WO2010023991A1 - 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム - Google Patents

光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム Download PDF

Info

Publication number
WO2010023991A1
WO2010023991A1 PCT/JP2009/057976 JP2009057976W WO2010023991A1 WO 2010023991 A1 WO2010023991 A1 WO 2010023991A1 JP 2009057976 W JP2009057976 W JP 2009057976W WO 2010023991 A1 WO2010023991 A1 WO 2010023991A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
conversion unit
type semiconductor
semiconductor layer
Prior art date
Application number
PCT/JP2009/057976
Other languages
English (en)
French (fr)
Inventor
伸一 朝比奈
内田 寛人
伸 浅利
征典 橋本
徹志 藤長
忠正 小林
雅文 若井
健一 今北
喜信 植
一也 斎藤
中村 久三
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020117003949A priority Critical patent/KR101280036B1/ko
Priority to US13/061,018 priority patent/US20110204466A1/en
Priority to JP2010526571A priority patent/JPWO2010023948A1/ja
Priority to PCT/JP2009/004232 priority patent/WO2010023948A1/ja
Priority to EP09809603.5A priority patent/EP2330633A4/en
Priority to TW098129154A priority patent/TW201013966A/zh
Priority to CN2009801327501A priority patent/CN102132416A/zh
Publication of WO2010023991A1 publication Critical patent/WO2010023991A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion device, a photoelectric conversion device, and a system for manufacturing a photoelectric conversion device. More specifically, the performance of a tandem photoelectric conversion device in which two photoelectric conversion units are stacked is improved. It is related to the technology.
  • This application claims priority based on Japanese Patent Application No. 2008-222818 filed on Aug. 29, 2008, the contents of which are incorporated herein by reference.
  • a photoelectric conversion device using single crystal silicon is excellent in energy conversion efficiency per unit area.
  • a photoelectric conversion device using single crystal silicon uses a silicon wafer obtained by slicing a single crystal silicon ingot, a large amount of energy is consumed for manufacturing the ingot and the manufacturing cost is high.
  • a photoelectric conversion device using an amorphous (amorphous) silicon thin film hereinafter also referred to as “a-Si thin film” that can be manufactured at a lower cost is widely used as a low-cost photoelectric conversion device.
  • the conversion efficiency of a photoelectric conversion device using this amorphous (amorphous) silicon thin film is the conversion efficiency of a crystalline photoelectric conversion device using single crystal silicon, polycrystalline silicon, microcrystalline silicon in amorphous silicon, or the like. Low compared to Therefore, as a structure for improving the conversion efficiency of the photoelectric conversion device, a tandem structure in which two photoelectric conversion units are stacked has been proposed.
  • a tandem photoelectric conversion device 100 as shown in FIG. 15 is known.
  • an insulating transparent substrate 101 provided with a transparent conductive film 102 is used.
  • a pin-type first photoelectric conversion unit obtained by sequentially stacking a p-type semiconductor layer 131, an i-type silicon layer (amorphous silicon layer) 132, and an n-type semiconductor layer 133 on the transparent conductive film 102. 103 is formed.
  • a pin-type second photoelectric conversion obtained by sequentially stacking a p-type semiconductor layer 141, an i-type silicon layer (crystalline silicon layer) 142, and an n-type semiconductor layer 143 on the first photoelectric conversion unit 103.
  • a unit 104 is formed. Further, a back electrode 105 is formed on the second photoelectric conversion unit 104.
  • a manufacturing method disclosed in Patent Document 1 As a method for manufacturing such a tandem photoelectric conversion device, for example, a manufacturing method disclosed in Patent Document 1 is known. In this manufacturing method, a p-type semiconductor layer, an i-type amorphous silicon-based photoelectric conversion layer, and an n-type semiconductor layer that form an amorphous photoelectric conversion unit (first photoelectric conversion unit) are formed. Each plasma CVD reaction chamber is different. Moreover, in this manufacturing method, the p-type semiconductor layer, the i-type crystalline silicon-based photoelectric conversion layer, and the n-type semiconductor layer constituting the crystalline photoelectric conversion unit (second photoelectric conversion unit) are the same. It is formed in a plasma CVD reaction chamber.
  • this tandem photoelectric conversion device 100 As shown in FIG. 16A, first, an insulating transparent substrate 101 on which a transparent conductive film 102 is formed is prepared. Next, as shown in FIG. 16B, on the transparent conductive film 102 formed on the insulating transparent substrate 101, a p-type semiconductor layer 131, an i-type silicon layer (amorphous silicon layer) 132, The plasma CVD reaction chambers for forming the n-type semiconductor layer 133 are different from each other. As a result, the pin-type first photoelectric conversion units 103 sequentially stacked are formed on the insulating transparent substrate 101.
  • the first photoelectric conversion exposed to the atmosphere as shown in FIG. A p-type semiconductor layer 141, an i-type silicon layer (crystalline silicon layer) 142, and an n-type semiconductor layer 143 are formed on the n-type semiconductor layer 133 of the unit 103 in the same plasma CVD reaction chamber.
  • pin-type second photoelectric conversion units 104 that are sequentially stacked are formed.
  • the photoelectric conversion device 100 as shown in FIG. 15 is obtained.
  • the tandem photoelectric conversion device 100 having the above configuration can be broadly manufactured by the following two manufacturing systems.
  • the first photoelectric conversion is performed by using a so-called in-line type first film forming apparatus in which a plurality of film forming reaction chambers called chambers are arranged linearly (linearly).
  • Unit 103 is formed. Each layer constituting the first photoelectric conversion unit 103 is formed in a different film formation reaction chamber in the first film formation apparatus.
  • the second photoelectric conversion unit 104 is formed using a so-called batch-type second film forming apparatus. Each layer constituting the second photoelectric conversion unit 104 is formed in one film forming reaction chamber in the second film forming apparatus.
  • the first manufacturing system includes a load chamber (L) 161, a P layer deposition reaction chamber 162, an I layer deposition reaction chamber 163, and an N layer deposition reaction.
  • a first deposition apparatus in which a chamber 164 and an unload chamber (UL) 166 are continuously arranged in a straight line; a load / unload chamber (L / UL) 171 and a PIN layer deposition reaction chamber 172; And a second film forming apparatus arranged.
  • a substrate is carried into and placed in a load chamber (L: Lord) 161, and the internal pressure is reduced.
  • the p-type semiconductor layer 131 of the first photoelectric conversion unit 103 is formed in the P-layer film formation reaction chamber 162, and the i-type silicon layer (amorphous) in the I-layer film formation reaction chamber 163. Silicon layer) 132 is formed, and an n-type semiconductor layer 133 is formed in the N-layer deposition reaction chamber 164.
  • the substrate on which the first photoelectric conversion unit 103 is formed is carried out to an unload chamber (UL) 166. In the unload chamber (UL) 166, the reduced-pressure atmosphere is returned to the air atmosphere, and the substrate is unloaded from the unload chamber (UL).
  • the substrate processed in the first film forming apparatus is exposed to the atmosphere and transferred to the second film forming apparatus.
  • the substrate on which the first photoelectric conversion unit 103 is formed is loaded into and placed in a load / unload chamber (L / UL) 171 and the pressure inside thereof is reduced.
  • the load / unload chamber (L / UL) 171 reduces the internal pressure after the substrate is loaded, or returns the reduced pressure atmosphere to the air atmosphere when the substrate is unloaded.
  • the substrate is carried into the PIN layer film formation reaction chamber 172 through the load / unload chamber (L / UL) 171.
  • the p-type semiconductor layer 141, the i-type silicon layer (crystalline silicon layer) 142, and the n-type semiconductor layer 143 of the second photoelectric conversion unit 104 have the same reaction.
  • the layers are sequentially formed in the chamber, that is, in the PIN layer deposition reaction chamber 172.
  • an insulating transparent substrate 101 on which a transparent conductive film 102 is formed is prepared as shown in FIG.
  • the first photoelectric conversion unit 103 is provided on the transparent conductive film 102 formed on the insulating transparent substrate 101 as shown in FIG.
  • a first intermediate product 100a of the photoelectric conversion device is formed.
  • the second intermediate product 100b of the photoelectric conversion device in which the second photoelectric conversion unit 104 is provided is formed on the first photoelectric conversion unit 103. Is done.
  • the in-line type first film forming apparatus is configured to process two substrates simultaneously.
  • the I-layer film formation reaction chamber 163 includes four reaction chambers 163a to 163d.
  • the batch-type second film forming apparatus is configured to process six substrates simultaneously.
  • the first photoelectric conversion unit 103 is formed using the same first film forming apparatus shown in FIG.
  • a second photoelectric conversion unit 104 is formed using a plurality of dedicated film formation reaction chambers for forming each layer of the second photoelectric conversion unit 104.
  • the second photoelectric conversion unit 104 is formed using the second film forming apparatus.
  • the second manufacturing system includes a first film forming apparatus having the same configuration as FIG. 17, a load / unload chamber (L / UL) 173, and a P stratification.
  • a second film forming apparatus in which a film reaction chamber 174, an I layer film forming reaction chamber 175, an N layer film forming reaction chamber 176, and an intermediate chamber 177 are arranged.
  • the first photoelectric conversion unit 103 is formed on the substrate by the first film forming apparatus as in the first manufacturing system, and the substrate is unloaded from the unload chamber (UL). : Unknown) 166.
  • UL unload chamber
  • Unknown Unknown
  • the load / unload chamber (L / UL) 173 reduces the internal pressure after the substrate is loaded, or returns the reduced pressure atmosphere to the air atmosphere when the substrate is unloaded.
  • the substrate is carried into the intermediate chamber 177 through the load / unload chamber (L / UL) 173. Further, the intermediate chamber 177 and the P layer deposition reaction chamber 174, the intermediate chamber 177 and the I layer deposition reaction chamber 175, and the intermediate chamber 177 and the N layer deposition reaction chamber 176 are transported. .
  • the p-type semiconductor layer 141 of the second photoelectric conversion unit 104 is formed on the n-type semiconductor layer 133 of the first photoelectric conversion unit 103.
  • an i-type silicon layer (crystalline silicon layer) 142 is formed in the I layer deposition reaction chamber 175.
  • an n-type semiconductor layer 143 is formed in the N layer deposition reaction chamber 176.
  • a transfer device (not shown) provided in the intermediate chamber 177 is provided for each of the reaction chambers 174, 175, and 176 in order to stack the p-type semiconductor layer 141, the i-type silicon layer 142, and the n-type semiconductor layer 143.
  • the substrate is transported to the substrate, and the substrate is unloaded from each of the reaction chambers 174, 175, and 176.
  • an insulating transparent substrate 101 on which a transparent conductive film 102 is formed is prepared as shown in FIG.
  • the first photoelectric conversion unit 103 is provided on the transparent conductive film 102 formed on the insulating transparent substrate 101 as shown in FIG.
  • a first intermediate product 100a of the photoelectric conversion device is formed.
  • the second intermediate product 100 b of the photoelectric conversion device provided with the second photoelectric conversion unit 104 is formed on the first photoelectric conversion unit 103. Is done.
  • the in-line type first film forming apparatus is configured to simultaneously process two substrates in each reaction chamber.
  • the I-layer film formation reaction chamber 163 includes four reaction chambers 163a to 163d.
  • the I-layer film formation reaction chamber 175 in the single-wafer type second film formation apparatus includes five reaction chambers 175a to 175e. Therefore, the second film forming apparatus shortens the tact time by simultaneously forming i layers having a long film forming time on five substrates.
  • FIG. 18 shows an example in which each of the p layer, the i layer, and the n layer is formed in the individual chambers 173 to 176. However, in each of the individual chambers 173 to 176, the p layer, You may employ
  • the installation area becomes large, and the number of I layer film forming reaction chambers may not be increased.
  • the number of I-layer deposition reaction chambers can be substantially increased by depositing the p, i, and n layers in each reaction chamber.
  • the i layer which is an amorphous photoelectric conversion layer
  • the i layer has a film thickness of 2000 to 3000 mm and can be produced in a dedicated reaction chamber.
  • a dedicated reaction chamber is used for each of the p, i, and n layers, diffusion of the p layer impurities into the i layer or residual impurities are prevented from being disturbed due to contamination of the p and n layers.
  • a good impurity profile can be obtained in the pin junction structure.
  • the i-layer which is a crystalline photoelectric conversion layer, has a thickness of 15000 to 25000 mm, which is one digit larger than that of an amorphous photoelectric conversion layer.
  • the p-type impurities are diffused into the i-layer or the residual impurity p is processed in the same reaction chamber.
  • the problem is that the disorder of the junction is caused by mixing into the n layer.
  • the entry of residual impurities into the p and n layers means that both impurities in the p layer (dopant) gas and n layer impurity (doping) gas are used in the same chamber.
  • the impurity (dopant) gas component is mixed into the other layer.
  • impurities in the n layer may be mixed into the p layer.
  • the present invention has been made in view of the above circumstances, and a pin-type first photoelectric conversion unit and a second photoelectric conversion unit are sequentially stacked on an insulating transparent substrate with a transparent conductive film to constitute a second photoelectric conversion unit.
  • the photoelectric conversion device in which the p layer, the i layer, and the n layer are made of a crystalline silicon-based thin film, the diffusion of the p layer impurity constituting the second photoelectric conversion unit into the i layer or the residual impurity into the p and n layers It is a first object of the present invention to provide a method for manufacturing a photoelectric conversion device that does not disturb the junction caused by mixing and has good power generation performance.
  • this invention makes it the 2nd objective to provide the photoelectric conversion apparatus which has favorable electric power generation performance. Furthermore, the present invention does not disturb the junction due to the diffusion of the p-layer impurities constituting the second photoelectric conversion unit into the i-layer or the mixing of residual impurities into the p- and n-layers and has a good power generation performance.
  • a third object is to provide a manufacturing system capable of producing a conversion device.
  • the manufacturing method of the photoelectric conversion device is a second method comprising a p-type semiconductor layer, an i-type semiconductor layer and an n-type semiconductor layer constituting the first photoelectric conversion unit, and a crystalline silicon-based thin film.
  • the p-type semiconductor layer constituting the photoelectric conversion unit is continuously formed in a reduced-pressure atmosphere, the p-type semiconductor layer of the second photoelectric conversion unit is exposed to an air atmosphere, and the second is exposed to the air atmosphere.
  • An i-type semiconductor layer and an n-type semiconductor layer constituting the second photoelectric conversion unit are formed on the p-type semiconductor layer of the photoelectric conversion unit.
  • the second photoelectric conversion unit exposed to the air atmosphere is formed before forming the i-type semiconductor layer constituting the second photoelectric conversion unit. It is preferable to expose the p-type semiconductor layer to plasma containing hydrogen radicals.
  • a crystalline silicon-based thin film as the n-type semiconductor layer constituting the first photoelectric conversion unit.
  • the photoelectric conversion device according to the second aspect of the present invention is formed by the above-described method for manufacturing a photoelectric conversion device.
  • the manufacturing system of the photoelectric conversion device includes a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer constituting the first photoelectric conversion unit, and a second photoelectric device comprising a crystalline silicon-based thin film.
  • a first film forming apparatus including a plurality of plasma CVD reaction chambers formed to form a p-type semiconductor layer constituting the conversion unit and connected to maintain a reduced pressure atmosphere; and the p-type of the second photoelectric conversion unit An unloading device for unloading the substrate on which the semiconductor layer is formed to an air atmosphere; and an i-type semiconductor layer and an n-type semiconductor layer that house the substrate unloaded in the air atmosphere and constitute the second photoelectric conversion unit.
  • a second film forming apparatus including a plasma CVD reaction chamber formed in a reduced pressure atmosphere.
  • the second film forming device is exposed to the atmospheric air before forming the i-type semiconductor layer constituting the second photoelectric conversion unit. It is preferable to expose the p-type semiconductor layer of the second photoelectric conversion unit to plasma containing hydrogen radicals.
  • the second film forming apparatus has a gas introduction part for introducing hydrogen gas, and uses the hydrogen gas introduced by the gas introduction part.
  • the p-type semiconductor layer of the second photoelectric conversion unit is preferably exposed to the plasma containing the hydrogen radical.
  • the second photoelectric conversion is performed in the plasma CVD reaction chamber forming the i-type semiconductor layer and the n-type semiconductor layer constituting the second photoelectric conversion unit.
  • the p-type semiconductor layer of the unit is preferably exposed to the plasma containing the hydrogen radical.
  • the first film forming device forms a crystalline silicon-based thin film as the n-type semiconductor layer constituting the first photoelectric conversion unit. Is preferred.
  • plasma in which the p-type semiconductor layer, i-type semiconductor layer, n-type semiconductor layer of the first photoelectric conversion unit, or i-type semiconductor layer of the second photoelectric conversion unit is formed. Since the CVD reaction chamber is different from the plasma CVD reaction chamber in which the p-type semiconductor layer of the second photoelectric conversion unit is formed, impurities in the p-type semiconductor layer constituting the second photoelectric conversion unit diffuse into the i-type semiconductor layer. In addition, it is possible to suppress the disorder of the junction due to the contamination of residual impurities into the p-type semiconductor layer and the n-type semiconductor layer.
  • OH is attached to the surface of the p-type semiconductor layer, or a part of the surface of the p-layer is oxidized, so that crystal nuclei are formed. This increases the crystallization rate of the i-type semiconductor layer of the second photoelectric conversion unit made of a crystalline silicon-based thin film.
  • the photoelectric conversion device of the present invention since it is formed by the above-described method for manufacturing a photoelectric conversion device, a good impurity profile can be obtained in the pin junction structure. Accordingly, there is no disorder in bonding, and good performance as a thin film photoelectric conversion device can be obtained.
  • the p-type semiconductor layer, the i-type semiconductor layer, the n-type semiconductor layer of the first photoelectric conversion unit, and the p-type semiconductor layer of the second photoelectric conversion unit are The film is formed by one film forming apparatus, and the i-type semiconductor layer and the n-type semiconductor layer of the second photoelectric conversion unit are formed by the second film forming apparatus. Disturbances in the junction caused by diffusion of impurities in the i-type semiconductor layer into the i-type semiconductor layer or entry of residual impurities into the p-type semiconductor layer and n-type semiconductor layer can be suppressed. Accordingly, a photoelectric conversion device having good performance can be manufactured.
  • Sectional drawing explaining the manufacturing method of the photoelectric conversion apparatus which concerns on this invention Sectional drawing which shows an example of the laminated constitution of the photoelectric conversion apparatus which concerns on this invention. Schematic which shows the 1st manufacturing system which manufactures the photoelectric conversion apparatus which concerns on this invention. Schematic which shows the 2nd manufacturing system which manufactures the photoelectric conversion apparatus which concerns on this invention. The figure which shows the relationship between a current density and a voltage about the photoelectric conversion apparatus of Experimental example 1-Experimental example 6. FIG. The figure which shows the relationship between the atmospheric exposure time of a p layer, and photoelectric conversion efficiency about the photoelectric conversion apparatus of Experimental example 1-Experimental example 6. FIG.
  • FIG. 10 is a graph showing the relationship between current density and voltage for the photoelectric conversion devices of Experimental Examples 7 to 11.
  • FIG. 7 The figure which shows the relationship between the atmospheric exposure time of p layer, and a short circuit current about the photoelectric conversion apparatus of Experimental example 7-Experimental example 11.
  • FIG. The figure which shows the relationship between the atmospheric exposure time of p layer, and the open circuit voltage about the photoelectric conversion apparatus of Experimental example 7-Experimental example 11.
  • FIG. The figure which shows the relationship between the atmospheric exposure time of a p layer, and a curve factor about the photoelectric conversion apparatus of Experimental example 7-Experimental example 11.
  • FIG. Sectional drawing which shows an example of the conventional photoelectric conversion apparatus. Sectional drawing explaining the manufacturing method of the conventional photoelectric conversion apparatus. Schematic which shows an example of the manufacturing system which manufactures the conventional photoelectric conversion apparatus. Schematic which shows an example of the manufacturing system which manufactures the conventional photoelectric conversion apparatus.
  • FIG. 1 is a cross-sectional view illustrating a method for manufacturing a photoelectric conversion device according to the present invention
  • FIG. 2 is a cross-sectional view illustrating a layer configuration of the photoelectric conversion device.
  • a pin type first electrode is formed on the first surface 1 a (front surface) of the insulating substrate 1 having optical transparency.
  • One photoelectric conversion unit 3 and a second photoelectric conversion unit 4 are formed to overlap in this order, and a back electrode 5 is formed on the second photoelectric conversion unit 4.
  • the substrate 1 is made of an insulating material that is excellent in sunlight transmittance and durable, such as glass and transparent resin.
  • the substrate 1 includes a transparent conductive film 2.
  • Examples of the material of the transparent conductive film 2 include metal oxides having optical transparency such as ITO (Indium Tin Oxide), SnO 2 , and ZnO.
  • the transparent conductive film 2 is formed on the substrate 1 by vacuum deposition or sputtering. In this photoelectric conversion device 10, sunlight S is incident on the second surface 1 b of the substrate 1 as indicated by a white arrow in FIG. 2.
  • the first photoelectric conversion unit 3 includes a pin in which a p-type semiconductor layer (p layer) 31, a substantially intrinsic i-type semiconductor layer (i layer) 32, and an n-type semiconductor layer (n layer) 33 are stacked. It has a structure. That is, the first photoelectric conversion unit 3 is formed by stacking the p layer 31, the i layer 32, and the n layer 33 in this order.
  • the first photoelectric conversion unit 3 is made of an amorphous silicon material.
  • the thickness of the p layer 31 is, for example, 90 mm
  • the thickness of the i layer 32 for example, 2500 mm
  • the thickness of the n layer 33 for example, 300 mm.
  • the plasma CVD reaction chambers for forming the p layer 31, i layer 32, and n layer 33 of the first photoelectric conversion unit 3 are different from each other.
  • the p layer 31 and the i layer 32 can be formed of amorphous silicon
  • the n layer 33 can be formed of amorphous silicon containing a crystalline material (so-called microcrystal silicon).
  • the second photoelectric conversion unit 4 includes a pin in which a p-type semiconductor layer (p layer) 41, a substantially intrinsic i-type semiconductor layer (i layer) 42, and an n-type semiconductor layer (n layer) 43 are stacked. It has a structure. That is, the second photoelectric conversion unit 4 is formed by laminating the p layer 41, the i layer 42, and the n layer 43 in this order.
  • the second photoelectric conversion unit 4 is made of a silicon-based material containing a crystalline material.
  • the thickness of the p layer 41 is 100 mm
  • the thickness of the i layer 42 is 15000 mm, for example
  • the thickness of the n layer 43 is 150 mm, for example.
  • the plasma CVD reaction chamber for forming the p layer 41 is different from the plasma CVD reaction chamber for forming the i layer 42 and the n layer 43.
  • the i layer 42 and the n layer 43 are formed in the same plasma CVD reaction chamber.
  • the back electrode 5 should just be comprised by electroconductive light reflection films, such as Ag (silver) and Al (aluminum).
  • the back electrode 5 can be formed, for example, by sputtering or vapor deposition.
  • a layer made of a conductive oxide such as ITO, SnO 2 , or ZnO is formed between the n-type semiconductor layer (n layer) 43 of the second photoelectric conversion unit 4 and the back electrode 5.
  • a laminated structure may be employed.
  • FIG. 1A an insulating transparent substrate 1 on which a transparent conductive film 2 is formed is prepared.
  • FIG. 1B on the transparent conductive film 2 formed on the insulating transparent substrate 1, a p-type semiconductor layer 31, an i-type silicon layer (amorphous silicon layer) 32, An n-type semiconductor layer 33 and a p-type semiconductor layer 41 are formed.
  • the plasma CVD reaction chambers for forming the p layer 31, the i layer 32, the n layer 33, and the p layer 41 are different. That is, the first intermediate product 10a of the photoelectric conversion device in which the p-type semiconductor layer 41 constituting the second photoelectric conversion unit 4 is provided on the n-type semiconductor layer 33 of the first photoelectric conversion unit 3 is formed.
  • the p-type semiconductor layer 31 is formed by plasma CVD in an individual reaction chamber.
  • the substrate temperature is 170-200 ° C.
  • the power supply frequency is 13.56 MHz
  • the reaction chamber pressure is 70 to 120 Pa
  • the reaction gas flow rates are 300 sccm for monosilane (SiH 4 ), 2300 sccm for hydrogen (H 2 ), and hydrogen as a dilution gas
  • the p-layer 31 of amorphous silicon (a-Si) can be formed under the conditions of 180 sccm for diborane (B 2 H 6 / H 2 ) and 500 sccm for methane (CH 4 ).
  • the i-type silicon layer (amorphous silicon layer) 32 is formed by plasma CVD in a separate reaction chamber.
  • the substrate temperature is 170-200 ° C.
  • the power supply frequency is 13.56 MHz
  • the pressure in the reaction chamber is 70 to 120 Pa
  • the reaction gas flow rate is 1200 scc for monosilane (SiH 4 )
  • the n-type semiconductor layer 33 is formed by plasma CVD in a separate reaction chamber.
  • the substrate temperature is 170-200 ° C.
  • the power supply frequency is 13.56 MHz
  • the pressure in the reaction chamber is 70 to 120 Pa
  • the flow rate of the reaction gas is phosphine (PH 3 / H 2 ) using hydrogen as a diluent gas at 200 sccm.
  • a-Si amorphous silicon
  • the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 is formed by plasma CVD in an individual reaction chamber.
  • the substrate temperature is 170-200 ° C.
  • the power supply frequency is 13.56 MHz
  • the reaction chamber pressure is 500 to 1200 Pa
  • the reaction gas flow rate is 100 sccm for monosilane (SiH 4 ), 25000 sccm for hydrogen (H 2 ), and hydrogen as a dilution gas
  • ⁇ c-Si microcrystalline silicon
  • the second photoelectric conversion layer 4 is exposed on the p-type semiconductor layer 41 exposed to the atmosphere.
  • An i-type silicon layer (crystalline silicon layer) 42 and an n-type semiconductor layer 43 constituting the conversion unit 4 are formed in the same plasma CVD reaction chamber. That is, the second intermediate product 10 b of the photoelectric conversion device in which the second photoelectric conversion unit 4 is provided is formed on the first photoelectric conversion unit 3. And the photoelectric conversion apparatus 10 as shown in FIG. 2 is obtained by forming the back surface electrode 5 on the n-type semiconductor layer 43 of the second photoelectric conversion unit 4.
  • the i-type silicon layer (crystalline silicon layer) 42 is formed by a plasma CVD method in the same reaction chamber as the reaction chamber in which the n-type semiconductor layer 43 is formed.
  • the substrate temperature is 170-200 ° C.
  • the power supply frequency is 13.56 MHz
  • the pressure in the reaction chamber is 500 to 1200 Pa
  • the reaction gas flow rate is 180 sccm for monosilane (SiH 4 )
  • An i-layer of microcrystalline silicon ( ⁇ c-Si) can be formed.
  • the n-type semiconductor layer 43 is formed by plasma CVD in the same reaction chamber as the reaction chamber in which the i-type silicon layer (crystalline silicon layer) 42 is formed.
  • the substrate temperature is 170-200 ° C.
  • the power supply frequency is 13.56 MHz
  • the reaction chamber pressure is 500 to 1200 Pa
  • the reaction gas flow rate is 180 sccm for monosilane (SiH 4 ), 27000 sccm for hydrogen (H 2 ), and hydrogen as a dilution gas
  • ⁇ c-Si microcrystalline silicon
  • the photoelectric conversion device manufacturing system according to the present invention can be divided into a first manufacturing system and a second manufacturing system.
  • a so-called in-line type first film forming device In the first manufacturing system, a so-called in-line type first film forming device, an exposure device that exposes the p layer of the second photoelectric conversion unit to the atmosphere, and a so-called batch type second film forming device are sequentially arranged. It has a configuration.
  • the in-line type first film forming apparatus has a configuration in which a plurality of film forming reaction chambers called chambers are linearly connected.
  • the p-type semiconductor layer 31, the i-type silicon layer (amorphous silicon layer) 32, the n-type semiconductor layer 33, and the second photoelectric conversion unit 4 in the first photoelectric conversion unit 3 are used. Each layer of the type semiconductor layer 41 is formed separately.
  • each of the i-type silicon layer (crystalline silicon layer) 42 and the n-type semiconductor layer 43 in the second photoelectric conversion unit 4 is simultaneously applied to a plurality of substrates in the same film formation reaction chamber. It is formed.
  • the second manufacturing system includes a so-called in-line type first film forming device, an exposure device that exposes the p layer of the second photoelectric conversion unit to the atmosphere, and a so-called single-wafer type second film forming device in order. It has an arranged configuration.
  • the first film forming apparatus and the exposure apparatus in the second manufacturing system have the same configuration as the first film forming apparatus and the exposure apparatus in the first manufacturing system.
  • the second photoelectric conversion unit 104 is formed using a plurality of dedicated film forming reaction chambers for forming the i-type silicon layer (crystalline silicon layer) 42 and the n-type semiconductor layer 43. .
  • the first manufacturing system includes a first film forming apparatus 60, a second film forming apparatus 70A, and a second film forming apparatus after the substrate processed by the first film forming apparatus 60 is exposed to the atmosphere. And an exposure device 80A moving to 70A.
  • the first film forming apparatus 60 in the first manufacturing system is provided with a load chamber (L: Lord) 61 in which the substrate is first carried and the internal pressure is reduced. Note that a heating chamber for heating the substrate temperature to a certain temperature may be provided in the subsequent stage of the load chamber (L: Lord) 61 in accordance with the film forming process.
  • a P-layer film formation reaction chamber 62 for forming the p-type semiconductor layer 31 of the first photoelectric conversion unit 3 an I-layer film formation reaction chamber 63 for forming the i-type silicon layer (amorphous silicon layer) 32, and an n-type semiconductor.
  • An N layer film formation reaction chamber 64 for forming the layer 33 and a P layer film formation reaction chamber 65 for forming the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 are arranged in a straight line.
  • an unload chamber (UL: unloading device) 66 for returning the decompressed atmosphere to the atmospheric atmosphere and carrying out the substrate is connected to the P-layer film forming reaction chamber 65.
  • UL unloading device
  • the substrate can be transported while maintaining a reduced pressure atmosphere.
  • an insulating transparent substrate 1 on which a transparent conductive film 2 is formed is prepared.
  • the p-type semiconductor layer 31 and the i-type silicon layer (amorphous silicon) of the first photoelectric conversion unit 3 are formed on the transparent conductive film 2 as shown in FIG. Layer) 32, the n-type semiconductor layer 33, and the first intermediate product 10a of the photoelectric conversion device provided with the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 are formed.
  • the second film forming apparatus 70 ⁇ / b> A in the first manufacturing system has a load / unload chamber (L / UL) 71 and an IN layer film forming reaction chamber 72.
  • the load / unload chamber (L / UL) 71 carries in the first intermediate product 10a of the photoelectric conversion device processed by the first film forming device 60, and reduces the internal pressure after the substrate is carried in, The reduced-pressure atmosphere is returned to the air atmosphere when unloading.
  • the IN layer deposition reaction chamber 72 is connected to a load / unload chamber (L / UL) 71.
  • the i-type silicon layer (crystalline silicon layer) 42 and the n-type semiconductor layer 43 of the second photoelectric conversion unit 4 are formed on the p-type semiconductor layer 41 of the second photoelectric conversion unit 4. Sequentially formed in the same reaction chamber. Further, this film forming process is performed simultaneously on a plurality of substrates. At this time, at the point C shown in FIG. 3, as shown in FIG. 1C, the second intermediate product 10b of the photoelectric conversion device in which the second photoelectric conversion unit 4 is provided on the first photoelectric conversion unit 3 is provided. It is formed.
  • the I layer film forming reaction chamber 63 includes four reaction chambers 63a and 63b. , 63c, 63d.
  • the batch-type second film forming apparatus 70 ⁇ / b> A is configured to simultaneously process six substrates.
  • the second manufacturing system of the photoelectric conversion device includes a first film forming apparatus 60, a second film forming apparatus 70B, and a second film forming apparatus after the substrate processed by the first film forming apparatus 60 is exposed to the atmosphere. And an exposure device 80B moving to 70B.
  • the first film forming apparatus 60 in the second manufacturing system has a load chamber (L: Lord) 61 for reducing the internal pressure after the substrate is loaded. Note that a heating chamber for heating the substrate temperature to a constant temperature may be provided in the subsequent stage of the load chamber (L) 61 depending on the process.
  • a P-layer film formation reaction chamber 62 for forming the p-type semiconductor layer 31 of the first photoelectric conversion unit 3 an I-layer film formation reaction chamber 63 for forming the i-type silicon layer (amorphous silicon layer) 32, and n
  • An N layer film formation reaction chamber 64 for forming the p-type semiconductor layer 33 and a P layer film formation reaction chamber 65 for forming the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 are continuously arranged in a straight line.
  • an unload chamber (UL) 66 for returning the decompressed atmosphere to the atmospheric atmosphere and carrying out the substrate is connected to the P layer deposition reaction chamber 65.
  • the substrate can be transported while maintaining a reduced pressure atmosphere.
  • an insulating transparent substrate 1 on which a transparent conductive film 2 is formed is prepared at a point D shown in FIG. 4, the p-type semiconductor layer 31 and the i-type silicon layer (amorphous silicon layer) of the first photoelectric conversion unit 3 are formed on the transparent conductive film 2 as shown in FIG. ) 32 and the n-type semiconductor layer 33, and the first intermediate product 10a of the photoelectric conversion device provided with the p-type semiconductor layer 41 of the second photoelectric conversion unit 4 is formed.
  • the second film forming apparatus 70B in the second manufacturing system includes a load / unload chamber (L / UL) 73, an I layer film forming reaction chamber 74, an N layer film forming reaction chamber 75, and an intermediate structure.
  • a chamber 77 is provided.
  • the load / unload chamber (L / UL) 173 is used to reduce the internal pressure after the first intermediate product 10a of the photoelectric conversion apparatus processed by the first film forming apparatus 60 is carried in or to carry out the substrate. Return the reduced-pressure atmosphere to the air atmosphere. Subsequently, the substrate is carried into the intermediate chamber 77 through the load / unload chamber (L / UL) 73.
  • the intermediate chamber 77 and the P layer deposition reaction chamber 74 are transported, the intermediate chamber 77 and the I layer deposition reaction chamber 75, and the intermediate chamber 77 and the N layer deposition reaction chamber 76.
  • the I-layer film formation reaction chamber 74 the i-type silicon layer (crystalline silicon layer) 42 of the second photoelectric conversion unit 4 is formed on the p-type semiconductor layer 41 of the second photoelectric conversion unit 4.
  • the n type semiconductor layer 43 is formed on the i type silicon layer (crystalline silicon layer) 42.
  • one of the i-type silicon layer 42 and the n-type semiconductor layer 43 is formed on a single substrate.
  • a transfer device (not shown) provided in the intermediate chamber 77 transfers a substrate to each of the reaction chambers 73 and 74 in order to stack the i-type silicon layer 42 and the n-type semiconductor layer 43, The substrate is unloaded from each of 174, 175, and 176.
  • the second film forming apparatus 70B may have a heating chamber that heats the substrate temperature to a certain temperature in accordance with the film forming process.
  • the second intermediate product 10b of the photoelectric conversion device in which the second photoelectric conversion unit 4 is provided on the first photoelectric conversion unit 3 is formed at the point F shown in FIG. Is done.
  • the I-layer film formation reaction chamber 63 includes four reaction chambers 63 a, 63 b, 63 c, 63d.
  • the I-layer film formation reaction chamber 74 is composed of six reaction chambers 74a, 74b, 74c, 74d, 74e, and 74f. Since the i-type silicon layer 42 constituting the second photoelectric conversion unit 4 has a larger film thickness than the n-type semiconductor layer 43, the film formation time is longer than when the n-type semiconductor layer 43 is formed.
  • the throughput for producing the photoelectric conversion device is determined depending on the number of reaction chambers of the I layer deposition reaction chamber 74.
  • the I-layer film forming reaction chamber 74 has six reaction chambers, so that the i-type silicon layer 42 can be simultaneously formed on a plurality of substrates. And throughput is improved.
  • crystalline photoelectric is formed on the p layer, i layer, and n layer of the first photoelectric conversion unit 3 that is an amorphous photoelectric conversion device in the first film forming device 60.
  • the p layer of the 2nd photoelectric conversion unit 4 which is a converter is formed.
  • the i layer and the n layer of the second photoelectric conversion unit 4 are formed in the second film forming apparatuses 70A and 70B. Thereby, the control of the crystallization rate distribution of the i layer of the second photoelectric conversion unit 4 can be facilitated.
  • the i-type silicon layer (crystalline silicon layer) 42 and the n-type semiconductor layer 43 constituting the second photoelectric conversion unit 4 are formed on the p-type semiconductor layer 41 exposed in the atmosphere.
  • the hydrogen radical plasma treatment there is a method in which a hydrogen radical plasma treatment chamber is prepared in advance, the substrate on which the p layer 41 of the second photoelectric conversion unit 4 is formed is transferred to the plasma treatment chamber, and the p layer 41 is exposed to plasma. It is done.
  • an i-type silicon layer (crystalline silicon layer) 42 and an n-type semiconductor layer 43 constituting the second photoelectric conversion unit 4 are formed in separate reaction chambers.
  • the hydrogen radical plasma treatment and the treatment for forming the i layer 42 and the n layer 43 of the second photoelectric conversion unit 4 may be continuously performed in the same reaction chamber.
  • the inner wall of the reaction chamber is formed before the i layer 42 is formed. Is exposed to plasma containing hydrogen radicals, it is possible to decompose and remove the residual impurity gas PH 3 introduced when forming the previous n layer 43. Therefore, even when the film formation process of the i layer 42 and the n layer 43 of the second photoelectric conversion unit 4 is repeatedly performed in the same processing chamber, a good impurity profile can be obtained, and a laminated thin film having good power generation efficiency. A photoelectric conversion device can be obtained.
  • H 2 gas hydrogen gas
  • plasma is effectively generated by applying a high frequency such as 13.5 MHz, 27 MHz, 40 MHz, or the like between the electrodes in the processing chamber with H 2 flowing into the processing chamber. Can be generated.
  • a gas box (gas introduction unit) and a gas line (gas introduction unit) for supplying H 2 gas used for hydrogen radical plasma processing into the processing chamber (reaction chamber). Is provided.
  • a mass flow controller gas introduction unit
  • a gas introduction unit is connected to the processing chamber, the flow rate of H 2 gas supplied through the gas box and the gas line is controlled, and a gas having a controlled flow rate is supplied into the processing chamber.
  • microcrystalline silicon ( ⁇ c-Si) is dispersed in an amorphous silicon (a-Si) layer.
  • a layer in which microcrystalline silicon ( ⁇ c-Si) is dispersed in an amorphous silicon oxide (a-SiO) layer may be used.
  • a uniform crystallization distribution rate required when the area of the substrate is increased that is, a uniform crystallization distribution rate by generation of crystal growth nuclei of the crystalline photoelectric conversion layer i layer and n layer.
  • a layer in which microcrystalline silicon ( ⁇ c-Si) is dispersed in an amorphous amorphous silicon oxide (a-SiO) layer has a lower refractive index than an amorphous silicon (a-Si) semiconductor layer. It is possible to adjust as follows. Therefore, it is possible to improve the conversion efficiency by making this layer function as a wavelength selective reflection film and confining short wavelength light on the top cell side. Regardless of the effect of confining light, a layer in which microcrystalline silicon ( ⁇ c-Si) is dispersed in an amorphous amorphous silicon oxide (a-SiO) layer is formed by hydrogen radical plasma treatment. Generation of crystal growth nuclei of the i layer 42 and the n layer 43 of the photoelectric conversion unit 4 is effectively performed, and a uniform crystallization rate distribution can be obtained even on a large-area substrate.
  • a crystalline silicon-based thin film may be formed as the n layer 33 constituting the first photoelectric conversion unit 3. That is, on the p layer 31 and the i layer 32 of the first photoelectric conversion unit 3 of amorphous silicon, the n layer 33 of microcrystal silicon and the p layer 41 of the second photoelectric conversion unit 4 of microcrystal silicon are formed. At this time, the p layer 31 of the amorphous first photoelectric conversion unit 3, the amorphous i layer 32 formed on the p layer 31, and the crystalline n layer 33 formed on the i layer 32. It is desirable that the p layer 41 of the second photoelectric conversion unit 4 formed on the n layer 33 is continuously formed without being exposed to the atmosphere.
  • the atmosphere is released and the p layer 41, i layer 42, n of the second photoelectric conversion unit 4 is opened in another reaction chamber.
  • the i-layer 32 of the first photoelectric conversion unit 3 deteriorates due to the time, temperature, atmosphere, etc. in which the substrate is left open to the atmosphere and the device performance deteriorates. Therefore, after the p layer 31 and the i layer 32 of the first photoelectric conversion unit 3 are formed, the crystalline n layer 33 and the p layer 41 of the second photoelectric conversion unit 4 are continuously formed without opening to the atmosphere. .
  • FIG. 4 shows an example in which each of the i layer and the n layer of the second photoelectric conversion unit 4 is formed in the individual chambers 74 and 75. However, in each of the individual chambers 74 and 75, FIG. , I layer and n layer may be successively formed.
  • the following experiment was conducted on the photoelectric conversion device manufactured by the method for manufacturing a photoelectric conversion device according to the present invention.
  • the photoelectric conversion device manufactured by each experimental example and its manufacturing conditions are as follows. In any of the experimental examples described below, the photoelectric conversion device is manufactured using a substrate having a size of 1100 mm ⁇ 1400 mm.
  • Example 1 In Experimental Example 1, a p layer and an i layer made of an amorphous amorphous silicon (a-Si) thin film are formed as a first photoelectric conversion unit on a substrate, and microcrystalline silicon ( ⁇ c ⁇ ) is formed on the i layer. An n layer containing Si) was formed, and a p layer containing microcrystalline silicon ( ⁇ c-Si) constituting the second photoelectric conversion unit was formed. These layers were continuously formed in a vacuum atmosphere, and the reaction chambers for forming these layers were made different from each other.
  • a-Si amorphous amorphous silicon
  • the p layer of the second photoelectric conversion unit was exposed to the atmosphere, and the hydrogen radical plasma treatment was performed on the p layer of the second photoelectric conversion unit. Thereafter, an i layer and an n layer made of microcrystalline silicon ( ⁇ c-Si) constituting the second photoelectric conversion unit were formed.
  • ⁇ c-Si microcrystalline silicon
  • the p layer, i layer, n layer of the first photoelectric conversion unit, and the p layer of the second photoelectric conversion unit were formed by plasma CVD.
  • the reaction chambers for forming the p layer, i layer, and n layer of the first photoelectric conversion unit and the p layer of the second photoelectric conversion unit were made different from each other.
  • the i layer and the n layer of the second photoelectric conversion unit were formed by plasma CVD in the same reaction chamber.
  • the p layer of the first photoelectric conversion unit has a substrate temperature of 170 ° C., a power supply output of 40 W, a reaction chamber pressure of 80 Pa, an E / S of 20 mm, a reaction gas flow rate of monosilane (SiH 4 ) of 150 sccm, hydrogen (H 2 ) Is 470 sccm, diborane (B 2 H 6 / H 2 ) using hydrogen as a diluent gas is 45 sccm, and methane (CH 4 ) is 300 sccm.
  • the buffer layer has a substrate temperature of 170 ° C., a power output of 40 W, a reaction chamber pressure of 60 Pa, an E / S of 17 mm, and a reaction gas flow rate of monosilane (SiH 4 ) of 150 sccm, hydrogen (H 2 ) of 1500 sccm,
  • the film was formed to a thickness of 60 mm under the condition that methane (CH 4 ) was changed from 200 sccm to 0 sccm.
  • the i layer of the first photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 40 W, a reaction chamber pressure of 40 Pa, an E / S of 14 mm, and a reaction gas flow rate of monosilane (SiH 4 ) of 300 sccm.
  • the film was formed to a thickness of 1800 mm.
  • the n layer of the first photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 1000 W, a reaction chamber pressure of 800 Pa, an E / S of 14 mm, a reaction gas flow rate of monosilane (SiH 4 ) of 20 sccm, hydrogen ( H 2) is 2000 sccm, phosphine using hydrogen as the diluent gas (PH 3 / H 2) is in the condition of 15 sccm, was deposited to a thickness of 100 ⁇ .
  • the p layer of the second photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 750 W, a reaction chamber pressure of 1200 Pa, an E / S of 9 mm, a reactive gas flow rate of monosilane (SiH 4 ) of 30 sccm, hydrogen A film was formed to a thickness of 150 mm under the conditions of 9000 sccm of (H 2 ) and 12 sccm of diborane (B 2 H 6 / H 2 ) using hydrogen as a diluent gas.
  • the p layer of the second photoelectric conversion unit was exposed to the atmosphere for 5 minutes.
  • the i-layer of the second photoelectric conversion unit was formed with a substrate temperature of 170 ° C., a power output of 550 W, a reaction chamber pressure of 1200 Pa, an E / S of 9 mm, a reactive gas flow rate of 45 sccm of monosilane (SiH 4 ), hydrogen ( The film was formed to a thickness of 15000 mm under the condition of H 2 ) of 3150 sccm.
  • the n layer of the second photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 1000 W, a reaction chamber pressure of 800 Pa, an E / S of 14 mm, a reaction gas flow rate of monosilane (SiH 4 ) of 20 sccm, hydrogen ( H 2) is 2000 sccm, phosphine using hydrogen as the diluent gas (PH 3 / H 2) is in the condition of 15 sccm, was deposited to a thickness of 300 ⁇ .
  • Example 2 In this experimental example, in the same manner as in Experimental Example 1, after forming the p layer of the first photoelectric conversion unit, the i layer, the n layer, and the p layer of the second photoelectric conversion unit on the substrate, the second photoelectric conversion unit The p-layer of was exposed to the atmosphere for 5 minutes. The p layer was subjected to hydrogen radical plasma treatment for 60 seconds under the conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm. Thereafter, in the same manner as in Experimental Example 1, an i layer and an n layer of the second photoelectric conversion unit were formed.
  • Example 3 In this experimental example, in the same manner as in Experimental Example 1, after forming the p layer of the first photoelectric conversion unit, the i layer, the n layer, and the p layer of the second photoelectric conversion unit on the substrate, the second photoelectric conversion unit The p-layer of was exposed to the atmosphere for 22 hours. Thereafter, in the same manner as in Experimental Example 1, an i layer and an n layer of the second photoelectric conversion unit were formed.
  • Example 4 In this experimental example, in the same manner as in Experimental Example 1, after forming the p layer of the first photoelectric conversion unit, the i layer, the n layer, and the p layer of the second photoelectric conversion unit on the substrate, the second photoelectric conversion unit The p-layer of was exposed to the atmosphere for 22 hours. The p layer was subjected to hydrogen radical plasma treatment for 60 seconds under the conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm. Thereafter, in the same manner as in Experimental Example 1, an i layer and an n layer of the second photoelectric conversion unit were formed.
  • Example 5 In this experimental example, in the same manner as in Experimental Example 1, after forming the p layer of the first photoelectric conversion unit, the i layer, the n layer, and the p layer of the second photoelectric conversion unit on the substrate, the second photoelectric conversion unit The p-layer was exposed to the atmosphere for 860 hours. The p layer was subjected to hydrogen radical plasma treatment for 60 seconds under the conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm. Thereafter, in the same manner as in Experimental Example 1, an i layer and an n layer of the second photoelectric conversion unit were formed.
  • Example 6 In this experiment example, the p layer, i layer, n layer of the first photoelectric conversion unit, and the p layer of the second photoelectric conversion unit were formed on the substrate in the same manner as in Experiment example 1. In Experimental Example 6, the step of exposing the p layer to the air atmosphere and the hydrogen radical plasma treatment were not performed, and then the i layer and the n layer of the second photoelectric conversion unit were formed in the same manner as in Experimental Example 1.
  • Table 1 shows the film forming conditions of each layer in the photoelectric conversion devices manufactured in Experimental Examples 1 to 6.
  • the photoelectric conversion devices of Experimental Examples 1 to 6 manufactured as described above were irradiated with AM1.5 light at a light amount of 100 mW / cm 2 , output characteristics were measured at 25 ° C., and photoelectric conversion efficiency ( ⁇ ), Short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), and Ic / Ia.
  • photoelectric conversion efficiency
  • Jsc Short circuit current
  • Voc open circuit voltage
  • FF fill factor
  • Ic / Ia Ia.
  • FIG. 5 shows the relationship between the current density and the voltage for the photoelectric conversion devices of Experimental Examples 1 to 6.
  • FIG. 5 shows characteristic curves individually showing each experimental example and characteristic curves collectively showing experimental examples 1 to 6. Further, the relationship between the exposure time of the p layer to the air atmosphere and the photoelectric conversion efficiency, Jsc, Voc, and FF are shown in FIGS. 6 to 9, respectively.
  • the p layer of the second photoelectric conversion unit was exposed to the atmosphere, and the hydrogen treatment-containing plasma treatment was performed on the p layer of the second photoelectric conversion unit. Thereafter, an i layer and an n layer made of microcrystalline silicon ( ⁇ c-Si) constituting the second photoelectric conversion unit were formed.
  • ⁇ c-Si microcrystalline silicon
  • the p layer, i layer, and n layer of the first photoelectric conversion unit and the p layer of the second photoelectric conversion unit were formed by plasma CVD.
  • the reaction chambers for forming the p layer, i layer, and n layer of the first photoelectric conversion unit and the p layer of the second photoelectric conversion unit were made different from each other.
  • the i layer and the n layer of the second photoelectric conversion unit were formed by plasma CVD in the same reaction chamber.
  • the p layer of the first photoelectric conversion unit has a substrate temperature of 170 ° C., a power supply output of 40 W, a reaction chamber pressure of 80 Pa, an E / S of 20 mm, a reaction gas flow rate of monosilane (SiH 4 ) of 150 sccm, hydrogen (H 2 ) Is 470 sccm, diborane (B 2 H 6 / H 2 ) using hydrogen as a diluent gas is 45 sccm, and methane (CH 4 ) is 300 sccm.
  • the buffer layer has a substrate temperature of 170 ° C., a power output of 40 W, a reaction chamber pressure of 60 Pa, an E / S of 17 mm, and a reaction gas flow rate of monosilane (SiH 4 ) of 150 sccm, hydrogen (H 2 ) of 1500 sccm, A film of methane (CH 4 ) was formed to a thickness of 60 mm under conditions of 200 sccm to 0 sccm.
  • the i layer of the first photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 40 W, a reaction chamber pressure of 40 Pa, an E / S of 14 mm, and a reaction gas flow rate of monosilane (SiH 4 ) of 300 sccm.
  • the film was formed to a thickness of 1800 mm.
  • the n layer of the first photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 1000 W, a reaction chamber pressure of 800 Pa, an E / S of 14 mm, a reaction gas flow rate of monosilane (SiH 4 ) of 20 sccm, hydrogen ( H 2) is 2000 sccm, phosphine using hydrogen as the diluent gas (PH 3 / H 2) is in the condition of 15 sccm, was deposited to a thickness of 100 ⁇ .
  • the p layer of the second photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 750 W, a reaction chamber pressure of 1200 Pa, an E / S of 9 mm, a reactive gas flow rate of monosilane (SiH 4 ) of 30 sccm, hydrogen A film was formed to a thickness of 150 mm under the conditions of 9000 sccm of (H 2 ) and 12 sccm of diborane (B 2 H 6 / H 2 ) using hydrogen as a diluent gas.
  • the p layer of the second photoelectric conversion unit was exposed to the atmosphere for 24 hours.
  • the p layer was subjected to hydrogen radical plasma treatment for 30 seconds under conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm.
  • the i-layer of the second photoelectric conversion unit was formed with a substrate temperature of 170 ° C., a power output of 550 W, a reaction chamber pressure of 1200 Pa, an E / S of 9 mm, a reactive gas flow rate of 45 sccm of monosilane (SiH 4 ), hydrogen ( The film was formed to a thickness of 15000 mm under the condition of H 2 ) of 3150 sccm.
  • the n layer of the second photoelectric conversion unit has a substrate temperature of 170 ° C., a power output of 1000 W, a reaction chamber pressure of 800 Pa, an E / S of 14 mm, a reaction gas flow rate of monosilane (SiH 4 ) of 20 sccm, hydrogen ( H 2) is 2000 sccm, phosphine using hydrogen as the diluent gas (PH 3 / H 2) is in the condition of 15 sccm, was deposited to a thickness of 300 ⁇ .
  • Example 8 In this experimental example, in the same manner as in Experimental Example 6, after the p layer, i layer, n layer of the first photoelectric conversion unit and the p layer of the second photoelectric conversion unit were formed on the substrate, The p-layer was exposed to the atmosphere for 22 hours. The p layer was subjected to hydrogen radical plasma treatment for 60 seconds under the conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm. Thereafter, the i layer and the n layer of the second photoelectric conversion unit were formed in the same manner as in Experimental Example 7.
  • Example 9 In this experimental example, in the same manner as in Experimental Example 6, after the p layer, i layer, n layer of the first photoelectric conversion unit and the p layer of the second photoelectric conversion unit were formed on the substrate, The p-layer was exposed to the atmosphere for 24 hours. The p layer was subjected to hydrogen radical plasma treatment for 120 seconds under the conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm. Thereafter, in the same manner as in Experimental Example 6, an i layer and an n layer of the second photoelectric conversion unit were formed.
  • Example 10 In this experimental example, in the same manner as in Experimental Example 6, after the p layer, i layer, n layer of the first photoelectric conversion unit and the p layer of the second photoelectric conversion unit were formed on the substrate, The p-layer was exposed to the atmosphere for 24 hours. The p layer was subjected to hydrogen radical plasma treatment for 300 seconds under conditions of a substrate temperature of 170 ° C., a power output of 500 W, a reaction chamber pressure of 400 Pa, and a process gas of H 2 of 1000 sccm. Thereafter, the i layer and the n layer of the second photoelectric conversion unit were formed in the same manner as in Experimental Example 7.
  • Example 11 In this experiment example, the p layer, i layer, n layer of the first photoelectric conversion unit, and the p layer of the second photoelectric conversion unit were formed on the substrate in the same manner as in Experiment example 7.
  • the step of exposing the p layer to the air atmosphere and the hydrogen radical plasma treatment were not performed, and then the i layer and the n layer of the second photoelectric conversion unit were formed in the same manner as in Experimental Example 7.
  • Table 3 shows the film forming conditions of each layer of the photoelectric conversion devices manufactured in Experimental Example 7 to Experimental Example 11.
  • the photoelectric conversion devices of Experimental Examples 7 to 11 manufactured as described above were irradiated with AM1.5 light at a light amount of 100 mW / cm 2 , output characteristics were measured at 25 ° C., and photoelectric conversion efficiency ( ⁇ ), Short circuit current (Jsc), open circuit voltage (Voc), fill factor (FF), and Ic / Ia.
  • photoelectric conversion efficiency
  • Jsc Short circuit current
  • Voc open circuit voltage
  • FF fill factor
  • Ic / Ia Ia.
  • FIG. 10 shows the relationship between the current density and the voltage for the photoelectric conversion devices of Experimental Examples 7 to 11.
  • FIG. 10 shows characteristic curves individually showing each experimental example and characteristic curves collectively showing experimental examples 7 to 11. Further, the relationship between the hydrogen radical plasma treatment time and the photoelectric conversion efficiency, Jsc, Voc, and FF is shown in FIGS. 11 to 14, respectively.
  • the p layer of the second photoelectric conversion unit is formed in succession to the p layer, i layer, and n layer of the first photoelectric conversion unit, and then the p layer of the second photoelectric conversion unit is exposed to the atmosphere. Then, when the i layer and the n layer of the second photoelectric conversion unit are formed, it is understood that a photoelectric conversion device having excellent photoelectric conversion characteristics can be manufactured. It can also be seen that by performing hydrogen radical plasma treatment on the p layer of the second photoelectric conversion unit, it is possible to produce a photoelectric conversion device with better photoelectric conversion characteristics than when the p layer is exposed to the atmosphere. .
  • the present invention is useful for a method for manufacturing a photoelectric conversion device having good power generation performance, a photoelectric conversion device, and a system for manufacturing a photoelectric conversion device.

Abstract

 この光電変換装置の製造方法は、第一光電変換ユニット(3)を構成するp型半導体層(31)、i型半導体層(32)、及びn型半導体層(33)と、結晶質のシリコン系薄膜からなる第二光電変換ユニット(4)を構成するp型半導体層(41)とを減圧雰囲気内で連続して形成し、前記第二光電変換ユニット(4)の前記p型半導体層(41)を大気雰囲気に暴露させ、大気雰囲気に暴露された前記第二光電変換ユニット(4)の前記p型半導体層(41)上に、前記第二光電変換ユニットを構成するi型半導体層(42)及びn型半導体層(43)を形成する。

Description

光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
 本発明は、光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システムに係り、詳しくは、2つの光電変換ユニットが積層して構成されたタンデム型の光電変換装置の性能を向上させる技術に関する。
 本願は、2008年8月29日に出願された特願2008-222818号に基づき優先権を主張し、その内容をここに援用する。
 近年、光電変換装置は、太陽電池又は光センサなどに一般的に利用されており、とりわけ太陽電池においては、エネルギーの効率的な利用の観点から広く普及を始めている。
 特に、単結晶シリコンを利用した光電変換装置は、単位面積当たりのエネルギー変換効率に優れている。
 しかし、一方で単結晶シリコンを利用した光電変換装置は、単結晶シリコンインゴットをスライスしたシリコンウエハを用いるため、インゴットの製造に大量のエネルギーが費やされ、製造コストが高い。
 例えば、屋外などに設置される大面積の光電変換装置を、シリコン単結晶を利用して製造すると、現状では相当にコストが掛かる。
 そこで、より安価に製造可能なアモルファス(非晶質)シリコン薄膜(以下、「a-Si薄膜」とも表記する)を利用した光電変換装置が、ローコストな光電変換装置として普及している。
 ところが、このアモルファス(非晶質)シリコン薄膜を利用した光電変換装置の変換効率は、単結晶シリコン又は多結晶シリコン、アモルファスシリコン中の微結晶シリコン等を利用した結晶型の光電変換装置の変換効率に比べて低い。
 そこで、光電変換装置の変換効率を向上させる構造として、2つの光電変換ユニットが積層されたタンデム型の構造が提案されている。
 例えば、図15に示すようなタンデム型の光電変換装置100が知られている。
 この光電変換装置100においては、透明導電膜102が配された絶縁性の透明基板101が用いられている。
 透明導電膜102上には、p型半導体層131、i型シリコン層(非晶質シリコン層)132、及びn型半導体層133、を順次積層して得られたpin型の第一光電変換ユニット103が形成されている。
 第一光電変換ユニット103上には、p型半導体層141、i型シリコン層(結晶質シリコン層)142、及びn型半導体層143、を順次積層して得られたpin型の第二光電変換ユニット104が形成されている。
 さらに、第二光電変換ユニット104上には、裏面電極105が形成されている。
 このようなタンデム型の光電変換装置を製造する方法としては、例えば、特許文献1に開示された製造方法が知られている。
 この製造方法においては、非晶質型の光電変換ユニット(第一光電変換ユニット)を構成する、p型半導体層、i型の非晶質シリコン系光電変換層、及びn型半導体層を形成するプラズマCVD反応室は、各々異なる。
 また、この製造方法においては、結晶質型の光電変換ユニット(第二光電変換ユニット)を構成する、p型半導体層、i型の結晶質シリコン系光電変換層、及びn型半導体層は、同じプラズマCVD反応室において形成される。
 このタンデム型の光電変換装置100は、図16(a)に示すように、まず、透明導電膜102が成膜された絶縁性透明基板101を準備する。
 次いで、図16(b)に示すように、絶縁性透明基板101の上に成膜された透明導電膜102上に、p型半導体層131、i型シリコン層(非晶質シリコン層)132、及びn型半導体層133を形成するプラズマCVD反応室は、各々異なる。
 これによって、順次に積層されたpin型の第一光電変換ユニット103が絶縁性透明基板101上に形成される。
 引き続き、第一光電変換ユニット103のn型半導体層133を大気中に露呈させ、プラズマCVD反応室に移動した後、図16(c)に示すように、大気中に露呈された第一光電変換ユニット103のn型半導体層133上に、p型半導体層141、i型シリコン層(結晶質シリコン層)142、及びn型半導体層143が、同じプラズマCVD反応室内で形成される。
 これによって、順次積層されたpin型の第二光電変換ユニット104が形成される。
 そして、第二光電変換ユニット104のn型半導体層143上に、裏面電極105を形成することにより、図15に示すような光電変換装置100が得られる。
 上記構成からなるタンデム型の光電変換装置100は、大別して、以下の二つの製造システムによって製造することができる。
 まず、第一の製造システムにおいては、まず、チャンバと呼ばれる成膜反応室が複数、直線状(線形)に連結して配置されたいわゆるインライン型の第一成膜装置を用いて第一光電変換ユニット103を形成する。
 第一光電変換ユニット103を構成する各層は、第一成膜装置における異なる成膜反応室にて形成される。
 第一光電変換ユニット103が形成された後、いわゆるバッチ型の第二成膜装置を用いて第二光電変換ユニット104を形成する。
 第二光電変換ユニット104を構成する各層は、第二成膜装置における一つの成膜反応室にて形成される。
 具体的には、例えば図17に示すように、第一の製造システムは、ロード室(L:Lord)161、P層成膜反応室162、I層成膜反応室163、N層成膜反応室164、及びアンロード室(UL:Unlord)166が連続して直線状に配置された第一成膜装置と、ロード・アンロード室(L/UL)171及びPIN層成膜反応室172が配置された第二成膜装置とを含む。
 この第一の製造システムにおいては、最初に、基板がロード室(L:Lord)161に搬入かつ配置され、その内部の圧力が減圧される。
 引き続き、減圧雰囲気が維持されたまま、P層成膜反応室162において第一光電変換ユニット103のp型半導体層131が形成され、I層成膜反応室163においてi型シリコン層(非晶質シリコン層)132が形成され、N層成膜反応室164においてn型半導体層133が形成される。
 第一光電変換ユニット103が形成された基板は、アンロード室(UL:Unlord)166に搬出される。アンロード室(UL:Unlord)166においては、減圧雰囲気が大気雰囲気に戻され、基板は、アンロード室(UL:Unlord)166から搬出される。
 このように第一成膜装置において処理された基板は、大気に曝されて、第二成膜装置に搬送される。
 第一光電変換ユニット103が形成された基板は、ロード・アンロード室(L/UL)171に搬入され、かつ、配置され、その内部の圧力が減圧される。
 ロード・アンロード室(L/UL)171は、基板が搬入された後に内部圧力を減圧したり、基板を搬出する際に減圧雰囲気を大気雰囲気に戻したりする。
 このロード・アンロード室(L/UL)171を介して、基板は、PIN層成膜反応室172に搬入される。第一光電変換ユニット103のn型半導体層133上に、第二光電変換ユニット104のp型半導体層141、i型シリコン層(結晶質シリコン層)142、及びn型半導体層143、が同じ反応室内、即ち、PIN層成膜反応室172内で順次形成される。
 この第一の製造システムの図17に示すG地点においては、図16(a)に示すように、透明導電膜102が成膜された絶縁性透明基板101が準備される。
 また、図17に示すH地点においては、図16(b)に示すように、絶縁性透明基板101の上に成膜された透明導電膜102上に、第一光電変換ユニット103が設けられた光電変換装置の第一中間品100aが形成される。
 そして、図17に示すI地点において、図16(c)に示すように、第一光電変換ユニット103上に、第二光電変換ユニット104が設けられた光電変換装置の第二中間品100bが形成される。
 図17において、インライン型の第一成膜装置は、2つの基板を同時に処理するように構成されている。I層成膜反応室163は4つの反応室163a~163dにより構成されている。
 また、図17において、バッチ型の第二成膜装置は、6つの基板を同時に処理するように構成されている。
 一方、第二の製造システムにおいては、図17に示した同様の第一成膜装置を用いて、第一光電変換ユニット103が形成される。
 第一光電変換ユニット103が形成された後、第二光電変換ユニット104の各層を形成するための専用の成膜反応室を複数用いて第二光電変換ユニット104を形成する、いわゆる枚葉型の第二成膜装置を用いて第二光電変換ユニット104を形成する。
 具体的には、例えば図18に示すように、第二の製造システムは、図17と同様の構成を有する第一成膜装置と、ロード・アンロード室(L/UL)173,P層成膜反応室174、I層成膜反応室175、N層成膜反応室176,及び中間室177が配置された第二成膜装置とを含む。
 この第二の製造システムにおいては、上述したように第一の製造システムと同様に第一成膜装置によって、基板上に第一光電変換ユニット103が形成され、この基板は、アンロード室(UL:Unlord)166から搬出される。
 このように第一成膜装置において処理された基板は、大気に曝されて、第二成膜装置に搬送される。
 第一光電変換ユニット103が形成された基板は、ロード・アンロード室(L/UL)173に搬入され、かつ、配置され、その内部の圧力が減圧される。
 ロード・アンロード室(L/UL)173は、基板が搬入された後に内部圧力を減圧したり、基板を搬出する際に減圧雰囲気を大気雰囲気に戻したりする。
 このロード・アンロード室(L/UL)173を介して、基板は、中間室177に搬入される。また、中間室177とP層成膜反応室174との間、中間室177とI層成膜反応室175との間、中間室177とN層成膜反応室176との間を搬送される。
 P層成膜反応室174においては、第二光電変換ユニット104のp型半導体層141が第一光電変換ユニット103のn型半導体層133上に形成される。
 I層成膜反応室175においては、i型シリコン層(結晶質シリコン層)142が形成される。
 N層成膜反応室176においては、n型半導体層143が形成される。
 このように反応室174,175,176の各々においては、p型半導体層141、i型シリコン層142、及びn型半導体層143のうちの一つの層が一枚の基板に形成される。
 また、中間室177に設けられた搬送装置(不図示)は、p型半導体層141、i型シリコン層142、及びn型半導体層143を積層するために、反応室174,175,176の各々に基板を搬送したり、反応室174,175,176の各々から基板を搬出したりする。
 この第二の製造システムの図18に示すJ地点においては、図16(a)に示すように、透明導電膜102が成膜された絶縁性透明基板101が準備される。
 また、図18に示すK地点においては、図16(b)に示すように、絶縁性透明基板101の上に成膜された透明導電膜102上に、第一光電変換ユニット103が設けられた光電変換装置の第一中間品100aが形成される。
 そして、図18に示すL地点において、図16(c)に示すように、第一光電変換ユニット103上に、第二光電変換ユニット104が設けられた光電変換装置の第二中間品100bが形成される。
 図18において、インライン型の第一成膜装置は、各反応室で2つの基板を同時に処理するように構成されている。I層成膜反応室163は4つの反応室163a~163dにより構成されている。
 また、図18において、枚葉型の第二成膜装置におけるI層成膜反応室175は、5つの反応室175a~175eにより構成されたている。従って、第二成膜装置は、成膜時間の長いi層を同時に5つの基板に成膜することで、タクトタイムを短縮している。
 なお、図18には、p層、i層、n層の各々を、個別のチャンバ173~176において成膜する例が示されているが、個別のチャンバ173~176の各々において、p層、i層、n層を連続して成膜する方式を採用してもよい。
 枚葉式の成膜装置では、設置面積が大きくなり、I層成膜反応室の数が増やせない場合があった。この場合、各々の反応室でp、i、n層を成膜することで、実質的にI層成膜反応室の数を増やすことができる。
 このような製造方法においては、非晶質光電変換層であるi層は2000~3000Åの膜厚を有し、専用の反応室で生産可能である。また、p、i、n層毎に専用の反応室を使用することから、p層不純物のi層への拡散又は残留不純物がp、n層へ混入に起因する接合の乱れが生ずることなく、pin接合構造において良好なの不純物プロファイルを得ることができる。
 一方、結晶質光電変換層であるi層の膜厚は、15000~25000Åと非晶質光電変換層に比して一桁厚い膜厚が要求されることから、生産性を上げるためにバッチ式又は枚葉式の反応室内に複数枚の基板を並べて同時処理することが有利である。
 しかしながら、この結晶質光電変換層のp、i、n層を同じ反応室内で成膜する場合には、同じの反応室内において処理するゆえに、p層不純物のi層への拡散又は残留不純物のp、n層への混入に起因する接合の乱れが生じることが問題となる。
 残留不純物のp、n層への混入とは、同じチャンバ内で、p層用不純物(ドーパント)ガス、n層用不純物(ドーピング)ガスの両方を使用することに起因して、チャンバ内に残留した不純物(ドーパント)ガスの成分が、他の層に混入することを指す。
 例えば、同じチャンバにおいて、基板上にn層を形成した後に、次の基板上にp層を形成する場合、n層の不純物がp層に混入する恐れがある。
特許第3589581号公報
 本発明は上記事情に鑑みてなされたもので、透明導電膜付きの絶縁性透明基板上にpin型の第一光電変換ユニット及び第二光電変換ユニットが順に積層され、第二光電変換ユニットを構成するp層、i層、n層が結晶質のシリコン系薄膜からなる光電変換装置において、第二光電変換ユニットを構成するp層不純物のi層への拡散又は残留不純物のp、n層への混入に起因する接合の乱れがなく、良好な発電性能を有する光電変換装置の製造方法を提供することを第一の目的とする。
 また、本発明は、良好な発電性能を有する光電変換装置を提供することを第二の目的とする。
 さらに、本発明は、第二光電変換ユニットを構成するp層不純物のi層への拡散又は残留不純物のp、n層への混入に起因する接合の乱れがなく、良好な発電性能を有する光電変換装置を作製できる製造システムを提供することを第三の目的とする。
 本発明の第1態様の光電変換装置の製造方法は、第一光電変換ユニットを構成するp型半導体層、i型半導体層、及びn型半導体層と、結晶質のシリコン系薄膜からなる第二光電変換ユニットを構成するp型半導体層とを減圧雰囲気内で連続して形成し、前記第二光電変換ユニットの前記p型半導体層を大気雰囲気に暴露させ、大気雰囲気に暴露された前記第二光電変換ユニットの前記p型半導体層上に、前記第二光電変換ユニットを構成するi型半導体層及びn型半導体層を形成する。
 本発明の第1態様の光電変換装置の製造方法においては、前記第二光電変換ユニットを構成する前記i型半導体層を形成する前に、大気雰囲気に暴露された前記第二光電変換ユニットの前記p型半導体層を水素ラジカルを含むプラズマに曝すことが好ましい。
 本発明の第1態様の光電変換装置の製造方法においては、前記p型半導体層を前記水素ラジカルを含む前記プラズマに曝す際には、水素ガスを用いることが好ましい。
 本発明の第1態様の光電変換装置の製造方法においては、前記第一光電変換ユニットを構成する前記n型半導体層として、結晶質のシリコン系薄膜を形成することが好ましい。
 本発明の第2態様の光電変換装置は、上記の光電変換装置の製造方法により形成されている。
 本発明の第3態様の光電変換装置の製造システムは、第一光電変換ユニットを構成するp型半導体層、i型半導体層、及びn型半導体層と結晶質のシリコン系薄膜からなる第二光電変換ユニットを構成するp型半導体層とを各々形成し、減圧雰囲気を維持するように接続された複数のプラズマCVD反応室を含む第一成膜装置と、前記第二光電変換ユニットの前記p型半導体層が形成された前記基板を大気雰囲気に搬出する搬出装置と、前記大気雰囲気に搬出された前記基板を収容し、前記第二光電変換ユニットを構成するi型半導体層及びn型半導体層を減圧雰囲気で形成するプラズマCVD反応室を含む第二成膜装置とを含む。
 本発明の第3態様の光電変換装置の製造システムにおいては、前記第二成膜装置は、前記第二光電変換ユニットを構成する前記i型半導体層を形成する前に、前記大気雰囲気に暴露された第二光電変換ユニットの前記p型半導体層を水素ラジカルを含むプラズマに曝すことが好ましい。
 本発明の第3態様の光電変換装置の製造システムにおいては、前記第二成膜装置は、水素ガスを導入するガス導入部を有し、前記ガス導入部によって導入された前記水素ガスを用いて、第二光電変換ユニットの前記p型半導体層は、前記水素ラジカルを含む前記プラズマに曝されることが好ましい。
 本発明の第3態様の光電変換装置の製造システムにおいては、前記第二光電変換ユニットを構成する前記i型半導体層及び前記n型半導体層を形成する前記プラズマCVD反応室内で、第二光電変換ユニットの前記p型半導体層は前記水素ラジカルを含む前記プラズマに曝されることが好ましい。
 本発明の第3態様の光電変換装置の製造システムにおいては、前記第一成膜装置は、前記第一光電変換ユニットを構成する前記n型半導体層として、結晶質のシリコン系薄膜を形成することが好ましい。
 本発明の光電変換装置の製造方法によれば、第一光電変換ユニットのp型半導体層、i型半導体層、n型半導体層、又は第二光電変換ユニットのi型半導体層が形成されるプラズマCVD反応室と、第二光電変換ユニットのp型半導体層が形成されるプラズマCVD反応室とが異なるので、第二光電変換ユニットを構成するp型半導体層の不純物がi型半導体層に拡散すること又は残留不純物がp型半導体層及びn型半導体層に混入することに起因する接合の乱れを抑制できる。
 また、第二光電変換ユニットのp型半導体層が大気雰囲気に露呈されることで、p型半導体層の表面にOHが付いたり、p層表面の一部が酸化したりすることで結晶核が発生し、結晶質のシリコン系薄膜からなる第二光電変換ユニットのi型半導体層の結晶化率が上がる。
 また、本発明の光電変換装置によれば、上記光電変換装置の製造方法により形成されるので、pin接合構造において良好なの不純物プロファイルが得られる。従って、接合の乱れが無く、薄膜光電変換装置として良好な性能を得ることができる。
 さらに、本発明の光電変換装置の製造システムによれば、第一光電変換ユニットのp型半導体層、i型半導体層、及びn型半導体層、及び第二光電変換ユニットのp型半導体層は第一成膜装置でおいて成膜され、また、第二光電変換ユニットのi型半導体層及びn型半導体層は第二成膜装置で成膜されるので、第二光電変換ユニットを構成するp型半導体層の不純物がi型半導体層に拡散すること又は残留不純物がp型半導体層及びn型半導体層に混入することに起因する接合の乱れを抑制できる。従って、良好な性能を有する光電変換装置を製造することができる。
本発明に係る光電変換装置の製造方法を説明する断面図。 本発明に係る光電変換装置の層構成の一例を示す断面図。 本発明に係る光電変換装置を製造する第一製造システムを示す概略図。 本発明に係る光電変換装置を製造する第二製造システムを示す概略図。 実験例1~実験例6の光電変換装置について、電流密度と電圧との関係を示す図。 実験例1~実験例6の光電変換装置について、p層の大気露呈時間と光電変換効率との関係を示す図。 実験例1~実験例6の光電変換装置について、p層の大気露呈時間と短絡電流との関係を示す図。 実験例1~実験例6の光電変換装置について、p層の大気露呈時間と開放電圧との関係を示す図。 実験例1~実験例6の光電変換装置について、p層の大気露呈時間と曲線因子との関係を示す図。 実験例7~実験例11の光電変換装置について、電流密度と電圧との関係を示す図。 実験例7~実験例11の光電変換装置について、p層の大気露呈時間と光電変換効率との関係を示す図。 実験例7~実験例11の光電変換装置について、p層の大気露呈時間と短絡電流との関係を示す図。 実験例7~実験例11の光電変換装置について、p層の大気露呈時間と開放電圧との関係を示す図。 実験例7~実験例11の光電変換装置について、p層の大気露呈時間と曲線因子との関係を示す図。 従来の光電変換装置の一例を示す断面図。 従来の光電変換装置の製造方法を説明する断面図。 従来の光電変換装置を製造する製造システムの一例を示す概略図。 従来の光電変換装置を製造する製造システムの一例を示す概略図。
 以下では、本発明に係る光電変換装置の製造方法の実施形態を図面に基づいて説明する。
 以下の実施形態においては、アモルファスシリコン型の光電変換装置である第一光電変換ユニットと、微結晶シリコン型の光電変換装置である第二光電変換ユニットとが積層して構成されたタンデム型の光電変換装置について述べる。
 図1は、本発明である光電変換装置の製造方法を説明する断面図であり、図2は、この光電変換装置の層構成を示す断面図である。
 まず、図2に示すように、本発明の製造方法によって製造される光電変換装置10においては、光透過性を有する絶縁性の基板1の第1面1a(表面)上に、pin型の第一光電変換ユニット3と第二光電変換ユニット4とがこの順に重ねて形成され、さらに、第二光電変換ユニット4の上に、裏面電極5が形成されている。
 基板1は、例えば、ガラス,透明樹脂等、太陽光の透過性に優れ、かつ、耐久性のある絶縁材料からなる。
 この基板1は、透明導電膜2を備えている。
 透明導電膜2の材料としては、例えばITO(Indium Tin Oxide)、SnO、ZnO等の光透過性を有する金属酸化物が挙げられる。透明導電膜2は、真空蒸着法又はスパッタ法によって基板1上に形成される。
 この光電変換装置10においては、図2において白抜き矢印で示すように、基板1の第2面1bに太陽光Sが入射する。
 また、第一光電変換ユニット3は、p型半導体層(p層)31、実質的に真性なi型半導体層(i層)32、n型半導体層(n層)33とが積層されたpin構造を有している。
 すなわち、p層31、i層32、n層33を、この順に積層することにより第一光電変換ユニット3は形成されている。
 この第一光電変換ユニット3は、アモルファス(非晶質)シリコン系材料によって構成されている。
 第一光電変換ユニット3においては、p層31の厚さが例えば90Å、i層32の厚さが例えば2500Å、n層33の厚さが例えば300Åである。
 第一光電変換ユニット3のp層31、i層32、n層33を形成するプラズマCVD反応室は、各々異なる。
 なお、第一光電変換ユニット3においては、p層31及びi層32をアモルファスシリコンで形成し、n層33を結晶質を含むアモルファスシリコン(いわゆるマイクロクリスタルシリコン)で形成することができる。
 また、第二光電変換ユニット4は、p型半導体層(p層)41、実質的に真性なi型半導体層(i層)42、n型半導体層(n層)43とが積層されたpin構造を有している。
 すなわち、p層41、i層42、n層43を、この順に積層することにより第二光電変換ユニット4は形成されている。
 この第二光電変換ユニット4は、結晶質を含むシリコン系材料によって構成されている。
 第二光電変換ユニット4においては、p層41の厚さが例えば100Å、i層42の厚さが例えば15000Å、n層43の厚さが例えば150Åである。
 第二光電変換ユニット4においては、p層41を形成するプラズマCVD反応室と、i層42及びn層43を形成するプラズマCVD反応室とは異なる。i層42及びn層43は、同じプラズマCVD反応室内で形成される。
 裏面電極5は、Ag(銀),Al(アルミニウム)等の導電性の光反射膜によって構成されていればよい。
 この裏面電極5は、例えばスパッタ法又は蒸着法により形成することができる。
 また、裏面電極5としては、第二光電変換ユニット4のn型半導体層(n層)43と裏面電極5との間に、ITO,SnO,ZnO等の導電性酸化物からなる層が形成された積層構造を採用してもよい。
 次に、上記構成を有する光電変換装置10を製造するための製造方法を説明する。
 まず、図1(a)に示すように、透明導電膜2が成膜された絶縁性透明基板1を準備する。
 次いで、図1(b)に示すように、絶縁性透明基板1の上に成膜された透明導電膜2上に、p型半導体層31、i型シリコン層(非晶質シリコン層)32、n型半導体層33、及びp型半導体層41を形成する。
 ここで、p層31、i層32、n層33、及びp層41を形成するプラズマCVD反応室は、各々異なる。
 すなわち、第一光電変換ユニット3のn型半導体層33上に、第二光電変換ユニット4を構成するp型半導体層41が設けられた光電変換装置の第一中間品10aが形成される。
 p型半導体層31は、個別の反応室内においてプラズマCVD法により形成される。
 例えば、基板温度が170-200℃、電源周波数が13.56MHz、反応室内圧力が70~120Pa、反応ガス流量は、モノシラン(SiH)が300sccm、水素(H)が2300sccm、水素を希釈ガスとして用いたジボラン(B/H)が180sccm、メタン(CH)が500sccmの条件で、アモルファスシリコン(a-Si)のp層31を成膜することができる。
 また、i型シリコン層(非晶質シリコン層)32は、個別の反応室内においてプラズマCVD法により形成される。
 例えば、基板温度が170-200℃、電源周波数が13.56MHz、反応室内圧力が70~120Pa、反応ガス流量は、モノシラン(SiH)が1200sccmの条件で、アモルファスシリコン(a-Si)のi層を成膜することができる。
 さらに、n型半導体層33は、個別の反応室内においてプラズマCVD法により形成される。
 例えば、基板温度が170-200℃、電源周波数が13.56MHz、反応室内圧力が70~120Pa、反応ガスの流量は、水素を希釈ガスとして用いたホスフィン(PH/H)が200sccmの条件で、アモルファスシリコン(a-Si)のn層を成膜することができる。
 さらに、第二光電変換ユニット4のp型半導体層41は、個別の反応室内においてプラズマCVD法により形成される。
 例えば、基板温度が170-200℃、電源周波数が13.56MHz、反応室内圧力が500~1200Pa、反応ガス流量は、モノシラン(SiH)が100sccm、水素(H)が25000sccm、水素を希釈ガスとして用いたジボラン(B/H)が50sccmの条件で、微結晶シリコン(μc-Si)のp層を成膜することができる。
 引き続き、第二光電変換ユニット4のp型半導体層41を大気中に露呈させた後、図1(c)に示すように、大気中に露呈されたp型半導体層41上に、第二光電変換ユニット4を構成するi型シリコン層(結晶質シリコン層)42、n型半導体層43、を同じプラズマCVD反応室内で形成する。
 すなわち、第一光電変換ユニット3上に、第二光電変換ユニット4が設けられた光電変換装置の第二中間品10bが形成される。
 そして、第二光電変換ユニット4のn型半導体層43上に、裏面電極5を形成することにより、図2に示すような光電変換装置10が得られる。
 i型シリコン層(結晶質シリコン層)42は、n型半導体層43を形成する反応室と同じ反応室内においてプラズマCVD法により形成される。
 例えば、基板温度が170-200℃、電源周波数が13.56MHz、反応室内圧力が500~1200Pa、反応ガス流量は、モノシラン(SiH)が180sccm、水素(H)が27000sccm、の条件で、微結晶シリコン(μc-Si)のi層を成膜することができる。
 n型半導体層43は、i型シリコン層(結晶質シリコン層)42を形成する反応室と同じ反応室内においてプラズマCVD法により形成される。
 例えば、基板温度が170-200℃、電源周波数が13.56MHz、反応室内圧力が500~1200Pa、反応ガス流量は、モノシラン(SiH)が180sccm、水素(H)が27000sccm、水素を希釈ガスとして用いたホスフィン(PH/H)が200sccmの条件で、微結晶シリコン(μc-Si)のn層を成膜することができる。
 次に、この光電変換装置10を製造するシステムを図面に基づいて説明する。
 本発明に係る光電変換装置の製造システムは、第一製造システムと、第二製造システムとに分けることができる。
 第一製造システムは、いわゆるインライン型の第一成膜装置と、第二光電変換ユニットのp層を大気中に露呈させる暴露装置と、いわゆるバッチ型の第二成膜装置とが順に配置された構成を有する。
 インライン型の第一成膜装置は、チャンバと呼ばれる複数の成膜反応室が直線状に連結して配置された構成を有する。
 この第一成膜装置においては、第一光電変換ユニット3におけるp型半導体層31、i型シリコン層(非晶質シリコン層)32、n型半導体層33、及び第二光電変換ユニット4のp型半導体層41の各層が別々に形成される。
 第二成膜装置においては、第二光電変換ユニット4におけるi型シリコン層(結晶質シリコン層)42及びn型半導体層43の各層が、複数の基板に対して同時に、同じ成膜反応室内で形成される。
 また、第二製造システムは、いわゆるインライン型の第一成膜装置と、第二光電変換ユニットのp層を大気中に露呈させる暴露装置と、いわゆる枚葉型の第二成膜装置とが順に配置された構成を有する。
 第二製造システムにおける第一成膜装置及び暴露装置は、第一製造システムにおける第一成膜装置及び暴露装置と同じ構成を有する。
 第二成膜装置においては、i型シリコン層(結晶質シリコン層)42及びn型半導体層43を形成するための専用の成膜反応室を複数用いて第二光電変換ユニット104が形成される。
(第一製造システム)
 まず、本発明に係る光電変換装置の第一製造システムを図3に示す。
 第一製造システムは、図3に示すように、第一成膜装置60と、第二成膜装置70Aと、第一成膜装置60で処理した基板を大気に曝した後に第二成膜装置70Aへ移動する暴露装置80Aとから構成される。
 第一製造システムにおける第一成膜装置60には、基板が最初に搬入され、内部圧力を減圧するロード室(L:Lord)61が配置されている。
 なお、ロード室(L:Lord)61の後段に、成膜プロセスに応じて、基板温度を一定温度まで加熱する加熱チャンバを設けても良い。
 引き続き第一光電変換ユニット3のp型半導体層31を形成するP層成膜反応室62、i型シリコン層(非晶質シリコン層)32を形成するI層成膜反応室63、n型半導体層33を形成するN層成膜反応室64、第二光電変換ユニット4のp型半導体層41を形成するP層成膜反応室65が連続して直線状に配置されている。
 最後に、減圧雰囲気を大気雰囲気に戻して基板を搬出するアンロード室(UL:Unlord、搬出装置)66がP層成膜反応室65に接続されている。
 これにより、ロード室(L:Lord)61、P層成膜反応室62、I層成膜反応室63、N層成膜反応室64、P層成膜反応室65、アンロード室(UL:Unlord)66の間は、減圧雰囲気を維持して基板を搬送することができる。
 この際、図3に示すA地点においては、図1(a)に示すように、透明導電膜2が成膜された絶縁性透明基板1が準備される。
 また、図3に示すB地点においては、図1(b)に示すように、透明導電膜2上に、第一光電変換ユニット3のp型半導体層31、i型シリコン層(非晶質シリコン層)32、及びn型半導体層33と、第二光電変換ユニット4のp型半導体層41が設けられた光電変換装置の第一中間品10aが形成される。
 また、第一製造システムにおける第二成膜装置70Aは、ロード・アンロード室(L/UL)71とIN層成膜反応室72とを有する。
 ロード・アンロード室(L/UL)71は、第一成膜装置60で処理された光電変換装置の第一中間品10aを搬入し、基板が搬入された後に内部圧力を減圧したり、基板を搬出する際に減圧雰囲気を大気雰囲気に戻したりする。
 IN層成膜反応室72は、ロード・アンロード室(L/UL)71に続いて接続されている。
 IN層成膜反応室72においては、第二光電変換ユニット4のp型半導体層41上に、第二光電変換ユニット4のi型シリコン層(結晶質シリコン層)42及びn型半導体層43が順次に同じ反応室内で形成される。
 また、この成膜処理は複数の基板に対して同時に行われる。
 この際、図3に示すC地点において、図1(c)に示すように、第一光電変換ユニット3上に、第二光電変換ユニット4が設けられた光電変換装置の第二中間品10bが形成される。
 また、図3に示すように、インライン型の第一成膜装置60においては、2つの基板に対して同時に成膜処理が行われ、I層成膜反応室63は4つの反応室63a,63b,63c,63dによって構成されている。
 また、図3において、バッチ型の第二成膜装置70Aは、6つの基板を同時に処理するように構成されている。
(第二製造システム)
 次に、本発明に係る光電変換装置の第二製造システムを図4に示す。
 第二製造システムは、図4に示すように、第一成膜装置60と、第二成膜装置70Bと、第一成膜装置60で処理した基板を大気に曝した後に第二成膜装置70Bへ移動する暴露装置80Bとから構成される。
 第二製造システムにおける第一成膜装置60は、第一製造システムにおける第一成膜装置60と同様に、基板が搬入された後に内部圧力を減圧するロード室(L:Lord)61を有する。
 なお、ロード室(L:Lord)61の後段に、プロセスに応じて、基板温度を一定温度まで加熱する加熱チャンバを設けても良い。
 引き続き第一光電変換ユニット3のp型半導体層31を形成するP層成膜反応室62、同i型シリコン層(非晶質シリコン層)32を形成するI層成膜反応室63、同n型半導体層33を形成するN層成膜反応室64、第二光電変換ユニット4のp型半導体層41を形成するP層成膜反応室65が連続して直線状に配置されている。
 最後に、減圧雰囲気を大気雰囲気に戻して基板を搬出するアンロード室(UL:Unlord)66がP層成膜反応室65に接続されている。
 これにより、ロード室(L:Lord)61、P層成膜反応室62、I層成膜反応室63、N層成膜反応室64、P層成膜反応室65、アンロード室(UL:Unlord)66の間は、減圧雰囲気を維持して基板を搬送することができる。
 この際、図4に示すD地点において、図1(a)に示すように、透明導電膜2が成膜された絶縁性透明基板1が準備される。
 また、図4に示すE地点においては、図1(b)に示すように、透明導電膜2上に第一光電変換ユニット3のp型半導体層31、i型シリコン層(非晶質シリコン層)32、及びn型半導体層33と、第二光電変換ユニット4のp型半導体層41の各層が設けられた光電変換装置の第一中間品10aが形成される。
 また、第二製造システムにおける第二成膜装置70Bは、環状に配置されたロード・アンロード室(L/UL)73,I層成膜反応室74,N層成膜反応室75,及び中間室77を有する。
 ロード・アンロード室(L/UL)173は、第一成膜装置60で処理された光電変換装置の第一中間品10aが搬入された後に内部圧力を減圧したり、基板を搬出する際に減圧雰囲気を大気雰囲気に戻したりする。
 引き続き、このロード・アンロード室(L/UL)73を介して、基板は、中間室77に搬入される。また、中間室77とP層成膜反応室74との間、中間室77とI層成膜反応室75との間、中間室77とN層成膜反応室76との間を搬送される。
 I層成膜反応室74においては、第二光電変換ユニット4のp型半導体層41上に、第二光電変換ユニット4のi型シリコン層(結晶質シリコン層)42が形成される。
 N層成膜反応室75においては、i型シリコン層(結晶質シリコン層)42上に、n型半導体層43が形成される。
 I層成膜反応室74及びN層成膜反応室75の各々においては、i型シリコン層42、及びn型半導体層43のうちの一つの層が一枚の基板に形成される。
 また、中間室77に設けられた搬送装置(不図示)は、i型シリコン層42及びn型半導体層43を積層するために、反応室73,74の各々に基板を搬送したり、反応室174,175,176の各々から基板を搬出したりする。
 なお、第二成膜装置70Bは、成膜プロセスに応じて、基板温度を一定温度まで加熱する加熱チャンバを有しても良い。
 この際、図4に示すF地点において、図1(c)に示すように、第一光電変換ユニット3上に第二光電変換ユニット4が設けられた光電変換装置の第二中間品10bが形成される。
 また、図4において、インライン型の第一成膜装置60においては、2つの基板に対して同時に成膜処理が行われ、I層成膜反応室63は4つの反応室63a,63b,63c,63dによって構成されている。
 また、図4において、枚葉型の第二成膜装置70Bにおいては、7つの基板が同時に各反応室において処理される。
 そして、図4において、I層成膜反応室74は6つの反応室74a,74b,74c,74d,74e,74fによって構成されている。
 第二光電変換ユニット4を構成するi型シリコン層42は、n型半導体層43に比べて膜厚が大きいため、n型半導体層43を形成する場合よりも成膜時間が長い。
 そのため、I層成膜反応室74の反応室の個数に依存して、光電変換装置を生産するスループットが決まる。
 上記のように枚葉型の第二成膜装置70Bにおいては、I層成膜反応室74が6つの反応室を有することにより、複数の基板に対して同時にi型シリコン層42を形成することが可能となり、スループットが向上する。
 以上のような光電変換装置の製造方法によれば、第一成膜装置60において非晶質光電変換装置である第一光電変換ユニット3のp層、i層、n層の上に結晶質光電変換装置である第二光電変換ユニット4のp層を形成している。また、第二成膜装置70A、70Bにおいて第二光電変換ユニット4のi層、n層を形成している。これによって、第二光電変換ユニット4のi層の結晶化率分布のコントロールを容易にすることができる。
 また、本発明においては、大気中に露呈されたp型半導体層41上に、第二光電変換ユニット4を構成するi型シリコン層(結晶質シリコン層)42、n型半導体層43を形成する際、このi層42を形成する前に、大気中に露呈された第二光電変換ユニット4のp層41を、水素ラジカルを含むプラズマに曝すことが望ましい(水素ラジカルプラズマ処理)。
 水素ラジカルプラズマ処理として、水素ラジカルプラズマ処理室を予め準備し、第二光電変換ユニット4のp層41が形成された基板をこのプラズマ処理室に搬送し、p層41をプラズマに曝す方法が挙げられる。また、水素ラジカルプラズマ処理の後には、第二光電変換ユニット4を構成するi型シリコン層(結晶質シリコン層)42及びn型半導体層43が個別の反応室で成膜される。
 一方、水素ラジカルプラズマ処理として、水素ラジカルプラズマ処理と、第二光電変換ユニット4のi層42及びn層43を形成する処理とを連続して同じ反応室内において行なってもよい。
 ここで、第二光電変換ユニット4のi層42及びn層43を形成する処理と水素ラジカルプラズマ処理と連続して同じ処理室内で行なう場合、i層42を形成する前に、反応室の内壁を、水素ラジカルを含むプラズマに曝すことにより、前回のn層43を成膜する際に導入された残留不純物ガスPHを分解して除去することが可能である。
 したがって、第二光電変換ユニット4のi層42及びn層43の成膜工程を同じ処理室内で繰り返して行なった場合であっても、良好な不純物プロファイルが得られ、良好な発電効率の積層薄膜光電変換装置を得ることができる。
 また、第二光電変換ユニット4のp層41に対して施す水素ラジカルプラズマ処理においては、プロセスガスとしてHガス(水素ガス)を用いると望ましい。
 すなわち、水素ラジカルプラズマを生成するには、Hを処理室内に流入させた状態で、処理室内の電極間に、例えば13.5MHz、27MHz、40MHz等の高周波を印加することにより有効にプラズマを生成することができる。
 また、上述した第二成膜装置70A,70Bにおいては、水素ラジカルプラズマ処理に用いるHガスを処理室(反応室)内に供給するガスボックス(ガス導入部)及びガスライン(ガス導入部)が設けられている。また、処理室には、マスフローコントローラ(ガス導入部)が接続されており、ガスボックス及びガスラインを通じて供給されたHガスの流量が制御され、制御された流量のガスが処理室内に供給される。
 このように水素ラジカルプラズマ処理を施すと、Oラジカルに比して穏やかな反応が生じるため、下層にダメージを与えることなく、第二光電変換ユニット4のp層41の表面を活性させる効果がある。
 したがって、第二光電変換ユニット4のp層41の表面を活性化させることが可能となり、その上に積層される第二光電変換ユニット4のi層42及びn層43の結晶を有効に生成することができる。大面積の基板に第二光電変換ユニット4を形成する場合であっても、均一な結晶化率分布を得ることが可能となる。
 また、第一光電変換ユニット3のn層33と第二光電変換ユニット4のp層41としては、非晶質のアモルファスシリコン(a-Si)層に微結晶シリコン(μc-Si)が分散された層でも、非晶質のアモルファス酸化シリコン(a-SiO)層に微結晶シリコン(μc-Si)が分散された層でもよい。
 しかし、基板の大面積化の際に必要とされる均一な結晶化分布率、即ち、結晶質光電変換層のi層とn層の結晶成長核の生成による均一な結晶化分布率を得るためには、非晶質のアモルファス酸化シリコン(a-SiO)層に微結晶シリコン(μc-Si)が分散された層を採用することが好ましい。
 このように、非晶質のアモルファス酸化シリコン(a-SiO)層に微結晶シリコン(μc-Si)が分散された層は、アモルファスシリコン(a-Si)半導体層よりも低い屈折率が得られるように調整することが可能である。
 そこで、この層を波長選択反射膜として機能させ、短波長光をトップセル側に閉じ込めることによって変換効率を向上させることが可能である。
 また、この光を閉じ込める効果の有無に拠らず、非晶質のアモルファス酸化シリコン(a-SiO)層に微結晶シリコン(μc-Si)が分散された層は、水素ラジカルプラズマ処理によって第二光電変換ユニット4のi層42とn層43の結晶成長核の生成を有効に働かせ、大面積の基板においても均一な結晶化率分布を得ることが可能となる。
 また、本発明においては、第一光電変換ユニット3を構成するn層33として、結晶質のシリコン系薄膜を形成してもよい。
 すなわち、アモルファスシリコンの第一光電変換ユニット3のp層31、i層32の上に、マイクロクリスタルシリコンのn層33及びマイクロクリスタルシリコンの第二光電変換ユニット4のp層41を形成する。
 この際、非晶質の第一光電変換ユニット3のp層31、p層31の上に形成される非晶質のi層32、i層32の上に形成される結晶質のn層33、および、n層33の上に形成される第二光電変換ユニット4のp層41は、大気開放することなく連続して形成することが望ましい。
 特に、第一光電変換ユニット3のp層31、i層32、及びn層33を形成した後に大気開放し、別の反応室で第二光電変換ユニット4のp層41、i層42、n層43を形成する方法では、基板を大気開放し放置する時間、温度、雰囲気等に起因して、第一光電変換ユニット3のi層32が劣化し、素子性能が劣化してしまう。
 したがって、第一光電変換ユニット3のp層31、i層32を形成した後、大気開放することなく連続して結晶質のn層33、及び第二光電変換ユニット4のp層41を形成する。
 このように、結晶質のn層33、及び第二光電変換ユニット4のp層41を形成した基板を、個別の反応室又は同じ反応室において水素ラジカルプラズマ処理を行い、表面を活性化させて結晶核を生成し、引き続いて結晶質の第二光電変換ユニット4のi層42、n層43を積層することにより、良好な発電効率の積層薄膜光電変換装置を得ることができる。
 なお、図4には、第二光電変換ユニット4のi層、n層の各々を、個別のチャンバ74,75において成膜する例が示されているが、個別のチャンバ74,75の各々において、i層、n層を連続して成膜する方式を採用してもよい。
 <実験例>
次に、本発明に係る光電変換装置の製造方法より製造された光電変換装置について、以下のような実験を行なった。
 各実験例により製造した光電変換装置及びその製造条件は、次のとおりである。
 以下に述べる何れの実験例においては、1100mm×1400mmの大きさを有する基板を用いて、光電変換装置は製造されている。
(1)以下に示す実験例においては、第二光電変換ユニットのp層が大気雰囲気に暴露される時間と光電変換特性との関係について評価した。
(実験例1)
 実験例1においては、基板上に第一光電変換ユニットとして非晶質のアモルファスシリコン(a-Si)系薄膜からなるp層とi層を形成し、i層の上に微結晶シリコン(μc-Si)を含んだn層を形成し、第二光電変換ユニットを構成する微結晶シリコン(μc-Si)を含んだp層を形成した。これらの層は真空雰囲気中で連続して形成され、かつ、これらの層を形成する反応室は、各々に異ならせた。その後、第二光電変換ユニットのp層を大気中に暴露し、第二光電変換ユニットのp層に対して水素ラジカルプラズマ処理を施した。その後、第二光電変換ユニットを構成する微結晶シリコン(μc-Si)からなるi層、n層を形成した。
 実験例1において、第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層をプラズマCVD法により成膜した。第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層を成膜する反応室は、各々異ならせた。一方、第二光電変換ユニットのi層、n層を、同じ反応室内においてプラズマCVD法により成膜した。
 第一光電変換ユニットのp層を、基板温度が170℃、電源出力が40W、反応室内圧力が80Pa、E/Sが20mm、反応ガス流量は、モノシラン(SiH)が150sccm、水素(H)が470sccm、水素を希釈ガスとして用いたジボラン(B/H)が45sccm、メタン(CH)が300sccmの条件で、80Åの膜厚に成膜した。
 また、バッファ層を、基板温度が170℃、電源出力が40W、反応室内圧力が60Pa、E/Sが17mm、反応ガス流量は、モノシラン(SiH)が150sccm、水素(H)が1500sccm、メタン(CH)が200sccmから0sccmになる条件で、60Åの膜厚に成膜した。
 また、第一光電変換ユニットのi層を、基板温度が170℃、電源出力が40W、反応室内圧力が40Pa、E/Sが14mm、反応ガス流量は、モノシラン(SiH)が300sccmの条件で、1800Åの膜厚に成膜した。
 さらに、第一光電変換ユニットのn層を、基板温度が170℃、電源出力が1000W、反応室内圧力が800Pa、E/Sが14mm、反応ガス流量は、モノシラン(SiH)が20sccm、水素(H)が2000sccm、水素を希釈ガスとして用いたホスフィン(PH/H)が15sccmの条件で、100Åの膜厚に成膜した。
 次に、第二光電変換ユニットのp層を、基板温度が170℃、電源出力が750W、反応室内圧力が1200Pa、E/Sが9mm、反応ガス流量は、モノシラン(SiH)が30sccm、水素(H)が9000sccm、水素を希釈ガスとして用いたジボラン(B/H)が12sccmの条件で、150Åの膜厚に成膜した。
 ここで、第二光電変換ユニットのp層を、5分間、大気中に暴露させた。
 引き続き、第二光電変換ユニットのi層を、基板温度が170℃、電源出力が550W、反応室内圧力が1200Pa、E/Sが9mm、反応ガス流量は、モノシラン(SiH)が45sccm、水素(H)が3150sccmの条件で、の条件で、15000Åの膜厚に成膜した。
 そして、第二光電変換ユニットのn層を、基板温度が170℃、電源出力が1000W、反応室内圧力が800Pa、E/Sが14mm、反応ガス流量は、モノシラン(SiH)が20sccm、水素(H)が2000sccm、水素を希釈ガスとして用いたホスフィン(PH/H)が15sccmの条件で、300Åの膜厚に成膜した。
(実験例2)
 本実験例では、実験例1と同様にして、基板上に第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、5分間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、60秒間、水素ラジカルプラズマ処理を施した。
 その後、実験例1と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例3)
 本実験例では、実験例1と同様にして、基板上に第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、22時間、大気中に暴露させた。
 その後、実験例1と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例4)
 本実験例では、実験例1と同様にして、基板上に第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、22時間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、60秒間、水素ラジカルプラズマ処理を施した。
 その後、実験例1と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例5)
 本実験例では、実験例1と同様にして、基板上に第一光電変換ユニットのp層、i層、n層及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、860時間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、60秒間、水素ラジカルプラズマ処理を施した。
 その後、実験例1と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例6)
 本実験例では、実験例1と同様にして、基板上に第一光電変換ユニットのp層、i層、n層及び第二光電変換ユニットのp層を形成した。
 実験例6では、p層を大気雰囲気に暴露する工程及び水素ラジカルプラズマ処理は行わず、その後、実験例1と同様にして第二光電変換ユニットのi層、n層を形成した。
 実験例1~実験例6で作製した光電変換装置における各層の成膜条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上のようにして製造した実験例1~実験例6の光電変換装置に、AM1.5の光を100mW/cmの光量で照射して25℃で出力特性を測定し、光電変換効率(η)、短絡電流(Jsc)、開放電圧(Voc)、曲線因子(FF)、Ic/Iaを評価した。
 その結果を表2に示す。
 また、実験例1~実験例6の光電変換装置について、電流密度と電圧との関係を図5に示す。
 図5は、各実験例を個別に示す特性曲線と、実験例1~実験例6を纏めて示す特性曲線とを示している。
 また、p層を大気雰囲気に暴露する時間と光電変換効率、Jsc、Voc、FFとの関係を図6~図9にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 表2及び図6~図9から明らかなように、第二光電変換ユニットのp層を大気雰囲気に暴露した実験例1及び実験例3と、p層を大気雰囲気に暴露しなかった実験例6とを比較すると、p層を大気雰囲気に暴露することによって特性が低下することが確認され、暴露時間が長くなるにつれて特性が低下する程度も大きいことがわかる。
 一方、実験例1と実験例2とを比較し、実験例3と実験例4とを比較すると、水素ラジカルプラズマ処理を施した実験例2、実験例4とで、その低下が抑えられており、p層を大気雰囲気に暴露しない実験例6とほぼ同等の良好な特性が得られていることがわかる。
 特に、実施例5のようにp層を860時間も暴露した場合であっても、水素ラジカルプラズマ処理を施すことでp層を大気雰囲気に暴露しない実験例6とほぼ同等の良好な特性が得られている。
 また、電流密度と電圧との関係を示した図5からもわかるように、水素ラジカルプラズマ処理を施すことでより四角形に近い良好な曲線が得られている。
 以上のことから、第二光電変換ユニットのp層に水素ラジカルプラズマ処理を施すことで、このp層を大気中に長時間暴露しても、優れた光電変換特性を有する光電変換装置を製造することができることがわかる。
(2)以下に示す実験例においては、プラズマ処理時間と光電変換特性との関係について評価した。
(実験例7)
 実験例7においては、基板上に第一光電変換ユニットとして非晶質のアモルファスシリコン(a-Si)系薄膜からなるp層とi層を形成し、i層の上に微結晶シリコン(μc-Si)を含んだn層を形成し、第二光電変換ユニットを構成する微結晶シリコン(μc-Si)を含んだp層を形成した。これらの層は真空雰囲気中で連続して形成され、かつ、これらの層を形成する反応室は、各々に異ならせた。その後、第二光電変換ユニットのp層を大気中に暴露し、第二光電変換ユニットのp層に対して水素ラジカル含有プラズマ処理を施した。その後、第二光電変換ユニットを構成する微結晶シリコン(μc-Si)からなるi層、n層を形成した。
 実験例7において、第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層をプラズマCVD法により成膜した。第一光電変換ユニットのp層、i層、n層、及び第二光電変換ユニットのp層を成膜す反応室は、各々異ならせた。一方、第二光電変換ユニットのi層、n層を、同じ反応室内においてプラズマCVD法により成膜した。
 第一光電変換ユニットのp層を、基板温度が170℃、電源出力が40W、反応室内圧力が80Pa、E/Sが20mm、反応ガス流量は、モノシラン(SiH)が150sccm、水素(H)が470sccm、水素を希釈ガスとして用いたジボラン(B/H)が45sccm、メタン(CH)が300sccmの条件で、80Åの膜厚に成膜した。
 また、バッファ層を、基板温度が170℃、電源出力が40W、反応室内圧力が60Pa、E/Sが17mm、反応ガス流量は、モノシラン(SiH)が150sccm、水素(H)が1500sccm、メタン(CH)が200sccmから0sccmの条件で、60Åの膜厚に成膜した。
 また、第一光電変換ユニットのi層を、基板温度が170℃、電源出力が40W、反応室内圧力が40Pa、E/Sが14mm、反応ガス流量は、モノシラン(SiH)が300sccmの条件で、1800Åの膜厚に成膜した。
 さらに、第一光電変換ユニットのn層を、基板温度が170℃、電源出力が1000W、反応室内圧力が800Pa、E/Sが14mm、反応ガス流量は、モノシラン(SiH)が20sccm、水素(H)が2000sccm、水素を希釈ガスとして用いたホスフィン(PH/H)が15sccmの条件で、100Åの膜厚に成膜した。
 次に、第二光電変換ユニットのp層を、基板温度が170℃、電源出力が750W、反応室内圧力が1200Pa、E/Sが9mm、反応ガス流量は、モノシラン(SiH)が30sccm、水素(H)が9000sccm、水素を希釈ガスとして用いたジボラン(B/H)が12sccmの条件で、150Åの膜厚に成膜した。
 ここで、第二光電変換ユニットのp層を、24時間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、30秒間、水素ラジカルプラズマ処理を施した。
 引き続き、第二光電変換ユニットのi層を、基板温度が170℃、電源出力が550W、反応室内圧力が1200Pa、E/Sが9mm、反応ガス流量は、モノシラン(SiH)が45sccm、水素(H)が3150sccmの条件で、の条件で、15000Åの膜厚に成膜した。
 そして、第二光電変換ユニットのn層を、基板温度が170℃、電源出力が1000W、反応室内圧力が800Pa、E/Sが14mm、反応ガス流量は、モノシラン(SiH)が20sccm、水素(H)が2000sccm、水素を希釈ガスとして用いたホスフィン(PH/H)が15sccmの条件で、300Åの膜厚に成膜した。
(実験例8)
 本実験例では、実験例6と同様にして、基板上に第一光電変換ユニットのp層、i層、n層及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、22時間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、60秒間、水素ラジカルプラズマ処理を施した。
 その後、実験例7と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例9)
 本実験例では、実験例6と同様にして、基板上に第一光電変換ユニットのp層、i層、n層及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、24時間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、120秒間、水素ラジカルプラズマ処理を施した。
 その後、実験例6と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例10)
 本実験例では、実験例6と同様にして、基板上に第一光電変換ユニットのp層、i層、n層及び第二光電変換ユニットのp層を形成した後、第二光電変換ユニットのp層を、24時間、大気中に暴露させた。
 このp層に対して、基板温度が170℃、電源出力が500W、反応室内圧力が400Pa、プロセスガスとしてHが1000sccm、の条件で、300秒間、水素ラジカルプラズマ処理を施した。
 その後、実験例7と同様にして第二光電変換ユニットのi層、n層を形成した。
(実験例11)
 本実験例では、実験例7と同様にして、基板上に第一光電変換ユニットのp層、i層、n層及び第二光電変換ユニットのp層を形成した。
 実験例11では、p層を大気雰囲気に暴露する工程及び水素ラジカルプラズマ処理は行わず、その後、実験例7と同様にして第二光電変換ユニットのi層、n層を形成した。
 実験例7~実験例11で作製した光電変換装置の、各層の成膜条件を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以上のようにして製造した実験例7~実験例11の光電変換装置に、AM1.5の光を100mW/cmの光量で照射して25℃で出力特性を測定し、光電変換効率(η)、短絡電流(Jsc)、開放電圧(Voc)、曲線因子(FF)、Ic/Iaを評価した。
 その結果を表4に示す。
 また、実験例7~実験例11の光電変換装置について、電流密度と電圧との関係を図10に示す。
 図10は、各実験例を個別に示す特性曲線と、実験例7~実験例11を纏めて示す特性曲線とを示している。
 また、水素ラジカルプラズマ処理時間と、光電変換効率、Jsc、Voc、FFとの関係を図11~図14にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000004
 表4及び図10~図14から明らかなように、第二光電変換ユニットのp層を大気雰囲気に暴露させても、水素ラジカルプラズマ処理を施すことで、特性が低下せず良好な光電変換特性が得られており、特に、水素ラジカルプラズマ処理時間に係らず、同様の効果が得られていることがわかる。
 以上のことから、第一光電変換ユニットのp層、i層、n層に連続して第二光電変換ユニットのp層を形成し、その後、第二光電変換ユニットのp層を大気中に暴露してから、第二光電変換ユニットのi層、n層を形成すると、光電変換特性に優れた光電変換装置を製造することができることがわかる。
 また、第二光電変換ユニットのp層に水素ラジカルプラズマ処理を施すことで、このp層を大気中に暴露したときよりも、光電変換特性により優れた光電変換装置を製造することができることがわかる。
 以上詳述したように、本発明は、光電変換装置において、第二光電変換ユニットを構成するp層不純物のi層への拡散又は残留不純物のp、n層への混入に起因する接合の乱れがなく、良好な発電性能を有する光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システムに有用である。
1 透明基板、2 透明導電膜、3 第一光電変換ユニット、4 第二光電変換ユニット、5 裏面電極、10 光電変換装置、31 p型半導体層、32 i型シリコン層(非晶質シリコン層)、33 n型半導体層、41 p型半導体層、42 i型シリコン層(結晶質シリコン層)、43 n型半導体層、60 第一成膜装置、61 ロード室、62 P層成膜反応室、63(63a,63b,63c,63d) I層成膜反応室、64 N層成膜反応室、65 P層成膜反応室、66 アンロード室、70A,70B 第二成膜装置、71,73 ロード・アンロード室、72 IN層成膜反応室、74(74a,74b,74c,74d,74e,74f) I層成膜反応室、75 N層成膜反応室、77 中間室、80A,80B 暴露装置。

Claims (10)

  1.  光電変換装置の製造方法であって、
     第一光電変換ユニットを構成するp型半導体層、i型半導体層、及びn型半導体層と、結晶質のシリコン系薄膜からなる第二光電変換ユニットを構成するp型半導体層とを減圧雰囲気内で連続して形成し、
     前記第二光電変換ユニットの前記p型半導体層を大気雰囲気に暴露させ、
     大気雰囲気に暴露された前記第二光電変換ユニットの前記p型半導体層上に、前記第二光電変換ユニットを構成するi型半導体層及びn型半導体層を形成する、
     ことを特徴とする光電変換装置の製造方法。
  2.  請求項1に記載の光電変換装置の製造方法であって、
     前記第二光電変換ユニットを構成する前記i型半導体層を形成する前に、大気雰囲気に暴露された前記第二光電変換ユニットの前記p型半導体層を水素ラジカルを含むプラズマに曝す、ことを特徴とする光電変換装置の製造方法。
  3.  請求項2に記載に光電変換装置の製造方法であって、
     前記p型半導体層を前記水素ラジカルを含む前記プラズマに曝す際には、水素ガスを用いる、ことを特徴とする光電変換装置の製造方法。
  4.  請求項1から請求項3のいずれか一項に記載の光電変換装置の製造方法であって、
     前記第一光電変換ユニットを構成する前記n型半導体層として、結晶質のシリコン系薄膜を形成する、ことを特徴とする光電変換装置の製造方法。
  5.  光電変換装置であって、
     請求項1から請求項4のいずれか一項に記載の光電変換装置の製造方法により形成されたことを特徴とする光電変換装置。
  6.  光電変換装置の製造システムであって、
     第一光電変換ユニットを構成するp型半導体層、i型半導体層、及びn型半導体層と結晶質のシリコン系薄膜からなる第二光電変換ユニットを構成するp型半導体層とを各々形成し、減圧雰囲気を維持するように接続された複数のプラズマCVD反応室を含む第一成膜装置と、
     前記第二光電変換ユニットの前記p型半導体層が形成された前記基板を大気雰囲気に搬出する搬出装置と、
     前記大気雰囲気に搬出された前記基板を収容し、前記第二光電変換ユニットを構成するi型半導体層及びn型半導体層を減圧雰囲気で形成するプラズマCVD反応室を含む第二成膜装置と、
     を含むことを特徴とする光電変換装置の製造システム。
  7.  請求項6に記載の光電変換装置の製造システムであって、
     前記第二成膜装置は、前記第二光電変換ユニットを構成する前記i型半導体層を形成する前に、前記大気雰囲気に暴露された第二光電変換ユニットの前記p型半導体層を水素ラジカルを含むプラズマに曝す、ことを特徴とする光電変換装置の製造システム。
  8.  請求項7に記載の光電変換装置の製造システムであって、
     前記第二成膜装置は、水素ガスを導入するガス導入部を有し、
     前記ガス導入部によって導入された前記水素ガスを用いて、第二光電変換ユニットの前記p型半導体層は、前記水素ラジカルを含む前記プラズマに曝される、ことを特徴とする光電変換装置の製造システム。
  9.  請求項7に記載の光電変換装置の製造システムであって、
     前記第二光電変換ユニットを構成する前記i型半導体層及び前記n型半導体層を形成する前記プラズマCVD反応室内で、第二光電変換ユニットの前記p型半導体層は前記水素ラジカルを含む前記プラズマに曝される、ことを特徴とする光電変換装置の製造システム。
  10.  請求項6から請求項8のいずれか一項に記載の光電変換装置の製造システムであって、
     前記第一成膜装置は、前記第一光電変換ユニットを構成する前記n型半導体層として、結晶質のシリコン系薄膜を形成する、ことを特徴とする光電変換装置の製造システム。
PCT/JP2009/057976 2008-08-29 2009-04-22 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム WO2010023991A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020117003949A KR101280036B1 (ko) 2008-08-29 2009-08-28 광전 변환 장치의 제조 방법, 광전 변환 장치 및 광전 변환 장치의 제조 시스템
US13/061,018 US20110204466A1 (en) 2008-08-29 2009-08-28 Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
JP2010526571A JPWO2010023948A1 (ja) 2008-08-29 2009-08-28 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
PCT/JP2009/004232 WO2010023948A1 (ja) 2008-08-29 2009-08-28 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
EP09809603.5A EP2330633A4 (en) 2008-08-29 2009-08-28 METHOD FOR THE PRODUCTION OF A PHOTOELECTRIC CONVERSION DEVICE, PHOTOELECTRIC CONVERSION DEVICE AND SYSTEM FOR THE PRODUCTION OF A PHOTOELECTRIC CONVERSION DEVICE
TW098129154A TW201013966A (en) 2008-08-29 2009-08-28 Method and system for manufacturing photoelectric conversion device, and photoelectric conversion device
CN2009801327501A CN102132416A (zh) 2008-08-29 2009-08-28 光电转换装置的制法、光电转换装置及其制造系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008222818 2008-08-29
JP2008-222818 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010023991A1 true WO2010023991A1 (ja) 2010-03-04

Family

ID=41721128

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/057976 WO2010023991A1 (ja) 2008-08-29 2009-04-22 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
PCT/JP2009/004230 WO2010023947A1 (ja) 2008-08-29 2009-08-28 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004230 WO2010023947A1 (ja) 2008-08-29 2009-08-28 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム

Country Status (7)

Country Link
US (2) US20110155232A1 (ja)
EP (2) EP2330633A4 (ja)
JP (2) JPWO2010023947A1 (ja)
KR (2) KR101280036B1 (ja)
CN (2) CN102132416A (ja)
TW (2) TW201017917A (ja)
WO (2) WO2010023991A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094413B (zh) * 2011-10-31 2016-03-23 三菱电机株式会社 太阳能电池的制造装置、太阳能电池及其制造方法
JP5583196B2 (ja) * 2011-12-21 2014-09-03 パナソニック株式会社 薄膜太陽電池およびその製造方法
KR20130112148A (ko) * 2012-04-03 2013-10-14 엘지전자 주식회사 박막 태양 전지
KR102102580B1 (ko) * 2012-07-20 2020-04-22 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
RU169094U1 (ru) * 2016-07-08 2017-03-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Бесколлекторный электродвигатель постоянного тока с лазерно-фотоэлектрическим токоподводом
JP7071055B2 (ja) * 2017-02-24 2022-05-18 キヤノン株式会社 撮像素子および撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170973A (ja) * 2000-12-01 2002-06-14 Canon Inc 半導体素子の形成方法及び半導体素子
JP2002237608A (ja) * 2001-02-08 2002-08-23 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜太陽電池の製造方法
JP2005159320A (ja) * 2003-10-27 2005-06-16 Mitsubishi Heavy Ind Ltd 太陽電池及び太陽電池の製造方法
JP2005154795A (ja) * 2003-11-21 2005-06-16 Sharp Corp 薄膜の製造方法および太陽電池
JP2005277303A (ja) * 2004-03-26 2005-10-06 Kaneka Corp 積層型光電変換装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589581B2 (ja) 1999-02-26 2004-11-17 株式会社カネカ タンデム型の薄膜光電変換装置の製造方法
US6566159B2 (en) * 2000-10-04 2003-05-20 Kaneka Corporation Method of manufacturing tandem thin-film solar cell
KR100847487B1 (ko) * 2002-04-09 2008-07-22 가부시키가이샤 가네카 탠덤형 박막 광전변환 장치의 제조방법
JP3978121B2 (ja) * 2002-11-27 2007-09-19 三菱重工業株式会社 薄膜太陽電池の製造方法
EP1650811B1 (en) * 2003-07-24 2013-04-03 Kaneka Corporation Stacked photoelectric converter
AU2004222793B2 (en) * 2003-10-27 2007-07-26 Mitsubishi Heavy Industries, Ltd. Solar cell and process for producing solar cell
JP2008222818A (ja) 2007-03-12 2008-09-25 Furukawa Electric Co Ltd:The 無架橋高密度ポリエチレン系樹脂発泡体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170973A (ja) * 2000-12-01 2002-06-14 Canon Inc 半導体素子の形成方法及び半導体素子
JP2002237608A (ja) * 2001-02-08 2002-08-23 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜太陽電池の製造方法
JP2005159320A (ja) * 2003-10-27 2005-06-16 Mitsubishi Heavy Ind Ltd 太陽電池及び太陽電池の製造方法
JP2005154795A (ja) * 2003-11-21 2005-06-16 Sharp Corp 薄膜の製造方法および太陽電池
JP2005277303A (ja) * 2004-03-26 2005-10-06 Kaneka Corp 積層型光電変換装置の製造方法

Also Published As

Publication number Publication date
JPWO2010023947A1 (ja) 2012-01-26
KR101321813B1 (ko) 2013-10-28
US20110204466A1 (en) 2011-08-25
KR20110050465A (ko) 2011-05-13
TW201017917A (en) 2010-05-01
CN102132416A (zh) 2011-07-20
EP2323172A1 (en) 2011-05-18
EP2330633A4 (en) 2014-01-08
WO2010023947A1 (ja) 2010-03-04
CN102132418A (zh) 2011-07-20
EP2323172A4 (en) 2014-03-26
TW201013966A (en) 2010-04-01
EP2330633A1 (en) 2011-06-08
KR101280036B1 (ko) 2013-06-28
US20110155232A1 (en) 2011-06-30
KR20110050458A (ko) 2011-05-13
JPWO2010023948A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
US7582515B2 (en) Multi-junction solar cells and methods and apparatuses for forming the same
US20080173350A1 (en) Multi-junction solar cells and methods and apparatuses for forming the same
JP4940290B2 (ja) 光電変換装置及びその製造方法
US20080245414A1 (en) Methods for forming a photovoltaic device with low contact resistance
WO2008156337A2 (en) Solar cell, method of fabricating the same and apparatus for fabricating the same
US20130112264A1 (en) Methods for forming a doped amorphous silicon oxide layer for solar cell devices
WO2010023991A1 (ja) 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
US20090101201A1 (en) Nip-nip thin-film photovoltaic structure
WO2010087198A1 (ja) 光電変換装置の製造方法,光電変換装置,光電変換装置の製造システム,及び光電変換装置製造システムの使用方法
WO2011001747A1 (ja) 太陽電池の製造方法及び製造装置
WO2010023948A1 (ja) 光電変換装置の製造方法、光電変換装置、及び光電変換装置の製造システム
JP5373045B2 (ja) 光電変換装置
WO2010146846A1 (ja) 光電変換装置及び光電変換装置の製造方法
US20110275200A1 (en) Methods of dynamically controlling film microstructure formed in a microcrystalline layer
WO2011068197A1 (ja) 光電変換装置及び光電変換装置の製造方法
JP2004087932A (ja) 光起電力素子の製造方法及び光起電力素子
WO2012057201A1 (ja) 光電変換装置及び光電変換装置の製造方法
WO2011125878A1 (ja) 光電変換装置及び光電変換装置の製造方法
JP2010177582A (ja) 光電変換装置の製造方法と光電変換装置、及び光電変換装置の製造システム
JP2002217114A (ja) シリコン系薄膜の製造方法、その製造装置、光起電力素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09809646

Country of ref document: EP

Kind code of ref document: A1