WO2005083103A1 - Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen - Google Patents

Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen Download PDF

Info

Publication number
WO2005083103A1
WO2005083103A1 PCT/EP2005/002057 EP2005002057W WO2005083103A1 WO 2005083103 A1 WO2005083103 A1 WO 2005083103A1 EP 2005002057 W EP2005002057 W EP 2005002057W WO 2005083103 A1 WO2005083103 A1 WO 2005083103A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrolysis
molecular weight
hydrolysis step
daltons
amylopectin
Prior art date
Application number
PCT/EP2005/002057
Other languages
English (en)
French (fr)
Inventor
Klaus Sommermeyer
Original Assignee
Fresenius Kabi Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius Kabi Deutschland Gmbh filed Critical Fresenius Kabi Deutschland Gmbh
Priority to CA002556114A priority Critical patent/CA2556114A1/en
Priority to EP05707646A priority patent/EP1718755A1/de
Priority to JP2007500176A priority patent/JP2007523655A/ja
Priority to US10/590,676 priority patent/US20070202577A1/en
Priority to AU2005217091A priority patent/AU2005217091A1/en
Publication of WO2005083103A1 publication Critical patent/WO2005083103A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/22Preparation of compounds containing saccharide radicals produced by the action of a beta-amylase, e.g. maltose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/718Starch or degraded starch, e.g. amylose, amylopectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • C08B30/18Dextrin, e.g. yellow canari, white dextrin, amylodextrin or maltodextrin; Methods of depolymerisation, e.g. by irradiation or mechanically
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/20Amylose or amylopectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B35/00Preparation of derivatives of amylopectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B35/00Preparation of derivatives of amylopectin
    • C08B35/08Oxidised amylopectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the present invention relates to a method for producing hyperbranched amylopectin and a method for producing coupling products of a hyperbranched amylopectin with active pharmaceutical ingredients.
  • hydrophilic polymers to active pharmaceutical ingredients that are administered parenterally can reduce their side effects.
  • renal side effects can be reduced or even avoided if the molecular size of the coupling products is above the exclusion limit of the kidney, which acts like a filter.
  • the molecular size of the coupling product is adjusted by the appropriately selected molecular weight of the polymer.
  • Another advantage of a coupling product of a hydrophilic polymer and a pharmaceutical active ingredient is that the antigenicity of therapeutic proteins is reduced, and the side effects in this regard can thereby be reduced or avoided.
  • Such coupling products can also significantly extend the pharmacokinetic half-lives and thus the residence times of the active pharmaceutical ingredients in the patient's serum. This enables the therapy intervals for parenteral administration to be extended considerably.
  • Polymers which are suitable for the coupling to active pharmaceutical ingredients described above are in particular polyethylene glycols [Herman, S. et.al., Poly (Ethylene Glycol) with Reactive Endgroups: I. Modification of Proteins, Journal of Bioactive and Compatible Polymers, 10 (1995) 145-187] or polysaccharides, for example starch derivatives and. Dextrans. After corresponding activation, the coupling to the active ingredients takes place.
  • the active substances are coupled to the carrier molecules by chemical processes known per se, which are already known from the technique of immobilizing ligands on solid phases or from the chemistry of protein coupling or crosslinking. Appropriate procedures are described in G.T. Hermanson et al, Immobilized Affinity Ligand Techniques, Academic Press Inc. (1992) and in S.S. Wong, Chemistry of Protein Conjugation and Cross-Linking, CRC Press LLC (1993) and C.P. Stowell et al., Neoglycoproteins, the preparation and application of synthetic glycoprotein, In: Advances in Carbohydrate Chemistry and Biochemistry, Vol. 37 (1980), 225-281.
  • the polyethylene glycols compared to the starch derivatives are that they are not readily metabolizable in the body, while the starch derivatives are degradable by the body's own serum ⁇ -amylase.
  • the starch derivatives e.g. with hydroxyethyl groups, the breakdown in the body can be deliberately delayed, from which a tailored kinetics of the parenterally applicable drug conjugates can be achieved [K. Sommermeyer et.al., Whypharmazie, 8th year No. 8, (1987)].
  • a disadvantage of the derivatization of starch with hydroxy groups is that the distribution of the hydroxyethyl groups along the chain is inconsistent due to the manufacturing process, which due to the regionally high degrees of substitution at certain points in the carbohydrate chain form fragments in the body when broken down, which cannot be further broken down by body enzymes , These fractions form the so-called storage fractions [P. Lawin, et.al., Hydoxyethyl starch, A current overview, Georg Thieme Verlag (1989)].
  • DE 102 17 994 describes hyperbranched polysaccharides for coupling to pharmacological active substances.
  • hyperbranched amylopectins have a structure similar to that of the body's glycogen and are therefore extremely well tolerated and completely degradable in the body.
  • the degradation kinetics of the hyperbranched amylopectins can be adjusted so that the desired residence times in the serum can be achieved even without further derivatization.
  • EP 1 369 432 discloses soluble, hyperbranched glucose polymers with a proportion of the ⁇ -1,6-glycosidic bonds> 10%, preferably between 12 and 30% and one Molecular weight between 35,000 and 200,000 daltons.
  • these polymers are prepared by treating an aqueous starch suspension or starch solution with a branching enzyme to increase the degree of branching and then hydrolyzing it with an enzyme selected from the group consisting of ⁇ -amylase, ⁇ -amylase, anhydroglucosidase and ⁇ -transglucosidase becomes.
  • the branching enzyme required for this is extracted from organisms and / or microorganisms and is selected from the group consisting of glycogen branching enzymes, starch branching enzymes and mixtures of these enzymes.
  • a disadvantage of the process described in EP 1 369 432 is that it is complex and expensive.
  • branching enzymes which are not currently commercially available means that they have to be isolated from organisms and / or microorganisms. It is therefore an object of the invention to provide a simple and inexpensive process for the preparation of hyperbranched polysaccharides which can be used as carrier molecules for active pharmaceutical ingredients.
  • a method according to claim 1 solves this problem.
  • a first hydrolysis step vegetable amylopectins or starches rich in amylopectin are broken down to molecular weights of less than or equal to 60,000 daltons by ⁇ -amylase or acid hydrolysis, and a second hydrolysis step further degrades the molecular weight of the breakdown product from the first step by a ⁇ -amylase breakdown.
  • Such a hyperbranched amylopectin according to the present invention preferably has a weight average molecular weight of 2,000 daltons and a degree of branching> 10%.
  • a weight average molecular weight of> 2,000 daltons and ⁇ 29,000 daltons and a degree of branching> 10% and ⁇ 20% is particularly preferred.
  • Amylopectins are initially understood to mean very generally branched starches or starch products with ⁇ - (1-4) and ⁇ - (1-6) bonds between the anhydroglucose units.
  • the chains are branched via the ⁇ - (1-6) bonds.
  • These branching points are present irregularly about every 15 to 30 glucose elements in naturally occurring amylopectins.
  • the molecular weight of natural amylopectin is very high in the range of 10 7 to 2 x 10 8 daltons. It is believed that amylopectin also forms helices within certain limits. A degree of branching can be defined for amylopectins.
  • the measure of branching is the ratio of the number of anhydroglucose units bearing branch points [ ⁇ - (1-6) bonds] to the total number of anhydroglucose units of the amylopectin. This ratio is expressed in mol%.
  • Amylopectin occurring in nature has degrees of branching of approximately 4 mol%.
  • Hyperbranched amylopectins have a significantly increased degree of branching compared to the degree of branching that occurs in nature.
  • the degree of branching is in any case an average (mean degree of branching), since amylopectins are polydisperse substances.
  • hyperbranched amylopectins are understood to mean amylopectins with an average degree of branching greater than or equal to 10 mol%.
  • amylopectins with a similar degree of branching are obtained.
  • the acid hydrolytic breakdown is easier to carry out and cheaper than the enzymatic breakdown with ⁇ -amylase.
  • acid hydrolysis it is also possible to track the degree of hydrolysis during the hydrolysis process using in-process HPGPC and to adjust the degree of hydrolysis in a targeted manner.
  • acid hydrolytic degradation is particularly preferred over degradation with ⁇ -amylase.
  • the products obtained in the first hydrolysis step are selectively broken down on the ⁇ -1,4-glycosydic anhydroglucose units.
  • the maltose units on the outer, non-reducing chain ends are split off without the ⁇ -1,6-glycosidic branches themselves being released.
  • the breakdown takes place from the outer chain end down to about 2 glucose units before the first occurring branch point.
  • the so-called ß-Genzdextrine obtained in which the 1,6-glycosidic bonds of amylopectin are enriched and thereby the degree of branching is increased.
  • starches containing amylopectin can be used as starting material.
  • Waxy corn starch and tapioca starch are particularly preferred.
  • the ß-gene dextrins in the serum are degraded accordingly slowly, since ⁇ -amylase predominates there for the degradation of polysaccharides.
  • the products from the process according to the invention are therefore suitable for coupling with active pharmaceutical ingredients.
  • the parameters degree of branching and molecular weight of the amylopectin allow a targeted influencing and thus setting of a desired pharmacokinetics, in particular the achievement of a desired ⁇ -amylase breakdown.
  • the degree of branching of the amylopectin plays a key role here, but the molecular weight also has an influence on the kinetics mentioned.
  • the distribution of the branching products can also influence the kinetics of the breakdown of the amylopectin in a desired direction.
  • low-molecular impurities with an absolute molecular weight ⁇ 5,000 daltons, preferably ⁇ 1,000, are separated off after the first hydrolysis step and / or after the second hydrolysis step.
  • This separation is preferably carried out by ultrafiltration, using membranes with a cut off of 5,000 daltons or 1,000 daltons.
  • the impurities removed are mainly low-molecular breakdown products of amylopectin or starch and hydrochloric acid.
  • the product degraded according to the invention is preferably isolated by freeze-drying.
  • ⁇ - and ⁇ -amylase are commercially available, inexpensive enzymes. Hydrolysis with these molecules is therefore easy and inexpensive to carry out. The same applies to acid hydrolysis. Processing by ultrafiltration and freeze-drying is also easy and not expensive.
  • the products according to the invention are therefore simple and inexpensive to manufacture.
  • the hydrolysis product of the second hydrolysis step is preferably coupled with an active pharmaceutical ingredient.
  • the active pharmaceutical ingredient is preferably a protein or a polypeptide.
  • the hyperbranched amylopectin produced according to the invention can be coupled to the active pharmaceutical ingredient in any known manner.
  • Such couplings of a pharmaceutical active ingredient to a polysaccharide are described, for example, in WO 02/08 0979, PCT / EP 02/06 764, WO 03/07 4088, WO 03/07 4087, PCT / EP 03/13 622, DE 102 54 754.9 and PCT / EP 04/00 488.
  • the coupling of the pharmaceutical active ingredient preferably takes place via a free amino function to the anhydroglucose units of the reducing chain end of the hyperbranched amylopectin.
  • the reducing end of the hyperbranched amylopectin is particularly preferably activated. It is particularly preferred to oxidize the reducing end of the hyperbranched amylopectin to aldonic acid, to activate the aldonic acid group to the aldonic acid ester group and to couple the active pharmaceutical ingredient to the hyperbranched amylopectin via the aldonic acid ester group.
  • the molecular weight and the weight average molecular weight were determined by conventional methods. These include, for example, aqueous GPC, HPGPC, HPLC, light scattering and the like.
  • the degree of branching was determined using ⁇ NMR.
  • the reaction product was then ultrafiltered using a membrane with a cut-off of 1,000 daltons to remove the maltose and the buffer, and the ⁇ -gene dextrin was isolated by freeze-drying.
  • the yield was 60%.
  • the characterization showed a degree of branching of 14 mol% (measured with ⁇ NMR) and a weight-average molecular weight of 28,000 Daltons.
  • Example 3 was carried out analogously to Example 1, the hydrolysis time being extended to 4 hours.
  • the hydrolysis process was followed by in-process HPGPC in order to obtain a product with a weight-average molecular weight ⁇ 15,000 Daltons.
  • the cleaning by means of ultrafiltration followed with the aid of a membrane with a nominal cut off of 1,000 Daltons.
  • the yield was 25%.
  • the characterization of the substance showed a weight-average molecular weight of 10,000 daltons and a degree of branching of 10.3 mol%.
  • the ⁇ -gene dextrin was prepared analogously to Example 2, with the
  • the ⁇ -gene dextrin was prepared analogously to Example 2, with the difference that the hydrolysis substance from Example 5 was used. The yield was 55%. The characterization of the substance showed a weight average molecular weight of 5,000 daltons and a degree of branching of 16 mol%.
  • the waxy maize starch breakdown fraction from Example 2 was dissolved in isotonic phosphate buffer pH 7.2, so that a 1% by weight solution was obtained. The solution was warmed to 37.0 ° C. and 0.5 IU / ml ⁇ -amylase from pig pancreas (company Röche; AS, item no. 102 814) was added. Samples were taken after 1 and 3 hours, the enzyme was inactivated by heat and the molecular weight of the remaining higher molecular fraction was determined by HPGPC. The weight-average starting molecular weight was 28,000 daltons, the weight-average molecular weight after 1 hour of hydrolysis was 11,000 daltons and the weight-average molecular weight after 3 hours of hydrolysis was 7,000 daltons.
  • Example 7 The procedure from Example 7 was repeated using the degradation fraction from Example 4.
  • the weight average of the starting molecular weight was 7,000 daltons, the weight average Molecular weight after 1 hour hydrolysis 5,500 daltons and the weight average molecular weight after 3 hours hydrolysis 4,600 daltons.
  • Comparative experiment 1 was carried out analogously to Example 7, with commercially available hydroxyethyl starch (130 / 0.4, trade name "Voluven") being used instead of the degradation fraction from Example 2.
  • the weight-average molecular weight was 140,200 Daltons, and the weight-average molecular weight after 1 hour was 54,700 Daltons The weight average molecular weight after 3 hours of hydrolysis was 33,700 daltons.
  • the rate of degradation of the commercially available plasma expander based on hydroxyethyl starch with ⁇ -amylase from comparative experiment 1 is thus comparable to the rate of degradation of the hyperbranched amylopectin fraction from example 7.
  • a 25% by weight solution in deionized water was prepared from the hyperbranched degradation fraction prepared according to Example 4.
  • a 3.5-fold molar excess, based on the reducing end group, of a 0.05 molar iodine solution was slowly added in portions to this solution and in each case removed in portions with 0.1 NNaOH (3-fold molar amount, based on iodine) , After the addition, the mixture was left to react overnight at room temperature and the solution obtained was then dialyzed with a membrane with a nominal cut-off of 1,000 daltons, the pH being monitored.
  • the mixture was adjusted to pH 2.5 with 0.1 N HCl and dialyzed until the Ultrafiltrate had a pH of 5.
  • the product was isolated by freeze drying. The yield was 80% of the theoretical yield. The degree of oxidation was> 90% and was determined via the reducing end group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung offenbart ein Verfahren zur Herstellung von hyperverzweigtem Amylopektins mit einem gewichtsgemittelten Molekulargewicht kleiner gleich 29.000 Dalton und grösser gleich 2.000 Dalton und einem mittleren Verzweigungsgrad, ausgedrückt in mol-% der Anhydroglukoseeinheiten, die Verzweigungspunkte tragen, von grösser 10 % und kleiner gleich 20 %, bei dem man in einem ersten Hydrolyseschritt das Molekulargewicht pflanzlicher Amylopektine oder amylopektinreicher Stärke durch a-Amylase oder Säurehydrolyse auf Molekulargewichte kleiner gleich 60.000 Dalton abbaut, und in einem zweiten Hydrolyseschritt das Molekulargewicht des Abbauprodukts aus dem ersten Hydrolyseschritt durch einen ß-Amylase-Abbau weiter abbaut, sowie die Herstellung von Kopplungsprodukten des hyperverzweigten Amylopektins mit einem pharmazeutischen Wirkstoff.

Description

Verfahren zur Herstellung von hyperverzweigten Polysaccharid-Fraktionen
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung von hyperverzweigtem Amylopektin und ein Verfahren zur Herstellung von Kopplungsprodukten eines hyperverzweigten Amylopektins mit pharmazeutischen Wirkstoffen.
Es hat sich gezeigt, dass durch die Kopplung von hydrophilen Polymeren an pharmazeutische Wirkstoffe, die parenteral appliziert werden, deren Nebenwirkungen reduziert werden können. Insbesondere können durch Vergrößerung des Molekulargewichts dieser Wirkstoffe renale Nebenwirkungen reduziert oder sogar vermieden werden, wenn die Molekülgröße der Kopplungsprodukte über der Ausschlussgrenze der Niere, die wie ein Filter wirkt, liegt. Die Molekülgröße des Kopplungsprodukts wird dabei durch das passend ausgewählte Molekulargewicht des Polymers eingestellt.
Ein weiterer Vorteil eines Kopplungsprodukts aus hydrophilem Polymer und pharmazeutischem Wirkstoff ist, dass die Antigenizität von therapeutischen Proteinen herabgesetzt wird, und dadurch die diesbezüglichen Nebenwirkungen , reduziert oder vermieden werden können.
Ebenso können durch solche Kopplungsprodukte die pharmakokinetischen Halbwertszeiten und damit die Verweilzeiten der pharmazeutischen Wirkstoffe im Serum des Patienten erheblich verlängert werden. Dies ermöglicht eine erhebliche Ausdehnung der Therapieintervalle bei der parenteralen Applikation. Polymere, die sich zur oben beschriebenen Kopplung an pharmazeutische Wirkstoffe eignen, sind vor allem Polyethylenglykole [Herman, S. et.al., Poly(Ethylene Glycol) with Reactive Endgroups: I. Modification of Proteins, Journal of Bioactive and Compatible Polymers, 10. (1995) 145-187] oder auch Polysaccharide, beispielsweise Stärkederivate und. Dextrane. Nach entsprechender Aktivierung erfolgt die Kopplung an die Wirkstoffe.
Die Wirkstoffe werden dabei nach an sich bekannten chemischen Verfahren, die schon aus der Technik der Immobilisierung von Liganden an Festphasen oder aus der Chemie der Proteinkopplung bzw. Vernetzung bekannt sind, an die Trägermoleküle gekoppelt. Entsprechende Verfahren sind in G.T. Hermanson et.al, Immobilized Affinity Ligand Techniques, Academic Press Inc. (1992) bzw. in S.S. Wong, Chemistry of Protein Conjugation and Cross-Linking, CRC Press LLC (1993) und C.P. Stowell e al., Neoglycoproteins, the preparation and application of synthetic Glycoprotein, In: Advances in Carbohydrate Chemistry and Biochemistry, Vol. 37 (1980), 225-281, beschrieben.
Nachteile der Polyethylenglykole gegenüber den Stärkederivaten ist dabei, dass diese im Körper nicht ohne weiteres metabolisierbar sind, während die Stärkederivate durch körpereigene Serum-α-Amylase abbaubar sind. Durch geeignete Substitution der Stärkederivate, z.B. mit Hydroxyethylgruppen, kann der Abbau im Körper gezielt verzögert werden, woraus eine maßgeschneiderte Kinetik der parenteral applizierbaren Wirkstoffkonjugate erreicht werden kann [K. Sommermeyer et.al., Krankenhauspharmazie, 8. Jahrgang Nr. 8, (1987)].
Nachteilig an der Derivatisierung von Stärke mit Hydroxygruppen ist jedoch, dass herstellungsbedingt die Verteilung der Hydroxyethylgruppen entlang der Kette uneinheitlich ist, wodurch sich aufgrund der regional hohen Substitutionsgrade an bestimmten Stellen der Kohlehydratkette beim Abbau im Körper Fragmente bilden, die durch Körperenzyme nicht weiter abgebaut werden können. Diese Fraktionen bilden die sogenannten Speicherfraktionen [P. Lawin, et.al., Hydoxyethylstärke, Eine aktuelle Übersicht, Georg Thieme Verlag (1989)]. In DE 102 17 994 werden hyperverzweigte Polysacharide zur Kopplung an pharmakologische Wirkstoffe beschrieben. Diese offenbarten, hyperverzweigten Amylopektine weisen eine dem körpereigene Glykogen ähnliche Struktur auf und sind daher äußerst verträglich und im Körper vollständig abbaubar. Durch Einstellung der Verzweigungsgrade lässt sich die Abbaukinetik der hyperverzweigten Amylopektine so einstellen, dass auch ohne weitere Derivatisierung die gewünschten Verweilzeiten im Serum erreicht werden können.
Bezüglich der Herstellung dieser hyperverzweigten Amylopektine verweist DE 102 17 994 auf EP 1 369 432. EP 1 369 432 offenbart lösliche, hyperverzweigte Glucosepolymere mit einem Anteil der α-l,6-glycosidischen Bindungen > 10 %, vorzugsweise zwischen 12 und 30 % und einem Molekulargewicht zwischen 35.000 und 200.000 Dalton. Nach EP 1 369 432 werden diese Polymere hergestellt, indem eine wässrige Stärkesuspension oder Stärkelösung zur Erhöhung des Verzweigungsgrads mit einem Verzweigungsenzym behandelt wird und anschließend mit einem Enzym, ausgewählt aus der Gruppe aus α-Amylase, ß-Amylase, Anhydroglucosidase und α-Transglucosidase hydrolysiert wird. Das dazu nötige Verzweigungsenzym wird aus Organismen und / oder Mikroorganismen extrahiert und ist ausgewählt aus der Gruppe, bestehend aus Glycogenverzweigungsenzymen, Stärkeverzweigungsenzymen und Mischungen dieser Enzyme.
Nachteilig an dem in EP 1 369 432 beschriebenen Verfahren ist, dass es aufwendig und teuer ist. Insbesondere der Einsatz von zurzeit nicht kommerziell erhältlichen Verzweigungsenzymen bedeutet, dass diese jeweils extra aus Organismen und / oder Mikroorganismen isoliert werden müssen. Somit ist es Aufgaben der Erfindung, ein einfaches und kostengünstiges Verfahren zur Herstellung von hyperverzweigten Polysacchariden zu liefern, die als trägermoleküle für pharmazeutische Wirkstoffe verwendet werden können.
Überraschenderweise wurde gefunden, dass ein Verfahren nach Anspruch 1 diese Aufgabe löst. Dabei werden in einem ersten Hydrolyseschritt pflanzliche Amylopektine oder amylopektinreicher Stärken durch α-Amylase oder Säurehydrolyse auf Molekulargewichte kleiner gleich 60.000 Dalton abbaut, und einen zweiten Hydrolyseschritt das Molekulargewicht des Abbauprodukts aus dem ersten Schritt durch einen ß-Amylase- Abbau weiter abgebaut.
Weiter wurde gefunden, dass durch die Säurehydrolyse von Amylopektin oder amylopektinreicher Stärken auf gewichtsgemittelte Molekulargewichte kleiner gleich 60.000 eine deutliche Erhöhung des Verzweigungsgrads erhalten werden konnte.
Ein solches hyperverzweigtes Amylopektin entsprechend der gegenwärtigen Erfindung hat vorzugsweise ein gewichtsgemitteltes Molekulargewicht 2.000 Dalton sowie einen Verzweigungsgrad > 10 %. Besonders bevorzugt ist ein gewichtsgemitteltes Molekülargewicht > 2.000 Dalton und < 29.000 Dalton und ein Verzweigungsgrad > 10 % und < 20 %.
Unter Amylopektinen versteht man dabei zunächst ganz allgemein verzweigte Stärken oder Stärkeprodukte mit α-(l-4)- und α-(l-6)-Bindungen zwischen den Anhydroglucoseeinheiten. Die Verzweigungen der Ketten erfolgen dabei über die α-(l-6)-Bindungen. Diese Verzweigungsstellen sind bei natürlich vorkommenden Amylopektinen etwa alle 15 bis 30 Glucoseelemente unregelmäßig vorhanden. Das Molekulargewicht von natürlichen Amylopektin liegt sehr hoch im Bereich von 107 bis 2 x 108 Dalton. Man geht davon aus, dass auch Amylopektin in gewissen Grenzen Helices bildet. Man kann für Amylopektine eine Verzweigungsgrad definieren. Das Maß für die Verzweigung ist das Verhältnis der Zahl von Anhydroglucoseeinheiten, die Verzweigungspunkte [α-(l-6)-Bindungen] tragen, zur Gesamtzahl der Anhydroglucoseeinheiten des Amylopektins. Dieses Verhältnis wird in mol-% ausgedrückt. In der Natur auftretendes Amylopektin weist Verzweigungsgrade von ca. 4 mol-% auf. Hyperverzweigte Amylopektine weisen eine gegenüber den in der Natur vorkommenden Verzweigungsgraden deutlich erhöhte Verzweigungsgrade auf. Dabei handelt es sich beim Verzweigungsgrad in jedem Fall um einen Mittelwert (mittlerer Verzweigungsgrad), da Amylopektine polydisperse Substanzen sind.
Im Rahmen dieser Erfindung soll unter hyperverzweigten Amylopektinen Amylopektine mit einem mittleren Verzweigungsgrad von größer gleich 10 mol % verstanden werden.
Baut man pflanzliche Amylopektine oder amylopektinreiche Stärken mit α-Amylase oder Säurehydrolyse ab, erhält man, in Abhängigkeit des jeweiligen Hydrolysegrades der Hydrolyseprodukte, Amylopektine mit einem jeweils ähnlichen Verzweigungsgrad. Dabei ist der säurehydrolytische Abbau gegenüber den enzymatischen Abbau mit α-Amylase einfacher durchzuführen und billiger. Weiter ist es bei der Säurehydrolyse möglich, den Hydrolysegrad während des Hydrolyseprozesses durch Inprozess-HPGPC zu verfolgen und den Hydrolysegrad gezielt einzustellen. Somit ist der säurehydrolytische Abbau gegenüber dem Abbau mit α-Amylase besonders bevorzugt.
Durch der Behandlung der im ersten Hydrolyseschritt erhaltenen Produkte mit ß-Amylase werden diese selektiv an den α-l,4-glykosydischen Anhydroglucoseeinheiten abgebaut. Bei diesem Abbau werden die Maltoseeinheiten an den äußeren, nicht reduzierenden Kettenenden abgespalten, ohne dass die α-l,6-glycosidischen Verzweigungen selbst gelöst werden. Der Abbau erfolgt dabei vom äußeren Kettenende bis auf etwa 2 Glucoseeinheiten vor der ersten auftretenden Nerzweigungsstelle. Dadurch werden die sogenannten ß-Genzdextrine erhalten, worin die 1,6-glycosidischen Bindungen des Amylopektins angereichert sind und dadurch der Verzweigungsgrad erhöht ist.
Im Rahmen der gegenwärtigen Erfindung können alle amylopektinhaltigen Stärken als Ausgangsmaterial verwendet werden. Besonders bevorzugt sind dabei Wachsmaisstärke und Tapiokastärke.
Aufgrund des hohen Verzweigungsgrades werden die ß-Genzdextrine im Serum entsprechend langsam abgebaut, da dort zum Abbau von Polysacchariden die α-Amylase vorherrscht. Die Produkte aus dem erfindungsgemäßen Verfahren eignen sich daher für die Kopplung mit pharmazeutischen Wirkstoffen.
Die Parameter Verzweigungsgrad und Molekulargewicht des Amylopektins gestatten eine zielgerichtete Beeinflussung und somit Einstellung einer gewünschten Pharmakokinetik, insbesondere das Erreichen eines gewünschten α- Amylase- Abbaus. Dem Verzweigungsgrad des Amylopektins kommt hierbei eine Schlüsselfunktion zu, aber auch das Molekulargewicht hat einen Einfluss auf die angesprochene Kinetik. Daneben kann es auch durch die Verteilung der Verzweigungsprodukte gelingen, die Kinetik des Abbaus des Amylopektins in eine gewünschte Richtung zu beeinflussen.
Vorzugsweise werden bei dem erfindungsgemäßen Verfahren nach dem ersten Hydroiyseschritt und/oder nach den zweiten Hydrolyseschritt niedermolekulare Verunreinigungen mit einem absoluten Molekulargewicht < 5.000 Dalton, vorzugsweise < 1.000 abgetrennt. Diese Abtrennung erfolgt vorzugsweise durch Ultrafiltration, wobei Membranen mit einen cut off von 5.000 Dalton bzw. 1.000 Dalton verwendet werden. Bei den abgetrennten Verunreinigungen handelt es sich hauptsächlich um niedermolekulare Abbauprodukte des Amylopektins bzw. der Stärke sowie um Salzsäure.
Die Isolierung des erfindungsgemäß abgebauten Produkts erfolgt vorzugsweise durch Gefriertrocknung. α- und ß-Amylase sind kommerziell erhältliche, kostengünstige Enzyme. Daher ist eine hydrolyse mit diesen Molekülen einfach und kostengünstig durchzuführen. Gleiches gilt für die Säurehydrolyse. Auch die Aufarbeitung durch Ultrafiltration und Gefriertrocknung ist einfach und nicht teuer. Daher sind die erfindungsgemäßen Produkte einfach und kostengünstig herzustellen.
Vorzugsweise wird das Hydrolyseprodukt des zweiten Hydrolyseschritts mit einem pharmazeutischen Wirkstoff gekoppelt. Bei dem pharmazeutischen Wirkstoff handelt es sich vorzugsweise um ein Protein oder ein Polypeptid.
Die Kopplung des erfindungsgemäß hergestellten hyperverzweigten Amylopektins an den pharmazeutischen Wirkstoff kann dabei auf jede bekannte Art erfolgen. Solche Kopplungen eines pharmazeutischen Wirkstoffs an ein Polysaccharid sind beispielsweise in WO 02/08 0979, PCT/EP 02/06 764, WO 03/07 4088, WO 03/07 4087, PCT/EP 03/13 622, DE 102 54 754.9 und PCT/EP 04/00 488 beschrieben.
Vorzugsweise erfolgt die Kopplung von Seiten des pharmazeutischen Wirkstoffs über eine freie Aminofunktion an die Anhydroglucose-Einheiten des reduzierenden Kettenendes des hyperverzweigten Amylopektins. Besonders bevorzugt wird dazu das reduzierende Ende des hyperverzweigten Amylopektins aktiviert. Besonders bevorzugt ist es dabei, das reduzierende Enden des hyperverzweigten Amylopektins zur Aldonsäure zu oxidieren, die Aldonsäuregruppe zur Aldonsäure-Estergruppe zu aktivieren und den pharmazeutischen Wirkstoff über die Aldonsäure-Estergruppe an das hyperverzweigte Amylopektin zu koppeln. Ebenso ist es bevorzugt, das erfindungsgemäß hergestellte Produkt in wasserfreiem Medium mit einem Kohlensäurediester zu einem Kohlensäurediester des hyperverzweigten Amylopektins umzusetzen und diesen an den Wirkstoff zu koppeln. Im folgenden wird die Erfindung anhand von Beispielen und Vergleichsbeispielen genauer erläutert, ohne dass die Erfindung auf diese Beispiele beschränkt werden soll. Messverfahren
Das Molekulargewicht und das gewichtsgemittelte Molekulargewicht wurde mit üblichen Verfahren bestimmt. Hierzu gehören beispielweise wässrige GPC, HPGPC, HPLC, Lichtstreuung und der gleichen.
Der Verzweigungsgrad wurde anhand von Η NMR bestimmt.
Beispiel 1
55 g dünnkochende Wachsmaisstärke wurde in 1.000 ml entionisiertem Wasser suspendiert und die Suspension unter Rückfluss zum Sieden gebracht. Dabei löste sich die Wachsmaisstärke vollständig auf. Nach dem Lösen wurde der pH- Wert mit 1 N HC1 auf einen pH- Wert von 2,0 gebracht und der Ansatz eine Stunde unter Rückfluss erhitzt. Nach dem Abkühlen wurde mit einer Membran von einem nominellen cut off von 5.000 Dalton gegen entionisiertes Wasser ultrafiltriert. Die so gereinigte Substanz wurde durch Gefriertrocknung isoliert. Die Ausbeute betrug 60 %. Die Charakterisierung der Substanz ergab ein gewichtsgemitteltes Molekulargewicht von 42.000 Dalton (gemessen mit HPGPC) sowie einen Verzweigungsgrad von 7 mol % (gemessen mit Η NMR).
Beispiel 2
10 g der Wachsmaisstärke Abbaufraktion aus Beispiel 1 wurden in 1.000 ml 0,15 molarem Acetatpuffer, pH 4,2, gelöst und mit 10 Einheiten/ml ß-Amylase (Firma Sigma; ß-Amylase Typ I-B from sweet potato, Art.-Nr. A7005) versetzt. Der Ansatz wurde bei 25 °C 12 Stunden reagieren lassen. Anschließend wurde das Enzym durch 10 minütiges Kochen des Ansatzes bei 100 °C inaktiviert. Nach dem Abkühlen wurden der Reaktionsmischung ca. 2 Gew. % Aktivkohle (bezogen auf das Substrat) zugegeben und abfiltriert. Anschließend wurde zur Entfernung der Maltose und des Puffers das Realctionsprodukt unter Verwendung einer Membran mit einem cut off von 1.000 Dalton ultrafiltriert und das ß-Genzdextrin durch Gefriertrocknung isoliert. Die Ausbeute betrug 60 %. Die Charakterisierung ergab einen Verzweigungsgrad von 14 mol % (gemessen mit Η NMR) sowie ein gewichtsgemitteltes Molekulargewicht von 28.000 Dalton.
Beispiel 3
Beispiel 3 wurde analog zu Beispiel 1 durchgeführt, wobei die Hydrolysezeit auf 4 Stunden verlängert wurde. Dabei wurde das Hydrolyseverfahren durch Inprozess-HPGPC verfolgt, um ein Produkt mit einem gewichtsgemittelten Molekulargewicht < 15.000 Dalton zu erhalten. Die Reinigung mittels Ultrafiltration folgte im Gegensatz zu Beispiel 1 mit Hilfe einer Membran mit einem nominellen cut off von 1.000 Dalton. Die Ausbeute betrug 25 %. Die Charakterisierung der Substanz ergab ein gewichtsgemitteltes Molekulargewicht von 10.000 Dalton sowie einen Verzweigungsgrad von 10,3 mol %.
Beispiel 4
Die Herstellung des ß-Genzdextrins erfolgte analog zu Beispiel 2, wobei das
Hydrolyseprodukt aus Beispiel 3 verwendet wurde. Die Ausbeute betrug 60 %.
Die Charakterisierung der Substanz ergab ein gewichtsgemitteltes
Molekulargewicht von 7.000 Dalton sowie einen Verzweigungsgrad von
15 mol %.
Beispiel 5
55 g native Tapioka-Stärke wurden in 1.000 ml entionisierten Wasser unter Rückfluss in der Hitze verkleistert. Danach wurden 11 ml 1 N HCl zum Einstellen eines pH- Werts von ca. 1,9 zugegeben. Nach 30 Minuten wurde das Gel dünnflüssig und der Ansatz wurde weitere 7 Stunden unter Rückfluss erhitzt. Nach dem Abkühlen wurde vom Niederschlag und der Trübung abfiltriert und gegen entionisiertes Wasser mit einer Membran mit nominellen cut off von 1.000 Dalton ultrafiltriert. Die Ausbeute betrug 24,4 %. Die Charakterisierung der Substanz ergab ein gewichtsgemitteltes Molekulargewicht von 10.000 Dalton und einen Verzweigungsgrad von 9,6 mol %.
Beispiel 6
Die Herstellung des ß-Genzdextrins erfolgte analog zu Beispiel 2, mit dem Unterschied, dass die Hydrolysesubstanz aus Beispiel 5 eingesetzt wurde. Die Ausbeute betrug 55 %. Die Charakterisierung der Substanz ergab ein gewichtsgemitteltes Molekulargewicht von 5.000 Dalton sowie einen Verzweigungsgrad von 16 mol %.
Beispiel 7
Die Wachsmaisstärkeabbaufraktion aus Beispiel 2 wurde in isotonem Phosphatpuffer pH 7,2 gelöst, so dass eine 1 Gew. % Lösung erhalten wurde. Die Lösung wurde auf 37,0 ° C erwärmt und 0,5 I.E./ml α-Amylase aus Schweinepancreas (Firma Röche; AS, Art.-Nr. 102 814) zugegeben. Nach jeweils 1 und 3 Stunden wurden Proben entnommen, das Enzym durch Hitze inaktiviert und das Molekulargewicht der verbleibenden höhermolekularen Fraktion durch HPGPC bestimmt. Dabei betrug das gewichtsgemitteltes Ausgangsmolekulargewicht 28.000 Dalton, das gewichtsgemitteltes Molekulargewicht nach 1 Stunde Hydrolyse 11.000 Dalton und das gewichtsgemitteltes Molekulargewicht nach 3 Stunden Hydrolyse 7.000 Dalton.
Beispiel 8
Das Verfahren aus Beispiel 7 wurde wiederholt, wobei die Abbaufraktion aus Beispiel 4 eingesetzt wurde. Dabei betrug das Gewichtsmittel des Ausgangsmolekulargewicht 7.000 Dalton, das gewichtsgemittelte Molekulargewicht nach 1 Stunde Hydrolyse 5.500 Dalton und das gewichtsgemitteltes Molekulargewicht nach 3 Stunden Hydrolyse 4.600 Dalton.
Vergleichsversuch 1
Vergleichsversuch 1 wurde analog zu Beispiel 7 durchgeführt, wobei anstelle der Abbaufraktion aus Beispiel 2 handelsübliche Hydroxyethylstärke (130/0,4, Handelsname „Voluven") eingesetzt wurde. Das Gewichtsmittel des Ausgangsmolekulargewicht betrug 140.200 Dalton, das gewichtsgemitteltes Molekulargewicht nach 1 Stunde betrug 54.700 Dalton. Das gewichtsgemitteltes Molekulargewicht nach 3 Stunden Hydrolyse betrug 33.700 Dalton.
Damit ist die Abbaugeschwindigkeit des handelsüblichen Plasmaexpanders auf Basis von Hydroxyethylstärke mit α-Amylase aus Vergleichsversuch 1 vergleichbar mit der Abbaugeschwindigkeit der hyperverzweigten Amylopektinfraktion aus Beispiel 7.
Beispiel 9
Oxidation der hyperverzweigten Amylopektinfraktion aus Beispiel 4 an der reduzierenden Endgruppe zur Aldonsäure.
Aus der nach Beispiel 4 hergestellten, hyperverzweigten Abbaufraktion wurde eine 25 Gew. %-ige Lösung in entionisiertem Wasser hergestellt. Zu dieser Lösung wurde ein 3,5-facher, molarer Überschuss, bezogen auf die reduzierende Endgruppe, einer.0,05 molaren Iodlösung portionsweise langsam zugegeben und jeweils mit 0,1 NNaOH (3 -fache molare Menge, bezogen auf lod) portionsweise entfernt. Nach Zugabe wurde über Nacht bei Raumtemperatur weiter reagieren lassen und die erhaltene Lösung anschließend mit einer Membran mit nominellen cut off von 1.000 Dalton dialysiert, wobei der pH überwacht wurde. Nach Erreichens eines pH- Werts im Dialysat von etwa 6 und Überprüfung auf Iodidfreiheit durch zusetzen von Natriumiodat und Ansäuern wurde der Ansatz mit 0,1 N HCl auf pH 2,5 eingestellt und solange weiter dialysiert, bis das Ultrafiltrat einen pH von 5 aufwies. Das Produkt wurde durch Gefriertrocknung isoliert. Die Ausbeute betrug 80 % der theoretischen Ausbeute. Der Oxidationsgrad betrug > 90 % und wurde über die reduzierende Endgruppe bestimmt.
Beispiel 10
66 mg Aldonsäure aus Beispiel 9 wurden in 0,5 ml trockenem DMF gelöst und mit 3,4 mg NN'-Disuccinimidylcarbonat versetzt und 2 Stunden bei Raumtemperatur reagieren lassen. 0,5 ml einer 1 Gew. %-igen Lösung von bovinem Serumalbumin (BSA) wurden mit 180 ml einer 1 molaren Bicarbonatlösung versetzt und anschließend wurden 2 Portionen von jeweils 100 μl der aktivierten Aldonsäure tropfenweise zur BSA-Lösung zugefügt und jeweils eine halbe Stunde ausreagieren lassen. Danach wurde der Ansatz mit Salzsäure auf einen pH- Wert von 7,4 eingestellt. Die Untersuchung der Reaktionslösung mittels HPGPC ergab eine Ausbeute an Kopplungsprodukt von > 95 % des eingesetzten BSA's.

Claims

Patentansprüche
1. Verfahren zur Herstellung von hyperverzweigtem Amylopektin mit einem gewichtsgemittelten Molekulargewicht größer gleich 2.000 Dalton und kleiner gleich 30.000 und einem mittleren Verzweigungsgrad, ausgedrückt in mol-% der Anhydroglukoseeinheiten, die Verzweigungspunkte tragen, von größer 10 % und kleiner gleich 20 %, bei dem man in einem ersten Hydrolyseschritt das Molekulargewicht pflanzlicher Amylopektine oder amylopektinreicher Stärke durch α-Amylase oder Säurehydrolyse auf Molekulargewichte kleiner gleich 60.000 Dalton abbaut, und in einem zweiten Hydrolyseschritt das Molekulargewicht des Abbauprodukts aus dem ersten Hydrolyseschritt durch einen ß-Amylase- Abbau weiter abbaut.
2. Verfahren nach Anspruch 1 , bei dem man nach dem ersten Hydrolyseschritt und / oder nach dem zweiten Hydrolyseschritt niedermolekulare Verunreinigungen mit einem absoluten Molekulargewicht kleiner 5.000 Dalton, vorzugsweise kleiner 1.000 Dalton, abtrennt.
3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass im ersten Hydrolyseschritt das Molekulargewicht pflanzlicher Amylopektine oder amylopektinreicher Stärke durch Säurehydrolyse abgebaut wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Hydrolyseprodukt des zweiten Hydrolyseschritts mit einem pharmazeutischen Wirkstoff gekoppelt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der pharmazeutische Wirkstoff ein Protein oder ein Polypeptid ist.
6. Verfahren nach Anspruch 4 oder Anspruch 5, dadurch gekennzeichnet, dass die Kopplung des Hydrolyseprodukts des zweiten Hydrolyseschritts mit dem pharmazeutischen Wirkstoff an die terminale Anhydroglucoseeinheit des Hydrolyseprodukts erfolgt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die terminale reduzierende Endgruppe des Hydrolyseprodukts des zweiten Hydrolyseschritts zur Aldonsäure oxidiert wird, diese Aldonsäuregruppe zur Aldonsäure-Estergruppe aktiviert wird und mit dem pharmazeutischen Wirkstoff gekoppelt wird.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Kopplung des Hydrolyseprodukts des zweiten Hydrolyseschritts mit dem pharmazeutischen Wirkstoff über eine Kohlensäureestergruppe erfolgt.
PCT/EP2005/002057 2004-02-28 2005-02-26 Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen WO2005083103A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002556114A CA2556114A1 (en) 2004-02-28 2005-02-26 Method for the production of hyperbranched polysaccharide fractions
EP05707646A EP1718755A1 (de) 2004-02-28 2005-02-26 Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen
JP2007500176A JP2007523655A (ja) 2004-02-28 2005-02-26 多分岐多糖画分の製造方法
US10/590,676 US20070202577A1 (en) 2004-02-28 2005-02-26 Method For The Production Of Hyperbranched Polysaccharide Fractions
AU2005217091A AU2005217091A1 (en) 2004-02-28 2005-02-26 Method for the production of hyperbranched polysaccharide fractions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004009783.6 2004-02-28
DE102004009783A DE102004009783A1 (de) 2004-02-28 2004-02-28 Hyperverzweigte Stärkefraktion, Verfahren zu ihrer Herstellung und ihre Konjugate mit pharmazeutischen Wirkstoffen

Publications (1)

Publication Number Publication Date
WO2005083103A1 true WO2005083103A1 (de) 2005-09-09

Family

ID=34853822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002057 WO2005083103A1 (de) 2004-02-28 2005-02-26 Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen

Country Status (10)

Country Link
US (1) US20070202577A1 (de)
EP (1) EP1718755A1 (de)
JP (1) JP2007523655A (de)
KR (1) KR20060132704A (de)
CN (1) CN101137756A (de)
AU (1) AU2005217091A1 (de)
CA (1) CA2556114A1 (de)
DE (1) DE102004009783A1 (de)
RU (1) RU2006134340A (de)
WO (1) WO2005083103A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897869A1 (fr) * 2006-02-28 2007-08-31 Roquette Freres Polymeres solubles de glucose hautement branches pour la nutrition enterale, parenterale et pour la dialyse peritoneale
EP2070950A1 (de) 2007-12-14 2009-06-17 Fresenius Kabi Deutschland GmbH Hydroxyalkylstärkederivate und deren Herstellungsverfahren
US8017739B2 (en) 2004-03-11 2011-09-13 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
US8287850B2 (en) 2004-03-11 2012-10-16 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination
US8475765B2 (en) 2002-09-11 2013-07-02 Fresenius Kabi Deutschland Gmbh Hydroxyalkyl starch derivatives
US8916518B2 (en) 2002-03-06 2014-12-23 Fresenius Kabi Deutschland Gmbh Coupling proteins to a modified polysaccharide

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256558A1 (de) * 2002-12-04 2004-09-16 Supramol Parenteral Colloids Gmbh Ester von Polysaccharid Aldonsäuren, Verfahren zu ihrer Herstellung und Verwendung zur Kopplung an pharmazeutische Wirkstoffe
CN107586807A (zh) * 2017-10-30 2018-01-16 无锡甜丰食品有限公司 一种超高麦芽糖浆的协同制备方法
CN117229428B (zh) * 2023-11-10 2024-01-16 广东海天创新技术有限公司 辛烯基琥珀酸淀粉及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753468A (en) * 1996-08-05 1998-05-19 National Starch And Chemical Investment Holding Corporation Stable high viscosity starch based adhesive and method of preparation
US5886168A (en) * 1992-10-28 1999-03-23 Enzyme Bio-Systems Ltd. Low D.E. starch conversion products having a sharp differentiation in molecular size
GB2342656A (en) * 1998-10-10 2000-04-19 Ml Lab Plc Production of glucose polymer mixtures by starch hydrolysis
US20010046690A1 (en) * 2000-02-28 2001-11-29 Antrim Richard L. Process for preparing dextrins
DE10217994A1 (de) * 2002-04-23 2003-11-06 Supramol Parenteral Colloids Konjugate von hyperverzweigten Polysacchariden
US20040014961A1 (en) * 2002-06-06 2004-01-22 Daniel Backer Soluble highly branched glucose polymers and their method of production
WO2004050710A2 (de) * 2002-12-04 2004-06-17 Supramol Parenteral Colloids Gmbh Aldonsäure-ester, verfahren zu ihrer herstellung und verfahren zur herstellung von mit polysacchariden oder polysaccharid-derivaten an freien aminogruppen gekoppelten pharmazeutischen wirkstoffen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886168A (en) * 1992-10-28 1999-03-23 Enzyme Bio-Systems Ltd. Low D.E. starch conversion products having a sharp differentiation in molecular size
US5753468A (en) * 1996-08-05 1998-05-19 National Starch And Chemical Investment Holding Corporation Stable high viscosity starch based adhesive and method of preparation
GB2342656A (en) * 1998-10-10 2000-04-19 Ml Lab Plc Production of glucose polymer mixtures by starch hydrolysis
US20010046690A1 (en) * 2000-02-28 2001-11-29 Antrim Richard L. Process for preparing dextrins
DE10217994A1 (de) * 2002-04-23 2003-11-06 Supramol Parenteral Colloids Konjugate von hyperverzweigten Polysacchariden
US20040014961A1 (en) * 2002-06-06 2004-01-22 Daniel Backer Soluble highly branched glucose polymers and their method of production
WO2004050710A2 (de) * 2002-12-04 2004-06-17 Supramol Parenteral Colloids Gmbh Aldonsäure-ester, verfahren zu ihrer herstellung und verfahren zur herstellung von mit polysacchariden oder polysaccharid-derivaten an freien aminogruppen gekoppelten pharmazeutischen wirkstoffen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916518B2 (en) 2002-03-06 2014-12-23 Fresenius Kabi Deutschland Gmbh Coupling proteins to a modified polysaccharide
US8475765B2 (en) 2002-09-11 2013-07-02 Fresenius Kabi Deutschland Gmbh Hydroxyalkyl starch derivatives
US8618266B2 (en) 2002-09-11 2013-12-31 Fresenius Kabi Deutschland Gmbh Hasylated polypeptides
US8017739B2 (en) 2004-03-11 2011-09-13 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
US8287850B2 (en) 2004-03-11 2012-10-16 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination
US8840879B2 (en) 2004-03-11 2014-09-23 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
FR2897869A1 (fr) * 2006-02-28 2007-08-31 Roquette Freres Polymeres solubles de glucose hautement branches pour la nutrition enterale, parenterale et pour la dialyse peritoneale
WO2007099212A1 (fr) * 2006-02-28 2007-09-07 Roquette Freres Polymeres solubles de glucose hautement branches pour la nutrition enterale, parenterale et pour la dialyse peritoneale
JP2009528040A (ja) * 2006-02-28 2009-08-06 ロケット・フルーレ 経腸および非経口の栄養摂取のためならびに腹膜透析のための可溶性の高度に分岐したグルコースポリマー
US8445460B2 (en) 2006-02-28 2013-05-21 Roquette Freres Soluble, highly branched glucose polymers for enteral and parenteral nutrition and for peritoneal dialysis
EP2070950A1 (de) 2007-12-14 2009-06-17 Fresenius Kabi Deutschland GmbH Hydroxyalkylstärkederivate und deren Herstellungsverfahren

Also Published As

Publication number Publication date
DE102004009783A1 (de) 2005-09-15
AU2005217091A1 (en) 2005-09-09
US20070202577A1 (en) 2007-08-30
EP1718755A1 (de) 2006-11-08
RU2006134340A (ru) 2008-04-10
KR20060132704A (ko) 2006-12-21
CN101137756A (zh) 2008-03-05
CA2556114A1 (en) 2005-09-09
JP2007523655A (ja) 2007-08-23

Similar Documents

Publication Publication Date Title
EP1718755A1 (de) Verfahren zur herstellung von hyperverzweigten polysaccharid-fraktionen
Yadav et al. Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review
Carvalho et al. Production and characterization of a new dextrin based hydrogel
DE2432518A1 (de) Arzneimittel und verfahren zu seiner herstellung
EP0688872A1 (de) Verfahren zur Herstellung von stärkehaltigen Produkten
NO330340B1 (no) Klatratkomplekser dannet ved hjelp av hyaluronsyrederivater, medikamenter inneholdende disse, hyaluronsyrederivater, fremgangsmate for fremstilling derav og medikament inneholdende hyaluronsyrederivat samt kontrastmedium
EP1567558A2 (de) Aldonsäure-ester, verfahren zu ihrer herstellung und verfahren zur herstellung von mit polysacchariden oder polysaccharid-derivaten an freien aminogruppen gekoppelten pharmazeutischen wirkstoffen
EP1141370B1 (de) Alpha-1,4-glucanketten enthaltende polysaccharide sowie verfahren zu ihrer herstellung
Muthusamy et al. Microbial pullulan for food, biomedicine, cosmetic, and water treatment: a review
WO2003018639A1 (de) Hyperverzweigtes amylopektin zum einsatz in verfahren zur chirurgischen oder therapeutischen behandlung von säugern oder in diagnostizierverfahren, insbesondere zur verwendung als plasmavolumenexpander
WO2004022602A1 (de) Hochverzweigte, nicht oder niedrig substituierte stärkeprodukte, dialyselösung und plasmaexpander enthaltend diese und deren verwendung
EP1117730B1 (de) Verfahren zur herstellung von kleinen sphärischen partikeln, die mindestens ein wasserunlösliches lineares polysaccharid enthalten
WO2004065425A1 (de) Kohlensäurediester, verfahren zu ihrer herstellung und verfahren zur herstellung von mit polysacchariden oder polysaccharid-derivaten an freien aminogruppen gekoppelten pharmazeutischen wirkstoffen
EP0593605B1 (de) Verfahren zur herstellung von stärkeestern für klinische, insbesondere parenterale anwendung
CN115429935B (zh) 一种可注射性的交联硫酸软骨素水凝胶及其制备方法
DE10217994A1 (de) Konjugate von hyperverzweigten Polysacchariden
DE10254745A1 (de) Imidazolide von Polysaccharid Aldonsäuren, Verfahren zu ihrer Herstellung und Verwendung zur Kopplung an pharmazeutische Wirkstoffe
Gonçalves et al. Dextrin
MXPA06009716A (en) Method for the production of hyperbranched polysaccharide fractions
US7932377B2 (en) Complexing of medicinal substances with high-molecular carriers and injection and infusion solutions containing said complexes
DE102008060603A1 (de) Transportvermittelnde Polysaccharid-Arzneistoffverbindungen
Suflet Curdlan Derivatives: New Approaches in Synthesis and Their Applications
Ha et al. Konjac Polysaccharide for Drug Delivery
KR20240019458A (ko) 백탁이 개선된 저de 분지 덱스트린 및 이의 제조방법
CN115747279A (zh) 一种透明质酸钠寡糖组合物的工业化生产方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005707646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2556114

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005217091

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067017021

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007500176

Country of ref document: JP

Ref document number: PA/a/2006/009716

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200580006279.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 5120/DELNP/2006

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2005217091

Country of ref document: AU

Date of ref document: 20050226

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005217091

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006134340

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005707646

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10590676

Country of ref document: US

Ref document number: 2007202577

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067017021

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10590676

Country of ref document: US