WO2005078154A1 - 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法 - Google Patents

透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法 Download PDF

Info

Publication number
WO2005078154A1
WO2005078154A1 PCT/JP2005/001119 JP2005001119W WO2005078154A1 WO 2005078154 A1 WO2005078154 A1 WO 2005078154A1 JP 2005001119 W JP2005001119 W JP 2005001119W WO 2005078154 A1 WO2005078154 A1 WO 2005078154A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
transparent conductive
conductive film
photoelectric conversion
producing
Prior art date
Application number
PCT/JP2005/001119
Other languages
English (en)
French (fr)
Inventor
Tomomi Meguro
Susumu Fukuda
Kenji Yamamoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2005517921A priority Critical patent/JP4939058B2/ja
Priority to EP05709393.2A priority patent/EP1717341B1/en
Priority to US10/587,592 priority patent/US20070157966A1/en
Publication of WO2005078154A1 publication Critical patent/WO2005078154A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a method for manufacturing a transparent conductive film and a method for manufacturing a tandem-type thin-film photoelectric conversion device.
  • the present invention relates to a method for manufacturing a transparent conductive film mainly composed of a zinc oxide film having a high transmittance, a low resistance and an excellent surface shape, and a method for manufacturing a tandem thin-film photoelectric conversion device including the method.
  • transparent conductive films have become increasingly important as materials for various light-receiving elements such as photoelectric conversion devices represented by solar cells, and as transparent electrode materials for display elements such as liquid crystals, PDPs, and ELs.
  • a transparent conductive film for a solar cell is required to have high transparency and conductivity, and to have a surface unevenness for effectively utilizing light.
  • Such a transparent conductive film is made of indium oxide (In 2 O 3) doped with a small amount of tin (hereinafter, referred to as a dope, and a substance added in a small amount hereinafter), or doped with antimony or fluorine.
  • Tin oxide with In 2 O 3 indium oxide
  • a dope a small amount of tin
  • antimony or fluorine doped with antimony or fluorine.
  • ITO Indium oxide films
  • Zinc oxide films also have characteristics such as high plasma resistance, high mobility and high transmittance of long-wavelength light, and are therefore suitable as transparent conductive films for solar cells. Development of a transparent conductive film containing zinc oxide as a main component as an alternative material is underway.
  • a sputtering method and a CVD method are mainly used.
  • the sputtering method it is relatively difficult to control the resistivity, the transmittance, and the shape of the film surface, and the production equipment is expensive, so that the production cost is high.
  • the CVD method can provide a highly permeable membrane. It is easy to control the shape of the film surface immediately. Also, the production equipment is less expensive than the sputtering method.
  • Patent Document 1 A method for manufacturing a zinc oxide film using such a CVD method is disclosed in Patent Document 1, and AHe, as a diluent gas used when introducing an organic zinc or an oxidizing agent into a film forming chamber, Or N is used.
  • Ar and He are expensive with the technology disclosed conventionally.
  • Patent Document 1 Japanese Patent Publication No. 6-82665
  • the present invention solves the above-mentioned disadvantage that the diluent gas possessed by the prior art is expensive, and furthermore, has a high permeability, a low resistance, and a permeability mainly composed of zinc oxide having an excellent surface shape.
  • An object of the present invention is to provide a method for easily producing a bright conductive film with good uniformity, and a method for producing a tandem thin-film photoelectric conversion device including the production method.
  • an organic zinc, a diluting gas, and an oxidizing agent are introduced into a film forming chamber, and a transparent conductive film containing zinc oxide as a main component is disposed in the film forming chamber.
  • a transparent transparent conductive film can be provided.
  • the organozinc has high reactivity with an oxidizing agent, which is preferably getyl zinc, the film-forming efficiency is improved.
  • the oxidizing agent is preferably water and has high diffusibility and high reactivity with organic zinc, the film forming efficiency is improved.
  • a compound containing a group III element is introduced into the film forming chamber, and a transparent conductive film mainly containing the zinc oxide film to which a small amount of the group III element is added is formed on the substrate. Since a transparent conductive film having a preferable low resistance can be formed, the efficiency of the thin-film photoelectric conversion device is improved.
  • the compound containing a Group III element includes diborane (BH) and trimethyla.
  • the transparent conductive film can be easily doped.
  • a transparent insulating substrate is used as the substrate, a transparent electrode layer sequentially laminated on the transparent insulating substrate, at least one amorphous silicon-based photoelectric conversion unit, and at least one crystalline silicon-based photoelectric conversion unit.
  • a method for manufacturing a tandem-type thin film photoelectric conversion device including a back electrode layer wherein it is preferable to apply the above-described method for manufacturing a transparent conductive film as a step of forming the back electrode layer.
  • a transparent insulating substrate is used as the substrate, a transparent electrode layer sequentially laminated on the transparent insulating substrate, at least one amorphous silicon-based photoelectric conversion unit, and at least one crystalline silicon-based photoelectric conversion.
  • an organic zinc, a diluting gas, and an oxidizing agent are introduced into a film forming chamber, and a transparent conductive film containing zinc oxide as a main component is disposed in the film forming chamber.
  • a method in which hydrogen is used as the diluent gas it is possible to provide a transparent conductive film having excellent characteristics and low cost because the gas is inexpensive because of its high thermal conductivity. .
  • FIG. 1 is a schematic cross-sectional view showing a laminated structure of an example of a tandem-type thin-film photoelectric conversion device.
  • the present inventors have actually tried to form a transparent conductive film using N or the like as a diluent gas as in the above-described prior art.
  • these gases have a relatively low thermal conductivity, so that the soaking time until the substrate surface temperature is stabilized becomes longer, and therefore, the uniformity of the temperature distribution in the substrate at the time of formation is deteriorated.
  • the in-plane uniformity of the film characteristics of the formed transparent conductive film was poor, and reached the present invention.
  • an organic zinc, a diluent gas, and an oxidizing agent are introduced into a film forming chamber in which a substrate is disposed.
  • the substrate is preferably heated and held in the range of 50 ° C to 300 ° C, preferably in the range of 100 ° C to 200 ° C.
  • the substrate may be made of a metal, a glass plate, a plastic, or the like as a material that is good if it is not deformed or denatured to the above-described temperature.
  • a transparent glass plate or plastic is preferred.
  • Organic zinc refers to a divalent organometallic compound in which zinc and an organic group are bonded. Since organic zinc is generally liquid at normal temperature and pressure, it is heated and vaporized before being introduced. Alternatively, the dilution gas may be blown into the organic zinc, and the organic zinc equivalent to the vapor pressure may be introduced into the deposition chamber together with the dilution gas.
  • the organic zinc compound a compound represented by R Zn (R is an organic group) is preferably used because of high reactivity with an oxidizing agent.
  • the organic group includes an alkyl group, an alkenyl group, an alkynyl group and the like.
  • an alkyl group is preferred because of its high reactivity and low cost.
  • a methyl group and an ethyl group are preferable in that they have versatility and raw materials can be easily procured.
  • the oxidizing agent refers to oxygen itself or a compound having an oxygen atom in a molecule and reacting with an organometallic compound to form a metal oxide.
  • the oxidizing agent used in the present invention includes those which are liquid at normal temperature and normal pressure. In this case as well, the oxidizing agent is heated and vaporized before being introduced. Alternatively, a diluting gas may be blown into the oxidizing agent, and the oxidizing agent corresponding to the vapor pressure may be introduced into the film forming chamber together with the diluting gas.
  • the oxidizing agent include water, oxygen, ozone, alcohols, anoaldehydes, ketones and the like, and water having high reactivity with organic zinc and good diffusibility when vaporized is preferable.
  • the diluent gas a gas that is inert to the organic zinc and the oxidizing agent is used.
  • the role of the diluent gas is to dilute the organozinc and oxidizing agent to control the reactivity, and to enhance the diffusibility of the source gas in the deposition chamber to improve the uniformity of the deposition.
  • the film resistivity of the transparent conductive film containing zinc oxide as a main component formed by the production method of the present invention can be controlled by removing a dopant comprising a Group III element into the film.
  • the dopant comprising a Group III element refers to a hydrogen compound or an organic compound of the Group III element.
  • diborane is used as a compound composed of a group III element.
  • an organic borane compound may be used, and trimethyl borane and triethyl borane are preferred because of their good doping efficiency.
  • an organoaluminum compound is used as a compound comprising a Group III element. Trimethylaluminum and triethylaluminum are particularly preferred because of their good doping efficiency.
  • gallium can be used as a dopant.
  • the film forming chamber is configured to include a heater for controlling the temperature of the substrate, a gas inlet, an exhaust valve, and the like.
  • the pressure in the film forming chamber for obtaining a uniform film having good properties is 0.01-3 Torr, and it is particularly preferable to keep the pressure at 0.1 lTorr.
  • the pressure in the film forming chamber is adjusted by adjusting an exhaust valve connected to the film forming chamber or by the amount of hydrogen as a diluent gas.
  • FIG. 1 shows a tandem thin-film photoelectric conversion device to which the method for producing a transparent conductive film of the present invention is applied. It is an example of the location.
  • the corresponding tandem thin-film photoelectric conversion device will be described with reference to FIG.
  • the tandem thin-film photoelectric conversion device of FIG. 1 is a silicon-based hybrid thin-film solar cell including an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit, and can be manufactured by the following method.
  • a transparent electrode layer 11 made of a transparent conductive film is formed on a transparent insulating substrate 10. Since the transparent insulating substrate 10 is located on the light incident side of the thin-film photoelectric conversion device, a transparent glass plate or plastic is preferable.
  • the transparent electrode layer zinc oxide, tin oxide, or the like can be used, and it is preferable to use a transparent conductive film containing zinc oxide as a main component. This is because zinc oxide is a material that can form fine irregularities having an optical confinement effect even at a low temperature of 200 ° C or less and has high plasma resistance.
  • an amorphous silicon photoelectric conversion unit 20 is formed on the transparent electrode layer 11 by a plasma CVD method.
  • the amorphous silicon photoelectric conversion unit 20 includes a p-type layer 21, an i-type layer 22, and an n-type layer 23.
  • the amorphous silicon photoelectric conversion unit 20 is made of an amorphous silicon-based material having sensitivity to light of about 360 to 800 nm.
  • a crystalline silicon photoelectric conversion unit 30 is formed on the amorphous silicon photoelectric conversion unit 20 by a plasma CVD method.
  • the crystalline silicon photoelectric conversion unit 30 includes a p-type layer 31, an i-type layer 32, and an n-type layer 33.
  • the crystalline silicon photoelectric conversion unit 30 is composed of a crystalline silicon-based material that is sensitive to light of about 500-1200 nm. By stacking these two units, light of a wide range of wavelengths can be used effectively. Becomes possible.
  • a back electrode layer 40 was formed on the crystalline silicon photoelectric conversion unit 30.
  • the back electrode layer 40 includes a zinc oxide layer 41 and an Ag layer 42.
  • the zinc oxide layer 41 is formed by a sputtering method and a CVD method, it is preferable to form the zinc oxide layer by a CVD method because electrical damage to a silicon layer can be reduced.
  • the Ag layer 42 can be formed by a sputtering method, an evaporation method, or the like.
  • the resistivity, thickness, transmittance, and haze rate of the film containing zinc oxide as a main component and prepared in the examples described below were measured with a resistance meter, an ellipsometer, a spectrophotometer, and a haze meter, respectively.
  • the haze ratio is a value represented by (diffused light transmittance) Z (total light transmittance) 100, and was measured by a method according to JIS K7136.
  • Comparative Example 1 evaluation was performed by forming a zinc oxide film as a transparent conductive film on a transparent insulating substrate.
  • a glass substrate which was a transparent insulating substrate, was carried into a film forming chamber, and the substrate temperature was raised to 150 ° C., and was maintained at that temperature.
  • a mixed gas of 600 sccm of argon as a diluent gas and 100 sccm of vaporized water was introduced into the film forming chamber, and subsequently, introduction of 50 sccm of vaporized zinc zinc was started. Further, the pressure in the film forming chamber at this time was adjusted to ITorr by adjusting the valve.
  • a zinc oxide film was deposited to a thickness of 60 nm.
  • the film thickness was measured with an ellipsometer.
  • the transmittance of the formed zinc oxide film was measured using a spectrophotometer together with the glass substrate. As a result, the transmittance at a wavelength of 100 nm was 89%.
  • Example 1 a zinc oxide film was formed as a transparent conductive film on a glass substrate.
  • this was different from Comparative Example 1 in that hydrogen was used instead of argon as the diluent gas.
  • Comparative Example 2 evaluation was performed by forming a zinc oxide film as a transparent conductive film on a glass substrate.
  • the glass substrate was carried into the film forming chamber, the substrate temperature was raised to 150 ° C, and was kept at that temperature.
  • a mixed gas of 700 sccm of diborane-containing argon gas diluted to 5000 ppm with argon and lOOsccm of vaporized water was introduced into the film forming chamber, and the vaporized dioxane was introduced. Introduced 50 sccm of ethyl zinc.
  • the pressure in the film forming chamber at this time was set to 1 Torr by adjusting the valve.
  • Example 2 a zinc oxide film was formed as a transparent conductive film on a glass substrate and evaluated. However, it was different from Comparative Example 2 in that hydrogen was used instead of argon.
  • Example 2 has lower resistivity and higher transmittance. The reason for this is not clear, but boron is activated as a dopant by forming a film in a hydrogen atmosphere compared to when forming a film in an argon atmosphere. It is considered that a zinc oxide film having a low resistance and a high permeability was obtained due to the reduction in the amount.
  • a transparent electrode layer 11 made of a transparent conductive film of tin oxide was formed on a transparent insulating substrate 10.
  • an amorphous silicon photoelectric conversion unit 20 having a thickness of about 300 nm was formed on the transparent electrode layer 11 by a plasma CVD method.
  • the amorphous silicon photoelectric conversion unit 20 includes a p-type layer 21, an i-type layer 22, and an n-type layer 23.
  • the p-type layer 21 and the n-type layer 23 are each formed to a thickness of 10 nm. did.
  • a crystalline silicon photoelectric conversion unit 30 having a thickness of about 1.4 ⁇ m was formed on the amorphous silicon photoelectric conversion unit 20 by a plasma CVD method.
  • the crystalline silicon photoelectric conversion unit 30 was composed of a p-type layer 31, an i-type layer 32, and an n-type layer 33. Each of the p-type layer 31 and the n-type layer 33 was formed to a thickness of 10 ⁇ m.
  • a back electrode layer 40 was formed on the crystalline silicon photoelectric conversion unit 30.
  • the back electrode layer 40 was composed of a zinc oxide layer 41 and an Ag layer 42, and the zinc oxide layer 41 having a thickness of 60 nm was formed under the conditions shown in Comparative Example 1.
  • An Ag layer 42 having a thickness of 200 nm was formed on the zinc oxide layer 41 by a sputtering method.
  • the tandem-type thin-film photoelectric conversion device thus obtained was irradiated with AMI.5 light at an amount of 100 mWZ cm 2 and the output characteristics at 25 ° C. were measured.
  • the short circuit current density was 11.9 mA / cm 2 , the fill factor was 72.0%, and the conversion efficiency was 11.4%.
  • Example 3 the tandem-type thin-film solar cell shown in FIG. 1 was produced.
  • Example 3 was different from Comparative Example 3 only in the conditions for forming the zinc oxide layer 41.
  • the film was formed under the conditions shown in Example 1.
  • the open-circuit voltage was 1.35 V
  • the short-circuit current density was 12.
  • the fill factor was 71% and the conversion efficiency was 11.9%, indicating that the performance was improved as compared with Comparative Example 3.
  • a transparent electrode layer 11 made of a zinc oxide film was formed on a transparent insulating substrate 10. Transparent The film formation conditions for the electrode layer 11 were the same as those described in Comparative Example 2.
  • an amorphous silicon photoelectric conversion unit 20 having a thickness of about 330 nm was formed on the transparent electrode layer 11 by a plasma CVD method.
  • the amorphous silicon photoelectric conversion unit 22 was composed of a p-type layer 22, an i-type layer 22, and an n-type layer 23.
  • the p-type layer 21 and the n-type layer 22 each had a thickness of 10 nm.
  • a crystalline silicon photoelectric conversion unit 30 having a thickness of about 1.65 ⁇ m was formed on the amorphous silicon photoelectric conversion unit 20 by a plasma CVD method.
  • the crystalline silicon photoelectric conversion unit 30f has a p-type layer 31, an i-type layer 32, and an n-type layer 33, and the p-type layer 31 and the n-type layer 33 have a thickness of 1 Onm.
  • a back electrode layer 40 was formed on the crystalline silicon photoelectric conversion unit 30.
  • the back surface electrode layer 40 was composed of a layer of Sinjya sublayer & layer 41 and an Ag layer 42, and a 60 nm thick Sinjya sublayer 441 was formed by a sputtering method.
  • An Ag layer 42 having a thickness of 200 nm was formed on the zinc oxide layer 41 by a sputtering method.
  • the tandem-type thin-film photoelectric conversion device obtained as described above was irradiated with AMI.5 light at an amount of 100 mW / cm 2 , and the output characteristics were measured.
  • the open-end voltage was 1.30 V, and the short-circuit current density was measured. Is 12.
  • the fill factor was 70.0% and the conversion efficiency was 11.3%.
  • Example 4 the tandem thin-film solar cell shown in FIG. 1 was produced. However, Example 4 was different from Comparative Example 4 only under the conditions for forming the zinc oxide layer 11. At that time, under the conditions for forming the zinc oxide layer 11, a film was formed under the conditions shown in Example 2.
  • the open-circuit voltage was 1.30 V
  • the short-circuit current density was 12.6 mA. / cm 2
  • fill factor was 71%
  • conversion efficiency was 11.6%

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

 安価な希釈ガスを用いて、高透過、低抵抗、かつ優れた表面形状を有する酸化亜鉛を主成分とする透明導電膜を均一性良く簡便に製造する製造方法、及びその製造方法を含むタンデム型薄膜光電変換装置の製造方法を提供することを目的とする。  本発明の透明導電膜の製造方法は、製膜室中に有機亜鉛、希釈ガス、および酸化剤を導入し、酸化亜鉛を主成分とする透明導電膜を前記製膜室内に配置された基板上に形成する方法であって、前記希釈ガスが水素であることを特徴とする透明導電膜の製造方法であって、水素は熱伝導率が大きく安価であるので特性が優れかつ低コストな透明導電膜を提供することが出来る。                                                                                     

Description

明 細 書
透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法 技術分野
[0001] 本発明は高透過、低抵抗、かつ優れた表面形状を有する酸化亜鉛膜を主成分と する透明導電膜の製造方法とその製造方法を含むタンデム型薄膜光電変換装置の 製造方法に関する。
背景技術
[0002] 近年、太陽電池に代表される光電変換装置などの各種受光素子や液晶、 PDP、 E Lなどの表示素子用透明電極用材料として、透明導電膜の重要性がますます高くな つている。
[0003] 中でも太陽電池用透明導電膜には、高い透明性と導電性、光を有効に活用するた めの表面凹凸形状を有することが必要である。このような透明導電膜としては、錫を 微量添加(以下ドープと記す。また、以下微量添加された物質をドーパントと記す)し た酸化インジウム (In O )や、アンチモンやフッ素をドープし導電性を持たせた酸化錫
(SnO )、や酸化亜鉛 (Zn〇)膜などが知られている。
[0004] 酸化インジウム膜 (以下 ITOと呼ぶ)は導電率が高く広く用いられているが、原料で ある Inが希少金属であり生産量が少ないため透明導電膜の需要が増加した場合に は安定供給に問題がある。また高価であるため低コスト化にも限界がある。 SnOは I
TOより安価であり、また自由電子濃度が低いため高透過率の膜が得られるが、導電 率が低ぐ耐プラズマ性が低いことが欠点である。
[0005] これに対し亜鉛は資源として豊富であり安価である。また酸化亜鉛膜は耐プラズマ 性が高レ、、移動度が大きいため長波長光の透過率が高いなどの特徴があることから 、太陽電池用透明導電膜としても適しており ITOや Sn〇の代替材料として酸化亜鉛 を主成分とする透明導電膜の開発が進められている。
[0006] 酸化亜鉛膜の形成方法としては、主にスパッタ法ゃ CVD法が挙げられる。スパッタ 法は抵抗率、透過率、および膜表面の形状の制御が比較的困難であり、また製造装 置が高価であることから製造コストが高くなる。一方 CVD法は高透過な膜が得られや すぐ膜表面の形状の制御も容易である。また、スパッタ法と比較して製造装置も安 価である。
[0007] このような CVD法を用いた酸化亜鉛膜の製造方法は、特許文献 1に開示されてお り、有機亜鉛あるいは酸化剤を製膜室に導入する際に用いる希釈ガスとして A He 、または Nを用いている。この場合、従来開示されている技術では Ar、 Heは高価で
2
あり製造コストが高くなるという問題がある。
特許文献 1:特公平 6 - 82665
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、従来技術が有していた希釈ガスが高価であるという上記の欠点を解決し 、さらに高透過、低抵抗、かつ優れた表面形状を有する酸化亜鉛を主成分とする透 明導電膜を均一性良く簡便に製造方法、及びその製造方法を含むタンデム型薄膜 光電変換装置の製造方法を得ることを目的とする。
課題を解決するための手段
[0009] 本発明の透明導電膜の製造方法は、製膜室中に有機亜鉛、希釈ガス、および酸 化剤を導入し、酸化亜鉛を主成分とする透明導電膜を前記製膜室内に配置された 基板上に形成する方法であって、前記希釈ガスが水素であることを特徴とする透明 導電膜の製造方法であって、熱伝導率が大きく安価であるので特性が優れかつ低コ ストな透明導電膜を提供することが出来る。
[0010] 前記有機亜鉛としてはジェチル亜鉛であることが好ましぐ酸化剤との反応性が高 いので製膜効率が良くなる。
[0011] 前記酸化剤としては水であることが好ましぐ拡散性および有機亜鉛との反応性が 高いので製膜効率が良くなる。
[0012] 前記製膜室に第三族元素を含む化合物を導入し、前記第三族元素が微量添加さ れた前記酸化亜鉛膜を主成分とする透明導電膜を前記基板上に形成することが好 ましぐ低抵抗な透明導電膜を形成することが出来るので、薄膜光電変換装置の効 率が向上する。
[0013] 特に、前記第三族元素を含む化合物としては、ジボラン (B H )、及びトリメチルァ ノレミニゥム((CH ) A1)から選ばれる少なくとも一つであることが好ましい、分解効率が
3 3
良レ、ために、透明導電膜中にドープされやすレ、からである。
[0014] 前記基板として透明絶縁基板を用レ、前記透明絶縁基板上に順次積層された透明 電極層、少なくとも 1の非晶質シリコン系光電変換ユニット、少なくとも 1の結晶質シリ コン系光電変換ユニット、および裏面電極層を含むタンデム型薄膜光電変換装置の 製造方法であって、前記裏面電極層を形成する工程として上述した透明導電膜の製 造方法を適用することが好ましぐ光電変換ユニットへのダメージを与えることなく裏 面電極層を形成することで、薄膜光電変換装置の効率が向上する。
[0015] また、前記基板として透明絶縁基板を用い該透明絶縁基板上に順次積層された透 明電極層、少なくとも 1の非晶質シリコン系光電変換ユニット、少なくとも 1の結晶質シ リコン系光電変換ユニット、および裏面電極層を含むタンデム型薄膜光電変換装置 の製造方法であって、前記透明電極層を形成する工程として上述した透明導電膜の 製造方法を適用することが好ましぐ透明導電膜表面に微細な凹凸を形成することが 容易なので、光の散乱による光閉じこめ効果により発電効率が向上するからである。 発明の効果
[0016] 本発明の透明導電膜の製造方法は、製膜室中に有機亜鉛、希釈ガス、および酸 化剤を導入し、酸化亜鉛を主成分とする透明導電膜を前記製膜室内に配置された 基板上に形成する方法であって、前記希釈ガスに水素を用いると、熱伝導率が大き く安価なガスであることから特性が優れかつ低コストな透明導電膜を提供することが 出来る。
図面の簡単な説明
[0017] [図 1]タンデム型薄膜光電変換装置の一例の積層構造を示す模式的な断面図である 符号の説明
[0018] 10 透明絶縁基板
11 透明電極層
20 非晶質シリコン光電変換ユニット
21 p層 22 i層
23 n層
30 結晶質シリコン光電変換ユニット
31 P層
32 i層
33 n層
40 裏面電極層
41 酸化亜鉛層
42 Ag層
発明を実施するための最良の形態
[0019] 本発明者らは、上述した先行技術のように希釈ガスとして N等を用い、実際に透明 導電膜の形成を試みた。その結果、これらのガスは熱伝導率が比較的小さいためか 、基板表面温度が安定するまでの均熱時間が長くなり、従って、形成時の基板内の 温度分布の均一性が悪ぐ結果的に、形成された透明導電膜の膜特性の面内均一 性が悪いことを発見し、本発明を為すに到った。
[0020] 本発明による酸化亜鉛膜を形成する方法においては、基板が配置された製膜室中 に、有機亜鉛、希釈ガス、及び酸化剤が導入される。基板は 50°C 300°Cの範囲に 、好ましくは 100°C— 200°Cの範囲に加熱保持されていることが好ましい。
[0021] 基板は、上記温度に変形かつ変性しなければ良ぐ材料としては金属、ガラス板、 プラスチックなどがあるが、基板上に薄膜光電変換装置を形成する場合において光 入射が基板側となる場合には透光性のガラス板やプラスチックが良い。
[0022] 有機亜鉛とは、亜鉛と有機基が結合した 2価の有機金属化合物を言う。有機亜鉛 は一般に常温、常圧下では液体であるので、加熱し気化して導入する。または希釈 ガスを有機亜鉛中に吹き込み蒸気圧相当分の有機亜鉛を希釈ガスと共に製膜室内 に導入しても良い。
[0023] 有機亜鉛化合物としては R Zn(Rは有機基)で示される化合物を用いることが酸化 剤との反応性が高く好ましい。ここで有機基としてはアルキル基、アルケニル基、アル キニル基などが含まれるが、中でもアルキル基が反応性が高く安価であるので好まし ぐ特にメチル基とェチル基が汎用性があり原料調達が容易な点で好ましい。
[0024] 酸化剤とは酸素そのもの或いは分子内において酸素原子を有し、有機金属化合物 と反応し金属酸化物を生成するものを言う。本発明で用いられる酸化剤は常温'常圧 で液体であるものも含まれるが、この場合も同様に、加熱し気化して導入する。又は 希釈ガスを酸化剤中に吹き込み蒸気圧相当分の酸化剤を希釈ガスと共に製膜室内 に導入しても良い。酸化剤としては、水、酸素、オゾン、またはアルコール、ァノレデヒド 、ケトンなどがあるが、有機亜鉛との反応性が高く気化した場合の拡散性が良好な水 が好ましい。
[0025] 希釈ガスとしては、有機亜鉛および酸化剤に対し不活性なものを用いる。希釈ガス の役割は有機亜鉛や酸化剤を希釈し反応性を制御すること、および製膜室中での 原料ガスの拡散性を高めて製膜の均一性を向上する役割を果たす。本発明では、 希釈ガスとしては、アルゴン、ヘリウム、窒素などの不活性ガスではなく水素を用いる ことが良質な酸化亜鉛膜を形成するのに重要である。
[0026] 本発明の製造方法で形成される酸化亜鉛を主成分とする透明導電膜の膜抵抗率 の制御はその膜中に第三族元素からなるドーパントをカ卩えることで行うことができる。 第三族元素からなるドーパントとは、第三族元素の水素化合物や有機化合物を言う。 例えばドーパントとしてボロンを用いる場合に、第三族元素からなる化合物としてジボ ランを用いる。又は有機ボラン化合物でも良ぐ特にトリメチルボランやトリェチルボラ ンがドーピング効率が良いので好ましレ、。また、ドーパントとしてアルミニウムを用いる 場合は、第三族元素からなる化合物として有機アルミニウム化合物が用いられるが、 特にトリメチルアルミニウムやトリェチルアルミニウムがドーピング効率が良いので好ま しレ、。またドーパントとしてはガリウムを用いても良レ、。
[0027] 製膜室は、基板温調用のヒーター、ガス導入口、排気バルブ等を含んで構成され ている。良好な特性を有する均一な膜を得るための製膜室内の圧力は、 0. 01— 3T orrであり、好ましくは 0. 1 lTorrに保つことが特に好ましい。製膜室の圧力の調節 は製膜室に接続される排気バルブの調整により、或いは希釈ガスである水素の量に よってなされる。
[0028] 図 1は本発明の透明導電膜の製造方法が適用されるタンデム型薄膜光電変換装 置の一例である。この図 1を用いて対応するタンデム型薄膜光電変換装置について 説明する。図 1のタンデム型薄膜光電変換装置は、非晶質シリコン光電変換ユニット と結晶質シリコン光電変換ユニットとを含むシリコン系ハイブリッド型薄膜太陽電池で あり、以下の方法により製造され得る。
[0029] まず、透明絶縁基板 10上に透明導電膜からなる透明電極層 11を形成する。透明 絶縁基板 10とは、薄膜光電変換装置の光入射側に位置するために透光性のガラス 板やプラスチックが良レ、。透明電極層としては、酸化亜鉛、酸化錫などを用いること が出来るが、酸化亜鉛を主成分とする透明導電膜を用いることが望ましい。何故なら 酸化亜鉛は 200°C以下の低温でも光閉じこめ効果を有する微細な凹凸が形成でき、 かつ耐プラズマ性の高レ、材料であるからである。続レ、て透明電極層 11上に非晶質シ リコン光電変換ユニット 20をプラズマ CVD法で形成する。非晶質シリコン光電変換ュ ニット 20は p型層 21、 i型層 22、及び n型層 23からなる。非晶質シリコン光電変換ュ ニット 20は、約 360— 800nmの光に感度を有する非晶質シリコン系材料により構成 される。
[0030] 次に、非晶質シリコン光電変換ユニット 20上に、結晶質シリコン光電変換ユニット 3 0をプラズマ CVD法で形成する。結晶質シリコン光電変換ユニット 30は p型層 31、 i 型層 32、及び n型層 33からなる。結晶質シリコン光電変換ユニット 30は、約 500— 1 200nmの光に感度を有する結晶質シリコン系材料により構成され、これらの 2つのュ ニットを積層することで広範囲な波長の光を有効利用することが可能となる。さらに、 結晶質シリコン光電変換ユニット 30上に、裏面電極層 40を形成した。裏面電極層 40 は酸化亜鉛層 41と Ag層 42からなる。酸化亜鉛層 41はスパッタ法ゃ CVD法により作 成されるが、シリコン層への電気的なダメージを低減できることから、 CVD法で作成 することが良レ、。 Ag層 42については、スパッタリング法や蒸着法などで形成すること が出来る。
[0031] なお以下に記載する実施例で作成した酸化亜鉛を主成分とする膜の抵抗率、膜厚 、透過率、及びヘイズ率は、それぞれ抵抗測定器、エリプソメーター、分光光度計、 ヘイズメーターで測定した。ヘイズ率とは (拡散光透過率) Z (全光線透過率) 100 で表される値であり、 JIS K7136に準拠する方法で測定を行った。 [0032] 上述のような実施の形態の具体的な例として、以下において、いくつかの実施例が 比較例と共に説明される。
実施例
[0033] (比較例 1)
比較例 1として、透明絶縁基板上に透明導電膜として酸化亜鉛膜を形成して評価 を行った。まず透明絶縁基板であるガラス基板を製膜室内に搬入し基板温度を 150 °Cまで昇温し、さらにその温度で保持した。その後、希釈ガスであるアルゴン 600scc mと、気化した水 lOOsccmとの混合気体を製膜室内に導入し、続いて気化したジェ チル亜鉛 50sccmの導入も開始した。さらに、バルブ調整によりこの時の製膜室内の 圧力を ITorrとした。この条件で酸化亜鉛膜をその膜厚が 60nmとなるように堆積し た。なお膜厚はエリプソメーターで測定した。形成された酸化亜鉛膜についてガラス 基板とともに、分光光度計を用いて透過率を測定した。その結果、波長 lOOOnmで の透過率は 89%であった。
[0034] (実施例 1)
実施例 1においてもガラス基板上に透明導電膜として酸化亜鉛膜を形成した。ただ し、希釈ガスとしてアルゴンにかえて水素が用いられていることにおいて比較例 1と異 なっていた。
[0035] その際、まず水素 1500sccmと気化した水 lOOsccmの混合気体を製膜室内に導 入後、気化したジェチル亜鉛 50sccmを導入し、バルブ調整により製膜室内の圧力 を ITorrとした。この条件で酸化亜鉛膜をその膜厚が 60nmとなるように堆積し、比較 例 1と同様に、分光光度計を用いて透過率を測定した。その結果、波長 lOOOnmで の透過率は 91 %であった。比較例 1と実施例 1との比較により、実施例 1の方が、透 過率が改善している。
[0036] (比較例 2)
比較例 2として、ガラス基板上に透明導電膜として酸化亜鉛膜を形成し評価を行つ た。まずガラス基板を製膜室内に搬入し基板温度を 150°Cまで昇温し、さらにその温 度で保持した。その後、アルゴンで 5000ppmに希釈されたジボラン含有アルゴンガ ス 700sccmと気化した水 lOOsccmとの混合気体を製膜室内に導入後、気化したジ ェチル亜鉛 50sccmの導入も開始した。さらに、バルブ調整によりこの時の製膜室内 の圧力を lTorrとした。この条件で酸ィ匕亜鉛膜をその膜厚が 1 · 5 μ ΐηとなるように堆 積した。なお膜厚はエリプソメーターで測定した。形成された酸化亜鉛膜について、 抵抗率、ヘイズ率、透過率を、それぞれ抵抗測定器、ヘイズメーター、分光光度計を 用いて測定した。その結果、抵抗率が 3 Χ 10— 3 Ω - cm,ヘイズ率が 19%、波長 1000 nmでの透過率は 76%であった。
[0037] (実施例 2)
実施例 2においてもガラス基板上に透明導電膜として酸化亜鉛膜を形成し評価し た。ただし、アルゴンにかえて水素が用いられていることにおいて比較例 2と異なって いた。
[0038] その際、アルゴンで 5000ppmに希釈されたジボラン含有アルゴンガス 1500sccm と気化した水 lOOsccmとの混合気体を製膜室内に導入後、気化したジェチル亜鉛 5 Osccmの導入も開始した。さらに、バルブ調整により製膜室内の圧力を lTorrとした 。この条件で酸化亜鉛膜をその膜厚が 1. 5 / mとなるように堆積した。比較例 2と同 様に、形成された酸化亜鉛膜について、抵抗率、ヘイズ率、透過率を、それぞれ抵 抗測定器、ヘイズメーター、分光光度計を用いて測定した。その結果、抵抗率が 9 X 10— 4 Ω ' cm、ヘイズ率が 20%、波長 lOOOnmでの透過率は 81 %であった。
[0039] 以上の比較例 2と実施例 2との比較により、実施例 2の方が、抵抗率が低くなり透過 率も向上していることがわかる。この理由は定かでないが、水素雰囲気下で製膜する ことでアルゴン雰囲気下で製膜した時と比較してドーパントとしてのボロンが活性化さ れること、結晶粒界に過剰に存在している酸素量が低減されることなどにより、低抵抗 、高透過な酸化亜鉛膜が得られたと考えられる。
[0040] (比較例 3)
比較例 3として、図 1に対応するタンデム型薄膜光電変換装置を作成した。
[0041] まず、透明絶縁基板 10上に酸化錫の透明導電膜からなる透明電極層 11を形成し た。続いて透明電極層 11上に厚さ約 300nmの非晶質シリコン光電変換ユニット 20 をプラズマ CVD法で形成した。非晶質シリコン光電変換ユニット 20は p型層 21、 i型 層 22、及び n型層 23からなり、 p型層 21、 n型層 23はそれぞれ 10nmの厚さに形成 した。
[0042] 次に、非晶質シリコン光電変換ユニット 20上に、厚さ約 1. 4 μ mの結晶質シリコン光 電変換ユニット 30をプラズマ CVD法で形成した。結晶質シリコン光電変換ユニット 3 0は p型層 31、 i型層 32、及び n型層 33からなり、 p型層 31、 n型層 33はいずれも 10η mの厚さに形成した。
[0043] さらに、結晶質シリコン光電変換ユニット 30上に、裏面電極層 40を形成した。裏面 電極層 40は酸化亜鉛層 41と Ag層 42からなり、厚さ 60nmの酸ィ匕亜鉛層 41は、比 較例 1に示す条件で形成した。また酸化亜鉛層 41上には厚さ 200nmの Ag層 42を スパッタリング法で形成した。
[0044] このようにして得られたタンデム型薄膜光電変換装置に AMI . 5の光を lOOmWZ cm2の光量で照射して 25°Cでの出力特性を測定したところ開放端電圧が 1. 33V、 短絡電流密度が 11. 9mA/ cm2,曲線因子が 72. 0%、そして変換効率が 11. 4% であった。
[0045] (実施例 3)
実施例 3においても、図 1に示されているタンデム型薄膜太陽電池を作製した。た だし、実施例 3においては、酸化亜鉛層 41の製膜条件においてのみ比較例 3と異な つていた。その際、酸化亜鉛層 41の製膜条件において、実施例 1に示す条件で製 膜を行った。以上のようにして形成した実施例 3のタンデム型薄膜太陽電池を比較例 3と同一の条件下で出力特性を測定したところ、開放端電圧が 1. 35V、短絡電流密 度が 12.
Figure imgf000011_0001
曲線因子が 71 %、そして変換効率が 11. 9%となり、比較例 3と比較して性能改善がみられた。
[0046] この理由については定かではないが、酸化亜鉛層自身の電気的、光学的特性が 向上していることに加え、結晶質シリコン光電変換ユニットの n型層 33の表面が水素 雰囲気に晒されるため、 n型層 33と酸化亜鉛層 41の界面が清浄化され特性が向上 したものと考えられる。
[0047] (比較例 4)
比較例 4として、図 1に対応するタンデム型薄膜光電変換装置を作成した。
[0048] まず、透明絶縁基板 10上に酸化亜鉛膜からなる透明電極層 11を形成した。透明 電極層 11の製膜条件としては、比較例 2に示した条件で製膜を行った。
[0049] 次に、透明電極層 11上には厚さ約 330nmの非晶質シリコン光電変換ユニット 20を プラズマ CVD法で形成した。非晶質シリコン光電変換ユニット 22は p型層 22、 i型層 22、 n型層 23からなり、 p型層 21、 n型層 22はそれぞれ 10nmの厚さとした。
[0050] さらに、非晶質シリコン光電変換ユニット 20上には、厚さ約 1. 65 x mの結晶質シリ コン光電変換ユニット 30をプラズマ CVD法で作製した。結晶質シリコン光電変換ュ ニット 30fま p型層 31、 i型層 32、 n型層 33力らなり、 p型層 31、 n型層 33ίまレヽずれも 1 Onmの厚さとした。
[0051] 続いて、結晶質シリコン光電変換ユニット 30上には、裏面電極層 40を形成した。裏 面電極層 40は酸ィ匕亜秦&層 41と Ag層 42力、らなり、厚さ 60nmの酸ィ匕亜 層 441を、 スパッタリング法で形成した。また酸化亜鉛層 41上には厚さ 200nmの Ag層 42をス パッタリング法で形成した。
[0052] このようにして得られたタンデム型薄膜光電変換装置に AMI . 5の光を lOOmW/ cm2の光量で照射して出力特性を測定したところ開放端電圧 1. 30V、短絡電流密 度が 12.
Figure imgf000012_0001
曲線因子が 70. 0%、そして変換効率が 11. 3%であった。
[0053] (実施例 4)
実施例 4においても、図 1に示されているタンデム型薄膜太陽電池を作製した。た だし、実施例 4においては、酸化亜鉛層 11の製膜条件においてのみ比較例 4と異な つていた。その際、酸化亜鉛層 11の製膜条件において、実施例 2に示す条件で製 膜をおこなった。以上のようにして形成した実施例 4のタンデム型薄膜太陽電池を比 較例 3と同一の条件下で出力特性を測定したところ、開放端電圧が 1. 30V、短絡電 流密度が 12. 6mA/ cm2,曲線因子が 71 %、そして変換効率が 11. 6%となり、比 較例 4と比較して性能が改善した。

Claims

請求の範囲
[1] 製膜室中に有機亜鉛、希釈ガス、および酸化剤を導入し、酸化亜鉛を主成分とす る透明導電膜を製膜室内に配置された基板上に形成する方法であって、該希釈ガ スが水素であることを特徴とする透明導電膜の製造方法。
[2] 前記有機亜鉛がジェチル亜鉛であることを特徴とする請求項 1に記載の透明導電 膜の製造方法。
[3] 前記酸化剤が水であることを特徴とする請求項 1に記載の透明導電膜の製造方法
[4] 前記製膜室に第三族元素を含む化合物を導入し、該第三族元素が微量添加され た前記酸化亜鉛膜を主成分とする透明導電膜を前記基板上に形成することを特徴と する請求項 1に記載の透明導電膜の製造方法。
[5] 前記第三族元素を含む化合物が、ジボラン (B H )、及びトリメチルアルミニウム((C
H ) A1)から選ばれる少なくとも一つであることを特徴とする請求項 4に記載の透明導 電膜の製造方法。
[6] 前記基板として透明絶縁基板を用い該透明絶縁基板上に順次積層された透明電 極層、少なくとも 1の非晶質シリコン系光電変換ユニット、少なくとも 1の結晶質シリコ ン系光電変換ユニット、および裏面電極層を含むタンデム型薄膜光電変換装置の製 造方法であって、該裏面電極層を形成する工程に請求項 1一 5の何れかに記載の透 明導電膜の製造方法を含むことを特徴とするタンデム型薄膜光電変換装置の製造 方法。
[7] 前記基板として透明絶縁基板を用レ、該透明絶縁基板上に順次積層された透明電 極層、少なくとも 1の非晶質シリコン系光電変換ユニット、少なくとも 1の結晶質シリコ ン系光電変換ユニット、および裏面電極層を含むタンデム型薄膜光電変換装置の製 造方法であって、該透明電極層を形成する工程に請求項 1一 5の何れ力ゝに記載の透 明導電膜の製造方法を含むことを特徴とするタンデム型薄膜光電変換装置の製造 方法。
PCT/JP2005/001119 2004-02-16 2005-01-27 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法 WO2005078154A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005517921A JP4939058B2 (ja) 2004-02-16 2005-01-27 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法
EP05709393.2A EP1717341B1 (en) 2004-02-16 2005-01-27 Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter
US10/587,592 US20070157966A1 (en) 2004-02-16 2005-01-27 Process for producing transparent conductive film and process for producing tandem thin-film photoelectric converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-038841 2004-02-16
JP2004038841 2004-02-16

Publications (1)

Publication Number Publication Date
WO2005078154A1 true WO2005078154A1 (ja) 2005-08-25

Family

ID=34857822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001119 WO2005078154A1 (ja) 2004-02-16 2005-01-27 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法

Country Status (5)

Country Link
US (1) US20070157966A1 (ja)
EP (1) EP1717341B1 (ja)
JP (1) JP4939058B2 (ja)
TW (1) TW200539470A (ja)
WO (1) WO2005078154A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298867A (ja) * 2004-04-08 2005-10-27 Air Water Inc ZnO膜の成膜方法
JP2007254821A (ja) * 2006-03-23 2007-10-04 Kaneka Corp 透明導電膜付基板の製造方法、及び該製造方法を備える装置
CN115029665A (zh) * 2022-06-14 2022-09-09 浙江水晶光电科技股份有限公司 一种化合物薄膜及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821637B1 (en) 2007-02-22 2010-10-26 J.A. Woollam Co., Inc. System for controlling intensity of a beam of electromagnetic radiation and method for investigating materials with low specular reflectance and/or are depolarizing
JP5404604B2 (ja) * 2008-03-18 2014-02-05 株式会社カネカ 透明導電酸化物層の形成方法、透明導電酸化物層、並びに、透明導電酸化物層を用いた光電変換装置
KR20100028729A (ko) * 2008-09-05 2010-03-15 삼성전자주식회사 복층 구조의 태양 전지 및 그 제조 방법
US8628997B2 (en) * 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8906732B2 (en) * 2010-10-01 2014-12-09 Stion Corporation Method and device for cadmium-free solar cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627123A (ja) * 1985-06-04 1987-01-14 シーメンス ソーラー インダストリーズ,エル.ピー. 酸化亜鉛膜の蒸着方法
JPH03237097A (ja) * 1990-02-15 1991-10-22 Nippon Steel Corp 光励起気相成長方法
JPH07235505A (ja) * 1993-12-28 1995-09-05 Matsushita Electric Ind Co Ltd 半導体層の結晶成長方法
JP2003347572A (ja) * 2002-01-28 2003-12-05 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638111A (en) * 1985-06-04 1987-01-20 Atlantic Richfield Company Thin film solar cell module
JPH0682665B2 (ja) * 1985-08-20 1994-10-19 三菱電機株式会社 半導体装置の製造方法
JPS62139874A (ja) * 1985-12-12 1987-06-23 Shin Etsu Chem Co Ltd X線マスク用窒化ホウ素薄膜の形成方法
JPS6436767A (en) * 1987-07-30 1989-02-07 Nippon Mining Co Manufacture of zinc selenide
JPH01298164A (ja) * 1988-05-25 1989-12-01 Canon Inc 機能性堆積膜の形成方法
JP2545306B2 (ja) * 1991-03-11 1996-10-16 誠 小長井 ZnO透明導電膜の製造方法
JP3205036B2 (ja) * 1991-03-27 2001-09-04 グンゼ株式会社 透明導電膜
JPH0756131A (ja) * 1993-08-12 1995-03-03 Tonen Chem Corp 透明導電膜の製造方法
JP3407792B2 (ja) * 1997-09-10 2003-05-19 株式会社トクヤマ 光電変換素子及びこの製造方法
US20020084455A1 (en) * 1999-03-30 2002-07-04 Jeffery T. Cheung Transparent and conductive zinc oxide film with low growth temperature
EP1289025A1 (fr) * 2001-08-30 2003-03-05 Universite De Neuchatel Procédé de dépot d'une couche d'oxyde sur un substrat et cellule photovoltaique utilisant ce substrat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627123A (ja) * 1985-06-04 1987-01-14 シーメンス ソーラー インダストリーズ,エル.ピー. 酸化亜鉛膜の蒸着方法
JPH03237097A (ja) * 1990-02-15 1991-10-22 Nippon Steel Corp 光励起気相成長方法
JPH07235505A (ja) * 1993-12-28 1995-09-05 Matsushita Electric Ind Co Ltd 半導体層の結晶成長方法
JP2003347572A (ja) * 2002-01-28 2003-12-05 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298867A (ja) * 2004-04-08 2005-10-27 Air Water Inc ZnO膜の成膜方法
JP4544898B2 (ja) * 2004-04-08 2010-09-15 エア・ウォーター株式会社 ZnO膜の成膜方法
JP2007254821A (ja) * 2006-03-23 2007-10-04 Kaneka Corp 透明導電膜付基板の製造方法、及び該製造方法を備える装置
CN115029665A (zh) * 2022-06-14 2022-09-09 浙江水晶光电科技股份有限公司 一种化合物薄膜及其制备方法
CN115029665B (zh) * 2022-06-14 2023-08-25 浙江水晶光电科技股份有限公司 一种化合物薄膜及其制备方法

Also Published As

Publication number Publication date
EP1717341B1 (en) 2015-04-15
TW200539470A (en) 2005-12-01
JP4939058B2 (ja) 2012-05-23
JPWO2005078154A1 (ja) 2007-10-18
US20070157966A1 (en) 2007-07-12
EP1717341A4 (en) 2008-10-01
EP1717341A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US20090255581A1 (en) Thin film silicon solar cell and manufacturing method thereof
JP5243697B2 (ja) 光電変換装置用透明導電膜とその製造方法
US20080245414A1 (en) Methods for forming a photovoltaic device with low contact resistance
WO2005078154A1 (ja) 透明導電膜の製造方法、及びタンデム型薄膜光電変換装置の製造方法
KR20090088860A (ko) 표면 패시베이션이 향상된 결정성 실리콘 태양 전지의 제조 방법
US20150136210A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
US20130112264A1 (en) Methods for forming a doped amorphous silicon oxide layer for solar cell devices
TW201733150A (zh) 光電轉換裝置之製造方法
Kakiuchi et al. Characterization of intrinsic amorphous silicon layers for solar cells prepared at extremely high rates by atmospheric pressure plasma chemical vapor deposition
EP2599127B1 (en) Multiple-junction photoelectric device and its production process
JP2004311704A (ja) 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置
JP4904311B2 (ja) 薄膜光電変換装置用透明導電膜付き基板の製造方法
US20080210300A1 (en) Method of Producing Substrate for Thin Film Photoelectric Conversion Device, and Thin Film Photoelectric Conversion Device
WO2010023991A1 (ja) 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
WO2008059857A1 (fr) Dispositif de conversion photoélectrique en film mince
JP2009117463A (ja) 薄膜光電変換装置
US7851249B2 (en) Tandem solar cell including an amorphous silicon carbide layer and a multi-crystalline silicon layer
US20130291933A1 (en) SiOx n-LAYER FOR MICROCRYSTALLINE PIN JUNCTION
US20110232753A1 (en) Methods of forming a thin-film solar energy device
JP2003188400A (ja) 結晶性SiC膜の製造方法、結晶性SiC膜及び太陽電池
US7863080B1 (en) Process for making multi-crystalline silicon thin-film solar cells
Aberle et al. Poly-Si on glass thin-film PV research at UNSW
JP5613296B2 (ja) 光電変換装置用透明導電膜、光電変換装置、およびそれらの製造方法
JPH034569A (ja) 非晶質太陽電池
JP2000232073A (ja) 多結晶シリコン膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517921

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005709393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007157966

Country of ref document: US

Ref document number: 10587592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005709393

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10587592

Country of ref document: US