WO2005073564A1 - Druckspeicher, insbesondere pulsationsdämpfer - Google Patents

Druckspeicher, insbesondere pulsationsdämpfer Download PDF

Info

Publication number
WO2005073564A1
WO2005073564A1 PCT/EP2005/000410 EP2005000410W WO2005073564A1 WO 2005073564 A1 WO2005073564 A1 WO 2005073564A1 EP 2005000410 W EP2005000410 W EP 2005000410W WO 2005073564 A1 WO2005073564 A1 WO 2005073564A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure accumulator
gas
working
bellows
Prior art date
Application number
PCT/EP2005/000410
Other languages
English (en)
French (fr)
Inventor
Herbert Baltes
Markus Lehnert
Original Assignee
Hydac Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Technology Gmbh filed Critical Hydac Technology Gmbh
Priority to JP2006550002A priority Critical patent/JP5059414B2/ja
Priority to EP05700985A priority patent/EP1709334B1/de
Priority to US10/584,713 priority patent/US7857006B2/en
Priority to DK05700985T priority patent/DK1709334T3/da
Priority to DE502005001823T priority patent/DE502005001823D1/de
Publication of WO2005073564A1 publication Critical patent/WO2005073564A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/10Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means
    • F15B1/103Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with flexible separating means the separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/22Liquid port constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/205Accumulator cushioning means using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/31Accumulator separating means having rigid separating means, e.g. pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3153Accumulator separating means having flexible separating means the flexible separating means being bellows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/32Accumulator separating means having multiple separating means, e.g. with an auxiliary piston sliding within a main piston, multiple membranes or combinations thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/41Liquid ports
    • F15B2201/413Liquid ports having multiple liquid ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/415Gas ports

Definitions

  • Pressure accumulator in particular pulsation dampers
  • the invention relates to a pressure accumulator, in particular a pulsation damper with a accumulator housing and a piston part arranged therein, wherein a bellows-like separating member is supported at one end on the piston part and at the other end on the accumulator housing, and the separating member has two working spaces, in particular a gas space from a fluid space separates in a fluid-tight, in particular gas-tight, manner from one another within the storage housing.
  • hydropneumatic pressure accumulators with a bellows separating a gas space from an oil space within the storage housing, in particular in the form of a metal bellows, which is attached at one end to the storage housing in such a way that the oil space adjoins the inside of the bellows, which is closed at its free other end by a corresponding volume change of the gas space and the oil space as the two working spaces of the accumulator closing body, and with a the flow of hydraulic fluid from and into the oil space releasing or blocking Valve, which when moving the closing body, the one- NEN predefined maximum value corresponds to an increase in the volume of the gas space through which the closing body can be moved into its blocking position, the closing body being designed in the form of a trough, the bottom of which is designed as a movable valve member of the valve controlling the flow of hydraulic fluid.
  • a valve tappet of the valve connected to the oil space is arranged relative to the closing body of the metal bellows in such a positional relationship that the closing body of the metal bellows, designed as a flat end plate, reaches the valve tappet when a desired one is reached End position acted upon and shifted into the blocking position of the valve, so that the outflow of hydraulic fluid from the oil space is prevented when the end plate of the metal bellows is reached in this end position.
  • a valve tappet attached to the trough bottom is additionally provided, which extends concentrically to the longitudinal axis from the storage housing and is connected to a second movable valve member which, at a predetermined minimum value of the volume of the gas space Excessive movement of the trough cooperates with a second valve seat blocking the flow of hydraulic fluid into the oil space, so that there is the advantageous possibility of also controlling the end position of the trough corresponding to the minimum value of the volume of the gas space with the aid of an oil-side valve.
  • the storage housing can be shaped in such a way that it forms a mechanical stop after a short lifting movement of the trough, because the entire interior of the trough is available as a gas space volume, and in this respect the metal bellows as a whole is not only protected against excessive pulling out , but since it surrounds the outside of the above-mentioned trough, the bellows is also mechanically supported on the outside of the trough over its entire length when there is excess pressure in the gas space.
  • the very low “dead volume" between the trough and the bellows it cannot be ruled out that individual folds of the metal bellows are exposed to excessive stress and can tear and fail in this way.
  • the invention has for its object to further improve the known pressure storage solutions while maintaining their advantages in such a way that in a very small space, a high degree of damping with regard to the pulsations of the hydraulic fluid including fuel, such as diesel fuel, as well Fluid is reached in the fluid space of the pressure accumulator, while at the same time realizing effective protection for each individual fold or deflection of the bellows, in order to ensure functionally reliable operation even over very long cycle times with a large number of changing load cycles.
  • a related problem is solved by a pressure accumulator with the features of claim 1 in its entirety.
  • the one working space is filled with a fluid in addition to a predeterminable volume fraction of a working gas, the working gas allows compression to a predeterminable degree, and in this way damping and smoothing the on the fluid side of the memory occurring pulsations of the fluid medium in question.
  • the volume of the gas space thus formed is correspondingly reduced by the fluid filling, and the working gas can be decoupled from the fluid in such a way that the fluid acts as a damping support medium between the folds and deflections of the bellows-like separating member occur on the inside thereof, so that during the opening and upsetting processes of the bellows during operation of the pressure accumulator, the wall parts of the bellows folded in this way can be supported on the fluid as a counter bearing, which leads to a demonstrable increase in the Lifespan of the pressure accumulator according to the invention and thus leads to an increase in its functional reliability.
  • the latter applies particularly to rapid pulsations and rapid pressure surges.
  • the fluid can be displaced into the working space with the other working gas or can be called up from there back into the spaces between the folds for supporting processes.
  • a fluid is used that can flow very quickly as a thin medium within the working space with the working gas, and furthermore the fluid must be suitable in the area of the Design temperature for the pressure accumulator, for example from - 10 ° C to + 160 ° C to fulfill its intended task.
  • a fluid filling which ensures that little working gas gets in solution within the fluid, in order not to unnecessarily reduce the effective volume fraction of working gas for pressure shock absorption.
  • a combination of nitrogen gas as the working gas and ethylene alcohol as the fluid on the gas side of the store as the fluid filling has proven to be particularly advantageous.
  • the volume fractions of working gas and fluid are preferably chosen to be the same, or there is preferably slightly more fluid than working gas in the working space of the pressure accumulator. In the case of different exemplary embodiments, there is also the possibility of choosing the rooms and / or the filling quantity differently in terms of their size. It is then advantageous, however, to ensure that, just before the maximum travel is reached, the gas space is essentially filled with fluid.
  • the piston part on the actual fluid side of the accumulator can be provided with a cavity that can be filled with the additional fluid, so that the absorption capacity for hydraulic fluid, including fuels, is increased on the fluid side of the accumulator
  • the pressure accumulator for pulsation damping taking a different path from the previously known solutions, in which an attempt has been made to improve the working capacity of the accumulator by moving the intended cavity of the piston part to the side of the working area with the working gas (see WO 01/55602 A1).
  • the single figure shows a longitudinal section of the aforementioned embodiment of the pressure accumulator.
  • the illustrated embodiment of a pressure accumulator is intended in particular for use in fuel and heavy oil systems in order to dampen and smooth out pressure surges of the operating medium in question.
  • diesel fuel or the like is particularly considered.
  • Such a pressure accumulator could also be used in electrohydraulic brake systems, for example in vehicle construction.
  • the pressure accumulator shown has a storage housing designated as a whole as 10, with an essentially circular-cylindrical, pot-like main part 12.
  • the main part 12 has a cover part 14, as seen in the direction of view of the figure, which can be connected to the pot-like main part 12 via a screw-in section 16 is, and a sealant in the form of a sealing ring 18 is the inside of the storage housing 10 sealed off from the environment.
  • the cover part 14 can be provided with a material recess 20, and along the longitudinal axis 22 of the memory, the cover part 14 is penetrated by an end screw 24, after removal of which by means of a suitable device (not shown) there is working gas, for example in the form of Allow nitrogen gas and / or a fluid, for example in the form of ethylene glycol, to be introduced into one working space 26 of the pressure accumulator, which is usually also referred to as a gas space in conventional accumulators.
  • a suitable device not shown
  • working gas for example in the form of Allow nitrogen gas and / or a fluid, for example in the form of ethylene glycol
  • a piston part 28 present within the accumulator housing 10 is arranged to be axially longitudinally movable along the longitudinal axis 22 of the accumulator. Furthermore, a bellows-like separating member 30 extends along the outer circumferential side of the piston part 28 and is supported with its one end 32 on the piston part 28 and with its other end 34 on an annular extension 36 of the cover part 14 which projects downwards.
  • the separating member 30 is preferably designed in the manner of a metal bellows, with a multiplicity of annular individual folds 38 or deflections which overlap the cylindrical piston part 28 on the outer circumference with a predeterminable distance in the manner of a pleating.
  • the piston part 28 separates the one working space 26, also referred to as the gas space, from another second working space 40, which is also referred to as a fluid space in the case of pressure accumulators.
  • the annular extension 36 of the cover part 14, which is to be regarded as part of the storage housing 10, has on its inside a cylindrical guide surface 42 within which the upper end of the piston part 28 can be moved longitudinally while maintaining a radial distance in the type of an annular gap 44 is performed. Furthermore, when viewed in the direction of the figure, the storage housing 10 has a cylindrical connection piece 46 on its underside, with two fluid connections 48, 50 which open into a common antechamber 52 within the connection piece 46.
  • the two fluid connections 48, 50 enter or leave the connection stub 46 at a right angle to the longitudinal axis 22 of the pressure accumulator and it has proven to be advantageous in the sense of an optimized flow guidance if vertically through deflection points 54 running at right angles thereto the respective orientation of the fluid connection 48, 50, the fluid guidance is carried out in this way.
  • the fluid connections 48, 50 enter or exit the connection stub 46 at the same height and jointly lead into the antechamber 52 over the same distance, due to the deflection points 54 having the same effect.
  • the piston part 28 has a cylindrical cavity 56 which, apart from a reduced wall thickness, essentially fills the piston part 28.
  • the piston part 28 In the area of the connection between the bellows-shaped separating member 30 and the piston part 28 at its one end 32, the piston part 28 has a ring-widening stop 58 for abutting the associated, adjacent inner wall 60 of the storage housing 10, into which the antechamber 52 of the connecting piece 46 ends.
  • the piston part 28 is also at its end opposite the stop 58 with a stop surface 62 provided transversely to the longitudinal axis 22 of the memory, which is used to strike a further opposite inner wall 64 of the memory housing 10, preferably formed by the cover part 14. With the stop surfaces formed in this way, a type of overload protection is ensured, which helps to prevent the metal bellows from being compressed or expanded by pulling apart.
  • the relevant working space 26 is filled with a working gas, for example nitrogen gas, which in this respect absorbs the pressure surges in the sense of smoothing or damping, which are introduced into the reservoir on the fluid side 40.
  • a working gas for example nitrogen gas
  • Any heating that occurs in the area of the metal bellows as a bellows-like separating member 30 can also be well done with the fluid introduced into the working space 26, in particular re master in the form of ethylene glycol, which, moreover, has a good inflow and outflow behavior as a low-viscosity medium and also dissolves little working gas, which is necessary for the damping behavior of the accumulator.
  • an insert for a rubber bellows is intended as a bellows-type separating member 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Pipe Accessories (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft einen Druckspeicher, insbesondere Pulsationsdämpfer, mit einem Speichergehäuse (10) und einem darin angeordneten Kolbenteil (28), wobei sich ein balgartiges Trennglied (30), mit seinem einen Ende (32) am Kolbenteil (28) abstützt, und mit seinem anderen Ende (34) am Speichergehäuse (10), und wobei das Trennglied (30) zwei Arbeitsräume (26, 40), insbesondere einen Gasraum (26) von einem Fluidraum (40) innerhalb des Speichergehäuses (10) fluiddicht, insbesondere gasdicht, voneinander trennt. Dadurch, dass der eine Arbeitsraum (26) neben einem vorgebbaren Volumenanteil an einem Arbeitsgas mit einem Fluid befüllt ist, erlaubt das Arbeitsgas bis zu einem vorgebbaren Grad eine Komprimierung und dergestalt eine Abdämpfung sowie eine Glättung der auf der Fluidseite des Speichers auftretenden Pulsationen des dahingehenden Fluidmediums.

Description

Druckspeicher, insbesondere Pulsationsdämpfer
Die Erfindung betrifft einen Druckspeicher, insbesondere Pulsationsdämpfer mit einem Speichergehäuse und einem darin angeordneten Kolbenteil, wobei sich ein balgartiges Trennglied mit seinem einen Ende am Kolbenteil abstützt und mit seinem anderen Ende am Speichergehäuse, und wobei das Trennglied zwei Arbeitsräume, insbesondere einen Gasraum von einem Fluidraum innerhalb des Speichergehäuses fluiddicht, insbesondere gasdicht, voneinander trennt.
Im Stand der Technik (WO 01/55602 A1) sind sogenannte hydropneumati- sehe Druckspeicher bekannt, mit einem innerhalb des Speichergehäuses einen Gasraum von einem Ölraum trennenden Balg, insbesondere in Form eines Metallbalges, der an seinem einem Ende am Speichergehäuse so befestigt ist, dass der Ölraum an die Innenseite des Balges angrenzt, der an seinem freien anderen Ende durch einen entsprechend Volumenänderungen von Gasraum und Ölraum als die beiden Arbeitsräume des Speichers beweglichen Abschlußkörper verschlossen ist, und mit einem das Strömen von Hydraulikfluidum aus dem und in den Ölraum freigebenden oder sperrenden Ventil, das bei einer Bewegung des Abschlußkörpers, die einer ei- nen vorgegebenen Größtwert übersteigenden Vergrößerung des Volumens des Gasraumes entspricht, durch den der Abschlußkörper in seine sperrende Stellung überführbar ist, wobei der Abschlußkörper in Form eines Troges ausgebildet ist, dessen Boden als bewegliches Ventilglied des das Strömen von Hydraulikfluidum steuernden Ventiles ausgebildet ist.
Bekanntermaßen muss bei Balgspeichern mit Gummibälgen oder Metallbälgen darauf geachtet werden, dass Überbelastungen des Balges vermieden sind. Bei einem weiteren bekannten Druckspeicher (WO 97/46823 A1) ist im Hinblick auf dieses Problem ein Ventilstößel des am Ölraum angeschlossenen Ventiles relativ zum Abschlußkörper des Metallbalges in solcher Lagebeziehung angeordnet, dass der als ebene Endplatte ausgebildete Abschlußkörper des Metallbalges den Ventilstößel bei Erreichen einer gewünschten Endstellung beaufschlagt und in die Sperrstellung des Ventiles verschiebt, so dass der Ausstrom von Hydraulikfluidum aus dem Ölraum bei Erreichen dieser Endstellung der Endplatte des Metallbalges unterbunden wird. Bei geschlossenem Ventil bleibt somit, selbst wenn das angeschlossene Hydrauliksystem drucklos werden sollte, im Ölraum des Speichers ein Druck aufrechterhalten, der dem im Grasraum momentan herr- sehenden Gasdruck entspricht, so dass am Metallbalg beidseits Druckgleichgewicht herrscht.
Zwar ist dadurch eine Überbelastung des Balges dann verhindert, wenn im Betrieb des Druckspeichers der Druck des ölseitig angeschlossenen Hydrau- liksystemes abfällt, es besteht jedoch weiterhin die Gefahr der Beschädigung des Balges bei Zuständen mit auf der Ölseite herrschendem Überdruck oder bei einem Fehlen des Vorfülldruckes auf der Gasseite. Da bei dem bekannten Druckspeicher der erwähnten Art der Größtwert des Volumens des Gasraumes im wesentlichen dem Hubvolumen entspricht, wel- ches durch die bei Zusammenziehen und Ausziehen des Metallbalges erfolgende Bewegung der Endplatte definiert ist, muss die Hublänge, welche die Endplatte innerhalb des Speichergehäuses zurücklegen kann, ausreichend lang gewählt werden, wenn ein für den Betrieb des Speichers ausrei- chendes Volumen des Gasraumes zur Verfügung gestellt werden soll. Bei fehlendem Gas-Vorfülldruck oder ölseitig herrschendem Überdruck wirkt daher der herrschende Druckgradient auf den voll ausgezogenen und damit mechanisch am stärksten belasteten Metallbalg. Man ist daher gezwungen, entweder dickere oder aber mehrlagige Metallbälge zur Anwendung zu bringen. In nachteiliger Weise wird dadurch die Federsteifigkeit stark vergrößert, was zu einem verhältnismäßig schlechten Ansprechverhalten im Betrieb führt. Mehrlagige Bälge führen zu erhöhtem Gewicht und höheren Kosten. Außerdem ergibt sich ein geringerer Hub pro Balgwindung.
Bei der eingangs erwähnten Lösung nach der WO 01/55602 A1 ist zusätzlich ein am Trogboden befestigter Ventil Stößel vorgesehen, der sich konzentrisch zur Längsachse aus dem Speichergehäuse erstreckt und mit einem zweiten bewegbaren Ventilglied verbunden ist, das bei einer einem vorgegebenen Kleinstwert des Volumens des Gasraumes übersteigenden Bewe- gung des Troges mit einem das Strömen von Hydraulikfluidum in den Ölraum sperrenden, zweiten Ventilsitz zusammenwirkt, so dass sich die vorteilhafte Möglichkeit ergibt, auch die dem Kleinstwert des Volumens des Gasraumes entsprechende Endstellung des Troges mit Hilfe eines ölseitigen Ventiles zu steuern. Da bei der bekannten Lösung der gesamte Innenraum des Troges als Teil des Gasraumes zur Verfügung steht, erreicht man insoweit ein optimales Verhältnis zwischen Gesamtgröße des Speichergehäuses und Volumen des Gasraumes, obwohl das dem Gasraum zuzurechnende Volumen innerhalb des Speichergehäuses zur Aufnahme und Beherrschung, insbesondere in Form der Pulsationsdämpfung für das Hydraulikfluidum als weiteres Fluid dann nicht zur Verfügung stehen kann. Zwar kann bei der bekannten Lösung das Speichergehäuse so geformt werden, dass es nach kurzer Hubbewegung des Troges einen mechanischen Anschlag bildet, weil der gesamte Innenraum des Troges als Gasraumvolumen zur Verfügung steht, und insoweit ist der Metallbalg als Ganzes nicht nur gegen zu starkes Ausziehen geschützt, sondern da er die Außenseite des genannten Troges umringt, ist der Balg bei im Gasraum herrschendem Überdruck auch mechanisch auf der Außenseite des Troges auf gesamter Länge abgestützt. Trotz dieses Umstandes und trotz des bestehenden sehr geringen „Totvolu- mens" zwischen Trog und Balg ist insoweit aber nicht auszuschließen, dass dennoch einzelne Falten des Metallbalges übermäßig Beanspruchungen ausgesetzt sind und derart einreißen und versagen können. Des weiteren sind sowohl im Bereich des Ventilgliedes als auch im Bereich der möglichen Anstoßstelle zwischen längsverfahrbarem Trog und einer Innenwan- düng des Speichergehäuses Dichtungen notwendig, die grundsätzlich einem Verschleiß unterliegen und mithin zum Versagen der bekannten hy- dropneumatischen Druckspeicherlösung führen können.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die bekannten Druckspeicherlösungen unter Beibehalten ihrer Vorteile dahingehend weiter zu verbessern, dass auf sehr kleinem Bauraum ein hohes Maß an Dämpfung im Hinblick auf die Pulsationen des Hydraulikfluidum einschließlich von Kraftstoff, wie Dieselkraftstoff als weiterem Fluid im Fluidraum des Druckspeichers erreicht ist, bei gleichzeitiger Reali- sierung eines wirksamen Schutzes für jede einzelne Falte oder Umlenkung des Balges, um dergestalt auch über sehr lange Zykluszeiten mit einer Vielzahl an wechselnden Lastspielen den funktionssicheren Betrieb zu gewährleisten. Eine dahingehende Aufgabe löst ein Druckspeicher mit den Merkmalen des Patentanspruches 1 in seiner Gesamtheit. Dadurch, dass gemäß dem kennzeichnenden Teil des Patentanspruches 1 der eine Arbeitsraum neben einem vorgebbaren Volumenanteil an einem Arbeitsgas mit einem Fluid befüllt ist, erlaubt das Arbeitsgas bis zu einem vorgebbaren Grad eine Komprimierung, und dergestalt eine Abdämpfung sowie eine Glättung der auf der Fluidseite des Speichers auftretenden Pulsationen des dahingehenden Fluidmediums.
Durch das Einbringen eines Fluides auf die Seite des einen Arbeitsraumes des Speichers mit dem Arbeitsgas, ist der dahingehend gebildete Gasraum im Volumen durch die Fluidfüllung entsprechend reduziert, und eine Ent- koppelung von Arbeitsgas zu Fluid kann dergestalt erfolgen, dass das Fluid als dämpfendes Abstützmedium zwischen die Falten und Umlenkungen des balgartigen Trenngliedes auf dessen Innenseite tritt, so dass bei den Auf- zieh- und Stauchvorgängen des Balges im Betrieb des Druckspeichers, die dahingehend gefalteten Wandungsteile des Balges sich an dem Fluid als Gegenlager abstützen können, was zu einer nachweisbaren Erhöhung der Lebensdauer des erfindungsgemäßen Druckspeichers und mithin zu einer Erhöhung seiner Funktionssicherheit führt. Letzteres gilt insbesondere bei raschen Pulsationen und schnellen Druckstößen. In Abhängigkeit von der jeweils eingenommenen Position des Kolbenteiles und des insoweit verbundenen balgartigen Trenngliedes kann das Fluid in den Arbeitsraum mit dem sonstigen Arbeitsgas verdrängt werden oder von dort zurück in die Zwischenräume zwischen den Falten für Abstützvorgänge abgerufen wer- den.
Vorzugsweise kommt dabei ein Fluid zum Einsatz, das als dünnflüssiges Medium sehr schnell innerhalb des Arbeitsraumes mit dem Arbeitsgas strömen kann, und des weiteren muss das Fluid geeignet sein im Bereich der Auslegungstemperatur für den Druckspeicher, beispielsweise von - 10° C bis + 160° C seine vorgesehene Aufgabe zu erfüllen. Ferner hat es sich als vorteilhaft erwiesen, eine Fluidfüllung zu verwenden mit der sichergestellt ist, dass wenig Arbeitsgas innerhalb des Fluids in Lösung gerät, um derge- stalt den wirksamen Volumenanteil an Arbeitsgas für die Druckstoßdämpfung nicht in unnötiger Weise zu reduzieren. Als besonders vorteilhaft hat sich dabei eine Kombination von Stickstoffgas als Arbeitsgas und Ethylenal- kohol als Fluid auf der Gasseite des Speichers als Fluidfüllung erwiesen. Vorzugsweise werden dabei die Volumenanteile von Arbeitsgas und Fluid gleich gewählt oder bevorzugt ist geringfügig mehr Fluid als Arbeitsgas in dem genannten Arbeitsraum des Druckspeichers vorhanden. Bei anders gearteten Ausführungsbeispielen besteht auch die Möglichkeit, die Räume und/oder die Füllmenge von ihrer Größe her anders zu wählen. Vorteilhafterweise ist dann aber darauf zu achten, dass, kurz bevor der maximale Fe- derweg erreicht ist, der Gasraum im wesentlichen mit Fluid befüllt ist.
Ein weiterer Vorteil bei der dahingehenden Lösung ist, dass das Kolbenteil auf der eigentlichen Fluidseite des Speichers mit einem mit dem weiteren Fluid befüllbaren Hohlraum versehen werden kann, so dass dergestalt auf der Fluidseite des Speichers das Aufnahmevermögen für Hydraulikfluidum einschließlich von Kraftstoffen erhöht ist, um dergestalt die Wirksamkeit des Druckspeichers für die Pulsationsdämpfung zu verbessern, wobei man dergestalt einen anderen Weg einschlägt als bei den bisher bekannten Lösungen, bei denen man den Versuch unternommen hat, das Arbeitsvermögen des Speichers dahingehend zu verbessern, dass man den vorgesehen Hohlraum des Kolbenteils auf die Seite des Arbeitsraumes mit dem Arbeitsgas gelegt hat (vgl. WO 01/55602 A1). Es ist für einen Durchschnittsfachmann auf dem Gebiet der Druckspeicher überraschend, dass er durch Umkehr dieses Wirkprinzipes mit verringertem Gasanteil bei gleichzeitiger Befül- lung mit einem Fluid auf der Gasseite des Druckspeichers zu verbesserten Dämpfungswerten für das in den Speicher eindringende Fluid kommt, bei gleichzeitigem Erreichen einer erhöhten Funktionssicherheit. Da die dahingehende Speicherlösung für die bewegbaren Teile ohne zusätzliche Dichtungen auskommt, ist auch insoweit eine Voraussetzung für einen verschleißfreien, dauerhaften Betrieb gegeben.
Weitere vorteilhafte Ausführungsformen des erfindungsgemäßen Druckspeichers sind Gegenstand der sonstigen Unteransprüche.
Nachstehend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispieles, bei dem ein Metallbalg verwendet wird, im einzelnen erläutert.
Die einzige Figur zeigt dabei einen Längsschnitt des genannten Ausführungsbeispieles des Druckspeichers.
Das dargestellte Ausführungsbeispiel eines Druckspeichers ist insbesondere für eine Verwendung in Kraftstoff- und Schwerölanlagen vorgesehen, um dergestalt Druckstöße des dahingehenden Betriebsmediums zu dämpfen und zu glätten. Im Bereich der Kraftstoffe ist dabei insbesondere an Dieselkraftstoff oder dergleichen gedacht. Femer könnte ein dahingehender Druckspeicher auch bei elektrohydraulischen Bremsanlagen, beispielsweise im Fahrzeugbau Verwendung finden. Der gezeigte Druckspeicher weist ein als Ganzes mit 10 bezeichnetes Speichergehäuse auf, mit einem im wesentlichen kreiszylinderförmigen, topfartigen Hauptteil 12. Das Haupteil 12 weist in Blickrichtung auf die Figur gesehen oben ein Deckelteil 14 auf, das über eine Einschraubstrecke 16 mit dem topfartigen Hauptteil 12 verbindbar ist, und über ein Dichtmittel in Form eines Dichtringes 18 ist das Innere des Speichergehäuses 10 gegenüber der Umgebung dichtend abgesperrt. Aus Gründen der Gewichtsersparnis kann das Deckelteil 14 mit einer Materialaussparung 20 versehen sein, und entlang der Längsachse 22 des Speichers ist das Deckelteil 14 von einer Abschlußschraube 24 durchgriffen, nach deren Entfernen über eine geeignete Vorrichtung (nicht dargestellt) sich Arbeitsgas, beispielsweise in Form von Stickstoffgas und/oder ein Fluid, beispielsweise in Form von Ethylenglykpl in den einen Arbeitsraum 26 des Druckspeichers einbringen lassen, der üblicherweise bei den konventionellen Speichern auch nur als Gasraum bezeichnet ist.
Ein innerhalb des Speichergehäuses 10 vorhandenes Kolbenteil 28 ist entlang der Längsachse 22 des Speichers axial längsverfahrbar angeordnet. Ferner erstreckt sich ein balgartiges Trennglied 30 entlang der Außenum- fangseite des Kolbenteils 28 und stützt sich mit seinem einen Ende 32 am Kolbenteil 28 ab und mit seinem anderen Ende 34 an einer nach unten vorstehenden, ringförmigen Verlängerung 36 des Deckelteiles 14 ab. Das Trennglied 30 ist vorzugsweise in der Art eines Metallbalges ausgebildet, mit einer Vielzahl an ringförmigen Einzelfalten 38 oder Umlenkungen, die zick-zack-förmig in der Art einer Plissierung das zylindrische Kolbenteil 28 außenumfangseitig mit einem vorgebbaren Abstand übergreifen. Des weiteren trennt das Kolbenteil 28 den auch als Gasraum bezeichneten einen Arbeitsraum 26 von einem weiteren zweiten Arbeitsraum 40 fluiddicht ab, den man bei dahingehenden Druckspeichern auch als Fluidraum bezeichnet.
Die ringförmige Verlängerung 36 des Deckelteiles 14, das insoweit als Bestandteil des Speichergehäuses 10 anzusehen ist, weist auf seiner Innenseite eine zylindrische Führungsfläche 42 auf, innerhalb der das obere Ende des Kolbenteiles 28 längsverfahrbar unter Beibehalten eines Radialabstandes in der Art eines Ringspaltes 44 geführt ist. Des weiteren weist das Speichergehäuse 10 in Blickrichtung auf die Figur gesehen an seiner Unterseite einen zylindrischen Anschlußstutzen 46 auf, mit zwei Fluidanschlüssen 48, 50 die in einen gemeinsamen Vorraum 52 innerhalb des Anschlußstutzens 46 münden. Dabei treten die beiden Fluidanschlüsse 48, 50 in einem rechten Winkel zu der Längsachse 22 des Druckspeichers in den Anschlußstutzen 46 ein bzw. aus diesem heraus und es hat sich im Sinne einer optimierten Strömungsführung als günstig erwiesen, wenn durch rechtwinklig hierzu verlaufende Umlenkstellen 54 senkrecht auf der jeweiligen Ausrichtung des Fluidanschlusses 48, 50 die Fluidführung dergestalt vorgenommen wird. Für die Funktion des Speichers genügt es, wenn Fluid über den Vorraum 52 im weiteren Arbeitsraum 40 ansteht, und ein Fluiddurchfluß ist nicht zwingend notwendig und auch bei stehender Fluidsäule lassen sich auftretende Pulsationen und Druckstöße entsprechend glätten bzw. dämpfen. Des weiteren ist es vorteilhaft, wenn in derselben Höhe die Fluidanschlüsse 48, 50 in den Anschlußstutzen 46 ein- bzw. austreten und über dieselbe Wegstrecke, bedingt durch die gleich wirkenden Umlenkstellen 54, gemeinsam in den Vorraum 52 einmünden.
Zur Erhöhung des Volumens des Fluidraumes auf der Seite des weiteren Arbeitsraumes 40 des Druckspeichers weist das Kolbenteil 28 einen zylindrischen Hohlraum 56 auf, der bis auf eine reduzierte Wandstärke für das Kolbenteil 28 diesen im wesentlichen ausfüllt. Im Bereich der Verbindung zwischen balgartigem Trennglied 30 mit dem Kolbenteil 28 an seinem ei- nen Ende 32 weist das Kolbenteil 28 einen ringförmig verbreiternden Anschlag 58 auf, zum Anschlagen an die zugeordnete, benachbarte Innenwandung 60 des Speichergehäuses 10, in die der Vorraum 52 des Anschlußstutzens 46 mündet. Das Kolbenteil 28 ist des weiteren an seinem dem Anschlag 58 gegenüberliegenden Ende mit einer Anschlagfläche 62 quer zur Längsachse 22 des Speichers verlaufend versehen, die dem Anschlagen an eine weitere gegenüberliegende Innenwandung 64 des Speichergehäuses 10, vorzugsweise gebildet durch das Deckelteil 14 dient. Mit den derart gebildeten Anschlagflächen ist eine Art Überlastsicherung si- chergestellt, die ein den Metallbalg schädigendes Zusammenstauchen oder Überweiten durch Auseinanderziehen vermeiden hilft.
Über den bereits aufgezeigten Ringspalt 44 ist es möglich, dass die partielle Fluidfüllung im Arbeitsraum 26 zwischen die gebildeten Hohlräume zwi- sehen den Einzelfalten 38 und dem Außenumfang des Kolbenteiles 28 tritt, um dergestalt bei den Bewegungen der Einzelfalten 38 diese entsprechend abzustützen, wobei bei einem Stauchvorgang, bei dem sich zwei benachbarte Wandungen einer Einzelfalte 38 aufeinander zu bewegen, dass derart aufgenommene Fluid in Richtung des Arbeitsraumes 26 zurückgedrängt wird, was beispielsweise der Fall ist, wenn in Blickrichtung auf die Figur gesehen von dem dahingehenden Ausgangszustand des Kolbenteiles 28 dieses nach oben in Richtung der Innenwandung 64 verfährt, und bei einer entgegengesetzten Bewegung des Kolbenteiles 28 und Auseinanderziehen der Falten 38 kann entsprechendes Fluidvolumen vom Arbeitsraum 46 über den Ringspalt 44 in die Zwischenräume zwischen den Falten 38 nachströ- . men, soweit die dahingehenden Zwischenräume mit dem Ringspalt 44 und mit dem Arbeitsraum 26 fluidführend in Verbindung stehen.
Im wesentlichen ist der dahingehende Arbeitsraum 26 mit einem Arbeits- gas, beispielsweise Stickstoffgas befüllt, das insoweit im Sinne einer Glättung oder Dämpfung die Druckstöße aufnimmt, die auf der Fluidseite 40 des Speichers in diesen eingebracht werden. Etwaig auftretende Erwärmungen im Bereich des Metallbalges als balgartiges Trennglied 30 lassen sich gleichfalls gut mit dem im Arbeitsraum 26 eingebrachten Fluid, insbesonde- re in Form von Ethylenglykol beherrschen, das im übrigen als dünnflüssiges Medium ein gutes Ein- und Ausströmverhalten aufweist und des weiteren wenig Arbeitsgas löst, das für das Dämpfungsverhalten des Speichers notwendig ist. Ebenso ist an einen Einsatz für einen Gummibalg als balgartiges Trennglied 30 gedacht.

Claims

P a t e n t a n s p r ü c h e
1. Druckspeicher, insbesondere Pulsationsdämpfer mit einem Speicherge- häuse (10) und einem darin angeordneten Kolbenteil (28), wobei sich ein balgartiges Trennglied (30), mit seinem einen Ende (32) am Kolbenteil (28) abstützt, und mit seinem anderen Ende (34) am Speichergehäuse (10), und wobei das Trennglied (30) zwei Arbeitsräume (26, 40), insbesondere einen Gasraum (26) von einem Fluidraum (40) innerhalb des Speichergehäuses (10) fluiddicht, insbesondere gasdicht, voneinander trennt, dadurch gekennzeichnet, dass der eine Arbeitsraum (26) neben einem vorgebbaren Volumenanteil an einem Arbeitsgas mit einem Fluid befüllt ist.
2. Druckspeicher nach Anspruch 1 , dadurch gekennzeichnet, dass das Fluid, mit dem der eine Arbeitsraum (26) mit dem Arbeitsgas befüllt ist, ein Alkohol, vorzugsweise Ethylenglykol ist.
3. Druckspeicher nach Anspruch 2, dadurch gekennzeichnet, dass der an- dere Arbeitsraum (40) mit Fluidanschlüssen (48, 50) versehen ist, über die ein weiteres Fluid, insbesondere in Form von Dieselkraftstoff oder Schweröl, in das Innere des Speichergehäuses (10) zuführbar ist.
4. Druckspeicher nach Anspruch 3, dadurch gekennzeichnet, dass das Kolbenteil (28), an seiner dem anderen Arbeitsraum (40) zugewandten Seite einen Hohlraum (56) aufweist, der für die Aufnahme des weiteren Fluids vorgesehen ist.
5. Druckspeicher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kolbenteil (28), zumindest über einen Teil seines möglichen Verfahrweges entlang von Teilen (42) des Speichergehäuses (10), vorzugsweise im Deckelteil (14) desselben, mit einem vorgebbaren Radialabstand, bewegbar geführt ist.
6. Druckspeicher nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das Kolbenteil (28) an seiner dem Fluidanschluß (48, 50) zugewandten Seite, mit einem Anschlag (58) versehen ist, zum Anschla- gen an einer Innenwandung (60) des Speichergehäuses (10).
7. Druckspeicher nach Anspruch 6, dadurch gekennzeichnet, dass das Kolbenteil (28), an seinem dem Anschlag (58) gegenüberliegenden Ende mit einer Anschlagfläche (62) versehen ist, zum Anschlagen an eine wei- tere Innenwandung (64) des Speichergehäuses (10), vorzugsweise gebildet durch das Deckelteil (14) desselben.
8. Druckspeicher nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das balgartige Trennglied (30) aus einem Metallbalg be- steht, mit einer Vielzahl an übereinander angeordneten Einzelfalten (38).
9. Druckspeicher nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Fluidanschlüsse (48, 50), innerhalb eines Anschluß- Stutzens (46) des Speichergehäuses (10) verlaufen und innerhalb dieses Anschlußstutzens (46) in einem gemeinsamen Vorraum (52) desselben münden.
0. Druckspeicher nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass das Kolbenteil (28), zumindest entlang eines Teiles seines möglichen Verfahrweges, einen den Radialabstand bildenden Ringspalts (44) begrenzt, über den das Arbeitsgas mit dem einen Fluid auf die In- nenseite des balgartigen Trenngliedes (30) gelangt.
PCT/EP2005/000410 2004-01-29 2005-01-18 Druckspeicher, insbesondere pulsationsdämpfer WO2005073564A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006550002A JP5059414B2 (ja) 2004-01-29 2005-01-18 蓄圧器特に脈動減衰装置
EP05700985A EP1709334B1 (de) 2004-01-29 2005-01-18 Druckspeicher, insbesondere pulsationsdämpfer
US10/584,713 US7857006B2 (en) 2004-01-29 2005-01-18 Pressure accumulator, especially pulsation damper
DK05700985T DK1709334T3 (da) 2004-01-29 2005-01-18 Trykakkumulator, især pulsationsdæmper
DE502005001823T DE502005001823D1 (de) 2004-01-29 2005-01-18 Druckspeicher, insbesondere pulsationsdämpfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004004341.8 2004-01-29
DE102004004341A DE102004004341A1 (de) 2004-01-29 2004-01-29 Druckspeicher, insbesondere Pulsationsdämpfer

Publications (1)

Publication Number Publication Date
WO2005073564A1 true WO2005073564A1 (de) 2005-08-11

Family

ID=34801157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000410 WO2005073564A1 (de) 2004-01-29 2005-01-18 Druckspeicher, insbesondere pulsationsdämpfer

Country Status (7)

Country Link
US (1) US7857006B2 (de)
EP (1) EP1709334B1 (de)
JP (1) JP5059414B2 (de)
AT (1) ATE377156T1 (de)
DE (2) DE102004004341A1 (de)
DK (1) DK1709334T3 (de)
WO (1) WO2005073564A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098795A1 (de) 2006-02-22 2007-09-07 Hydac Technology Gmbh Druckspeicher, insbesondere pulsationsdämpfer
WO2012079813A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Pulsationsdämpfer einer fahrzeugbremsanlage
US10473123B2 (en) * 2015-05-29 2019-11-12 Eagle Industry Co., Ltd. Metal bellows type accumulator
CH716345A1 (de) * 2019-06-24 2020-12-30 Schlumpf Innovations Gmbh Pulsationsdämpfer.

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003724A1 (de) * 2007-01-25 2008-07-31 Hydac Technology Gmbh Druckbehälter, insbesondere Hydrospeicher
US20090099725A1 (en) * 2007-09-12 2009-04-16 Pesch Michael R Electronic mileage logger
US8418727B2 (en) * 2008-10-03 2013-04-16 Eaton Corporation Hydraulic accumulator and method of manufacture
JP5711264B2 (ja) 2009-12-30 2015-04-30 ハイダック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングHydac Technology Gesellschaft Mit Beschrankter Haftung 金属製ベローズ用案内装置
EP2519748B1 (de) * 2009-12-30 2016-10-19 Hydac Technology Gmbh Hydrospeicher, insbesondere balgspeicher
DE102009060852A1 (de) 2009-12-30 2011-07-07 HYDAC Technology GmbH, 66280 Hydrospeicher, insbesondere Pulsationsdämpfer
US8656959B2 (en) 2011-09-23 2014-02-25 GM Global Technology Operations LLC Hydraulic accumulator
DE102011117533B4 (de) * 2011-11-03 2020-10-08 Woodward L'orange Gmbh Druckspeicher sowie Kraftstoffeinspritzeinrichtung mit einem solchen
DE102011117752A1 (de) * 2011-11-05 2013-05-08 Hydac Technology Gmbh Hydrospeicher in Form eines Balgspeichers
DE102013011115A1 (de) * 2013-07-03 2015-01-08 Hydac Technology Gmbh Vorrichtung zum Einstellen eines Mediendruckes gegenüber einem Umgebungsdruck
DE102014001283A1 (de) 2014-02-01 2015-08-06 Hydac Technology Gmbh Druckspeicher
CN110603383B (zh) 2017-05-11 2021-10-22 伊格尔工业股份有限公司 蓄能器
US10876668B2 (en) * 2018-06-13 2020-12-29 Performance Pulsation Control, Inc. Precharge manifold system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046823A1 (en) * 1996-06-05 1997-12-11 Haim Loran A novel accumulator
DE19908089A1 (de) * 1999-02-25 2000-09-21 Hydac Technology Gmbh Hydrospeicher, insbesondere Pulsationsdämpfer
WO2001055602A1 (de) * 2000-01-29 2001-08-02 Hydac Technology Gmbh Hydropneumatischer druckspeicher
DE10253012A1 (de) * 2002-04-26 2003-11-06 Continental Teves Ag & Co Ohg Druckmittelspeicher

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916052A (en) * 1955-01-04 1959-12-08 Melville F Peters Energy transfer system
US3467140A (en) * 1965-07-16 1969-09-16 Ralph P Piffath Hermetical sealing mechanism
US3862646A (en) * 1973-12-17 1975-01-28 Parker Hannifin Corp Combined filling tube and pressure indicator
US3933172A (en) * 1975-02-24 1976-01-20 Grove Valve And Regulator Company Pipeline surge reliever with sanitary barrier
JPH0249401B2 (ja) * 1983-12-29 1990-10-30 Eagle Ind Co Ltd Beroozuakyumureeta
JPS624774A (ja) * 1985-06-28 1987-01-10 Ube Ind Ltd 蓄熱用液体組成物および蓄熱方法
US4685491A (en) * 1986-08-14 1987-08-11 Allied Corporation Accumulator having fluid-lubricating seals
JPS647901U (de) * 1987-07-03 1989-01-17
JPH0267136A (ja) 1988-09-01 1990-03-07 Mitsubishi Heavy Ind Ltd インキ遠隔調整装置の原点調整方法
JPH02266101A (ja) * 1989-04-05 1990-10-30 Nhk Spring Co Ltd アキュムレータ
DE3917797A1 (de) * 1989-06-01 1990-12-06 Bosch Gmbh Robert Druckmittelspeicher, insbesondere fuer fahrzeug-bremsanlagen
US5205326A (en) * 1991-08-23 1993-04-27 Hydraulic Power Systems, Inc. Pressure response type pulsation damper noise attenuator and accumulator
US5624105A (en) * 1992-10-10 1997-04-29 Hemscheidt Fahrwerktechnik Gmbh & Co. Hydropneumatic suspension system
JP3434307B2 (ja) * 1992-10-30 2003-08-04 日本発条株式会社 アキュムレータ
US5771936A (en) * 1994-07-25 1998-06-30 Nok Corporation Accumulator, process and apparatus for making the same
DE10009865B4 (de) * 2000-03-01 2007-12-13 Hydac Technology Gmbh Hydropneumatischer Druckspeicher, insbesondere Pulsationsdämpfer
JP2002013501A (ja) * 2000-06-30 2002-01-18 Nok Corp アキュムレータ
JP2003172301A (ja) * 2001-12-04 2003-06-20 Nhk Spring Co Ltd アキュムレータ
JP2003262201A (ja) 2002-03-08 2003-09-19 Nok Corp アキュムレータ
DE10233481A1 (de) * 2002-07-24 2004-02-12 Hydraulik-Ring Gmbh Speicher für ein flüssiges Medium
JP3889370B2 (ja) * 2003-03-06 2007-03-07 日本発条株式会社 アキュムレータ
JP4718129B2 (ja) * 2003-07-30 2011-07-06 日本発條株式会社 車両用ブレーキシステム部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046823A1 (en) * 1996-06-05 1997-12-11 Haim Loran A novel accumulator
DE19908089A1 (de) * 1999-02-25 2000-09-21 Hydac Technology Gmbh Hydrospeicher, insbesondere Pulsationsdämpfer
WO2001055602A1 (de) * 2000-01-29 2001-08-02 Hydac Technology Gmbh Hydropneumatischer druckspeicher
DE10253012A1 (de) * 2002-04-26 2003-11-06 Continental Teves Ag & Co Ohg Druckmittelspeicher

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007098795A1 (de) 2006-02-22 2007-09-07 Hydac Technology Gmbh Druckspeicher, insbesondere pulsationsdämpfer
US8176940B2 (en) 2006-02-22 2012-05-15 Hydae Technology GmbH Pressure accumulator, in particular pulsation damper
KR101304186B1 (ko) * 2006-02-22 2013-09-06 하이댁 테크놀로지 게엠베하 압력 어큐뮬레이터, 특히 파동 댐퍼
WO2012079813A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Pulsationsdämpfer einer fahrzeugbremsanlage
US8978704B2 (en) 2010-12-17 2015-03-17 Robert Bosch Gmbh Pulsation damper of a vehicle braking system
DE102010063352B4 (de) 2010-12-17 2022-09-15 Robert Bosch Gmbh Pulsationsdämpfer einer Fahrzeugbremsanlage
US10473123B2 (en) * 2015-05-29 2019-11-12 Eagle Industry Co., Ltd. Metal bellows type accumulator
CH716345A1 (de) * 2019-06-24 2020-12-30 Schlumpf Innovations Gmbh Pulsationsdämpfer.

Also Published As

Publication number Publication date
JP2007519869A (ja) 2007-07-19
ATE377156T1 (de) 2007-11-15
DK1709334T3 (da) 2008-03-17
US7857006B2 (en) 2010-12-28
DE502005001823D1 (de) 2007-12-13
US20090101222A1 (en) 2009-04-23
JP5059414B2 (ja) 2012-10-24
EP1709334A1 (de) 2006-10-11
EP1709334B1 (de) 2007-10-31
DE102004004341A1 (de) 2005-08-18

Similar Documents

Publication Publication Date Title
EP2287492B1 (de) Hydropneumatischer Kolbenspeicher
DE3133839C2 (de)
WO2005073564A1 (de) Druckspeicher, insbesondere pulsationsdämpfer
WO2012103909A1 (de) Hydropneumatische kolbenzylinderanordnung
DE102007036102A1 (de) Selbstpumpende hydropneumatische Feder-Dämpfer-Einheit
DE102011119011A1 (de) Gaszylinder, insbesondere Hochdruck-Gaszylinder
DE4226754A1 (de) Aufhaengungssystem fuer fahrzeuge
DE1936858C3 (de) Selbstpumpendes hydraulisches Federbein mit innerer Niveauregelung für Fahrzeuge
DE3025810A1 (de) Hydraulischer stossdaempfer
EP2253862A1 (de) Dämpfungseinrichtung für Radfahrzeuge
DE19857595A1 (de) Selbstpumpendes hydropneumatisches Federbein mit innerer Niveauregelung
EP2818751B1 (de) Hydropneumatische Kolben-Zylinder-Anordnung
EP1384900B1 (de) Hydrospeicher
DE102008042637B4 (de) Ventileinrichtung mit amplitudenabhängiger Dämpfkraft
DE102006010738A1 (de) Fluidspeicher
DE10209663C1 (de) Druckspeicher
EP3329142B1 (de) Hydraulischer einrohr-teleskop-schwingungsdämpfer
DE2540701B2 (de) Stossdaempfer
EP1657470B1 (de) Hydropneumatisches Federelement für Kraftfahrzeuge, insbesondere Kettenfahrzeuge
DE202009018583U1 (de) Hydropneumatischer Kolbenspeicher
DE102004011573B4 (de) Verstellbares Dämpfventil
DE10138195C1 (de) Schwingungsdämpfer nach dem Einrohrprinzip
DE202005017434U1 (de) Antikavitations-Fluidspeicher
DE3146833C2 (de)
EP1584502A1 (de) Federungs- und Dämpfungseinrichtung für Kraftfahrzeuge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005700985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10584713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006550002

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005700985

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2005700985

Country of ref document: EP