WO2005067059A1 - 整流素子およびそれを用いた電子回路、並びに整流素子の製造方法 - Google Patents

整流素子およびそれを用いた電子回路、並びに整流素子の製造方法 Download PDF

Info

Publication number
WO2005067059A1
WO2005067059A1 PCT/JP2004/007201 JP2004007201W WO2005067059A1 WO 2005067059 A1 WO2005067059 A1 WO 2005067059A1 JP 2004007201 W JP2004007201 W JP 2004007201W WO 2005067059 A1 WO2005067059 A1 WO 2005067059A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
interface
cross
electrode
carrier transporter
Prior art date
Application number
PCT/JP2004/007201
Other languages
English (en)
French (fr)
Inventor
Shinsuke Okada
Masaki Hirakata
Chikara Manabe
Kazunori Anazawa
Taishi Shigematsu
Miho Watanabe
Kentaro Kishi
Takashi Isozaki
Shigeki Ooma
Hiroyuki Watanabe
Original Assignee
Fuji Xerox Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co., Ltd. filed Critical Fuji Xerox Co., Ltd.
Priority to JP2005516787A priority Critical patent/JPWO2005067059A1/ja
Priority to CN2004800390172A priority patent/CN1898804B/zh
Priority to EP04734132A priority patent/EP1699088A4/en
Priority to US10/580,436 priority patent/US20080053952A1/en
Publication of WO2005067059A1 publication Critical patent/WO2005067059A1/ja
Priority to US14/258,439 priority patent/US20140225058A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/20Organic diodes
    • H10K10/23Schottky diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Definitions

  • the present invention relates to a rectifying element using a carbon nanotube structure as a carrier transporter, an electronic circuit using the same, and a method of manufacturing the rectifying element. Also, the present invention relates to a method for manufacturing a rectifying element.
  • Background Technology Carbon nanotubes (CNT) have been considered for various applications due to their unique shapes and characteristics.
  • the carbon nanotube has a one-dimensional cylindrical shape in which a graph ensheet composed of six-membered rings of carbon atoms is wound, and a single-walled carbon nanotube (SWNT)
  • SWNT single-walled carbon nanotube
  • the multi-walled case is called multi-walled nanotube (MWNT).
  • SWNTs have a diameter of about 1 nm
  • multi-walled carbon nanotubes have a diameter of about several tens of nm.
  • carbon nanotubes are characterized by having a length on the order of micrometers and an extremely large aspect ratio with respect to diameter. Furthermore, carbon nanotubes have a spiral structure in which the arrangement of six-membered rings of carbon atoms is Therefore, it is a material with extremely rare properties, having both metallic and semiconducting properties. In addition, carbon nanotubes have extremely high electrical conductivity and can pass a current of 10 OMA / cm 2 or more in terms of current density.
  • Carbon nanotubes have excellent points not only in electrical properties but also in mechanical properties. That is, since it is composed of only carbon atoms, it has a Young's modulus exceeding 1 TPa and is extremely tough, despite being extremely lightweight. In addition, since it is a cage material, it has high elasticity and resilience. As described above, carbon nanotubes have various excellent properties and are extremely attractive as industrial materials.
  • Carbon nanotubes are added as a resin reinforcement and conductive composite material, and they are used as a probe of a scanning probe microscope.
  • carbon nanotubes are used as field emission rectifiers and flat displays as microelectron sources, and their application to hydrogen storage is being promoted.
  • Rectifiers are the most basic of various electronic devices, and have the property of allowing current to flow in only one direction.
  • For rectifiers high-output, high-speed, high-frequency, low-loss elements are required to satisfy the above requirements.
  • Examples of reports on diodes using carbon nanotubes include Hu, J. Ouyang, M. Yang, P. Lieber, CM Nature, 399, 48-51 (1999) and Yao, Z. Postma , HWC Balents, L. Dekker, C. Nature, 402, 273-276 (1999).
  • a rectifying effect is exhibited by forming a hetero bond between the carbon nanotube and the silicon nanowire, and in the latter, the carbon nanotube is bent and wired by using a manipulating method.
  • an object of the present invention is to solve the above problems. More specifically, an object of the present invention is to provide a rectifying element capable of effectively utilizing the characteristics of a carbon nanotube structure, an electronic circuit using the same, and a method of manufacturing the rectifying element.
  • the rectifying element of the present invention includes: a pair of electrodes; and a carrier transporter provided between the pair of electrodes and configured by one or more carbon nanotubes.
  • One of the pair of electrodes and the first interface of the carrier transporter, and the other of the pair of electrodes and the second interface of the carrier transporter have different barrier levels.
  • a first connection configuration between the one electrode and the carrier transporter and a second connection configuration between the other electrode and the carrier transporter are different from each other. I do.
  • the rectifying element of the present invention may further include a barrier level between the first interface and the second interface. Therefore, the first interface and / or the second interface do not form a so-called ohmic connection in which electrons and holes come and go with each other in a thermal equilibrium state without an electric field.
  • a connection configuration other than the atomic connection a MIS (Metal-Insulator-Semiconductor) barrier and a Schottky barrier are typical.
  • the barrier level refers to the degree of ease of carrier (electron or hole) transition at the interface between the carrier transporter and the electrode under no electric field and thermal equilibrium, or the magnitude of the energy barrier. Point. Since the barrier level becomes asymmetric between the first interface and the second interface of the carrier transporter, rectification occurs when a voltage is applied.
  • the carrier transporter in the present invention is an object that, unlike a metal that propagates free electrons in a metal, generates electric conduction by propagating carriers (electrons and holes) in a medium.
  • the carbon nanotubes are composed of carbon nanotubes, not only are the carbon nanotubes of the semiconductor type, but also carbon nanotubes having metallic properties, a plurality of carbon nanotubes are described through a cross-linking site. Shows semiconductor properties by using carbon nanotubes, such as those that show semiconductor properties as a whole by constructing the body, those that show semiconductor properties by entanglement or contact of carbon nanotubes in a dispersed film of carbon nanotubes, etc. Can be used.
  • the carrier transporter in the present invention is preferably composed of a plurality of carbon nanotubes.
  • the maximum current that can be passed is small.
  • Using a PT / JP2004 / 007201 tube can make this larger.
  • the electrical network in the carrier transport is formed more reliably than in the case of a single cable, so that the stability is excellent.
  • the carrier transporter in the present invention is more preferably constituted by a carbon nanotube structure having a network structure in which a plurality of carbon nanotubes are cross-linked to each other.
  • a carbon nanotube structure in which a plurality of carbon nanotubes form a network structure via a plurality of cross-linking sites as a carrier transporter, it is as if a mere dispersion film of carbon nanotubes was used as a carrier transporter.
  • the contact state between the power tubes and the arrangement state and the operating environment become unstable, the connection state of the carrier transporter fluctuates, and the rectification characteristics become unstable. An element can be obtained.
  • a rectifying element can be formed using easily available multi-walled carbon nanotubes.
  • an oxide layer is interposed on at least one of the first interface and the second interface so that barrier levels of the first interface and the second interface are different. Therefore, it is particularly preferable to make the first and second connection configurations different.
  • a high energy barrier can be formed by the intervening oxide, and the carrier traffic at the interface under no electric field can be further prevented.
  • the rectifier of this configuration one becomes the anode and the other becomes the force source.
  • the carrier transporter is a P-type
  • the electrode side in contact with the oxide film with the higher barrier level becomes the force source.
  • the larger barrier is the anode.
  • Carbodies that make up carrier carriers Since PT / JP2004 / 007201 can be made to have p-type or n-type properties by doping or the like, it is possible to set which one is on the cathode side as needed.
  • the oxide layer is preferably a metal oxide film (including an alloy oxide film) or a semiconductor oxide film, and is not necessarily a uniform oxide film having the same composition, but a plurality of types of oxide films are juxtaposed. Alternatively, they may be configured by lamination.
  • the oxides include aluminum oxide, silicon dioxide, copper oxide, silver oxide, titanium oxide, zinc oxide, tin oxide, nickel oxide, magnesium oxide indium oxide, chromium oxide, lead oxide, manganese oxide, iron oxide, palladium oxide, It is preferable to be formed of at least one selected from the group consisting of tantalum oxide, tungsten oxide, molybdenum oxide, vanadium oxide, cobalt oxide, hafnium oxide, and lanthanum oxide.
  • an oxide layer is inserted at a first interface between the carrier transporter surface and the one electrode (hereinafter, may be referred to as a “first electrode”).
  • a layer that does not lose the function as a rectifying element is inserted, for example, by inserting a conductive layer made of a material different from that of the first electrode. It may be interposed.
  • a second interface between the carrier transporter surface and the other electrode (hereinafter sometimes referred to as a “second electrode”) has a barrier level different from the barrier level at the first interface.
  • a layer that does not lose the function as a rectifying element may be interposed, such as a direct omic connection or a stack of a plurality of materials.
  • both interfaces are formed so as not to be in a so-called atomic connection state in which electrons and holes come and go mutually in a thermal equilibrium state without an electric field.
  • Materials constituting the pair of electrodes include titanium, aluminum, silver, copper, conductive silicon, iron, tantalum, niobium, gold, platinum, zinc, tungsten, tin, nickel, magnesium, indium, chromium, and manganese. It is preferably at least one metal selected from the group consisting of, lead, palladium, molybdenum, vanadium, cobalt, hafnium, and lanthanum, or an alloy thereof.
  • the material constituting one of the pair of electrodes is titanium, aluminum, silver, copper, conductive silicon, iron, tantalum, niobium, zinc, tungsten, tin, nickel, magnesium, indium, It is preferably at least one metal or an alloy thereof selected from the group consisting of chromium, palladium, molybdenum and cobalt.
  • the pair of electrodes is not limited to a metal or an alloy, and may be a conductive semiconductor or an organic material. However, it is preferable that the pair of electrodes is singly connected to a carrier transporter or an oxide layer. Further, the electrode itself may be formed by a combination such as a lamination of a plurality of metals.
  • the pair of electrodes may be made of different materials.
  • the material of the one electrode and the material of the other electrode can be made different so that the first interface and the second interface have different barrier levels.
  • the electrode material forms an oxide film (for example, aluminum, silver, copper, conductive silicon, titanium, zinc, nickel, tin 04007201
  • Tantalum, tungsten, molybdenum. when formed by oxidizing the electrode surface, the portion that acts as an unoxidized electrode and the carrier transporter
  • the oxide layer can be interposed in a state where the distances are sufficiently close to each other, which is preferable in that carrier movement becomes easier and driving at a low voltage becomes easier. It is also preferable in terms of productivity that the oxide layer and its layer thickness can be formed stably.
  • a material having a higher ionization tendency may cause a difference in the formation amount of the oxide layer, resulting in a difference in barrier level.
  • an oxidizing material is arranged in advance so as to be adjacent to the carbon nanotubes, and then the material is oxidized to form an oxide layer. Since the carrier transporter has a network structure, oxygen can be supplied to the surface of the oxidizing material through the network, and the oxide layer can be reliably formed. It is also preferable that the rectifying element of the present invention has different materials for one electrode and the other electrode so that the first interface and the second interface have different barrier levels.
  • first electrode and the second electrode are made of different materials, different barrier levels can be stably formed between the first interface and the second interface according to the material properties at the interface between the electrode and the carrier transport. Obtainable.
  • the materials constituting one electrode and the other electrode are independently aluminum, silver, copper, conductive silicon, gold, platinum, titanium, zinc, nickel, tin, magnesium, indium, Chrome, manganese, iron, lead, palladium, tantalum, tungsten, molybdenum. It is preferable to use at least one metal selected from the group consisting of vanadium, cobalt, octanium, and lanthanum or an alloy thereof, and to make them different.
  • the material constituting the other electrode is selected from the group consisting of gold, titanium, iron, nickel, tungsten, conductive silicon, chromium, niobium, cobalt, molybdenum, and vanadium. Both are preferably one metal or an alloy thereof.
  • the degree of adhesion between the one electrode and the carrier transporter at the first interface is smaller than the degree of adhesion between the other electrode and the carrier transporter at the second interface. It is also good. Since the degree of adhesion between the carbon nanotube and the electrode varies depending on the electrode material used, the barrier level can be varied depending on the difference in material properties.
  • the degree of adhesion refers to the electrode material and the carbon constituting the carrier transporter. It means the difference in adhesion performance with nanotubes. For example, when two layers of metal thin films are formed, a layer with a high degree of adhesion will adhere to each other to form a multilayer, but a material with a low degree of adhesion will not form a layered structure, or even if a layer is formed, the layer will not form a layer. Or a gap is formed. Since the carbon nanotube is not a film but a tubular structure, it means the degree of adhesion between the surface of the nanotube and the electrode material when an electrode is deposited thereon.
  • the adhesion rate to the electrode material can be further reduced or improved, and the adhesion is reduced or increased. Can be done.
  • barrier levels can be further improved.
  • the degree of adhesion to the carrier transporter is reduced or improved, so that even when the whole is oxidized, the electrode surface at the first interface is more oxidized. It is more susceptible or less susceptible to oxidation, resulting in the formation of different barriers at the first and second interfaces.
  • the rectifying element of the present invention the difference in adhesion between the one electrode and the carrier transporter at the first interface and between the other electrode and the carrier transporter at the second interface. It is also preferable in one embodiment that an adhesive force adjusting layer is interposed in at least one of the first interface and the second interface so as to cause the problem.
  • the degree of adhesion between the interface and the electrode can be controlled. Barrier levels can be varied depending on the degree of adhesion.
  • the carbon nanotube structure is preferably a structure in which a cross-linking site is formed by chemically bonding between the functional groups of a plurality of carbon nanotubes to which a functional group is bonded, wherein the cross-linking site is For example, it can be formed by chemically bonding the functional groups of the plurality of carbon nanotubes using a solution containing a plurality of carbon nanotubes to which the functional groups are bonded.
  • the plurality of carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • a carbon nanotube structure can be formed at a high density. There is little deterioration in performance as a carrier.
  • the permissible maximum current as a conductor is larger than that of a single-walled carbon nanotube, so that the application as a rectifier can be expanded.
  • it since it is less likely to be bundled (bunched) than single-walled carbon nanotubes, it has excellent uniformity of properties. It is also preferable in terms of manufacturing cost and ease of handling.
  • T JP2004 / 007201 It is also possible to form a single-walled carbon nanotube and a multi-walled carbon nanotube in a mixed state, and in this case, the features of both can be used. In this case, it is preferable to use a composite structure in which single-walled carbon nanotubes are mainly combined with the first structure mainly including multi-walled carbon nanotubes.
  • the first structure that is preferable as the cross-linking site is that the functional group is cured by using a solution containing a carbon nanotube having a functional group bonded thereto and a cross-linking agent that causes a cross-linking reaction with the functional group. And a cross-linking reaction with the cross-linking agent.
  • the cross-linking agent is more preferably non-self-polymerizable.
  • the cross-linking site where the carbon nanotubes cross-link the residues remaining after the cross-linking reaction of the functional group remain after the cross-linking reaction of the cross-linking agent.
  • a crosslinked structure linked by a linking group that is an existing residue can be formed.
  • the cross-linking agent has a property (self-polymerization) that causes a polymerization reaction among the cross-linking agents
  • the cross-linking agent itself may be in a state in which the linking group contains a polymer in which two or more are linked. Since the substantial density of carbon nanotubes occupying in the carbon nanotube structure becomes low, the current value at a forward bias becomes small as a rectifying element, and only a small rectifying ratio is used as a rectifying element. I can't get it.
  • the distance between the carbon nanotubes can be controlled to the size of the residue of the used cross-linking agent, so that the desired carbon nanotube network structure can be improved. It can be obtained with reproducibility.
  • the distance between the carbon nanotubes can be configured to be extremely close both physically and physically, and the carbon nanotubes in the structure can be densely structured. As a result, a large forward current results in a high rectification ratio.
  • the carbon nanotube structure according to the present invention can exhibit the electrical properties or mechanical properties of the carbon nanotube itself at an extremely high level. It can be.
  • self-polymerizable refers to a property in which cross-linking agents can mutually cause a polymerization reaction in the presence of other components such as moisture or without the presence of other components. “Self-polymerizable” means not having such properties.
  • the cross-linking site in which the carbon nanotubes cross each other in the coating film of the present invention has the same cross-linking structure.
  • the linking group has a skeleton of a hydrocarbon, and the number of carbon atoms is preferably 2 to 10.
  • the carrier transporter thus obtained has a high density, a carrier transport path can be reliably formed even when it is patterned into a minute size.
  • the functional groups include —OH, one CO ⁇ H, one COOR (R is 07201 or an unsubstituted hydrocarbon group. R is preferably - C n H 2 n - is selected from have one C n H 2 n or a C n H 2 n + i, n is:! An integer of from 1 to 10, including those in which these are substituted. ), One C OX (X is a halogen atom), one NH 2 and one NCO, and it is preferable to select at least one group selected from the group consisting of these. An agent capable of causing a crosslinking reaction with the selected functional group is selected as the agent.
  • crosslinking agent examples include polyols, polyamines, polycarboxylic acids, polycarboxylic esters, polycarboxylic halides, polycarboimides and polyisocyanates, and at least one selected from the group consisting of these. It is preferable to select one cross-linking agent, in which case, a functional group that can cause a cross-linking reaction with the selected cross-linking agent is selected.
  • At least one functional group and a crosslinking agent are selected from the group exemplified as the preferred functional group and the group exemplified as the preferred crosslinking agent so as to be a combination capable of causing a mutual crosslinking reaction. Is preferred.
  • R is a substituted or unsubstituted hydrocarbon group.
  • R is preferably —C n H 2 n —one C n H 2 n or one C n H 2 n n + 1 force al selected, n is an integer from 1 1 0, may be mentioned they include those substituted.
  • This functional group easily undergoes a crosslinking reaction and is suitable for forming a coating film.
  • a polyol can be exemplified.
  • Polyols cure by reaction with —COOR (as above), and easily form strong crosslinked products.
  • —COOR as above
  • glycerin and ethylene glycol not only have good reactivity with the above functional groups, but also have high biodegradability and a low environmental load, and the plurality of carbon nanotubes crosslink with each other.
  • the functional group is —COOR (R is a substituted or unsubstituted hydrocarbon group).
  • crosslinking agent When ethylene glycol is used as the crosslinking agent, —COO (CH 2 ) 20 CO— When glycerin is used as the cross-linking agent, if two OH groups contribute to cross-linking, —COOCH 2 C HOH CH 2 OCO—or one COOCH 2 CH (OC ⁇ —) CH 2 OH, and OH group 3 If one contributes to cross-linking, it becomes one C ⁇ OCH 2 CH (OCO—) CH 2 OC ⁇ —.
  • the chemical structure of the cross-linking site may be any chemical structure selected from the group consisting of the above four.
  • a second structure that is preferable as the structure of the cross-linking site is a structure formed by a chemical bond of a plurality of functional groups. Further, it is more preferable that the reaction producing a chemical bond is any one of dehydration condensation, substitution reaction, addition reaction and oxidation reaction.
  • This carbon nanotube structure forms a crosslinked site by forming a chemical bond between the carbon nanotubes and the functional groups bonded to the carbon nanotube, thereby forming a network-like structure.
  • the size of the cross-linking site for bonding between the carbon nanotubes becomes constant depending on the functional group to be formed. Since carbon nanotubes have an extremely stable chemical structure, it is unlikely that functional groups other than the functional group to be modified will be bonded.If these functional groups are chemically bonded to each other, the designed cross-linking part Thus, the carbon nanotube structure can be made homogeneous.
  • the length of the cross-linking portion between the carbon nanotubes can be reduced as compared with the case where the functional groups are cross-linked using a cross-linking agent, so that the carbon nanotube structure becomes denser. This makes it easier to achieve the effects unique to carbon nanotubes.
  • the carbon nanotube structure of the present invention has a network structure in which a plurality of carbon nanotubes are formed through a plurality of cross-linking sites, the carbon nanotube structure has a structure similar to a simple carbon nanotube dispersion film or a resin dispersion film.
  • the excellent properties of the carbon nanotubes can be utilized stably.
  • one is selected from the group consisting of one C OO CO—, — ⁇ , —NHC O—, —C OO— and —NCH— in the condensation reaction, and one NH in the substitution reaction.
  • At least one selected from —, 1 S— and 1 O— is preferably 1 NHC OO— for the addition reaction and 1 S—S 1 for the oxidation reaction.
  • the functional groups to be bonded to the carbon nanotubes before the reaction include —OH, —COOH, —COOR (R is a substituted or unsubstituted hydrocarbon group. R is preferably —Cn H 2 n _ i, — C n H 2 n or one PC orchid 004 bell 01
  • n is an integer from 1 1 0, including those to which they are substituted.
  • - X, - COX X represents a halogen atom
  • One SH, - C HO one OS 0 2 CH 3, - OSO 2 (C 6 H 4) CH 3 - include NH 2 and one NC_ ⁇ It is preferable to select at least one group selected from the group consisting of these.
  • 1COOH can be mentioned as a particularly preferable one. It is relatively easy to introduce carbonyl groups into carbon nanotubes.
  • the resulting substance (carbon nanotube-potassic acid) is highly reactive and easily condensed by using a dehydrating condensing agent such as N-ethyl-N '-(3-dimethylaminobutyral) carbopimidide. It reacts and is suitable for coating film formation.
  • the carrier transporter When the carrier transporter is layered and the carbon nanotube structure is patterned into a predetermined shape, a fine rectifier can be obtained.
  • the carrier transporter when the carrier transporter is formed by patterning the carbon nanotube structure chemically bonded to each other at the cross-linking site, the carbon nanotubes are densely formed even in a minute size, so that the carrier is surely formed.
  • a conduction path can be secured, and the carrier can be suitably used as a carrier transporter.
  • the barrier level at the first interface is higher than the barrier level at the second interface, and at the interface between one electrode and the carrier transporter, It is preferable that the width of the electrode surface is equal to or larger than the width of the carrier transporter.
  • the first connection configuration further includes an oxide layer at the first interface.
  • “width” is defined as the direction perpendicular to the direction of the electric field between a pair of electrodes Point in the direction.
  • the width of the carrier transporter By setting the width of the carrier transporter to be equal to or less than the width of the electrode having a higher barrier level, a situation is created in which carriers must pass through the barrier, and the on-off characteristics are improved. If the width of the one electrode is smaller than the width of the carrier transporter, the current escapes to a place where there is no barrier or a low place on the side surface of the electrode (a place where the pair of electrodes is not the opposite side), Rectifying action may not be obtained sufficiently.
  • an oxide layer having the above-described configuration is interposed at the first interface.
  • the rectifying element of the present invention preferably includes at least a sealing member for sealing the first interface from the outside air.
  • sealing member for sealing the first interface from the outside air.
  • the change can be prevented, for example, when an oxide layer is interposed here, but more preferably, the transport properties of the carbon nanotube as a carrier transporter It is preferable to seal the entire carbon nanotube structure in order to prevent the carbon nanotube structure from being deteriorated by outside air.
  • An electronic circuit according to the present invention includes the rectifier of the present invention as described above, and a flexible substrate having the rectifier formed on a surface. Since the rectifying element of the present invention is composed of carbon nanotubes, it has high resistance to bending and the like, and is formed on the surface of a flexible substrate. With PT / JP2004 / 007201, a highly durable electronic circuit can be obtained. At this time, if the carbon nanotube structure chemically bonded to each other at the cross-linking site is patterned into a carrier transporter, the bond between the carbon nanotubes inside the carrier transporter fluctuates due to bending, and the transport characteristics are changed. This is more preferable in that the elimination is prevented.
  • the method for manufacturing a rectifying element of the present invention is a method for manufacturing a rectifying element in which a carrier transporter composed of one or a plurality of carbon nanotubes is arranged between a pair of electrodes provided on a surface of a base; ,
  • One of the pair of electrodes and the first interface of the carrier transporter, and the other of the pair of electrodes and the second interface of the carrier transporter have different barrier levels. Forming a first connection between the one electrode and the carrier transporter and a second connection between the other electrode and the carrier transporter into different configurations; It is characterized by including.
  • the manufacturing method of the present invention a rectifier having desired characteristics is used by using a carrier transporter composed of carbon nanotubes.
  • the device can be manufactured more easily than the conventional method.
  • the first connection configuration from one electrode to the carrier transporter is set so that the other interface of the pair of electrodes and the second interface of the carrier transporter have different barrier levels.
  • the first interface between the one electrode and the carrier transporter may be different from the second interface between the other electrode and the carrier transporter. It is particularly preferable to include an oxide layer forming step of forming an oxide layer serving as a barrier level.
  • the oxide layer can form a high energy barrier at the interface with the carrier transporter, and because the structure is stable by oxidation, different barrier levels can be easily formed. Specifically, there are a method in which the oxide is directly sized, and a method in which the material is formed by oxidizing a material before oxidation as described later.
  • the oxide layer forming step is a step of oxidizing the oxide precursor layer after disposing an oxide precursor layer composed of an oxidizable material at the first interface. .
  • the oxide precursor layer forming step is a step of oxidizing the oxide precursor layer after disposing an oxide precursor layer composed of an oxidizable material at the first interface.
  • the carrier transporter is formed by a carbon nanotube structure having a network structure in which a plurality of carbon nanotubes are cross-linked to each other, and the oxide layer forming step includes the oxide precursor layer It is more preferable that the oxide precursor layer is oxidized after the oxide precursor layer is formed by contacting with the carrier transporter. Oxygen is supplied to the oxide precursor layer through the network structure, so that the oxide layer can be formed uniformly.
  • one of the pair of electrodes is formed of an oxidizable material, and the surface of the one electrode at the first interface is oxidized to form an oxide layer.
  • the carrier transporter is formed by a carbon nanotube structure having a network structure in which a plurality of carbon nanotubes are cross-linked to each other, and the oxide layer forming step includes: It is more preferable that the step of oxidizing the one electrode on the contact surface after the formation by bringing the carrier into contact with the carrier transporter is performed.
  • the carrier transporter is composed of a plurality of carbon nanotubes forming a network structure
  • one electrode formed of an oxidizing electrode material is formed on the surface of the carrier transporter, and then the surface of the one electrode is formed.
  • the electrode surface can be efficiently and widely oxidized by oxygen supplied through the network structure. Therefore, the barrier level can be more precisely controlled by adjusting the oxidized region and the oxidizing time.
  • materials constituting one of the pair of electrodes include aluminum, silver, copper, conductive silicon, titanium, zinc, nickel, tin, magnesium, indium, chromium, manganese, iron, It is preferably at least one metal selected from the group consisting of lead, palladium, tantalum, tungsten, molybdenum, vanadium, cobalt, hafnium and lanthanum, or an alloy thereof.
  • the material constituting the other electrode is at least one selected from the group consisting of gold, titanium, iron, nickel, tungsten, conductive silicon, chromium, niobium, cobalt, molybdenum, and panadmium. It is preferably a metal or an alloy thereof.
  • the material forming the other electrode is made of a material having a lower ionization tendency than the conductive material forming one of the oxidizable electrodes, the material may be oxidized. Slow oxidation on the second interface side 07201 in the same atmosphere without performing any work such as forming a protective film.
  • connection configuration forming step is a step of forming a pair of electrodes with different materials. Since the barrier level can be changed according to the physical properties of the material, stable characteristics can be obtained, and productivity is improved.
  • connection configuration forming step includes a step of determining a difference in the degree of adhesion between the one electrode and the carrier transporter at the first interface and between the other electrode and the carrier transporter at the second interface.
  • the method may include a step of modifying the surface of the carrier transporter at the first interface or the second interface, or the step of forming the connection structure may include: At least one of the first interface and the second interface so that a difference in the degree of adhesion occurs between the electrode and the carrier transporter and the other electrode and the carrier transporter at the second interface.
  • a preferred embodiment includes a step of forming an adhesion adjusting layer. In this way, it is possible to make the barrier level different by utilizing the rectification characteristics caused by the degree of adhesion or the distance between the electrode and the carrier transporter.
  • the rectifying element of the present invention using a carrier transporter composed of carbon nanotubes acts as a carrier transporter even if the carrier movement path is long. Therefore, even if a single carbon nanotube having semiconductor characteristics is arranged and an electrode is arranged on the single carbon nanotube, it does not require a low-productivity process. Since the rectifying element can be formed by forming the electrodes in this manner, extremely high productivity can be obtained. In addition, when one electrode is formed of an oxidizable material and oxidized to form an oxide layer, oxygen is supplied through a network having a network structure to efficiently oxidize the surface of the electrode. Will be able to do it.
  • the carrier transporter may be one having a network structure formed by entanglement of a plurality of carbon nanotubes that are not chemically bonded to each other.
  • the network structure is likely to be coarse because the carbon nanotubes are easily bundled, and is not suitable for miniaturization.
  • the characteristics easily change with deformation.
  • the network structure is dense because the carbon nanotubes are fixed at the cross-linking site. It is easy to be formed, and characteristic variation when miniaturized is small. It is also effective in that the change in characteristics is small with respect to deformation.
  • the present invention includes a carrier transporter forming step of forming the carrier transporter prior to the connection configuration forming step, wherein the step includes supplying a plurality of carbon nanotubes having a functional group to the surface of the base. Supply process,
  • the substrate has the functional group on its surface.
  • the method includes a supply step of applying a solution containing carbon nanotubes, and that the carbon nanotube structure has a film shape.
  • a step of supplying a solution containing a plurality of carbon nanotubes having a functional group (hereinafter, may be referred to as a “crosslinking solution”) to the surface of the base is performed on the entire surface of the base or a part of the surface thereof. Apply the solution.
  • the solution after application is cured to form a network structure in which the plurality of carbon nanotubes are cross-linked to each other through chemical bonding between functional groups.
  • the structure itself of the carbon nanotube structure on the surface of the base is stabilized.
  • the plurality of carbon nanotubes may be single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • a carbon nanotube structure can be formed at a high density, so even when fine processing such as patterning is performed, carrier transport is possible. There is little deterioration in performance as a body.
  • the allowable maximum current as a conductor is larger than that of single-walled carbon nanotubes, so that the application as a rectifier can be expanded. Furthermore, it is less likely to be bundled (bunched) than single-walled carbon nanotubes, so it has excellent uniformity of properties. It is also preferable from the viewpoint of low production cost and easy handling.
  • the single-walled carbon nanotube and the multi-walled carbon nanotube can be formed in a mixed state. In this case, the characteristics of both can be used.
  • the first structure is formed with a cross-linking solution mainly composed of carbon nanotubes, and then a carbon nanotube structure is formed such that the cross-linking solution mainly composed of multi-layer carbon nanotubes is combined with the first structure. May be. Further, the order of using the single-walled carbon nanotube and the multi-walled carbon nanotube may be reversed.
  • a preferred first method for forming a crosslinked site by crosslinking between the functional groups in the crosslinking step is the supply step Is a method including supplying a cross-linking agent for cross-linking between the functional groups to the surface of the base, and the cross-linking agent cross-links a plurality of the functional groups.
  • a non-self-polymerizable crosslinking agent as the crosslinking agent. If a self-polymerizable cross-linking agent is used as the cross-linking agent and a cross-linking agent causes a polymerization reaction with each other during or before the cross-linking reaction in the cross-linking step, the bonding between the cross-linking agents becomes huge Inevitably, the gaps between the carbon nanotubes bonded to them are inevitably greatly separated. At this time, since it is practically difficult to control the degree of reaction due to self-polymerization between the cross-linking agents, the cross-linking structure between the carbon nanotubes varies according to the variation in the polymerization state between the cross-linking agents. .
  • the use of a non-self-polymerizing cross-linking agent does not cause the cross-linking agent to polymerize with each other at least in the cross-linking step or before that.
  • the residue of one cross-linking reaction of the cross-linking agent is interposed as a linking group between the residues remaining after the cross-linking reaction of the functional group.
  • the resulting carbon nanotube structure has uniform properties as a whole, and even if this layer is patterned in the patterning process, it is possible to greatly reduce the variation in characteristics of the carbon nanotube structure after patterning. .
  • cross-linking agents do not cross-link with each other, even if a plurality of types of non-self-polymerizing cross-linking agents are mixed and the carbon nanotubes are cross-linked with a plurality of types of cross-linking agents, the distance between carbon nanotubes is reduced. Since it can be controlled, the same effect of reducing variation can be obtained.
  • cross-linking is performed using a stepwise different cross-linking agent, if the cross-linking is performed using a non-self-polymerizable cross-linking agent in the first cross-linking step, the distance between the carbon nanotubes in the carbon nanotube network structure is reduced. Since it is completed in a controlled state, a cross-linking agent that crosslinks the self-polymerizing cross-linking agent or the first cross-linking agent (or its residue) may be used in the subsequent cross-linking step.
  • the functional groups when forming a crosslinked site using a crosslinker, may be: 1 OH, 1 COOH, 1 COOR (R is a substituted or unsubstituted is a hydrocarbon group. R is preferably an C n H 2 ⁇ _ ⁇ , selected from a C n H 2 n or a C n H 2 n + 1, n is an integer from 1 1 0, These include substituted ones.), One C OX (X is a halogen atom), one NH 2 and one NCO, and at least one group selected from the group consisting of these is selected.
  • cross-linking agent one capable of causing a cross-linking reaction with the selected functional group.
  • crosslinking agent include polyols, polyamines, polycarboxylic acids, polycarboxylic esters, polycarboxylic halides, polycarboimides, and polyisocyanates. It is preferable to select at least one cross-linking agent selected from the group, and in that case, a functional group that can cause a cross-linking reaction with the selected cross-linking agent is selected.
  • At least one functional group and a crosslinking agent are selected from the group exemplified as the preferred functional group and the group exemplified as the preferred crosslinking agent so as to be a combination capable of causing a mutual crosslinking reaction. Is preferred.
  • R is a substituted or unsubstituted hydrocarbon group.
  • R is preferably — C n H 2 n — — — C n H 2 n or — C n H 2 n + 1 and n is an integer of 1 to 10, including those in which n is substituted.
  • n is an integer of 1 to 10, including those in which n is substituted.
  • This functional group easily undergoes a crosslinking reaction and is suitable for forming a coating film.
  • a polyol can be exemplified.
  • Polyols cure by reaction with —COOR (R is the same as above.) And easily form strong crosslinked products.
  • —COOR R is the same as above.
  • glycerin, ethylene glycol, butenediol, hexdiol, hydroquinone, and naphthylene diol are reactive with the above functional groups.
  • the biodegradability itself is high and the burden on the environment is small. Therefore, it is particularly preferable to use at least one selected from the group consisting of these as the crosslinking agent.
  • the solution containing a plurality of carbon nanotubes to which the functional groups are bonded and a crosslinking agent used in the supply step is further added with a solvent.
  • a solvent This can be supplied to the surface of the substrate, and depending on the type of the crosslinking agent, the crosslinking agent can also serve as the solvent.
  • a preferred second method for forming a crosslinked site by crosslinking between the functional groups in the crosslinking step is a method of chemically bonding a plurality of the functional groups to each other.
  • the size of the cross-linking site for bonding between carbon nanotubes becomes constant depending on the functional group to be bonded. Since carbon nanotubes have an extremely stable chemical structure, it is unlikely that functional groups other than the functional group to be modified will be bonded, and if these functional groups are chemically bonded to each other, The structure of the crosslinked portion can be used, and the carbon nanotube structure can be made uniform.
  • the length of the cross-linking portion between the carbon nanotubes can be reduced as compared with the case where the functional groups are cross-linked using a cross-linking agent, so that the carbon nanotube structure becomes denser. This makes it easier to achieve the effects unique to carbon nanotubes.
  • condensation, substitution, addition, and oxidation are particularly preferable.
  • an additive that causes a chemical bond between the functional groups is further supplied to the surface of the base. Can.
  • the reaction for chemically bonding the functional groups is dehydration condensation
  • a condensing agent as the additive.
  • the condensing agent preferably usable at this time is at least one selected from the group consisting of sulfuric acid, N-ethyl-N '-(3-dimethylaminopropyl) carpoimide and dicyclohexyl carpoimide. Can be mentioned.
  • the functional group used in the dehydration condensation includes one C OO R (R is a substituted or unsubstituted hydrocarbon group.
  • R is preferably —C n H 2 n -e, —C n H 2 n or one C n H 2 n +, wherein n is an integer of 1 to 10, including those substituted with :), one C OOH, -C OX (X is a halogen atom), It is preferably at least one selected from the group consisting of 1 OH, 1 CHO, and 1 NH 2 .
  • —COOH can be mentioned as a particularly preferable one. It is relatively easy to introduce a lipoxyl group into a carbon nanotube, and the resulting substance (carbon nanotube carboxylic acid) is highly reactive. For this reason, it is easy to introduce a functional group for forming a network structure into a plurality of portions of a single carbon nanotube, and since this functional group is easily dehydrated and condensed, a carbon nanotube structure is formed. Suitable for forming
  • the base that can be suitably used at this time is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, pyridine and sodium ethoxide.
  • the base that can be suitably used at this time is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, pyridine and sodium ethoxide.
  • the functional groups at this time one NH 2, - X (X is a halogen atom), One SH, -OH, One OS_ ⁇ 2 CH 3 and one OS_ ⁇ 2 (C 6 H 4) CH 3 It is preferable that at least one selected from the group consisting of
  • the functional groups are preferably ⁇ H and Z or 1NCO.
  • the functional group is preferably 1 SH.
  • the additive is not always required, but it is also a preferable embodiment to add an oxidation reaction accelerator as the additive.
  • Oxidation reaction accelerators that can be suitably added include iodine.
  • the plurality of carbon nanotubes to which the functional groups are used in the supply step and, if necessary, the additive may be used as a solvent.
  • a supply solution crosslinking solution
  • the carrier transporter is a network in which the plurality of carbon nanotubes are mutually crosslinked. It is formed by a carbon nanotube structure having a structure,
  • the method further includes a patterning step of patterning the carbon nanotube structure into a shape corresponding to the carrier transporter.
  • a patterning step of patterning the carbon nanotube structure into a shape corresponding to the carrier transporter.
  • the carbon nanotube structure can be patterned into a pattern corresponding to the carrier transporter.
  • the carbon nanotube structure has already been Since the structure itself is stabilized, patterning is performed in this state.Therefore, there is no concern that a problem such as scattering of carbon nanotubes occurs in the patterning process, and patterning is performed according to the carrier transporter. Becomes possible.
  • the carbon nanotube film itself is structured, the connection between the carbon nanotubes is reliably ensured, and a rectifying element utilizing the characteristics of the carbon nanotubes can be formed. Become.
  • the patterning step may include the following two embodiments A and B.
  • A The carbon nanotube structure in a region other than the pattern corresponding to the carrier transporter on the surface of the base is dry-etched to remove the carbon nanotube structure in the region, and the carbon nanotube structure is replaced with the carbon nanotube structure.
  • the patterning step may further include: registering a carbon nanotube structure in a region of the pattern corresponding to the carrier transporter on the surface of the substrate.
  • a removing step for removing the nanotube structure; T JP2004 / 007201 includes an embodiment in which the process is divided into two steps.
  • a resist layer peeling step of peeling the resist layer provided in the resist layer forming step is further included, so that the patterned carbon nanotube structure can be exposed. it can.
  • an operation of patterning into a pattern corresponding to the carrier transporter may be performed on a carbon nanotube structure in a region other than the pattern corresponding to the carrier transporter on the substrate surface.
  • the carbon nanotube structure in the region is removed, and the carbon nanotube structure is patterned into a pattern corresponding to the carrier transporter. Examples are given below.
  • a removing step of removing an exposed carbon nanotube structure in a region other than the region by bringing an etchant into contact with a surface of the base on which the carbon nanotube structure and the resist layer are laminated is a step including the step.
  • FIG. 1 (a) is a schematic cross-sectional view illustrating one embodiment of the configuration of the rectifier of the present invention.
  • FIG. 1B is a schematic cross-sectional view illustrating another embodiment of the configuration of the rectifier of the present invention.
  • FIG. 1C is a schematic cross-sectional view illustrating still another embodiment of the configuration of the rectifier of the present invention.
  • FIG. 2 (a) is a schematic cross-sectional view of the surface of the base for explaining an example of the method for manufacturing the rectifying element of the present invention, and shows a state in which a carbon nanotube structure layer has been formed on the surface of the base through a crosslinking step. It is shown.
  • FIG. 2 (b) is a schematic cross-sectional view of the substrate surface for explaining an example of the method for manufacturing the rectifying element of the present invention, in which a carbon nanotube structure layer was formed during a resist layer forming step. This shows a state in which a resist layer is formed on the entire surface.
  • FIG. 2C is a schematic cross-sectional view of the surface of the base for explaining an example of the method of manufacturing the rectifying element of the present invention, and shows a state after a resist layer forming step.
  • FIG. 2D is a schematic cross-sectional view of the surface of the base for explaining an example of the method for manufacturing the rectifying element of the present invention, and shows a state after a removal step.
  • FIG. 2 (e) is a schematic cross-sectional view of the surface of the substrate for explaining an example of the method for manufacturing the rectifying element of the present invention, and shows a state after a patterning step.
  • FIG. 2 (f) is a schematic cross-sectional view of the surface of the base for explaining an example of the method of manufacturing the rectifying element of the present invention, and shows the rectifying element finally obtained.
  • FIG. 3 is a reaction scheme for synthesizing carbon nanotubes rubonic acid in (addition step) in Example 1.
  • FIG. 4 shows an esterification reaction scheme in (addition step) in Example 1.
  • FIG. 5 is a reaction scheme of cross-linking by transesterification in (cross-linking step) in Example 1.
  • FIG. 6 is a schematic cross-sectional view of the rectifying element of the third embodiment.
  • FIG. 7 is a graph of current-voltage characteristics of the device of Example 1 obtained by measuring current-voltage characteristics in an evaluation test.
  • FIG. 8 is a graph showing the current-voltage characteristics of the device of Example 2 obtained by measuring the current-voltage characteristics in the evaluation test.
  • FIG. 9 is a graph of the current-voltage characteristics of the device of Example 3 obtained by measuring the current-voltage characteristics in the evaluation test.
  • FIG. 10 (a) is a schematic cross-sectional view of a substrate surface and a temporary substrate for explaining a useful application example of the method for manufacturing a rectifying element of the present invention.
  • the carbon nanotube structure is formed and patterned. This is the state of the substrate that is shaped according to the transport layer.
  • FIG. 10 (b) is a schematic cross-sectional view of a substrate surface and a temporary substrate for explaining a useful application example of the method for manufacturing a rectifying element of the present invention.
  • the temporary substrate is mounted on the substrate of FIG. 10 (a). This is the state before pasting.
  • FIG. 10 (c) illustrates a useful application example of the method of manufacturing a rectifying element of the present invention.
  • FIG. 10 is a schematic cross-sectional view of a substrate surface and a temporary substrate for performing T JP2004 / 007201, showing a state after the temporary substrate is attached to the substrate of FIG. 10 (a).
  • FIG. 10 (d) is a schematic cross-sectional view of a substrate surface and a temporary substrate for explaining a useful application example of the method for manufacturing a rectifying element of the present invention, and is attached to the substrate of FIG. 10 (a). This is the state after the temporary substrate has been peeled off again.
  • FIG. 10 (e) is a schematic cross-sectional view of a substrate surface and a temporary substrate for explaining a useful application example of the method for manufacturing a rectifying element of the present invention. It is shown. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described in detail with reference to a rectifying element and a method of manufacturing the rectifying element.
  • a rectifying element includes: a pair of electrodes; and a carrier transporter provided between the pair of electrodes and configured by one or more carbon nanotubes.
  • One of the pair of electrodes and the first interface of the carrier transporter, and the other of the pair of electrodes and the second interface of the carrier transporter have different barrier levels.
  • FIG. 1 illustrates several embodiments of the configuration of the rectifying element of the present invention.
  • the first mode is that the carrier transporter 10 is a carbon nanotube structure PC Kasumi 07201
  • the first connection configuration and the second connection configuration are different, and the first interface and the second interface are different.
  • the first connection configuration and the second connection configuration are made different, and they operate as rectifiers (Fig. 1 (a)
  • an oxide layer (oxide film) 20 is formed at a first interface between the carrier transporter 10 and one electrode 18 to form a first connection configuration and a second connection configuration. (Fig. 1 (b)).
  • the surface of the carrier transporter 10 at the first interface is modified, processed, or coated with a material that reduces or increases the degree of adhesion of the electrode, and the like.
  • a heterogeneous connection layer 21 at the first interface with the first connection configuration and the second connection configuration, the second electrode and the carrier transporter 10 at the second interface are different from each other. This is different from the degree of adhesion, and forms a different barrier level (Fig. 1 (c)).
  • the first connection configuration and the second connection configuration can be made different from each other by arbitrarily combining the processing of the electrode material, the oxide layer, and the carrier transporter.
  • the carrier transporter 10 is composed of carbon nanotubes, but single (one) carbon nanotubes are classified into metallic and semiconducting carbon nanotubes. Force of force It is necessary to use a carbon nanotube. On the other hand, it has been clarified by the present inventors' research that when a carrier transporter is composed of a plurality of carbon nanotubes, semiconductor properties may be generated even if the nanotubes constituting the carrier are metallic. It has become. Specifically, the crosslinking site A carbon nanotube structure that has formed a network structure through it
  • the present invention can It can be used as a carrier transporter.
  • the carrier transporter can be processed into a desired shape by patterning. At this time, depending on the shape of the substrate, the case where the carbon nanotube structure can be directly patterned on the surface of the substrate and the case where the carbon nanotube structure carrying the patterned carbon nanotube structure can be directly applied to the second substrate. In some cases, it is used by pasting, or in other cases, only the patterned carbon nanotube structure is transferred.
  • the material of the substrate is not particularly limited. However, in order to carry the transport layer (carrier transporter) of the rectifying element, silicon, a quartz substrate, my force, and quartz are used to facilitate the patterning process. It is preferable to use glass or the like.
  • the substrate supporting the structure may be used by attaching it to the second substrate, or a patterned carbon nanotube structure may be transferred.
  • the restriction as a substrate on which the final rectifying element is carried is reduced.
  • the rectifying element of the present invention can be easily manufactured as described below even when a flexible or flexible substrate is used as a base, and the carbon nanotube structure formed on the surface is Since the substrate has a crosslinked structure, even if the substrate is bent and deformed, there is little danger that the carbon nanotube structure on the surface is broken, and performance deterioration of the device due to the deformation is reduced. In particular, when used as a rectifying element, occurrence of disconnection due to bending is reduced.
  • Examples of the flexible or flexible substrate include various resins such as polyethylene, polypropylene, polyvinyl chloride, polyamide and polyimide.
  • the “carbon nanotube structure” is a structure constituting a network structure in which a plurality of carbon nanotubes are mutually crosslinked.
  • the carbon nanotube structure may be formed by any method.
  • the rectifying element manufactured by the method for manufacturing a rectifying element of the present invention can be easily manufactured, a low-cost and high-performance carrier transporter can be obtained, and uniformity and control of characteristics can be easily performed. It is.
  • the first carbon nanotube structure used as a carrier transporter in the rectifier of the present invention manufactured by a preferred method for manufacturing a rectifier of the present invention described below, in which carbon nanotubes are cross-linked to form a network structure.
  • the structure of this method is to cure a solution containing a functional group-containing carbon nanotube and a crosslinking agent that causes a crosslinking reaction with the functional group (crosslinking solution).
  • crosslinking solution crosslinking solution
  • the functional group of the carbon nanotube is cross-linked with the cross-linking agent to form a cross-linked site.
  • the functional groups of the carbon nanotube having a functional group are chemically bonded to each other to form a crosslinked site.
  • the carbon nanotube which is a main component may be a single-walled carbon nanotube or a multi-walled carbon nanotube having two or more layers. Which of the carbon nanotubes to use or a mixture of both may be appropriately selected depending on the use of the rectifying element or in consideration of the cost.
  • a simple substance is used as a carrier transporter, it is necessary to have semiconductor characteristics.
  • carbon nanohorns which are variants of single-walled carbon nanotubes (horn-type ones that continuously increase in diameter from one end to the other end), carbon nanohorns (coils that have a spiral shape as a whole) ), Carbon nanobeads (having a tube in the center and penetrating spherical beads made of amorphous carbon, etc.), cup-stacked nanotubes, carbon nanotubes covered with carbon nanohorns or amorphous carbon
  • those not having a strictly tubular shape can also be used as carbon nanotubes in the present invention.
  • carbon nanotubes in which any substance is encapsulated in carbon nanotubes such as nanotubes, fullerenes, or pipe nanotubes in which metal-encapsulated fullerenes are encapsulated in carbon nanotubes, are also used as carbon nanotubes in the present invention. be able to.
  • any form of carbon nanotubes such as variants thereof and variously modified carbon nanotubes, can be used without any problem in view of the reactivity. Can be used. Therefore, the “carbon nanotube” in the present invention includes all of them in its concept.
  • the arc discharge method in a magnetic field is preferable from the viewpoint that high-purity carbon nanotubes can be synthesized.
  • the diameter of the carbon nanotube used is preferably 0.3 nm or more and 10 O nm or less. If the diameter of the carbon nanotube exceeds the above range, synthesis is difficult, which is not preferable in terms of cost. A more preferable upper limit of the diameter of the carbon nanotube is 3 Onm or less.
  • the lower limit of the diameter of a carbon nanotube is generally about 0.3 nm in view of its structure.However, if it is too small, the yield during synthesis may be low, which may be undesirable. And more preferably 1 nm or more, and further preferably 10 nm or more.
  • the length of the carbon nanotube used is 0. PC leak 004/007201
  • the length of the carbon nanotube is more preferably 10 m or less, and the lower limit is more preferably 1 m or more.
  • the purity of the carbon nanotube to be used is not high, it is desirable to purify the carbon nanotube beforehand to increase the purity before preparing the crosslinking solution.
  • the cross-linking agent cross-links the carbon products such as amorphous carbon and tar, which are impurities, and the cross-linking distance between carbon nanotubes fluctuates, so that desired characteristics may not be obtained. It is.
  • the method for purifying the carbon nanotubes is not particularly limited, and any conventionally known method can be employed.
  • Such a carbon nanotube is provided with a predetermined functional group to form a carbon nanotube structure.
  • the functional group to be added at this time preferable ones are different depending on whether the carbon nanotube structure is formed by the above-described first method or the second method.
  • Functional group 1 and the latter case“ functional group 2 ”).
  • the functional group of the carbon nanotube is not particularly limited as long as the functional group can be chemically added to the carbon nanotube and a cross-linking reaction can be caused by any cross-linking agent.
  • Any functional group can be selected.
  • Specific functional groups include: C ⁇ OR, -C OX, — Mg X, —X (or more, where X is a halogen), —OR, —NR 1 R 2 , —NCO, —NCS, —CO OH, — OH, one NH 2 , — SH, one S 0 3 H, one R 'C HOH, one C HO, _ CN, one COSH, one SR, -S i R' 3 (or more, R, R 1 , R 2 and R, are each independently a substituted or unsubstituted hydrocarbon group, and are preferably each independently one C nHsn — — C n H 2 n or one C n H 2 n + And n is an integer
  • R is a substituted or unsubstituted hydrocarbon group.
  • R is preferably one C n H 2 n —C n H 2 n Or one selected from C n H 2 n + 1 , where n is an integer of 1 to: L 0, including those substituted with these.
  • One C OX (X is a halogen atom), one NH It is preferable to select at least one group selected from the group consisting of 2 and one NCO.
  • the cross-linking agent one that can cause a cross-linking reaction with the selected functional group is selected.
  • one C OOR (R is the same as above) is when the carbonyl group is carbon
  • the resulting material carbon nanotube carboxylic acid
  • the reactivity with the crosslinking agent is good. Therefore, it is particularly preferable.
  • R in COOR is a substituted or unsubstituted hydrocarbon group and is not particularly limited.However, from the viewpoints of reactivity, solubility, viscosity, and ease of use as a solvent for paints, R has 1 to 1 carbon atoms. It is preferably an alkyl group in the range of 0, more preferably an alkyl group in the range of 1 to 5, and particularly preferably a methyl group or an ethyl group.
  • the amount of the functional group introduced varies depending on the length of the carbon nanotube, its thickness, whether it is single-walled or multi-walled, the type of the functional group, the use of the rectifying element, and the like. It is preferable that the amount is such that two or more functional groups are added to the nanotube, from the viewpoint of the strength of the obtained crosslinked product, that is, the strength of the coating film.
  • a crosslinking agent is an essential component.
  • the crosslinking agent any one can be used as long as it causes a crosslinking reaction with the functional group of the carbon nanotube.
  • the type of the crosslinking agent that can be selected is limited to some extent depending on the type of the functional group.
  • the curing conditions heating, UV irradiation, visible light irradiation, natural curing, etc.
  • crosslinking agents include polyols, polyamines, and polyamines.
  • examples thereof include carboxylic acid, polycarboxylic acid ester, polycarboxylic acid halide, polyester, and polyisocyanate, and it is preferable to select at least one crosslinking agent selected from the group consisting of these. In that case, as the functional group, those capable of causing a crosslinking reaction with the selected crosslinking agent are selected.
  • At least one functional group and a cross-linking agent, respectively, from the group exemplified as the above-mentioned preferable functional group and the group exemplified as the above-mentioned preferable cross-linking agent, are combined with a combination capable of causing a mutual cross-linking reaction. It is preferable to make the selection as follows. Table 1 below lists combinations of the functional groups of the carbon nanotubes and the corresponding crosslinkable crosslinkers together with the curing conditions.
  • R is a substituted or unsubstituted hydrocarbon group.
  • R is preferably —C n H 2 n —one C n Selected from H 2 n or 1 C n H 2 n + 1 , where n is an integer of 1 to 10 and includes those substituted.
  • a polyol that easily forms a strong bridge Polyamines, ammonium complexes, congo red and cis-bratin.
  • ⁇ polyol '' as used in the present invention is a general term for organic compounds having two or more OH groups, and among them, those having 2 to 10 carbon atoms (more preferably 2 to 5) and those having 2 to 22 OH groups. More preferably, those of 2 to 5) are preferable from the viewpoints of cross-linking properties, solvent suitability when an excess amount is charged, processability of waste liquid after reaction due to biodegradability (environment suitability), yield of polyol synthesis, and the like. preferable.
  • the above carbon number is preferably smaller within the above range in that the carbon nanotubes in the obtained coating film can be narrowed between the carbon nanotubes and brought into a substantial contact state (closer).
  • glycerin and ethylene dalicol are particularly preferable, and one or both of them are preferably used as a crosslinking agent.
  • the crosslinking agent is preferably a non-self-polymerizable crosslinking agent.
  • Butenediol, .hexynediol, hydroquinone and naphthylene diol, as well as glycerin-ethylene glycol mentioned as examples of the above polyols, are also non-self-polymerizable cross-linking agents.
  • the condition of a non-self-polymerizable cross-linking agent is that it does not have a set of functional groups capable of causing a polymerization reaction with each other.
  • a self-polymerizing cross-linking agent can cause a mutual polymerization reaction within itself. (For example, alkoxide) having such a group of functional groups.
  • a plurality of carbon nanotubes having the functional groups bonded thereto and the cross-linking agent are supplied to a substrate surface (supplying step in the method for manufacturing a rectifying element of the present invention).
  • a crosslinked site may be formed by chemically bonding between them (crosslinking step in the method for producing a rectifying element of the present invention).
  • supplying the plurality of carbon nanotubes having the functional groups bonded thereto and the cross-linking agent to the surface of the substrate supplying a solution (cross-linking solution) containing these and a solvent to the surface of the substrate; It is preferable to form a crosslinked body film by coating as a simple, low-cost, and short-time work.
  • the carbon nanotube content in the cross-linking solution includes the length and thickness of carbon nanotubes, whether they are single-walled or multi-walled, the type and amount of functional groups having, the type and amount of cross-linking agent, and the amount of solvent and other additives. It cannot be said unconditionally depending on the presence, type, amount, etc., and it is desirable that the concentration be high enough to form a good coating film after curing.However, the coating aptitude deteriorates, so it is too high. Desirably not.
  • the ratio of the carbon nanotubes to the total amount of the crosslinking solution is not limited to about 0.01 to 1; And a range of about 0.1 to 5 g / l is preferable, and a range of about 0.5 to 1.5 g Z1 is more preferable.
  • a solvent is added when the suitability for application is not sufficient with the crosslinking agent alone.
  • the solvent that can be used is not particularly limited, and may be selected according to the type of the crosslinking agent used.
  • methanol, PC orchid 004/007201 Organic solvents such as ethanol, isopropanol, n-propanol, butanol, methyl ethyl ketone, toluene, benzene, acetone, chloroform, methylene chloride, acetonitrile, getyl ether, tetrahydrofuran (THF), etc.
  • Examples include water, an aqueous acid solution, and an aqueous alkali solution.
  • the amount of the solvent to be added may be appropriately set in consideration of the suitability for application, but is not particularly limited.
  • glycerin is a solvent as a solvent.
  • ponanotube When ponanotube is dispersed, it does not have a high viscosity and is excellent in coatability when forming a film, properties as a crosslinking agent for carboxylic acid, crosslinking It is preferable to use only glycerin as a cross-linking agent and solvent, from the viewpoint that the residue after the reaction does not adversely affect.
  • the functional group of the carbon nanotube may be chemically added to the carbon nanotube.
  • the functional groups can be reacted with each other by some additive, and any functional group can be selected.
  • reaction for chemically bonding the functional groups dehydration condensation, substitution reaction, addition reaction and oxidation reaction are particularly preferable.
  • Preferred examples of the above functional groups for each of these reactions are as follows.
  • —COOR R is a substituted or unsubstituted hydrocarbon group.
  • R is preferably — C n H 2 n — — — C n H 2 n or — C n H 2 n + Is selected, and n is an integer from 1 to: L 0, including those substituted.), —C OOH, —C OX (X is a halogen atom), —OH, one C HO, —NH least one selected from 2, one NH 2 in a substitution reaction, -X (X is a halogen atom), one SH, one OH, one OS 0 2 CH 3 and ten S 0 2 (C 6 H 4 ) At least one selected from CH 3 , at least one selected from addition hydrogen and at least one selected from one NCO, and one oxidation reaction is preferably one SH.
  • an additive that causes a chemical bond between the functional groups can be used.
  • any one can be used as long as it allows the functional groups of the carbon nanotube to react with each other.
  • the type of additive that can be selected is limited to some extent depending on the type of the functional group and the type of the reaction.
  • a condensing agent as the additive.
  • a condensing agent include an acid catalyst as a condensing agent, a dehydrating condensing agent, for example, sulfuric acid.
  • N-ethyl-N, 1- (3-dimethylaminopropyl) carbodiimide and dicyclohexyl carbodiimide it is preferable to select at least one condensing agent selected from the group consisting of these.
  • the functional group a functional group capable of reacting with each other by the selected condensing agent is selected.
  • the functional groups used in the dehydration condensation include 1 C OOR (R is a substituted or unsubstituted hydrocarbon group), —C OOH, —C OX (X is a halogen atom), 1 OH, —C HO And at least one selected from the group consisting of NH 2 .
  • 1COOH can be mentioned as a particularly preferable one. It is relatively easy to introduce a lipoxyl group into a carbon nanotube, and the resulting substance (carbon nanotube carboxylic acid) is highly reactive. For this reason, it is easy to introduce a functional group for forming a network structure into a plurality of portions of one carbon nanotube, and since this functional group is easily dehydrated and condensed, it is suitable for forming a carbon nanotube structure. I have.
  • condensing agents include the above-mentioned sulfuric acid, N-ethyl N '-(3-dimethylaminopropyl) carbodiimide and dicyclohexane. This is Kisir Calposimid.
  • a base As the additive.
  • the base that can be added is not particularly limited, and any base may be selected according to the acidity of the hydroxyl group.
  • the base include sodium hydroxide, potassium hydroxide, pyridine, and sodium ethoxide. It is preferable to select at least one base selected from the group consisting of these.
  • the functional group those capable of causing a substitution reaction between the functional groups by the selected base are selected.
  • the functional groups at this time - NH 2, - X ( X is a halogen atom),
  • the functional groups are preferably 1 OH and 1 NO or 1 NCO.
  • the reaction for chemically bonding the functional groups is an oxidation reaction
  • an additive is not necessarily required, but it is preferable to add an oxidation reaction accelerator as the additive.
  • Oxygen can be mentioned as a suitable oxidation reaction accelerator to be added.
  • the functional group is preferably 1 SH.
  • At least two functional groups are selected from the group exemplified as the preferable functional groups described above so as to form a combination capable of causing a mutual reaction, and added to the carbon nanotube.
  • Table 2 shows the functional groups (A) possessed by the mutually cross-linking carbon nanotubes. And (B) and the corresponding reaction names are listed.
  • X forms a halogen carbon nanotube structure by supplying a plurality of carbon nanotubes having the functional groups bonded thereto and, if necessary, the additive to the surface of the substrate (the rectifying device of the present invention).
  • the cross-linking site may be formed by chemically bonding between the functional groups (the cross-linking step in the method for manufacturing a rectifying element of the present invention).
  • supplying a plurality of carbon nanotubes having the functional groups bonded thereto to the surface of the substrate supplying a solution (crosslinking solution) containing these and a solvent to the surface of the substrate, particularly applying the solution as a coating solution to perform crosslinking.
  • Forming a body film is preferable in that the rectifying element of the present invention can be formed easily, at low cost, and in a short time.
  • the content of the cross-linking agent and the functional group-bonding additive in the cross-linking solution includes the type of the cross-linking agent (including whether it is self-polymerizable or non-self-polymerizable) and the type of the functional group-bonding additive.
  • the type of the cross-linking agent including whether it is self-polymerizable or non-self-polymerizable
  • the type of the functional group-bonding additive cannot be said unconditionally depending on the length and thickness of the carbon nanotube, whether it is single-walled or multi-walled, the type and amount of the functional group, the presence or absence of a solvent and other additives, and the type-amount.
  • glycerin, ethylene dalicol, and the like do not themselves have a very high viscosity and can also have the properties of a solvent, so that they can be added in excess.
  • a solvent is added when the suitability for application is not sufficient with only the crosslinking agent or the additive for bonding a functional group.
  • the solvent that can be used is not particularly limited, and may be selected according to the type of the additive used. Specific types and addition amounts of the solvent are the same as in the case of the solvent described in the first method.
  • the crosslinking solution may contain various additives such as a solvent, a viscosity modifier, a dispersant, and a crosslinking accelerator.
  • a solvent such as a solvent, a viscosity modifier, a dispersant, and a crosslinking accelerator.
  • the viscosity modifier is added when the suitability for application is not sufficient with only the crosslinking agent or the additive for bonding a functional group.
  • the usable viscosity modifier may be selected according to the type of the crosslinking agent used. Specific examples include methanol, ethanol, isopropanol, n-propanol, butanol, methyl ethyl ketone, toluene, benzene, acetone, chloroform, methylene chloride, acetonitrile, getyl ether, THF and the like.
  • Some of these viscosity modifiers have a function as a solvent depending on the amount added, but there is no significance in clearly distinguishing the two.
  • the amount of the viscosity modifier to be added may be appropriately set in consideration of the suitability for application, but is not particularly limited.
  • the dispersant is added to maintain the dispersion stability of the carbon nanotubes or the cross-linking agent or the additive for binding a functional group in the cross-linking solution, and various conventionally known surfactants and water-soluble agents are used.
  • Organic solvents, water, aqueous acid solutions and aqueous alkali solutions can be used.
  • a dispersant is not necessarily required.
  • the coating film does not contain impurities such as a dispersing agent. In this case, of course, the dispersing agent is not added or is as small as possible. Add only the amount.
  • the cross-linking solution is prepared by mixing a carbon nanotube having a functional group with a cross-linking agent that causes a cross-linking reaction with the functional group or an additive that chemically bonds the functional groups to each other as necessary. ). Prior to the mixing step, an additional step of introducing a functional group into the carbon nanotube may be included.
  • a carbon nanotube having a functional group is used as a starting material, only the operation of the mixing step may be performed, and if a normal carbon nanotube itself is used as a starting material, the operation may be performed from an additional step.
  • the adding step is a step of introducing a desired functional group into the carbon nanotube. It is about.
  • the method of introduction differs depending on the type of functional group, and cannot be generalized
  • a desired functional group may be directly added, but once a functional group that can be easily added is introduced, the functional group or a part thereof is substituted, or another functional group is added to the functional group. Operations such as adding a group may be performed to obtain the desired functional group.
  • functional groups can be introduced relatively easily by using cup-stacked carbon nanotubes having many defects on the surface from the time of manufacture or carbon nanotubes produced by vapor phase growth.
  • the properties of carbon nanotubes can be obtained effectively and the properties can be easily controlled.
  • the outermost layer has an appropriate lack of carrier transporter. It is particularly preferable to use the inner layer having few structural defects as a layer exhibiting the properties of carbon nanotubes, while forming a cavity to bond and crosslink the functional groups.
  • the operation of the addition step is not particularly limited, and any known method may be used.
  • various methods are described in Japanese Patent Application Laid-Open No. 2002-503024, which can be used in the present invention according to the purpose.
  • R is a substituted or unsubstituted hydrocarbon group
  • COOR R is a substituted or unsubstituted hydrocarbon group.
  • R is , Preferably one C n H 2 n - i, is selected from a C n H 2 n or a C n H 2 n +, n is an integer of from 1 to 1 0, including those to which they are substituted.
  • the lipoxyl group can be introduced into the carbon nanotubes by refluxing with an acid having an oxidizing effect. This operation is preferable because it is relatively easy and a carboxyl group having high reactivity can be added. The operation will be briefly described.
  • the acid having an oxidizing action examples include concentrated nitric acid, aqueous hydrogen peroxide, a mixed solution of sulfuric acid and nitric acid, and aqua regia. Particularly when concentrated nitric acid is used, the concentration is preferably 5% by mass or more, more preferably 60% by mass or more.
  • the reflux may be carried out by a conventional method, and the temperature is preferably around the boiling point of the acid used. For example, for concentrated nitric acid, the range of 120 to 130 ° C is preferable.
  • the reflux time is preferably in the range of 30 minutes to 20 hours, more preferably in the range of 1 hour to 8 hours.
  • the reaction solution contains carbon nanotubes (carbon nanotube carboxylic acid) to which carboxylic acid groups have been added, and the mixture is cooled to room temperature and subjected to separation operation or washing as necessary.
  • the desired carbon nanotube carboxylic acid a carbon nanotube having _COOH as a functional group
  • the alcohol used for the esterification is determined according to R 1 in the formula of the functional group. That is, if R is CH 3 , it is methanol, and if R is C 2 H 5 , it is ethanol.
  • a catalyst is used for the esterification, but in the present invention, a conventionally known catalyst, for example, sulfuric acid, hydrochloric acid, toluenesulfonic acid and the like can be used. In the present invention, it is preferable to use sulfuric acid as a catalyst from the viewpoint of not causing a side reaction.
  • the esterification may be carried out by adding an alcohol and a catalyst to the carbon nanotube carboxylic acid and refluxing at an appropriate temperature for an appropriate time.
  • the temperature condition and the time condition at this time differ depending on the type of the catalyst, the type of the alcohol, and the like, and cannot be described unconditionally.
  • the reflux temperature is preferably around the boiling point of the alcohol used.
  • methanol is preferably in the range of 60 to 70 ° C.
  • the reflux time is preferably in the range of 1 to 20 hours, more preferably in the range of 4 to 6 hours.
  • the reactant is separated from the reaction solution after the esterification and, if necessary, washed to obtain a functional group—COOR (R is a substituted or unsubstituted hydrocarbon group. As a result, you can obtain the added power.
  • the mixing step is a step of preparing a crosslinking solution by mixing a carbon nanotube having a functional group with a crosslinking agent that causes a crosslinking reaction with the functional group or an additive for binding a functional group as necessary.
  • a crosslinking agent that causes a crosslinking reaction with the functional group or an additive for binding a functional group as necessary.
  • the other components described in the section are also mixed.
  • the amount of the solvent or the viscosity modifier added is adjusted in consideration of the suitability for application to prepare the cross-linking solution immediately before supply (application) to the substrate.
  • the cross-linking solution described above is supplied (applied) to the surface of the base and cured to form a carbon nanotube structure.
  • the supply method and the curing method will be described in detail in the section of “Method of manufacturing rectifying element” below.
  • the carbon nanotube structure according to the present invention is in a state where carbon nanotubes are networked. More specifically, the carbon nanotube structure is cured in a matrix form, and the carbon nanotubes are connected to each other via a cross-linking portion, and the carbon nanotube structure has high transmission characteristics of electrons and holes. The characteristics of the nanotube itself can be fully exhibited. That is, since the carbon nanotube structure is closely connected to each other and does not contain other binders, the carbon nanotube structure is substantially composed of only carbon nanotubes.
  • the thickness of the carbon nanotube structure in the present invention can be selected from a wide range from an extremely thin one to a thick one according to the application.
  • the content of the carbon nanotubes in the cross-linking solution to be used is reduced (in simple terms, the viscosity is reduced by thinning).
  • an extremely thin coating film is obtained. If it is raised, it becomes a thicker coating film. Further, by repeating the application, a thicker coating film can be obtained.
  • a very thin coating film is sufficiently possible from a thickness of about 10 nm, and it is possible to form a thick coating film without any upper limit by repeated coating.
  • a thick film that can be applied by one application is about 5 / xm.
  • a desired shape can be obtained by injecting a cross-linking solution whose content is adjusted into a mold and cross-linking the mold.
  • the carrier transporter comprising the carbon nanotube structure formed by the first method is a site where the carbon nanotubes are cross-linked, that is, a cross-linking reaction between the functional group of the carbon nanotube and the cross-linking agent.
  • the cross-linking site has a cross-linking structure in which residues remaining after the cross-linking reaction of the functional groups are connected by a linking group that is a residue remaining after the cross-linking reaction of the cross-linking agent.
  • a cross-linking agent as a component thereof is non-self-polymerizable. If the cross-linking agent is non-self-polymerizable, the linking group in the finally formed carbon nanotube structure will be constituted by only one residue of the cross-linking agent, and The spacing between the nanotubes can be controlled to the size of the residue of the used crosslinking agent, so the desired carbon nanotubes Network structure with high reproducibility.
  • the cross-linking agent is not interposed between the carbon nanotubes, the substantial density of the carbon nanotubes in the carbon nanotube structure can be increased. Furthermore, if the size of the residue of the cross-linking agent is reduced, the distance between the carbon nanotubes can be configured to be extremely close both electrically and physically (the carbon nanotubes are in substantially direct contact with each other). Can be done.
  • the cross-linking sites have the same cross-linking structure (Example 1).
  • a carbon nanotube structure is formed using a cross-linking solution, each of which is selected from a plurality of functional groups and a plurality of non-self-polymerizable cross-linking agents as cross-linking agents, respectively.
  • the cross-linking structure in the layer mainly has a cross-linked structure mainly formed by a combination of the functional group and the non-self-polymerizable cross-linking agent (Exemplary 2).
  • a carbon nanotube structure is formed using a cross-linking solution in which a self-polymerizing cross-linking agent is selected.
  • the cross-linking site where carbon nanotubes cross-link in the layer becomes a state in which a large number of linking groups having different numbers of linking (polymerization) of the cross-linking agents are mixed, and the specific cross-linking structure cannot be dominant. .
  • the cross-linking structure is mainly the same.
  • the term “mainly the same” refers to not only the case where all of the cross-linking sites have the same cross-linking structure as in (Example 1) above, but also the entire cross-linking site as in (Example 2) above.
  • the concept includes a case where a crosslinked structure mainly formed by a combination of the functional group and the non-self-polymerizable crosslinking agent is mainly used.
  • the “proportion of the same cross-linking site” in all the cross-linking sites means, for example, a functional group having a different purpose from the network formation of the carbon nanotube in the cross-linking site. It is not always possible to set the lower limit uniformly because it is assumed that a crosslinked structure is provided. However, in order to realize the high electrical or physical properties unique to carbon nanotubes in a strong network, the “percentage of identical cross-linking sites” in all cross-linking sites must be 50 on a number basis. % Or more, more preferably 70% or more, even more preferably 90% or more, and most preferably the same. The ratio of these numbers can be determined by a method of measuring the intensity ratio of the absorption spectrum corresponding to the crosslinked structure using an infrared spectrum.
  • the cross-linking sites where the carbon nanotubes are cross-linked are mainly a carbon nanotube structure having the same cross-linking structure, a uniform network of carbon nanotubes can be formed in a desired state. It can be configured with good homogeneity and good physical properties, or with expected properties or high reproducibility.
  • the linking group is preferably a group having a hydrocarbon skeleton.
  • hydrocarbon skeleton refers to crosslinked carbon nanotubes Means that the main chain of the linking group is composed of hydrocarbon, which contributes to linking the residues remaining after the cross-linking reaction of the functional group. The hydrogen in this portion is replaced by another substituent The portion of the side chain when performed is not considered. Of course, it is more preferable that the entire linking group be made of hydrocarbon.
  • the hydrocarbon preferably has 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms, and even more preferably 2 to 3 carbon atoms.
  • the linking group is not particularly limited as long as it is divalent or higher.
  • the above-mentioned functional group COOR R is a substituted or unsubstituted hydrocarbon group, which has already been exemplified as a preferred combination of the functional group of the carbon nanotube and the crosslinking agent.
  • the cross-linking site where the plurality of carbon nanotubes cross-link with each other is —C 0 ⁇ (CH 2 ) 2 OCO—.
  • the plurality of carbon nanotubes a crosslinking site that crosslinks is one COOCH 2 CH_ ⁇ _HCH 2 OC 0- or single COOCH 2 CH (OC_ ⁇ one) CH 2 OH next be contributing to but one 2 OH groups crosslinking, if contribute to but one 3 OH groups crosslinked
  • the carrier transporter of the present invention includes a carbon nanotube structure, a plurality of carbon nanotubes via a plurality of cross-linking sites. It is formed in a state of a network structure, and the contact state between the carbon nanotubes is like a simple dispersion film of carbon nanotubes. Carrier and electrons (holes)
  • the carbon nanotube structure is to be formed by the second method, a site where the plurality of carbon nanotubes are cross-linked, that is, the functional group of each of the plurality of carbon nanotubes
  • the cross-linking site formed by the cross-linking reaction has a cross-linking structure in which residues remaining after the cross-linking reaction of the functional groups are connected.
  • the carbon nanotubes are connected to each other in a matrix form via the cross-linking portion, and it is possible to easily exhibit the characteristics inherent to the carbon nanotube itself, such as high transmission characteristics of electrons and holes.
  • the carrier transporter formed by the carbon nanotube structure formed by the second method reacts the functional groups to form a cross-linking site, so that the force in the carbon nanotube structure is reduced.
  • the substantial density of the pon nanotubes can be increased.
  • the spacing between the carbon nanotubes can be configured to be very close electrically and physically, and the characteristics of the carbon nanotube alone can be easily derived.
  • the structure mainly has the same cross-linking structure.
  • the term “mainly the same” as used herein means not only the case where all of the cross-linking portions have the same cross-linking structure, but also the cross-linking structure due to the chemical bond between the functional groups in the entire cross-linking site.
  • the concept includes the case where As described above, a carrier transporter having uniform electric characteristics can be obtained if the cross-linking site where the carbon nanotubes are cross-linked is mainly a carbon nanotube structure having the same cross-linking structure.
  • the carbon nanotube structure is formed in a state where a plurality of carbon nanotubes are in a network structure via a plurality of cross-linking sites.
  • the contact state and arrangement state of carbon nanotubes do not become unstable, and electrical characteristics such as high transmission characteristics of electrons and holes, heat conduction, and toughness It is possible to stably exhibit properties unique to carbon nanotubes such as physical properties such as the above and other light absorption properties.
  • the carbon nanotube structure since the carbon nanotube structure has a high degree of freedom in pattern processing, it can be formed into various shapes as a carrier transporter.
  • a layer other than the layer composed of the carbon nanotube structure (the layer of the carrier transporter) may be formed.
  • providing an adhesive layer between the substrate surface and the carbon nanotube structure to improve the adhesion between them can increase the adhesive strength of the patterned carbon nanotube structure.
  • the periphery of the carbon nanotube structure can be coated according to the use of the rectifying element such as an insulator or a conductor.
  • a protective layer and other various functional layers may be provided as an upper layer of the patterned carbon nanotube structure.
  • a protective layer as an upper layer of the force-punched carbon nanotube structure, a carbon nanotube structure which is a network of crosslinked carbon nanotubes is provided.
  • PT / JP2004 / 007201 The body can be more firmly held on the substrate surface and protected from external forces.
  • the protective layer the resist layer described in the section of [Method of Manufacturing Rectifier] can be used without being removed as it is. Of course, it is also effective to newly provide a protective layer that covers the entire surface including the area other than the pattern corresponding to the carrier transporter.
  • As a material for forming such a protective layer conventionally known various resin materials and inorganic materials can be used according to the purpose without any problem.
  • the carbon nanotube structure can be laminated via some kind of functional layer.
  • an insulating layer as the functional layer, making the pattern of each carbon nanotube structure appropriate, and connecting the carbon nanotube structures appropriately between layers, a highly integrated device can be produced. It is possible.
  • the connection between the layers at this time may be provided separately with a carbon nanotube structure, may be formed by itself using another carbon nanotube as a wiring, or may be formed by a completely different method such as using a metal film. .
  • the base can be a flexible or flexible substrate.
  • the substrate By making the substrate a flexible or flexible substrate, the flexibility of the carrier carrier as a whole is improved, and the degree of freedom in the use environment such as the installation location is greatly expanded.
  • the rectifying element When a device is configured using a rectifying element using such a flexible or flexible substrate, the rectifying element has high mountability because it can be adapted to various arrangements and shapes in the device. It can be used as a carrier transporter.
  • the method for manufacturing a rectifier of the present invention is a method suitable for manufacturing the rectifier of the present invention. Further description of the method of disposing a single carbon nanotube on a substrate and the method of forming a network structure by entanglement by applying a mixed solution in which carbon nanotubes are dispersed at a high concentration are omitted.
  • a more preferred embodiment in which a carbon nanotube structure having a network structure formed via a cross-linking site is used as a carrier transporter, will be described below as an example.
  • this method comprises: (A) a supply step of supplying a solution (crosslinking solution) containing carbon nanotubes to the surface of a substrate; and (B) curing of the solution after coating to provide carrier transport. (A), (B) depending on the cross-linking step of forming a carbon nanotube structure constituting a network structure in which the plurality of carbon nanotubes are cross-linked to each other, and the structure of the rectifying element to be manufactured. Before and after the step of forming an electrode.
  • (C) another step such as a step of performing a patterning process of the carbon nanotube structure into a pattern corresponding to the carrier transporter may be included.
  • FIG. 2 is a schematic cross-sectional view of the surface of the substrate during the manufacturing process, for explaining an example ((C-1A-2) described later) of the method for manufacturing the rectifying element of the present invention.
  • 10 is a substrate in the form of a substrate
  • 16 and 18 are electrodes
  • 12 is a force-punched nano tube structure
  • 14 is a resist layer.
  • the “supplying step” is a step of arranging carbon nanotubes constituting a carrier transporter on the surface of the base.
  • a description will be made particularly using a case where a carbon nanotube structure having a network structure formed via a cross-linking site is used.
  • the supplying step is a step of supplying (coating) a solution (crosslinking solution) containing a carbon nanotube having a functional group and a crosslinking agent that causes a crosslinking reaction with the functional group.
  • the region to which the cross-linking solution is to be supplied in the supplying step only needs to include all of the desired regions, and does not have to be applied to the entire surface of the substrate.
  • a cross-linking solution As a supply method, application of a cross-linking solution is preferable, but there is no particular limitation on the method, and any method can be used, from a method of simply dropping a droplet or spreading it with a squeegee to a general application method. Methods can also be adopted.
  • General coating methods include spin coating, wire bar coating, cast coating, roll coating, brush coating, dip coating, spray coating, curtain coating, and the like.
  • the “cross-linking step” is a step of forming a cross-linking site by chemically bonding the functional groups in the carbon nanotubes in the cross-linking solution after the supply, thereby forming the carbon nanotube structure. It is.
  • the supply step is configured to apply a crosslinking solution
  • the crosslinking solution after application is cured to form a layer of a carbon nanotube structure constituting a network structure in which the plurality of carbon nanotubes are mutually crosslinked. This is the step of forming.
  • the region where the crosslinking solution is to be cured in the crosslinking step to form the carbon nanotube structure only needs to include all of the desired regions, and the crosslinking applied to the surface of the substrate is sufficient. Not all solutions have to be cured.
  • the operation in the crosslinking step is naturally determined according to the combination of the functional group and the crosslinking agent. For example, as shown in Table 1 above.
  • heating may be performed by various heaters or the like.
  • irradiation may be performed with an ultraviolet lamp or left in sunlight. Needless to say, it is sufficient to leave the combination as it is as long as it is a natural setting, and it is understood that this "leaving" is one operation that can be performed in the bridge step in the present invention.
  • a functional group-COOR (R is a substituted or unsubstituted hydrocarbon group; preferred are described above) is added to a carbon nanotube and a polyol (especially glycerin and / or ethylene glycol).
  • a polyol especially glycerin and / or ethylene glycol.
  • curing by heating is performed.
  • one COOR carbon nanotube carboxylic acid was esterified polyol R, one OH (R '. Is a substituted or unsubstituted hydrocarbon group R' is preferably an C n H 2 n - And C n H 2 n or one C n H 2 n + i, where n is an integer of 110, including those substituted.)
  • transesterification is preferably an C n H 2 n - And C n H 2 n or one C n H 2 n + i, where n is an integer of 110, including those substituted.
  • the heating temperature is specifically preferably in the range of 50 to 500 ° C, more preferably in the range of 120 to 200 ° C.
  • the heating time in this combination is preferably in the range of 1 minute to 10 hours, more preferably in the range of 1 to 2 hours.
  • FIG. 2A shows a state in which the carbon nanotube structure 12 is formed on the surface of the substrate 10 through the (B) crosslinking step.
  • the “passing step” is a step of passing the carbon nanotube structure into a pattern corresponding to a carrier transporter.
  • FIG. 2 (e) is a schematic cross-sectional view showing the state of the substrate surface after the (C) patterning step.
  • the operation of the patterning step is not particularly limited, but preferred examples thereof include the following two embodiments (C-A) and (C-B).
  • One embodiment is a step of patterning the structure into a pattern corresponding to the carrier transporter.
  • the method includes directly irradiating radicals or the like to the carbon nanotube structure in a region other than the pattern (C-A-1), and covering the region other than the pattern with a resist layer. Then, a method of irradiating radicals or the like to the entire surface of the substrate surface (of course, the side on which the carbon nanotube structure and the resist layer are formed)
  • the method of directly irradiating the carbon nanotube structure in a region other than the pattern with a radical or the like means that the patterning step is performed by applying a force to a region other than the pattern corresponding to the carrier transporter on the substrate surface.
  • the patterning step is performed by applying a force to a region other than the pattern corresponding to the carrier transporter on the substrate surface.
  • the ion beam it is possible to selectively irradiate gas molecule ions with a density on the order of several nanometers, making it easy to perform patterning according to the carrier transporter in a single operation. It is preferable in that it can be made.
  • selectable gas species include oxygen, argon, nitrogen, carbon dioxide, sulfur hexafluoride, and the like. In the present invention, oxygen is particularly preferred.
  • An ion beam is a method in which a voltage is applied to gas molecules in a vacuum to accelerate them to ionize them and irradiate them as a beam. The substance to be etched and the irradiation accuracy can be changed depending on the type of gas used. it can T JP2004 / 007201
  • the method may include a resist layer peeling step (C-A-2-3) of peeling the resist layer provided in the resist layer forming step.
  • a resist layer is provided on the carbon nanotube structure in an area of a pattern corresponding to the carrier transporter on the substrate surface.
  • This step is performed in accordance with a process generally called a photolithography process, and a resist layer is provided directly on the carbon nanotube structure in a region of a pattern corresponding to the carrier transporter.
  • a resist layer 14 was formed on the entire surface of the substrate 10 on which the force of the substrate 10 was once formed, and the resist layer 14 was formed in accordance with the carrier transporter.
  • the area of the pattern is exposed and then developed to remove portions other than the exposed area, and finally the carbon nanotube structure in the area of the pattern corresponding to the carrier transporter is removed.
  • a resist layer is provided on PC orchid 004 bell 01.
  • FIG. 2 (c) is a schematic cross-sectional view showing the state of the substrate surface after the (C-A-2-1) resist layer forming step. It should be noted that, depending on the type of the resist, there may be a configuration in which portions other than the exposed portion are removed by development and the non-exposed portion remains. '
  • the resist layer may be formed by a conventionally known method. Specifically, a resist agent is applied on a substrate by using a spinner and the like, and heated to form a resist layer.
  • the material (resist agent) used for forming the resist layer 14 is not particularly limited, and various materials conventionally used as resist materials can be used as they are. Above all, it is preferable to form the resin layer (resin layer). Since the carbon nanotube structure 12 has a network formed in a network and is a porous structure, a film is formed only on the very surface such as, for example, a metal vapor-deposited film, and the inside of the hole is sufficiently formed. If the resist layer 14 is formed from a material that does not penetrate, the carbon nanotube cannot be sufficiently sealed (not exposed to plasma or the like) when irradiated with plasma or the like.
  • the plasma or the like passes through the hole and erodes to the carbon nanotube structure 12 under the resist layer 4, and the outer shape of the remaining carbon nanotube structure 12 due to the plasma or the like is reduced.
  • the outer shape (area) of the resist layer 14 it is conceivable to make the outer shape (area) of the resist layer 14 sufficiently larger than the pattern corresponding to the carrier transporter, but in this case, the interval between the patterns is widened. Inevitably, it becomes impossible to form patterns densely.
  • the resin can penetrate into the inside of the pores, and the amount of carbon nanotubes exposed to plasma or the like can be reduced. As a result, high-density patterning of the carbon nanotube structure 12 can be performed.
  • Examples of the resin material mainly constituting the resin layer include nopolak resin, polymethyl methacrylate, and a mixture of these resins, but are not limited thereto.
  • the resist material for forming the resist layer is a mixture of the above resin material or a precursor thereof and a photosensitive material.
  • any conventionally known resist material may be used.
  • OFPR800 manufactured by Tokyo Ohka Kogyo and NPR9710 manufactured by Nagase Sangyo can be exemplified.
  • Exposure to the resist layer 14 (heating when the resist material is thermosetting. Select as appropriate depending on the type of resist material) and development operations or conditions (eg, light source wavelength, exposure intensity, exposure time, exposure time) The amount, environmental conditions at the time of exposure, development method, type of developer, concentration, development time, development temperature, contents of pre-treatment and post-treatment, etc.) are appropriately selected according to the resist material to be used. If a commercially available resist material is used, the method described in the instruction manual for the resist material may be used. In general, for convenience of handling, exposure is performed using ultraviolet light in a pattern corresponding to the carrier transporter, and development is performed using an alkaline developer. Then, the developer is washed away with water and dried to complete the photolithography process.
  • FIG. 2 (d) shows a schematic cross-sectional view showing the state of the substrate surface after the (C-A-1-2- 2) removal step.
  • the operation of the removal step is performed by a general method called dry etching. Examples of the method include the reactive ion method.
  • the method using the ion beam (C-A-1) described above is also included in the dry etching.
  • the gas types that can be selected, other equipment and operating environment, etc. are as described in (C-A-1).
  • gas species generally selectable in dry etching include oxygen, argon, and fluorine-based gases (such as Freon, SF 6 and CF 4 ).
  • oxygen is particularly preferred.
  • oxygen radicals are used, the carbon nanotubes to be removed can be oxidized (burned) and carbonized into carbon dioxide, and the carbon nanotubes can be converted into carbon dioxide without any effect due to the generation of residues, and accurate patterning. It becomes possible to do.
  • oxygen radicals are generated by irradiating oxygen molecules with ultraviolet rays, and this can be used.
  • a device that generates oxygen radicals by this method is commercially available under the trade name of UV Asher and can be easily obtained.
  • FIG. 2E is a schematic cross-sectional view showing the state of the substrate surface after the (C—A—2—3) resist-stripping step.
  • the operation of the resist layer peeling step may be selected according to the material used for forming the resist layer 14. If a commercially available resist material is used, the method described in the instruction manual for the resist material may be used.
  • the resist layer 14 is a resin layer, it is generally removed by coming into contact with an organic solvent capable of dissolving the resin layer.
  • the details of the resist layer forming step are the same as the (C-A-2-1) resist layer forming step described above, except that it is desired to use a resist material having resistance to an etching solution.
  • the operation of the resist layer peeling step may be performed subsequent to the removing step, and the details thereof are the same as those described in (C-A-2-3) The resist layer peeling step. Therefore, a detailed description of these will be omitted.
  • the etching liquid is brought into contact with the surface of the substrate 12 on which the carbon nanotube structure 12 and the resist layer 14 are laminated, whereby The carbon nanotube structure 12 exposed in a region other than the region is removed.
  • the term "wetted liquid” is a concept including all the actions of bringing the object into contact with the liquid, and the liquid is brought into contact with the liquid by any method such as immersion, spraying, and pouring. I do not care.
  • the etching solution is generally an acid or an alkali, and what kind of etching solution should be selected depends on the resist material constituting the resist layer 14 and the force of the carbon nanotube structure 12. It depends on the cross-linking structure between the elements. It is desirable to select a material that does not easily attack the resist layer 14 as much as possible and easily removes the carbon nanotube structure 12.
  • the carbon nanotube structure 12 originally exposed can be removed before the resist layer 14 completely disappears. If possible, an etchant of a type that would attack the resist layer 14 may be selected.
  • the “electrode forming step” is a step of forming an electrode pair on the carbon nanotube structure 12 having undergone the patterning in the previous step.
  • a known thin film process or a thick film process can be used as appropriate.
  • the electrode forming process may be replaced with another process depending on the device structure.
  • This step may be performed before or after (D) the electrode forming step, or after the electrode forming step, depending on the method of making the first connection configuration different from the second connection configuration from the other electrode to the carrier transporter. It is performed simultaneously with the process.
  • this step can be interpreted as an example of the “connection configuration forming step” according to the present invention.
  • the form of the barrier forming step will be described below, but is not limited to this.
  • the electrode forming step and the barrier layer forming step are performed simultaneously.
  • an oxide layer is formed at the first interface
  • a step of forming an oxide layer at the first interface is required.
  • the oxide layer may be formed by directly forming an oxide by a known thin film process or the like, or by using an oxidizing material as the first electrode and oxidizing the interface between the first electrode and the carrier transporter. Then, a method of forming the layer can be given.
  • the second electrode is made of a metal having high oxidation resistance, for example, gold, or a material having a different oxidation property from the metal of the first electrode, so that the barrier level at the first interface and the second interface is increased. Can be different.
  • the oxide film natural oxidation of the electrode metal in an oxygen-containing atmosphere is preferable from the viewpoint of the denseness and thinness of the oxide film, but the oxide film may be formed by vapor deposition or thermal oxidation.
  • the processing step for the carrier must be performed using the electrode. It is required prior to the formation process.
  • the specific examples of the formation of the barrier layer may be performed in combination.
  • this barrier layer forming step at least one electrode is arranged on the substrate surface prior to the formation of the carrier transporter, and the carrier transporter (A) to (C) is formed thereon when the carrier transporter is formed thereon.
  • the barrier layer may be formed before or after the step of forming the transporter or at the same time.
  • FIG. 2 (f) is a schematic cross-sectional view showing a rectifying element finally obtained by the above manufacturing method.
  • 16 and 18 are electrodes, and the electrode 18 (“one electrode” in the present invention) is connected to the carbon nanotube structure 12 via a barrier layer (oxide layer) 20. However, the electrode 16 (“the other electrode” in the present invention) is directly connected to the carbon nanotube structure 12.
  • the rectifying element of the present invention can be manufactured through the above steps, but the manufacturing method of the rectifying element of the present invention may include other steps.
  • a surface treatment step of treating the surface of the substrate in advance before the supply step.
  • the surface treatment step for example, the surface of the substrate is cleaned in order to increase the adsorbability of the applied cross-linking solution, to enhance the adhesiveness between the carbon nanotube structure formed as an upper layer, and the surface of the substrate.
  • a silane coupling agent for example, aminopropyl Triethoxysilane, ⁇ - (2-aminoethyl) aminopropyl trimethoxysilane, etc.
  • surface treatment with aminopropyltriethoxysilane is widely performed, and is also suitable for the surface treatment step in the present invention.
  • Surface treatment with aminopropyltriethoxysilane is, for example, Y.L.L yubchenkoeta 1., Nucleic Acids Research, 1993, vol. 21, p. As seen in documents such as 3rd, it has been used for surface treatment of my strength used for substrates in AFM observation of DNA.
  • the electrode when an oxidizable metal material is used for the electrode, it is desirable to seal at least the space between the carrier transporter and the electrode from oxygen. This prevents deterioration of the characteristics over time. Needless to say, sealing is not always necessary if the aging characteristics are actively used as a sensor-like function.
  • the above-described operation according to the method for manufacturing a rectifying element of the present invention may be repeated two or more times.
  • an intermediate layer such as a dielectric layer or an insulating layer is provided between the layers of the carbon nanotube structure
  • the above-described operation of the method for manufacturing a rectifying element of the present invention can be repeated with steps for forming these layers interposed therebetween. Just fine.
  • a step for forming these layers is required.
  • Each of these layers serves a different purpose.
  • the material and method may be selected from conventionally known methods, or may be appropriately formed by a material or method newly developed for the present invention.
  • a carrier transporter is formed on a substrate surface
  • a carbon nanotube structure is once patterned on the surface of a temporary substrate, and then a desired substrate is formed.
  • a method of transferring (transferring process) to In the transfer step the patterned carbon nanotube structure is once transferred from the temporary substrate to the surface of the intermediate transfer body.
  • a configuration in which the image is transferred to a desired substrate (second substrate) may be used.
  • the one in which the carbon nanotube structure is formed on the surface of the temporary substrate may be referred to as a “carbon nanotube transfer body”.
  • a carbon nanotube structure is formed on the surface of the temporary substrate 11 ′, and is patterned to have a shape corresponding to the transport layer (carrier transporter) 12 (FIG. 1). 0 (a)).
  • transport layer carrier transporter 12
  • the substrate (substrate) 11 having the adhesive surface 11 1 formed on the surface is pasted on the transport layer 12 on the surface of the temporary substrate 11 1 ′ (see FIGS. 10 (b) and (c)).
  • the transport layer 12 is transferred to the adhesive surface 11 1 of the substrate 11 by peeling off the substrate 11 and the temporary substrate 11 ′ (FIG. 10 (d)).
  • an oxide film 20 and electrodes 16 and 18 are laminated on the transport layer 10 transferred to the substrate 11 by using sputtering or the like.
  • These elements can be connected to other elements by wiring to form an integrated circuit.
  • the same material as the substrate described in the section of [Rectifier] can be used, and it is preferable.
  • the substrate or the intermediate transfer member that can be used in the application example needs to have an adhesive surface holding an adhesive or a surface capable of holding the adhesive.
  • an adhesive such as the above can be used, of course. Further, it may be made of a hard material other than a flexible or flexible material such as these tapes.
  • the adhesive can be applied to the surface that can be held and then used as an adhesive surface in the same manner as a normal tape.
  • the rectifying element of the present invention can be easily manufactured.
  • a rectifying element is manufactured by preparing a substrate having a carbon nanotube structure supported on the surface of the substrate and affixing the substrate together with the surface of a desired second substrate (for example, a housing) constituting a device. You can also.
  • the intermediate transfer member may be a temporary substrate of the carbon nanotube transfer member in the process in some cases, but it is not necessary to distinguish the carbon nanotube transfer member itself.
  • the carbon nanotube transfer body When the carbon nanotube transfer body is used, the carbon nanotube structure is supported in a cross-linked state on the surface of the temporary substrate, so that subsequent handling is extremely simple, and the manufacture of the rectifying element is extremely difficult. It can be done easily.
  • the method of removing the temporary substrate can be selected as appropriate, such as simple peeling, chemical decomposition, burning, melting, sublimation, or dissolving.
  • the method of manufacturing a rectifying element of such an application example is particularly effective in the case where a material, Z, or shape is difficult to apply to the rectifying element manufacturing method of the present invention as it is as a device base.
  • the temperature for heating the solution after supply in the cross-linking step is higher than the melting point or the glass transition point of the material used for the base of the rectifying element.
  • Application examples are valid.
  • the heating temperature lower than the melting point of the temporary substrate, a heating temperature required for curing can be secured, and the rectifying element of the present invention can be appropriately manufactured.
  • the patterning step may perform dry etching on the carbon nanotube structure in a region other than the pattern corresponding to the carrier transporter on the surface of the temporary substrate, thereby forming the carbon nanotube structure in the region.
  • the material used for the substrate of the rectifier element is used in the patterning step.
  • the above-mentioned application examples of the present invention are effective when they do not have resistance to etching. At this time, by using a material having resistance to dry etching for the temporary substrate, it is possible to ensure the resistance to the operation in the step of patterning the temporary substrate, and to appropriately manufacture the rectifying element of the present invention. can do.
  • the specific resistance, material, etc. vary depending on the conditions of dry etching gas, strength, time, temperature, pressure, etc., and cannot be said unconditionally.
  • resin materials have relatively low resistance, they are referred to as the base.
  • an inorganic material has a relatively high resistance and is suitable for the temporary substrate.
  • a material having flexibility or flexibility generally has low resistance, it is preferable to apply the material to the base in that the advantages of the present application example can be utilized.
  • the above-mentioned application example of the present invention is effective when the base does not have resistance to the etching solution used in the patterning step, but the temporary substrate has resistance.
  • the base of the rectifying element is used as the base in this application example, and a material having resistance to the etching solution is used for the temporary substrate.
  • the resistance to the operation of the step of patterning the temporary substrate can be ensured, and the rectifying element of the present invention can be appropriately manufactured.
  • Specific resistance, material, etc. cannot be said unconditionally because they vary depending on conditions such as the type, concentration, temperature, and contact time of the etchant used.
  • the etching solution is acidic and a material such as aluminum which is weak to acid is desired to be used as the base of the rectifying element, this is used as the base, and a material such as silicon which is resistant to acid is used as the temporary substrate. Applying the application frees you from the limitations of low tolerance.
  • it cannot be said unconditionally due to the liquid property of the etching solution, as described above by using a material having low resistance to the etching solution as the base, it is released from the restriction due to low resistance.
  • a rectifying element of the present invention and an apparatus using the same are attached to a second base in order to make a substrate carrying the carbon nanotube structure 24 a rectifying element that is easier to handle. It may be configured.
  • the second substrate may be physically rigid, flexible or flexible, and may have various shapes such as a sphere and a concave shape. .
  • a rectifier element using a dariserin cross-linked film of single-walled carbon nanotubes having semiconductor characteristics as a carrier transporter was produced according to the flow of the method of manufacturing the rectifier element shown in FIG.
  • Electrodes were formed using titanium and aluminum as electrode members. By natural oxidation of aluminum An oxide film was formed at the interface between the electrode and the carbon nanotube structure.
  • reference numerals in FIG. 2 may be used.
  • Single-walled carbon nanotube powder (purity: 40%, manufactured by A1drich) was previously sieved (pore diameter: 125 ⁇ m) to remove coarse aggregates (average diameter: 1.5 nm, average length: 2 m) ) 30 mg was heated at 450 ° C for 15 minutes in a Matsufur furnace to remove carbon substances other than carbon nanotubes. Dissolve the catalyst metal by submerging 15 mg of the remaining powder in 5N hydrochloric acid aqueous solution ⁇ concentrated hydrochloric acid (35% aqueous solution, manufactured by Kanto Kagaku) 2 times with pure water ⁇ 10 ml for 4 hours I let it.
  • This solution was filtered to collect a precipitate.
  • the above-mentioned step of heating and submerging in hydrochloric acid was further repeated three times on the collected precipitate to purify the precipitate.
  • the heating conditions were 450 ° C for 20 minutes and 450.
  • the temperature was gradually increased to 30 minutes at C and 60 minutes at 550 ° C.
  • the purity of the carbon nanotubes after purification is much higher than that before purification (raw materials) (specifically, the purity is estimated to be 90% or more).
  • the finally obtained purified carbon nanotubes weighed about 5% of the raw material (1 to 2 mg).
  • the solution was centrifuged at 500 rpm for 15 minutes to separate a supernatant and a precipitate.
  • the collected precipitate was dispersed in 10 ml of pure water, and centrifuged again at 500 rpm for 15 minutes to separate the supernatant from the precipitate. ). This washing operation was repeated five more times, and finally the precipitate was collected.
  • the collected precipitate was measured for infrared absorption spectrum.
  • the infrared absorption spectrum of the used single-walled carbon nanotube raw material itself was also measured. Comparing the two spectra, an absorption of 173 cm- 1 specific to carboxylic acid, which was not observed in the single-wall carbon nanotube raw material itself, was observed in the precipitate. . From this, it was found that a carboxyl group was introduced into the carbon nanotube by the reaction with nitric acid. That is, it was confirmed that the precipitate was carbon nanotube rubonic acid.
  • Silicon wafer as base 10 (Adpantech, 76.2 mm (diameter 3 inch), thickness 380 / xm, cross-linking solution (1) applied to surface oxide film thickness, and silicon
  • the surface treatment of the silicon wafer was performed with aminopropyltriethoxysilane.
  • the cross-linking solution (1 ⁇ 1) prepared in step (A-1) is applied to the surface of a silicon wafer (substrate 10) that has been subjected to a surface treatment by spinning it onto a surface (Mikasa Corporation, 1H-DX2). Was applied under the conditions of lOOrpm, 30 seconds.
  • the silicon wafer (substrate 10) on which the coating film was formed was heated at 200 for 2 hours to cure the coating film, thereby forming a carbon nanotube structure 12 (FIG. 2).
  • the scheme is shown in FIG. 5.
  • the state of the obtained carbon nanotube structure 12 was confirmed with an optical microscope, it was found to be a very uniform cured film.
  • a spin-coater (1H-DX2, manufactured by Mikasa) was applied to the surface of the carbon nanotube structure 12 (surface-treated) using a spin-coater (1H-DX2), and a resist agent (Nagase Sangyo, NPR971) was used. 0, viscosity of 50 mPa * s) at 200 Orm pm for 20 seconds, and heated with a hot plate at 100 ° C for 2 minutes to form a film.
  • Figure 2 (b) The composition of the resist agent NPR9710 is as follows • Propylene glycol monomethyl ether acetate:
  • Nopolak resin 20 to 50% by mass
  • a mask aligner (Mikasa mercury lamp, MA—) is provided on the surface of the silicon wafer 110 on which the carbon nanotube structure 12 and the resist layer 14 are formed on the resist layer 14 side. Exposure was performed under the conditions of a light intensity of 12.7 mW / cm 2 and 8 seconds using a wavelength of 20 and a wavelength of 436 nm.
  • the exposed silicon wafer 12 was heated at 110 ° C. for 1 minute using a hot plate, then allowed to cool, and used as a developing solution of NMD-3 (tetramethylammonium hydroxide) manufactured by Tokyo Ohka Kogyo Co., Ltd. Developing was performed using a developing machine (AD-1200, Takizawa Sangyo) using Fig. 2.38 mass%) (Fig. 2 (c)).
  • NMD-3 tetramethylammonium hydroxide
  • the resist layer 14 was formed in a predetermined pattern shape (the state shown in FIG. 2 (c)).
  • the silicon wafer 112 was placed on a UV asher (excimer vacuum ultraviolet lamp, manufactured by Atom Giken, EXM—2100 BM, wavelength 172 nm), heated at 200 ° C in a mixed gas (oxygen l O mLZmin, nitrogen 40 mL / min), and irradiated with ultraviolet light (172 nm) to generate oxygen radicals, thereby removing portions of the carbon nanotube structure 12 that were not protected by the resist layer 14.
  • the carbon nanotube structure 12 was formed in the shape of a carrier transporter while being covered with the resist layer 14 (FIG. 2 (d)).
  • the resist layer 14 is formed on the substrate 1 through the carbon nanotube structure 12. 0 remains on the surface.
  • the resist layer 14 remaining as the upper layer of the carbon nanotube structure 12 formed in the “predetermined pattern” shape is washed away with acetone and removed (FIG. 2 (e)).
  • the carrier transporter of the rectifying element of Example 1 was obtained.
  • Aluminum and titanium electrodes were formed on the transport layer (carrier transporter) composed of the carbon nanotube structure 12 by vapor deposition. This was allowed to stand at a place to form a natural aluminum oxide film on the interface between the carbon nanotube structure 12 and the aluminum electrode 18 to obtain a device (FIG. 2 (f)).
  • a device using a multi-walled carbon nanotube crosslinked film as a carrier transporter was produced in the same manner as in the method shown in Example 1.
  • a native aluminum oxide film was formed on the interface between the aluminum electrode and the carbon nanotube structure. Titanium was used as the other electrode member.
  • the method for forming the coating film will be described below. Other steps were performed in the same manner as in Example 1.
  • Multi-wall carbon nanotube powder (purity 90%, average diameter 30nm, average length 3 / xm; manufactured by Science Laboratories) 30mg concentrated nitric acid (60 quality 4 007201% aqueous solution (manufactured by Kanto Chemical Co., Ltd.), and refluxed at 120 ° C. for 20 hours to synthesize carbon nanotube carboxylic acid.
  • the solution was centrifuged at 500 rpm for 15 minutes to separate a supernatant and a precipitate.
  • the collected precipitate was dispersed in 10 ml of pure water, and centrifuged again at 500 rpm for 15 minutes to separate the supernatant from the precipitate. ). This washing operation was repeated five more times, and finally the precipitate was collected.
  • the collected precipitate was measured for infrared absorption spectrum.
  • the infrared absorption spectrum of the used multi-walled carbon nanotube raw material itself was also measured. Comparing both spectra, multilayer force one Bon'nanochu - not observed in the blanking material itself, carboxylic acids characteristic 1 7 3 5 cm - 1 absorption of, toward the precipitate was observed. This indicated that the reaction with nitric acid led to the introduction of carbonyl groups into the carbon nanotubes. That is, it was confirmed that the precipitate was carbon nanotube rubonic acid.
  • FIG. 6 is a schematic cross-sectional view of the rectifying element of the present embodiment.
  • an aluminum electrode 3 is the main electrode, on the aluminum electrode 3, deposition of alumina (A 1 2 0 3) layer 4 for forming a barrier Were laminated.
  • a single-walled carbon nanotube structure 1 as a carrier transport layer was formed in the same manner as in Example 1. Further, titanium / gold was deposited as the upper electrode 2 to obtain a rectifying element. The thickness of the deposited alumina is about 70 nm.
  • the rectification effect can be confirmed from the current-voltage characteristics (FIG. 9), and the carrier transporter composed of the carbon nanotube structure has each interface between two electrodes, for example, one side. Oxide film etc. With that, rectifying action is manifested

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Rectifiers (AREA)

Abstract

一対の電極と、該一対の電極間に設けられた、1本または複数のカーボンナノチューブにより構成されるキャリア輸送体と、を備え、前記一対の電極のうち、一方の電極および前記キャリア輸送体の第1の界面と、他方の電極および前記キャリア輸送体の第2の界面と、が異なる障壁レベルとなるように、これら2つの接続構成を異なる構成とすることで、高周波応答性、耐熱性に優れたキャリア輸送体を備えた整流素子を提供し、併せて、それを用いた電子回路、並びに整流素子の製造方法を提供する。

Description

明 細 書 整流素子およびそれを用いた電子回路、 並びに整流素子の製造方法 技 術 分 野 本発明は、 キヤリァ輸送体として力一ボンナノチューブ構造体を用い た整流素子およびそれを用いた電子回路、 並びに整流素子の製造方法に 関する。 背 景 技 術 力一ボンナノチューブ (C NT) は、 その特異な形状や特性ゆえに、 様々な応用が考えられている。 カーボンナノチューブの形状は炭素原子 の六員環で構成されるグラフエンシートを巻いた 1次元性を有する筒状 であり、 グラフエンシー卜が 1枚の構造のカーボンナノチューブを単層 ナノチューブ (SWNT) 、 多層の場合を多層ナノチューブ (MWNT ) と呼ぶ。 SWNTは直径約 l nm、 多層カーボンナノチューブは数十 nm程度であり、 従来の力一ポンフアイパーと呼ばれる物よりも極めて 細い。
また、 カーボンナノチューブは、 マイクロメートルオーダ一の長さを 有し、 直径とのアスペク ト比が非常に大きいことが特徴的である。 さら に、 カーボンナノチューブは炭素原子の六員環の配列が螺旋構造をとる ことから、 金属性と半導体性の両方の性質を有するという、 極めて希有 な特性を有する物質である。 加えて、 力一ボンナノチューブの電気伝導 性は極めて高く、 電流密度に換算すると 1 0 O M A / c m 2以上の電流 を流すことができる。
力一ボンナノチューブは、 電気的特性だけではなく、 機械的性質につ いても優れた点を有する。 すなわち、 炭素原子のみで構成されているた め、 非常に軽量であるにもかかわらず、 1 T P aを越えるヤング率を有 し、 極めて強靱である。 また、 ケージ物質であるために弾力性 ·復元性 にも富んでいる。 このように、 カーボンナノチューブは様々な優れた性 質を有するため、 工業材料として、 極めて魅力的な物質である。
これまでに、 カーボンナノチューブの優れた特性を利用した応用研究 が数多く行われている。 樹脂の強化や伝導性複合材料としてカーボンナ ノチューブを添加したり、 走査プローブ顕微鏡の探針として利用された りしている。 また、 微小電子源として、 電界放出型整流素子やフラッ ト ディスプレイとして力一ボンナノチューブが利用され、 さらに水素貯蔵 への応用が進められている。
このように、 カーボンナノチューブは、 種々の応用が考えられるが、 特に電子材料 · 電子デパイスとしての応用が注目を浴びている。 既にダ ィォ一ドゃトランジスタなどの電子デバイスの試作が行われており、 現 在のシリコン半導体に代わるものとして期待されている。
近年、 電子デバイスはより広い領域での使用が求められている。 たと えば、 エネルギー変換といった用途では環境への対策も踏まえ、 高効率 化や省エネルギー化が必須となる。 また、 高温環境など多様な環境での 安定動作が求められる場面も多い。 T JP2004/007201 こうした要求への対応として、 素子材料または素子構造という 2つの 面から解決が図られる。 しかし、 現在の主流であるシリコンを用いた素 子では、 素子構造により対応を図ろうにも、 シリコンの材料としての限 界により制限を受ける域へと達しているのが現状である。 また、 ガリウ ムヒ素といった半導体材料は、 環境への負荷の観点からその使用は望ま しくない。 このため、 既存の材料に代わる新たな半導体材料を用いた電 子デバイスが求められている。
整流素子は多様な電子デバイスのなかでも最も基本的なものであり、 素子の一方向にのみ電流を流す性質を持つデバイスである。 整流素子で は、 上記の要求を満たすため、 高出力、 高速、 高周波、 低損失の素子が 求められる。 そのような整流素子を実現するため、 高い絶縁破壌電界強 度や飽和ドリフ卜速度、 熱伝導率といった特性でシリコンを上回る部材 をキヤリァ輸送体として利用することが広く検討されている。
カーボンナノチューブを使用したダイオードの報告例としては、 Hu, J. Ouyang, M. Yang, P. L i ebe r, C. M. Nat ure, 399, 48-5 1 ( 1999)と 、 Yao, Z. Pos tma, H. W. C. Bal ent s, L. Dekke r, C. Nature, 402, 2 73-276 (1999)との 2つの文献がある。 前者はカーボンナノチューブとシ リコンナノワイヤ一のへテロ結合を形成させることにより、 また、 後者 ではカーボンナノチューブを屈曲させ、 マニュピレート法を用いて配線 することにより、 整流作用を発現させている。
しかしながら、 カーボンナノチューブを用いた整流素子の報告例はあ まり多くなく、 整流方向の制御された素子の作製例はさらに少ない。 力一ボンナノチューブを整流素子のキヤリァ輸送体として用いること は、 力一ボンナノチューブの特性である応答性の速さや熱伝導性の高さ から、 高周波や高温での動作が可能な整流素子としての用途が期待され る。 また、 そのサイズを活かし、 小型化や高密度実装も可能となる。 さ らに、 炭素のみからなるため環境負荷が小さい点も注目される。 しかし ながら、 カーボンナノチューブをキヤリァ輸送体として用いた既存の整 流素子は、 整流方向が制御できないといった点で、 実用には適さないも のである。 発 明 の 開 示 したがって、 本発明は、 上記課題を解決することを目的とする。 詳し くは、 本発明の目的は、 カーボンナノチューブ構造体の特性を効果的に 活用できる整流素子およびそれを用いた電子回路、 並びに整流素子の製 造方法を提供することにある。
上記目的は、 以下の本発明により達成される。
すなわち本発明の整流素子は、 一対の電極と、 該一対の電極間に設け られた、 1本または複数のカーボンナノチューブにより構成されるキヤ リア輸送体と、 を備え、
前記一対の電極のうち一方の電極および前記キヤリア輸送体の第 1の 界面と、 前記一対の電極のうち他方の電極および前記キヤリァ輸送体の 第 2の界面と、 が異なる障壁レベルとなるように、 前記一方の電極およ び前記キヤリァ輸送体間の第 1の接続構成と、 前記他方の電極および前 記キヤリァ輸送体間の第 2の接続構成と、 を異なる構成としたことを特 徵とする。
本発明の整流素子は、 前記第 1の界面と前記第 2の界面との障壁レべ ルが異なることから、 前記第 1の界面または前記第 2の界面、 あるいは その両方が、 無電界下の熱平衡状態において電子とホールが相互に往来 するような所謂ォーミック接続とはならないこととなる。 ォ一ミック接 続以外の接続構成としては、 M I S (M e t a l - I n s u l a t o r - S e m i c o n d u c t o r ) 障壁ゃショッ トキ一障壁が代表的なも のである。
なお、 障壁レベルとは、 無電界下 ·熱平衡下における、 キャリア輸送 体と電極間との界面におけるキャリア (電子あるいはホール) の遷移の 容易さの程度、 あるいは、 そのエネルギー障壁の大きさの程度を指す。 キヤリァ輸送体の第 1の界面と第 2の界面とで障壁レベルが非対称にな ることで、 電圧印加時に整流作用が生ずる。
本発明におけるキヤリァ輸送体とは、 金属における自由電子を伝播す る金属と異なり、 媒体中をキャリア (電子および正孔) の伝播により電 気伝導を生ずる物体であり、 本発明のようにカーボンナノチューブから 構成される場合には、 カーボンナノチューブが半導体型ものである場合 だけでなく、 金属的性質を備えるカーボンナノチューブを、 別に説明す るような複数のカーボンナノチューブが架橋部位を介してカーボンナノ チューブ構造体を構成することで、 全体として半導体的性質を示すもの や、 カーボンナノチューブの分散膜でカーボンナノチューブの絡み合い もしくは接触により半導体的性質を示すもの等、 力一ボンナノチューブ を用いて半導体的性質を示すものを用いることができる。
なお、 本発明におけるキャリア輸送体は、 複数のカーボンナノチュー ブから構成されることが好ましい。 一本のカーボンナノチューブの場合 には、 流すことができる最大電流が小さくなるが、 複数の力一ボンナノ P T/JP2004/007201 チューブを使用することこれを大きくすることができる。 また、 一本の 場合に比べキヤリァ輸送体内における電気的ネッ トワークが確実に形成 されるため、 安定性にも優れる。
また、 本発明におけるキャリア輸送体は、 複数のカーボンナノチュー プが相互に架橋した網目構造を構成してなるカーボンナノチューブ構造 体により構成されることがより好ましい。 キャリア輸送体として、 複数 のカーボンナノチューブが複数の架橋部位を介して網目構造の状態とな つたカーボンナノチューブ構造体を用いることで、 単なるカーボンナノ チューブの分散膜をキヤリァ輸送体として用いたときのように、 力一ポ ンナノチュ一ブ同士の接触状態並びに配置状態や使用環境が不安定にな つてキヤリァ輸送体の接続状態が変動し、 整流特性が不安定になるとい つたことがなく、 安定した整流素子を得ることができる。
また、 架橋部位の存在により半導体的な性質が生ずるため、 入手容易 な多層カーボンナノチューブを用いて整流素子を構成できる点も好適で ある。
また、 本発明の整流素子は、 前記第 1の界面と前記第 2の界面の障壁 レベルが異なるように、 前記第 1の界面および前記第 2の界面の少なく とも一方に酸化物層を介在させて、 第 1および第 2の接続構成を異なら せることが特に好ましい。 酸化物を介在させることで高いエネルギー障 壁が形成でき、 無電界下での界面におけるキヤリァの往来がより高く防 止される。 なお、 この構成の整流素子は、 いずれかがアノードとなり他 方が力ソードになるが、 キャリア輸送体が P型の場合、 障壁レベルの高 い方の酸化膜に接している電極側が力ソードとなり、 n型の場合は逆に 、 障壁が大きい方がアノードとなる。 キャリア輸送体を構成するカーボ P T/JP2004/007201 ンナノチューブは、 ドープ等の方法によって p型や n型の性質にするこ とができる為、 いずれをカソ一ド側にするかは必要に応じて設定するこ とができる。
前記酸化物層は、 好ましくは金属酸化膜 (合金の酸化膜を含む) また は半導体の酸化膜であり、 必ずしも同じ組成の一様な酸化膜である必要 はなく、 複数種類の酸化膜を並置あるいは積層するなどして構成しても よい。 酸化物としては、 酸化アルミニウム、 二酸化珪素、 酸化銅、 酸化 銀、 酸化チタン、 酸化亜鉛、 酸化スズ、 酸化ニッケル、 酸化マグネシゥ ム酸化インジウム、 酸化クロム、 酸化鉛、 酸化マンガン、 酸化鉄、 酸化 パラジウム、 酸化タンタル、 酸化タングステン、 酸化モリブデン、 酸化 バナジウム、 酸化コバルト、 酸化ハフニウム、 酸化ランタンからなる群 より選ばれる少なくとも 1つから構成されることが好ましい。
前記キャリア輸送体表面と前記一方の電極 (以下、 「第 1の電極」 と いう場合がある。 ) との第 1の界面には、 酸化物層が挿入されているこ とが特に好適であるが、 当該酸化物層と第 1の電極との間に、 例えば当 該第 1の電極とは異なる材料で構成された導電層を挿入するなど、 整流 素子としての機能を失わない程度の層を介在させてもよい。
一方、 前記キャリア輸送体表面と前記他方の電極 (以下、 「第 2の電 極」 という場合がある。 ) との第 2の界面は、 第 1の界面における障壁 レベルとは異なる障壁レベルを備えるように、 直接ォ一ミック接続した り、 複数の材料を積層して介在させたりする等、 やはり整流素子として の機能を失わない程度の層を介在させてもよい。
また、 第 1の界面側の障壁レベルおよび第 2の界面側の障壁レベルの いずれかが他方よりも大きくなるようにするために、 両方の界面に酸化 07201 物層が形成されていても構わない。 ただし、 両方の酸化物層が、 無電界 下の熱平衡状態において電子とホールが相互に往来するような所謂ォ一 ミック接続の状態とはならないように形成される。
前記一対の電極を構成する材料としては、 チタン、 アルミニウム、 銀 、 銅、 導電化されたシリコン、 鉄、 タンタル、 ニオブ、 金、 白金、 亜鉛 、 タングステン、 スズ、 ニッケル、 マグネシウム、 インジウム、 クロム 、 マンガン、 鉛、 パラジウム、 モリブデン、 バナジウム、 コバルト、 ハ フニゥム、 およびランタンからなる群より選ばれる少なくとも 1つの金 属もしくはその合金であることが好ましい。 特に、 前記一対の電極のう ち一方の電極を構成する材料が、 チタン、 アルミニウム、 銀、 銅、 導電 化されたシリコン、 鉄、 タンタル、 ニオブ、 亜鉛、 タングステン、 スズ 、 ニッケル、 マグネシウム、 インジウム、 クロム、 パラジウム、 モリプ デンおよびコバルトからなる群より選ばれる少なく とも 1つの金属もし くはその合金であることが好ましい。
前記一対の電極は、 金属や合金に限らず、 導電化した半導体でも、 有 機材料であってもよいが、 キヤリァ輸送体あるいは酸化物層に対してォ 一ミック接続されていることが望ましい。 また電極自体が複数の金属の 積層等の組合せで形成されていてもよい。
前記一対の電極が、 それぞれ異なる材料から構成されてなるものであ つても構わない。 特に、 前記第 1の界面と前記第 2の界面の障壁レベル が異なるように、 前記一方の電極と前記他方の電極の材料を異ならせる ことができる。
その電極材料が酸化膜を形成するものである場合 (例えば、 アルミ二 ゥム、 銀、 銅、 導電化されたシリコン、 チタン、 亜鉛、 ニッケル、 スズ 04007201
、 マグネシウム、 インジウム、 クロム、 マンガン、 鉄、 鉛、 パラジウム
、 タンタル、 タングステン、 モリブデン。 バナジウム、 コバルト、 ハフ 二ゥム、 ランタン) 、 電極表面を酸化することで形成すると、 別途酸化 物層を介在させる場合に比べて、 酸化していない電極として作用する部 分と、 キャリア輸送体の距離が十分に近接させた状態で、 酸化物層を介 在させることができるため、 キャリアの移動がより容易になり、 低電圧 での駆動が容易になる点でより好ましい。 また、 生産性の点でも安定的 に酸化物層およびその層厚を形成できる点でも好ましい。
なお、 酸化の容易性は各材料のイオン化傾向により示される。 例えば
、 次の順で、 下記材料はより酸化されにくくなる。
L i , K, C a , N a , Μ g , A 1 , T i, Μη, S i, Ζ η, C r , F e (II) , C d, C o , N i, I n , S n, P b, F e (iii) , ( H) , C u , H g , A g , P d , P t, A u
ここで、 一方の電極を構成する導電材料のイオン化傾向が、 他方の電 極のイオン化傾向よりも高い材料から構成すると、 酸化物層の形成量に 差が生じて障壁レベルの差を生じるような、 接続構成に容易にできるよ うになり、 結果として安定した障壁を形成できるようになる点で極めて 好ましい。
また、 複数のカーボンナノチューブから構成されたキヤリァ輸送体を 用い、 予め酸化性の材料をカーボンナノチューブと隣接するように配置 した後に、 この材料を酸化させて酸化物層を形成する場合には、 キヤリ ァ輸送体が網目構造であることから、 この網目を介して酸化性の材料表 面に酸素を供給することができ、 確実に酸化物層を形成することができ るようになる。 本発明の整流素子は、 第 1の界面と第 2の界面の障壁レベルが異なる ように、 一方の電極と他方の電極の材料を異ならせてなることも好まし い形態である。
第 1の電極と第 2の電極の材料を異ならせると、 電極とキヤリァ輸送等 との界面における材料物性に応じて、 第 1の界面と第 2の界面とを異な る障壁レベルを安定して得ることができる。
このとき、 一方の電極および前記他方の電極を構成する材料がそれぞ れ独立に、 アルミニウム、 銀、 銅、 導電化されたシリコン、 金、 白金、 チタン、 亜鉛、 ニッケル、 スズ、 マグネシウム、 インジウム、 クロム、 マンガン、 鉄、 鉛、 パラジウム、 タンタル、 タングステン、 モリブデン 。 バナジウム、 コバルト、 八フニゥム、 およびランタンからなる群より 選ばれる少なくとも 1つの金属もしくはその合金とし、 それぞれを異な らせることが好ましい。
さらにこのとき、 前記他方の電極を構成する材料としては、 金、 チタ ン、 鉄、 ニッケル、 タングステン、 導電化されたシリコン、 クロム、 二 ォブ、 コバルト、 モリブデンおよびバナジウムからなる群より選ばれる 少なく とも 1つの金属もしくはその合金であることが望ましい。
あるいは、 前記第 1の界面における前記一方の電極および前記キヤリ ァ輸送体間の密着度が、 前記第 2の界面における前記他方の電極および 前記キヤリァ輸送体間の密着度よりも小さくする構成とすることも好ま しい。 カーボンナノチューブと電極の密着度は、 使用する電極材料によ つて異なるため、 材料物性の差異により障壁レベルを異ならせることが できる。
ここで、 密着度とは、 電極材料とキャリア輸送体を構成するカーボン ナノチューブとの付着性能の差を意味する。 例えば、 金属薄膜同士を 2 層重ねて形成した場合、 密着度の高い材料では層が密着して多層化する が、 密着度の悪い材料間では層構造にならなかったり、 多層化しても層 間にギヤップが形成されたりする。 カーボンナノチューブは膜ではなく 、 管状の構造体であるため、 この上に電極を蒸着した場合の、 ナノチュ ーブ表面と電極材料との密着度を意味している。
あるいは、 力一ボンナノチューブの第 1の界面に当たる部分の表面を イオンビーム照射や酸化処理等により改質すると、 電極材料との付着率 をより低下あるいは向上させることができ、 密着度を低下もしくは増大 させることができる。 この結果として、 障壁レベルをより向上させるこ とができるようになる。 このとき、 電極として酸化性の材料を用いる場 合には、 キヤリァ輸送体との密着度が低下あるいは向上しているため、 全体を酸化させた場合にも第 1の界面における電極表面はより酸化しや すく、 あるいは酸化しにく くなり、 結果として第 1 と第 2の界面では異 なる障壁が形成されるようになる。 以上のような電極材料の選択や力一 ボンナノチューブの表面処理を適宜組み合わせることで、 より自由に所 望の障壁レベルを形成できるようになる。
また本発明の整流素子として、 前記第 1の界面における前記一方の電 極および前記キヤリァ輸送体間と、 前記第 2の界面における前記他方の 電極および前記キャリア輸送体間とで、 密着度の差が生ずるように、 前 記第 1の界面および第 2の界面の少なくとも一方に、 付着力調整層を介 在させることも一つの態様として好ましい。
例えば、 アミノシラン、 チオール、 ポリマー (レジス ト、 ポリカーボ ネート、 P M M A ) 、 S A M、 L B膜等を界面に付着させた後に、 電極 PC漏 004麵 01 を蒸着などによって形成すると、 界面と電極間の密着度が制御できる。 密着度の差によつて、 障壁レベルを異ならせることができる。
前記カーボンナノチューブ構造体は、 前記カーボンナノチューブ構造 体が、 官能基が結合された複数のカーボンナノチューブの当該官能基間 を化学結合させて架橋部位が形成されてなるものが好ましく、 当該架橋 部位は、 例えば、 官能基が結合された複数のカーボンナノチューブを含 む溶液を用いて、 前記複数のカーボンナノチューブの前記官能基間を化 学結合させて形成することができる。
上記複数のカーボンナノチューブとしては、 単層カーボンナノチュー ブであっても、 多層カーボンナノチューブでであっても構わない。 主と して単層カーボンナノチューブにより構成されている場合には、 高密度 に力一ボンナノチューブ構造体を形成することができるので、 パ夕一二 ング等の微細加工を施したときにも、 キヤリァ輸送体としての性能低下 が少ない。 一方、 主として多層カーボンナノチューブにより構成されて いる場合には、 導電体としての許容最大電流が単層力一ボンナノチュー ブの場合に比べて大きいので、 整流器としての用途を広げることができ る。 さらに単層力一ボンナノチューブと比べてバンドリング (束化) し にくいことから、 特性の均一性にも優れる。 また、 製造コス トが低い点 やハンドリングが容易である点で製造上も好ましい。
なお、 ここでいう 「主として」 とは、 「主体的に」 という程度の意味 を表し、 全力一ボンナノチューブの中で過半を占める割合を指し、 全力
—ボンナノチューブ中 9 0 %以上を占めることが、 それぞれのメリッ ト を享受する上でより好ましい。 以降、 「主として」 の解釈については、 同様とする。 T JP2004/007201 なお、 単層カーボンナノチューブと多層カーボンナノチューブとが混 合した状態で形成することも可能であり、 この場合には両者の特徴を利 用することができる。 この場合、 多層カーボンナノチューブを主とする 第 1の構造体に、 単層カーボンナノチューブを主として複合した複合構 造体とすることが好ましい。
このうち、 前記架橋部位として好ましい第 1の構造は、 官能基が結合 されたカーボンナノチューブおよび前記官能基と架橋反応を起こす架橋 剤を含む溶液を用いて、 これを硬化させることにより、 前記官能基と前 記架橋剤とを架橋反応させて形成されてなる構造であり、 該架橋剤は非 自己重合性であることがより好ましい。
前記カーボンナノチューブ構造体を、 このように溶液硬化により形成 すると、 前記カーボンナノチューブ同士が架橋する架橋部位は、 前記官 能基の架橋反応後に残存する残基同士を、 前記架橋剤の架橋反応後に残 存する残基である連結基で連結した架橋構造を形成することができる。 前記架橋剤の特性として、 それら同士が重合反応をするような性質 ( 自己重合性) を有すると、 当該架橋剤自身が 2つ以上連結した重合体を 前記連結基が含む状態となってしまう場合があり、 カーボンナノチュー ブ構造体中に占める実質的なカーボンナノチューブの密度が低くなるた め、 整流素子としては、 順バイアスでの電流値が小さくなることとなり 、 整流素子としては小さな整流比しか得られない。
一方、 前記架橋剤が非自己重合性であれば、 カーボンナノチューブ相 互の間隔を、 使用した架橋剤の残基のサイズに制御することができるた め、 所望のカーボンナノチューブのネッ トワーク構造を高い再現性で得 られるようにな.る。 さらに架橋剤の残基のサイズを小さくすれば、 電気 的にも物理的にも極めて近接した状態に、 カーボンナノチューブ相互の 間隔を構成することができ、 また、 構造体中のカーボンナノチューブを 密に構造化できる。 この結果、 大きな順方向電流となることで、 高い整 流比が得られることとなる。
したがって、 前記架橋剤が非自己重合性であれば、 本発明における前 記力一ボンナノチューブ構造体を、 カーボンナノチューブ自身が有する 電気特性ないし機械的特性を極めて高い次元で発揮することができるも のとすることができる。
なお、 本発明において 「自己重合性」 とは、 架橋剤同士が、 水分等他 の成分の存在の下、 あるいは他の成分の存在なしに、 相互に重合反応を 生じ得る性質をいい、 「非自己重合性」 とは、 そのような性質を有しな いことを言う。
なお、 前記架橋剤として非自己重合性のものを選択すれば、 本発明の 塗布膜における力一ボンナノチューブ同士が架橋する架橋部位が、 主と して同一の架橋構造となる。 また、 前記連結基としては、 炭化水素を骨 格とするものが好ましく、 その炭素数としては 2〜 1 0個とすることが 好ましい。 この炭素数を少なくすることで、 架橋部位の長さが短くなり 、 カーボンナノチューブ相互の間隙をカーボンナノチューブ自体の長さ と比較して十分に近接させることができ、 実質的に力一ボンナノチュー ブのみから構成される網目構造のカーボンナノチューブ構造体を得るこ とができる。 このようにして得られたキャリア輸送体は、 密度が高いた め、 微小サイズにパターニングした場合であっても、 確実にキャリアの 輸送経路が形成される。
前記官能基としては、 — O H、 一 C O〇H、 一 C O O R ( Rは、 置換 07201 または未置換の炭化水素基である。 Rは、 好ましくは— C nH 2 n-い 一 C n H 2 nまたは一 C n H 2 n + iから選ばれ、 nは:!〜 1 0の整数であ り、 これらが置換されたものを含む。 ) 、 一 C OX (Xはハロゲン原子 ) 、 一 NH2および一 N C Oを挙げることができ、 これらからなる群よ り選ばれる少なぐとも 1つの基を選択することが好ましく、 その場合、 前記架橋剤として、 選択された前記官能基と架橋反応を起こし得るもの を選択する。
また、 好ましい前記架橋剤としては、 ポリオール、 ポリアミン、 ポリ カルボン酸、 ポリカルボン酸エステル、 ポリカルボン酸ハライ ド、 ポリ カルポジイミ ドおよびポリイソシァネートを挙げることができ、 これら からなる群より選ばれる少なくとも 1つの架橋剤を選択することが好ま しく、 その場合、 前記官能基として、 選択された前記架橋剤と架橋反応 を起こし得るものを選択する。
上記好ましい前記官能基として例示された群、 および、 上記好ましい 前記架橋剤として例示された群より、 それぞれ少なくとも 1つの官能基 および架橋剤を、 相互に架橋反応を起こし得る組み合わせとなるように 選択することが好ましい。
前記官能基としては、 一 C OOR (Rは、 置換または未置換の炭化水 素基である。 Rは、 好ましくは— C nH2 n—い 一 C nH2 nまたは一 C n H2 n + 1力 ら選ばれ、 nは 1〜 1 0の整数であり、 これらが置換された ものを含む。 ) を特に好適なものとして挙げることができる。 カーボン ナノチューブに力ルポキシル基を導入することは、 比較的容易であり、 しかも得られる物質 (カーボンナノチューブカルボン酸) は、 反応性に 富むため、 その後エステル化して官能基を一 C OOR (Rは、 上記同様 TJP2004/007201
。 ) とすることは比較的容易である。 この官能基は架橋反応しやすく、 塗布膜形成に適している。
また、 当該官能基に対応する前記架橋剤として、 ポリオールを挙げる ことができる。 ポリオールは、 — C OO R ( は、 上記同様。 ) との反 応により硬化し、 容易に強固な架橋体を形成する。 ポリオールの中でも 、 グリセリンやエチレングリコ一ルは、 上記官能基との反応性が良好で あることは勿論、 それ自体生分解性が高く、 環境に対する負荷が小さい 前記複数のカーボンナノチューブが相互に架橋する架橋部位は、 前記 官能基が— C OO R (Rは、 置換または未置換の炭化水素基) であり、 前記架橋剤としてエチレングリコールを用いた場合、 — C OO (C H2 ) 20 C O—となり、 前記架橋剤としてグリセリンを用いた場合、 OH 基 2つが架橋に寄与すれば— C O O C H2 C HOH C H2 O C O—ある いは一 C O O C H2 C H (O C〇—) C H 2 OHとなり、 OH基 3つが 架橋に寄与すれば一 C〇 O C H2 C H (O C O— ) C H2 O C〇—とな る。 架橋部位の化学構造は上記 4つからなる群より選ばれるいずれかの 化学構造であっても構わない。
また、 架橋部位の構造として好ましい第 2の構造は、 複数の官能基同 士の化学結合により形成されている構造である。 そして、 化学結合を生 ずる反応が、 脱水縮合、 置換反応、 付加反応および酸化反応のいずれか であることがより好ましい。
このカーボンナノチューブ構造体は、 カーボンナノチューブ同士を、 このカーボンナノチューブに結合された官能基同士を化学結合を作るこ とにより架橋部位を形成して網目状の構造体を形成しているため、 結合 させる官能基によってカーボンナノチューブ間を結合させる架橋部位の サイズが一定となる。 力一ボンナノチューブは極めて安定な化学構造で あるため、 修飾させようとした官能基以外の官能基等が結合する可能性 は低く、 この官能基同士を化学結合させた場合は、 設計した架橋部の構 造とすることができ、 力一ボンナノチューブ構造体を均質なものとする ことができる。
さらに、 官能基同士の化学結合であることから、 官能基間を架橋剤を 用いて架橋した場合に比べて、 カーボンナノチューブ間の架橋部の長さ を短くできるので、 カーボンナノチューブ構造体が密となり、 力一ボン ナノチューブ特有の効果を奏しやすくなる。
また、 本発明のカーボンナノチューブ構造体は、 複数の力一ボンナノ チューブが複数の架橋部位を介して網目構造の状態となっているので、 単なる力一ボンナノチューブの分散膜や樹脂分散膜のように、 カーボン ナノチューブ同士が偶発的に接触しているだけで、 実質的に孤立した状 態の材料とは異なり、 カーボンナノチューブの優れた特性を安定的に活 用することができる。
前記複数の官能基同士の化学結合としては、 縮合反応では、 一 C OO C O—、 ー〇一、 —NHC O—、 — C OO—および— N C H—から選ば れる一つ、 置換反応では一 NH—、 一 S—および一 O—から選ばれる少 なく とも一つ、 付加反応では一 NHC OO—、 酸化反応では、 一 S— S 一であることが好ましい。
また、 反応前にカーボンナノチューブに結合させる前記官能基として は、 — OH、 一 C OOH、 — C OO R (Rは、 置換または未置換の炭化 水素基である。 Rは、 好ましくは— C n H 2 n_ i、 — C nH2 nまたは一 PC蘭 004鐘 01
C nH2 n + 1力 ら選ばれ、 nは 1〜 1 0の整数であり、 これらが置換さ れたものを含む。 ) 、 — X、 - C O X (Xはハロゲン原子) 、 一 S H、 — C HO、 一 O S 02 CH 3、 - O S O 2 ( C 6 H 4) C H3— NH2およ び一 N C〇を挙げることができ、 これらからなる群より選ばれる少なく とも 1つの基を選択することが好ましい。
前記官能基としては、 一 C OOHを特に好適なものとして挙げること ができる。 カーボンナノチューブに力ルポキシル基を導入することは、 比較的容易である。 しかも得られる物質 (カーボンナノチューブ力ルポ ン酸) は、 反応性に富み、 N—ェチルー N' — ( 3—ジメチルアミノブ 口ピル) カルポジイミ ド等の脱水縮合剤を利用することで、 容易に縮合 反応をおこし、 塗布膜形成に適する。
なお、 前記キャリア輸送体が層状であり、 前記カーボンナノチューブ 構造体が所定形状にパ夕一ニングされたものであると、 微小な整流素子 を得ることができる。 またこのとき、 架橋部位で相互に化学結合した力 一ボンナノチューブ構造体をパターニングしてキヤリァ輸送体を形成す る場合、 微小サイズであってもカーボンナノチューブが密に形成される ため、 確実にキャリアの伝導経路が確保され、 キャリア輸送体として好 適に利用することができる。
また、 複数のカーボンナノチューブから構成されるキヤリァ輸送体を 用いるとき、 第 1の界面における障壁レベルが第 2の界面における障壁 レベルよりも高く、 一方の電極とキャリア輸送体の界面において、 前記 一方の電極表面の幅がキヤリァ輸送体の幅以上であることが好ましい。 このとき、 更に第 1の接続構成は、 第 1の界面に酸化物層を含むことが 好ましい。 ここで 「幅」 というのは、 一対の電極間の電界方向と垂直の 方向を指す。
前記キヤリァ輸送体の幅を、 障壁レベルの高い側の電極の幅以下とす ることで、 キャリアが障壁を経由せざるを得ない状況が作られ、 オンォ フ特性が向上する。 前記一方の電極の幅が前記キヤリァ輸送体の幅より も小さいと、 電極の側面側 (一対の電極が対向する側でない箇所) にお ける障壁が無い箇所あるいは低い箇所に電流が逃げることで、 整流作用 が十分に得られない場合がある。
なお、 当該態様 (前記一方の電極表面の幅がキャリア輸送体の幅以上 である態様) の場合、 前記第 1の界面に既述のような構成の酸化物層を 介在させてなることも好ましい。
また、 本発明の整流素子は、 少なく とも前記第 1の界面を外気から封 止するための封止体を備えることが好ましい。 即ち、 使用環境化におい て外気から供給される酸素によって、 力一ボンナノチューブ自体あるい は酸化物層の酸化が進行し、 特性が変化するのを防止するために樹脂等 により封止を行うことが好ましい。 少なくとも第 1の界面が封止されて いれば、 例えばここに酸化物層が介在している場合その変化を防止する ことができるが、 より好ましくは、 カーボンナノチューブのキャリア輸 送体としての輸送特性が外気により劣化するのを防止するために、 カー ボンナノチューブ構造体全体を封止することが好ましい。
(電子回路)
本発明の電子回路は、 上記説明の如き本発明の整流素子と、 該整流素 子が表面に形成されたフレキシブル基板を備えることを特徴とする。 本 発明の整流素子は、 カーボンナノチューブから構成されているため、 折 り曲げ等に対する耐性が高く、 フレキシブル基板の表面に形成すること P T/JP2004/007201 で、 耐性の高い電子回路が得られるようになる。 なお、 このとき、 架橋 部位で相互に化学結合したカーボンナノチューブ構造体をパターニング してキヤリァ輸送体とすると、 該キヤリァ輸送体内部の力一ボンナノチ ユーブ間の結合が折り曲げによって変動し輸送特性がすることが防止さ れる点で、 より好ましい。
(製造方法)
本発明の整流素子の製造方法は、 基体表面に設けられた一対の電極間 に 1本または複数のカーボンナノチューブから構成されるキャリア輸送 体が配されてなる整流素子の製造方法であって、 少なくとも、
前記一対の電極のうち一方の電極および前記キヤリア輸送体の第 1の 界面と、 前記一対の電極のうち他方の電極および前記キヤリァ輸送体の 第 2の界面と、 が異なる障壁レベルとなるように、 前記一方の電極およ び前記キヤリァ輸送体間の第 1の接続構成と、 前記他方の電極および前 記キヤリァ輸送体間の第 2の接続構成と、 を異なる構成に形成する接続 構成形成工程を含むことを特徴とする。
本発明の整流素子の製造方法 (以下、 単に 「本発明の製造方法」 とい う場合がある。 ) 」 によると、 カーボンナノチューブから構成されるキ ャリア輸送体を用い、 所望の特性をもった整流素子を、 従来の手法に比 ベて容易に製造することが可能となる。
即ち本発明の製造方法によれば、 一対の電極の他方と前記キヤリァ輸 送体の第 2の界面とが異なる障壁レベルとなるように、 一方の電極から キャリア輸送体までの第 1の接続構成と、 他方の電極からキャリア輸送 体までの第 2の接続構成を異ならせて形成する接続構成形成工程を備え ることで、 確実に整流方向が制御された整流素子を製造することが可能 となる。
本発明における接続構成形成工程が、 前記一方の電極および前記キヤ リア輸送体の第 1の界面に、 当該第 1の界面が、 前記他方の電極および 前記キヤリァ輸送体の第 2の界面とは異なる障壁レベルとなる酸化物層 を形成する酸化物層形成工程を含むことは特に好ましい。 酸化物層はキ ャリァ輸送体との間の界面で高いエネルギー障壁を形成でき、 また酸化 により構造が安定していることから、 異なる障壁レベルを容易に形成で きる。 具体的には既に酸化物を直接体積させる方法や、 後で述べるよう な酸化前の材料を酸化させることで形成する方法がある。
なお、 酸化物層形成工程が、 酸化可能な材料から構成される酸化物前 駆体層を前記第 1の界面に配置した後、 該酸化物前駆体層を酸化させる 工程であることはより好ましい。 酸化前の材料からなる酸化物前駆体層 を第 1の界面に配置した後酸化させることにより、 酸化膜の厚さがその 酸化雰囲気より均一に薄くすることができ、 別途酸化物層を形成する場 合にく らべ、 特性ばらつきが少なく生産性が向上する。
このとき、 前記キヤリァ輸送体が複数の力一ボンナノチューブが相互 に架橋した網目構造を構成してなる力一ボンナノチューブ構造体により 形成され、 前記酸化物層形成工程が、 前記酸化物前駆体層を前記キヤリ ァ輸送体と接触させて形成した後に、 該酸化物前駆体層を酸化させるェ 程であることがより好ましい。 網目構造を介して酸化物前駆体層に酸素 が供給され、 均一に酸化物層を形成することができるようになる。
また、 前記酸化物層形成工程としては、 前記一対の電極のうち一方の 電極を酸化可能な材料で形成し、 前記第 1の界面における前記一方の電 極の表面を酸化させて酸化物層を形成する工程とすることが好ましい。 さらに、 このとき前記キヤリァ輸送体が複数のカーボンナノチューブが 相互に架橋した網目構造を構成してなる力一ボンナノチューブ構造体に より形成され、 前記酸化物層形成工程が、 前記一方の電極を前記キヤリ ァ輸送体と接触させて形成した後に、 当該接触面の前記一方の電極を酸 化させる工程であることがより好ましい。 前記キヤリァ輸送体が複数の カーボンナノチューブが網目構造を形成したものから構成される場合、 酸化性の電極材料で形成した一方の電極をキヤリァ輸送体表面に形成し た後に、 この一方の電極の表面を酸化させて酸化物層を形成すると、 網 目構造を通過して供給される酸素により電極表面が効率的かつ広範囲に 酸化させることができる。 このため酸化領域や酸化時間を調整するなど 、 障壁レベルをより精密に制御できるようになる。
このとき、 前記一対の電極のうち一方の電極を構成する材料としては 、 アルミニウム、 銀、 銅、 導電化されたシリコン、 チタン、 亜鉛、 ニッ ケル、 スズ、 マグネシウム、 インジウム、 クロム、 マンガン、 鉄、 鉛、 パラジウム、 タンタル、 タングステン、 モリブデン、 バナジウム、 コバ ルト、 ハフニウムおよびランタンからなる群より選ばれる少なくとも 1 つの金属もしくはその合金であることが好ましい。
また、 このとき、 前記他方の電極を構成する材料が、 金、 チタン、 鉄 、 ニッケル、 タングステン、 導電化されたシリコン、 クロム、 ニオブ、 コバルト、 モリブデンおよびパナジゥムからなる群より選ばれる少なく とも 1つの金属もしくはその合金であることが好ましい。
なお、 第 1の界面に酸化物層を形成する塲合、 他方の電極を構成する 材料を酸化可能な一方の電極を構成する導電材料よりもイオン化傾向が 低い材料から構成すると、 酸化させる際に第 2の界面側の酸化を遅らせ 07201 るために保護膜を形成する等の作業を行わなくても、 同じ雰囲気下で第
1の界面での酸化物層をより確実に形成し、 障壁レベルを異ならせるこ とができるようになる。
また、 接続構成形成工程を、 一対の電極を異なる材料で形成する工程 とすることも好ましい一つの方法である。 材料の物性に応じて障壁レべ ルを異ならせることができるようになるため、 安定した特性を得ること ができ、 生産性が向上する。
また、 前記接続構成形成工程が、 前記第 1の界面における前記一方の 電極および前記キヤリァ輸送体間と、 前記第 2の界面における前記他方 の電極および前記キヤリァ輸送体間とで、 密着度の差が生ずるように、 前記第 1の界面または第 2の界面における前記キヤリア輸送体の表面を 改質する工程を含むこととしたり、 あるいは、 前記接続構成形成工程が 、 前記第 1の界面における前記一方の電極および前記キヤリァ輸送体間 と、 前記第 2の界面における前記他方の電極および前記キヤリァ輸送体 間とで、 密着度の差が生ずるように、 前記第 1の界面および第 2の界面 の少なくとも一方に、 付着力調整層を形成する工程を含むこととしたり 等も好ましい態様である。 このようにすることで、 密着度あるいは電極 とキヤリァ輸送体の距離に起因する整流特性を利用して、 障壁レベルを 異ならせることが可能になる。
カーボンナノチューブにより構成されたキヤリア輸送体を用いた、 本 発明の整流素子は、 先に述べたように、 キャリアの移動経路が長くなつ てもキヤリァ輸送体としての作用を生ずる。 従って半導体特性の一本の カーボンナノチューブを配置してこれに電極を配置するという生産性の 低い工程を経ずとも、 網目構造化された、 より大きいサイズのものに対 して電極を形成することで整流素子が形成できるため、 極めて高い生産 性を得ることができる。 また、 一方の電極を酸化可能な材料で形成し、 これを酸化させることで酸化物層を形成する場合に、 網目構造の網目を 介して酸素が供給されて効率的に電極の表面を酸化させることができる ようになる。
前記キヤリァ輸送体としては、 相互に化学結合していない複数のカー ボンナノチューブが絡み合うことで網目構造を形成してなるものであつ ても構わない。 ただし、 カーボンナノチューブ同士の絡み合いで網目構 造を形成する場合は、 カーボンナノチューブ同士がバンドル化しやすい ことから、 網目構造が粗になりやすく、 微細化には比較的向いていない 。 また、 変形に対して特性変化しやすい。 一方、 複数のカーボンナノチ ユ ーブが化学結合による架橋部位を介して網目構造化されたカーボンナ ノチューブ構造体としたものを使用した場合は、 架橋部位で固定されて いるため網目構造が密になりやすく、 微細化したときの特性ばらつきが 小さい。 また、 変形に対しても特性の変化が小さいという点でも有効で ある。
このため本発明においては、 前記接続構成形成工程に先立ち、 前記キ ャリア輸送体を形成するキャリア輸送体形成工程を備え、 当該工程が、 官能基を有する複数のカーボンナノチューブを前記基体表面に供給す る供給工程と、
前記官能基間を架橋させて架橋部位を形成し、 前記網目構造のカーボ ンナノチューブ構造体を形成する架橋工程と、
を含むことが好ましい。
このとき、 前記供給工程としては、 前記基体表面に前記官能基を有す るカーボンナノチューブを含む溶液を塗布する供給工程を含み、 前記力 一ボンナノチューブ構造体が膜状であることが特に好ましい。 この場合 、 まず前記基体表面に、 官能基を有する複数のカーボンナノチューブを 含む溶液 (以下、 は 「架橋溶液」 という場合がある。 ) を供給する工程 で、 基体の全面あるいはその表面の一部に、 溶液を塗布する。 そして、 続く架橋工程で、 この塗布後による溶液を硬化して、 官能基間の化学結 合を介して前記複数の力一ボンナノチューブが相互に架橋した網目構造 を構成する力一ボンナノチューブ構造体を形成する。 この 2つの工程を 経ることで、 前記基体表面において、 カーボンナノチューブ構造体の構 造自体を安定化させる。
上記複数のカーボンナノチューブとしては、 単層力一ボンナノチュー ブであっても、 多層カーボンナノチューブでであっても構わない。 主と して単層力一ボンナノチューブにより構成されている場合には、 高密度 にカーボンナノチューブ構造体を形成することができるので、 パター二 ング等の微細加工を施したときにも、 キヤリァ輸送体としての性能低下 が少ない。 一方、 主として多層力一ボンナノチューブにより構成されて いる場合には、 導電体としての許容最大電流が単層カーボンナノチュー ブの場合に比べて大きいので、 整流器としての用途を広げることができ る。 さらに単層カーボンナノチューブと比べてバンドリング (束化) し にくいことから、 特性の均一性にも優れる。 また、 製造コストが低い点 やハンドリングが容易である点で製造上も好ましい。
なお、 単層力一ボンナノチューブと多層カーボンナノチューブとが混 合した状態で形成することも可能であり、 この場合には両者の特徴を利 用することができる。 下で説明する架橋工程において、 単層力一ポンナ ノチューブを主とする架橋溶液で第 1の構造体を形成し、 続いて多層力 一ボンナノチューブを主とする架橋溶液を第 1の構造体に複合するよう に、 カーボンナノチューブ構造体を形成してもよい。 また、 単層カーボ ンナノチューブと多層カーボンナノチューブの用いる順序を逆にしても よい。 このとき、 最初に多層カーボンナノチューブを主とする架橋溶液 とし、 次に単層力一ボンナノチューブを主とする架橋溶液とすると、 多 層カーボンナノチューブを骨格とする構造体の間隙に単層カーボンナノ チューブが複合化されるので、 広い面積の構造体を効率的に製造できる 前記架橋工程における前記官能基間を架橋させて、 架橋部位を形成す るのに好ましい第 1の方法は、 前記供給工程が、 前記官能基間を架橋す る架橋剤の前記基体表面への供給を含む方法であり、 該架橋剤により複 数の前記官能基間が架橋される。
当該第 1の方法においては、 前記架橋剤として、 非自己重合性の架橋 剤を用いることが好ましい。 前記架橋剤として自己重合性の架橋剤を用 い、 架橋工程における架橋反応中あるいはそれ以前に、 架橋剤同士が相 互に重合反応を起こしてしまうと、 架橋剤同士の結合が巨大化 ·長大化 し、 必然的にこれらに結合するカーボンナノチューブ相互の間隙自体が 大きく離間してしまう。 このとき、 架橋剤同士の自己重合性による反応 の程度を制御することは事実上困難であるため、 カーボンナノチューブ 相互間の架橋構造が、 架橋剤同士の重合状態のばらつきに応じて、 ばら ついてしまう。
しかし、 非自己重合性の架橋剤を用いれば、 少なくとも架橋工程ない しそれ以前に架橋剤同士が相互に重合することがなく、 カーボンナノチ ユーブ相互の間の架橋部位には、 前記官能基の架橋反応後に残存する残 基同士の間に、 架橋剤の 1つの架橋反応による残基だけが連結基として 介在することとなる。 この結果、 得られるカーボンナノチューブ構造体 は、 全体として特性が均一化され、 この層をパターニング工程でパター ニングした場合に.も、 パターニング後のカーボンナノチューブ構造体の 特性ばらつきを大きく低減することができる。
また、 前記架橋剤同士が架橋しなければ、 複数種類の非自己重合性の 架橋剤を混合して、 カーボンナノチューブ間を複数種類の架橋剤で架橋 させても、 力一ボンナノチューブ間の間隔を制御することができるので 、 同様のばらつき低減の.効果を得ることができる。 一方、 段階的に異な る架橋剤を用いて架橋させる場合には、 最初の架橋段階で非自己重合性 の架橋剤を用いて架橋すればカーボンナノチューブの網目構造の骨格は カーボンナノチューブ間の距離が制御された状態で出来上がっているた め、 後の架橋工程で自己重合性の架橋剤もしくは最初の架橋剤 (もしく はその残基) に架橋する架橋剤を用いてもよい。
本発明の整流素子の製造方法において、 架橋剤を用いて架橋部位を形 成するときの、 前記官能基としては、 一 OH、 一 C OOH、 一 C OO R (Rは、 置換または未置換の炭化水素基である。 Rは、 好ましくは一 C n H 2 η _ χ , 一 C nH2 nまたは一 C nH2 n + 1から選ばれ、 nは 1〜 1 0 の整数であり、 これらが置換されたものを含む。 ) 、 一 C OX (Xはハ ロゲン原子) 、 一 NH 2および一 N C Oを挙げることができ、 これらか らなる群より選ばれる少なく とも 1つの基を選択することが好ましく、 その場合、 前記架橋剤として、 選択された前記官能基と架橋反応を起こ し得るものを選択する。 PC漏 004麵 01 また、 好ましい前記架橋剤としては、 ポリオール、 ポリアミン、 ポリ カルボン酸、 ポリカルボン酸エステル、 ポリカルボン酸ハライ ド、 ポリ カルポジィミ ドおよびポリィソシァネートを挙げることができ、 これら からなる群より選ばれる少なくとも 1つの架橋剤を選択することが好ま しく、 その場合、 前記官能基として、 選択された前記架橋剤と架橋反応 を起こし得るものを選択する。
上記好ましい前記官能基として例示された群、 および、 上記好ましい 前記架橋剤として例示された群より、 それぞれ少なくとも 1つの官能基 および架橋剤を、 相互に架橋反応を起こし得る組み合わせとなるように 選択することが好ましい。
前記官能基としては、 一 C O O R ( Rは、 置換または未置換の炭化水 素基である。 Rは、 好ましくは— C n H 2 n —い — C n H 2 nまたは— C n H 2 n + 1から選ばれ、 nは 1〜 1 0の整数であり、 これらが置換された ものを含む。 ) を特に好適なものとして挙げることができる。 カーボン ナノチューブに力ルポキシル基を導入することは、 比較的容易であり、 しかも得られる物質 (カーボンナノチューブカルボン酸) は、 反応性に 富むため、 その後エステル化して官能基を— C O O R ( Rは、 上記同様 。 ) とすることは比較的容易である。 この官能基は架橋反応しやすく、 塗布膜形成に適している。
また、 当該官能基に対応する前記架橋剤として、 ポリオ一ルを挙げる ことができる。 ポリオールは、 — C O O R ( Rは、 上記同様。 ) との反 応により硬化し、 容易に強固な架橋体を形成する。 ポリオールの中でも 、 グリセリン、 エチレングリコール、 ブテンジオール、 へキシンジォー ル、 ヒドロキノンおよびナフ夕レンジオールは、 上記官能基との反応性 が良好であることは勿論、 それ自体生分解性が高く、 環境に対する負荷 が小さい。 そのため、 これらからなる群より選ばれる少なくとも 1つを 前記架橋剤として用いることが特に好ましい。
なお、 本発明の整流素子の製造方法において、 前記第 1の方法の場合 には、 前記供給工程で使用する前記官能基が結合された複数のカーボン ナノチューブおよび架橋剤を含む前記溶液に、 さらに溶剤に含ませて、 これを前記基体表面に供給することができ、 前記架橋剤の種類によって は、 当該架橋剤が、 その溶剤を兼ねることも可能である。
また、 前記架橋工程における前記官能基間を架橋させて、 架橋部位を 形成するのに好ましい第 2の方法は、 複数の前記官能基同士を化学結合 させる方法である。
このようにすることで、 結合させる官能基によってカーボンナノチュ 一ブ間を結合させる架橋部位のサイズが一定となる。 カーボンナノチュ ープは極めて安定な化学構造であるため、 修飾させようとした官能基以 外の官能基等が結合する可能性は低く、 この官能基同士を化学結合させ た場合は、 設計した架橋部の構造とすることができ、 カーボンナノチュ ーブ構造体を均質なものとすることができる。
さらに、 官能基同士の化学結合であることから、 官能基間を架橋剤を 用いて架橋した場合に比べて、 カーボンナノチューブ間の架橋部の長さ を短くできるので、 カーボンナノチューブ構造体が密となり、 カーボン ナノチューブ特有の効果を奏しやすくなる。
官能基同士を化学結合させる反応としては、 縮合、 置換反応、 付加反 応、 酸化反応が特に好ましい。 また、 前記供給工程においては、 前記官 能基同士の化学結合を生じさせる添加剤をさらに前記基体表面に供給す ることができる。
前記官能基同士を化学結合させる反応が脱水縮合である場合には、 前 記添加剤として縮合剤を添加することが好ましい。 このとき好適に使用 可能な前記縮合剤としては、 硫酸、 N—ェチル—N' — ( 3—ジメチル ァミノプロピル) カルポジィミ ドおよびジシク口へキシルカルポジィミ ドからなる群より選ばれる少なくともいずれか 1つを挙げることができ る。
また、 脱水縮合で用いる前記官能基としては、 一 C OO R (Rは、 置 換または未置換の炭化水素基である。 Rは、 好ましくは— C nH 2 n-ェ 、 — C n H 2 nまたは一 C n H 2 n + から選ばれ、 nは 1〜 1 0の整数で あり、 これらが置換されたものを含む。 ) 、 一 C OOH、 - C OX (X はハロゲン原子) 、 一 OH、 一 C HO、 一 NH2からなる群より選ばれ る少なくともいずれか 1つであることが好ましい。
脱水縮合で用いる前記官能基としては、 ― C O OHを特に好適なもの として挙げることができる。 カーボンナノチューブに力ルポキシル基を 導入することは、 比較的容易であり、 しかも得られる物質 (カーボンナ ノチューブカルボン酸) は、 反応性に富む。 このため網目構造を形成す るための官能基を、 一本の力一ボンナノチューブの複数箇所に導入しや すく、 さらにこの官能基は脱水縮合しやすいことから、 力一ボンナノチ ュ一ブ構造体の形成に適している。
前記官能基同士を化学結合させる反応が置換反応である場合には、 前 記添加剤として塩基を添加することが好ましい。 このとき好適に使用可 能な塩基としては、 水酸化ナトリウム、 水酸化カリウム、 ピリジンおよ びナトリウムエトキシドからなる群より選ばれる少なくともいずれか 1 P T/JP2004/007201 つを挙げることができる。 また、 このとき前記官能基としては、 一 NH 2、 - X (Xはハロゲン原子) 、 一 S H、 -OH, 一 O S〇2 C H3およ び一 O S〇 2 ( C 6 H4) CH3からなる群より選ばれる少なく ともいず れか 1つであることが好ましい。
前記官能基同士を化学結合させる反応が付加反応である場合、 前記官 能基としては、 _〇Hおよび Zまたは一 N C Oであることが好ましい。
前記官能基同士を化学結合させる反応が酸化反応である場合、 前記官 能基としては、 一 S Hであることが好ましい。 また、 この場合、 必ずし も前記添加剤が要求されるわけではないが、 前記添加剤として酸化反応 促進剤を添加することも好ましい態様である。 好適に添加することがで きる酸化反応促進剤としては、 ヨウ素を挙げることができる。
なお、 本発明の整流素子の製造方法において、 前記第 2の方法の場合 には、 前記供給工程で使用する前記官能基が結合された複数のカーボン ナノチューブ、 および必要に応じて前記添加剤を溶剤に含ませて供給用 の溶液 (架橋溶液) とし、 これを前記基体表面に供給することができる 本発明の製造方法において、 前記キャリア輸送体が、 前記複数のカー ボンナノチューブが相互に架橋した網目構造を構成してなるカーボンナ ノチューブ構造体により形成されるものであり、
当該力一ボンナノチューブ構造体を前記キヤリァ輸送体に応じた形状 にパターニングするパターニング工程を含むことがさらに好ましい。 か かるパ夕一ニング工程を備えることで、 前記カーボンナノチューブ構造 体を前記キヤリァ輸送体に応じたパターンにパターニングすることがで きる。 この段階では既に上記架橋工程でカーボンナノチューブ構造体の 構造自体が安定化しており、 この状態でパターニングをするため、 パ夕 一二ング工程においてカーボンナノチューブが飛散してしまうといった 不具合が生じる懸念が無くキヤリァ輸送体に応じたパターンにパター二 ングすることが可能となる。 また、 力一ボンナノチューブ構造体の膜自 体が構造化しているので、 確実にカーボンナノチューブ相互間の接続が 確保され、 カーボンナノチューブの特性を利用した、 整流素子を形成す ることができるようになる。
前記パターニング工程としては、 以下 Aおよび Bの 2つの態様を挙げ ることができる。
A : 前記基体表面における前記キヤリア輸送体に応じたパターン以外の 領域のカーボンナノチューブ構造体に、 ドライエッチングを行うことで 、 当該領域のカーボンナノチューブ構造体を除去し、 前記カーボンナノ チューブ構造体を前記キャリア輸送体に応じたパターンにパターニング する工程である態様。
前記キャリア輸送体に応じたパターンにパ夕一ニングする操作として は、 前記パターニング工程がさらに、 前記基体表面における前記キヤリ ァ輸送体に応じたパターンの領域のカーボンナノチューブ構造体の上に 、 レジス ト層 (好ましくは、 樹脂層) を設けるレジス ト層形成工程と、 前記基体の前記力一ボンナノチューブ構造体およびレジスト層が積層 された面に、 ドライエッチングを行う (好ましくは、 酸素分子のラジカ ルを照射。 当該酸素分子のラジカルは、 酸素分子に紫外線を照射するこ とにより、 酸素ラジカルを発生させ、 これを利用することができる。 ) ことで、 前記領域以外の領域で表出しているカーボンナノチューブ構造 体を除去する除去工程と、 T JP2004/007201 の 2つの工程に分かれている態様が挙げられる。
この場合、 除去工程に引き続いてさらに、 レジス ト層形成工程で設け られた前記レジス ト層を剥離するレジス ト層剥離工程を含むことで、 パ ターニングされたカーボンナノチューブ構造体を表出させることができ る。
またこの態様においては、 その他、 前記キャリア輸送体に応じたパ夕 ーンにパターニングする操作としては、 前記基体表面における前記キヤ リア輸送体に応じたパターン以外の領域の力一ボンナノチューブ構造体 に、 ガス分子のイオンをイオンビームにより選択的に照射することで、 当該領域のカーボンナノチューブ構造体を除去し、 前記カーボンナノチ ュ一ブ構造体を前記キヤリァ輸送体に応じたパターンにパ夕一ニングす る態様が挙げられる。
B : 前記基体表面における前記キヤリア輸送体に応じたパターンの領域 のカーボンナノチューブ構造体の上に、 レジス ト層を設けるレジスト層 形成工程と、
前記基体の前記カーボンナノチューブ構造体およびレジス卜層が積層 された面に、 エッチング液を接液させることで、 前記領域以外の領域で 表出しているカーボンナノチューブ構造体を除去する除去工程と、 を含 む工程である態様。
以上説明したように本発明によれば、 カーボンナノチューブから構成 されたキヤリァ輸送体を用いて、 整流方向の再現性を有する整流素子お よびそれを用いた電子回路、 並びに整流素子の製造方法を提供すること ができる。 図面の簡単な説明 図 1 ( a ) は、 本発明の整流素子の構成の一形態を例示する概略断面 図である。
図 1 ( b ) は、 本発明の整流素子の構成の、 他の一形態を例示する概 略断面図である。
図 1 ( c ) は、 本発明の整流素子の構成の、 さらに他の一形態を例示 する概略断面図である。
図 2 ( a ) は、 本発明の整流素子の製造方法の一例を説明するための 基体表面の模式断面図であり、 架橋工程を経て、 基体表面にカーボンナ ノチューブ構造体層が形成された状態を示したものである。
図 2 ( b ) は、 本発明の整流素子の製造方法の一例を説明するための 基体表面の模式断面図であり、 レジス ト層形成工程中、 カーボンナノチ ュ一ブ構造体層が形成された表面全面にレジス卜層を形成した状態を示 したものである。
図 2 ( c ) は、 本発明の整流素子の製造方法の一例を説明するための 基体表面の模式断面図であり、 レジス ト層形成工程を経た後の状態を示 したものである。
図 2 ( d ) は、 本発明の整流素子の製造方法の一例を説明するための 基体表面の模式断面図であり、 除去工程を経た後の状態を示したもので ある。
図 2 ( e ) は、 本発明の整流素子の製造方法の一例を説明するための 基体表面の模式断面図であり、 パターニング工程を経た後の状態を示し たものである 図 2 ( f ) は、 本発明の整流素子の製造方法の一例を説明するための 基体表面の模式断面図であり、 最終的に得られる整流素子を示したもの である。
図 3は、 実施例 1中の (付加工程) におけるカーボンナノチューブ力 ルボン酸の合成の.反応スキームである。
図 4は、 実施例 1中の (付加工程) におけるエステル化の反応スキー ムである。
図 5は、 実施例 1中の (架橋工程) におけるエステル交換反応による 架橋の反応スキームである。
図 6は、 実施例 3の整流素子の模式断面図である。
図 7は、 評価試験において、 電流—電圧特性の測定により得られた、 実施例 1の素子の電流一電圧特性のグラフである。
図 8は、 評価試験において、 電流—電圧特性の測定により得られた、 実施例 2の素子の電流一電圧特性のグラフである。
図 9は、 評価試験において、 電流一電圧特性の測定により得られた、 実施例 3の素子の電流一電圧特性のグラフである。
図 1 0 ( a ) は、 本発明の整流素子の製造方法の有用な応用例を説明 するための基体表面および仮基板の模式断面図であり、 カーボンナノチ ユーブ構造体を形成し、 パターニングして輸送層に応じた形状とした基 板の状態である。
図 1 0 ( b ) は、 本発明の整流素子の製造方法の有用な応用例を説明 するための基体表面および仮基板の模式断面図であり、 図 1 0 ( a ) の 基板に仮基板を貼り付ける前の状態である。
図 1 0 ( c ) は、 本発明の整流素子の製造方法の有用な応用例を説明 T JP2004/007201 するための基体表面および仮基板の模式断面図であり、 図 1 0 ( a ) の 基板に仮基板を貼り付けた後の状態である。
図 1 0 ( d ) は、 本発明の整流素子の製造方法の有用な応用例を説明 するための基体表面および仮基板の模式断面図であり、 図 1 0 ( a ) の 基板に貼り付けた.仮基板を再び引き剥がした後の状態である。
図 1 0 ( e ) は、 本発明の整流素子の製造方法の有用な応用例を説明 するための基体表面および仮基板の模式断面図であり、 最終的に 2つ同 時に得られる整流素子を示したものである。 発明を実施するための最良の形態 以下、 本発明を整流素子とその製造方法とに分けて詳細に説明する。
[整流素子] ·
本発明の整流素子は、 一対の電極と、 該一対の電極間に設けられた、 1本または複数のカーボンナノチューブにより構成されるキャリア輸送 体と、 を備え、
前記一対の電極のうち一方の電極および前記キヤリァ輸送体の第 1の 界面と、 前記一対の電極のうち他方の電極および前記キヤリァ輸送体の 第 2の界面と、 が異なる障壁レベルとなるように、 前記一方の電極およ び前記キヤリァ輸送体間の第 1の接続構成と、 前記他方の電極および前 記キヤリァ輸送体間の第 2の接続構成と、 を異なる構成としたことを特 徴とするものである。
図 1に本発明の整流素子の構成のいくつかの形態を例示する。
第 1の形態は、 キャリア輸送体 1 0がカーボンナノチューブ構造体で PC霞睡 07201 構成され、 異なる材料からなる一対の電極 1 6, 1 8を接続することに より第 1の接続構成と第 2の接続構成を異ならせ、 第 1の界面と第 2の 界面で異なる障壁レベルを形成することで、 第 1の接続構成と第 2の接 続構成を異ならせ、 整流素子として動作させるものである (図 1 ( a )
) o
第 2の形態は、 キヤリァ輸送体 1 0と一方の電極 1 8 との第 1の界面 に、 酸化物層 (酸化膜) 2 0を形成して、 第 1の接続構成と第 2の接続 構成を異ならせるものである (図 1 ( b ) ) 。
第 3の形態は、 第 1の界面におけるキヤリァ輸送体 1 0の表面を改質 、 加工、 電極の密着度を低下あるいは増加させる材料の塗布等によって 、 キヤリァ輸送体 1 0の一方の電極 1 8 との第 1の界面に異質の接続層 2 1を設けることで、 第 1の接続構成と第 2の接続構成を異ならせ、 第 2の界面における第 2の電極とキヤリァ輸送体 1 0 との密着度とは異な らせ、 異なる障壁レベルを形成するものである (図 1 ( c ) ) 。
上記形態に限らず、 電極材料、 酸化物層、 キャリア輸送体の加工を任 意に組み合わせることで、 第 1の接続構成と第 2の接続構成を異ならせ ることも当然可能である。
キヤリァ輸送体 1 0はカーボンナノチューブで構成されているが、 単 体 ( 1本) のカーボンナノチューブは金属性のものと半導体性のものが あるので、 単体をキャリア輸送体として用いる場合には、 半導体性の力 一ボンナノチューブを用いる必要がある。 一方、 複数のカーボンナノチ ユーブからキヤリァ輸送体を構成する場合には、 それを構成するナノチ ユーブが金属性のものであっても、 半導体特性を生ずる場合があること が本発明者の研究により明らかになつている。 具体的には、 架橋部位を 介して網目構造を形成したカーボンナノチューブ構造体がそれにあたる
。 これについては後で詳細に述べる。 また、 力一ボンナノチューブが半 導体特性の場合には架橋構造体でなくとも当然半導体特性を示すため、 カーボンナノチューブ同士の絡み合いによる網目構造による構造体とす る場合であっても、 本発明のキヤリァ輸送体として用いることができる なお、 整流素子を形成するにあたり、 カーボンナノチューブ構造体と した場合にはパタ一ニングによりキヤリァ輸送体を所望形状に加工する ことが可能となる。 このとき基体の形状に応じて、 直接基体表面でカー ボンナノチューブ構造体をパターニングすることができる場合と、 パ夕 一二ングされた力一ボンナノチューブ構造体を担持する基体ごと第 2の 基体に貼付けて利用する場合、 あるいは、 パターニングされたカーボン ナノチューブ構造体のみを転写する場合等がある。
基体の材質としては、 特に限定されるものではないが、 整流素子の輸 送層 (キャリア輸送体) を担持するには、 パターニングプロセスを容易 に行うために、 シリコン、 石英基板、 マイ力、 石英ガラス等を利用する ことが好ましい。
ただし、 基体の形状や性質に応じて、 直接基体表面でカーボンナノチ ュ一プ構造体をパ夕一ニングすることができない場合があるので、 そう いった場合は、 パ夕一ニングされたカーボンナノチューブ構造体を担持 する基体ごと第 2の基体に貼付けて利用する、 あるいは、 パターニング された力一ボンナノチューブ構造体を転写する等すればよい。 そのよう にすれば、 最終的な整流素子が担持される基板としての制約は少なくな る。 特に、 本発明の整流素子は、 可撓性ないし柔軟性を有する基板を基体 とした場合にも、 後述する通り容易に製造することができ、 しかも表面 に形成された力一ボンナノチューブ構造体が架橋構造を有しているため 、 当該基板を曲げ変形しても、 表面のカーボンナノチューブ構造体が破 断する危険性が少なく、 変形によるデバイスの性能劣化が低減される。 特に整流素子として用いる場合には、 折り曲げによる断線の発生が低減 される。
可撓性ないし柔軟性を有する基板の例としては、 ポリエチレン、 ポリ プロピレン、 ポリ塩化ビニル、 ポリアミ ド、 ポリイミ ド等の各種樹脂を 挙げることができる。
<力一ボンナノチューブ構造体 >
本発明において 「カーボンナノチューブ構造体」 とは、 複数の力一ポ ンナノチューブが相互に架橋した網目構造を構成する構造体である。 相 互に架橋した網目構造を構成するようにカーボンナノチューブの構造体 を形成することができれば、 当該カーボンナノチューブ構造体は如何な る方法で形成されたものであっても構わないが、 後述する本発明の整流 素子の製造方法により製造されたものであることが、 容易に製造可能で あるとともに、 低コストでしかも高性能なキャリア輸送体を得ることが でき、 しかも特性の均一化や制御が容易である。
後述する本発明の整流素子の好ましい製造方法により製造された本発 明の整流素子におけるキヤリァ輸送体として用いられる、 カーボンナノ チューブ同士が架橋して網目構造を形成した前記カーボンナノチューブ 構造体の第 1の構造は、 官能基を有するカーボンナノチューブおよび前 記官能基と架橋反応を起こす架橋剤を含む溶液 (架橋溶液) を硬化させ ることにより、 前記カーボンナノチューブが有する前記官能基と前記架 橋剤とを架橋反応させて架橋部位が形成されてなるものである。 また、 カーボンナノチューブ構造体の第 2の構造は、 官能基を有するカーボン ナノチューブの官能基同士が化学結合して架橋部位が形成されてなるも のである。
以下、 当該製造方法による例を挙げて、 本発明の整流素子における前 記カーボンナノチューブ構造体について説明する。
(カーボンナノチューブ)
本発明において、 主要な構成要素であるカーボンナノチューブは、 単 層カーボンナノチューブでも、 二層以上の多層カーボンナノチューブで も構わない。 いずれのカーボンナノチューブを用いるか、 あるいは双方 を混合するかは、 整流素子の用途により、 あるいはコストを考慮して、 適宜、 選択すればよい。 また、 単体をキャリア輸送体として用いる場合 には、 半導体特性であることが必要となる。
また、 単層カーボンナノチューブの変種であるカーボンナノホーン ( 一方の端部から他方の端部まで連続的に拡径しているホーン型のもの) 、 力一ボンナノコイル (全体としてスパイラル状をしているコイル型の もの) 、 カーボンナノビーズ (中心にチューブを有し、 これがァモルフ ァスカーボン等からなる球状のビーズを貫通した形状のもの) 、 カップ スタック型ナノチューブ、 カーボンナノホーンやアモルファスカーボン で外周を覆われたカーボンナノチューブ等、 厳密にチューブ形状をして いないものも、 本発明においてカーボンナノチューブとして用いること ができる。
さらに、 カーボンナノチューブ中に金属等が内包されている金属内包 ナノチューブ、 フラーレンまたは金属内包フラ一レンがカーボンナノチ ユーブ中に内包されるピ一ポッ ドナノチューブ等、 何らかの物質を力一 ボンナノチューブ中に内包したカーボンナノチューブも、 本発明におい て力一ボンナノチューブとして用いることができる。
以上のように、 本発明においては、 一般的なカーボンナノチューブの ほか、 その変種や、 種々の修飾が為されたカーボンナノチューブ等、 い ずれの形態のカーボンナノチューブでも、 その反応性から見て問題なく 使用することができる。 したがって、 本発明における 「カーボンナノチ ュ一ブ」 には、 これらのものが全て、 その概念に含まれる。
これら力一ボンナノチューブの合成は、 従来から公知のアーク放電法
、 レーザ一アブレーシヨン法、 C V D法のいずれの方法によっても行う ことができ、 本発明においては制限されない。 これらのうち、 高純度な カーボンナノチューブが合成できるとの観点からは、 磁場中でのアーク 放電法が好ましい。
用いられるカーボンナノチューブの直径としては、 0 . 3 n m以上 1 0 O n m以下であることが好ましい。 カーボンナノチューブの直径が、 当該範囲を超えると、 合成が困難であり、 コス トの点で好ましくない。 カーボンナノチューブの直径のより好ましい上限としては、 3 O n m以 下である。
一方、 一般的にカーボンナノチューブの直径の下限としては、 その構 造から見て、 0 . 3 n m程度であるが、 あまりに細すぎると合成時の収 率が低くなる点で好ましくない場合もあるため、 1 n m以上とすること がより好ましく、 1 0 n m以上とすることがさらに好ましい。
用いられるカーボンナノチューブの長さとしては、 0 . 以上 1 PC漏 004/007201
0 0 m以下であることが好ましい。 カーボンナノチューブの長さが、 当該範囲を超えると、 合成が困難、 もしくは、 合成に特殊な方法が必要 となりコストの点で好ましくなく、 当該範囲未満であると、 一本の力一 ボンナノチューブにおける架橋結合点数が少なくなる点で好ましくない 。 カーボンナノチューブの長さの上限としては、 1 0 m以下であるこ とがより好ましく、 下限としては、 1 m以上であることがより好まし い。
使用しょうとする力一ボンナノチューブの純度が高く無い場合には、 架橋溶液の調製前に、 予め精製して、 純度を高めておく ことが望ましい 。 本発明においてこの純度は、 高ければ高いほど好ましいが、 具体的に は 9 0 %以上であることが好ましく、 9 5 %以上であることがより好ま しい。 純度が低いと、 不純物であるアモルファスカーボンやタール等の 炭素生成物に架橋剤が架橋して、 力一ボンナノチューブ間の架橋距離が 変動してしまい、 所望の特性を得られない場合があるためである。 カー ボンナノチューブの精製方法に特に制限はなく、 従来公知の方法をいず れも採用することができる。
かかるカーボンナノチューブには、 所定の官能基が付加された状態で 、 カーボンナノチューブ構造体の形成に供される。 このとき付加される 官能基としては、 カーボンナノチューブ構造体を形成するのに、 既述の 第 1の方法によるか、 第 2の方法によるかにより、 好ましいものが異な つてくる (前者の場合を 「官能基 1」 、 後者の場合を 「官能基 2」 とす る) 。
なお、 力一ボンナノチューブへの官能基の導入方法については、 後述 の (架橋溶液の調製方法) の項において説明する。 以下、 第 1の方法と第 2の方法に分けて、 カーボンナノチューブ構造 体の形成に供し得る構成成分について説明する。
(第 1の方法の場合)
本発明において、 カーボンナノチューブが有する官能基としては、 力 —ボンナノチューブに化学的に付加させることができ、 かつ、 何ら'かの 架橋剤により架橋反応を起こし得るものであれば、 特に制限されず、 如 何なる官能基であっても選択することができる。 具体的な官能基として は、 一 C〇OR、 - C OX, — Mg X、 - X (以上、 Xはハロゲン) 、 — O R、 - N R 1 R 2 , - N C O, 一 N C S、 — C O OH、 — OH、 一 NH2、 — S H、 一 S 03H、 一 R ' C HOH、 一 C HO、 _ C N、 一 C O S H, 一 S R、 - S i R ' 3 (以上、 R、 R 1 , R 2および R, は、 それぞれ独立に、 置換または未置換の炭化水素基である。 これらは、 好 ましくはそれぞれ独立に、 一 C nHsn— — C nH2 nまたは一 C nH2 n + 1から選ばれ、 nは 1〜 1 0の整数であり、 これらが置換されたもの を含む。 中でも、 より好ましくはメチル基またはェチル基である。 ) 等 の基が挙げられるが、 これらに限定されるものではない。
これらの中でも、 一 OH、 一 C OOH、 一 C OO R (Rは、 置換また は未置換の炭化水素基である。 Rは、 好ましくは一 C nH 2 n—い - C n H2 nまたは一 C nH2 n + 1から選ばれ、 nは 1〜: L 0の整数であり、 こ れらが置換されたものを含む。 ) 、 一 C OX (Xはハロゲン原子) 、 一 NH2および一 N C Oからなる群より選ばれる少なく とも 1つの基を選 択することが好ましく、 その場合、 前記架橋剤として、 選択された前記 官能基と架橋反応を起こし得るものを選択する。
特に、 一 C OOR (Rは、 上記同様) は、 力ルポキシル基がカーボン ナノチューブへの導入が比較的容易で、 それにより得られる物質 (力一 ボンナノチューブカルボン酸) をエステル化させることで容易に官能基 として導入することができ、 しかも、 架橋剤による反応性も良好である ことから、 特に好ましい。
官能基一 C O O Rにおける Rは、 置換または未置換の炭化水素基であ り特に制限は無いが、 反応性、 溶解度、 粘度、 塗料の溶剤としての使い やすさの観点から、 炭素数が 1〜 1 0の範囲のアルキル基であることが 好ましく、 1〜 5の範囲のアルキル基であることがより好ましく、 特に メチル基またはェチル基が好ましい。
官能基の導入量としては、 カーボンナノチューブの長さ '太さ、 単層 か多層か、 官能基の種類、 整流素子の用途等により異なり、 一概には言 えないが、 1本の力一ボンナノチューブに 2以上の官能基が付加する程 度の量とすることが、 得られる架橋体の強度、 すなわち塗布膜の強度の 観点から好ましい。
なお、 カーボンナノチューブへの官能基の導入方法については、 後述 の [整流素子の製造方法] の項において説明する。
(架橋剤)
前記第 1の方法では、 架橋剤が必須成分となる。 当該架橋剤としては 、 カーボンナノチューブの有する前記官能基と架橋反応を起こすもので あればいずれも用いることができる。 換言すれば、 前記官能基の種類に よって、 選択し得る架橋剤の種類は、 ある程度限定されてくる。 また、 これらの組み合わせにより、 その架橋反応による硬化条件 (加熱、 紫外 線照射、 可視光照射、 自然硬化等) も、 自ずと定まってくる。
具体的に好ましい前記架橋剤としては、 ポリオール、 ポリアミン、 ポ リカルボン酸、 ポリカルボン酸エステル、 ポリカルボン酸ハライ ド、 ポ リカルポジイミ ドおよびポリイソシァネートを挙げることができ、 これ らからなる群より選ばれる少なくとも 1つの架橋剤を選択することが好 ましく、 その場合、 前記官能基として、 選択された前記架橋剤と架橋反 応を起こし得るものを選択する。
特に、 既述の好ましい前記官能基として例示された群、 および、 上記 好ましい前記架橋剤として例示された群より、 それぞれ少なくとも 1つ の官能基および架橋剤を、 相互に架橋反応を起こし得る組み合わせとな るように選択することが好ましい。 下記表 1に、 カーボンナノチューブ の有する官能基と、 それに対応する架橋反応可能な架橋剤との組み合わ せを、 その硬化条件とともに列挙する。
(表 1 )
Figure imgf000047_0001
※ は置換または未置換の炭化水素基
※ はハロゲン これらの組み合わせの中でも、 官能基側の反応性が良好な— C O〇 R (Rは、 置換または未置換の炭化水素基である。 Rは、 好ましくは— C nH2 n—い 一 C nH2 nまたは一 C nH2 n + 1から選ばれ、 nは 1〜 1 0 の整数であり、 これらが置換されたものを含む。 ) と、 容易に強固な架 橋体を形成するポリオール、 ポリアミン、 アンモニゥム錯体、 コンゴ一 レッ ドおよび c i s —ブラチンとの組み合わせが好適なものとして挙げ られる。
なお、 本発明で言う 「ポリオール」 とは、 OH基を 2以上有する有機 化合物の総称であり、 これらの中でも炭素数 2〜 1 0 (より好ましくは 2 ~ 5 ) 、 OH基数 2〜 2 2 (より好ましくは 2〜 5 ) のものが、 架橋 性や過剰分投入した時の溶剤適性、 生分解性による反応後の廃液の処理 性 (環境適性) 、 ポリオ一ル合成の収率等の観点から好ましい。 特に上 記炭素数は、 得られる塗布膜における力一ボンナノチューブ相互間を狭 めて実質的な接触状態にする (近づける) ことができる点で、 上記範囲 内で少ない方が好ましい。 具体的には、 特にグリセリ ンやエチレンダリ コールが好ましく、 これらの内の一方もしくは双方を架橋剤として用い ることが好ましい。
別の視点から見ると、 前記架橋剤としては、 非自己重合性の架橋剤で あることが好ましい。 上記ポリオールの例として挙げたグリセリンゃェ チレングリコールは勿論、 ブテンジオール、 .へキシンジオール、 ヒドロ キノンおよびナフ夕レンジオールも、 非自己重合性の架橋剤であり、 よ り一般的に示せば、 自身の中に相互に重合反応を生じ得るような官能基 の組を有していないことが、 非自己重合性の架橋剤の条件となる。 逆に 言えば、 自己重合性の架橋剤とは、 自身の中に相互に重合反応を生じ得 るような官能基の組を有しているもの (例えば、 アルコキシド) が挙げ られる。
カーボンナノチューブ構造体を形成するには、 前記官能基が結合され た複数のカーボンナノチューブと、 前記架橋剤とを基体表面に供給し ( 本発明の整流素子の製造方法における供給工程) 、 前記官能基間を化学 結合させることにより架橋部位を形成 (本発明の整流素子の製造方法に おける架橋工程) すればよい。 前記官能基が結合された複数のカーボン ナノチューブと、 前記架橋剤とを前記基体表面に供給する際に、 これら と溶剤とを含む溶液 (架橋溶液) を前記基体表面に供給すること、 特に 塗布液として塗布して架橋体膜を形成することは、 簡便で低コス トであ り、 作業を短時間で行うことができる点で好ましい。
前記架橋溶液におけるカーボンナノチューブの含有量としては、 力一 ボンナノチューブの長さ · 太さ、 単層か多層か、 有する官能基の種類 - 量、 架橋剤の種類 ·量、 溶剤やその他添加剤の有無 · 種類 · 量、 等によ り一概には言えず、 硬化後良好な塗布膜が形成される程度に高濃度であ ることが望まれるが、 塗布適性が低下するので、 あまり高くし過ぎない ことが望ましい。
また、 具体的なカーボンナノチューブの割合としては、 既述の如く一 概には言えないが、 官能基の質量は含めないで、 架橋溶液全量に対し 0 . 0 1〜; L 0 1程度の範囲から選択され、 0 . l ~ 5 g / l程度の 範囲が好ましく、 0 . 5〜 1 . 5 g Z 1程度の範囲がより好ましい。 前記架橋溶液において、 溶剤は、 前記架橋剤のみでは塗布適性が十分 で無い場合に添加する。 使用可能な溶剤としては、 特に制限は無く、 用 いる架橋剤の種類に応じて選択すればよい。 具体的には、 メタノール、 PC蘭 004/007201 エタノール、 イソプロパノール、 n—プロパノール、 ブ夕ノール、 メチ ルェチルケトン、 トルエン、 ベンゼン、 アセトン、 クロ口ホルム、 塩化 メチレン、 ァセトニトリル、 ジェチルエーテル、 テトラヒ ドロフラン ( TH F) 等の有機溶剤や水、 酸水溶液、 アルカリ水溶液等が挙げられる 。 かかる溶剤の添加量としては、 塗布適性を考慮して適宜設定すればよ いが、 特に制限は無い。
ただし、 上述の溶剤のうち、 グリセリンは、 溶剤としての力一ポンナ ノチューブを分散させたときの粘度が高くなく膜化する場合に塗布性に 優れる点、 カルボン酸に対する架橋剤としての特性、 架橋反応後に残存 物が悪影響を及ぼさないこと、 等の観点から、 グリセリンのみを架橋剤 兼溶剤として用いることが好ましい。
(第 2の方法の場合)
架橋剤によらず、 複数の前記官能基同士を直接化学結合させて架橋部 位を形成する前記第 2の方法では、 カーボンナノチューブが有する官能 基としては、 カーボンナノチューブに化学的に付加させることができ、 かつ、 何らかの添加剤により官能基同士を反応させるものであれば、 特 に制限されず、 如何なる官能基であっても選択することができる。
具体的な官能基としては、 — C OO R、 - C OX, — M g X、 - X ( 以上、 Xはハロゲン) 、 一 O R、 - N R 1 R 2 , 一 N C O、 一 N C S、 一 C O OH、 一〇H、 一 NH 2、 一 S H、 一 S 03H、 一 R ' C HOH 、 一 C H〇、 一 C N、 - C O S H, — S R、 一 S i R, 3 (以上、 R、 R R 2および R ' は、 それぞれ独立に、 置換または未置換の炭化水 素基である。 これらは、 好ましくはそれぞれ独立に、 一 C nHs n— 一 C nH2 nまたは一 C nH2 n + 1から選ばれ、 nは 1〜 1 0の整数であ り、 これらが置換されたものを含む。 中でも、 より好ましくはメチル基 またはェチル基である。 ) 等の基が挙げられるが、 これらに限定される ものではない。
官能基同士を化学結合させる反応としては、 脱水縮合、 置換反応、 付 加反応、 酸化反応が特に好ましい。 これら各反応別に上記官能基から好 ましいものを挙げると以下のようになる。 縮合反応では— C OO R (R は、 置換または未置換の炭化水素基である。 Rは、 好ましくは— C nH 2 n—い — C n H 2 nまたは— C n H 2 n + から選ばれ、 nは 1〜: L 0の整 数であり、 これらが置換されたものを含む。 ) 、 — C OOH、 - C OX (Xはハロゲン原子) 、 — OH、 一 C HO、 — NH2から選ばれる少な くとも一つ、 置換反応では一 NH2、 —X (Xはハロゲン原子) 、 一 S H、 一 OH、 一 O S 02 C H3および一〇 S 02 (C 6H4) CH 3から選 ばれる少なくとも一つ、 付加反応では一〇H、 および一 N C Oから選ば れる少なくとも一つ、 酸化反応では一 S Hが好ましい。
また、 これらの官能基を一部に含む分子をカーボンナノチューブに結 合させ、 先に列挙した好ましい官能基部分で化学結合させることも可能 である。 この場合においても、 カーボンナノチューブに結合させる分子 量の大きい官能基は意図したように結合されているので、 架橋部位の長 さは制御可能となる。
官能基同士を化学結合させるに際しては、 前記官能基同士の化学結合 を生じさせる添加剤を用いることができる。 かかる添加剤としては、 力 一ボンナノチューブの有する前記官能基同士を反応させるものであれば いずれも用いることができる。 換言すれば、 前記官能基の種類および反 応の種類によって、 選択し得る添加剤の種類は、 ある程度限定されてく る。 また、 これらの組み合わせにより、 その反応による硬化条件 (加熱
、 紫外線照射、 可視光照射、 自然硬化等) も、 自ずと定まってくる。 前記官能基同士を化学結合させる反応が脱水縮合である場合には、 前 記添加剤として縮合剤を添加することが好ましい。 具体的に好ましい前 記添加剤としては、 縮合剤としては酸触媒、 脱水縮合剤、 たとえば硫酸
、 N—ェチルー N, 一 ( 3—ジメチルァミノプロピル) カルポジイミ ド 、 ジシクロへキシルカルポジイミ ドを挙げることができ、 これらからな る群より選ばれる少なくとも 1つの縮合剤を選択することが好ましく、 その場合、 前記官能基として、 選択された縮合剤により官能基同士が反 応を起こし得るものを選択する。
また、 脱水縮合で用いる前記官能基としては、 一 C OOR (Rは、 置 換または未置換の炭化水素基) 、 — C OOH、 - C OX (Xはハロゲン 原子) 、 一 OH、 — C HO、 一 NH2からなる群より選ばれる少なく と もいずれか 1つであることが好ましい。
脱水縮合で用いる前記官能基としては、 一 C OOHを特に好適なもの として挙げることができる。 カーボンナノチューブに力ルポキシル基を 導入することは、 比較的容易であり、 しかも得られる物質 (カーボンナ ノチューブカルボン酸) は、 反応性に富む。 このため網目構造を形成す るための官能基を、 一本のカーボンナノチューブの複数箇所に導入しや すく、 さらにこの官能基は脱水縮合しやすいことから、 カーボンナノチ ユーブ構造体の形成に適している。 脱水縮合で用いる前記官能基が一 C OOHである場合、 特に好適な縮合剤としては、 既述の硫酸、 N—ェチ ルー N' — ( 3—ジメチルァミノプロピル) カルポジイミ ドおよびジシ クロへキシルカルポジイミ ドである。 04007201 前記官能基同士を化学結合させる反応が置換反応である場合には、 前 記添加剤として塩基を添加することが好ましい。 添加可能な塩基として は、 特に制限は無く、 ヒ ドロキシル基の酸性度に応じて任意の塩基を選 択すればよい。
具体的に好ましい前記塩基としては、 水酸化ナトリウム、 水酸化カリ ゥム、 ピリジン、 ナトリウムエトキシド等を挙げることができ、 これら からなる群より選ばれる少なくとも 1つの塩基を選択することが好まし くその場合、 前記官能基として、 選択された塩基により官能基同士が置 換反応を起こし得るものを選択する。 また、 このとき前記官能基として は、 — NH2、 - X (Xはハロゲン原子) 、 一 S H、 - OH, - O S O 2 CH3および一 O S〇 2 (C 6H4) CH3からなる群より選ばれる少な くともいずれか 1つであることが好ましい。
前記官能基同士を化学結合させる反応が付加反応である場合、 必ずし も添加剤は必要としない。 このとき前記官能基としては、 一 OHおよび ノまたは一 N C Oであることが好ましい。
前記官能基同士を化学結合させる反応が酸化反応である場合も、 必ず しも添加剤は必要としないが、 前記添加剤として酸化反応促進剤を添加 することが好ましい。 添加するのに好適な酸化反応促進剤としては、 ョ ゥ素を挙げることができる。 また、 このとき前記官能基としては、 一 S Hであることが好ましい。
既述の好ましい前記官能基として例示された群より、 それぞれ少なく とも 2つの官能基が相互に反応を起こし得る組み合わせとなるように選 択して、 カーボンナノチューブに付加させることが好ましい。 下記表 2 に、 相互に架橋反応をするカーボンナノチューブの有する官能基 (A) および (B ) と、 それに対応した反応名を列挙する。
(表 2 )
Figure imgf000054_0001
※ は置換または未置換の炭化水素基
Xはハロゲン 力一ボンナノチューブ構造体を形成するには、 前記官能基が結合され た複数の力一ボンナノチューブ、 および必要に応じて前記添加剤を基体 表面に供給し (本発明の整流素子の製造方法における供給工程) 、 前記 官能基間を化学結合させることにより架橋部位を形成 (本発明の整流素 子の製造方法における架橋工程) すればよい。 前記官能基が結合された 複数のカーボンナノチューブを前記基体表面に供給する際に、 これらと 溶剤とを含む溶液 (架橋溶液) を前記基体表面に供給すること、 特に塗 布液として塗布して架橋体膜を形成することは、 本発明の整流素子を簡 便かつ低コス トに、 短時間の作業で形成できる点で好ましい。
前記架橋溶液における前記カーボンナノチューブの含有量の考え方と しては、 第 1の方法の場合と基本的に同様である。
前記架橋溶液における架橋剤や官能基結合用の添加剤の含有量として は、 架橋剤の種類 (自己重合性か非自己重合性かの別を含む) や官能基 結合用の添加剤の種類は勿論、 カーボンナノチューブの長さ · 太さ、 単 層か多層か、 有する官能基の種類 · 量、 溶剤やその他添加剤の有無 · 種 類 -量、 等により一概には言えない。 特に、 グリセリンやエチレンダリ コールなどは、 それ自身粘度があまり高くなく、 溶剤の特性を兼ねさせ ることが可能であるため、 過剰に添加することも可能である。
前記架橋溶液において、 溶剤は、 前記架橋剤もしくは官能基結合用の 添加剤のみでは塗布適性が十分で無い場合に添加する。 使用可能な溶剤 としては、 特に制限は無く、 用いる添加剤の種類に応じて選択すればよ い。 具体的な溶剤の種類おより添加量としては、 第 1の方法で述べた溶 剤の場合と同様である。
(その他の添加剤)
前記架橋溶液 (第 1の方法と第 2の方法の双方を含む) においては、 溶剤、 粘度調整剤、 分散剤、 架橋促進剤等の各種添加剤が含まれていて もよい。 ·
粘度調整剤は、 前記架橋剤や官能基結合用の添加剤のみでは塗布適性 が十分で無い場合に添加する。 使用可能な粘度調整剤としては、 特に制 限は無く、 用いる架橋剤の種類に応じて選択すればよい。 具体的には、 メタノール、 エタノール、 イソプロパノール、 n —プロパノール、 ブ夕 ノール、 メチルェチルケトン、 トルエン、 ベンゼン、 アセトン、 クロ口 ホルム、 塩化メチレン、 ァセトニトリル、 ジェチルエーテル、 T H F等 が挙げられる。 これら粘度調整剤の中には、 その添加量によっては溶剤としての機能 を有するものがあるが、 両者を明確に区別することに意義は無い。 かか る粘度調整剤の添加量としては、 塗布適性を考慮して適宜設定すればよ いが、 特に制限は無い。
分散剤は、 前記架橋溶液中でのカーボンナノチューブないし架橋剤あ るいは官能基結合用の添加剤の分散安定性を保持するために添加するも のであり、 従来公知の各種界面活性剤、 水溶性有機溶剤、 水、 酸水溶液 やアルカリ水溶液等が使用できる。 ただし、 前記架橋溶液の成分は、 そ れ自体分散安定性が高いため、 分散剤は必ずしも必要ではない。 また、 形成後の塗布膜の用途によっては、 塗布膜に分散剤等の不純物が含まれ ないことが望まれる場合もあり、 その塲合には勿論、 分散剤は、 添加し ないか、 極力少ない量のみしか添加しない。
(架橋溶液の調製方法)
次に、 架橋溶液の調製方法について説明する。
前記架橋溶液は、 官能基を有するカーボンナノチューブに、 前記官能 基と架橋反応を起こす架橋剤、 あるいは、 官能基同士を化学結合させる 添加剤を必要に応じて混合することで調製される (混合工程) 。 当該混 合工程に先立ち、 力一ボンナノチューブに官能基を導入する付加工程を 含んでもよい。
官能基を有するカーボンナノチューブを出発原料とすれば、 混合工程 の操作のみを行えばよいし、 通常のカーボンナノチューブそのものを出 発原料とすれば、 付加工程から操作を行えばよい。
(付加工程)
前記付加工程は、 力一ボンナノチューブに所望の官能基を導入するェ 程である。 官能基の種類によって導入方法が異なり、 一概には言えない
。 直接的に所望の官能基を付加させてもよいが、 一旦、 付加が容易な官 能基を導入した上で、 その官能基ないしその一部を置換したり、 その官 能基に他の官能基を付加させたり等の操作を行い、 目的の官能基として も構わない。
また、 カーボンナノチューブにメカノケミカルな力を与えて、 カーボ ンナノチューブ表面のグラフエンシー卜をごく一部破壊ないし変性させ て、 そこに各種官能基を導入する方法もある。
また、 製造時点から表面に欠陥を多く有する、 カップスタック型の力 一ボンナノチューブや気相成長法により生成されるカーボンナノチュー ブを用いると、 官能基を比較的容易に導入できる。 しかし、 ダラフェン シート構造が完全である方が、 カーボンナノチューブの特性を有効に得 られるとともに、 特性もコントロールしやすいため、 マルチウォール力 一ボンナノチューブを用いて、 最外層にキヤリァ輸送体として適度な欠 陥を形成して官能基を結合し架橋させる一方で、 構造欠陥の少ない内層 をカーボンナノチューブの特性を発揮させる層として利用することが特 に好ましい。
付加工程の操作としては、 特に制限は無く、 公知のあらゆる方法を用 いて構わない。 その他、 特表 2 0 0 2 — 5 0 3 2 0 4号公報に各種方法 が記載されており、 目的に応じて、 本発明においても利用することがで ぎる。
前記官能基の中でも、 特に好適な— C O O R ( Rは、 置換または未置 換の炭化水素基) を導入する方法について説明する。 カーボンナノチュ —ブに一 C O O R ( Rは、 置換または未置換の炭化水素基である。 Rは 、 好ましくは一 C n H 2 n— i、 一 C n H 2 nまたは一 C n H 2 n + から選ば れ、 nは 1〜 1 0の整数であり、 これらが置換されたものを含む。 ) を 導入するには、 一旦、 力一ボンナノチューブに力ルポキシル基を付加し
( i ) 、 さらにこれをエステル化 (i i ) すればよい。
( i ) 力ルポキシル基の付加
力一ポクナノチューブに力ルポキシル基を導入するには、 酸化作用を 有する酸とともに還流すればよい。 この操作は比較的容易であり、 しか も反応性に富むカルボキシル基を付加することができるため、 好ましい 。 当該操作について、 簡単に説明する。
酸化作用を有する酸としては、 濃硝酸、 過酸化水素水、 硫酸と硝酸の 混合液、 王水等が挙げられる。 特に濃硝酸を用いる場合には、 その濃度 としては、 5質量%以上が好ましく、 6 0質量%以上がより好ましい。 還流は、 常法にて行えばよいが、 その温度としては、 使用する酸の沸 点付近が好ましい。 例えば、 濃硝酸では 1 2 0〜 1 3 0 °Cの範囲が好ま しい。 また、 還流の時間としては、 3 0分〜 2 0時間の範囲が好ましく 、 1時間〜 8時間の範囲がより好ましい。
還流の後の反応液には、 力ルポキシル基が付加したカーボンナノチュ —ブ (力一ボンナノチューブカルボン酸) が生成しており、 室温まで冷 却し、 必要に応じて分離操作ないし洗浄を行うことで、 目的の力一ボン ナノチューブカルボン酸 (官能基として _ C O O Hを有する力一ポンナ ノチューブ) が得られる。
( i i ) エステル化
得られたカーボンナノチューブカルボン酸に、 アルコールを添加し脱 水してエステル化することで、 目的の官能基一 C〇〇 R ( Rは、 置換ま たは未置換の炭化水素基である。 好ましいものについては既述の通り。
) を導入することができる。
前記エステル化に用いるアルコールは、 上記官能基の式中における R に応じて決まる。 すなわち、 Rが C H 3であればメタノールであるし、 Rが C 2 H 5であればエタノールである。
一般にエステル化には触媒が用いられるが、 本発明においても従来公 知の触媒、 例えば、 硫酸、 塩酸、 トルエンスルホン酸等を用いることが できる。 本発明では、 副反応を起こさないという観点から触媒として硫 酸を用いることが好ましい。
前記エステル化は、 カーボンナノチューブカルボン酸に、 アルコール と触媒とを添加し、 適当な温度で適当な時間還流すればよい。 このとき の温度条件および時間条件は、 触媒の種類、 アルコールの種類等により 異なり一概には言えないが、 還流温度としては、 使用するアルコールの 沸点付近が好ましい。 例えば、 メタノールでは 6 0 〜 7 0 °Cの範囲が好 ましい。 また、 還流の時間としては、 1 〜 2 0時間の範囲が好ましく、 4 〜 6時間の範囲がより好ましい。
エステル化の後の反応液から反応物を分離し、 必要に応じて洗浄する ことで、 官能基一 C O O R ( Rは、 置換または未置換の炭化水素基であ る。 好ましいものについては既述の通り。 ) が付加した力一ボンナノチ ユーブを得ることができる。
(混合工程)
前記混合工程は、 官能基を有するカーボンナノチューブに、 前記官能 基と架橋反応を起こす架橋剤あるいは官能基結合用の添加剤を必要に応 じて混合し、 架橋溶液を調製する工程である。 混合工程においては、 官 能基を有するカーボンナノチューブおよび架橋剤のほか、 (その他の添 加剤) の項で説明したその他の成分も混合する。 そして、 好ましくは、 塗布適性を考慮して溶剤や粘度調整剤の添加量を調整することで、 基体 への供給 (塗布) 直前の架橋溶液を調製する。
混合に際しては、 単にスパチュラで攪拌したり、 攪拌羽式の攪拌機、 マグネチックス夕一ラ一あるいは攪拌ポンプで攪拌するのみでも構わな いが、 より均一に力一ボンナノチューブを分散させて、 保存安定性を高 めたり、 カーボンナノチューブの架橋による網目構造を全体にくまなく 張り巡らせるには、 超音波分散機やホモジナイザーなどで強力に分散さ せても構わない。 ただし、 ホモジナイザ一などのように、 攪拌のせん断 力の強い攪拌装置を用いる場合、 含まれるカーボンナノチューブを切断 してしまったり、 傷付けてしまったりする虞があるので、 極短い時間行 えばよい。
以上説明した架橋溶液を、 前記基体の表面に対して供給 (塗布) し、 硬化することにより、 カーボンナノチューブ構造体が形成される。 供給 方法や硬化方法は、 後述の [整流素子の製造方法] の項で詳述する。 本発明におけるカーボンナノチューブ構造体は、 カーボンナノチュー ブがネッ トワーク化された状態となっている。 詳しくは、 該カーボンナ ノチューブ構造体は、 マトリ ックス状に硬化したも,のとなり、 力一ボン ナノチューブ同士が架橋部分を介して接続しており、 電子やホールの高 い伝送特性といった力一ボンナノチューブ自身が有する特徴を存分に発 揮することができる。 すなわち、 当該カーボンナノチューブ構造体は、 カーボンナノチューブ相互が緊密に接続しており、 しかも他の結着剤等 を含まないことから、 実質的にカーボンナノチューブのみからなるため 、 カーボンナノチューブが有する本来の特性が最大限に生かされる。 本発明における力一ボンナノチューブ構造体の厚みとしては、 用途に 応じて、 極薄いものから厚めのものまで、 幅広く選択することができる 。 使用する前記架橋溶液中のカーボンナノチューブの含有量を下げ (単 純には、 薄めることにより粘度を下げ) 、 これを薄膜状に塗布すれば極 薄い塗布膜となり、 同様にカーボンナノチューブの含有量を上げれば厚 めの塗布膜となる。 さらに、 塗布を繰返せば、 より一層厚膜の塗布膜を 得ることもできる。 極薄い塗布膜としては、 1 0 n m程度の厚みから十 分に可能であり、 重ね塗りにより上限無く厚い塗布膜を形成することが 可能である。 一回の塗布で可能な厚膜としては、 5 /x m程度である。 ま た、 含有量などを調整した架橋溶液を型に注入し、 架橋させることで所 望の形状にすることも可能である。
前記第 1の方法で形成された前記カーボンナノチューブ構造体からな るキヤリァ輸送体は、 前記カーボンナノチューブ同士が架橋する部位、 すなわち、 前記カーボンナノチューブが有する前記官能基と前記架橋剤 との架橋反応による架橋部位は、 前記官能基の架橋反応後に残存する残 基同士を、 前記架橋剤の架橋反応後に残存する残基である連結基で連結 した架橋構造となっている。
既述の如く、 前記架橋溶液においては、 その構成要素である架橋剤が 非自己重合性であることが好ましい。 前記架橋剤が非自己重合性であれ ば、 最終的に形成されるカーボンナノチューブ構造体における前記連結 基については、 前記架橋剤 1つのみの残基により構成されることになり 、 架橋されるカーボンナノチューブ相互の間隔を、 使用した架橋剤の残 基のサイズに制御することができるため、 所望のカーボンナノチューブ のネッ トワーク構造を高い再現性で得られるようになる。 また、 カーボ ンナノチューブ間に架橋剤が多重に介在しないので、 力一ボンナノチュ —ブ構造体中のカーボンナノチューブの実質的な密度を高めることがで きる。 さらに架橋剤の残基のサイズを小さくすれば、 電気的にも物理的 にも極めて近接した状態 (カーボンナノチューブ相互が、 実質的に直接 接触した状態) に、 カーボンナノチューブ相互の間隔を構成することが できる。
なお、 カーボンナノチューブにおける官能基に単一のものを、 架橋剤 に単一の非自己重合性のものを、 それぞれ選択した架橋溶液により、 力 一ボンナノチューブ構造体を形成した場合、 当該層における前記架橋部 位は、 同一の架橋構造となる (例示 1 ) 。 また、 力一ボンナノチューブ における官能基に複数種のものを、 およびノまたは、 架橋剤に複数種の 非自己重合性の架橋剤を、 それぞれ選択した架橋溶液により、 カーボン ナノチューブ構造体を形成した場合であっても、 当該層における前記架 橋部位は、 主として用いた前記官能基および非自己重合性の架橋剤の組 み合わせによる架橋構造が、 主体的となる (例示 2 ) 。
これに対して、 カーボンナノチューブにおける官能基や架橋剤が単一 であるか複数種であるかを問わず、 架橋剤に自己重合性のものを選択し た架橋溶液により、 カーボンナノチューブ構造体を形成した場合、 当該 層におけるカーボンナノチューブ同士が架橋する架橋部位は、 架橋剤同 士の連結 (重合) 個数が異なる数多くの連結基が混在した状態となり、 特定の架橋構造が主体的とはなり得ない。
つまり、 前記架橋剤として非自己重合性のものを選択すれば、 力一ポ ンナノチューブ構造体におけるカーボンナノチューブ同士が架橋する架 橋部位が、 架橋剤 1つのみの残基で官能基と結合するため、 主として同 —の架橋構造となる。 なお、 ここで言う 「主として同一」 とは、 上記 ( 例示 1 ) の如く、 架橋部位の全てが同一の架橋構造となる場合は勿論の こと、 上記 (例示 2 ) の如く、 架橋部位全体に対して、 主として用いた 前記官能基および非自己重合性の架橋剤の組み合わせによる架橋構造が 、 主体的となる場合も含む概念とする。
「主として同一」 と言った場合に、 全架橋部位における 「同一である 架橋部位の割合」 としては、 例えば架橋部位において、 カーボンナノチ ユーブのネッ トワーク形成とは目的を異にする機能性の官能基や架橋構 造を付与する場合も想定されることから、 一律に下限値を規定し得るわ けではない。 ただし、 強固なネッ トワークで力一ボンナノチューブ特有 の高い電気的ないし物理的特性を実現するためには、 全架橋部位におけ る 「同一である架橋部位の割合」 としては、 個数基準で 5 0 %以上であ ることが好ましく、 7 0 %以上であることがより好ましく、 9 0 %以上 であることがさらに好ましく、 全て同一であることが最も好ましい。 こ れらの個数割合は、 赤外線スぺク トルで架橋構造に対応した吸収スぺク トルの強度比を計測する方法等により求めることができる。
このように、 カーボンナノチューブ同士が架橋する架橋部位が、 主と して同一の架橋構造のカーボンナノチューブ構造体であれば、 カーボン ナノチューブの均一なネッ トワークを所望の状態に形成することができ 、 電気的ないし物理的特性を、 均質で良好、 さらには期待した特性もし くは高い再現性をもって構成することができる。
また、 前記連結基としては、 炭化水素を骨格とするものが好ましい。 ここで言う 「炭化水素を骨格」 とは、 架橋される力一ボンナノチューブ の官能基の架橋反応後に残存する残基同士を連結するのに資する、 連結 基の主鎖の部分が、 炭化水素からなるものであることを言い、 この部分 の水素が他の置換基に置換された場合の側鎖の部分は考慮されない。 勿 論、 連結基全体が炭化水素からなることが、 より好ましい。
前記炭化水素の炭素数としては 2〜 1 0個とすることが好ましく、 2 〜 5個とすることがより好ましく、 2〜 3個とすることがさらに好まし い。 なお、 前記連結基としては、 2価以上であれば特に制限は無い。 力一ボンナノチューブの有する官能基と架橋剤との好ましい組み合わ せとして既に例示した、 前記官能基一 C OO R (Rは、 置換または未置 換の炭化水素基である。 好ましいものについては既述の通り。 ) とェチ レンダリコールとの架橋反応では、 前記複数のカーボンナノチューブが 相互に架橋する架橋部位が— C 0〇 (CH2) 2O C O—となる。
また、 前記官能基一 C OOR (Rは、 置換または未置換の炭化水素基 である。 好ましいものについては既述の通り。 ) とグリセリンとの架橋 反応では、 前記複数の力一ボンナノチューブが相互に架橋する架橋部位 が、 OH基 2つが架橋に寄与すれば一 C O O C H 2 C H〇H C H2 O C 0—あるいは一 C O O C H2 C H (O C〇一) C H2 OHとなり、 O H 基 3つが架橋に寄与すれば一 C O〇 C H 2 C H (O C O—) C H 2 O C O—となる。
以上説明したように、 前記第 1の方法によりカーボンナノチューブ構 造体を形成した場合の本発明におけるキャリア輸送体は、 カーボンナノ チューブ構造体が、 複数の力一ボンナノチューブが複数の架橋部位を介 して網目構造の状態となった状態で形成されているので、 単なる力一ポ ンナノチューブの分散膜のように、 力一ボンナノチューブ同士の接触状 態並びに配置状態が不安定になることがなく、 キャリア (電子やホール
) の高い伝送特性や、 熱伝導、 強靭性といった物理的特性等カーボンナ ノチューブに特有の性質を安定的に利用することができる。
一方、 前記第 2の方法により前記カーボンナノチューブ構造体を形成 しょうとする場合には、 前記複数のカーボンナノチューブ同士が架橋す る部位、 すなわち、 前記複数のカーボンナノチューブが有するそれぞれ の前記官能基同士の架橋反応による架橋部位は、 前記官能基の架橋反応 後に残存する残基同士が連結した架橋構造となっている。 この場合も、 カーボンナノチューブ構造体は、 マトリックス状にカーボンナノチュー ブ同士が架橋部分を介して接続しており、 電子やホールの高い伝送特性 といったカーボンナノチューブ自身が有する特徴を発揮しやすくできる 。 すなわち、 第 2の方法で形成されたカーボンナノチューブ構造体によ り形成されたキヤリァ輸送体は、 官能基同士を反応させて架橋部位を形 成しているため、 カーボンナノチューブ構造体中の力一ポンナノチュー ブの実質的な密度を高めることができる。 さらに官能基のサイズを小さ くすれば、 電気的にも物理的にも極めて近接した状態に、 カーボンナノ チューブ相互の間隔を構成することができ、 カーボンナノチューブ単体 の特性を引き出しやすくなる。
カーボンナノチューブ構造体におけるカーボンナノチュ一ブ同士が架 橋する架橋部位が、 官能基の化学結合であるため、 構造体が主として同 一の架橋構造となる。 なお、 ここで言う 「主として同一」 とは、 架橋部 位の全てが同一の架橋構造となる場合は勿論のこと、 架橋部位全体に対 して官能基同士の化学結合による架橋構造が、 主体的となる場合も含む 概念とする。 1 このように、 力一ボンナノチューブ同士が架橋する架橋部位が、 主と して同一の架橋構造のカーボンナノチューブ構造体であれば、 均質な電 気特性を有するキヤリア輸送体を得ることができる。
以上説明したように、 本発明において特に好ましい態様の整流素子は 、 カーボンナノチューブ構造体が、 複数のカーボンナノチューブが複数 の架橋部位を介して網目構造の状態となった状態で形成されているので 、 単なるカーボンナノチューブの分散膜のように、 カーボンナノチュー ブ同士の接触状態並びに配置状態が不安定になることがなく、 電子ゃホ ールの高い伝送特性といった電気的特性や、 熱伝導、 強靭性といった物 理的特性、 その他光吸収特性等カーボンナノチューブに特有の性質を安 定して発揮することができる。 また、 カーボンナノチューブ構造体のパ ターンの加工自由度も高いので、 キヤリァ輸送体として多様な形状とす ることができる。
本発明の整流素子は、 前記力一ボンナノチューブ構造体からなる層 ( キャリア輸送体の層) 以外の他の層が形成されていてもよい。
例えば、 前記基体表面と前記カーボンナノチューブ構造体との間に、 両者の接着性を向上させるための接着層を設けることは、 パ夕一ニング されたカーボンナノチューブ構造体の接着強度を高めることができ、 好 ましい。 また、 力一ボンナノチューブ構造体の周囲を絶縁体、 導電体な ど整流素子の用途に応じて被覆することもできる。
また、 パターニングされたカーボンナノチューブ構造体の上層として 、 保護層やその他の各種機能層を設けることもできる。 前記力一ポンナ ノチューブ構造体の上層として、 保護層を設けることにより、 架橋した カーボンナノチューブのネッ トワークであるカーボンナノチューブ構造 P T/JP2004/007201 体をより強固に基体表面に保持し、 外力から保護することができる。 こ の保護層には、 [整流素子の製造方法] の項にて説明するレジス ト層を 、 そのまま除去せずに残して、 利用することもできる。 勿論、 前記キヤ リァ輸送体に応じたパターン以外の領域も含めて全面をカバ一する保護 層を新たに設けることも有効である。 かかる保護層を構成する材料とし ては、 従来公知の各種樹脂材料や無機材料を問題なく、 目的に応じて用 いることができる。
さらに、 前記カーボンナノチューブ構造体を、 何らかの機能層を介し て積層することもできる。 前記機能層として絶縁層を形成し、 各カーボ ンナノチューブ構造体のパターンを適切なものとし、 それらカーボンナ ノチューブ構造体を層間で適宜接続することにより、 高集積されたデバ イスを作製することも可能である。 この際の層間の接続には、 別途力一 ボンナノチューブ構造体を設けても、 他のカーボンナノチューブを用い てそれ自体を配線としても、 金属膜を用いる等全く他の方法による配線 としても構わない。
また、 既述の通り、 前記基体を可撓性ないし柔軟性を有する基板とす ることもできる。 前記基体を可撓性ないし柔軟性を有する基板とするこ とで、 キャリア輸送体全体としてのフレキシビリティーが向上し、 設置 場所等の使用環境の自由度が格段に広がる。
また、 このような可撓性ないし柔軟性を有する基板を用いた整流素子 を用いて装置を構成する場合には、 装置における多様な配置や形状に適 応するので高い実装性を持った整流素子のキヤリァ輸送体として利用す ることが可能となる。
以上説明した本発明の整流素子の具体的な形状等は、 次の [整流素子 2004/007201 の製造方法] の項や実施例の項で明らかにする。 勿論、 後述する構成は あくまでも例示であり、 本発明の整流素子の具体的な態様は、 これらに 限定されるものではない。
[整流素子の製造方法]
本発明の整流素子の製造方法は、 上記本発明の整流素子を製造するの に適した方法である。 なお、 単体のカーボンナノチューブを基板上に配 置する手法や、 高濃度にカーボンナノチューブが分散された混合液を塗 布して絡み合いによる網目構造を形成する手法についてはこれ以上の説 明は省略し、 より好ましい形態である、 架橋部位を介して網目構造が形 成されたカーボンナノチューブ構造体をキヤリァ輸送体として用いる場 合を例に挙げて、 以下、 説明する。
この手法は、 具体的には、 (A ) 基体の表面に、 カーボンナノチュー ブを含む溶液 (架橋溶液) を供給する供給工程と、 (B ) 塗布後の前記 溶液を硬化して、 キャリア輸送体として用いられ、 前記複数のカーボン ナノチューブが相互に架橋した網目構造を構成するカーボンナノチュー ブ構造体を形成する架橋工程、 および、 製造する整流素子の構造に応じ て (A ) 、 ( B ) の工程の前後に電極の形成工程を含む。
さらに、 必要に応じて、 (C ) 前記カーボンナノチューブ構造体をキ ャリァ輸送体に応じたパターンにパ夕一ニングするパ夕一ニング工程等 、 他の工程を含めてもよい。
以下、 これら各工程に分けて、 本発明の整流素子の製造方法の詳細に ついて図 2を用いて説明する。
ここで図 2は、 本発明の整流素子の製造方法の一例 (後述する (C一 A— 2 ) ) を説明するための、 製造工程中の基体表面の模式断面図であ る。 図中、 1 0は基板状の基体、 1 6, 1 8は電極、 1 2は力一ポンナ ノチューブ構造体、 1 4はレジスト層である。
( A ) 供給工程
本発明において、 「供給工程」 とは、 前記基体の表面に、 キャリア輸 送体を構成するカーボンナノチューブを配置する工程である。 ここでは 特に架橋部位を介して網目構造が形成されたカーボンナノチューブ構造 体を用いる場合を用いて説明する。
この場合、 供給工程とは、 官能基を有するカーボンナノチューブ、 お よび、 前記官能基と架橋反応を起こす架橋剤を含む溶液 (架橋溶液) を 供給 (塗布) する工程である。 なお、 供給工程で前記架橋溶液を供給す べき領域は、 前記所望の領域を全て含んでさえいればよく、 前記基体の 表面の全面に塗布しなければならないわけではない。
供給方法としては、 架橋溶液の塗布が好ましいが、 その手法に特に制 限はなく、 単に液滴を垂らしたり、 それをスキージで塗り広げたりする 方法から、 一般的な塗布方法まで、 幅広くいずれの方法も採用すること ができる。 一般的な塗布方法としては、 スピンコート法、 ワイヤ一バー コート法、 キャス 卜コート法、 ロールコート法、 刷毛塗り法、 浸漬塗布 法、 スプレー塗布法、 カーテンコート法等が挙げられる。
なお、 基体、 官能基を有するカーボンナノチューブ、 架橋剤並びに架 橋溶液の内容については、 [整流素子] の項で説明した通りである。
( B ) 架橋工程
本発明において、 「架橋工程」 とは、 供給後の前記架橋溶液中の前記 カーボンナノチューブにおける前記官能基間を化学結合させることによ り架橋部位を形成し、 前記カーボンナノチューブ構造体を形成する工程 である。 供給工程が架橋溶液を塗布する構成の場合には、 塗布後の前記 架橋溶液を硬化して、 前記複数の力一ボンナノチューブが相互に架橋し た網目構造を構成するカーボンナノチューブ構造体の層を形成する工程 である。 なお、 架橋工程で前記架橋溶液を硬化して、 力一ボンナノチュ ーブ構造体を形成すべき領域は、 前記所望の領域を全て含んでさえいれ ばよく、 前記基体の表面に塗布された前記架橋溶液を全て硬化しなけれ ばならないわけではない。
架橋工程における操作は、 前記官能基と前記架橋剤との組み合わせに 応じて、 自ずと決まってくる。 例えば、 前掲の表 1に示す通りである。 熱硬化性の組み合わせであれば、 各種ヒータ等により加熱すればよいし 、 紫外線硬化性の組み合わせであれば、 紫外線ランプで照射したり、 日 光下に放置しておけばよい。 勿論、 自然硬化性の組み合わせであれば、 そのまま放置しておけば十分であり、 この 「放置」 も本発明における架 橋工程で行われ得るひとつの操作と解される。
官能基一 C O O R ( Rは、 置換または未置換の炭化水素基である。 好 ましいものについては既述の通り。 ) が付加した力一ボンナノチューブ と、 ポリオール (中でもグリセリンおよび/またはエチレングリコール ) との組み合わせの場合には、 加熱による硬化 (エステル交換反応によ るポリエステル化) が行われる。 加熱により、 エステル化したカーボン ナノチューブカルボン酸の一 C O O Rと、 ポリオールの R, 一 O H ( R ' は、 置換または未置換の炭化水素基である。 R ' は、 好ましくは一 C n H 2 n — C n H 2 nまたは一 C n H 2 n + iから選ばれ、 nは 1 1 0 の整数であり、 これらが置換されたものを含む。 ) とがエステル交換反 応する。 そして、 かかる反応が複数多元的に進行し、 カーボンナノチュ P T/JP2004/007201 ―ブが架橋していき、 最終的に力一ボンナノチューブが相互に接続して ネッ トワーク状となった力一ボンナノチューブ構造体が形成される。 上記の組み合わせの場合に好ましい条件について例示すると、 加熱温 度としては、 具体的には 5 0〜 5 0 0 °Cの範囲が好ましく、 1 2 0〜 2 0 0 °Cの範囲がより好ましい。 また、 この組み合わせにおける加熱時間 としては、 具体的には 1分〜 1 0時間の範囲が好ましく、 1〜 2時間の 範囲がより好ましい。
図 2 ( a ) に、 (B ) 架橋工程を経て、 基体 1 0表面に力一ボンナノ チューブ構造体 1 2が形成された状態を示す。
( C ) パターニング工程
本発明において、 「パ夕一ニング工程」 とは、 前記カーボンナノチュ ーブ構造体をキヤリア輸送体に応じたパターンにパ夕一ニングする工程 である。 図 2 ( e ) に、 当該 (C ) パターニング工程を経た後の基体表 面の状態を表す模式断面図を示す。
パターニング工程の操作に特に制限はないが、 好適なものとして、 以 下 (C一 A ) および (C一 B ) の 2つの態様を挙げることができる。
( C - A )
前記基体表面における前記キヤリァ輸送体に応じたパ夕一ン以外の領 域のカーボンナノチューブ構造体に、 ドライエッチングを行うことで、 当該領域の力一ボンナノチューブ構造体を除去し、 前記カーボンナノチ ユーブ構造体を前記キャリア輸送体に応じたパターンにパターニングす る工程で.ある態様。
ドライエッチングを行うことで、 前記キャリア輸送体に応じたパ夕一 ンにパターニングするということは、 結局は、 前記基体表面における前 記パターン以外の領域の前記カーボンナノチューブ構造体に、 ラジカル 等を照射することを意味する。 そして、 その手法としては、 直接前記パ 夕一ン以外の領域の前記カーボンナノチューブ構造体にラジカル等を照 射する方式 (C一 A— 1 ) と、 前記パターン以外の領域をレジス 卜層で 被覆した上で、 前記基体表面 (勿論、 前記カーボンナノチューブ構造体 およびレジスト層が形成された側) の全面にラジカル等を照射する方式
( C一 A— 2 ) が挙げられる。
( C一 A— 1 )
直接前記パターン以外の領域の前記カーボンナノチューブ構造体にラ ジカル等を照射する方式とは、 詳しくは、 本パターニング工程が、 前記 基体表面における前記キヤリァ輸送体に応じたパターン以外の領域の力 一ボンナノチューブ構造体に、 ガス分子のイオンをイオンビームにより 選択的に照射することで、 当該領域のカーボンナノチューブ構造体を除 去し、 前記カーボンナノチューブ構造体を前記キヤリァ輸送体に応じた パターンにパターニングする態様である。
イオンビームによれば、 数 n mオーダ一程度の緻密さで、 選択的にガ ス分子のイオンを照射することができ、 キヤリァ輸送体に応じたパター ンのパ夕一ニングが一度の操作で容易にできる点で好ましい。
選択可能なガス種としては、 酸素、 アルゴン、 窒素、 二酸化炭素、 六 フッ化硫黄等が挙げられるが、 本発明においては特に酸素が好ましい。 イオンビームとは、 真空中ガス分子に電圧をかけることで加速させィ オン化し、 ビームとして照射する方式であり、 エッチングの対象とする 物質および照射精度は、 使用するガスの種類により変更することができ る T JP2004/007201
( C - A - 2 )
前記パターン以外の領域をレジスト層で被覆した上で、 前記基体表面 の全面にラジカル等を照射する方式とは、 詳しくは、 本パターニングェ 程が、
前記基体表面における前記キヤリァ輸送体に応じたパターンの領域の カーボンナノチューブ構造体の上に、 レジスト層を設けるレジス ト層形 成工程 ( C一 A _ 2 — 1 ) と、
前記基体の前記カーボンナノチュ一ブ構造体およびレジスト層が積層 された面に、 ドライエッチングを行うことで、 前記領域以外の領域で表 出しているカーボンナノチューブ構造体を除去する除去工程 (C一 A— 2 - 2 ) と、 を含む態様であり、 除去工程に引き続いてさらに、
レジスト層形成工程で設けられた前記レジス ト層を剥離するレジス ト 層剥離工程 (C— A— 2— 3 ) を含む場合もある。
( C一 A— 2— 1 ) レジス ト層形成工程
レジスト層形成工程では、 前記基体表面における前記キヤリァ輸送体 に応じたパターンの領域の力一ボンナノチューブ構造体の上に、 レジス 卜層を設ける。 当該工程は、 一般にフォ トリソグラフィ一プロセスと称 されるプロセスに従って為されるものであり、 前記キヤリァ輸送体に応 じたパターンの領域の力一ボンナノチューブ構造体の上に直接レジス ト 層を設けるのではなく、 図 2 ( b ) に示されるように一旦基体 1 0の力 一ボンナノチューブ構造体 1 2が形成された表面全面にレジス ト層 1 4 を形成し、 前記キャリア輸送体に応じたパターンの領域を露光して、 そ の後、 現像することで露光部以外の部位が除去され、 最終的に前記キヤ リァ輸送体に応じたパターンの領域のカーボンナノチューブ構造体の上 PC蘭 004鐘 01 にレジスト層が設けられた状態となる。
図 2 ( c ) に、 当該 (C—A— 2 — 1 ) レジスト層形成工程を経た後 の基体表面の状態を表す模式断面図を示す。 なお、 レジス トの種類によ つては、 露光部以外が現像により除去され、 非露光部が残存する構成の 場合もある。 '
レジスト層の形成方法は、 従来公知の方法で行えばよい。 具体的には 、 レジスト剤を基板上にスピンコ一夕一等を使用して塗布し、 加熱する ことでレジスト層を形成させる。
レジス ト層 1 4の形成に用いる材料 (レジス ト剤) としては、 特に制 限されず、 従来よりレジストの材料として用いられている各種材料をそ のまま用いることができる。 中でも樹脂により形成する (樹脂層とする ) ことが好ましい。 カーボンナノチューブ構造体 1 2は、 網目状にネッ 卜ワークが形成されており、 多孔性の構造体であるため、 例えば金属蒸 着膜の様にごく表面にのみ膜が形成され孔内部まで十分に浸透しない材 料によりレジスト層 1 4を形成すると、 プラズマ等を照射した際にカー ボンナノチューブが十分に封止された状態 (プラズマ等に晒されない状 態) にできない。 そのため、 プラズマ等が孔部を通過してレジスト層 4の下層の力一ボンナノチューブ構造体 1 2まで侵食し、 プラズマ等の 回り込みにより残留するカーボンナノチューブ構造体 1 2の外形が小さ くなつてしまう場合がある。 この小形化を加味して、 レジスト層 1 4の 外形 (面積) を、 前記キャリア輸送体に応じたパターンに比して十分に 大きくする手法も考えられるが、 この場合はパターン同士の間隔を広く とらざるをえず、 密にパターンを形成できなくなる。
これに対して、 レジスト層 1 4の材料として樹脂を用いることで、 当 該樹脂を孔内部まで浸透させることができ、 プラズマ等に晒されるカー ボンナノチューブを減少させることができ、 結果としてカーボンナノチ ユープ構造体 1 2の高密度なパタ一ニングが可能となる。
当該樹脂層を主として構成する樹脂材料としては、 ノポラック樹脂、 ポリメチルメタクリレート、 およびこれらの樹脂の混合物等を挙げるこ とができるが、 勿論これらに限定されるものではない。
レジスト層を形成するためのレジスト材料は、 上記樹脂材料あるいは その前駆体と感光材料等の混合物であり、 本発明では従来公知のあらゆ るレジスト材料を使用しても差し支えない。 例えば、 東京応化工業製 O F P R 8 0 0、 長瀬産業製 N P R 9 7 1 0等を例示することができる。
レジスト層 1 4への露光 (レジス ト材料が熱硬化性の場合には加熱。 その他レジスト材料の種類により適宜選択。 ) および現像の操作ないし 条件 (例えば、 光源波長、 露光強度、 露光時間、 露光量、 露光時の環境 条件、 現像方法、 現像液の種類 ' 濃度、 現像時間、 現像温度、 前処理や 後処理の内容等) は、 使用するレジスト材料に応じて、 適宜選択する。 市販されているレジス卜材料を用いたのであれば、 当該レジス ト材料の 取扱説明書の方法に従えばよい。 一般的には、 取り扱いの便宜から、 紫 外光を用いて前記キヤリァ輸送体に応じたパターン様に露光し、 アル力 リ現像液により現像する。 そして水洗で現像液を洗い流し、 乾燥してフ オ トリソグラフィープロセスが完了する。
( C - A - 2 - 2 ) 除去工程
除去工程では、 前記基体の前記カーボンナノチューブ構造体およびレ ジス ト層が積層された面に、 ドライエッチングを行うことで、 前記領域 以外の領域で表出している (図 2 ( c ) を参照。 カーボンナノチューブ 構造体 1 2は、 レジスト層 1 4が除去された部分から表出している。 ) カーボンナノチューブ構造体を除去する。 図 2 ( d ) に、 当該 (C一 A 一 2 — 2 ) 除去工程を経た後の基体表面の状態を表す模式断面図を示す 除去工程の操作は、 一般にドライエッチングと称される方法全般を含 み、 方式としては、 リアクティブイオン方式などがある。 既述の (C— A— 1 ) のイオンビームを用いる方式も ドライエッチングに含まれる。 選択可能なガス種やその他装置および操作環境等は (C 一 A— 1 ) の 項で述べた通りである。
ドライエッチングで一般的に選択可能なガス種としては、 酸素、 アル ゴン、 フッ素系ガス (フロン、 S F 6、 C F 4等) 等が挙げられるが、 本発明においては特に酸素が好ましい。 酸素ラジカルを用いると、 除去 する力一ボンナノチューブ構造体 1 2のカーボンナノチューブを酸化さ せ (燃焼させ) 、 二酸化炭素化することができ、 残存物の発生による影 響がなく、 また正確なパターニングをすることが可能となる。
ガス種として酸素を選択する場合には、 酸素分子に紫外線を照射する ことにより、 酸素ラジカルを発生させ、 これを利用することができる。 この方式で酸素ラジカルを生ずる装置が、 U Vアッシャーとの商品名で 市販されており、 容易に入手することができる。
( C一 A— 2 — 3 ) レジス ト層剥離工程
整流素子の製造にあたり、 あらかじめ電極対を形成した基体上にキヤ リア輸送体の形成を行い、 (C一 A— 2— 2 ) 除去工程までの操作が完 了した段階で終了とすることもできる。 しかし、 レジス ト層 1 4を除去 したい場合には、 上記除去工程に引き続いてさらに、 レジスト層形成ェ 程で設けられたレジスト層 1 4を剥離するレジスト層剥離工程の操作を 施すことが必要となる。 図 2 ( e ) に、 当該 (C— A— 2 — 3 ) レジス ト餍剥離工程を経た後の基体表面の状態を表す模式断面図を示す。
レジス ト層剥離工程の操作は、 レジス ト層 1 4の形成に用いた材料に 応じて選択すればよい。 市販されているレジス卜材料を用いたのであれ ば、 当該レジスト材料の取扱説明書の方法に従えばよい。 レジスト層 1 4が樹脂層である場合には、 一般的には、 当該樹脂層を溶解し得る有機 溶剤に接液することにより除去する。
( C一 B )
前記基体表面における前記キヤリァ輸送体に応じたパターンの領域の カーボンナノチューブ構造体の上に、 レジス ト層を設けるレジスト層形 成工程と、
前記基体の前記カーボンナノチューブ構造体およびレジスト層が積層 された面に、 エッチング液を接液させることで、 前記領域以外の領域で 表出しているカーボンナノチューブ構造体を除去する除去工程と、 を含 む工程である態様。
この態様は、 一般的にウエッ トエッチング (薬液 =エッチング液を使 用して任意の部分を取り除く方法) と称される方法である。
レジスト層形成工程の詳細については、 エッチング液に耐性を有する レジスト材料を用いることが望まれること以外は、 既述の (C一 A— 2 - 1 ) レジス ト層形成工程と同様である。 除去工程に引き続いてレジス ト層剥離工程の操作を施しても構わないこと、 およびその詳細について は、 (C一 A— 2— 3 ) レジス ト層剥離工程に記載された内容と同様で ある。 そのため、 これらについては、 その詳細な説明は割愛する。 図 2 ( c ) を参照して説明すれば、 除去工程においては、 基体 1 2の カーボンナノチューブ構造体 1 2およびレジスト層 1 4が積層された面 に、 エッチング液を接液させることで、 前記領域以外の領域で表出して いるカーボンナノチューブ構造体 1 2を除去する。
ここで、 本発明において 「接液」 とは、 対象物を液体に接触させる行 為全てを含む概念であり、 浸漬、 スプレー、 流し掛け等、 いずれの方法 で液体に対象物を接触させても構わない。
エッチング液は、 一般に酸あるいはアルカリであり、 どのような種類 のエッチング液を選択すればよいかは、 レジスト層 1 4を構成するレジ スト材料や力一ボンナノチューブ構造体 1 2における力一ボンナノチュ —ブ相互間の架橋構造等により決まってくる。 できる限りレジスト層 1 4を侵しにく く、 カーボンナノチューブ構造体 1 2を除去しやすい材料 を選択することが望ましい。
ただし、 エッチング液の温度や濃度、 および接液時間を適切に制御す ることで、 レジス ト層 1 4が完全に消滅してしまう前に、 元々表出して いるカーボンナノチューブ構造体 1 2を除去することが可能であれば、 レジス ト層 1 4を侵してしまうような種類のエッチング液を選択しても 構わない。
( D ) 電極形成工程
本発明において 「電極形成工程」 とは前工程のパターニングを経た力 一ボンナノチューブ構造体 1 2に電極対を形成する工程である。 電極の 形成方法は、 公知の薄膜プロセスや、 厚膜プロセスなど、 適宜使用する ことができる。 ただし、 後で述べるように、 電極形成工程はデバイス構 造により、 他の工程と入れ替わる場合がある。 PC雇麵 07201
( E ) 障壁層形成工程
本工程は、 第 1の接続構成と、 前記他方の電極から前記キャリア輸送 体までの第 2の接続構成を異ならせる手法に応じて、 (D ) の電極形成 工程の前あるいは後、 あるいは電極形成工程と同時に行われる。
なお、 当該工程は、 本発明にいう 「接続構成形成工程」 の例示として 解釈することができる。
以下に障壁形成工程の形態を説明するが、 勿論これに限られるもので はない。
( E - 1 )
第 1の電極と第 2の電極の材料を異ならせることで、 障壁レベルを異 ならせることができる場合は、 電極形成工程と障壁層形成工程とは同時 に行われる。
( E - 2 )
酸化物層を第 1 の界面に形成する場合は、 第 1 の界面に酸化物層を形 成する工程が必要となる。 酸化物層は、 酸化物を直接公知の薄膜プロセ ス等で形成する方法のほか、 第 1の電極として酸化性の材料を用い、 こ の第 1の電極とキヤリァ輸送体の対向する界面を酸化させることで形成 する方法を挙げることができる。 一方、 第 2の電極は、 耐酸化性の強い 金属、 例えば金を用いる、 あるいは第 1電極の金属と酸化性が異なるも のを用いることで、 第 1の界面と第 2の界面で障壁レベルを異ならせる ことができる。
酸化膜の形成方法としては、 酸化膜の緻密さ、 薄さの面から電極金属 の酸素存在雰囲気中での自然酸化が望ましいが、 酸化物の蒸着や熱酸化 等により形成しても構わない。 PC蘭 004/007201
( E - 3 )
キヤリァ輸送体の表面を加工して電極との密着度を低下あるいは増加 させることで、 第 1の界面と第 2の界面とで障壁レベルを異ならせる場 合は、 キヤリァ輸送体に対する加工工程が電極形成工程に先立って必要 となる。
上記障壁層形成の具体例は、 複数組み合わせて行うこともできる。 なお、 この障壁層形成工程は、 キャリア輸送体の形成に先立って基板 表面に少なくとも一方の電極を配置し、 その上にキヤリァ輸送体を形成 する場合には、 (A ) 〜 ( C ) のキャリア輸送体を形成する工程の前後 あるいはそれと同時に、 障壁層の形成を行えばよい。
図 2 ( f ) は、 上記製造方法により最終的に得られる整流素子を示す 模式断面図である。 1 6および 1 8は電極であり、 電極 1 8 (本発明に いう 「一方の電極」 ) は、 障壁層 (酸化物層) 2 0を介してカーボンナ ノチューブ構造体 1 2と接続されているが、 電極 1 6 (本発明にいう 「 他方の電極」 ) は、 直接力一ボンナノチューブ構造体 1 2 と接続されて レ る。
( F ) その他の工程
以上の各工程を経ることで、 本発明の整流素子を製造することができ るが、 本発明の整流素子の製造方法においては、 その他の工程を含める こともできる。
例えば、 前記供給工程に先立ち、 前記基体の表面を予め処理する表面 処理工程を設けるのも好適である。 表面処理工程は、 例えば、 塗布され る架橋溶液の吸着性を高めるため、 上層として形成される力一ボンナノ チューブ構造体と基体表面との接着性を高めるため、 基体表面を清浄化 するため、 基体表面の電気伝導度を調整するため、 等の目的で行われる 架橋溶液の吸着性を高める目的で行われる表面処理工程としては、 例 えば、 シランカップリング剤 (例えば、 ァミノプロピルトリエトキシシ ラン、 τ一 ( 2—アミノエチル) ァミノプロビルトリメ トキシシラン等 ) による処理が挙げられる。 中でもァミノプロピルトリエトキシシラン による表面処理は、 広く行われており、 本発明における表面処理工程で も好適である。 ァミノプロピルトリェトキシシランによる表面処理は、 例えは、 Y . L . L y u b c h e n k o e t a 1 . , Nu c l e i c A c i d s R e s e a r c h , 1 9 9 3 , v o l . 2 1, p . 1 1 1 7 - 1 1 2 3等の文献に見られるように、 従来より DNAの A FM 観察において基板に使うマイ力の表面処理に用いられている。
また、 特に本発明において、 酸化性の金属材料を電極に用いる場合に は、 少なくともキャリア輸送体とその電極との間を酸素から封止するこ とが望ましい。 これにより、 経時的な特性の劣化が防止される。 もちろ ん、 センサー的な機能として、 この経時劣化特性を積極的に利用する場 合には封止は必ずしも必要ではない。
カーボンナノチューブ構造体自体を 2層以上積層する場合には、 上記 本発明の整流素子の製造方法による操作を、 2回以上繰り返せばよい。 カーボンナノチューブ構造体の層間に誘電体層や絶縁層等の中間層を設 ける場合には、 これらの層を形成するための工程を挟んで、 上記本発明 の整流素子の製造方法による操作を繰り返せばよい。
また、 保護層や電極層等その他の層を別途積層する場合には、 これら の層を形成するための工程が必要となる。 これら各層は、 その目的に応 じた材料 ·方法を従来公知の方法から選択して、 あるいは、 本発明のた めに新たに開発した物ないし方法により、 適宜形成すればよい。
ぐ本発明の整流素子の製造方法の応用例 >
本発明の整流素子の製造方法の有用な応用例として、 キヤリァ輸送体 を基体表面に形成するに際して、 仮基板の表面に一旦カーボンナノチュ ーブ構造体をパタ一ニングした後、 所望とする基体に転写 (転写工程) する方法がある。 また、 転写工程において、 当該仮基板から中間転写体 表面に、 パターニングされた力一ボンナノチューブ構造体を一旦転写し
、 さらに所望とする基体 (第 2の基体) に転写する構成としても構わな い。 以下、 仮基板の表面にカーボンナノチューブ構造体が形成された状 態のものを 「力一ボンナノチューブ転写体」 と称する場合がある。
具体的な方法について、 図 1 0を用いて説明する。
先に説明したのと同様の方法で、 仮基板 1 1 ' 表面にカーボンナノチ ュ一ブ構造体を形成し、 パターニングして輸送層 (キャリア輸送体) 1 2に応じた形状とする (図 1 0 ( a ) ) 。 なお、 この説明では、 2つの 輸送層 (キヤリァ輸送体) を同時に仮基板 1 1 ' 上に形成した。
引き続き、 表面に粘着面 1 1 1が形成された基板 (基体) 1 1を、 仮 基板 1 1 ' 表面の輸送層 1 2上に貼り付ける (図 1 0 ( b ) および ( c
) ) o
その後、 基板 1 1 と仮基板 1 1 ' とを引き剥がすことで、 基板 1 1の 粘着面 1 1 1 に輸送層 1 2が転写される (図 1 0 ( d ) ) 。
続いて、 基板 1 1に転写された輸送層 1 0の上に、 酸化膜 2 0、 電極 1 6、 1 8をスパッタリング等を用いて積層する。
以上のようにして、 整流素子が同時に 2つ形成される (図 1 0 ( e ) ) o
これらの素子は、 配線を行うことで他の素子と電気的に接続して集積 回路化することも可能である
当該応用例において使用可能な仮基板としては、 [整流素子] の項で 説明した基体と同様の材質のものが使用可能であり、 好ましいものであ る。 ただし、 転写工程における転写適性を考慮すると、 少なくとも 1つ の平面を有することが望まれ、 平板状であることがより好ましい。
当該応用例において使用可能な基体あるいは中間転写体としては、 粘 着剤を保持した粘着面、 あるいは保持し得る面を有することが必要であ り、 セロファンテープ、 紙テープ、 布テープ、 イミ ドテ一プのような一 般的なテープは勿論使用可能である。 また、 これらテープのような可撓 性ないし柔軟性を有する材料以外の硬質の材料からなるものであっても 構わない。 粘着剤を保持していない材料の場合には、 保持し得る面に粘 着剤を塗りつけた上で、 これを粘着面として、 通常のテープと同様に使 用することができる。
当該応用例によれば、 本発明の整流素子を容易に製造することができ る。
なお、 基体の表面に力一ボンナノチューブ構造体が担持された状態の ものを用意し、 デバイスを構成する所望の第 2の基体 (例えば筐体) の 表面に基体ごと貼付けて、 整流素子を製造することもできる。
あるいは、 仮基板 (もしくは中間転写体) の表面にカーボンナノチュ ーブ構造体が担持された力一ボンナノチューブ転写体を用いて、 整流素 子を構成する基体の表面に前記カーボンナノチューブ構造体だけを転写 し、 仮基板 (もしくは中間転写体) を除去するようにすれば、 利用者は 架橋工程を省略しても、 整流素子のキヤリァ輸送体を作製できる様にな る。 なお、 ここではプロセス上中間転写体がカーボンナノチューブ転写 体の仮基板となる場合があるが、 力一ボンナノチューブ転写体自体とし ては区別する必要はないので、 この場合も含むものとする。
力一ボンナノチューブ転写体を用いると、 仮基板の表面に、 架橋され た状態でカーボンナノチュ一ブ構造体が担持されているため、 その後の 取り扱いが極めて簡便になり、 整流素子の製造は極めて容易に行うこと ができるようになる。 仮基板の除去方法は、 単純な剥離、 化学的に分解 、 焼失、 溶融、 昇華、 溶解させる等適宜選択できる。
かかる応用例の整流素子の製造方法は、 デバイスの基体として、 その まま本発明の整流素子の製造方法を適用し難い材質および Zまたは形状 のものの場合に、 特に有効である。
例えば、 前記架橋工程で、 供給後の前記溶液を硬化するために加熱す る温度が、 整流素子の基体にしょうとしている材料の融点ないしガラス 転移点以上となってしまう場合に、 上記本発明の応用例は有効である。 このとき、 前記加熱温度を前記仮基板の融点よりも低く設定することで 、 硬化のために必要な加熱温度を確保することができ、 適切に本発明の 整流素子を製造することができる。
また、 例えば、 前記パターニング工程が、 前記仮基板表面における前 記キャリア輸送体に応じたパターン以外の領域のカーボンナノチューブ 構造体に、 ドライエッチングを行うことで、 当該領域の力一ボンナノチ ユーブ構造体を除去し、 前記カーボンナノチューブ構造体を前記キヤリ ァ輸送体に応じたパターンにパ夕一ニングする工程であるとき、 整流素 子の基体にしょうとしている材料が、 前記パターニング工程で行う ドラ ィエッチングに対して耐性を有しない場合に、 上記本発明の応用例は有 効である。 このとき、 前記仮基板にドライエッチングに対して耐性を有 する材料を用いることで、 前記仮基板にパターニングする工程の操作に 対する耐性を確保することができ、 適切に本発明の整流素子を製造する ことができる。
具体的な耐性、 材料等は、 ドライエッチングのガス種、 強度、 時間、 温度、 圧力等の条件により異なるため一概には言えないが、 樹脂材料は 比較的耐性が低いため、 これを前記基体とした場合に、 本応用例を適用 することで、 耐性が低いことによる制約から解放される。 したがって、 樹脂材料を前記基体に適用することは、 本応用例によるメリッ トを生か し得る点で好適である。 一方、 無機材料は比較的耐性が高いため、 前記 仮基板に適している。 また、 可撓性ないし柔軟性を有する材料は一般に 当該耐性が低いため、 これを前記基体に適用することは、 本応用例によ るメリッ トを生かし得る点で好適である。
さらに、 例えば、 前記パターニング工程として、 前記仮基板表面にお ける前記キヤリァ輸送体に応じたパターンの領域のカーボンナノチュー ブ構造体の上に、 レジス ト層を設けるレジス卜層形成工程と、 前記仮基 板の前記カーボンナノチューブ構造体およびレジスト層が積層された面 に、 エッチング液を接液させることで、 前記領域以外の領域で表出して いるカーボンナノチューブ構造体を除去する除去工程と、 を含むとき、 前記パターエング工程で用いるエッチング液に対して、 前記基体は耐性 を有しないが、 前記仮基板は耐性を有する場合に、 上記本発明の応用例 は有効である。 このとき当該整流素子の基体を本応用例における基体と し、 前記仮基板に前記エッチング液に対して耐性を有する材料を用いる ことで、 前記仮基板にパターニングする工程の操作に対する耐性を確保 することができ、 適切に本発明の整流素子を製造することができる。 具体的な耐性、 材料等は、 用いるエッチング液の種類、 濃度、 温度、 接液時間等の条件により異なるため一概には言えない。 例えば、 エッチ ング液が酸性であり、 酸に弱いアルミニウム等の材料を整流素子の基体 としたい場合に、 これを前記基体にし、 酸に耐性のあるシリコン等の材 料を前記仮基板にして本応用例を適用することで、 耐性が低いことによ る制約から解放される。 その他、 エッチング液の液性により一概には言 えないが、 既述の通りエッチング液に対する耐性が低い材料を前記基体 にすることで、 耐性が低いことによる制約から解放される。
さらに別の態様として、 カーボンナノチューブ構造体 2 4を担持する 基体を、 よりハンドリングしゃすい整流素子とするために、 第 2の基体 に貼り付けて、 本発明の整流素子およびこれを用いた装置を構成しても 良い。 第 2の基体としては、 物性的に剛体であっても、 可撓性ないし柔 軟性であってもよいし、 形状的にも球体、 凹 ώ形状等多様な形状のもの を選択することができる。
ぐより具体的な実施例 >
以下、 本発明を実施例を挙げてより具体的に説明するが、 本発明は、 以下の実施例に限定されるものではない。
[実施例 1 ]
本実施例では、 図 2に記載の整流素子の製造方法の流れにより、 半導 体特性を有する単層カーボンナノチューブのダリセリン架橋膜をキヤリ ァ輸送体とした整流素子を作製した。 電極部材としてチタン、 アルミ二 ゥムを用い電極を形成した。 アルミニウムを自然酸化させることにより 電極一カーボンナノチューブ構造体界面に酸化膜を形成させた。 なお、 本実施例の説明においては、 図 2の符号を用いる場合がある。
(A) 供給工程
(A— 1 ) 架橋溶液の調製 (付加工程)
( i ) 単層カーポクナノチューブの精製
単層カーボンナノチューブ粉末 (純度 40 %、 A 1 d r i c h製) を 予めふるい (孔径 1 2 5 ^m) にかけて、 粗大化した凝集体を取り除い たもの (平均直径 1. 5 nm、 平均長さ 2 m) 3 0mgを、 マツフル 炉を用いて 4 5 0°Cで 1 5分間加熱し、 カーボンナノチューブ以外の炭 素物質を除いた。 残った粉末 1 5mgを 5規定塩酸水溶液 {濃塩酸 ( 3 5 %水溶液、 関東化学製) を純水で 2倍に希釈したもの } 1 0m lに 4 時間沈めておく ことにより、 触媒金属を溶解させた。
この溶液をろ過して沈殿物を回収した。 回収した沈殿物に対して、 上 記の加熱 · 塩酸に沈めるという工程をさらに 3回繰り返して精製を行つ た。 その際、 加熱の条件は 450 °Cで 2 0分間、 4 50。Cで 3 0分間、 5 5 0 °Cで 6 0分間と段階的に強めていった。
精製後のカーボンナノチューブは、 精製前 (原料) と比べ、 純度が大 幅に向上していることがわかる (具体的には、 純度 9 0 %以上と推定さ れる。 ) 。 なお、 最終的に得られた、 精製された力一ボンナノチューブ は、 原料の 5 %程度の質量 ( l〜2mg) であった。
以上の操作を複数回繰返すことで、 高純度の単層カーボンナノチュー ブ粉末 1 5mg以上を精製した。
( ii) 力ルポキシル基の付加 · · · 力一ボンナノチューブカルボン酸の 合成 単層力一ボンナノチューブ粉末 (純度 9 0 %、 平均直径 3 0 nm、 平 均長さ 3 Χ Π1 ; サイエンスラボラトリー製) 3 0 m gを濃硝酸 ( 6 0質 量%水溶液、 関東化学製) 2 0 m l に加え、 1 2 0 °Cの条件で還流を 5 時間行い、 カーボンナノチューブカルボン酸を合成した。 以上の反応ス キームを図 3に示す。 なお、 図 3中力一ボンナノチューブ (CNT) の 部分は、 2本の平行線で表している (反応スキームに関する他の図に関 しても同様) 。
溶液の温度を室温に戻したのち、 5 0 0 0 r p mの条件で 1 5分間の 遠心分離を行い、 上澄み液と沈殿物とを分離した。 回収した沈殿物を純 水 1 0 m l に分散させて、 再び 5 0 0 0 r p mの条件で 1 5分間の遠心 分離を行い、 上澄み液と沈殿物とを分離した (以上で、 洗浄操作 1回) 。 この洗浄操作をさらに 5回繰り返し、 最後に沈殿物を回収した。
回収された沈殿物について、 赤外吸収スペク トルを測定した。 また、 比較のため、 用いた単層カーボンナノチューブ原料自体の赤外吸収スぺ ク トルも測定した。 両スペク トルを比較すると、 単層カーボンナノチュ —ブ原料自体においては観測されていない、 カルボン酸に特徵的な 1 7 3 5 c m— 1の吸収が、 前記沈殿物の方には観測された。 このことから 、 硝酸との反応によって、 カーボンナノチューブにカルボキシル基が導 入されたことがわかった。 すなわち、 沈殿物がカーボンナノチューブ力 ルボン酸であることが確認された。
また、 回収された沈殿物を中性の純水に添加してみると、 分散性が良 好であることが確認された。 この結果は、 親水性の力ルポキシル基が力 一ボンナノチューブに導入されたという、 赤外吸収スぺク トルの結果を 支持する。 (iii)エステル化
上記工程で調製された力一ボンナノチューブカルボン酸 3 O mgを、 メタノール (和光純薬製) 2 5 m l に加えた後、 濃硫酸 ( 9 8質量%、 和光純薬製) 5 m l を加えて、 6 5 °Cの条件で還流を 6時間行い、 メチ ルエステル化した。 以上の反応スキームを図 4に示す。
溶液の温度を室温に戻したのち、 ろ過して沈殿物を分離した。 沈殿物 は、 水洗した後回収した。 回収された沈殿物について、 赤外吸収スぺク トルを測定した。 その結果、 エステルに特徴的な 1 7 3 5 c m—1およ び 1 0 0 0〜 1 3 0 0 c m— 1の領域における吸収が観測されたことか ら、 カーボンナノチューブカルボン酸がエステル化されたことが確認さ れた。
(混合工程)
上記工程で得られたメチルエステル化したカーボンナノチューブカル ボン酸 3 0 m gを、 グリセリン (関東化学製) 4 gに加え、 超音波分散 機を用いて混合した。 さらに、 これを粘度調整剤としてのメタノール 4 gに加え、 架橋溶液 ( 1 ) を調製した。
(A— 2 ) 基体の表面処理工程
基体 1 0としてのシリコンウェハー (アドパンテック製、 7 6. 2 m m (直径 3インチ) 、 厚さ 3 8 0 /xm、 表面酸化膜の厚さ に 塗布する架橋溶液 ( 1 ) と、 当該シリコンウェハーとの吸着性を上げる ために、 ァミノプロピルトリエトキシシランにより、 シリコンウェハー の表面処理を行つた。
ァミノプロピルトリエトキシシランによる表面処理は、 密閉したシャ ーレ内で、 上記シリコンウェハーをァミノプロピルトリエトキシシラン (アルドリツチ社製) 5 0 1 の蒸気に 3時間程度晒すことで行った。 なお、 比較のために、 表面処理を施さないシリコンウェハ一も、 別途 用 した。
(A— 3 ) 供給工程
工程 (A— 1 ) で調製された架橋溶液 ( 1 ^ 1 ) を、 表面処理が施さ れたシリコンウェハ一 (基体 1 0 ) 表面にスピンコ一夕一 (ミカサ社製 、 1 H - D X 2 ) を用い、 l O O r pm, 3 0秒の条件で塗布した。
(B) 架橋工程
架橋溶液を塗布した後、 当該塗布膜が形成されたシリコンウェハー ( 基体 1 0 ) を、 2 0 0 で 2時間加熱し塗布膜を硬化し、 カーボンナノ チューブ構造体 1 2を形成した (図 2 ( a) ) 。 スキームを図 5に示す 得られたカーボンナノチューブ構造体 1 2の状態を光学顕微鏡で確認 したところ、 極めて均一な硬化膜となっていた。
(C) パターニング工程
(C一 1 ) レジスト層形成工程
カーボンナノチューブ構造体 1 2が形成されたシリコンウェハー 1 2
(表面処理を施したもの) の当該カーボンナノチューブ構造体 1 2側の 表面に、 スピンコ一ター (ミカサ社製、 1 H— D X 2 ) を用い、 レジス 卜剤 (長瀬産業製、 N P R 9 7 1 0、 粘度 5 0 mP a * s ) を、 2 0 0 O r pm、 2 0秒の条件で塗布し、 ホッ トプレートにより 2分間、 1 0 0 °Cで加熱して製膜させて、 レジス ト層 1 4を形成した (図 2 (b) ) なお、 レジスト剤 N P R 9 7 1 0の組成は、 以下の通りである • プロピレングリコールモノメチルエーテルアセテート :
5 0〜 8 0質量%
, ノポラック樹脂 : 2 0〜 5 0質量%
•感光剤 : 1 0質量%未満 カーボンナノチューブ構造体 1 2およびレジスト層 1 4が形成された シリコンウェハ一 1 0の当該レジス ト層 1 4側の表面に、 マスクァライ ナー (ミカサ製水銀灯、 MA— 2 0、 波長 4 3 6 nm) を用いて、 光量 1 2. 7 mW/ c m2、 8秒の条件で露光した。
さらに、 露光されたシリコンウェハー 1 2をホッ トプレートにより 1 分間、 1 1 0 °Cで加熱した後、 放冷し、 現像液として東京応化工業製 N MD— 3 (テトラメチルアンモニゥムハイ ドロキサイ ド 2. 3 8質量% ) を用い、 現像機 (AD— 1 2 0 0、 滝沢産業) により現像を行った ( 図 2 ( c ) ) 。
(C - 2 ) 除去工程
以上のようにしてレジスト層 1 4が所定のパターンの形状に形成され た (図 2 ( c ) に示される状態) シリコンウェハ一 1 2を、 U Vアツシ ヤー (エキシマ真空紫外線ランプ、 ァトム技研製、 E XM— 2 1 0 0 B M、 波長 1 7 2 nm) により、 混合ガス (酸素 l O mLZm i n , 窒素 4 0 mL /m i n ) 中 2 0 0 °Cで加熱し、 2時間紫外線 ( 1 7 2 n m) を照射することで酸素ラジカルを発生させカーボンナノチューブ構造体 1 2におけるレジスト層 1 4で保護されていない部分を除去した。 その 結果、 レジス ト層 1 4で覆われた状態でカーボンナノチューブ構造体 1 2がキャリア輸送体の形状に形成された (図 2 (d) ) 。
レジスト層 1 4は、 カーボンナノチューブ構造体 1 2を介して基体 1 0の表面に残存している。
( C - 3 ) レジス ト層除去工程
上記 「所定のパターン」 の形状に形成されたカーボンナノチューブ構 造体 1 2の上層として残存しているレジスト層 1 4を、 アセトンで洗い 流すことにより洗浄して除去し (図 2 ( e ) ) 、 実施例 1の整流素子の キヤリァ輸送体を得た。
この力一ボンナノチューブ構造体 1 2からなる輸送層 (キャリア輸送 体) 上にアルミニウム、 チタン電極を蒸着により作製した。 これを喑所 にて静置することでカーボンナノチュ一ブ構造体 1 2およびアルミニゥ ム電極 1 8の界面にアルミニウム自然酸化膜を形成し、 素子を得た (図 2 ( f ) ) 。
〔実施例 2〕
多層カーボンナノチューブ架橋膜をキヤリァ輸送体とした素子を、 実 施例 1に示した方法と同様にして作製した。 なお、 酸化膜としては実施 例 1 と同様、 アルミニウム電極およびカーボンナノチューブ構造体の界 面にアルミニウム自然酸化膜を形成した。 他方の電極部材としてはチタ ンを用いた。 塗布膜の形成方法については下記に示す。 その他の工程に ついては、 実施例 1 と同様に行った。
( A ) 供給工程
( A— 1 ) 架橋溶液の調製 (付加工程)
( i ) 力ルポキシル基の付加 ' · ' カーボンナノチューブカルボン酸の 合成
多層カーボンナノチューブ粉末 (純度 9 0 %、 平均直径 3 0 n m、 平 均長さ 3 /x m ; サイエンスラボラトリ一製) 3 0 m gを濃硝酸 ( 6 0質 4 007201 量%水溶液、 関東化学製) 2 0 m l に加え、 1 2 0 °Cの条件で還流を 2 0時間行い、 カーボンナノチューブカルボン酸を合成した。
溶液の温度を室温に戻したのち、 5 0 0 0 r p mの条件で 1 5分間の 遠心分離を行い、 上澄み液と沈殿物とを分離した。 回収した沈殿物を純 水 1 0 m l に分散させて、 再び 5 0 0 0 r p mの条件で 1 5分間の遠心 分離を行い、 上澄み液と沈殿物とを分離した (以上で、 洗浄操作 1回) 。 この洗浄操作をさらに 5回繰り返し、 最後に沈殿物を回収した。
回収された沈殿物について、 赤外吸収スペク トルを測定した。 また、 比較のため、 用いた多層カーボンナノチューブ原料自体の赤外吸収スぺ ク トルも測定した。 両スペク トルを比較すると、 多層力一ボンナノチュ —ブ原料自体においては観測されていない、 カルボン酸に特徴的な 1 7 3 5 c m - 1の吸収が、 前記沈殿物の方には観測された。 このことから 、 硝酸との反応によって、 カーボンナノチューブに力ルポキシル基が導 入されたことがわかった。 すなわち、 沈殿物がカーボンナノチューブ力 ルボン酸であることが確認された。
また、 回収された沈殿物を中性の純水に添加してみると、 分散性が良 好であることが確認された。 この結果は、 親水性の力ルポキシル基が力 一ボンナノチューブに導入されたという、 赤外吸収スぺク トルの結果を 支持する。
(混合工程)
上記工程で得られたメチルエステル化した力一ボンナノチューブカル ボン酸 3 O m gを、 グリセリン (関東化学製) 4 gに加え、 超音波分散 機を用いて混合した。 さらに、 これを粘度調整剤としてのメタノール 4 gに加え、 架橋溶液 ( 1 ) を調製した。 〔実施例 3〕
本実施例では、 図 6に示されるように、 基板上でキャリア輸送体が挟 み込まれたサンドイッチ構造の整流素子を製造した。 ここで、 図 6は、 本実施例の整流素子の模式断面図である。
あらかじめ、 基板となるシリコンウェハー (図示せず) に、 主電極で あるアルミニウム電極 3を形成し、 このアルミニウム電極 3上に、 障壁 を形成するためのアルミナ (A 1 2 0 3 ) 層 4を蒸着により積層した。 次に、 実施例 1に示した方法と同様にして、 キャリア輸送層である単 層カーボンナノチューブ構造体 1を形成した。 さらに上部電極 2として チタン/金を蒸着し、 整流素子を得た。 なお、 蒸着したアルミナの厚み は約 7 0 n mである。
[評価試験 (電流一電圧特性の測定) ]
実施例 1〜 3の素子についての直流電流? 電圧特性測定を行った。 測定は、 ピコアンメータ 4 1 4 0 B (ヒューレッ トパッカ一ド製) を 使って 2端子法で行った。
実施例 1の素子の電流一電圧特性 (図 7 ) から、 アルミニウム電極へ の負電圧印加を順バイァスとする整流作用が得られることを確認した。 実施例 2の多層カーボンナノチューブ架橋膜を用いた素子においても 、 素子の電流一電圧特性 (図 8 ) から整流作用を示すことが確認され、 本発明の整流素子が単層、 多層カーボンナノチューブのいずれを用いて も整流作用を発現できることを確認した。
また、 実施例 3の素子においても、 同様に電流一電圧特性 (図 9 ) か ら整流作用が確認でき、 カーボンナノチューブ構造体からなるキヤリァ 輸送体一 2つの電極間の各界面を、 例えば一方に酸化膜を存在させる等 とで、 整流作用が発現すること

Claims

( 1 ) 一対の電極と、 該一対の電極間に設けられた、 1本または複数 のカーボンナノチューブにより構成されるキヤリア輸送体と、 を備え、 前記一対の電極のうち一方の電極および前記キヤリァ輸送体の第 1の 界面と、 前記一対の電極の請うち他方の電極および前記キヤリァ輸送体の 第 2の界面と、 が異なる障壁レベルとなるように、 前記一方の電極およ び前記キヤリァ輸送体間の第 1の接続構成と、 前記他方の電極および前 記キヤリァ輸送体間の第 2の接続構成と、 を異なる構成としたことを特 徴とする整流素子。 囲
( 2 ) 前記キャリア輸送体が、 複数の力一ボンナノチューブにより構 成されることを特徴とする請求項 1 に記載の整流素子。
( 3 ) 前記キャリア輸送体が、 前記複数のカーボンナノチューブが相 互に架橋した網目構造を構成してなるカーボンナノチューブ構造体によ り形成されてなることを特徴とする請求項 2に記載の整流素子。
( 4 ) 前記第 1の界面と前記第 2の界面との障壁レベルが異なるよう に、 前記第 1の界面および前記第 2の界面の少なくとも一方に酸化物層 を介在させてなることを特徴とする請求項 1に記載の整流素子。
( 5 ) 前記酸化物層が、 金属酸化膜あるいは半導体酸化膜であること を特徴とする請求項 4に記載の整流素子。
( 6 ) 前記酸化物層が金属酸化膜であり、 かつ、 該金属酸化膜が、 前 記一方の電極を構成する材料の酸化物からなることを特徴とする請求項 4に記載の整流素子。
( 7 ) 前記一対の電極が、 それぞれ異なる材料から構成されてなるこ とを特徴とする請求項 6に記載の整流素子。
( 8 ) 前記一対の電極のうち一方の電極を構成する材料が、 チタン、 アルミニウム、 銀、 銅、 導電化されたシリコン、 鉄、 タンタル、 ニオブ 、 亜鉛、 タングステン、 スズ、 ニッケル、 マグネシウム、 インジウム、 クロム、 パラジウム、 モリブデンおよびコバルトからなる群より選ばれ る少なく とも 1つの金属もしくはその合金であることを特徴とする請求 項 7に記載の整流素子。
( 9 ) 前記酸化物層が、 酸化アルミニウム、 二酸化珪素、 酸化銅、 酸 化銀、 酸化チタン、 酸化亜鉛、 酸化スズ、 酸化ニッケル、 酸化マグネシ ゥム酸化インジウム、 酸化クロム、 酸化鉛、 酸化マンガン、 酸化鉄、 酸 化パラジウム、 酸化タンタル、 酸化タングステン、 酸化モリブデン、 酸 化バナジウム、 酸化コバルト、 酸化ハフニウムおよび酸化ランタンから なる群より選ばれる少なく とも 1つから構成されることを特徴とする請 求項 4に記載の整流素子。
( 1 0 ) 前記一方の電極が、 前記他方の電極よりもイオン化傾向の高 い材料から構成されていることを特徴とする請求項 7に記載の整流素子
( 1 1 ) 前記第 1の界面と前記第 2の界面の障壁レベルが異なるよう に、 前記一方の電極と前記他方の電極の材料を異ならせてなることを特 徴とする請求項 1に記載の整流素子。
( 1 2 ) 前記一方の電極および前記他方の電極を構成する材料が、 そ れぞれ独立に、 アルミニウム、 銀、 銅、 導電化されたシリコン、 金、 白 金、 チタン、 亜鉛、 ニッケル、 スズ、 マグネシウム、 インジウム、 クロ ム、 マンガン、 鉄、 鉛、 パラジウム、 タンタル、 タングステン、 モリブ デン、 バナジウム、 コバルト、 ハフニウム、 およびランタンからなる群 より選ばれる少なくとも 1つの金属もしくはその合金であることを特徴 とする請求項 1 1 に記載の整流素子。
( 1 3 ) 前記他方の電極を構成する材料が、 金、 チタン、 鉄、 ニッケ ル、 タングステン、 導電化されたシリコン、 クロム、 ニオブ、 コバルト 、 モリブデンおよびバナジウムからなる群より選ばれる少なくとも 1つ の金属もしくはその合金であることを特徴とする請求項 1 1 に記載の整 流素子。
( 1 4 ) 前記第 1の界面における前記一方の電極および前記キヤリァ 輸送体間の密着度が、 前記第 2の界面における前記他方の電極および前 記キヤリァ輸送体間の密着度よりも小さいことを特徴とする請求項 1 1 に記載の整流素子。
( 1 5 ) 前記第 1の界面における前記一方の電極および前記キヤリァ 輸送体間と、 前記第 2の界面における前記他方の電極および前記キヤリ ァ輸送体間とで、 密着度の差が生ずるように、 前記第 1の界面または第 2の界面における前記キヤリァ輸送体の表面が改質されてなることを特 徵とする請求項 1 に記載の整流素子。
( 1 6 ) 前記第 1の界面における前記一方の電極および前記キヤリァ 輸送体間と、 前記第 2の界面における前記他方の電極および前記キヤリ ァ輸送体間とで、 密着度の差が生ずるように、 前記第 1の界面および第 2の界面の少なくとも一方に、 付着力調整層を介在させてなることを特 徵とする請求項 1 に記載の整流素子。
( 1 7 ) 前記カーボンナノチューブ構造体が、 官能基が結合された複 数のカーボンナノチューブの当該官能基間を化学結合させて架橋部位が 形成されてなることを特徴とする請求項 3に記載の整流素子。
( 1 8 ) 前記複数のカーボンナノチューブが、 主として単層カーボン ナノチューブであることを特徴とする請求項 1 7に記載の整流素子。
( 1 9 ) 前記複数のカーボンナノチューブが、 主として多層力一ボン ナノチューブであることを特徴とする請求項 1 7に記載の整流素子。
( 2 0 ) 前記架橋部位が、 (一 C O O (C H2) 2 O C O—) 、 一 C O O C H 2 C HO H C H 20 C 0 -、 一 C OO C H2 CH (O C〇一) C H2OH、 一 C O〇 CH2 CH (O C O—) CH2O C O―、 および、 一 C O O— C 6H4— C O O—からなる群より選ばれるいずれかの化学構 造であることを特徴とする請求項 1 7に記載の整流素子。
( 2 1 ) 前記架橋部位が、 一 C OO C O—、 一 O—、 — NHC O—、 一 C OO—、 一 N CH—、 一 NH—、 一 S—、 — O—、 一 NHC OO— 、 および、 一 S— S—、 から選ばれるいずれかの化学構造であることを 特徴とする請求項 3に記載の整流素子。
( 2 2 ) 官能基が結合された複数のカーボンナノチューブを含む溶液 を用いて、 前記複数のカーボンナノチューブの前記官能基間を化学結合 させて前記架橋部位が形成されてなることを特徴とする請求項 1 7に記 載の整流素子。
( 2 3 ) 官能基が結合されたカーボンナノチューブおよび前記官能基 と架橋反応を起こす架橋剤を含む溶液を用いて、 これを硬化させること により、 前記官能基と前記架橋剤とを架橋反応させて前記架橋部位が形 成されてなることを特徴とする請求項 1 7に記載の整流素子。
( 2 4) 前記架橋剤が、 非自己重合性の架橋剤であることを特徴とす る請求項 2 3に記載の整流素子。 ( 2 5) 前記架橋部位が、 複数の前記官能基同士の化学結合により形 成された構造からなることを特徴とする請求項 1 7に記載の整流素子。
( 2 6 ) 前記化学結合を生ずる反応が、 脱水縮合、 置換反応、 付加反 応および酸化反応からなる群より選ばれるいずれか 1つの反応であるこ とを特徴とする請求項 2 5に記載の整流素子。
( 2 7 ) 前記キャリア輸送体が層状であり、 前記カーボンナノチュー ブ構造体が所定形状にパターニングされたものであることを特徵とする 請求項 2に記載の整流素子。
( 2 8 ) 前記第 1の界面における障壁レベルが前記第 2の界面におけ る障壁レベルよりも高く、 前記一方の電極と前記キヤリァ輸送体との界 面において、 前記一方の電極表面の幅がキヤリァ輸送体の幅以上である ことを特徴とする請求項 2 7に記載の整流素子。
( 2 9 ) 前記第 1の接続構成が、 前記第 1の界面に酸化物層を介在さ せてなることを特徴とする請求項 2 8に記載の整流素子。
( 3 0 ) 少なくとも前記第 1の界面を外気から封止するための封止体 を備えることを特徴とする請求項 1 に記載の整流素子。
( 3 1 ) 請求項 1に記載の整流素子と、 該整流素子が表面に形成され たフレキシブル基板とを備えることを特徴とする電子回路。
( 3 2 ) 基体表面に設けられた一対の電極間に 1本または複数のカー ボンナノチューブから構成されるキヤリァ輸送体が配されてなる整流素 子の製造方法であって、 少なく とも、
前記一対の電極のうち一方の電極および前記キヤリァ輸送体の第 1の 界面と、 前記一対の電極のうち他方の電極および前記キヤリァ輸送体の 第 2の界面と、 が異なる障壁レベルとなるように、 前記一方の電極およ び前記キヤリァ輸送体間の第 1の接続構成と、 前記他方の電極および前 記キヤリァ輸送体間の第 2の接続構成と、 を異なる構成に形成する接続 構成形成工程を含むことを特徴とする整流素子の製造方法。
( 3 3 ) 前記接続構成形成工程が、 前記一方の電極および前記キヤリ ァ輸送体の第 1の界面に、 当該第 1の界面が、 前記他方の電極および前 記キャリア輸送体の第 2の界面とは異なる障壁レベルとなる酸化物層を 形成する酸化物層形成工程を含むことを特徴とする請求項 3 2に記載の 整流素子の製造方法。
( 3 4 ) 前記酸化物層形成工程が、 酸化可能な材料から構成される酸 化物前駆体層を前記第 1の界面に配置した後、 該酸化物前駆体層を酸化 させる工程であることを特徴とする請求項 3 3に記載の整流素子の製造 方法。
( 3 5 ) 前記キヤリァ輸送体が複数のカーボンナノチューブが相互に 架橋した網目構造を構成してなるカーボンナノチューブ構造体により形 成され、 前記酸化物層形成工程が、 前記酸化物前駆体層を前記キャリア 輸送体と接触させて形成した後に、 該酸化物前駆体層を酸化させる工程 であることを特徴とする請求項 3 4に記載の整流素子の製造方法。
( 3 6 ) 前記酸化物層形成工程が、 前記一対の電極のうち一方の電極 を酸化可能な材料で形成し、 前記第 1の界面における前記一方の電極の 表面を酸化させて酸化物層を形成する工程であることを特徴とする請求 項 3 3に記載の整流素子の製造方法。
( 3 7 ) 前記キヤリァ輸送体が複数のカーボンナノチューブが相互に 架橋した網目構造を構成してなるカーボンナノチューブ構造体により形 成され、 前記酸化物層形成工程が、 前記一方の電極を前記キャリア輸送 体と接触させて形成した後に、 当該接触面の前記一方の電極を酸化させ る工程であることを特徴とする請求項 3 6に記載の整流素子の製造方法
( 3 8 ) 前記一対の電極のうち一方の電極を構成する材料が、 アルミ 二ゥム、 銀、 銅、 導電化されたシリコン、 チタン、 亜鉛、 ニッケル、 ス ズ、 マグネシウム、 インジウム、 クロム、 マンガン、 鉄、 鉛、 パラジゥ ム、 タンタル、 タングステン、 モリブデン、 バナジウム、 コバルト、 ハ フニゥムおよびランタンからなる群より選ばれる少なくとも 1つの金属 もしくはその合金であることを特徴とする請求項 3 6に記載の整流素子 の製造方法。
( 3 9 ) 前記他方の電極が、 前記一方の電極よりもイオン化傾向の低 い材料から構成されていることを特徴とする請求項 3 3に記載の整流素 子の製造方法。
( 4 0 ) 前記他方の電極を構成する材料が、 金、 チタン、 鉄、 ニッケ ル、 タングステン、 導電化されたシリコン、 クロム、 ニオブ、 コバルト 、 モリブデンおよびバナジウムからなる群より選ばれる少なくとも 1つ の金属もしくはその合金であることを特徴とする請求項 3 3に記載の整 流素子の製造方法。
( 4 1 ) 前記接続構成形成工程が、 前記一対の電極をそれぞれ異なる 材料で形成する工程を含むことを特徴とする請求項 3 2に記載の整流素 子の製造方法。
( 4 2 ) 前記接続構成形成工程が、 前記第 1の界面における前記一方 の電極および前記キヤリァ輸送体間と、 前記第 2の界面における前記他 方の電極および前記キヤリァ輸送体間とで、 密着度の差が生ずるように 、 前記第 1の界面または第 2の界面における前記キヤリァ輸送体の表面 を改質する工程を含むことを特徴とする請求項 3 2に記載の整流素子の 製造方法。
( 4 3 ) 前記接続構成形成工程が、 前記第 1の界面における前記一方 の電極および前記キヤリァ輸送体間と、 前記第 2の界面における前記他 方の電極および前記キヤリァ輸送体間とで、 密着度の差が生ずるように 、 前記第 1の界面および第 2の界面の少なくとも一方に、 付着力調整層 を形成する工程を含むことを特徴とする請求項 3 2に記載の整流素子の 製造方法。
( 4 4 ) 前記キャリア輸送体が、 相互に化学結合していない複数の力 一ボンナノチューブが絡み合うことで網目構造を形成してなることを特 徵とする請求項 3 2に記載の整流素子の製造方法。
( 4 5 ) 前記複数の力一ボンナノチューブが相互に架橋した網目構造 を構成してなるカーボンナノチューブ構造体からなることを特徴とする 請求項 3 2に記載の整流素子の製造方法。
( 4 6 ) 前記接続構成形成工程に先立ち、 前記キャリア輸送体を形成 するキャリア輸送体形成工程を備え、 当該工程が、
官能基を有する複数の力一ボンナノチューブを前記基体表面に供給す る供給工程と、
前記官能基間を架橋させて架橋部位を形成し、 前記網目構造のカーボ ンナノチューブ構造体を形成する架橋工程と、
を含むことを特徴とする請求項 3 2に記載の整流素子の製造方法。
( 4 7 ) 前記供給工程が、 前記基体表面に前記官能基を有するカーボ ンナノチューブを含む溶液を塗布する塗布工程を含み、 前記カーボンナ ノチューブ構造体が膜状であることを特徴とする請求項 4 6に記載の整 流素子の製造方法。
(4 8 ) 前記複数の力一ボンナノチューブが、 主として単層カーボン ナノチューブであることを特徴とする請求項 4 6に記載の整流素子の製 造方法。
(4 9 ) 前記複数のカーボンナノチューブが、 主として多層カーボン ナノチューブであることを特徴とする請求項 4 6に記載の整流素子の製 造方法。
( 5 0 ) 前記供給工程が、 前記官能基間を架橋する架橋剤の前記基体 表面への供給を含むことを特徴とする請求項 4 6に記載の整流素子の製 造方法。
( 5 1 ) 前記架橋剤が、 非自己重合性であることを特徴とする請求項 5 0に記載の整流素子の製造方法。
( 5 2 ) 前記官能基が、 一 OH、 一 C OOH、 一 C O O R (Rは、 置 換または未置換の炭化水素基) 、 一 C OX (Xはハロゲン原子) 、 一 N H 2および一 N C〇からなる群より選ばれる少なく とも 1つの基であり 、 前記架橋剤が、 選択された前記官能基と架橋反応を起こし得る架橋剤 であることを特徴とする請求項 4 6に記載の整流素子の製造方法。
( 5 3 ) 前記架橋剤が、 ポリオール、 ポリアミン、 ポリカルボン酸、 ポリカルボン酸エステル、 ポリカルボン酸ハライ ド、 ポリカルポジイミ ドおよびポリイソシァネ一トからなる群より選ばれる少なく とも 1つの 架橋剤であり、 前記官能基が、 選択された前記架橋剤と架橋反応を起こ し得る官能基であることを特徴とする請求項 5 0に記載の整流素子の製 造方法。 ( 5 4) 前記官能基が、 — OH、 一 C OOH、 - C O O (Rは、 置 換または未置換の炭化水素基) 、 — C OX (Xはハロゲン原子) 、 一 N H2および一 N C Oからなる群より選ばれる少なく とも 1つの基であり 前記架橋剤が、 ポリオール、 ポリアミン、 ポリカルボン酸、 ポリカル ボン酸エステル、 ポリカルボン酸ハライ ド、 ポリカルポジイミ ドおよび ポリイソシァネートからなる群より選ばれる少なくとも 1つの架橋剤で あり、
前記官能基と前記架橋剤とが、 相互に架橋反応を起こし得る組み合わ せとなるようにそれぞれ選択されたことを特徴とする請求項 5 0に記載 の整流素子の製造方法。
( 5 5 ) 前記官能基が、 一 C OO R (Rは、 置換または未置換の炭化 水素基) であることを特徴とする請求項 4 6に記載の整流素子の製造方 法。
( 5 6 ) 前記架橋剤が、 ポリオールであることを特徴とする請求項 5 5に記載の整流素子の製造方法。
( 5 7 ) 前記架橋剤が、 グリセリン、 エチレングリコール、 ブテンジ オール、 へキシンジオール、 ヒドロキノンおよびナフ夕レンジオールか らなる群より選ばれる少なくとも 1つであることを特徴とする請求項 5 6に記載の整流素子の製造方法。
( 5 8 ) 前記架橋工程における前記官能基間を架橋させる反応が、 複 数の前記官能基同士を化学結合させる反応であることを特徴とする請求 項 4 6に記載の整流素子の製造方法。
( 5 9 ) 前記供給工程が、 前記官能基同士の化学結合を生じさせる添 加剤の前記基体表面への供給を含むことを特徴とする請求項 5 8に記載 の整流素子の製造方法。
( 6 0 ) 前記反応が脱水縮合であって、 前記添加剤が縮合剤であるこ とを特徴とする請求項 5 9に記載の整流素子の製造方法。
( 6 1 ) 前記官能基が、 一 C OO R (Rは、 置換または未置換の炭化 水素基) 、 — C〇 OH、 - C OX (Xはハロゲン原子) 、 — OH、 — C H 0、 一 N H 2からなる群より選ばれる少なく ともいずれか 1つである ことを特徴とする請求項 6 0に記載の整流素子の製造方法。
( 6 2 ) 前記官能基が、 一 C OOHであることを特徴とする請求項 6 0に記載の整流素子の製造方法。
( 6 3 ) 前記縮合剤が、 硫酸、 N—ェチルー N ' — ( 3—ジメチルァ ミノプロピル) カルポジイミ ドおよびジシクロへキシルカルポジイミ ド から選ばれる 1つであることを特徴とする請求項 6 0に記載の整流素子 の製造方法。
( 6 4) 前記反応が置換反応であって、 前記添加剤が塩基であること を特徴とする請求項 5 9に記載の整流素子の製造方法。
( 6 5 ) 前記官能基が、 一 NH2、 - X (Xはハロゲン原子) 、 一 S H、 一〇H、 一〇 S 02 C H3および一 O S〇 2 ( C 6 H 4) CH3からな る群より選ばれる少なく ともいずれか 1つであることを特徴とする請求 項 6 4に記載の整流素子の製造方法。
( 6 6 ) 前記塩基が、 水酸化ナトリウム、 水酸化カリウム、 ピリジン およびナトリウムエトキシドからなる群より選ばれる少なくともいずれ か 1つであることを特徴とする請求項 6 4に記載の整流素子の製造方法 ( 6 7 ) 前記反応が、 付加反応であることを特徴とする請求項 5 8に 記載の整流素子の製造方法。
( 6 8 ) 前記官能基が、 一〇Hおよび一 N C Oからなる群より選ばれ る少なくともいずれか 1つであることを特徴とする請求項 6 7に記載の 整流素子の製造方法。
( 6 9 ) 前記反応が、 酸化反応であることを特徴とする請求項 5 9に 記載の整流素子の製造方法。
( 7 0 ) 前記官能基が、 一 S Hであることを特徴とする請求項 6 9に 記載の整流素子の製造方法。
( 7 1 ) 前記添加剤が、 酸化反応促進剤であることを特徴とする請求 項 6 9に記載の整流素子の製造方法。
( 7 2 ) 前記酸化反応促進剤が、 ヨウ素であることを特徴とする請求 項 7 1に記載の整流素子の製造方法。
( 7 3 ) 前記キャリア輸送体が、 前記複数のカーボンナノチューブが 相互に架橋した網目構造を構成してなる力一ボンナノチューブ構造体に より形成されるものであり、
当該カーボンナノチューブ構造体を前記キヤリァ輸送体に応じた形状 にパターニングするパ夕一ニング工程を含むことを特徴とする請求項 3 2に記載の整流素子の製造方法。
( 7 4) 前記パターニング工程が、 前記基体表面における前記キヤリ ァ輸送体に応じたパターン以外の領域のカーボンナノチューブ構造体に 、 ドライエッチングを行うことで、 当該領域のカーボンナノチューブ構 造体を除去し、 前記カーボンナノチューブ構造体を前記キヤリァ輸送体 に応じた形状にパターニングする工程であることを特徴とする請求項 7 3に記載の整流素子の製造方法。
( 7 5 ) 前記パターニング工程が、
前記基体表面における前記キヤリァ輸送体に応じたパターンの領域の カーボンナノチューブ構造体の上に、 レジスト層を設けるレジスト層形 成工程と、
前記基体の前記カーボンナノチューブ構造体およびレジス ト層が積層 された面に、 ドライエッチングを行うことで、 前記領域以外の領域で表 出しているカーボンナノチューブ構造体を除去する除去工程と、 を含むことを特徴とする請求項 7 4に記載の整流素子の製造方法。
( 7 6 ) 前記除去工程において、 前記基体の前記力一ボンナノチュ一 ブ構造体およびレジスト層が積層された面に、 酸素分子のラジカルを照 射することを特徴とする請求項 7 5に記載の整流素子の製造方法。
( 7 7 ) 酸素分子に紫外線を照射することにより、 酸素ラジカルを発 生させ、 これを前記基体の前記カーボンナノチューブ構造体およびレジ スト層が積層された面に照射するラジカルとして用いることを特徴とす る請求項 7 6に記載の整流素子の製造方法。
( 7 8 ) 前記パターニング工程が、 除去工程に引き続いてさらに、 レ ジス ト層形成工程で設けられた前記レジスト層を剥離するレジス ト層剥 離工程を含むことを特徴とする請求項 7 5に記載の整流素子の製造方法
( 7 9 ) 前記レジスト層が、 樹脂層であることを特徴とする請求項 Ί 5に記載の整流素子の製造方法。
( 8 0 ) 前記パターニング工程が、 前記基体表面における前記キヤリ ァ輸送体に応じたパターン以外の領域のカーボンナノチューブ構造体に 、 ガス分子のイオンをイオンビームにより選択的に照射することで、 当 該領域のカーボンナノチューブ構造体を除去し、 前記カーボンナノチュ ーブ構造体を前記キャリア輸送体に応じたパターンにパ夕一ニングする 工程であることを特徴とする請求項 7 4に記載の整流素子の製造方法。
PCT/JP2004/007201 2003-12-26 2004-05-20 整流素子およびそれを用いた電子回路、並びに整流素子の製造方法 WO2005067059A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005516787A JPWO2005067059A1 (ja) 2003-12-26 2004-05-20 整流素子およびそれを用いた電子回路、並びに整流素子の製造方法
CN2004800390172A CN1898804B (zh) 2003-12-26 2004-05-20 整流元件、使用该整流元件的电子电路以及整流元件的制造方法
EP04734132A EP1699088A4 (en) 2003-12-26 2004-05-20 RECTIFIER EQUIPMENT AND ELECTRONIC SWITCHING THEREFOR AND PROCESS FOR THE PRODUCTION OF A RECTIFIER EQUIPMENT
US10/580,436 US20080053952A1 (en) 2003-12-26 2004-05-20 Rectifying Device, Electronic Circuit Using the Same, and Method of Manufacturing Rectifying Device
US14/258,439 US20140225058A1 (en) 2003-12-26 2014-04-22 Rectifying device, electronic circuit using the same, and method of manufacturing rectifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-435577 2003-12-26
JP2003435577 2003-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/580,436 A-371-Of-International US20080053952A1 (en) 2003-12-26 2004-05-20 Rectifying Device, Electronic Circuit Using the Same, and Method of Manufacturing Rectifying Device
US14/258,439 Division US20140225058A1 (en) 2003-12-26 2014-04-22 Rectifying device, electronic circuit using the same, and method of manufacturing rectifying device

Publications (1)

Publication Number Publication Date
WO2005067059A1 true WO2005067059A1 (ja) 2005-07-21

Family

ID=34746907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007201 WO2005067059A1 (ja) 2003-12-26 2004-05-20 整流素子およびそれを用いた電子回路、並びに整流素子の製造方法

Country Status (6)

Country Link
US (2) US20080053952A1 (ja)
EP (1) EP1699088A4 (ja)
JP (1) JPWO2005067059A1 (ja)
KR (1) KR100861522B1 (ja)
CN (1) CN1898804B (ja)
WO (1) WO2005067059A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504421A (ja) * 2005-08-11 2009-02-05 シーメンス アクチエンゲゼルシヤフト マイクロおよびナノ電気回路に機能性ナノ構造体を集積する方法
JP2017048378A (ja) * 2015-08-31 2017-03-09 パロ アルト リサーチ センター インコーポレイテッド 機械的に頑強な接続した粒子の網目構造
US10490748B2 (en) 2015-04-01 2019-11-26 Toray Industries, Inc. Rectifying element, method for producing same, and wireless communication device
JP2020031095A (ja) * 2018-08-21 2020-02-27 株式会社東芝 半導体素子

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004049453A1 (de) * 2004-10-11 2006-04-20 Infineon Technologies Ag Elektrischer Schaltkreis mit einer Nanostruktur und Verfahren zum Herstellen einer Kontaktierung einer Nanostruktur
CN101278025A (zh) * 2005-09-29 2008-10-01 陶氏康宁公司 从金属基底中剥离高温膜和/或器件的方法
US8174084B2 (en) * 2006-09-19 2012-05-08 Intel Corporation Stress sensor for in-situ measurement of package-induced stress in semiconductor devices
US8202771B2 (en) * 2006-09-26 2012-06-19 Dai Nippon Printing Co., Ltd. Manufacturing method of organic semiconductor device
US20080217730A1 (en) * 2007-03-07 2008-09-11 Toshiharu Furukawa Methods of forming gas dielectric and related structure
WO2010010562A2 (en) * 2008-07-25 2010-01-28 Ramot At Tel Aviv University Ltd. Rectifying antenna device
US9147790B2 (en) 2010-01-04 2015-09-29 Scitech Associates Holdings, Inc. Method and apparatus for an optical frequency rectifier
US8299655B2 (en) * 2010-01-04 2012-10-30 Scitech Associates Holdings, Inc. Method and apparatus for an optical frequency rectifier
US9083278B2 (en) 2010-07-05 2015-07-14 Stmicroelectronics S.R.L. Device for transforming electromagnetic IR energy from spatially incoherent, low-power density, broad-band radiation in spatially coherent, high-power density, quasi-monochromatic radiation
GB201100712D0 (en) * 2011-01-17 2011-03-02 Bio Nano Consulting Cross-linked carbon nanotube networks
FR2971364B1 (fr) * 2011-02-07 2013-02-15 Centre Nat Rech Scient Agencement optimise de particules de triazole
US9293233B2 (en) 2013-02-11 2016-03-22 Tyco Electronics Corporation Composite cable
KR101706753B1 (ko) * 2015-07-10 2017-02-14 건국대학교 산학협력단 전자장치 제조방법 및 이를 이용해 제조된 전자장치
CN106549077B (zh) * 2015-09-18 2018-03-02 中国科学院物理研究所 一种光电二极管装置以及一种产生整流效应的方法
US10665799B2 (en) 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
CN108336142B (zh) * 2017-01-20 2020-09-25 清华大学 薄膜晶体管
CN108336128B (zh) 2017-01-20 2020-12-04 清华大学 薄膜晶体管
CN108336149B (zh) * 2017-01-20 2020-09-25 清华大学 肖特基二极管及肖特基二极管阵列
CN108336151B (zh) 2017-01-20 2020-12-04 清华大学 肖特基二极管、肖特基二极管阵列及肖特基二极管的制备方法
CN108336091B (zh) * 2017-01-20 2021-01-05 清华大学 薄膜晶体管
DE102019107163B3 (de) * 2019-03-20 2020-09-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dünnschichttransistor und Verfahren zum Herstellen eines Dünnschichttransistors
KR102606509B1 (ko) * 2019-07-25 2023-11-29 브이메모리 주식회사 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법
KR102246246B1 (ko) * 2019-07-25 2021-04-30 브이메모리 주식회사 변동 저저항 영역 기반 전자 소자 및 이의 제어 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898333A (ja) * 1981-12-09 1983-06-11 Japan Synthetic Rubber Co Ltd ポリアセチレンフイルムの表面改質方法
JPS5932166A (ja) * 1982-08-16 1984-02-21 Nippon Telegr & Teleph Corp <Ntt> ポリアセチレン半導体素子
JPH0629556A (ja) * 1992-07-08 1994-02-04 Kawamura Inst Of Chem Res トンネルダイオード
JPH0629514A (ja) * 1992-01-13 1994-02-04 Kawamura Inst Of Chem Res 半導体素子
JP2002076324A (ja) * 2000-08-31 2002-03-15 Fuji Xerox Co Ltd トランジスタ
JP2002141633A (ja) * 2000-10-25 2002-05-17 Lucent Technol Inc 垂直にナノ相互接続された回路デバイスからなる製品及びその製造方法
WO2002063693A1 (fr) * 2001-02-08 2002-08-15 Hitachi, Ltd. Dispositif electronique et source d'electronsavec nanotube de carbone
JP2002346996A (ja) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd カーボンナノチューブ構造体の製造方法、並びに、カーボンナノチューブ構造体およびそれを用いたカーボンナノチューブデバイス
JP2003258164A (ja) * 2002-03-01 2003-09-12 Fuji Xerox Co Ltd 有機電子デバイスおよびその製造方法
JP2003309265A (ja) * 2002-04-15 2003-10-31 Konica Minolta Holdings Inc 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123819A (en) * 1997-11-12 2000-09-26 Protiveris, Inc. Nanoelectrode arrays
KR100277881B1 (ko) * 1998-06-16 2001-02-01 김영환 트랜지스터
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US7250147B2 (en) * 2001-01-29 2007-07-31 Tour James M Process for derivatizing carbon nanotubes with diazonium species
US20070297216A1 (en) * 2001-03-02 2007-12-27 William Marsh Rice University Self-assembly of molecular devices
DE10123876A1 (de) * 2001-05-16 2002-11-28 Infineon Technologies Ag Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung
US6872681B2 (en) * 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
JP3702816B2 (ja) * 2001-07-13 2005-10-05 日産自動車株式会社 タイヤ空気圧低下警報装置
US6759693B2 (en) * 2002-06-19 2004-07-06 Nantero, Inc. Nanotube permeable base transistor
TW200425530A (en) * 2002-09-05 2004-11-16 Nanosys Inc Nanostructure and nanocomposite based compositions and photovoltaic devices
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7452519B2 (en) * 2002-11-18 2008-11-18 William Marsh Rice University Sidewall functionalization of single-wall carbon nanotubes through C-N bond forming substitutions of fluoronanotubes
KR100801820B1 (ko) * 2002-11-19 2008-02-11 삼성전자주식회사 표면수식된 탄소나노튜브를 이용한 패턴 형성방법
WO2004052489A2 (en) * 2002-12-09 2004-06-24 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
KR100947702B1 (ko) * 2003-02-26 2010-03-16 삼성전자주식회사 경화성 작용기로 표면수식된 탄소나노튜브를 이용한패턴박막 형성방법 및 고분자 복합체의 제조방법
JP4379002B2 (ja) * 2003-05-30 2009-12-09 富士ゼロックス株式会社 カーボンナノチューブデバイスの製造方法、並びに、カーボンナノチューブ転写体
US7682654B2 (en) * 2003-06-03 2010-03-23 Seldon Technologies, Llc Fused nanostructure material
JP2005072209A (ja) * 2003-08-22 2005-03-17 Fuji Xerox Co Ltd 抵抗素子、その製造方法およびサーミスタ
JP4449387B2 (ja) * 2003-09-25 2010-04-14 富士ゼロックス株式会社 複合材の製造方法
JP4945888B2 (ja) * 2003-10-09 2012-06-06 富士ゼロックス株式会社 複合体およびその製造方法
JP4412052B2 (ja) * 2003-10-28 2010-02-10 富士ゼロックス株式会社 複合材およびその製造方法
US7713508B2 (en) * 2004-03-19 2010-05-11 Arrowhead Center, Inc. Thiation of carbon nanotubes and composite formation
JP4062346B2 (ja) * 2006-08-17 2008-03-19 富士ゼロックス株式会社 カーボンナノチューブ膜およびその製造方法、並びにそれを用いたキャパシタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898333A (ja) * 1981-12-09 1983-06-11 Japan Synthetic Rubber Co Ltd ポリアセチレンフイルムの表面改質方法
JPS5932166A (ja) * 1982-08-16 1984-02-21 Nippon Telegr & Teleph Corp <Ntt> ポリアセチレン半導体素子
JPH0629514A (ja) * 1992-01-13 1994-02-04 Kawamura Inst Of Chem Res 半導体素子
JPH0629556A (ja) * 1992-07-08 1994-02-04 Kawamura Inst Of Chem Res トンネルダイオード
JP2002076324A (ja) * 2000-08-31 2002-03-15 Fuji Xerox Co Ltd トランジスタ
JP2002141633A (ja) * 2000-10-25 2002-05-17 Lucent Technol Inc 垂直にナノ相互接続された回路デバイスからなる製品及びその製造方法
WO2002063693A1 (fr) * 2001-02-08 2002-08-15 Hitachi, Ltd. Dispositif electronique et source d'electronsavec nanotube de carbone
JP2002346996A (ja) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd カーボンナノチューブ構造体の製造方法、並びに、カーボンナノチューブ構造体およびそれを用いたカーボンナノチューブデバイス
JP2003258164A (ja) * 2002-03-01 2003-09-12 Fuji Xerox Co Ltd 有機電子デバイスおよびその製造方法
JP2003309265A (ja) * 2002-04-15 2003-10-31 Konica Minolta Holdings Inc 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FREITAG M. ET AL: "Controlled creation of a carbon nanotube diode by a scanned gate", APPLIED PHYSICS LETTERS, vol. 79, no. 20, 2001, pages 3326 - 3328, XP001103204 *
See also references of EP1699088A4 *
YAMADA T.: "Modeling of kink-shaped carbon-nanotube Schottky diode with gate bias modulation", APPLIED PHYSICS LETTERS, vol. 80, no. 21, 2002, pages 4027 - 4029, XP012031044 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504421A (ja) * 2005-08-11 2009-02-05 シーメンス アクチエンゲゼルシヤフト マイクロおよびナノ電気回路に機能性ナノ構造体を集積する方法
US10490748B2 (en) 2015-04-01 2019-11-26 Toray Industries, Inc. Rectifying element, method for producing same, and wireless communication device
JP2017048378A (ja) * 2015-08-31 2017-03-09 パロ アルト リサーチ センター インコーポレイテッド 機械的に頑強な接続した粒子の網目構造
JP2020031095A (ja) * 2018-08-21 2020-02-27 株式会社東芝 半導体素子
JP6993946B2 (ja) 2018-08-21 2022-01-14 株式会社東芝 半導体素子

Also Published As

Publication number Publication date
KR20060113756A (ko) 2006-11-02
CN1898804A (zh) 2007-01-17
EP1699088A1 (en) 2006-09-06
US20140225058A1 (en) 2014-08-14
US20080053952A1 (en) 2008-03-06
CN1898804B (zh) 2010-07-14
KR100861522B1 (ko) 2008-10-02
EP1699088A4 (en) 2009-08-19
JPWO2005067059A1 (ja) 2007-07-26

Similar Documents

Publication Publication Date Title
WO2005067059A1 (ja) 整流素子およびそれを用いた電子回路、並びに整流素子の製造方法
JP4379002B2 (ja) カーボンナノチューブデバイスの製造方法、並びに、カーボンナノチューブ転写体
WO2005010995A1 (ja) 電子素子、集積回路およびその製造方法
US7368009B2 (en) Carbon fine particle structure and process for producing the same, carbon fine particle transcriptional body for producing the same, solution for producing carbon fine particle structure, carbon fine particle structure, electronic device using carbon fine particle structure and process for producing the same, and integrated circuit
EP1506938B1 (en) Method for manufacturing a carbon nanotube structure and carbon nanotube transfer body
US7217374B2 (en) Resistance element, method of manufacturing the same, and thermistor
JP4419507B2 (ja) コンデンサの製造方法
JP4239848B2 (ja) マイクロ波用アンテナおよびその製造方法
US20050118403A1 (en) Electrical member, electrical device, and method of manufacturing the electrical member and electrical device
US20050284337A1 (en) Coating composition for electric part and process for forming coating film
JP4442335B2 (ja) デカップリング素子およびその製造方法、並びにそれを用いたプリント基板回路
JP4406211B2 (ja) π共役系高分子構造体を用いた電子素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480039017.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516787

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004734132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10580436

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067013583

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004734132

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067013583

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10580436

Country of ref document: US