WO2005071781A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2005071781A1
WO2005071781A1 PCT/JP2005/000559 JP2005000559W WO2005071781A1 WO 2005071781 A1 WO2005071781 A1 WO 2005071781A1 JP 2005000559 W JP2005000559 W JP 2005000559W WO 2005071781 A1 WO2005071781 A1 WO 2005071781A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
pressure
flow path
fuel
Prior art date
Application number
PCT/JP2005/000559
Other languages
English (en)
French (fr)
Inventor
Soichi Shibata
Takayuki Urata
Yasushi Sugawara
Takahiro Umeda
Junji Morita
Kazuhito Hatoh
Yukinobu Kitano
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05703796.2A priority Critical patent/EP1708300B1/en
Priority to JP2005517242A priority patent/JP4873952B2/ja
Priority to KR1020067002394A priority patent/KR101128552B1/ko
Priority to US10/564,469 priority patent/US7691510B2/en
Publication of WO2005071781A1 publication Critical patent/WO2005071781A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates electric power using a polymer electrolyte fuel cell.
  • a fuel cell basically includes a pair of electrodes, an anode and a force sword, sandwiching an electrolyte having ion conductivity, and an anode-side separator and a cathode-side separator sandwiching these.
  • the anode-side separator has a channel for supplying fuel to the anode
  • the cathode-side separator has a channel for supplying oxidant to the cathode.
  • a fuel for example, hydrogen gas or ethanol
  • an oxidizing agent for example, oxygen or air
  • Such fuel cells use a polymer membrane having hydrogen ion conductivity as an electrolyte, use hydrogen or a mixed gas containing hydrogen as a main component as a fuel, and use oxygen or air as an oxidant.
  • a type that uses the gas described above.
  • hydrogen gas is oxidized on the anode by the reaction of equation (1) to generate electrons and hydrogen ions.
  • the hydrogen ions move through the solid electrolyte membrane and reach the force sword side.
  • the electrons reach the force sword through an external circuit, and oxygen, electrons, and hydrogen ions in the force sword are reduced by the reaction of equation (2) to produce water.
  • the solid polymer membrane which is the electrolyte of this fuel cell, exhibits ionic conductivity only in a wet state. Therefore, to maintain high power generation performance, water generated by the reaction of the formula (2) alone is not sufficient, and it is necessary to supply water from the outside.
  • a method is used in which the gas supplied to the fuel cell installed inside or outside the fuel cell body is passed through a device for humidifying the fuel cell to supply the water necessary for the operation of the fuel cell.
  • the operating temperature of this fuel cell is usually 90 ° C or less because it is restricted by the heat resistance of the solid polymer membrane as the electrolyte.
  • Equations (1) and (2) are unlikely to occur in environments below 90 ° C, it is necessary for the above-mentioned anode and force sword to have a catalyst capable of activating these reactions. is there. Therefore, platinum is used for the anode and the power source of this fuel cell because of its high catalytic ability.
  • the system includes the fuel cell 10 that generates power by reacting hydrogen supplied from the hydrogen supply unit 11 with oxygen in the air supplied by humidification from the air supply unit 12 through the humidifier 13.
  • the fuel cell system includes a pump 16 for circulating cooling water through the fuel cell 10 in order to recover the heat of the electrode reaction, and an inverter 25 for converting DC power generated by the fuel cell 10 into AC.
  • the cooling water circulated by the pump 16 releases heat energy obtained by the fuel cell in the heat exchanger 19.
  • the water in the hot water tank 18 circulated by the pump 17 absorbs heat from the heat exchanger 19 and is stored in the hot water tank 18 as hot water.
  • the three-way valves 21 and 22 are provided in the flow path 14 connected to the fuel gas inlet 14a and the flow path 15 connected to the air inlet 15a of the fuel cell 10, respectively.
  • the inert gas can be supplied from the inert gas cylinder 20 to the fuel gas flow path and the air flow path.
  • 14b is a fuel gas outlet
  • 15b is an air outlet.
  • the fuel cell system represented by this example changes the operation output or repeatedly starts and stops according to the power demand of the supply destination in order to efficiently use the chemical energy of the fuel gas.
  • the fuel cell which is the power source
  • either the power of the anode or the power source, or both of them is replaced with the inert gas due to the following problems, that is, the inert gas is purged.
  • the inert gas is purged.
  • an inert gas cylinder 20 such as a nitrogen gas is mounted on the system, and a flow path on the side of the fuel gas inlet 14a of the fuel cell 10 is provided.
  • the most common method is to supply the inert gas from the fuel cell 14 and the flow path 15 on the air inlet 15a side using the pressure of the cylinder when the fuel cell stops.
  • Other methods include purging with cooling water (for example, Patent Literature 2), removing oxygen in power source exhaust gas, and then supplying the fuel to the fuel cell again (for example, Patent Literature 3).
  • Patent Literature 2 purging with cooling water
  • Patent Literature 3 removing oxygen in power source exhaust gas
  • Patent Document 1 JP-A-11-214025
  • Patent Document 2 Japanese Patent Application Laid-Open No. 06-251788
  • Patent Document 3 JP 06-203865 A
  • Patent Document 4 JP 2002-50372 A
  • this solid polymer membrane is also required to have a function of isolating fuel gas at the anode and oxidizing gas at the power source. Due to the pressure difference between the anode and the force sword, the solid polymer film is always in a strained state. This rapid change in the amount of strain reduces the strength of the solid polymer film, and the period in which the solid polymer film is damaged by repeated start-stop operations during daily operation is shortened. In particular, if the magnitude of the pressure loss between the anode and the cathode during operation and purge is reversed, the solid polymer membrane will vibrate from the anode side to the force cathode side, and the strength of the solid polymer membrane will significantly decrease. Resulting in. That is, as in the purging method of the related art, the problem is that long-term reliability of the fuel cell is reduced by repeating the purging without controlling the differential pressure.
  • the present invention solves the above-mentioned conventional problems, and measures the pressure of the anode fuel gas and the pressure of the oxidizing agent gas of the power source, and controls the pressure of the anode or the power source according to the measured values.
  • the purpose of this is to improve the long-term reliability of a fuel cell that repeatedly starts and stops.
  • a fuel cell system includes a fuel cell, a fuel gas supply means for supplying a fuel gas to an anode of the fuel cell, and an oxidizing gas supplied to a cathode of the fuel cell.
  • An oxidizing gas supply means for supplying; an inert gas supply means for supplying an inert gas to the anode and Z or the force source of the fuel cell; and a pressure Pa and a force source of an inlet-side flow path of the anode of the fuel cell. Measure the inlet pressure Pc.
  • the differential pressure AP Pa ⁇ Pc is defined
  • the differential pressure ⁇ in the operating state and the differential pressure ⁇ 0 ⁇ during the purge satisfy the relationship of 0 ⁇ .
  • It is more preferable that ⁇ ⁇ ⁇ .
  • a control means is provided for increasing or decreasing the supply amount of the inert gas supplied to the fuel cell depending on the values of Pa and Pc during the purging of the fuel cell.
  • the force capable of successfully controlling the relationship between ⁇ and ⁇ is APo X APp even temporarily. It is possible to prevent such a relationship as 0.
  • a means for changing the inner diameter of the outlet-side flow path of the exhaust gas with the fuel cell power, and the inner diameter of the fuel cell by purging Pa and ⁇ c during the purging of the fuel cell Means for changing the according to this embodiment, similarly to the above, the relationship between ⁇ and ⁇ ⁇ ⁇ ⁇ ⁇ can be controlled well.
  • the present invention it is possible to control the pressure difference during the purge performed when the fuel cell is started or stopped so that the pressure becomes a desired LV.
  • the pressure on the anode side or the force source side of the electrolyte membrane is always controlled to be higher than the other pressure during the operation and the purge operation. Therefore, it is possible to suppress a decrease in strength due to vibration of the solid polymer film that occurs at the time of purging at the time of starting or stopping. Therefore, it is possible to provide a highly reliable fuel cell system in long-term operation with start / stop.
  • FIG. 1 is a diagram showing a schematic configuration of a conventional fuel cell system.
  • FIG. 2 is a diagram showing a configuration of a fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a configuration of a fuel cell system according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing a configuration of a fuel cell system according to Embodiment 3 of the present invention.
  • FIG. 5 is a diagram showing a configuration of a fuel cell system according to Embodiment 4 of the present invention.
  • FIG. 6 is a diagram showing a configuration of a fuel cell system according to Embodiment 5 of the present invention.
  • FIG. 7 is a diagram showing a configuration of a fuel cell system according to Embodiment 6 of the present invention.
  • FIG. 8 is a diagram showing a transition of a generated voltage in a cycle test of a fuel cell stack of an example of the present invention and a comparative example.
  • FIG. 2 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention.
  • the fuel cell system according to Embodiment 1 generates a hydrogen-rich gas by steam reforming a raw material such as a natural gas, and a polymer electrolyte fuel cell 10 that generates power using a fuel gas and an oxidizing gas.
  • the fuel cell system includes a hydrogen supply means 11 for supplying the air to the fuel cell 10, an air supply means 12 for taking in outside air as an oxidizing gas, and a humidifier 13 for giving necessary humidity to the taken in air.
  • the fuel cell system includes a circulation pump 17 for circulating water in a hot water storage tank 18 through heat exchange 19, and an inverter 25 for converting DC power generated by the fuel cell 10 into AC.
  • an inert gas cylinder 20 for supplying an inert gas to the fuel cell 10 when the operation is stopped is provided.
  • the inert gas is a rare gas such as helium or argon, nitrogen, natural gas after desulfurization, steam, or the like, which can be monopolar on platinum in a high-humidity atmosphere at 0 ° C to 100 ° C. reduction Do not cause a reaction! / Refers to gas.
  • the purge sequence at the time of operation stoppage in the first embodiment is as follows.
  • the fuel cell system When the power demand of the external circuit is lost and a stop signal is issued to the fuel cell system, the fuel cell system first reduces the output to the minimum output. At this time, the flow rates of the mass flow controllers 33 and 34 are set to the minimum controllable flow rates. After stabilizing the gas flow in the fuel cell at the minimum output state for a certain period of time, the controller 30 records the pressures at the fuel gas inlet 14a and the air inlet 15a observed by the pressure gauges 31 and 32.
  • the magnitudes of the pressures recorded by the controller 30 are compared, and the valve 21 of the inert gas flow path connected to the inlet having the greater pressure, for example, 14a, is opened.
  • the flow rate of the inert gas is increased stepwise until the flow rate becomes more desired.
  • the valve 22 of the inert gas passage connected to the other inlet, for example, 15a is opened, and the flow rate of the inert gas is similarly increased stepwise. Then, when the absolute value of the pressure difference between the two inlet-side flow paths during purging, I ⁇ I, becomes smaller than the absolute value of the pressure difference during operation, I ⁇ I, the increase in the flow rate of the inert gas is stopped. Then, the flow rate at this time is maintained. In this state, after the inert gas is supplied into the fuel cell for a predetermined time, contrary to the supply of the inert gas, the inert gas flow path connected to the inlet having the lower recorded pressure, for example, 15a, is connected. The valve 22 is closed and then the valve 21 of the inert gas flow path connected to the other inlet, for example 14a, is closed. The above is the fuel cell stop sequence.
  • the flow rates of the mass flow controllers 33 and 34 are set to the minimum controllable flow rates.
  • the controller 30 compares the magnitudes of the pressures recorded during the previous stop, and opens the valve 21 of the inert gas passage connected to the inlet having the higher pressure, for example, 14a. Increase the flow rate of the inert gas stepwise until the desired flow rate is achieved.
  • an inert gas flow path connected to the other inlet for example, 15a Is opened, and the flow rate of the inert gas is similarly increased stepwise.
  • the inlet to which the inert gas is supplied later for example, the pressure at 15a becomes the same as the inlet to which the inert gas was supplied earlier, for example, the pressure at 14a. It is more desirable to increase the pressure until the pressure rises.
  • the solid electrolyte membrane in the fuel cell 10 always receives a force due to a differential pressure from one direction during operation and during purging. In addition, acceleration of strength deterioration due to vibration does not occur. Therefore, it is possible to provide a highly reliable fuel cell system during long-term operation with start and stop.
  • FIG. 3 is a configuration diagram showing a fuel cell system according to Embodiment 2 of the present invention.
  • the fuel cell system according to Embodiment 2 differs from the prior art system described in Embodiment 1 in that the air introduced from outside the system by the blowers 41 and 42 instead of the inert gas cylinder 20 is supplied to the combustor. Through the process of consuming oxygen in the air by passing through 43 and 44, nitrogen gas, which is an inert gas, is created and supplied to the fuel cell as a purge gas. Further, the pressure gauges 31 and 32 for measuring the pressures of the flow path 14 on the fuel gas inlet 14a side and the flow path 15 on the air inlet 15a side, and the pressures measured by the pressure gauges 31 and 32 are measured. Memorize the value and control the output of blowers 41 and 42. It has a controller 30 for controlling.
  • the purge sequence at the time of stoppage in the second embodiment is as follows.
  • the fuel cell system When the power demand of the external circuit is lost and a stop signal is issued to the fuel cell system, the fuel cell system first reduces the output to the minimum output. Subsequently, after maintaining the gas flow in the fuel cell at a minimum output state for a certain period of time in order to stabilize the gas flow in the fuel cell, the fuel gas inlet 14a side flow path 14 and the air inlet 1 observed by the pressure gauges 31 and 32 are observed. The pressure in the flow path 15 on the 5a side is recorded by the controller 30.
  • the magnitudes of the pressures recorded by the controller 30 are compared, and the blower 41 connected to the entrance having the higher pressure, for example, the blower 41 connected to 14a, is simultaneously activated. Open road valve 21. Then, while increasing the output of the blower 41, the flow rate of the inert gas is increased stepwise until the desired flow rate is obtained.
  • the blower 42 connected to the other inlet, for example, 15a is activated, and at the same time, the valve 22 of the gas flow path leading to the fuel cell 10 is opened, and the flow rate of the inert gas is also gradually increased. To raise. Then, when the absolute value of the differential pressure during purge, I ⁇ I, becomes smaller than the absolute value of the differential pressure during operation, I ⁇ I, the increase in the flow rate of the inert gas is stopped. Maintain output for.
  • the above is the fuel cell stop sequence.
  • the controller 30 controls the pressure recorded at the previous stop. After comparing the sizes, the blower 41 connected to the inlet having the higher pressure, for example, 14a, is activated, and at the same time, the valve 21 of the gas flow path leading to the fuel cell 10 is opened. Then, while increasing the output of the blower 41, the flow rate of the inert gas is gradually increased until the desired flow rate is obtained. To rise.
  • the blower 42 connected to the other inlet, for example, 15a is activated, and at the same time, the valve 22 of the gas flow path connected to the fuel cell 10 is opened, and the flow rate of the inert gas is similarly increased stepwise. Then, when the absolute value of the differential pressure during purge, I ⁇ I, becomes smaller than the absolute value of the differential pressure during operation, I ⁇ I, the increase in the flow rate of the inert gas is stopped, and the flow rate at this time is reduced. maintain.
  • valve 22 connected to the inlet having the smaller recorded pressure, for example, the valve 15a is closed, and then the other valve 21 is operated in the opposite manner to when the blower is operated. Close.
  • the pressure at the inlet to which the inert gas is supplied is more preferably increased until the pressure at the inlet to which the inert gas has been supplied becomes equal to the pressure beforehand. Desirable.
  • FIG. 4 is a configuration diagram showing a fuel cell system according to Embodiment 3 of the present invention.
  • the fuel cell system according to Embodiment 3 differs from the prior art system described in Embodiment 1 in that the city gas introduced from outside the system by the booster pumps 51 and 52 is replaced with the inert gas cylinder 20 instead of the inert gas cylinder 20.
  • the structure is such that gas can be supplied to the fuel cell.
  • pressure gauges 31 and 32 for measuring the pressure of the flow path 14 on the fuel gas inlet 14a side and the pressure of the flow path 15 on the air inlet 15a side, and the pressures measured by these pressure gauges are stored.
  • a controller 30 is provided for controlling the output of the booster pumps 51 and 52 depending on the value.
  • the purge sequence at the time of stoppage in the third embodiment is as follows.
  • the fuel cell system first reduces the output to the minimum output. Subsequently, after maintaining the gas flow in the fuel cell at a minimum output state for a certain period of time in order to stabilize the gas flow in the fuel cell, the fuel gas inlet 14a side flow path 14 and the air inlet 1 which are observed by the pressure gauges 31 and 32 are observed. The pressure in the flow path 15 on the 5a side is recorded by the controller 30.
  • the magnitudes of the pressures recorded by the controller 30 are compared, and the booster pump 51 connected to the inlet having the greater pressure, for example, 14a, is started, and at the same time, the gas flow connected to the fuel cell 10 is started. Open road valve 21. Then, while increasing the output of the booster pump 51, the flow rate of the city gas is gradually increased until the target flow rate is achieved.
  • the booster pump 52 connected to the other inlet, for example, 15a is started, and at the same time, the valve 22 of the gas flow path connected to the fuel cell 10 is opened. To raise. Then, when the absolute value of the differential pressure during purge, I ⁇ I, becomes smaller than the absolute value of the differential pressure during operation, I ⁇ I, the increase in the flow rate of the city gas is stopped. And maintain output for 52.
  • the booster pumps 51 and 52 are opposite to the start-up of these booster pumps.
  • the valve 22 on the 52 side is closed, and then the valve 21 of the inert gas flow path on the side of the booster pump 51 connected to the other inlet, for example, 14a is closed.
  • the above is the sequence of stopping the fuel cell.
  • the controller 30 compares the magnitude of the pressure recorded at the previous stop with the controller 30 and compares the magnitude of the pressure at the entrance with the greater pressure.
  • the booster pump 51 connected to, for example, 14a is activated, and at the same time, the valve 21 of the gas flow path connected to the fuel cell 10 is opened. Then, while increasing the output of the booster pump 51, the flow rate of the city gas is increased stepwise until a desired flow rate is obtained.
  • the boost pump 52 connected to the other inlet, for example 15a, and at the same time connect to the fuel cell 10
  • the valve 22 of the gas flow path is opened, and the flow rate of the city gas is similarly increased stepwise.
  • FIG. 5 is a configuration diagram showing a fuel cell system according to Embodiment 4 of the present invention.
  • the fuel cell system according to Embodiment 4 is different from the prior art system described in Embodiment 1 in that the city gas introduced from outside the system by the booster pump 52 is used as the inert gas instead of the inert gas cylinder 20. It is configured so that it can be supplied to the air flow path.
  • the pressure gauges 31 and 32 for measuring the pressure of the flow path 14 on the fuel gas inlet 14a side and the flow path 15 on the air inlet 15a side, and the pressures measured by these pressure gauges are stored.
  • a controller 30 for controlling the output of the booster pump 52 according to the value.
  • An electromagnetic valve 61 is provided in the flow path 14 on the fuel gas inlet 14a side, and an electromagnetic valve 62 is provided in the flow path on the fuel gas outlet 14b side.
  • the fuel cell 10 is designed so that the pressure of the fuel gas flow path and the air flow path during operation is always higher in the flow path on the air inlet 15a side. Has been.
  • the sequence of the purge at the time of stoppage in the fourth embodiment is as follows.
  • the fuel cell system When the power demand of the external circuit is lost and a stop signal is issued to the fuel cell system, the fuel cell system first reduces the output to the minimum output. Subsequently, after maintaining the gas flow in the fuel cell at a minimum output state for a certain period of time in order to stabilize the gas flow in the fuel cell, the fuel gas inlet 14a side flow path 14 and the air inlet 1 which are observed by the pressure gauges 31 and 32 are observed. The pressure in the flow path 15 on the 5a side is recorded by the controller 30.
  • the booster pump 52 connected to the flow path on the air inlet 15a side is started, and at the same time, the valve 22 of the gas flow path connected to the fuel cell 10 is opened. Then, the output of the booster pump 52 is gradually increased until the target flow rate set so that the air in the air flow path can be sufficiently replaced with the city gas is reached. Then, in this state, after operating the pressure increasing pump 52 for a predetermined time, the pressure increasing pump 52 is stopped, and the valve 22 connected to the air inlet 15a side flow path is closed.
  • the fuel cell stop sequence is the fuel cell stop sequence.
  • the booster pump 52 When power demand from the external circuit is generated and a start signal is issued to the fuel cell system, first, the booster pump 52 is started, and at the same time, the valve 22 of the gas flow path leading to the fuel cell 10 is opened. Then, while increasing the output of the booster pump 52, the flow rate of the city gas is increased stepwise until the air flowing into the air flow path during stoppage reaches a target flow rate set so that the city gas can be sufficiently replaced. Then, in this state, after the pressurizing pump 52 is operated for a predetermined time, the pressurizing pump 52 is stopped, and the valve 22 connected to the air inlet 15a side flow path is closed.
  • valves 61 and 62 are opened, the hydrogen supply means 11 and the air supply means 12 are activated, and the fuel gas and air are maintained in this state for a time sufficient to reach the inside of the fuel cell 10. Close the electric circuit to start power generation. More than This is the sequence for starting the fuel cell.
  • FIG. 6 is a configuration diagram showing a fuel cell system according to Embodiment 5 of the present invention.
  • the fuel cell system according to Embodiment 5 differs from the prior art system described in Embodiment 1 in that the city gas introduced from outside the system by the booster pump 51 is used as the inert gas instead of the inert gas cylinder 20. It is configured to be able to supply to the fuel gas flow path. Further, pressure gauges 31 and 32 for measuring the pressure of the flow path 14 on the fuel gas inlet 14a side and the pressure of the flow path 15 on the air inlet 15a side, and the pressures measured by these pressure gauges are stored. The controller 30 for controlling the output of the booster pump 51 according to the value is provided.
  • An electromagnetic valve 63 is provided in the flow path 15 on the air inlet 15a side, and an electromagnetic valve 64 is provided in the flow path on the air outlet 15b side.
  • the pressure of the fuel gas flow path and the air flow path during operation is always designed to be higher in the flow path on the air inlet 15a side.
  • the purge sequence at the time of stoppage in the fifth embodiment is as follows.
  • the fuel cell system When the power demand of the external circuit is lost and a stop signal is issued to the fuel cell system, the fuel cell system first reduces the output to the minimum output. Subsequently, after maintaining the gas flow in the fuel cell at a minimum output state for a certain period of time, the flow path on the fuel gas inlet 14a side and the air inlet 15a side observed by the pressure gauges 31 and 32 are observed. The controller 30 records the pressure in the flow path.
  • the electromagnetic valves 63 and 64 provided in the flow path on the air inlet 15a side and the air flow path on the outlet 15b side are closed, and the power source side of the fuel cell 10 is sealed.
  • the booster pump 51 connected to the fuel gas inlet 14a side flow path is started, and at the same time, the valve 21 of the gas flow path leading to the fuel cell 10 is opened. And the water in the fuel gas passage The output of the booster pump 51 is gradually increased until the target flow rate set so that the element can be sufficiently replaced with city gas is reached. Then, in this state, after operating the pressure increasing pump 51 for a predetermined time, the pressure increasing pump 51 is stopped, and the valve 21 connected to the fuel gas inlet 14a side flow path is closed.
  • the above is the fuel cell stop sequence.
  • the purge sequence at the time of restart is as follows.
  • the booster pump 51 When power demand from an external circuit is generated and a start signal is issued to the fuel cell system, first, the booster pump 51 is started, and at the same time, the valve 21 of the gas flow path leading to the fuel cell 10 is opened. Then, while increasing the output of the booster pump 51, the flow rate of the city gas is gradually increased until the hydrogen gas that has entered the fuel gas flow path during stoppage reaches the target flow rate set so that the city gas can be sufficiently replaced. Then, in this state, after operating the pressure increasing pump 51 for a predetermined time, the pressure increasing pump 51 is stopped, and the valve 21 connected to the flow path on the fuel gas inlet 14a side is closed.
  • valves 63 and 64 are opened, the hydrogen supply means 11 and the air supply means 12 are activated, and this state is maintained for a time sufficient for the fuel gas and air to sufficiently flow into the fuel cell 10, and then the inverter 25 Close the electric circuit to start power generation.
  • the above is the fuel cell start-up sequence.
  • a highly reliable fuel cell system can be provided in a long-term operation with startup and shutdown, as in the first embodiment.
  • FIG. 7 is a configuration diagram showing a fuel cell system according to Embodiment 6 of the present invention.
  • the fuel cell system according to Embodiment 6 differs from the prior art system described in Embodiment 1 in that city gas introduced from outside the system by booster pumps 51 and 52 is replaced with inert gas cylinder 20 instead of inert gas cylinder 20.
  • the structure is such that gas can be supplied to the fuel cell.
  • pressure gauges 31 and 32 for measuring the pressures of the flow path 14 on the fuel gas inlet 14a side and the flow path 15 on the air inlet 15a side, the flow path on the fuel gas outlet 14b side and the air outlet 15b
  • the pressure control valves 71 and 72 capable of changing the inner diameter of the gas flow path are provided in the side flow path. And memorize the pressure measured by the pressure gauges 31 and 32, A controller 70 for controlling the output of the pressure regulating valves 71 and 72 according to the value is also provided.
  • the pressure adjusting valves 71 and 72 change the inner diameter of the gas flow path.
  • other methods such as a method of increasing the flow path length and a method of changing the flow path resistance by bending are used.
  • the present invention is not limited to the sixth embodiment.
  • the sequence of the purge at the time of stoppage in the sixth embodiment is as follows.
  • the fuel cell system When the power demand of the external circuit is lost and a stop signal is issued to the fuel cell system, the fuel cell system first reduces the output to the minimum output. Subsequently, after maintaining the gas flow in the fuel cell at a minimum output state for a certain period of time, the flow path on the fuel gas inlet 14a side and the air inlet 15a side observed by the pressure gauges 31 and 32 are observed. The controller 70 records the pressure in the flow path.
  • the controller 70 determines whether the pressure on the inlet side flow path recorded by the controller 70 is compared, and the larger pressure, for example, the pressure regulating valve 71 on the fuel gas flow path side is set to a 10% opening ratio, and the other is fully opened.
  • the booster pump 51 connected to the same fuel gas flow path as above is started, and at the same time, the valve 21 of the gas flow path leading to the fuel cell 10 is opened.
  • the booster pump 52 connected to the other inlet is started, and at the same time, the valve 22 of the gas flow path connected to the fuel cell 10 is opened, and the pressure regulating valve 72 is squeezed step by step. Increase the pressure drop in the side channel. Then, when the absolute value of the differential pressure during purge, I ⁇ I, becomes smaller than the absolute value of the differential pressure during operation, I ⁇ I, the increase in the flow rate of the city gas is stopped and the flow rate at this time is maintained. I do.
  • the purge sequence at the time of restart is as follows.
  • the pressure regulating valves 71 and 72 connected to the outlet side flow path are controlled as follows. . That is, the magnitude of the pressure on the inlet side channel recorded by the controller 70 is compared, and the larger pressure, for example, the pressure regulating valve 71 on the fuel gas channel side is set to a 10% opening ratio, and the other is fully opened.
  • the pressure-boosting pump 51 connected to the flow path having the higher pressure is activated as described above, and at the same time, the valve 21 of the gas flow path connected to the fuel cell 10 is opened.
  • the pressure-up pump 52 connected to the other inlet-side flow path is started, and at the same time, the valve 22 of the gas flow path leading to the fuel cell 10 is opened, and the pressure regulating valve 72 is throttled in a stepwise manner, and the air flow is reduced. Increase the pressure loss in the inlet channel.
  • I ⁇ I absolute value of the differential pressure during purge
  • I ⁇ I becomes smaller than the absolute value of the differential pressure during operation, I ⁇ I
  • the increase in the flow rate of the city gas is stopped and the flow rate at this time is maintained. I do.
  • the hydrogen supply means 11 and the air supply means 12 are activated, and this state is maintained for a time sufficient for these fuel gas and air to reach the inside of the fuel cell 10, and then the electric circuit to the inverter 25 is closed. And start power generation.
  • the above is the sequence of starting the fuel cell.
  • the pressure at the inlet to which the city gas is supplied is first increased to the same pressure as the pressure at the inlet to which the city gas is supplied first.
  • the solid electrolyte membrane in the fuel cell 10 always receives a force due to a differential pressure from one direction during the operation and during the purging. In addition, acceleration of strength deterioration due to vibration does not occur. Therefore, it is possible to provide a highly reliable fuel cell system during long-term operation with start and stop.
  • the system having the hydrogen supply means 11 Hydrogen may be supplied more directly, humidified by a humidifier in the same manner as air, and then supplied to the fuel cell.
  • Example 116 a fuel cell system was actually created as Example 116, and the effects of the invention were confirmed.
  • a fuel cell system having the component power shown in FIG. 1 was created.
  • a hydrogen cylinder was used as the hydrogen supply means 11.
  • a blower (VB-004-DN, manufactured by Hitachi, Ltd.) was used as the air supply means 12, the purge air blower, and the booster pumps 51 and 52.
  • the fuel cell stack has an electrode area of 8 cm ⁇ 10 cm and an outer dimension of the separator of 10 cm.
  • X was 20 cm, and the gas flow path provided in the separator was designed such that the flow resistance of the air flow path was smaller.
  • a stack of 100 such single cells was used as a fuel cell stack.
  • Example 1 and 2 nitrogen was used as an inert gas, and in Examples 4 to 16, city gas was used as an inert gas.
  • Example 4 to 16 city gas was used as an inert gas.
  • control was performed using an external load so that power was generated at a current density of 0.5 AZcm 2 during power generation.
  • the time required for the temperature of the fuel cell stack to decrease to near room temperature after operation shutdown was measured in order to take into account the effect of temperature changes on the durability of the fuel cell stack. It turned out to be 0.4 hours. Therefore, the stop time was set to 4.0 hours.
  • Examples 1 to 6 and the comparative example were repeatedly operated in the above sequence, and the transition of the average value of the voltage during the operation was examined.
  • Fig. 8 shows the results.
  • the voltage of the comparative example drops sharply after about 1800 cycles, whereas in Example 16 no significant change in voltage is seen after 3000 cycles.
  • a single cell with a reduced cell voltage in the fuel cell stack was disassembled and investigated. It has been clarified that the edge portion that comes into contact with the gas flow path is broken. Thereby, the effect of the present invention was confirmed.
  • the polymer electrolyte fuel cell system of the present invention is useful as a household cogeneration system. It can also be used as an energy source for motors for vehicles such as cars, buses, and scooters.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池の運転停止時に、アノードおよび/またはカソードに不活性ガスを供給するパージ動作を行う燃料電池システムにおいて、アノードの入口側流路の圧力Paとカソードの入口側流路の圧力Pcとの差圧△P=Pa−Pcと定義したとき、運転状態における差圧△Poと、パージ中の差圧△Ppが、0<△Po×△Ppの関係を満足するように、パージ中の差圧を制御する。これにより、固体電解質膜に対するストレスを低減し、燃料電池の長期信頼性を向上することができる。                                                                         

Description

明 細 書
燃料電池システム
技術分野
[0001] 本発明は、固体高分子型燃料電池を用いて発電を行う燃料電池システムに関する ものである。
背景技術
[0002] 燃料電池は、基本的には、イオン伝導性を持つ電解質を挟む一対の電極であるァ ノードと力ソードと、これらを挟持するアノード側セパレータとカソード側セパレータと 力も構成される。アノード側セパレータはアノードに燃料を供給する流路を有し、カソ 一ド側セパレータはカソードに酸化剤を供給する流路を有する。アノードに燃料、例 えば、水素ガスあるいはエタノールなどを供給し、力ソードに酸化剤、例えば、酸素あ るいは空気を供給して、これらの反応物質が持つ化学エネルギーを各電極上で起こ す酸化ある ヽは還元反応により電気エネルギーに変換し、電流を抽出する。
[0003] このような燃料電池の中には、電解質として水素イオン伝導性を持つ高分子膜を用 い、燃料として水素あるいは水素を主成分とする混合ガスを用い、酸化剤として酸素 あるいは空気などのガスを用いた型がある。この燃料電池では、アノード上で水素ガ スが式(1)の反応により酸化されて電子と水素イオンを発生する。水素イオンは固体 電解質膜中を移動して力ソード側に達する。一方、電子は外部回路を通って力ソード に達し、力ソードにある酸素と電子および水素イオンが式(2)の反応により還元されて 水を生成する。
[0004] 2H→4H++4e (1)
2
4H++0 +4e→2H O (2)
2 2
[0005] この燃料電池の電解質である固体高分子膜は、湿潤状態でのみイオン導電性を発 揮する。このため、高い発電性能を維持するには式(2)の反応で生成する水分のみ では不十分であり、外部より水分を補給する必要がある。一般的には、燃料電池の本 体内部あるいは外部に設置された燃料電池に供給されるガスを加湿するための装置 に通すことで、燃料電池の運転に必要な水分を供給する方法がとられる。 [0006] また、この燃料電池の運転温度は、電解質である固体高分子膜の耐熱性能による 制約を受けるため、通常 90°C以下である。し力しながら、式(1)および(2)の反応は 9 0°C以下の環境では起こりにくいため、前述のアノードおよび力ソードはこれらの反応 を活性化させる作用を持つ触媒を備える必要がある。したがって、この燃料電池のァ ノードおよび力ソードには、触媒能が高 、白金が用いられて 、る。
[0007] この燃料電池を備えた従来の燃料電池システムの一例として、図 1に示した構成を 持つシステムがある(例えば、特許文献 1参照)。すなわち、このシステムは、水素供 給手段 11から供給される水素と、空気供給手段 12から加湿器 13を通して加湿され て供給される空気中の酸素とを反応させて発電する燃料電池 10を備える。電極反応 の熱を回収するために燃料電池 10に冷却水を循環させるポンプ 16と、燃料電池 10 で発電した直流電量を交流に変換するインバータ 25とを備えている。ポンプ 16によ つて循環する冷却水は、燃料電池で得た熱エネルギーを熱交換器 19で放出する。 一方、ポンプ 17によって循環する貯湯槽 18内の水は熱交換器 19から熱を吸収し、 温水として貯湯槽 18中に貯蔵される。
[0008] この従来のシステムでは、燃料電池 10の燃料ガス入り口 14aに連なる流路 14およ び空気入り口 15aに連なる流路 15には三方弁 21および 22がそれぞれ設けられてい る。燃料電池 10の運転停止時には、不活性ガスボンべ 20より不活性ガスを燃料ガス 流路および空気流路に供給できる構造になっている。 14bは燃料ガスの出口、 15b は空気の出口である。
[0009] この例に代表される燃料電池システムは、燃料ガスの化学エネルギーを効率的に 使用するために、供給先の電力需要に応じて運転出力を変化させたり起動停止を繰 り返したりする必要がある。し力しながら、発電源である燃料電池を起動停止させる場 合、以下の問題によりアノードまたは力ソードのどちら力、あるいは両方のガスを不活 性ガスと置換させる、すなわち不活性ガスでパージする必要がある。
[0010] まず、起動停止時の問題点として、第一に安全性の観点力 停止中の燃料電池中 より水素ガスを除去する必要があることが挙げられる。これは、アノードと力ソードを隔 てている固体高分子膜が酸素ガスや水素ガスを透過するため、燃料電池の運転停 止状態が長時間維持された場合、水素と酸素が混ざり合った状態となるためである。 [0011] 第二に、発電効率の観点力 力ソード中の酸素ガスを除去する必要があることが挙 げられる。これは、無負荷状態で力ソード中に酸素が存在する場合、力ソードが標準 水素電極電位に対して約 IVの電位となり、この電位によって電極触媒である白金の 酸化反応や溶解反応が起こることから、電極の触媒能が低下するためである。
[0012] 第三に、起動の安定性の観点から、アノードおよび力ソード中の水蒸気を除去する 必要があることが挙げられる。これは、燃料電池に供給されるガスは加湿されており、 さらに式(2)の反応による生成水が加わることで、燃料電池内部のガスは運転時の温 、て相対湿度が 100%に近 、状態となって!/、る。燃料電池の運転温度は通 常 60°C— 80°Cである力 燃料電池の停止時には室温付近まで燃料電池内部に滞 留しているガスが冷却される。このため、ガス中の水分が凝集する。燃料電池の起動 時には、燃料電池の温度が低い状態であるため、この凝集水は液体の状態で電池 内にとどまつている。この凝集した水分による白金表面の被覆や、多孔体であるガス 拡散層の孔の目詰まり、セパレータのガス流路の閉塞が起こることでガスの拡散が阻 害され、起動時の発電が安定しない。
[0013] これらの問題を解決するためのパージ方法としては、図 1にあるようにシステムに窒 素ガスなどの不活性ガスボンべ 20を搭載し、燃料電池 10の燃料ガス入り口 14a側の 流路 14および空気の入り口 15a側の流路 15より、ボンベの圧力を動力として、燃料 電池が停止する時に不活性ガスを供給する方法が最も一般的である。その他にも、 冷却水によりパージする方法 (例えば、特許文献 2)や、力ソード排出ガス中の酸素を 除去した後、燃料電池に再度供給する方法 (例えば、特許文献 3)、燃料である水素 と空気を燃焼させた後、燃料電池に供給する方法 (例えば、特許文献 4)などが過去 に提案されている。
特許文献 1:特開平 11—214025号公報
特許文献 2:特開平 06- 251788号公報
特許文献 3:特開平 06— 203865号公報
特許文献 4:特開 2002-50372号公報
発明の開示
発明が解決しょうとする課題 [0014] 従来技術のパージの目的は、停止中に燃料電池中に存在するガスを不活性ガス に置換することである。また、燃料電池の起動停止特性を考えると、パージ時間はで きるだけ短いことが望まれる。したがって、これらの要求を満たすパージ条件として、 大流量の不活性ガスを供給することで、短時間で燃料電池内のガスを置換するパー ジ方法が望ま 、ことになる。
し力しながら、運転時に供給されるガス量とパージ時に供給されるガス量の間に大 きな差があると、燃料電池内においてアノードと力ソードの間の差圧が急激に変化す ることが問題となる。
[0015] この型の燃料電池では、通常数十/ z mの厚みの固体高分子膜が用いられている。
この固体高分子膜は、電解質としての機能の他に、アノードの燃料ガスと力ソードの 酸化剤ガスを隔離する機能も要求される。アノードと力ソード間の差圧により、固体高 分子膜は常に歪みを持った状態となっている。この歪み量の急激な変化が固体高分 子膜の強度を低下させるため、日々の運転による起動停止の繰り返しにより固体高 分子膜が破損にいたる期間が短くなる。特に、運転中とパージ中のアノードとカソー ドの圧損の大小が逆転すると、固体高分子膜がアノード側から力ソード側へと振動す ることになるため、固体高分子膜の強度が著しく低下してしまう。すなわち、従来技術 のパージ方法にあるように、差圧の制御を行わないパージを繰り返すことにより、燃料 電池の長期信頼性が低下してしまうことが課題であった。
[0016] 本発明は、前記従来の課題を解決するもので、アノードの燃料ガスと力ソードの酸 ィ匕剤ガスの圧力を測定し、その測定値に応じ、アノードあるいは力ソードの圧力を制 御することにより、起動停止が繰り返される燃料電池の長期信頼性を向上させること を目的とする。
課題を解決するための手段
[0017] 上記課題を解決するため、本発明の燃料電池システムは、燃料電池と、前記燃料 電池のアノードに燃料ガスを供給する燃料ガス供給手段と、前記燃料電池のカソー ドに酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料電池のアノードおよび Zまたは力ソードに不活性ガスを供給する不活性ガス供給手段と、前記燃料電池の アノードの入り口側流路の圧力 Paおよび力ソードの入り口側流路の圧力 Pcを測定す る手段とを具備し、前記燃料電池の起動または停止時に前記不活性ガス供給手段 により前記燃料電池内の燃料ガスおよび,または酸化剤ガスを不活性ガスと置換す るパージ動作をするように構成された燃料電池システムであって、差圧 AP = Pa— Pc と定義したとき、運転状態における差圧 ΔΡοと、パージ中の差圧 ΔΡρが、 0< ΔΡο Χ ΔΡρの関係を満足する。
[0018] ここで、 ΔΡοと ΔΡρ力 S I ΔΡρ | ≤ | ΔΡο |の関係にあることが好ましい。 ΔΡο = △Ρρの関係にあることがより好ま 、。
本発明の好ま 、実施の形態にぉ 、ては、前記燃料電池のパージ中における Pa および Pcの値によって前記燃料電池に供給する不活性ガスの供給量を増減させる 制御手段を具備する。この実施の形態によれば、 ΔΡοと ΔΡρの関係をうまく制御す ることができる力 、一時的にも APo X APp。く 0のような関係になることを防止でき る。
本発明の好ましい他の実施の形態においては、前記燃料電池力もの排出ガスの出 口側流路の内径を変化させる手段と、前記燃料電池のパージ中における Paおよび Ρ cの値よつて前記内径を変化させる手段とを具備する。この実施の形態によれば、上 記と同様に、 ΔΡοと ΔΡρの関係をうまく制御することができる。
本発明によって、燃料電池の起動または停止時に行われるパージ中の差圧を望ま LV、状態となるように制御することが可能となる。
発明の効果
[0019] 本発明によれば、運転中およびパージ動作中、常に電解質膜のアノード側または 力ソード側の圧力が他方の圧力より大きくなるように制御される。したがって、起動あ るいは停止時のパージの際に生じる固体高分子膜の振動による強度低下を抑制す ることができる。したがって、起動 ·停止をともなう長期運転において、高い信頼性を 持つ燃料電池システムを提供することができる。
図面の簡単な説明
[0020] [図 1]従来の燃料電池システムの概略構成を示す図である。
[図 2]本発明の実施の形態 1の燃料電池システムの構成を示す図である。
[図 3]本発明の実施の形態 2の燃料電池システムの構成を示す図である。 [図 4]本発明の実施の形態 3の燃料電池システムの構成を示す図である。
[図 5]本発明の実施の形態 4の燃料電池システムの構成を示す図である。
[図 6]本発明の実施の形態 5の燃料電池システムの構成を示す図である。
[図 7]本発明の実施の形態 6の燃料電池システムの構成を示す図である。
[図 8]本発明の実施例および比較例の燃料電池スタックのサイクル試験における発 電電圧の推移を示す図である。
発明を実施するための最良の形態
[0021] 以下に、本発明の実施の形態を、図面を参照しながら説明する。
実施の形態 1
図 2は、本発明の実施の形態 1による燃料電池システムを示す構成図である。 実施の形態 1における燃料電池システムは、燃料ガスと酸化剤ガスを用いて発電を 行う固体高分子型の燃料電池 10と、天然ガスなどの原料を水蒸気改質し、水素リツ チなガスを生成して燃料電池 10に供給する水素供給手段 11と、酸化剤ガスとして外 気を取り込む空気供給手段 12と、取り込んだ空気に必要な湿度を与える加湿器 13 とを備える。また、燃料電池 10が発電時に発生する熱を回収するための冷却水を循 環させるポンプ 16と、その冷却水で回収した熱エネルギーを回収 '貯蔵するための 熱交翻19、貯湯槽 18および貯湯槽 18内の水を熱交翻19をとおして循環させ る循環ポンプ 17と、燃料電池 10で発電した直流電量を交流に変換するインバータ 2 5とを備える。さら〖こ、運転停止時に燃料電池 10に不活性ガスを供給するための不 活性ガスボンベ 20などを備える。
[0022] 以上の構成要素は、従来技術のシステムと同じであるが、本実施の形態では、燃料 ガスの入り口 14a側の流路 14および空気の入り口 15a側の流路 15の圧力を測定す るための圧力計 31および 32と、それぞれの入り口に供給される不活性ガスの流量を 制御するためのマスフローコントローラ 33および 34と、圧力計 31および 32で測定さ れた圧力を記憶し、その値によってマスフローコントローラ 33および 34を制御するた めの制御器 30をさらに備える。
ここで不活性ガスとは、ヘリウムやアルゴンなどの希ガス類、窒素、脱硫後の天然ガ スゃ水蒸気など、 0°C— 100°Cの高湿雰囲気下の白金上で単極となりうる酸ィ匕還元 反応を起こさな!/ヽガスを指す。
[0023] 実施の形態 1における運転停止時のパージのシーケンスは以下の通りである。
外部回路の電力需要がなくなり、燃料電池システムに対して停止信号が発せられ たとき、まず、燃料電池システムは最小出力まで出力を落とす。このときマスフローコ ントローラ 33および 34の流量は制御可能な最小流量の値に設定する。燃料電池内 のガスの流れを安定させるために最小出力状態で一定時間維持した後、圧力計 31 および 32で観測されている燃料ガス入り口 14aおよび空気入り口 15aの圧力を制御 器 30で記録する。
次に、インバータ 25への電気回路をオープンにした後、水素供給手段 11および空 気供給手段 12を停止する。
[0024] 次に、制御器 30で記録した圧力の大小を比較し、圧力の大きい方の入り口、例え ば 14aに接続している不活性ガス流路の弁 21を開放し、マスフローコントローラ 33に より目的の流量となるまで段階的に不活性ガスの流量を上昇させる。
次に、もう一方の入り口、例えば 15aに接続している不活性ガス流路の弁 22を開放 し、同様に段階的に不活性ガスの流量を上昇させる。そして、パージ中の両入口側 流路の圧力の差の絶対値 I ΔΡρ Iが運転中の圧力の差の絶対値 I ΔΡο Iよりも 小さくなつたときに、不活性ガスの流量の上昇を停止し、このときの流量を維持する。 この状態で不活性ガスを燃料電池内に所定時間供給した後、不活性ガス供給時と は逆に、記録された圧力が小さい方の入り口、例えば 15aに接続している不活性ガス 流路の弁 22を閉じ、次いでもう一方の入り口、例えば 14aに接続している不活性ガス 流路の弁 21を閉じる。以上が、燃料電池停止のシーケンスである。
[0025] 再起動時のパージのシーケンスは以下の通りである。
外部回路よりの電力需要が発生し、燃料電池システムに対して起動信号が発せら れたとき、まず、マスフローコントローラ 33および 34の流量を制御可能な最小流量の 値に設定する。次に、制御器 30で前回停止時に記録した圧力の大小を比較し、圧 力の大きい方の入り口、例えば 14aに接続している不活性ガス流路の弁 21を開放し 、マスフローコントローラ 33により目的の流量となるまで段階的に不活'性ガスの流量 を上昇させる。次に、もう一方の入り口、例えば 15aに接続している不活性ガス流路 の弁 22を開放し、同様に段階的に不活性ガスの流量を上昇させる。そして、パージ 中の差圧の絶対値 I ΔΡρ Iが運転中の差圧の絶対値 I ΔΡο Iよりも小さくなつた ときに、不活性ガスの流量の上昇を停止し、このときの流量を維持する。
この状態で不活性ガスを燃料電池内に所定時間供給した後、不活性ガス供給時と は逆に、記録された圧力が小さい方の入り口、例えば 15aに接続している不活性ガス 流路の弁 22を閉じ、次いでもう一方の入り口、例えば 14aに接続している不活性ガス 流路の弁 21を閉じる。
[0026] 次に、水素供給手段 11および空気供給手段 12を起動し、これらの燃料ガスおよび 空気が燃料電池 10内に十分に行き渡る時間だけ、この状態を保持した後、インバー タ 25への電気回路をクローズにし、発電を開始する。以上が、燃料電池起動のシー ケンスである。
[0027] 上記起動停止のシーケンスにお 、て、後から不活性ガスの供給される入り口、例え ば 15aの圧力は先に不活性ガスの供給された入り口、例えば 14aの圧力と同圧にな るまで昇圧した方がさらに望ましい。
[0028] 実施の形態 1における燃料電池システムの構成およびパージ方法をとると、運転中 およびパージ中を通じて、燃料電池 10中の固体電解質膜は常に一方向より差圧に よる力を受けることになり、振動による強度劣化の促進が起こらない。したがって、起 動停止をともなう長期運転にぉ 、て信頼性の高 、燃料電池システムを提供すること ができる。
[0029] 実施の形態 2
図 3は、本発明の実施の形態 2による燃料電池システムを示す構成図である。 実施の形態 2における燃料電池システムは、実施の形態 1で説明した従来技術の システムの中で、不活性ガスボンべ 20に代わり、ブロワ一 41および 42によってシステ ム外より導入した空気を、燃焼機 43および 44を通すことで空気中の酸素を消費する 処理により不活性ガスである窒素ガスを作り、これをパージガスとして燃料電池に供 給できる構成となっている。さらに、燃料ガスの入り口 14a側の流路 14と空気の入り 口 15a側の流路 15の圧力を測定するための圧力計 31および 32と、圧力計 31およ び 32で測定された圧力を記憶し、その値によってブロワ一 41および 42の出力を制 御するための制御器 30を備えている。
[0030] 実施の形態 2における停止時のパージのシーケンスは以下の通りである。
外部回路の電力需要がなくなり、燃料電池システムに対して停止信号が発せられ たとき、まず、燃料電池システムは最小出力まで出力を落とす。続いて、燃料電池内 のガスの流れを安定させるために最小出力状態で一定時間維持した後、圧力計 31 および 32で観測されている燃料ガスの入り口 14a側の流路 14および空気の入り口 1 5a側の流路 15の圧力を制御器 30で記録する。
次に、インバータ 25への電気回路をオープンにした後、水素供給手段 11および空 気供給手段 12を停止し、燃焼機 43および 44を着火する。
[0031] 次に、制御器 30で記録した圧力の大小を比較し、圧力の大きい方の入り口、例え ば 14aに接続しているブロワ一 41を起動し、同時に燃料電池 10へとつながるガス流 路の弁 21を開く。そして、ブロワ一 41の出力を上げながら目的の流量となるまで段階 的に不活性ガスの流量を上昇させる。
次に、もう一方の入り口、例えば 15aに接続しているブロワ一 42を起動し、同時に 燃料電池 10へとつながるガス流路の弁 22を開き、同様に段階的に不活性ガスの流 量を上昇させる。そして、パージ中の差圧の絶対値 I ΔΡρ Iが運転中の差圧の絶 対値 I ΔΡο Iよりも小さくなつたときに、不活性ガスの流量の上昇を停止し、このとき のブロワ一に対する出力を維持する。
この状態でブロワ一を所定時間作動させた後、ブロワ一の起動時とは逆に、記録さ れた圧力が小さい方の入り口、例えば 15aに接続しているブロワ一側の弁 22を閉じ、 次いでもう一方の入り口、例えば 14aに接続しているブロワ一側の不活性ガス流路の 弁 21を閉じる。以上が、燃料電池停止のシーケンスである。
[0032] 再起動時のパージのシーケンスは以下の通りである。
外部回路よりの電力需要が発生し、燃料電池システムに対して起動信号が発せら れたとき、まず、燃焼機 43および 44を着火し、続いて制御器 30で前回停止時に記 録した圧力の大小を比較し、圧力の大きい方の入り口、例えば 14aに接続しているブ ロワ一 41を起動し、同時に燃料電池 10へとつながるガス流路の弁 21を開く。そして 、ブロワ一 41の出力を上げながら目的の流量となるまで段階的に不活'性ガスの流量 を上昇させる。もう一方の入り口、例えば 15aに接続しているブロワ一 42を起動し、同 時に燃料電池 10へとつながるガス流路の弁 22を開き、同様に段階的に不活性ガス の流量を上昇させる。そして、パージ中の差圧の絶対値 I ΔΡρ Iが運転中の差圧 の絶対値 I ΔΡο Iよりも小さくなつたときに、不活性ガスの流量の上昇を停止し、こ のときの流量を維持する。
この状態でブロワ一を所定時間作動させた後、ブロワ一作動時とは逆に、記録され た圧力が小さい方の入り口、例えば 15aに接続している弁 22を閉じ、次いでもう一方 の弁 21を閉じる。
[0033] 次に、水素供給手段 11および空気供給手段 12を起動し、これらの燃料ガスおよび 空気が燃料電池 10内に十分に行き渡る時間だけ、この状態を保持した後、インバー タ 25への電気回路をクローズにし、発電を開始する。以上が、燃料電池起動のシー ケンスである。
[0034] 上記の起動停止のシーケンスにお 、て、後力 不活性ガスの供給される入り口の 圧力は先に不活性ガスの供給された入り口の圧力と同圧となるまで昇圧した方がさら に望ましい。
[0035] 実施の形態 2における燃料電池システムの構成およびパージ方法をとると、実施の 形態 1と同様に、起動停止をともなう長期運転において信頼性の高い燃料電池シス テムを提供することができる。
[0036] 実施の形態 3
図 4は、本発明の実施の形態 3による燃料電池システムを示す構成図である。 実施の形態 3における燃料電池システムは、実施の形態 1で説明した従来技術の システムの中で、不活性ガスボンべ 20に代わり、昇圧ポンプ 51および 52によってシ ステム外より導入した都市ガスを不活性ガスとして燃料電池に供給できる構成となつ ている。さらに、燃料ガスの入り口 14a側の流路 14と空気の入り口 15a側の流路 15の 圧力を測定するための圧力計 31および 32と、これらの圧力計で測定された圧力を 記憶し、その値によって昇圧ポンプ 51および 52の出力を制御するための制御器 30 を備える。
[0037] 実施の形態 3における停止時のパージのシーケンスは以下の通りである。 外部回路の電力需要がなくなり、燃料電池システムに対して停止信号が発せられ たとき、まず、燃料電池システムは最小出力まで出力を落とす。続いて、燃料電池内 のガスの流れを安定させるために最小出力状態で一定時間維持した後、圧力計 31 および 32で観測されている燃料ガスの入り口 14a側の流路 14および空気の入り口 1 5a側の流路 15の圧力を制御器 30で記録する。
次に、インバータ 25への電気回路をオープンにした後、水素供給手段 11および空 気供給手段 12を停止する。
[0038] 次に、制御器 30で記録した圧力の大小を比較し、圧力の大きい方の入り口、例え ば 14aに接続している昇圧ポンプ 51を起動し、同時に燃料電池 10へとつながるガス 流路の弁 21を開く。そして、昇圧ポンプ 51の出力を上げながら目的の流量となるま で段階的に都市ガスの流量を上昇させる。
次に、もう一方の入り口、例えば 15aに接続している昇圧ポンプ 52を起動し、同時 に燃料電池 10へとつながるガス流路の弁 22を開き、同様に段階的に都市ガスの流 量を上昇させる。そして、パージ中の差圧の絶対値 I ΔΡρ Iが運転中の差圧の絶 対値 I ΔΡο Iよりも小さくなつたときに、都市ガスの流量の上昇を停止し、このときの 昇圧ポンプ 51および 52に対する出力を維持する。
[0039] この状態で昇圧ポンプ 51および 52を所定時間作動させた後、これらの昇圧ポンプ の起動時とは逆に、記録された圧力が小さい方の入り口、例えば 15aに接続している 昇圧ポンプ 52側の弁 22を閉じ、次いでもう一方の入り口、例えば 14aに接続してい る昇圧ポンプ 51側の不活性ガス流路の弁 21を閉じる。以上が、燃料電池停止のシ 一ケンスである。
[0040] 再起動時のパージのシーケンスは以下の通りである。
外部回路よりの電力需要が発生し、燃料電池システムに対して起動信号が発せら れたとき、まず、制御器 30で前回停止時に記録した圧力の大小を比較し、圧力の大 きい方の入り口、例えば 14aに接続している昇圧ポンプ 51を起動し、同時に燃料電 池 10へとつながるガス流路の弁 21を開く。そして、昇圧ポンプ 51の出力を上げなが ら目的の流量となるまで段階的に都市ガスの流量を上昇させる。もう一方の入り口、 例えば 15aに接続している昇圧ポンプ 52を起動し、同時に燃料電池 10へとつながる ガス流路の弁 22を開き、同様に段階的に都市ガスの流量を上昇させる。
[0041] そして、パージ中の差圧の絶対値 I ΔΡρ Iが運転中の差圧の絶対値 I ΔΡο Iよ りも小さくなつたときに、都市ガスの流量の上昇を停止し、このときの流量を維持する この状態で昇圧ポンプ 51および 52を所定時間作動させた後、これらの昇圧ポンプ の作動時とは逆に、記録された圧力が小さい方の入り口、例えば 15aに接続している 弁 22を閉じ、次いでもう一方の弁 21を閉じる。
[0042] 次に、水素供給手段 11および空気供給手段 12を起動し、これらの燃料ガスおよび 空気が燃料電池 10内に十分に行き渡る時間だけ、この状態を保持した後、インバー タ 25への電気回路をクローズにし、発電を開始する。以上が、燃料電池起動のシー ケンスである。
[0043] 上記の起動停止のシーケンスにお!/、て、後力 都市ガスの供給される入り口の圧 力は先に都市ガスの供給された入り口の圧力と同圧となるまで昇圧した方がさらに望 ましい。
[0044] 実施の形態 3における燃料電池システムの構成およびパージ方法をとると、実施の 形態 1と同様に、起動停止をともなう長期運転において信頼性の高い燃料電池シス テムを提供することができる。
[0045] 実施の形態 4
図 5は、本発明の実施の形態 4による燃料電池システムを示す構成図である。 実施の形態 4における燃料電池システムは、実施の形態 1で説明した従来技術の システムの中で、不活性ガスボンべ 20に代わり、昇圧ポンプ 52によってシステム外よ り導入した都市ガスを不活性ガスとして空気流路に供給できる構成となって ヽる。さら に、燃料ガスの入り口 14a側の流路 14と空気の入り口 15a側の流路 15の圧力を測 定するための圧力計 31および 32と、これらの圧力計で測定された圧力を記憶し、そ の値によって昇圧ポンプ 52の出力を制御するための制御器 30を備える。また、燃料 ガスの入り口 14a側の流路 14には電磁弁 61が設けられ、燃料ガスの出口 14b側の 流路には電磁弁 62が設けられている。燃料電池 10は、運転中における燃料ガスの 流路および空気の流路の圧力は常に空気の入り口 15a側の流路の方が大きく設計 されている。
[0046] 実施の形態 4における停止時のパージのシーケンスは以下の通りである。
外部回路の電力需要がなくなり、燃料電池システムに対して停止信号が発せられ たとき、まず、燃料電池システムは最小出力まで出力を落とす。続いて、燃料電池内 のガスの流れを安定させるために最小出力状態で一定時間維持した後、圧力計 31 および 32で観測されている燃料ガスの入り口 14a側の流路 14および空気の入り口 1 5a側の流路 15の圧力を制御器 30で記録する。
次に、インバータ 25への電気回路をオープンにした後、水素供給手段 11および空 気供給手段 12を停止する。
[0047] 次に、燃料ガスの入り口 14a側の流路および出口 14b側の流路に設けてある電磁 弁 61および 62を閉じ、燃料電池 10のアノード側を封止する。
次に、空気の入り口 15a側の流路に接続している昇圧ポンプ 52を起動し、同時に 燃料電池 10へとつながるガス流路の弁 22を開く。そして、空気流路中の空気が都市 ガスで十分に置換できるよう設定した目的流量に達するまで昇圧ポンプ 52の出力を 段階的に上昇させる。そして、この状態で一定の所定時間、昇圧ポンプ 52を作動さ せた後、昇圧ポンプ 52を停止させ、空気の入り口 15a側の流路に接続している弁 22 を閉じる。以上が、燃料電池停止のシーケンスである。
[0048] 再起動時のパージのシーケンスは以下の通りである。
外部回路よりの電力需要が発生し、燃料電池システムに対して起動信号が発せら れたとき、まず、昇圧ポンプ 52を起動し、同時に燃料電池 10へとつながるガス流路 の弁 22を開く。そして、昇圧ポンプ 52の出力を上げながら停止中に空気流路中に進 入した空気が都市ガスで十分に置換できるよう設定した目的流量に達するまで段階 的に都市ガスの流量を上昇させる。そして、この状態で一定の所定時間、昇圧ポンプ 52を作動させた後、昇圧ポンプ 52を停止させ、空気の入り口 15a側の流路に接続し ている弁 22を閉じる。
次に、弁 61および 62を開き、水素供給手段 11および空気供給手段 12を起動し、 これらの燃料ガスおよび空気が燃料電池 10内に十分に行き渡る時間だけ、この状態 を保持した後、インバータ 25への電気回路をクローズにし、発電を開始する。以上が 、燃料電池起動のシーケンスである。
[0049] 実施の形態 4における燃料電池システムの構成およびパージ方法をとると、実施の 形態 1と同様に、起動停止をともなう長期運転において信頼性の高い燃料電池シス テムを提供することができる。
[0050] 実施の形態 5
図 6は、本発明の実施の形態 5による燃料電池システムを示す構成図である。 実施の形態 5における燃料電池システムは、実施の形態 1で説明した従来技術の システムの中で、不活性ガスボンべ 20に代わり、昇圧ポンプ 51によってシステム外よ り導入した都市ガスを不活性ガスとして燃料ガス流路に供給できる構成となっている 。さらに、燃料ガスの入り口 14a側の流路 14と空気の入り口 15a側の流路 15の圧力 を測定するための圧力計 31および 32と、これらの圧力計で測定された圧力を記憶し 、その値によって昇圧ポンプ 51の出力を制御するための制御器 30を備える。また、 空気の入り口 15a側の流路 15には電磁弁 63が設けられ、空気の出口 15b側の流路 には電磁弁 64が設けられている。燃料電池 10は、運転中における燃料ガスの流路 および空気の流路の圧力は常に空気の入り口 15a側の流路の方が大きく設計されて いる。
[0051] 実施の形態 5における停止時のパージのシーケンスは以下の通りである。
外部回路の電力需要がなくなり、燃料電池システムに対して停止信号が発せられ たとき、まず、燃料電池システムは最小出力まで出力を落とす。続いて、燃料電池内 のガスの流れを安定させるために最小出力状態で一定時間維持した後、圧力計 31 および 32で観測されている燃料ガスの入り口 14a側の流路および空気の入り口 15a 側の流路の圧力を制御器 30で記録する。
次に、インバータ 25への電気回路をオープンにした後、水素供給手段 11および空 気供給手段 12を停止する。
[0052] 次に、空気の入り口 15a側の流路および出口 15b側の流路に設けてある電磁弁 63 および 64を閉じ、燃料電池 10の力ソード側を封止する。
次に、燃料ガスの入り口 14a側の流路に接続している昇圧ポンプ 51を起動し、同 時に燃料電池 10へとつながるガス流路の弁 21を開く。そして、燃料ガス流路中の水 素が都市ガスで十分に置換できるよう設定した目的流量に達するまで昇圧ポンプ 51 の出力を段階的に上昇させる。そして、この状態で一定の所定時間、昇圧ポンプ 51 を作動させた後、昇圧ポンプ 51を停止させ、燃料ガスの入り口 14a側の流路に接続 している弁 21を閉じる。以上が、燃料電池停止のシーケンスである。
[0053] 再起動時のパージのシーケンスは以下の通りである。
外部回路よりの電力需要が発生し、燃料電池システムに対して起動信号が発せら れたとき、まず、昇圧ポンプ 51を起動し、同時に燃料電池 10へとつながるガス流路 の弁 21を開く。そして、昇圧ポンプ 51の出力を上げながら停止中に燃料ガス流路中 に進入した水素が都市ガスで十分に置換できるよう設定した目的流量に達するまで 段階的に都市ガスの流量を上昇させる。そして、この状態で一定の所定時間、昇圧 ポンプ 51を作動させた後、昇圧ポンプ 51を停止させ、燃料ガスの入り口 14a側の流 路に接続している弁 21を閉じる。
次に、弁 63および 64を開き、水素供給手段 11および空気供給手段 12を起動し、 これらの燃料ガスおよび空気が燃料電池 10内に十分に行き渡る時間だけ、この状態 を保持した後、インバータ 25への電気回路をクローズにし、発電を開始する。以上が 、燃料電池起動のシーケンスである。
[0054] 実施の形態 5における燃料電池システムの構成およびパージ方法をとると、実施の 形態 1と同様に、起動停止をともなう長期運転において信頼性の高い燃料電池シス テムを提供することができる。
[0055] 実施の形態 6
図 7は、本発明の実施の形態 6による燃料電池システムを示す構成図である。 実施の形態 6における燃料電池システムは、実施の形態 1で説明した従来技術の システムの中で、不活性ガスボンべ 20に代わり、昇圧ポンプ 51および 52によってシ ステム外より導入した都市ガスを不活性ガスとして燃料電池に供給できる構成となつ ている。さらに、燃料ガスの入り口 14a側の流路 14と空気の入り口 15a側の流路 15の 圧力を測定するための圧力計 31および 32と、燃料ガスの出口 14b側の流路および 空気の出口 15b側の流路に、ガス流路の内径を変化させることが可能な圧力調整弁 71および 72を備えている。そして、圧力計 31および 32で測定された圧力を記憶し、 その値によって圧力調整弁 71および 72の出力を制御するための制御器 70をも備え る。
実施の形態 6では、圧力調整弁 71および 72がガス流路の内径を変化させる方式と しているが、その他、流路長を長くする方式や、屈曲により流路抵抗を変化させる方 式などもあり、実施の形態 6のものに限られるものではない。
[0056] 実施の形態 6における停止時のパージのシーケンスは以下の通りである。
外部回路の電力需要がなくなり、燃料電池システムに対して停止信号が発せられ たとき、まず、燃料電池システムは最小出力まで出力を落とす。続いて、燃料電池内 のガスの流れを安定させるために最小出力状態で一定時間維持した後、圧力計 31 および 32で観測されている燃料ガスの入り口 14a側の流路および空気の入り口 15a 側の流路の圧力を制御器 70で記録する。
次に、インバータ 25への電気回路をオープンにした後、水素供給手段 11および空 気供給手段 12を停止する。
[0057] 次に、出口側流路に接続している圧力調整弁 71および 72を次のように制御する。
すなわち、制御器 70で記録した入り口側流路の圧力の大小を比較し、圧力の大きい 方、例えば燃料ガス流路側の圧力調整弁 71を 10%開口率とし、もう一方を全開とす る。次に、前記と同じぐ燃料ガスの流路に接続した昇圧ポンプ 51を起動し、同時に 燃料電池 10へとつながるガス流路の弁 21を開く。
[0058] 次に、もう一方の入り口に接続している昇圧ポンプ 52を起動し、同時に燃料電池 1 0へとつながるガス流路の弁 22を開き、段階的に圧力調整弁 72を絞り、入り口側流 路の圧損を上昇させる。そして、パージ中の差圧の絶対値 I ΔΡρ Iが運転中の差 圧の絶対値 I ΔΡο Iよりも小さくなつたときに、都市ガスの流量の上昇を停止し、こ のときの流量を維持する。
この状態で都市ガスを燃料電池内に所定時間供給した後、都市ガス供給時とは逆 に、記録された圧力が小さい方の入り口、例えば 15a側の流路に接続している都巿 ガス流路の弁 22を閉じ、次いでもう一方の入り口、例えば 14a側の流路に接続してい る都市ガス流路の弁 21を閉じる。以上が、燃料電池停止のシーケンスである。
[0059] 再起動時のパージのシーケンスは以下の通りである。 外部回路よりの電力需要が発生し、燃料電池システムに対して起動信号が発せら れたとき、まず、出口側流路に接続している圧力調整弁 71および 72を次のように制 御する。すなわち、制御器 70で記録した入り口側流路の圧力の大小を比較し、圧力 の大きい方、例えば燃料ガス流路側の圧力調整弁 71を 10%開口率とし、もう一方を 全開とする。次に、前記と同じく圧力の大きい方の流路側に接続した昇圧ポンプ 51 を起動し、同時に燃料電池 10へとつながるガス流路の弁 21を開く。
次に、もう一方の入り口側流路に接続している昇圧ポンプ 52を起動し、同時に燃料 電池 10へとつながるガス流路の弁 22を開き、段階的に圧力調整弁 72を絞り、空気 の入り口流路の圧損を上昇させる。そして、パージ中の差圧の絶対値 I ΔΡρ Iが運 転中の差圧の絶対値 I ΔΡο Iよりも小さくなつたときに、都市ガスの流量の上昇を 停止し、このときの流量を維持する。
[0060] この状態で都市ガスを燃料電池内に所定時間供給した後、都市ガス供給時とは逆 に、記録された圧力が小さい方の入り口、例えば 15aに接続している都市ガス流路の 弁 22を閉じ、次いでもう一方の入り口、例えば 14aに接続している都市ガス流路の弁 21を閉じる。
次に、水素供給手段 11および空気供給手段 12を起動し、これらの燃料ガスおよび 空気が燃料電池 10内に十分に行き渡る時間だけ、この状態を保持した後、インバー タ 25への電気回路をクローズにし、発電を開始する。以上が、燃料電池起動のシー ケンスである。
[0061] 上記の起動停止のシーケンスにおいて、後力 都市ガスの供給される入り口の圧 力は先に都市ガスの供給された入り口の圧力と同圧となるまで昇圧した方がさらに望 ましい。
[0062] 実施の形態 6における燃料電池システムの構成およびパージ方法をとると、運転中 およびパージ中を通じて、燃料電池 10中の固体電解質膜は常に一方向より差圧に よる力を受けることになり、振動による強度劣化の促進が起こらない。したがって、起 動停止をともなう長期運転にぉ 、て信頼性の高 、燃料電池システムを提供すること ができる。
[0063] 上記の各実施の形態では、水素供給手段 11を持つシステムとした力 システム外 より直接水素を供給し、空気と同様に加湿器により加湿した後、燃料電池に供給する ようにしてもよい。
実施例
[0064] 図 2—図 7に示した本発明の実施の形態 1一 6について、実施例 1一 6として実際に 燃料電池システムを作成し、発明の効果を確認した。また、比較例として、図 1に示し た構成力もなる燃料電池システムを作成した。
実施例および比較例では、水素供給手段 11として水素ボンべを用いた。また、空 気供給手段 12、パージ空気用ブロワ一および昇圧ポンプ 51および 52としてブロワ 一((株)日立製作所製 VB— 004— DN)を用いた。
[0065] 燃料電池スタックは、電極面積が 8cm X 10cmで、セパレータの外形寸法が 10cm
X 20cmであり、セパレータに設けられたガス流路は、空気流路の流路抵抗の方が 小さ 、設計であった。このような単セルを 100セル積層したものを燃料電池スタックと して用いた。
[0066] 実施例 1および 2では窒素を、実施例 4一 6では都市ガスをそれぞれ不活性ガスとし て使用した。実施例および比較例で使用した燃料電池スタックは、実施例の効果を 確認するために、以下のシーケンスによる起動停止サイクルの実験を行った。このシ 一ケンスでは、発電時には 0. 5AZcm2の電流密度で発電されるように、外部負荷を 用いて制御した。また、このシーケンスでは、燃料電池スタックに耐久性に対する温 度変化の影響を考慮にいれるため、運転停止後に燃料電池スタックの温度が室温付 近まで低下に要する時間を測定したところ、 3. 2±0. 4時間であることが判明した。こ のことから、停止時間を 4. 0時間とした。
[0067] シーケンス:発電(2. Ohr)→停止パージ(1. Ohr)→再起動パージ(1. Ohr)→停止
(4. Ohr)→発電(2. Ohr)→' ' ' (繰り返し)。
[0068] 実施例 1一 6および比較例を前記のシーケンスで繰り返し運転を実施し、運転時の 電圧の平均値の推移を調べた。その結果を図 8に示す。図 8では、比較例の電圧が 、 1800サイクルを過ぎたあたりから急激に低下しているのに対し、実施例 1一 6では 3 000サイクルを過ぎても電圧の大きな変化は見られな ヽ。試験後に燃料電池スタック の中で電池電圧が低下した単セルを分解調査したところ、電解質膜はセパレータ〖こ 設けられて 、るガス流路と接触するエッジ部分に破れが生じて 、ることが明らかとな つた。これにより、本発明の効果が確認された。
産業上の利用可能性
本発明の固体高分子型燃料電池システムは、家庭用コジェネレーションシステムと して有用である。また、乗用車やバス、スクーター等の車両用原動機のエネルギー源 としても適用が可能である。

Claims

請求の範囲
[1] 燃料電池と、前記燃料電池のアノードに燃料ガスを供給する燃料ガス供給手段と、 前記燃料電池の力ソードに酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料 電池のアノードおよび Zまたは力ソードに不活性ガスを供給する不活性ガス供給手 段と、前記燃料電池のアノードの入口側流路の圧力 Paおよび力ソードの入口側流路 の圧力 Pcを測定する手段とを具備し、前記燃料電池の起動または停止時に前記不 活性ガス供給手段により前記燃料電池内の燃料ガスおよび Zまたは酸化剤ガスを不 活性ガスと置換するパージ動作をするように構成された燃料電池システムであって、 差圧 AP = Pa— Pcと定義したとき、運転状態における差圧 ΔΡοと、パージ中の差圧 △Ρρが、 0< ΔΡο X ΔΡρの関係を満足することを特徴とする燃料電池システム。
[2] ΔΡοと ΔΡρ力 S I ΔΡρ | ≤ | ΔΡο |の関係にある請求項 1記載の燃料電池シス テム。
[3] 前記燃料電池のパージ中における Paおよび Pcの値によって前記燃料電池に供給 する不活性ガスの供給量を増減させる制御手段を具備する請求項 1または 2記載の 燃料電池システム。
[4] 前記燃料電池からの排出ガスの出口側流路の内径を変化させる手段と、前記燃料 電池のパージ中における Paおよび Pcの値よつて前記内径を変化させる手段とを具 備する請求項 1または 2記載の燃料電池システム。
PCT/JP2005/000559 2004-01-21 2005-01-19 燃料電池システム WO2005071781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05703796.2A EP1708300B1 (en) 2004-01-21 2005-01-19 Fuel cell system
JP2005517242A JP4873952B2 (ja) 2004-01-21 2005-01-19 燃料電池システム
KR1020067002394A KR101128552B1 (ko) 2004-01-21 2005-01-19 연료전지 시스템
US10/564,469 US7691510B2 (en) 2004-01-21 2005-01-19 Fuel cell system with differential pressure control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-013107 2004-01-21
JP2004013107 2004-01-21

Publications (1)

Publication Number Publication Date
WO2005071781A1 true WO2005071781A1 (ja) 2005-08-04

Family

ID=34805371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000559 WO2005071781A1 (ja) 2004-01-21 2005-01-19 燃料電池システム

Country Status (6)

Country Link
US (1) US7691510B2 (ja)
EP (1) EP1708300B1 (ja)
JP (1) JP4873952B2 (ja)
KR (1) KR101128552B1 (ja)
CN (1) CN100411234C (ja)
WO (1) WO2005071781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190900A1 (ja) * 2012-06-19 2013-12-27 日産自動車株式会社 固体酸化物型燃料電池システム及びその制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292921A1 (en) * 2007-05-22 2008-11-27 Balasubramanian Lakshmanan Recovery of inert gas from a fuel cell exhaust stream
WO2010032332A1 (ja) * 2008-09-22 2010-03-25 トヨタ自動車株式会社 燃料電池システム
US20110256460A1 (en) * 2009-09-02 2011-10-20 Panasonic Corporation Fuel cell power generation system and method for operating the same
US9960438B2 (en) * 2013-03-14 2018-05-01 Ford Global Technologies, Llc Fuel cell system and method to prevent water-induced damage
CA2930361C (en) * 2013-11-14 2017-08-01 Nissan Motor Co., Ltd. Fuel cell system with starvation suppressing control when returning from idle stop
KR101592683B1 (ko) * 2014-04-14 2016-02-12 현대자동차주식회사 연료전지 퍼지 제어 방법
GB201415222D0 (en) * 2014-08-28 2014-10-15 Afc Energy Plc Operation of a fuel cell system
JP6295340B2 (ja) * 2014-10-28 2018-03-14 日産自動車株式会社 燃料電池システム
US10170781B2 (en) * 2015-09-19 2019-01-01 Daimler Ag Shutdown and storage method for fuel cell system at below freezing temperatures
KR102334440B1 (ko) * 2019-02-27 2021-12-01 울산과학기술원 수소 생산을 위한 이차 전지
KR102312048B1 (ko) 2020-02-17 2021-10-13 동명대학교산학협력단 회전형 연료전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116373A (ja) * 1986-11-05 1988-05-20 Hitachi Ltd 燃料電池運転法
JPS63211005A (ja) * 1987-02-26 1988-09-01 Atsugi Motor Parts Co Ltd 圧力制御弁
JPH05205761A (ja) * 1991-02-27 1993-08-13 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池設備
JP2003168453A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池の発電量制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853164A (ja) * 1981-09-24 1983-03-29 Toshiba Corp 燃料電池装置
JPS63170864A (ja) * 1987-01-09 1988-07-14 Hitachi Ltd 保護装置付燃料電池
EP0374636A1 (de) * 1988-12-20 1990-06-27 Asea Brown Boveri Ag Verfahren zur Umwandlung von in einem Stoff als chemisches Potential vorliegender Energie in elektrische Energie basierend auf einem elektrochemischen Hochtemperaturprozess
US5059494A (en) * 1990-05-10 1991-10-22 International Fuel Cells Fuel cell power plant
JPH06203865A (ja) 1993-01-06 1994-07-22 Sanyo Electric Co Ltd 燃料電池システム
JP3297125B2 (ja) 1993-02-25 2002-07-02 三菱重工業株式会社 固体高分子電解質燃料電池の停止保管方法
JPH11214025A (ja) 1998-01-21 1999-08-06 Sanyo Electric Co Ltd 燃料電池装置
JPH11354143A (ja) * 1998-06-04 1999-12-24 Ishikawajima Harima Heavy Ind Co Ltd アノード循環ラインを備えた燃料電池発電装置
JP3636068B2 (ja) * 2000-02-16 2005-04-06 日産自動車株式会社 燃料電池制御装置
JP2002050372A (ja) 2000-08-04 2002-02-15 Honda Motor Co Ltd 燃料電池用パージ装置
JP2002373682A (ja) * 2001-06-15 2002-12-26 Honda Motor Co Ltd 燃料電池システム
US6783879B2 (en) * 2002-01-11 2004-08-31 General Motors Corporation Dynamic fuel processor mechanization and control
JP3627707B2 (ja) * 2002-01-23 2005-03-09 富士電機ホールディングス株式会社 色変換フィルタ基板、それを用いた有機多色elディスプレイパネルおよびそれらの製造方法
JP4328498B2 (ja) * 2002-06-14 2009-09-09 本田技研工業株式会社 リン酸型燃料電池の運転方法
JP4745603B2 (ja) * 2002-07-29 2011-08-10 株式会社デンソー 燃料電池システム
WO2004049478A2 (en) * 2002-11-27 2004-06-10 Hydrogenics Corporation Fuel cell power system with external humidification and reactant recirculation and method of operating the same
JP3915681B2 (ja) * 2002-12-03 2007-05-16 日産自動車株式会社 燃料電池システム
US8026010B2 (en) * 2003-01-14 2011-09-27 GM Global Technology Operations LLC Anode exhaust gas dilution method and apparatus in PEM fuel cell powered system
EP1697805A4 (en) * 2003-12-22 2006-12-20 Greenlight Power Technologies REGULATED PRESSURE DROP OF THE TRANSFORMATION GAS PRESSURE AT THE STOP

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116373A (ja) * 1986-11-05 1988-05-20 Hitachi Ltd 燃料電池運転法
JPS63211005A (ja) * 1987-02-26 1988-09-01 Atsugi Motor Parts Co Ltd 圧力制御弁
JPH05205761A (ja) * 1991-02-27 1993-08-13 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池設備
JP2003168453A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池の発電量制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190900A1 (ja) * 2012-06-19 2013-12-27 日産自動車株式会社 固体酸化物型燃料電池システム及びその制御方法
JP2014002929A (ja) * 2012-06-19 2014-01-09 Nissan Motor Co Ltd 固体酸化物型燃料電池システム

Also Published As

Publication number Publication date
EP1708300A1 (en) 2006-10-04
EP1708300B1 (en) 2014-03-19
JPWO2005071781A1 (ja) 2007-07-26
CN1839506A (zh) 2006-09-27
JP4873952B2 (ja) 2012-02-08
KR20070017931A (ko) 2007-02-13
KR101128552B1 (ko) 2012-03-23
US20070292728A1 (en) 2007-12-20
US7691510B2 (en) 2010-04-06
EP1708300A4 (en) 2008-11-05
CN100411234C (zh) 2008-08-13

Similar Documents

Publication Publication Date Title
WO2005071781A1 (ja) 燃料電池システム
JP4468994B2 (ja) 燃料電池システム
JP4886170B2 (ja) 燃料電池システム
US20070154745A1 (en) Purging a fuel cell system
JP5807207B2 (ja) 固体高分子形燃料電池システムの運転方法及び固体高分子形燃料電池システム
JP2007141744A (ja) 燃料電池システム
JP4872181B2 (ja) 燃料電池システムとその運転方法
JP2006244821A (ja) 燃料電池システム及び燃料電池システムの制御方法
JP4727642B2 (ja) 水素製造発電システムの運転方法
JP5411901B2 (ja) 燃料電池システム
JP3924198B2 (ja) 燃料電池システム及び燃料電池システムの起動方法
JP2005267910A (ja) 燃料電池システムおよびその制御方法
JP5559002B2 (ja) 燃料電池システム及びその起動方法
JP2005267898A (ja) 燃料電池システム
JP3601521B2 (ja) 燃料電池の発電制御装置
JP2010192292A (ja) 燃料電池システム及びその運転方法
JP2008027606A (ja) 燃料電池システム
JP2009134977A (ja) 燃料電池システム
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
JP2010129454A (ja) 燃料電池ユニット
JP7512338B2 (ja) 燃料電池システム
JP2005268091A (ja) 燃料電池の運転方法および燃料電池システム
JP2023166706A (ja) 燃料電池システム
JP2006049133A (ja) 燃料電池システム
JP2021130858A (ja) 水素精製システムとその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000761.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10564469

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005703796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067002394

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005517242

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005703796

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067002394

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10564469

Country of ref document: US