WO2005073780A1 - ポリゴンミラーおよびポリゴンミラー成形用金型 - Google Patents

ポリゴンミラーおよびポリゴンミラー成形用金型 Download PDF

Info

Publication number
WO2005073780A1
WO2005073780A1 PCT/JP2005/001141 JP2005001141W WO2005073780A1 WO 2005073780 A1 WO2005073780 A1 WO 2005073780A1 JP 2005001141 W JP2005001141 W JP 2005001141W WO 2005073780 A1 WO2005073780 A1 WO 2005073780A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin gate
shortest distance
reflection surface
reflection
polygon mirror
Prior art date
Application number
PCT/JP2005/001141
Other languages
English (en)
French (fr)
Inventor
Kazuya Hirose
Kenji Haga
Isao Tsubouchi
Toru Takahashi
Katsuaki Yakata
Fumito Orii
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05709415.3A priority Critical patent/EP1710613B1/en
Publication of WO2005073780A1 publication Critical patent/WO2005073780A1/ja
Priority to US11/242,112 priority patent/US7399094B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0058Mirrors

Definitions

  • the present invention relates to a polygon mirror formed by injection molding and a molding die used for the molding.
  • a polygon mirror is provided with a plurality of reflecting surfaces to switch and scan reflected light by rotating.
  • the polygon mirror is formed by injection molding using a mold.
  • Japanese Patent Application Laid-Open Nos. 8-238682 and 2619244 disclose a method for manufacturing a polygon mirror.
  • FIG. 10 shows a manufacturing method disclosed in Japanese Patent Application Laid-Open No. 8-238682.
  • the polygon mirror 110 includes a flat portion 112 and a plurality of reflecting surfaces 114 connected to each other in a state of being disposed on the outer peripheral side surface of the flat portion 112.
  • the plane portion 112 is connected to an intermediate portion on the back side of each reflection surface 114.
  • An annular boss 112a to which the rotating body is attached is formed at the center of the flat portion 112.
  • a mold for ejecting such a polygon mirror 110 is provided with a spnole 141 and a disk gate 140 extending horizontally in a terminal force of the sprue 141.
  • the sprue 141 extends along the rotation axis CL of the polygon mirror 110 to be formed.
  • Reference numeral 145 denotes a slide type for forming the reflection surface 114 of the polygon mirror 110.
  • a molten resin material is injected at a predetermined pressure onto the spnole 141. After filling the resin material into the mold cavity from the disc gate 140, the resin material is cooled to solidify the resin material. Thereafter, the mold is opened and the molded product is ejected by the ejection pin 147, thereby completing the injection molding.
  • FIGS. 11A and 11B show a manufacturing method disclosed in Japanese Patent No. 2619244.
  • the polygon mirror 210 includes a boss portion 212a, a plate-shaped portion 212, and a reflection surface 214.
  • the boss 212a is formed at the center and serves as a part to be attached to the rotating body.
  • the plurality of (eight) plate-like portions 212 extend radially from the boss portion 212a.
  • the reflection surface 214 is formed at the tip of each plate-like portion 212 extending from the boss portion 212a.
  • the mold is provided with cavities for forming the boss portion 212a, the plate-like portion 212, and the reflection surface 214.
  • the sprue 241 extends corresponding to the center of the boss 212a in order to fill the mold cavity with the molten resin material.
  • Runners 242 extend radially from the sprue 241.
  • the runners 242 extend so as to correspond to the respective plate-like portions 212.
  • the tip of the runner 242 is a pin gate 245 that supplies a resin material into the cavity.
  • the number of the pin gates 245 is equal to the number of the reflecting surfaces 214 so as to correspond to each of the reflecting surfaces 214.
  • the pin gate 245 is disposed at a substantially central portion in the width direction of the plate portion 212. That is, the pin gates 245 are arranged on bisectors perpendicular to the respective reflection surfaces 214.
  • each reflecting surface 214 is substantially the same distance from the pin gate 245. Therefore, the molten resin material flows uniformly and spreads evenly. Therefore, a weld line generated between the adjacent reflection surfaces 214 is generated at the ridge line 235 (see FIG. 11A) which is a boundary portion of the plate-shaped portion 212, and the generation of a weld line on the reflection surface 214 is prevented.
  • An object of the present invention is to provide a polygon mirror which can be attached to a rotating body satisfactorily and which prevents a weld line from being generated, and a molding die used for molding the polygon mirror. Aim.
  • One aspect of the polygon mirror according to the present invention is:
  • the shortest distance from the edge formed by the intersection of the reflection surface M (1) and the plane portion to the pin gate mark L (l) is DM (1), and the reflection surface M (2) and the plane
  • the shortest distance from the edge formed by intersection with the portion to the pin gate mark L (2) is DM (2), and the reflection surface M (n) intersects with the plane portion.
  • the shortest distance from the formed edge to the pin gate mark L (n) is DM (n),
  • the shortest distance between the pin gate mark L (l) and the pin gate mark L (2) is DL (1), and the shortest distance between the pin gate mark L (2) and the pin gate mark L (3) is DL (2),..., when the shortest distance between the pin gate trace L (n) and the pin gate trace L (l) is DL (n),
  • One embodiment of the polygon mirror molding die according to the present invention is:
  • the shortest distance from the edge formed by the intersection of the reflection surface M (1) and the plane portion to the pin gate L (1) is DM (1), and the reflection surface M (2) and the plane portion Is defined as DM (2) from the edge formed by intersecting with the pin gate L (2), and the reflection surface M (n) intersects with the plane portion.
  • the shortest distance from the edge to be formed to the pin gate L (n) is DM (n),
  • the shortest distance between the pin gate L (l) and the pin gate L (2) is DL (1), and the shortest distance between the pin gate L (2) and the pin gate L (3) is DL (2)
  • the shortest distance between the pin gate L (n) and the pin gate L (l) is DL (n)
  • FIG. 1 is a schematic plan view showing a polygon mirror according to a first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a molded body for molding the polygon mirror according to the first embodiment.
  • FIG. 3 is a schematic vertical sectional view of the molded body shown in FIG. 2 for molding the polygon mirror according to the first embodiment.
  • FIG. 4 is a schematic enlarged sectional view of a pin gate shown in FIG. 3 of the polygon mirror according to the first embodiment.
  • FIG. 5 shows how a resin material flows during molding of the polygon mirror according to the first embodiment. It is a schematic perspective view which shows.
  • FIG. 6 is a schematic plan view showing a case where pin traces of the polygon mirror according to the first embodiment are not preferable.
  • FIG. 7 is a longitudinal sectional view of the molded body shown in FIG. 6 for molding an undesired polygon mirror according to the first embodiment.
  • FIG. 8 is a schematic perspective view showing how a resin material flows during molding of an undesired polygon mirror according to the first embodiment.
  • FIG. 9 is a schematic plan view showing a polygon mirror according to a second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a conventional polygon mirror forming method.
  • FIG. 11A is a plan view showing another conventional method for forming a polygon mirror.
  • FIG. 11B is a cross-sectional view showing another conventional method for forming a polygon mirror.
  • the polygon mirror 10 is used by being attached to a rotating shaft of a bar code scanner, a laser beam printer, a vehicular optical scanner, or the like, for example. By rotating the polygon mirror 10 around a predetermined rotation axis, it is possible to switch or run the reflected light.
  • the polygon mirror 10 is formed by, for example, injection molding a thermoplastic resin material.
  • thermoplastic resin material for example, polycarbonate, methacrylic resin, polyarylate, polystyrene, cycloolefin polymer, and other appropriate resin materials are used.
  • cycloolefin polymer for example, trade name “ZONEX 480S” (manufactured by Nippon Zeon Co., Ltd.) can be used.
  • the polygon mirror 10 includes a plate-shaped flat portion 12 attached to a rotating body, and a cylindrical reflecting surface group 14 formed on an edge of the flat portion 12. I have.
  • the flat portion 12 is formed so as to close one end (the upper end in FIG. 1) of the reflection surface group 14.
  • the reflecting surface group 14 includes reflecting surfaces M (1), M (2), M (3), M (4), M (5), and M (6) described later.
  • a rectangular shape (a prismatic shape) orthogonal to the plane portion 12 or a reflecting surface M (1) -M (6) is formed in a substantially umbrella shape having an angle other than an angle orthogonal to the plane portion 12. . That is, in the embodiment shown in FIG. 1, the reflecting surface M (1) —M (6) is formed in an umbrella shape that is inclined obliquely outward from the plane portion 12, but vertically hangs down from the plane portion 12. It may be.
  • the reflecting surfaces M (l) M (6) may have different angles with respect to the P-contact surface, or may have the same angle.
  • the reflecting surface group 14 includes a plurality (n) of reflecting surfaces M.
  • n a description will be given assuming that six reflecting surfaces M (l) M (6) are provided.
  • Each of the reflecting surfaces M (1) to M (6) is formed into an appropriate surface such as a flat surface, a spherical surface, a rotationally symmetric aspherical surface, and a free-form surface.
  • a metal thin film such as aluminum, silver, or gold is formed into a mirror-like shape by vapor deposition, sputtering, or the like. Therefore, when light is applied to the reflecting surfaces M (l) -M (6), the light is reflected by the reflecting surfaces M (1) -M (6).
  • a triangular chamfer 16 is formed in a lower portion of the reflection surface M (l) —M (6). These chamfers 16 may be omitted because the force S disposed between the adjacent reflecting surfaces M (l) and M (6) is not optically used in many cases.
  • a circular mounting hole 12 a is penetrated in the thickness direction at the center of the flat portion 12 closing the upper end of the umbrella-shaped reflecting surface group 14.
  • the polygon mirror 10 is attached to the rotating body by passing a rotating shaft of a rotating body (not shown) through the mounting hole 12a.
  • a rotating means such as a motor is incorporated in the rotating body. Therefore, by driving the rotating means, the rotating body is rotated. That is, the polygon mirror 10 rotates integrally with the rotator by the rotation of the rotator, and the above-described switching and scanning of the reflected light are performed.
  • the mounting hole 12a is unnecessary as long as the flat portion 12 can be mounted on the rotating body. For example, when a plurality of screws (not shown) are passed through the flat portion 12 and fastened to the rotating body, the polygon mirror 10 is attached to the rotating body.
  • the entire polygon mirror 10 is formed by injection molding. Inject resin material into a mold (not shown, but having a shape for molding polygon mirror 10) A gate section 34 described later is arranged at a position facing the plane section 12 of the polygon mirror 10. Therefore, on the upper surface of the plane portion 12 of the polygon mirror 10, the pin gate marks L (l), L (2), L (3), L (4), L (5), L (6) is formed.
  • the pin gate traces L (l) -L (6) correspond to each of the six reflecting surfaces M (l) -M (6), and six are located around the mounting hole 12a in the plane portion 12. Are located in
  • the pin gate mark L (l) corresponds to the reflecting surface M (l)
  • the pin gate mark L (2) corresponds to the reflecting surface M (2).
  • the numbers in parentheses sequentially correspond to the numbers on the reflection surface.
  • the molded body 20 in the mold including the polygon mirror 10 is formed.
  • the mold is provided with a sprue runner portion 32 corresponding to the sprue runner and a gate portion corresponding to the gate.
  • the gate unit 34 is arranged near a position corresponding to each of the reflection surfaces M (l) M (6).
  • the leading ends (lower ends) of the respective gate portions 34 correspond to the respective reflecting surfaces M (l) -M (6).
  • the resulting pingate trace is L (l) -L (6).
  • the pin gate trace L (l) -L (6) is formed by the pin gate at the tip of each gate section 34. Therefore, in this embodiment, six pin gates are indicated by using the reference symbols L (1) and L (6), similarly to the pin gate traces.
  • the shortest distance between the pin gate trace L (l) and the pin gate trace L (2) is DL (1)
  • the distance between the pin gate trace L (2) and the pin gate trace L (3) is The shortest distance is DL (2).
  • the shortest distance between adjacent pin gate traces is described in correspondence with the numbers in parentheses in the pin gate traces. Therefore, the shortest distance between the pin gate trace L (5) and the pin gate trace L (6) is DL (5), and the shortest distance between the pin gate trace L (l) and the pin gate trace L (6) is DL (6).
  • the polygon mirror 10 is formed by setting conditions such that DM (2)> DL (l) / 2,..., DM (6)> DL (5) / 2.
  • L> DL (6) / 2 force DM (1) X1.
  • the polygon mirror 10 is formed under the conditions set to be / 2.
  • the shortest distances DM (1) -DM (6) are each less than half of the shortest distances DL (1) DL (6). Therefore, the shortest distance DM defined in the same manner as the above-described distance R is formed longer than half of the shortest distance DL between adjacent pin gate traces L.
  • the resin material to be injection-molded comes into contact with the resin material injected from the adjacent pin gate L and then integrally forms on the reflection surface side. Flow away. Therefore, the occurrence of weld lines on the polygon mirror 10 is prevented. Then, a polygon mirror 10 having excellent surface accuracy and strength is formed.
  • the shortest distance from the edge formed by the intersection of the back surface of the reflection surface M (l) and the plane portion 12 to the pin gate L (1) is DM (1)
  • the back surface of the reflection surface M (2) is The shortest distance from the edge formed by the intersection of the plane part 12 and the pin gate L (2)
  • the back surface of the reflective surface M (6) intersects the plane part 12
  • the shortest distance from the edge formed by this to the pin gate L (6) is DM (6)
  • the shortest distance between the pin gate L (l) and the pin gate L (2) is DL (1)
  • the pin gate L ( The shortest distance between pin gate L (3) and pin gate L (3) is DL (2)
  • the shortest distance between pin gate L (l) and pin gate L (6) is DL (6).
  • a mold whose conditions are set to be DL (5) / 2 is used. That is, the mold is formed so as to meet the conditions described above.
  • the shortest distance DM (1) -DM (6) is less than half of the shortest distance DL (1) -DL (6). Therefore, the shortest distance DM defined in the same manner as the distance R described above is formed longer than half of the shortest distance DL between the pin gates L adjacent to each other.
  • the resin material injected from the pin gate is the resin material from the pin gate in contact with the P. After coming into contact with the material, it flows integrally to the reflective surface M side. For this reason, the occurrence of a mold line in the polygon mirror 110 is prevented. Therefore, a mold capable of forming the polygon mirror 10 having excellent surface accuracy and strength is provided.
  • the shortest distance DM (1) DM (6) can also be defined as follows.
  • the distance DM (l) is the shortest distance from the edge formed by the intersection of the reflecting surface M (l) and the plane portion 12 to the pin gate mark L (1)
  • the distance DM (2) is the reflecting surface M ( The distance from the edge formed by the intersection of (2) and the plane part 12 to the pin gate mark L (2) will be described below, and the pin gate mark L corresponding to the reflection surface will be described in correspondence with the number in parentheses. . Therefore, the shortest distance from the edge formed by the intersection of the reflection surface M (6) and the plane portion 12 to the pin gate mark L (6) is DM (6).
  • the shortest distance DM defined in this way is the length of a perpendicular line that is vertically lowered from the pin gate trace L to the intersection of the reflection surface M and the plane portion 12. Even with this definition, as described above, the shortest distance DM (1) —DM (6) from the edge formed by the intersection of the back surface of the reflection surface M and the plane portion 12 to the pingate mark L There is no substantial difference from the definition of.
  • these wall thicknesses are set as in 0.7 ⁇ t / t ⁇ 1.3. In this case,
  • it is set as 0.85 ⁇ t Zt ⁇ 1.15. More than thickness t
  • ⁇ t ⁇ 3mm and lmm ⁇ t ⁇ 3mm More preferably, 1.
  • the thickness of the plane portion 12 is t
  • the thickness of the reflection surface M (l) M (6) is t.
  • t and t satisfy lmm ⁇ t ⁇ 3mm and lmm ⁇ t ⁇ 3mm.
  • FIG. 4 shows an enlarged cross-sectional view of the pin gate L (l).
  • the diameter of the pin gate L (l) is, and the opening angle of the pin gate L (l) is equal, 0.8 mm ⁇ ⁇ ⁇ ! ⁇ 1.6 mm, and 15 ° ⁇ ⁇ ⁇ 35 ° It is good that there is.
  • the diameter ⁇ d is less than 0.8 mm, molding defects such as short shots and sink marks (sink marks) occur in the polygon mirror 10 in which the molten resin material does not easily flow during injection molding. If the diameter ⁇ i> d exceeds 1.6 mm, a trace of the gate L will remain on the polygon mirror 10 where the resin is not easily cut off at the gate L.
  • the opening angle ⁇ force is less than S15 °, the resin material at the gate L is not easily cut, and a trace of the gate L remains on the polygon mirror 10 for a long time. If the opening angle ⁇ force exceeds ° 5 °, the pin gate L tends to be worn when molding is repeated.
  • the diameter ⁇ d and the opening angle ⁇ of the pin gate L are within the above-described conditions.
  • FIG. 5 shows a state in which the molten resin material is injection-molded based on the above conditions. There is no weld line on the adjacent reflective surface ⁇ . This is because, as described above, the resin materials injected from the adjacent pin gates L come into contact with each other to be integrated, and then flow so as to form the reflection surface ⁇ .
  • the pin gate traces L (l) and L (L) are obtained from the sides (edges) formed by the intersections of the reflecting surfaces M (l), ⁇ (2), (2),..., L
  • the shortest distance to (6) is set to less than half of the shortest distance between the adjacent pin gate traces. That is, the shortest distance between the pin gate traces From the intersection of the reflecting surfaces M (l), M (2),..., M (6) and the plane part 12, the pingate traces L (l), L (2),..., L ( The shortest distance up to 6) was formed longer.
  • the resin material to be injection molded comes into contact with the resin material from the adjacent pin gates L (l), L (2), , M (2),..., M (6), thereby preventing the occurrence of weld lines.
  • the polygon mirror 10 excellent in surface accuracy and strength can be formed.
  • the polygon mirror 10 since the polygon mirror 10 having excellent surface accuracy is formed, the polygon mirror 10 can be attached to the rotating body satisfactorily. Therefore, it is possible to provide a highly durable polygon mirror 10 that can be suitably used even in a severe environment such as a high temperature, a low temperature, and a high humidity such as a vehicle.
  • the thickness t of the plane portion 12 and the thickness t of the reflecting surfaces M (l), M (2), ..., M (6) are set as 0.7 ⁇ t
  • the pin gate L is not disposed at the portion where the mounting hole 12a is formed. For this reason, the mounting hole 12a to the rotating body can be formed with high precision. Therefore, the mounting hole 12a can be easily mounted on the rotating body.
  • FIG. 6 shows a polygon mirror when molded under the conditions described in the first embodiment.
  • FIG. 7 shows a compact including a polygon mirror.
  • the pin gate trace L (l) -L (6) (also the pin gate L (l) -L (6)) has a reflection surface M (l) —M (6). ) And the plane portion 12 are formed at positions very close to the edge where they intersect. Therefore, the shortest distance DM is equal to the adjacent pin gate mark L (l)
  • FIG. 8 shows a state where the polygon mirror is injection-molded under the conditions shown in FIGS. 6 and 7.
  • a weld line 26 occurs at the boundary between the reflection surfaces M (l) and M (6). This is because the injected resin material flows so as to form the reflection surface M before coming into contact with the resin material from the adjacent pin gate L. That is, the adjacent pin gate L force has a small association angle F at which the injected resin material comes into contact. The larger the association angle F, the better.
  • the polygon mirror 30 includes a cylindrical reflecting surface group 14 having three reflecting surfaces M (l), M (2), and M (3) formed as outer peripheral side surfaces, A substantially triangular plane portion 12 closing the upper end of the surface group 14 is provided.
  • the reflecting surface group 14 is formed in a substantially prismatic shape.
  • the molten resin material is injected and molded.
  • Pin gate traces in injection molding pin gates in dies so that L (l), L (2), L (3) correspond to the respective reflecting surfaces M (l), M (2), M (3) Are located.
  • the pin gate traces L (l), L (2), and L (3) are arranged around a mounting hole 12a formed in the plane portion 12.
  • the shortest distance DL of the pin gate trace L that is in contact with P for example, the shortest distance DL (1) between the pin gate trace L (1) and the pin gate trace L (2) is the circular mounting hole 12a.
  • the shortest distance DL is defined, and the shortest distance DM (not shown) from the edge formed by the intersection of the reflection surface M and the plane portion 12 to the pin gate L is determined in the first embodiment. It is defined in the same way as the form. Further, the relationship between the shortest distances DM and DL is set in the same manner as in the first embodiment. Then, weld lines are less likely to occur during injection molding, and a polygon mirror 30 having excellent surface accuracy and strength is formed. In addition, a mold is provided in which weld lines are less likely to occur during injection molding and can mold the polygon mirror 30 having excellent surface accuracy and strength.
  • the polygon mirror of the present invention since the flow of the resin material to be injected is uniform, the surface accuracy without weld lines is good, and the strength is excellent.
  • the polygon mirror molding die of the present invention it is possible to surely mold a polygon mirror having excellent surface accuracy and strength in which weld lines are not generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

 ポリゴンミラー(10)は、n個の反射面(M(1),M(2),…,M(n))が外周側面に形成された反射面群(14)と、前記反射面群の一端部を閉じる平面部(12)と、前記平面部に設けられ、前記n個の反射面それぞれに対し、前記反射面と前記平面部とが交差する縁部のそれぞれから離間したn個のピンゲート跡(L(1),L(2),…,L(n))とを備えている。前記反射面M(n)と前記平面部とが交差して形成される縁部から前記ピンゲート跡L(n)までの最短距離をDM(n)とし、ピンゲート跡L(n)とピンゲート跡L(1)との間の最短距離をDL(n)としたとき、DM(1)>DL(1)/2、DM(2)>DL(2)/2、…、DM(n)>DL(n)/2であり、DM(1)>DL(n)/2、DM(2)>DL(1)/2、…、DM(n)>DL(n−1)/2である。

Description

明 細 書
ポリゴンミラーおよびポリゴンミラー成形用金型
技術分野
[0001] 本発明は、射出成形によって成形されるポリゴンミラーおよびその成形に用いる成 形用金型に関する。
背景技術
[0002] ポリゴンミラーは、回転することにより反射光の切り換えや走査を行うため、複数の 反射面を備えている。ポリゴンミラーは、金型を用いた射出成形によって成形されて いる。例えば特開平 8-238682号公報や特許第 2619244号公報には、ポリゴンミラ 一の製造方法が開示されている。
[0003] 図 10には、特開平 8— 238682号公報に開示された製造方法を示す。
[0004] ポリゴンミラー 110は、平面部 112と、この平面部 112の外周側面に配設された状 態で連結された複数の反射面 114とを備えている。平面部 112は、各反射面 114の 裏側の中間部に連結されている。この平面部 112の中央部には、回転体が取り付け られる環状のボス部 112aが形成されてレ、る。
[0005] このようなポリゴンミラー 110を射出するための金型は、スプノレー 141と、このスプル 一 141の終端力 水平方向に延びるディスクゲート 140とを備えている。スプルー 14 1は、成形されるポリゴンミラー 110の回転軸 CLに沿って延びている。符号 145はポ リゴンミラー 110の反射面 114を成形するためのスライド型である。
[0006] ポリゴンミラー 110を成形する場合、溶融樹脂材をスプノレー 141に対して所定の圧 力で射出する。樹脂材をディスクゲート 140から金型のキヤビティ内に充填した後、冷 却して樹脂材を固化する。この後、型開きするとともに突き出しピン 147によって成形 品を突き出すことにより射出成形が終了する。
[0007] この成形の後、ディスクゲート 140部分を除去することにより、環状のボス部 112aが 形成され、ボス部 112aの内面が回転体への取り付け面となる。この構造による樹脂 材の充填の際には、樹脂材が中央部分の回転軸 CLから周囲に同時に供給されるた め、ウエルドラインが発生し難い。 [0008] 図 11Aおよび図 11Bには、特許第 2619244号公報に開示された製造方法を示す
[0009] ポリゴンミラー 210は、ボス部 212aと、板状部 212と、反射面 214とを備えている。
ボス部 212aは、中央部に形成され、回転体への取付部分となる。板状部 212は、ボ ス部 212aから放射状に複数(8つ)延びている。反射面 214は、ボス部 212aから延 びた各板状部 212の先端に形成されている。金型には、これら、ボス部 212a、板状 部 212および反射面 214を形成するキヤビティを備えている。
[0010] 金型のキヤビティに溶融樹脂材を充填するため、図 11Bに示すように、スプルー 24 1がボス部 212aの中央部分に対応して延びている。このスプルー 241からランナー 2 42が放射状に延びている。ランナー 242は、各板状部 212に対応するように延びて いる。そのランナー 242の先端部分は、キヤビティ内に樹脂材を供給するピンゲート 2 45である。ピンゲート 245は、各反射面 214に対応するように反射面 214と同数が設 けられている。ピンゲート 245は、板状部 212の幅方向における略中央部分に配置さ れている。すなわち、ピンゲート 245は、それぞれの反射面 214と垂直な二等分線上 に配置されている。
[0011] このような構造では、各ピンゲート 245から射出される樹脂材の量および圧力のバ ランスが一定となる。各反射面 214の全面がピンゲート 245から略等しい距離となる。 このため、溶融樹脂材が均一に流れて均等に行き渡る。したがって、隣接する反射 面 214の間で生じるウエルドラインは、板状部 212の境界部分となる稜線 235 (図 11 A参照)に発生し、反射面 214へのウエルドラインの発生が防止される。
[0012] 上述した特開平 8-278463号公報に開示された方法では、図 10に示すポリゴンミ ラー 110の成形後にディスクゲート 140を除去する必要があり、その除去のためのェ 程を付加する必要があるため、生産性が低下する問題がある。ディスクゲート 140を 除去した後のボス部 112aの内面は、面精度が悪いので、回転体への取り付けの際 の基準とすることが困難である。このため、別途、取り付けのための治具が必要であり 、回転体への取り付けが面倒となる問題がある。
[0013] 上述した特許第 2619244号公報に開示された方法では、図 11Aに示すように、ゥ エルドラインが板状部 212の間の稜線 235に発生するため、光学的な問題が発生し なレ、。その反面、使用時におけるポリゴンミラー 210の高速回転により、ウエルドライン 力 破壊されるおそれがある。特に、ポリゴンミラーを車両用に用いる場合には、使用 環境が厳しいため、耐久性に悪影響を及ぼす可能性がある。さらに、この方法を用い て形成したポリゴンミラーでは、厚みがある場合や反射面の角度がそれぞれ異なる場 合に、反射面にウエルドラインが発生する不具合を有してレ、る。
発明の開示
[0014] 本発明は、回転体への取り付けを良好に行うことができ、し力もウエルドラインが発 生することが防止されるポリゴンミラーおよびその成形に用いる成形用金型を提供す ることを目的とする。
[0015] 本発明に係るポリゴンミラーの一態様は、
n個の反射面 (M(l), M(2),…, M(n))が外周側面に形成された反射面群(14) と、
前記反射面群の一端部を閉じる平面部(12)と、
前記平面部に設けられ、前記 n個の反射面それぞれに対し、前記反射面と前記平 面部とが交差する縁部のそれぞれから離間した n個のピンゲート跡 (L(l), L(2),〜 , L(n))と
を具備し、
前記反射面 M (1)と前記平面部とが交差して形成される縁部から前記ピンゲート跡 L(l)までの最短距離を DM (1)とし、前記反射面 M (2)と前記平面部とが交差して 形成される縁部から前記ピンゲート跡 L (2)までの最短距離を DM (2)とし、■·■、前記 反射面 M (n)と前記平面部とが交差して形成される縁部から前記ピンゲート跡 L (n) までの最短距離を DM (n)とし、
前記ピンゲート跡 L(l)と前記ピンゲート跡 L (2)との間の最短距離を DL(1)とし、 前記ピンゲート跡 L (2)と前記ピンゲート跡 L (3)との間の最短距離を DL (2)とし、… 、ピンゲート跡 L(n)とピンゲート跡 L(l)との間の最短距離を DL(n)としたとき、
DM(1) >DL(l)/2、 DM (2) >DL(2)/2、 ···、 DM(n) >DL(n)/2であり、
DM(1) >DL(n)/2、 DM (2) >DL(l)/2、 ···、 DM (n) >DL(n— 1)/2 であることを特徴とする。 [0016] 本発明に係るポリゴンミラー成形用金型の一態様は、
n個の反射面 (M(l), M(2),…, M(n))が外周側面に形成された反射面群(14) と、前記反射面群の一端部を閉じる平面部(12)とを有するポリゴンミラー(10)を成 形する金型であって、
前記平面部を成形する平面部成形面に、 n個の反射面それぞれに対し、 n個の反 射面と前記平面部とが交差する縁部のそれぞれ力 離間した位置に配置された n個 のピンゲート (L(l), L(2),…, L(n))を備え、
前記反射面 M (1)と前記平面部とが交差して形成される縁部から前記ピンゲート L (1)までの最短距離を DM (1)とし、前記反射面 M (2)と前記平面部とが交差して形 成される縁部から前記ピンゲート L (2)までの最短距離を DM (2)とし、 ·■·、前記反射 面 M (n)と前記平面部とが交差して形成される縁部から前記ピンゲート L (n)までの 最短距離を DM (n)とし、
前記ピンゲート L(l)と前記ピンゲート L(2)との間の最短距離を DL(1)とし、前記 ピンゲート L (2)と前記ピンゲート L (3)との間の最短距離を DL (2)とし、 ···、前記ピン ゲート L(n)と前記ピンゲート L(l)との間の最短距離を DL(n)、としたとき、
DM(1) >DL(l)/2、 DM (2) >DL(2)/2、 ···、 DM(n) >DL(n)/2であり、
DM(1) >DL(n)/2、 DM (2) >DL(l)/2、 ···、 DM (n) >DL(n— 1)/2 であることを特徴とする。
図面の簡単な説明
[0017] [図 1]図 1は、本発明の第 1の実施の形態に係るポリゴンミラーを示す概略的な平面 図である。
[図 2]図 2は、第 1の実施の形態に係るポリゴンミラーを成形するための成形体を示す 概略的な斜視図である。
[図 3]図 3は、第 1の実施の形態に係るポリゴンミラーを成形するための図 2に示す成 形体の概略的な縦断面図である。
[図 4]図 4は、第 1の実施の形態に係るポリゴンミラーの図 3に示すピンゲートの概略 的な拡大断面図である。
[図 5]図 5は、第 1の実施の形態に係るポリゴンミラーの成形時に樹脂材が流れる様子 を示す概略的な斜視図である。
[図 6]図 6は、第 1の実施の形態に係るポリゴンミラーのピンゲート跡が好ましくない場 合を示す概略的な平面図である。
[図 7]図 7は、第 1の実施の形態に係る、好ましくないポリゴンミラーを成形するための 図 6に示す成形体の縦断面図である。
[図 8]図 8は、第 1の実施の形態に係る、好ましくないポリゴンミラーの成形時に樹脂 材が流れる様子を示す概略的な斜視図である。
[図 9]図 9は、本発明の第 2の実施の形態に係るポリゴンミラーを示す概略的な平面 図である。
[図 10]図 10は、ポリゴンミラーの従来の成形方法を示す断面図である。
[図 11A]図 11Aは、ポリゴンミラーの別の従来の成形方法を示す平面図である。
[図 11B]図 11Bは、ポリゴンミラーの別の従来の成形方法を示す断面図である。 発明を実施するための最良の形態
[0018] 以下、図面を参照しながらこの発明を実施するための最良の形態について説明す る。
[0019] まず、第 1の実施の形態について図 1ないし図 5を用いて説明する。
[0020] ポリゴンミラー 10は、例えば、バーコードスキャナ、レーザビームプリンタ、車両用光 学スキャナ等の回転軸に取り付けられて使用される。ポリゴンミラー 10を所定の回転 軸回りに回転させることにより、反射光の切り換えや走查を行うことが可能である。
[0021] ポリゴンミラー 10は、例えば熱可塑性樹脂材が射出成形されて成形される。熱可塑 性樹脂材としては、例えば、ポリカーボネート、メタクリル樹脂、ポリアリレート、ポリス チレン、シクロォレフインポリマー、その他適宜の樹脂材が用いられる。シクロォレフィ ンポリマーとしては、例えば、商品名「ゼォネックス 480S」(日本ゼオン (株)製)を使 用することが可能である。
[0022] 図 1に示すように、ポリゴンミラー 10は、回転体に取り付けられる板状の平面部 12と 、この平面部 12の縁部に形成された筒状の反射面群 14とを備えている。平面部 12 は、反射面群 14の一端部(図 1中の上端部)を閉じるように形成されてレ、る。
[0023] 反射面群 14は、後述する反射面 M (1) , M (2) , M (3) , M (4) , M (5) , M (6)が 平面部 12に対して直交する角状 (角柱状)や、反射面 M (1)— M (6)が平面部 12に 対して直交する角度以外の角度を有する略傘状に形成されている。すなわち、図 1 に示す形態では、反射面 M (1)— M (6)が平面部 12から斜め方向外側に向かって 傾斜された傘状に形成されているが、平面部 12から垂直に垂下されていても良い。 また、反射面 M (l) M (6)は、 P 接する面に対してそれぞれ角度が異なっていても 良ぐ全て同じ角度であっても良い。
[0024] 反射面群 14は、複数 (n個)の反射面 Mを備えてレ、ることが好適である。ここでは、 例えば 6つの反射面 M (l) M (6)を備えているものとして説明する。
[0025] これら反射面 M (1)— M (6)は、それぞれ、または、全てが平面、球面、回転対称 非球面、自由曲面等の適宜の面に成形されている。各反射面 M (l)— M (6)の外表 面には、アルミニウム、銀、または、金等の金属薄膜が蒸着やスパッタリング等により 成膜されて鏡面状に形成されている。このため、反射面 M (l)— M (6)に光が照射さ れると、その光は反射面 M (1)— M (6)によって反射される。
[0026] 図 2に示すように、反射面 M (l)— M (6)における下側部分には、三角形の面取部 16が形成されている。これら面取部 16は、隣接する反射面 M (l)— M (6)の間に配 置されている力 S、光学的に用いられることがないことが多いので、省略しても良い。
[0027] 図 3に示すように、例えば傘状の反射面群 14の上端部を閉じる平面部 12の中央部 には、円形の取付孔 12aが厚さ方向に貫通されている。この取付孔 12aには、図示し ない回転体の回転軸が貫通されることにより、ポリゴンミラー 10が回転体に取り付けら れる。回転体には、モータ等の回転手段(図示せず)が組み込まれている。このため 、この回転手段を駆動させることによって、回転体が回転される。すなわち、回転体の 回転によりポリゴンミラー 10が回転体と一体的に回転して上述した反射光の切り換え や走査が行われる。
[0028] なお、平面部 12を回転体に対して取り付け可能であれば、取付孔 12aは不要であ る。例えば、平面部 12に複数のネジ(図示せず)を貫通させて回転体に締結等すると 、回転体にポリゴンミラー 10が取り付けられる。
[0029] 上述したように、ポリゴンミラー 10の全体は、射出成形により成形される。樹脂材を 金型(図示しないが、ポリゴンミラー 10を成形する形状を備えている)に対して射出す る後述するゲート部 34がポリゴンミラー 10の平面部 12に対向する位置に配置される 。このため、ポリゴンミラー 10の平面部 12の上面には、これらゲート部 34のピンゲート のピンゲート跡 L(l), L(2), L(3), L(4), L(5), L (6)が形成される。
[0030] ピンゲート跡 L(l)一 L(6)は、 6個の反射面 M(l)— M (6)のそれぞれに対応する ように、 6個が平面部 12における取付孔 12aの周囲に配置されている。ここで、ピンゲ ート跡 L(l)は、反射面 M(l)に対応し、ピンゲート跡 L (2)は反射面 M (2)に対応す る。以下、順次、括弧内の数字が反射面における数字に対応する。
[0031] 図 2および図 3に示すように、溶融樹脂材を金型に射出することにより、ポリゴンミラ 一 10を含む金型内における成形体 20が成形される。金型は、スプル一'ランナに対 応するスプル一'ランナ部 32と、ゲートに対応するゲート部 34とを備えている。ゲート 部 34は、それぞれの反射面 M(l) M(6)に対応する位置の近傍に配置されている 。ゲート部 34がポリゴンミラー 10の平面部 12から除去された後、それぞれのゲート部 34の先端部(下端部)がそれぞれの反射面 M(l)— M (6)に対応した、図 1に示すピ ンゲート跡 L(l)一 L(6)となる。ピンゲート跡 L(l)一 L(6)は、各ゲート部 34の先端 のピンゲートにより形成される。したがって、この実施の形態では、 6個のピンゲートを ピンゲート跡と同様に、符号 L (1)一 L (6)を用いて示す。
[0032] 次に、ポリゴンミラー 10およびその成形用金型の寸法について説明する。
[0033] 図 1に示す符号 DM (1), DM (2), DM (3), DM (4), DM (5), DM (6)は、各ピ ンゲート跡 L (1)一 L (6)と、反射面 M (1)— M (6)の裏面と平面部 12とが交差する各 縁部との最短距離 R (図 3参照)と同様に最短距離としてそれぞれ定義される。
[0034] —方、ピンゲート跡 L(l)とピンゲート跡 L (2)との間の最短距離を DL(1)とし、ピン ゲート跡 L (2)とピンゲート跡 L (3)との間の最短距離を DL (2)とする。以下、隣接す るピンゲート跡の間の最短距離を、ピンゲート跡における括弧内の数字に対応させて 記載する。したがって、ピンゲート跡 L (5)とピンゲート跡 L (6)との間の最短距離は、 DL(5)となり、ピンゲート跡 L(l)とピンゲート跡 L (6)との間の最短距離は、 DL(6)と なる。
[0035] 以上のように最短距離 DM, DLを定義した場合、 DM(l) >DL(l)/2, DM (2)
>DL(2)/2, ·■·、 DM (6) >DL(6)/2、かつ、 DM(l) >DL(n)/2、すなわち、 例えば、 DM (2) >DL(l)/2、 ···、 DM (6) >DL(5)/2となるように条件を設定し てポリゴンミラー 10が形成されている。
[0036] さらに、好ましくは、 DM(1) XI· l>DL(l)/2、 DM(2) XI· l>DL(2)/2、 ■•■、DM(6) X1. l>DL(6)/2,力 DM(1) X1. l>DL(6)/2, DM(2) XI. 1>DL(1)Z2、 ·■·、 DM (6) XI.1 >DL(5)/2となるように条件を設定してポリゴ ンミラー 10が形成されている。
[0037] すなわち、このように設定された関係では、最短距離 DM (1)— DM (6)は、それぞ れ最短距離 DL(1) DL(6)の半分未満である。したがって、隣接するピンゲート跡 L間の最短距離 DLの半分よりも、上述した距離 Rと同様に定義される最短距離 DM の方が長く形成されている。
[0038] このように最短距離 DM, DLが設定されているので、射出成形される樹脂材は、隣 接したピンゲート Lから射出される樹脂材と接触した後、一体となって反射面側に流 れる。このため、ポリゴンミラー 10にウエルドラインが発生することが防止される。そう すると、面精度や強度に優れたポリゴンミラー 10が形成される。
[0039] 以上の関係は、ポリゴンミラー 10を成形する成形用金型においても、同様に設定さ れている。このため、反射面 M(l)の裏面と平面部 12とが交差して形成される縁部か らピンゲート L (1)までの最短距離を DM (1)、反射面 M (2)の裏面と平面部 12とが 交差して形成される縁部からピンゲート L (2)までの最短距離を DM (2)、 ···、反射面 M (6)の裏面と平面部 12とが交差して形成される縁部からピンゲート L (6)までの最 短距離を DM (6)とし、ピンゲート L(l)とピンゲート L (2)との間の最短距離を DL(1) 、ピンゲート L (2)とピンゲート L (3)との間の最短距離を DL (2)、 ···、ピンゲート L(l) とピンゲート L (6)との間の最短距離を DL (6)として、ポリゴンミラー 10を成形したとき に、 DM(1) >DL(1)Z2、 DM (2) >DL(2)/2、■·■、 DM (6) >DL(6)/2,かつ DM(1) >DL(6)/2、 DM (2) >DL(l)/2、 ·■·、 DM (6) >DL (5) /2となるよう に条件を設定した金型が用レ、られる。
[0040] この場合、さらに、好ましくは、ポリゴンミラー 10を成形したときに、 DM(1) XI.1> DL(l)/2、 DM (2) XI. l>DL(2)/2、…、 DM (6) XI. l>DL(6)/2,かつ DM(1) XI. l>DL(6)/2、 DM (2) XI. l>DL(l)/2、■·■、 DM (6) XI.1> DL (5) /2となるように条件を設定した金型が用いられる。すなわち、金型は、上述し た条件に沿うように形成されている。
[0041] したがって、このような成形用金型を用いる場合には、最短距離 DM (1)— DM (6) は、最短距離 DL (1)— DL (6)の半分未満である。したがって、 P 接するピンゲート L 間の最短距離 DLの半分よりも、上述した距離 Rと同様に定義される最短距離 DMの 方が長く形成されている。
[0042] このように最短距離 DM, DLが設定されているので、金型を用いてポリゴンミラー 1 0を射出成形する場合、ピンゲートから射出される樹脂材は、 P 接したピンゲートしか らの樹脂材と接触した後、一体となって反射面 M側に流れる。このため、ポリゴンミラ 一 10にゥヱルドラインが発生することが防止される。したがって、面精度や強度に優 れたポリゴンミラー 10を成形可能な金型が提供される。
[0043] 最短距離 DM (1) DM (6)については、次のように定義することもできる。距離 D M (l)は、反射面 M (l)と平面部 12とが交差して形成される縁部からピンゲート跡 L ( 1)までの最短距離とし、距離 DM (2)は反射面 M (2)と平面部 12とが交差して形成 される縁部からピンゲート跡 L (2)までの距離とし、以下、反射面に対応したピンゲー ト跡 Lを括弧内の数字に対応させて記載する。したがって、反射面 M (6)と平面部 12 とが交差して形成される縁部からピンゲート跡 L (6)までの最短距離は DM (6)となる
[0044] なお、このように定義した場合の最短距離 DMは、ピンゲート跡 Lから反射面 Mおよ び平面部 12の交差した縁部に垂直に下ろした垂線の長さとなる。このように定義して も、上述したように、反射面 Mの裏面と平面部 12とが交差して形成される縁部からピ ンゲート跡 Lまでの最短距離 DM (1)— DM (6)についてした定義と実質上の大きな 差異はない。
[0045] 図 3に示すように、平面部 12の肉厚を t、反射面 M (l)— M (6)の肉厚を tとした場
1 2 合、 0. 7≤t /t≤1. 3のように、これらの肉厚が設定されている。この場合、さらに
1 2
好ましくは、 0. 85≤t Zt ≤1. 15として設定されている。以上の厚さ t
1 2 1, tは、 lmm
2
≤t≤3mm、かつ、 lmm≤t≤ 3mmであることが良好である。さらに好ましくは、 1.
1 2
5mm≤t≤2. 5mm、かつ、 1. 5mm≤t≤2. 5mmであることが良好である。 [0046] このように肉厚 t , t、およびそれらの比が設定されているので、榭脂材の流れが均
1 2
一となり、充填された樹脂材にウエルドラインが発生することが防止される。したがって 、面精度や強度に優れたポリゴンミラー 10が成形される。
[0047] 以上の関係は、ポリゴンミラー 10を成形する成形用金型においても、同様に設定さ れている。すなわち、平面部 12の肉厚を t、反射面 M (l) M (6)の肉厚を tとした
1 2 とき、 0. 7≤t /t≤1. 3となるように条件を設定した金型が用レ、られる。ここで、厚さ
1 2
t, tは、 lmm≤t≤3mm,かつ、 lmm≤t≤ 3mmであることが良好である。
1 2 1 2
[0048] 図 4には、ピンゲート L (l)の拡大断面図を示す。他のピンゲート L (2) L (6)にも 同様に適用される。ここで、ピンゲート L (l)の直径を とし、ピンゲート L (l)の開口 角度をひとした場合、 0. 8mm≤ φ ο!≤1. 6mmであり、かつ、 15° ≤ひ≤35° であ ることが良好である。
[0049] 直径 φ dが 0. 8mm未満であると、射出成形時に溶融樹脂材が流れ難ぐポリゴンミ ラー 10にショートショットゃヒケ(sink mark)等の成形不良が発生する。直径 <i> dが 1 . 6mmを超えると、ゲート Lにおける榭脂材切れが悪ぐポリゴンミラー 10にゲート L の跡が長く残ってしまう。
[0050] 一方、開口角度 α力 S15° 未満の場合には、ゲート Lにおける樹脂材切れが悪ぐ ポリゴンミラー 10にゲート Lの跡が長く残ってしまう。開口角度 α力 ¾5° を超えると、 成形を繰り返す際にピンゲート Lが摩耗し易くなる。
[0051] したがって、ピンゲート Lの直径 φ dおよび開口角度 αは、上述した条件の範囲内 であることが良好である。
[0052] 図 5には、以上の条件に基づいて溶融樹脂材を射出成形した状態を示す。隣接す る反射面 Μではウエルドラインが発生していなレ、。これは、上述したように、隣接した ピンゲート Lから射出される樹脂材が相互に接触して一体となり、その後、反射面 Μ を成形するように流れるためである。
[0053] 以上説明したように、この実施の形態によれば、以下のことがいえる。
[0054] 反射面 M (l) , Μ (2) , ·■·, Μ (6)と平面部 12とが交差して形成される辺(縁部)か らピンゲート跡 L (l), L (2) ,…, L (6)までの最短距離を、これと隣接しているピンゲ ート跡間の最短距離の半分未満としている。すなわち、ピンゲート跡間の最短距離の 半分よりも、反射面 M(l), M(2), ···, M (6)と平面部 12との交差部分からピンゲー ト跡 L(l), L(2),…, L (6)までの最短距離の方を長く形成した。このように設定する ことにより、射出成形される樹脂材は、隣接したピンゲート L(l), L(2), ···, L(6)か らの樹脂材と接触した後、一体となって反射面 M(l), M(2),…, M(6)側に流れる ため、ウエルドラインが発生することが防止される。このため、面精度や強度に優れた ポリゴンミラー 10を形成することができる。このように、面精度が優れたポリゴンミラー 1 0が形成されるので、回転体への取り付けを良好に行うことができる。したがって、車 両用などの高温 ·低温 ·多湿などの過酷な環境下におレ、ても好適に使用することがで きる耐久性に優れたポリゴンミラー 10を提供することができる。
[0055] 平面部 12の肉厚 tおよび反射面 M(l), M(2),…, M(6)の肉厚 tを、 0.7≤t
1 2 1
/t≤1.3の関係に設定したので、樹脂材の流れが均一となる。このため、充填され
2
た樹脂材にウエルドラインが発生することを防止することができる。したがって、面精 度や強度に優れたポリゴンミラー 10を形成することができる。
[0056] さらに、取付孔 12aの形成部位には、ピンゲート Lが配置されていなレ、。このため、 回転体への取付孔 12aを高精度に成形することができる。このため、取付孔 12aを回 転体に容易に取り付けることができる。
[0057] ところで、図 6には、第 1の実施の形態で説明した条件を外して成形した場合のポリ ゴンミラーを示す。図 7には、ポリゴンミラーを含む成形体を示す。
[0058] 図 6および図 7に示すように、ピンゲート跡 L(l)一 L(6) (ピンゲート L(l)一 L(6)も 同様)は、反射面 M(l)— M(6)と、平面部 12とが交差する縁部に極めて接近する 位置に形成されている。このため、最短距離 DMが、隣接したピンゲート跡 L(l)一 L
(6)の間の最短距離 DLよりも短く成形されている。
[0059] 図 8には、図 6および図 7に示す条件でポリゴンミラーを射出成形した状態を示す。
図 8に示すように、反射面 M(l)— M (6)の境界部分には、ウエルドライン 26が発生 している。これは、射出された樹脂材が隣接したピンゲート Lからの樹脂材と接触する 前に、反射面 Mを成形するように流れるためである。すなわち、隣接するピンゲート L 力 射出される樹脂材が接触する会合角 Fが小さいためである。この会合角 Fは大き いほど好ましい。 [0060] 次に、第 2の実施の形態について図 9を用いて説明する。この実施の形態は、第 1 の実施の形態の変形例であって、第 1の実施の形態で説明した部材と同一の部材ぉ よび同一の作用を有する部材には同一の符号を付し、詳しい説明を省略する。
[0061] この実施の形態に係るポリゴンミラー 30は、 3個の反射面 M (l), M (2) , M (3)を 外周側面として形成した筒状の反射面群 14と、この反射面群 14の上端部を閉じる略 三角形状の平面部 12とを備えている。反射面群 14は、略角柱状に形成されている。
[0062] このポリゴンミラー 30においても、溶融樹脂材が射出されて成形される。射出成形 におけるピンゲート跡 (金型においてはピンゲート) L (l) , L (2) , L (3)がそれぞれの 反射面 M (l) , M (2) , M (3)に対応するように配置されている。
[0063] ピンゲート跡 L (l), L (2) , L (3)は、平面部 12に形成した取付孔 12aの周囲に配 置されている。この場合、 P 接したピンゲート跡 Lの最短距離 DLである、例えば、ピ ンゲート跡 L ( 1 )とピンゲート跡 L ( 2 )との間の最短距離 DL ( 1 )は、円形の取付孔 12 aを同心円とした円軌跡によって定義される。
[0064] このように最短距離 DLを定義し、かつ、反射面 Mと平面部 12とが交差して形成さ れる縁部からピンゲート Lまでの最短距離 DM (図示せず)を第 1の実施の形態と同 様に定義する。さらに、これらの最短距離 DM, DLの関係を第 1の実施の形態と同 様に設定する。そうすると、射出成形時にウエルドラインが発生し難くなり、面精度お よび強度に優れたポリゴンミラー 30が形成される。また、射出成形時にウエルドライン が発生し難くなり、面精度および強度に優れたポリゴンミラー 30を成形可能な金型が 提供される。
[0065] なお、この実施の形態において、反射面 Mが n個の場合には、 DM (1) >DL (1) /2、 DM (2) >DL (2) /2、 ·■·、 DM (n) >DL (n) /2であり、かつ、 DM (l) >DL (n) /2、 DM (2) >DL (l) /2、■·■、 DM (n) >DL (n_l) /2と設定することにより、 第 1の実施の形態で説明した効果と同様な効果を奏することが可能となる。
[0066] これまで、レ、くつかの実施の形態について図面を参照しながら具体的に説明したが 、この発明は、上述した実施の形態に限定されるものではなぐその要旨を逸脱しな レ、範囲で行なわれるすべての実施を含む。
産業上の利用可能性 [0067] 本発明に係るポリゴンミラーによれば、射出される榭脂材の流れが均一となるため、 ウエルドラインが発生することがなぐ面精度が良好で、強度の優れたものとなる。
[0068] 本発明に係るポリゴンミラー成形用金型によれば、ウエルドラインの発生がなぐ面 精度および強度に優れたポリゴンミラーを確実に成形することができる。

Claims

請求の範囲
n個の反射面 (M(l), M(2),…, M(n))が外周側面に形成された反射面群(14) と、
前記反射面群の一端部を閉じる平面部(12)と、
前記平面部に設けられ、前記 n個の反射面それぞれに対し、前記反射面と前記平 面部とが交差する縁部のそれぞれから離間した n個のピンゲート跡 (L(l), L(2),— , L(n))と
を具備し、
前記反射面 M (1)と前記平面部とが交差して形成される縁部から前記ピンゲート跡 L(l)までの最短距離を DM (1)とし、前記反射面 M (2)と前記平面部とが交差して 形成される縁部から前記ピンゲート跡 L (2)までの最短距離を DM (2)とし、 ···、前記 反射面 M (n)と前記平面部とが交差して形成される縁部から前記ピンゲート跡 L (n) までの最短距離を DM (n)とし、
前記ピンゲート跡 L(l)と前記ピンゲート跡 L(2)との間の最短距離を DL(1)とし、 前記ピンゲート跡 L(2)と前記ピンゲート跡 L(3)との間の最短距離を DL(2)とし、… 、ピンゲート跡 L(n)とピンゲート跡 L(l)との間の最短距離を DL(n)としたとき、
DM(1) >DL(l)/2、 DM (2) >DL(2)/2, ·■·、 DM(n) >DL(n)/2であり、
DM(1) >DL (n)/2, DM (2) >DL(l)/2、■·■、 DM (n) >DL(n— 1)/2 であることを特徴とするポリゴンミラー(10)。
各最短距離 DM (1), DM(2),…, DM(n)は、各ピンゲート跡(L (1) , L(2),…, L(n))と、前記反射面群(14)の裏面における各ピンゲート跡に対応する前記反射 面の裏面と前記平面部の裏面とが交差する各縁部との最短距離であることを特徴と する請求項 1に記載のポリゴンミラー(10)。
n個の反射面 (M(l), M(2),…, M(n))が外周側面に形成された反射面群(14) と、
前記反射面群の一端部を閉じる平面部(12)と、
前記平面部に設けられ、前記 n個の反射面それぞれに対応し、 n個の反射面と前 記平面部とが交差する縁部のそれぞれから離間した n個のピンゲート跡 (L (1) , L (2 ), '··, "η))と
を具備し、
前記平面部の肉厚を t、前記反射面の肉厚を tとしたとき、
1 2
0.7≤t /t≤1.
3
1 2
であることを特徴とするポリゴンミラー(10)。
[4] 前記反射面群(14)は、前記平面部に対して傘状に形成されていることを特徴とす る請求項 1なレ、し請求項 3のレ、ずれ力 4に記載のポリゴンミラー(10)。
[5] 前記反射面群(14)は、筒状の角柱部に形成されていることを特徴とする請求項 1 ないし請求項 3のいずれ力、 1に記載のポリゴンミラー(10)。
[6] 回転体に取り付けられる取付面(12)と、
前記取付面と一体的に成形され、前記回転体の周りに前記回転体を囲むように配 置される n個の反射面(M(l), M(2),■·-, M(n))と、
前記取付面に設けられ、前記 n個の反射面それぞれに対し、前記反射面と前記取 付面とが交差する縁部のそれぞれから離間した n個のピンゲート跡 (L(l), L(2),… , L(n))と
を具備し、
前記反射面 M (1)と前記取付面とが交差して形成される縁部から前記ピンゲート跡 L(l)までの最短距離を DM (1)とし、前記反射面 M (2)と前記取付面とが交差して 形成される縁部から前記ピンゲート跡 L (2)までの最短距離を DM (2)とし、 ···、前記 反射面 M (n)と前記取付面とが交差して形成される縁部から前記ピンゲート跡 L (n) までの最短距離を DM (n)とし、
前記ピンゲート跡 L(l)と前記ピンゲート跡 L (2)との間の最短距離を DL(1)とし、 前記ピンゲート跡 L (2)と前記ピンゲート跡 L (3)との間の最短距離を DL (2)とし、… 、ピンゲート跡 L(n)とピンゲート跡 L(l)との間の最短距離を DL(n)としたとき、
DM(1) >DL(l)/2、 DM (2) >DL(2)/2, ·■·、 DM(n) >DL(n)/2であり、
DM(1) >DL (n)/2, DM (2) >DL(l)/2、■·■、 DM (n) >DL(n— 1)/2 であることを特徴とするポリゴンミラー(10)。
[7] n個の反射面 (M(l), M(2),…, M (n) )が外周側面に形成された反射面群(14) と、前記反射面群の一端部を閉じる平面部(12)とを有するポリゴンミラー(10)を成 形する金型であって、
前記平面部を成形する平面部成形面に、 n個の反射面それぞれに対し、 n個の反 射面と前記平面部とが交差する縁部のそれぞれ力 離間した位置に配置された n個 のピンゲート (L(l), L(2),…, L(n))を備え、
前記反射面 M (1)と前記平面部とが交差して形成される縁部から前記ピンゲート L (1)までの最短距離を DM (1)とし、前記反射面 M (2)と前記平面部とが交差して形 成される縁部から前記ピンゲート L (2)までの最短距離を DM (2)とし、 ·■·、前記反射 面 M (n)と前記平面部とが交差して形成される縁部から前記ピンゲート L (n)までの 最短距離を DM (n)とし、
前記ピンゲート L(l)と前記ピンゲート L (2)との間の最短距離を DL(1)とし、前記 ピンゲート L (2)と前記ピンゲート L (3)との間の最短距離を DL (2)とし、 ·■·、前記ピン ゲート L(n)と前記ピンゲート L(l)との間の最短距離を DL(n)、としたとき、
DM(1) >DL(l)/2、 DM (2) >DL(2)/2、 ···、 DM(n) >DL(n)/2であり、
DM(1) >DL(n)/2、 DM (2) >DL(l)/2、 ···、 DM (n) >DL(n— 1)/2 であることを特徴とするポリゴンミラー成形用金型。
[8] 各最短距離(DM (1), DM(2),…, DM(n))は、各ピンゲート(L(l), L2, ···, L
(n) )と、前記反射面群(14)の裏面における各ピンゲートに対応する前記反射面 (M (1), M(2), ···, M(n))の裏面と前記平面部(12)の裏面とが交差する各縁部との 最短距離であることを特徴とする請求項 7に記載のポリゴンミラー成形用金型。
[9] n個の反射面 (M(l), M(2),…, M (n) )を外周側面に形成した反射面群(14)と
、前記反射面群の一端部を閉じる平面部(12)とを有するポリゴンミラー(10)を成形 する金型であって、
前記平面部を成形する平面部成形面に、前記 n個の反射面それぞれに対応する n 個の反射面と前記平面部とが交差する縁部のそれぞれから離間した n個のピングー ト (L(l), L(2),…, L(n))を備え、
前記平面部の肉厚を t、前記反射面の肉厚を tとしたとき、
1 2
0.7≤t /t≤1.3 であることを特徴とするポリゴンミラー成形用金型。
PCT/JP2005/001141 2004-01-30 2005-01-27 ポリゴンミラーおよびポリゴンミラー成形用金型 WO2005073780A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05709415.3A EP1710613B1 (en) 2004-01-30 2005-01-27 Polygon mirror and mold for molding polygon mirror
US11/242,112 US7399094B2 (en) 2004-01-30 2005-09-28 Polygon mirror and polygon mirror molding die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-024337 2004-01-30
JP2004024337A JP4040024B2 (ja) 2004-01-30 2004-01-30 ポリゴンミラー及びポリゴンミラー成形用金型

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/242,112 Continuation US7399094B2 (en) 2004-01-30 2005-09-28 Polygon mirror and polygon mirror molding die

Publications (1)

Publication Number Publication Date
WO2005073780A1 true WO2005073780A1 (ja) 2005-08-11

Family

ID=34823932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001141 WO2005073780A1 (ja) 2004-01-30 2005-01-27 ポリゴンミラーおよびポリゴンミラー成形用金型

Country Status (4)

Country Link
US (1) US7399094B2 (ja)
EP (1) EP1710613B1 (ja)
JP (1) JP4040024B2 (ja)
WO (1) WO2005073780A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142066A1 (ja) * 2016-02-19 2017-08-24 コニカミノルタ株式会社 樹脂製の成形品、ミラー及び成形品の製造方法
JP2018096871A (ja) * 2016-12-14 2018-06-21 アイシン精機株式会社 測距センサ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9778457B2 (en) * 2014-02-12 2017-10-03 Brother Kogyo Kabushiki Kaisha Light deflector and polygon mirror
JP6601120B2 (ja) * 2015-10-05 2019-11-06 ブラザー工業株式会社 ポリゴンミラー、画像形成装置およびポリゴンミラーの製造方法
JP7034820B2 (ja) 2018-04-24 2022-03-14 キヤノン株式会社 ポリゴンミラー、偏向器、光走査装置、および画像形成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304225A (ja) * 1987-06-04 1988-12-12 Konica Corp 回転多面鏡とその製造方法
JPH04253021A (ja) * 1991-01-30 1992-09-08 Minolta Camera Co Ltd 回転多面鏡とその成形用金型
JPH0560995A (ja) * 1991-01-30 1993-03-12 Minolta Camera Co Ltd 回転多面鏡とその製造方法
US5296959A (en) 1991-01-30 1994-03-22 Minolta Camera Kabushiki Kaisha Polygonal mirror, and manufacturing process and mold thereof
JPH10186116A (ja) 1996-12-25 1998-07-14 Olympus Optical Co Ltd ポリゴンミラーとその射出成形方法および射出成形型

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619244B2 (ja) 1987-06-04 1997-06-11 コニカ株式会社 回転多面鏡の製造方法
JPH08238682A (ja) 1995-03-06 1996-09-17 Fujitsu Ltd 回転多面鏡およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304225A (ja) * 1987-06-04 1988-12-12 Konica Corp 回転多面鏡とその製造方法
JPH04253021A (ja) * 1991-01-30 1992-09-08 Minolta Camera Co Ltd 回転多面鏡とその成形用金型
JPH0560995A (ja) * 1991-01-30 1993-03-12 Minolta Camera Co Ltd 回転多面鏡とその製造方法
US5296959A (en) 1991-01-30 1994-03-22 Minolta Camera Kabushiki Kaisha Polygonal mirror, and manufacturing process and mold thereof
JPH10186116A (ja) 1996-12-25 1998-07-14 Olympus Optical Co Ltd ポリゴンミラーとその射出成形方法および射出成形型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1710613A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017142066A1 (ja) * 2016-02-19 2017-08-24 コニカミノルタ株式会社 樹脂製の成形品、ミラー及び成形品の製造方法
JP2018096871A (ja) * 2016-12-14 2018-06-21 アイシン精機株式会社 測距センサ

Also Published As

Publication number Publication date
EP1710613B1 (en) 2013-08-07
EP1710613A1 (en) 2006-10-11
EP1710613A4 (en) 2007-12-19
JP2005215516A (ja) 2005-08-11
JP4040024B2 (ja) 2008-01-30
US20060023281A1 (en) 2006-02-02
US7399094B2 (en) 2008-07-15

Similar Documents

Publication Publication Date Title
US6055111A (en) Plastic lens and method of making a plastic lens
JP5804692B2 (ja) プラスチック光学部材およびプラスチック光学部材の製造方法
WO2005073780A1 (ja) ポリゴンミラーおよびポリゴンミラー成形用金型
EP2495096B1 (en) Optical component and method of making the same
US20100002315A1 (en) Resin lens and method of molding resin lens
JP6029319B2 (ja) プラスチック光学部材、プラスチック光学部材の製造方法、およびレンズ
JP2004253080A (ja) 光ピックアップレンズ及びそれを有する光学ピックアップ装置
EP1659424B1 (en) Polygon mirror and polygon mirror device
US20150084216A1 (en) Injection mold, injection-molded product, optical element, optical prism, ink tank, recording device, and injection molding method
JP2006256311A (ja) 固体撮像素子収納ケース用樹脂製蓋材及びその製造方法
US20100315934A1 (en) Plastic lens, manufacturing method thereof, production tracing management method thereof, and optical pickup device
JPH11202106A (ja) プラスチックレンズ
JP5189420B2 (ja) 樹脂レンズおよび樹脂レンズの成形方法
US20120187588A1 (en) Device and Manufacturing Resin Molded Articles for Use in Optical Elements, and Method for Manufacturing Optical Elements
US7303381B2 (en) Device for manufacturing optical disc, method of manufacturing the same, and optical disc
JP2961550B2 (ja) 回転多面鏡
US7172301B2 (en) Optical reflecting mirror
JP6775107B2 (ja) 反射型表示装置、射出成形金型、及び反射型表示装置の製造方法
JP2008257261A (ja) 光学素子及び光学素子成形型及び光学素子成形方法
JP2005215517A (ja) ポリゴンミラー及びポリゴンミラー用射出成形金型
JP2002154139A (ja) 光学素子、光学素子の製造方法及び光学素子用金型
JPH0560995A (ja) 回転多面鏡とその製造方法
JP4227712B2 (ja) 熱可塑性樹脂製の光学的反射部材
JP3383387B2 (ja) 光ディスク用基板及びこの光ディスク用基板の成形用金型
JPH0654021U (ja) ポリゴンミラー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005709415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11242112

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11242112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005709415

Country of ref document: EP