ。
[0124] Pと Qの組合せとしては、 (P, Q) = (5, 3)、 (8, 5)、 (10, 6)のいずれカゝとする。
[0125] 波長 λ 1及び波長 λ 2の光束が、第 2光路差付与構造 40が形成された光学面 (本 実施の形態においては出射面 S2)に対して垂直に入射した場合、波長 λ 1及び波 長え 2の光束の第 2光路差付与構造による光の出射角の違いは下記の式(1) (2)の 差で表される。
[0126] -nl X sin( 0 1) = Ρ Χ λ 1/ρ (1)
-η2 X sin( θ 2) = Q X λ 2/ρ (2)
ηΐ:波長 λ 1における収差補正素子 L1の屈折率
η2:波長え 2における収差補正素子 L1の屈折率
θ 1 :第 2光路差付与構造による波長 λ 1の光束の出射角
Θ 2 :第 2光路差付与構造による波長え 2の光束の出射角
Ρ :第 2光路差付与構造における輪帯のピッチ
一般的に、光学素子の屈折力に対して与える影響は、波長変化に起因するものの 方が、光学素子自体の屈折率の変化に起因するものよりも大きいことが知られており 、本実施の形態においては、第 2光路差付与構造 40による屈曲(出射角)は波長え 1及び波長 λ 2の波長変化に依存している。
[0127] 例えば、波長 l =405nm、波長え 2 = 655nmとしたとき、(P, Q) = (l, 1)であ れば λ 1と (QZP) Xぇ2との差は 250nmとなり、回折作用による各光束の出射角の 差が大きくなるが、 (P, Q) = (5, 3)では— 12nm、 (P, Q) = (8, 5)では 4nm、 (P, Q) = (10, 6)では一 12nmと/ J、さくなる。従って、 (P, Q) = (5, 3)、 (8, 5)、 (10, 6) のいずれかの組み合わせとすることにより、回折作用による各光束の出射角はほぼ 等しくなり、相互の回折作用は実質的にほとんど無いものとして扱うことが可能となる 。そこで、上述のように、 φ (hmax) >0となるように第 2光路差付与構造を設計するこ とで、波長 λ 1と波長 λ 2の光束に数 nm程度の波長変動が生じた場合に、第 1回折 構造 50及び第 1光路差付与構造 10により発生する収差を第 2光路差付与構造 40で 低減させることができる。 [0128] 集光素子 L2の半導体レーザ光源側の光学面 S I (入射面)には、図 2に示すように
、第 1回折構造 50が形成されている。
[0129] 第 1回折構造 50は、図 4に示したような、複数の輪帯 15から構成され、光軸 Lを含 む断面形状が鋸歯形状となって 、る。
[0130] 第 1回折構造 50としては、図 4に示したもの以外にも、図 3に示したようなものであつ てもよい。
[0131] 収差補正素子 L1を通過した波長 λ 1、波長え 2及び波長 λ 3の各光束は第 1回折 構造 50により回折作用を受ける。これにより生じる波長 λ 1の光束の L次回折光 (Lは 奇数)は、集光素子 L2の出射面 S2において屈折作用を受けた後、高密度光デイス ク HDの情報記録面 RL1上に集光スポットを形成するようになっている。また、波長え 2の光束の Μ次回折光 (Μは整数)は、集光素子 L2の出射面において屈折作用を 受けた後、 DVDの情報記録面 RL2上に集光スポットを形成するようになっている。ま た、波長え 3の光束の Ν次回折光 (Νは整数)は、集光素子 L2の出射面において屈 折作用を受けた後、 CDの情報記録面 RL3上に集光スポットを形成するようになって いる。
[0132] 換言すると、第 1回折構造 50は、波長 λ 1の光束の L次回折光が高密度光ディスク HDの情報記録面 RL1上に良好な集光スポットを形成するように収差補正を行な!/、、 波長 λ 2の光束の Μ次回折光が、第 1光路差付与構造 10を通過する際に与えられ る位相差により DVDの情報記録面 RL2上に良好な集光スポットを形成するよう収差 補正を行い、波長 λ 3の光束の Ν次回折光が CDの情報記録面 RL3上に良好な集 光スポットを形成するように収差補正を行なうように設計されて ヽる。
[0133] ここで、一般的に、光軸 Lから離れるに従って回折光の光量は低下していくが、回 折次数が大きい回折光ほど、この低下率が大きくなり、使用に支障をきたす可能性が あるので、可能な限り低次数の回折光を使用することが好ましい。このような L、 M及 び Nの組み合わせとしては、 (L, M, N) = ( l , 1 , 1)、 (3, 2, 2)が挙げられる。
[0134] また、上記 L次、 M次及び N次の回折光の回折効率をそれぞれ η 1、 η 2及び η 3 としたとき、高密度光ディスク HDと DVDと CDと間で互換を達成するためには、 7? 1 > 85%、 η 2 > 80%及び r? 3く 75%を満たす回折効率を有することが特に好ましい [0135] なお、本実施の形態では、対物光学系 OBJを収差補正素子 L1と集光素子 L2とか らなる 2群構成とした。これにより、回折パワーや屈折パワーを 2つの光学素子に分担 させることができ、設計の自由度が向上するという利点がある。し力しながら、これに 限らず、対物光学系 OBJを単玉のレンズで構成し、このレンズの入射面と出射面に 上記光路差付与構造や回折構造を設けても良い。
[0136] また、収差補正素子 L1に第 1回折構造 50と第 1光路差付与構造 10を設けてもよく 、この場合、集光素子 L2をガラスレンズとすることができるので、温度変化による収差 の発生を抑制できる。
[0137] また、本実施の形態のように、収差補正素子 L1の入射面 S1に第 1光路差付与構 造 10を設けることが好ましい。特に、第 1光路差付与構造 10を、図 3に示したような 所定数の段部 11と不連続部位 12とからなる階段構造を有する構成とした場合、図 4 に示したような鋸歯状の構造に比べて、光軸 L方向の段差量が大きくなり、光束の斜 入射によるケラレが生じて回折効率の低下がおきるので、これを防止すベぐ各光束 が平行光として、その入射する面 (収差補正素子 L1の入射面 S1)に第 1光路差付与 構造 10を設けることが望ま 、。
[0138] また、収差補正素子 L1の焦点距離を f 1、集光素子 L2の焦点距離を f2としたとき、
I fl/f2 I < 0. 1 且つ I 1/fl I < 0. 02を満たすように、あるいは、収差補正 素子 L1の少なくとも 1面の近軸における曲率半径がほぼ無限大となるようにレンズ設 計を行なうことが好ましい。このように収差補正素子 L1の屈折力を弱くすることで、収 差補正素子 L1と集光素子 L2との組み付け誤差を抑えることができる。また、光学面 の形状が略平面とすることで、第 1光路差付与構造 10や第 1回折構造 50などを光学 面上に形成しやすくなる。
[0139] また、 CDに対して情報の再生及び Z又は記録を行う場合における、 N次回折光の 焦点位置と、(N± l)次回折光の焦点位置とが、光軸 L方向に 0. Olmm以上離すこ とが好ましぐこれは、第 1回折構造 50を光路差関数 φ を用いて、 φ (h) = (A X h
1 1 2
2+A X h4+ - - - +A X h2i) X λ X Nで規定したとき、係数 A≠0とすることにより達
4 2i 2
成される。但し、 hは光軸からの高さ、 A は光路差関数の係数、 iは自然数、 λはブレ ーズ化波長。
[0140] なお、本実施の形態では、収差補正素子 L1の入射面 S1を、第 1領域 AREA1、第 2領域 AREA2及び第 3領域 AREA3の 3つに分割するものとした力 第 3領域を設 けずに、入射面 S1を第 1領域 AREA1と第 2領域 AREA2とに分割して、第 2領域 A REA2を通過した波長 λ 3の光束に対して回折作用を付与することにより、この波長 λ 3の光束をフレア化させるようにしてもよい。
[0141] また、対物光学系 OBJを構成する光学素子にダイクロイツクフィルタや液晶位相制 御素子を取り付けることで、対物光学系に開口制限機能を持たせることにしても良い
[0142] なお、図示は省略するが、上記実施の形態に示した光ピックアップ装置 PU、光ディ スクを回転自在に保持する回転駆動装置、これら各種装置の駆動を制御する制御装 置を搭載することで、光ディスクに対する光情報の記録及び光ディスクに記録された 情報の再生のうち少なくとも一方の実行が可能な光情報記録再生装置を得ることが 出来る。
[第 2の実施の形態]
高密度光ディスク HDの光学的仕様は、第 1波長 λ l =407nm、第 1保護層 PL1の 厚さ tl = 0. 6mm、開口数 NA1 = 0. 65であり、 DVDの光学的仕様は、第 2波長え 2 = 658 第 2保護層 PL2の厚さ t2 = 0. 6mm、開口数 NA2 = 0. 65であり、 CD の光学的仕様は、第 3波長え 3 = 785nm、第 3保護層 PL3の厚さ t3 = 1. 2mm、開 口数 NA3 = 0. 50である。
[0143] 第 2の実施の形態における光ピックアップ装置 PUの構成の概要は、図 1に示したよ うな第 1の実施の形態と同様であるため、詳細な説明は省略する。
実施例
[0144] 次に、実施例について説明する。
[0145] 本実施例は、図 6に示すように、対物光学系 OBJが収差補正素子 L1と集光素子 L 2の 2群で構成されており、収差補正素子 L1の入射面 S1 (第 2面)と出射面 S2 (第 3 面)は平面で構成されており、集光素子 L2の入射面 S1 (第 4面)と出射面 S2 (第 5面 )は非球面で構成されている。 [0146] 収差補正素子 LIの入射面 SIには、所定数の段部と不連続部位とからなる階段構 造を有する輪帯を、光軸を中心とした同心円状に複数形成した構造力 なる第 1光 路差付与構造 10が形成されており、集光素子 L2の入射面 S1には、複数の輪帯 15 から構成され、光軸を含む断面形状が鋸歯形状の第 1回折構造 50が形成されてい る。
[0147] 表 1に第 1の実施例のレンズデータを示す。
[0148] [表 1]
fii D
3Π¾!
Figure imgf000029_0003
Figure imgf000029_0001
Figure imgf000029_0002
[0149] 表 1中の Riは曲率半径、 diは第 i面力 第 i+ 1面までの光軸方向の位置、 niは各面 の屈折率を表している。
[0150] 表 1に示すように、本実施例の光ピックアップ装置は、第 1光源から出射される波長 ぇ1 =407應のときの焦点距離 f = 3. 10mm、像側開口数 NA1 = 0. 65、結像倍 率 m=0に設定されており、第 2光源から出射される波長え 2 = 658nmのときの焦点 距離 f = 3. 19mm、像側開口数 NA2 = 0. 65、結像倍率 m=0に設定されており、
2
第 3光源から出射される波長え 3 = 785nmのときの焦点距離 f = 3. 23mm、像側開 口数 NA3 = 0. 50、結像倍率 m=0に設定されている。尚、高密度光ディスク HDの 開口数 NA1となる光軸 Lからの高さ hmaxは、 2. 015mmである。
[0151] また、第 1光路差付与構造の不連続部位の数 ml = 5、段部の光軸方向の段差量 d l = 2 X dとなっており、波長 λ 1の光束と波長え 3の光束に対しては位相の変化量が 少なく(実質的に位相差が付与されず)、回折作用が生じず、波長 λ 2の光束に対し てのみ実質的に位相差が与えられ、回折作用が生じる。尚、ここで、 d= λ l/ (nl- 1)である。
[0152] 集光素子の入射面 (第 4面)及び出射面 (第 5面)は、それぞれ下記式 (3)に表 1に 示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されて いる。
[0153] [数 1]
X(h) = ~ . (h2 R) +∑A22h2i ( 3 )
1 + ^1 - (1 )(h/ R)2 ~
[0154] ここで、 X(h)は光学面における非球面の頂点に接する平面からの光軸方向におけ る変化量 (光の進行方向を正とする)、 Kは円錐係数、 A
2iは非球面係数、 hは光軸か らの高さである。
[0155] また、第 1光路差付与構造及び第 1回折構造により各波長の光束に対して与えられ る光路長は下記式 (4)の光路差関数に、表 1に示す係数を代入した数式で規定され る。
[0156] [数 2]
Φ(1ι) = B2ih2i ( 4 )
[0157] B は光路差関数の係数である。
2i
[0158] 表 1に示すように、第 1の実施例において、対物光学系から出射される L次回折光、
M次回折光及び N次回折光のそれぞれの回折効率(7? 1、 7? 2、 7? 3)は、 η 1 = 72
%、 7? 2 = 99%、 7? 3 = 65%であった。
[0159] 図 7は、波長 λ 1の光束光束 (HD)、波長 λ 2の光束 (DVD)及び波長 λ 3の光束(
CD)の縦球面収差図である。
[0160] 図 7より、全ての光束において、必要開口数内で縦球面収差が抑制されていること が分かる。 表 2に第 2の実施例のレンズデータを示す。
[0161] [表 2]
実施例②
焦点距離
開口数
結 ts倍率
Figure imgf000031_0001
第面から第 面までの变位を表
球面■回折面
第面
光路差関数: 係数 ¾階段形状
にのみ位相差が与えられ. 回折する
は位相差がほとんど生じないため 回折しない
非球面係数 光路差関^係数 ※鋸歯形状
ブレーズ化波長を で 次回折 とすることにより
回折次数
となる。
非球面係数
[0162] 表 1中の Riは曲率半径、 diは第 i面力 第 i+ 1面までの光軸方向の位置、 niは各面 の屈折率を表している。
[0163] 表 1に示すように、本実施例の光ピックアップ装置は、第 1光源から出射される波長 ぇ1 =407應のときの焦点距離 f = 3. 10mm、像側開口数 NA1 = 0. 65、結像倍 率 m=0に設定されており、第 2光源から出射される波長え 2 = 658nmのときの焦点 距離 f = 3. 15mm、像側開口数 NA2 = 0. 65、結像倍率 m=0に設定されており、
2
第 3光源から出射される波長え 3 = 785nmのときの焦点距離 f = 3. 15mm、像側開
3
口数 NA3 = 0. 50、結像倍率 m=0に設定されている。尚、高密度光ディスク HDの 開口数 NA1となる光軸 Lからの高さ hmaxは、 2. 015mmである。
[0164] また、第 1光路差付与構造の不連続部位の数 ml = 5、段部の光軸方向の段差量 d l = 2 X dとなっており、波長 λ 1の光束と波長え 3の光束に対しては位相の変化量が 少なぐ回折作用が生じず、波長え 2の光束に対してのみ実質的に位相差が与えら れ、回折作用が生じる。尚、ここで、 d= λ lZ (nl— 1)である。
[0165] 集光素子の入射面 (第 4面)及び出射面 (第 5面)は、第 1の実施例と同様に、上記 式 (3)に表 2に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球 面に形成されている。
[0166] また、第 1光路差付与構造及び第 1回折構造により各波長の光束に対して与えられ る光路長は、第 1の実施例と同様に、上記式 (4)の光路差関数に、表 2に示す係数を 代入した数式で規定される。
[0167] 表 2に示すように、第 2の実施例において、対物光学系から出射される L次回折光、 Μ次回折光及び Ν次回折光のそれぞれの回折効率(7? 1、 7? 2、 7? 3)は、 η 1 = 77 %、 r? 2 = 83%、 r? 3 = 63%であった。また、 Ν次回折光の焦点位置と、(N± l)次 回折光の焦点位置とは、光軸方向に 0. 1mm以上離れている。
[0168] 尚、第 1及び第 2の実施例においては、高密度光ディスクとして HD DVDに関連 する第 2の実施の形態に係わる対物光学系を具体例として例示したが、高密度光デ イスクとして BD (Blu— ray Disc)に関連する第 1の実施の形態に本発明を適用でき ること、また、その際に、必要に応じてその対物光学系を適宜設計又は設計変更でき ることは勿論である。
産業上の利用可能性
[0169] 本発明によれば、青紫色レーザ光源を使用する高密度光ディスクと DVDと CDの 3 種類のディスク間での互換性を有し、光量確保と球面収差補正を両立した対物光学 系、光ピックアップ装置及び光情報記録再生装置を得られる。

Claims

請求の範囲
[1] 保護基板厚 tlの第 1光ディスクに対して、第 1光源力 出射される波長 λ 1の光束 を用いて情報の再生及び Ζ又は記録を行 ヽ、保護基板厚 t2 (tl≤t2)の第 2光ディ スクに対して、第 2光源から出射される波長 λ 2 ( λ 1 < λ 2)の光束を用いて情報の 再生及び Ζ又は記録を行い、保護基板厚 t3 (t2<t3)の第 3光ディスクに対して、第 3光源から出射される波長 λ 3 ( λ 2< λ 3)の光束を用いて情報の再生及び Ζ又は 記録を行うことができる光ピックアップ装置に使用するための対物光学系で、 前記波長 λ 1の光束に対して L次 (Lは奇数)の回折光が最大の回折効率となる回 折作用を与え、前記波長 λ 2の光束に対して Μ次 (Μは整数)の回折光が最大の回 折効率となる回折作用を与えるとともに、前記波長え 3の光束に対して Ν次 (Νは整 数)の回折光が最大の回折効率となる回折作用を与える第 1回折構造、及び
前記波長 λ 1の光束、前記波長 λ 2の光束及び前記波長 λ 3の光束のうち、少なく とも 1つの光束に対して実質的に位相差を与えないとともに 1つ又は 2つの光束に対 して実質的に位相差を与える第 1光路差付与構造を有す。
[2] 保護基板厚 tlの第 1光ディスクに対して、第 1光源力も出射される波長 λ 1の光束 を用いて情報の再生及び Ζ又は記録を行 ヽ、保護基板厚 t2 (tl≤t2)の第 2光ディ スクに対して、第 2光源から出射される波長 λ 2 ( λ 1 < λ 2)の光束を用いて情報の 再生及び Ζ又は記録を行い、保護基板厚 t3 (t2<t3)の第 3光ディスクに対して、第 3光源から出射される波長 λ 3 ( λ 2< λ 3)の光束を用いて情報の再生及び Ζ又は 記録を行うことができる光ピックアップ装置に使用するための対物光学系で、 前記波長 λ 1の光束に対して L次 (Lは奇数)の回折光が最大の回折効率となるよう な回折作用を与え、前記波長 λ 2の光束に対して Μ次 (Μは整数)の回折光が最大 の回折効率となるような回折作用を与えるとともに、前記波長え 3の光束に対して Ν 次 (Νは整数)の回折光が最大の回折効率となるような回折作用を与える第 1回折構 造、および
前記波長 λ 1の光束、前記波長 λ 2光束及び前記波長 λ 3の光束のうち、 1つ又は 2つの光束に対して実質的に位相差を与える第 1光路差付与構造を有し、
前記波長 λ 1の光束が入射された際には、前記第 1回折構造及び前記第 1光路差 付与構造を通過して、前記第 1光ディスクの情報記録面上に良好な集光スポットを形 成し、前記波長 λ 2の光束が入射された際には、前記第 1回折構造及び前記第 1光 路差付与構造を通過して、前記第 2光ディスクの情報記録面上に良好な集光スポット を形成し、前記波長 λ 3の光束が入射された際には、前記第 1回折構造及び前記第 1光路差付与構造を通過して、前記第 3光ディスクの情報記録面上に良好な集光ス ポットを形成する。
[3] 請求の範囲第 1項に記載の対物光学系において、前記第 1光ディスク、前記第 2光 ディスク及び前記第 3光ディスクに対して情報の再生及び Ζ又は記録を行う場合に おける前記対物光学系の結像倍率が実質的に同じである。
[4] 請求の範囲第 3項に記載の対物光学系にお 、て、前記結像倍率が 0 (ゼロ)である
[5] 請求の範囲第 1項に記載の対物光学系において、 前記第 1光ディスクに対して情 報の再生及び Ζ又は記録を行う際に、前記対物光学系に前記波長 λ 1の光束が平 行光束として入射され、前記第 2光ディスクに対して情報の再生及び Ζ又は記録を 行う際に、前記対物光学系に前記波長 λ 2の光束が平行光束として入射され、前記 第 3光ディスクに対して情報の再生及び Ζ又は記録を行う際に、前記対物光学系に 前記波長 λ 3の光束が平行光束として入射される。
[6] 請求の範囲第 2項に記載の対物光学系において、前記第 1光路差付与構造は、前 記波長 λ 1の光束、前記波長 λ 2光束及び前記波長 λ 3の光束のうち、 1つ又は 2つ の光束に対してのみに実質的に位相差を与える。
[7] 請求の範囲第 2項に記載の対物光学系において、前記第 1光路差付与構造は、前 記波長 λ 1の光束、前記波長 λ 2の光束及び前記波長 λ 3の光束のうち、前記波長 λ 2の光束に対してのみに実質的に位相差を与え、前記波長 λ 2の光束が入射され た際には、前記第 1回折構造及び前記第 1光路差付与構造により、前記第 2光デイス クの情報記録面上に良好な集光スポットを形成する。
[8] 請求の範囲第 1項に記載の対物光学系において、 前記第 1回折構造は鋸歯状の 構造であり、前記第 1光路差付与構造は、階段構造を有する輪帯を光軸を中心とし た同心円状に複数形成することで構成されている。
[9] 請求の範囲第 8項に記載の対物光学系において、前記対物光学系は、 1つの光学 素子により構成され、又は 2つ以上の光学素子を組み合わせて構成され、
前記第 1光路差付与構造が形成されている光学素子の前記波長 λ 1の光束に対 する屈折率を nl、前記第 1光路差付与構造における前記階段構造の光軸方向にお ける段差量を dl、前記階段構造の不連続部位の数を ml (整数)とし、 d= λ l/ (nl 1)としたとき、
8 X d≤dl≤2. 2 X d 且つ、 4≤ml≤6
を満たす。
[10] 請求の範囲第 1項に記載の対物光学系において、前記第 1光路差付与構造は、前 記波長 λ 1の光束、前記波長 λ 2の光束及び前記波長 λ 3の光束のうち、前記波長 λ 2の光束に対してのみ実質的に位相差を与える。
[11] 請求の範囲第 1項に記載の対物光学系において、前記波長 λ 1、前記波長 λ 2及 び前記波長 λ 3が、
370nm≤ λ l≤450nm
620nm≤ 1 2≤690nm
750nm≤ 1 3≤830nm
を満たす。
[12] 請求の範囲第 1項に記載の対物光学系において、 L=M= 1である。
[13] 請求の範囲第 1項に記載の対物光学系において、 L=M=N= 1である。
[14] 請求の範囲第 1項に記載の対物光学系において、 L= 3、 M=N= 2である。
[15] 請求の範囲第 1項に記載の対物光学系において、前記 L次の回折光の回折効率 を 7? 1、前記 M次の回折光の回折効率を 7? 2、及び前記 N次の回折光の回折効率を
7? 3としたとさ、 7? 1 > 70%、 7? 2 > 70%及び 7? 3 < 80%を満足する。
[16] 請求の範囲第 1項に記載の対物光学系において、前記対物光学系は、光源側に 配置される第 1光学素子と、光ディスク側に配置される第 2光学素子の少なくとも 2つ の光学素子を組み合わせて構成される。
[17] 請求の範囲第 1項に記載の対物光学系において、前記対物光学系は、光源側に 配置される第 1光学素子と、光ディスク側に配置される第 2光学素子の 2つの光学素 子を組み合わせて構成される。
[18] 請求の範囲第 16項に記載の対物光学系において、前記第 1光学素子が前記第 1 光路差付与構造を備え、前記第 2光学素子が前記第 1回折構造を備える。
[19] 請求の範囲第 18項に記載の対物光学系において、前記第 1光学素子の前記光源 側の光学面に前記第 1光路差付与構造を備える。
[20] 請求の範囲第 16項に記載の対物光学系において、前記第 1光学素子が前記第 1 光路差付与構造及び前記第 1回折構造を備える。
[21] 請求の範囲第 20項に記載の対物光学系において、前記第 1光学素子の前記光源 側の光学面に前記第 1光路差付与構造を備える。
[22] 請求の範囲第 16項に記載の対物光学系において、前記第 1光学素子の焦点距離 を fl、前記第 2光学素子の焦点距離を f2としたとき、
I fl/f2 I < 0. 1 且つ I lZfi I < 0. 02
を満たす。
[23] 請求の範囲第 16項に記載の対物光学系において、前記第 1光学素子の少なくとも 1面は近軸の曲率半径がほぼ無限大である。
[24] 請求の範囲第 1項に記載の対物光学系において、更に前記波長 λ 1光束及び前 記波長 λ 2の光束に対して実質的に位相差を与えないとともに前記波長 λ 3の光束 に対して実質的に位相差を与える第 2光路差付与構造を有し、
前記第 2光路差付与構造は、光軸を中心とした同心円状の輪帯を複数形成するこ とで構成されており、前記波長 λ 1の光束が前記第 2光路差付与構造の各輪帯を通 過する際に前記波長 λ 1の Ρ倍の光路差を付与し、前記波長 λ 2の光束が前記第 2 光路差付与構造の各輪帯を通過する際に前記波長 λ 2の Q倍の光路差を付与する ように設定され、
前記 Ρと Qの組合せが、 (Ρ, Q) = (5, 3)、 (8, 5)、 (10, 6)の何れかである。
[25] 請求の範囲第 24項に記載の対物光学系にお 、て、前記第 2光路差付与構造を光 路差関数 Φ (h)を用いて、
(h) = (B X h2 + B X h4+ - - - +B X h2i) X λ X P
2 4 2i
と表し、係数 B =0を代入した場合に、 φ (hmax) >0
を満たす。
但し、 hは光軸力 の高さ、 B は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長、 hmaxは前記第 1光ディスクに対する光ディスク側の開口数に相当する光軸か らの高さ。
[26] 請求の範囲第 25項に記載の対物光学系において、前記第 1回折構造を光路差関 数 Φ を用いて、
φ (h) = (A X h2+A X h4+ - - - +A X h2i) X λ X Nと表した場合、
1 2 4 2i
係数 A≠0である。
2
但し、 hは光軸力 の高さ、 A は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長。
[27] 請求の範囲第 24項に記載の対物光学系にお 、て、前記第 2光路差付与構造を光 路差関数 Φ (h)を用いて、
(h) = (B X h2 + B X h4+ - - - +B X h2i) X λ X P
2 4 2i
と表した場合、
係数 B≠0である。
2
但し、 hは光軸力 の高さ、 B は光路差関数の係数、 iは自然数、 λはブレーズィ匕
2i
波長。
[28] 請求の範囲第 1項に記載の対物光学系において、前記第 3光ディスクに対して情 報の再生及び Z又は記録を行う場合における、前記 N次回折光の焦点位置と、(N ± 1)次回折光の焦点位置とは、光軸方向に 0. Olmm以上離れる。
[29] 請求の範囲第 1項に記載の対物光学系において、更に開口制限機能を有す。
[30] 請求の範囲第 29項に記載の対物光学系において、前記開口制限機能が、特定波 長の光束のみを透過するダイクロイツクフィルタにより達成される。
[31] 請求の範囲第 29項に記載の対物光学系において、前記開口制限機能が、所定の 波長の光束に対して回折作用を付与することにより、この光束を情報記録面外に集 光させる機能により達成される。
[32] 請求の範囲第 1項に記載の対物光学系において、前記対物光学系の少なくとも 1 つの光学面は、光軸を中心とする同心円状であって光軸を含む第 1領域と、前記第 1領域の周辺に位置する第 2領域の少なくとも 2つの領域に区分され、
前記第 2領域を通過した前記波長 λ 3の光束に対して回折作用を付与することによ り、前記第 2領域を通過した前記波長 λ 3の光束を前記第 3光ディスクの情報記録面 外に集光させる。
[33] 請求の範囲第 32項に記載の対物光学系において、前記第 2領域の周辺に第 3領 域を備え、
前記第 3領域を通過した前記波長 λ 1の光束が前記第 1光ディスクの情報記録面 外に集光する、或いは、前記第 3領域を通過した前記波長 λ 2の光束が前記第 2光 ディスクの情報記録面外に集光する。
[34] 請求の範囲第 32項に記載の対物光学系において、前記第 1領域に前記第 1回折 構造を備える。
[35] 請求の範囲第 32項に記載の対物光学系において、前記第 1領域に前記第 1光路 差付与構造を備え、前記第 2領域が光軸から近 、第 2Α領域と光軸力 遠 、第 2Β領 域とに区分され、
前記第 2Α領域に、階段構造を有する輪帯を、光軸を中心とした同心円状に複数 形成することで構成された第 2回折構造を備え、前記第 2回折構造が、前記波長 λ 1 の光束に対しては実質的に位相差を与えず、前記波長 λ 2の光束及び前記波長 λ 3の光束に対しては実質的に位相差を与える。
[36] 請求の範囲第 1項に記載の対物光学系において、 tl =t2である。
[37] 光ピックアップ装置で、
波長 λ 1の光束を出射する第 1光源,
波長 λ 2の光束を出射する第 2光源,
波長 λ 3の光束を出射する第 3光源,および
請求の範囲第 1項に記載の対物光学系を有す。
[38] 光情報記録再生装置で、
光ディスクを装填するための光ディスク装填機構、 および
請求の範囲第 37項に記載の光ピックアップ装置を有す。
PCT/JP2005/002591 2004-02-27 2005-02-18 対物光学系、光ピックアップ装置及び光情報記録再生装置 WO2005083694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05710423A EP1720161A4 (en) 2004-02-27 2005-02-18 OPTICAL OBJECT SYSTEM, OPTICAL DETECTION DEVICE AND OPTICAL INFORMATION RECORDING / REPRODUCING DEVICE
JP2006510407A JPWO2005083694A1 (ja) 2004-02-27 2005-02-18 対物光学系、光ピックアップ装置及び光情報記録再生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-053925 2004-02-27
JP2004053925 2004-02-27

Publications (1)

Publication Number Publication Date
WO2005083694A1 true WO2005083694A1 (ja) 2005-09-09

Family

ID=34879727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002591 WO2005083694A1 (ja) 2004-02-27 2005-02-18 対物光学系、光ピックアップ装置及び光情報記録再生装置

Country Status (6)

Country Link
US (1) US7715299B2 (ja)
EP (1) EP1720161A4 (ja)
JP (1) JPWO2005083694A1 (ja)
KR (1) KR20060115879A (ja)
CN (1) CN100449622C (ja)
WO (1) WO2005083694A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007122851A (ja) * 2005-09-28 2007-05-17 Pentax Corp 光情報記録再生装置および光情報記録再生装置用対物レンズ
JPWO2005091280A1 (ja) * 2004-03-19 2008-02-07 パイオニア株式会社 光学素子、光ピックアップ及び光情報記録再生装置
JP2011060393A (ja) * 2009-09-11 2011-03-24 Ricoh Co Ltd 回折光学素子及び光ピックアップ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037031B1 (ko) * 2002-09-30 2011-05-25 코니카 미노루따 호르딩구스 가부시끼가이샤 광학 요소, 대물 광학 요소 및 광학 픽업 장치
WO2007123250A1 (en) * 2006-04-26 2007-11-01 Ricoh Company, Ltd. Optical pickup and optical information processing apparatus
JP5393020B2 (ja) * 2007-04-26 2014-01-22 株式会社リコー 光ピックアップおよび光情報処理装置
JP2009252309A (ja) * 2008-04-08 2009-10-29 Hoya Corp 光情報記録再生装置用対物レンズ、および光情報記録再生装置
TWI431328B (zh) 2008-12-26 2014-03-21 Canon Kk 菲涅耳透鏡和射出成型
JP5310386B2 (ja) * 2009-06-18 2013-10-09 ソニー株式会社 対物レンズ、光ピックアップ及び光ディスク装置
CN103210446B (zh) * 2010-10-22 2015-09-16 柯尼卡美能达株式会社 光拾取装置用的物镜以及光拾取装置
CN109669278B (zh) * 2018-11-21 2021-01-29 京东方科技集团股份有限公司 镜片和眼镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060336A (ja) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2002056560A (ja) * 2000-08-08 2002-02-22 Samsung Electronics Co Ltd 収差補正素子及びこれを採り入れた光ピックアップ装置
WO2003075267A1 (fr) * 2002-03-06 2003-09-12 Matsushita Electric Industrial Co., Ltd. Mecanisme de tete optique et dispositif de lecture d'informations optiques utilisant un tel mecanisme, lecteur de disque optique, systeme de navigation automobile, enregistreur de disque optique et serveur de disque optique utilisant ce dispositif de lecture d'informations optiques

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073007A (en) * 1990-06-11 1991-12-17 Holo-Or Ltd. Diffractive optical element
CA2043978C (en) * 1990-06-13 1999-08-10 Yoshio Yoshida Polarization diffraction element and polarization detector employing the same
KR100242646B1 (ko) * 1997-03-28 2000-02-01 윤종용 홀로그램형 가변조리개를 사용하는 cd-r/dvd용 광기록/픽업헤드
JP2943918B2 (ja) * 1997-07-10 1999-08-30 日本電気株式会社 光ディスク装置
ATE441183T1 (de) * 1999-01-22 2009-09-15 Konica Minolta Opto Inc Optische abtastvorrichtung, mit der optischen abtastvorrichtung versehenes aufnahme/wiedergabegerät, optisches element und verfahren zur datenaufnahme/wiedergabe
CN1189878C (zh) * 1999-12-10 2005-02-16 柯尼卡株式会社 物镜及光拾取器装置
JP3886313B2 (ja) * 2000-01-26 2007-02-28 パイオニア株式会社 光ピックアップ
JP3860953B2 (ja) * 2000-07-07 2006-12-20 日本電産サンキョー株式会社 光ヘッド装置
US6873590B2 (en) * 2001-03-09 2005-03-29 Pentax Corporation Objective lens for optical pick-up
JP4610118B2 (ja) * 2001-03-30 2011-01-12 Hoya株式会社 光ヘッド用対物レンズ
TWI239520B (en) * 2001-10-12 2005-09-11 Konica Corp Objective lens, optical element, optical pick-up apparatus and optical information recording and/or reproducing apparatus equipped therewith
EP1313095B1 (en) * 2001-11-15 2008-10-15 Samsung Electronics Co. Ltd. Compatible optical pickup
DE60321414D1 (de) * 2002-02-27 2008-07-17 Ricoh Kk Optischer Abtastkopf für verschiedene Wellenlängen
US6859319B2 (en) * 2002-04-09 2005-02-22 Sankyo Seiki Mfg. Co., Ltd. Optical element, mold for molding optical element and optical pickup device
EP1500956A4 (en) * 2002-04-18 2009-11-11 Panasonic Corp OPTICAL ELEMENT, OPTICAL HEAD, DEVICE FOR RECORDING / PLAYING OPTICAL INFORMATION, COMPUTER, VIDEO RECORDING DEVICE, VIDEO PLAYER, SERVER AND AUTONAVIGATION SYSTEM
US7245407B2 (en) * 2002-06-10 2007-07-17 Matsushita Electric Industrial Co., Ltd. Complex objective lens compatible with information media of different thicknesses
JP2004030724A (ja) * 2002-06-21 2004-01-29 Sharp Corp 光ピックアップ装置
JP4090291B2 (ja) * 2002-06-26 2008-05-28 大日本スクリーン製造株式会社 光走査装置
JP2004327003A (ja) * 2002-07-26 2004-11-18 Sharp Corp 光ピックアップ
JP4341332B2 (ja) * 2002-07-31 2009-10-07 旭硝子株式会社 光ヘッド装置
US7577077B2 (en) * 2002-09-05 2009-08-18 Konica Corporation Optical pickup apparatus and optical element
JP2004288346A (ja) * 2002-10-18 2004-10-14 Konica Minolta Holdings Inc 光ピックアップ装置用の光学素子、カップリングレンズ及び光ピックアップ装置
US7248409B2 (en) * 2002-11-25 2007-07-24 Matsushita Electric Industrial Co., Ltd. Optical element, optical lens, optical head apparatus, optical information apparatus, computer, optical information medium player, car navigation system, optical information medium recorder, and optical information medium server
US7443778B2 (en) * 2003-02-27 2008-10-28 Matsushita Electric Industrial Co., Ltd. Optical head device and optical information device using the same, computer, optical disk player, car navigation system, optical disk recorder, and optical disk server
JP4216155B2 (ja) * 2003-09-19 2009-01-28 フジノン株式会社 光記録媒体用対物光学系およびこれを用いた光ピックアップ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001060336A (ja) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2002056560A (ja) * 2000-08-08 2002-02-22 Samsung Electronics Co Ltd 収差補正素子及びこれを採り入れた光ピックアップ装置
WO2003075267A1 (fr) * 2002-03-06 2003-09-12 Matsushita Electric Industrial Co., Ltd. Mecanisme de tete optique et dispositif de lecture d'informations optiques utilisant un tel mecanisme, lecteur de disque optique, systeme de navigation automobile, enregistreur de disque optique et serveur de disque optique utilisant ce dispositif de lecture d'informations optiques

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005091280A1 (ja) * 2004-03-19 2008-02-07 パイオニア株式会社 光学素子、光ピックアップ及び光情報記録再生装置
JP4585513B2 (ja) * 2004-03-19 2010-11-24 パイオニア株式会社 光学素子、光ピックアップ及び光情報記録再生装置
JP2007122851A (ja) * 2005-09-28 2007-05-17 Pentax Corp 光情報記録再生装置および光情報記録再生装置用対物レンズ
JP2011060393A (ja) * 2009-09-11 2011-03-24 Ricoh Co Ltd 回折光学素子及び光ピックアップ

Also Published As

Publication number Publication date
JPWO2005083694A1 (ja) 2007-11-29
US7715299B2 (en) 2010-05-11
US20050190679A1 (en) 2005-09-01
EP1720161A1 (en) 2006-11-08
EP1720161A4 (en) 2008-02-27
KR20060115879A (ko) 2006-11-10
CN1906679A (zh) 2007-01-31
CN100449622C (zh) 2009-01-07

Similar Documents

Publication Publication Date Title
JP4775674B2 (ja) 光ピックアップ装置
WO2005083694A1 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
JPWO2005101393A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
WO2005098840A1 (ja) 多焦点対物レンズ、光ピックアップ装置及び光情報記録再生装置
JP2005259332A (ja) 光ピックアップ装置及び光ピックアップ装置用回折光学素子
US7778138B2 (en) Objective optical element for optical pickup device, optical element for optical pickup device, objective optical element unit for optical pickup device and optical pickup device
WO2005043523A1 (ja) 光ピックアップ装置及び発散角変換素子
JP2002150595A (ja) 光ピックアップ装置用の対物レンズ及び光ピックアップ装置
WO2005088624A1 (ja) 対物光学素子及び光ピックアップ装置
JP3864755B2 (ja) 光ピックアップ装置用対物レンズ、及び光ピックアップ装置
JPWO2007123112A1 (ja) 光ピックアップ装置、光学素子及び光情報記録再生装置並びに光学素子の設計方法
JPWO2005088625A1 (ja) 対物光学素子及び光ピックアップ装置
JP4341416B2 (ja) 回折光学素子及び光ピックアップ装置
JP4488482B2 (ja) 光ピックアップ装置
JP4359894B2 (ja) 光ピックアップ装置
JP2002203331A (ja) 光ピックアップ装置及び対物レンズ
JP2005141800A (ja) 発散角変換素子及び光ピックアップ装置
JP3937239B2 (ja) 光ピックアップ装置用対物レンズ及び光ピックアップ装置
JP4573211B2 (ja) 対物光学素子及び光ピックアップ装置
JP4099662B2 (ja) 光ピックアップ装置
JP4038818B2 (ja) 光ピックアップ装置
JP3928808B2 (ja) 光ピックアップ装置用対物レンズ、及び光ピックアップ装置
JP4099661B2 (ja) 光ピックアップ装置
JP2001147367A (ja) 対物レンズ及び光ピックアップ装置
WO2010116852A1 (ja) 対物レンズ、カップリング素子及び光ピックアップ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001588.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510407

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067009735

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005710423

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005710423

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009735

Country of ref document: KR