WO2005062137A1 - 電波修正時計、電子機器および時刻修正方法 - Google Patents

電波修正時計、電子機器および時刻修正方法 Download PDF

Info

Publication number
WO2005062137A1
WO2005062137A1 PCT/JP2004/019339 JP2004019339W WO2005062137A1 WO 2005062137 A1 WO2005062137 A1 WO 2005062137A1 JP 2004019339 W JP2004019339 W JP 2004019339W WO 2005062137 A1 WO2005062137 A1 WO 2005062137A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitting station
information
synchronization
demodulated signal
time
Prior art date
Application number
PCT/JP2004/019339
Other languages
English (en)
French (fr)
Inventor
Akinari Takada
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to JP2005516524A priority Critical patent/JPWO2005062137A1/ja
Priority to US10/584,254 priority patent/US7680485B2/en
Priority to EP04807696A priority patent/EP1698950B1/en
Publication of WO2005062137A1 publication Critical patent/WO2005062137A1/ja

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/08Setting the time according to the time information carried or implied by the radio signal the radio signal being broadcast from a long-wave call sign, e.g. DCF77, JJY40, JJY60, MSF60 or WWVB
    • G04R20/12Decoding time data; Circuits therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R20/00Setting the time according to the time information carried or implied by the radio signal
    • G04R20/08Setting the time according to the time information carried or implied by the radio signal the radio signal being broadcast from a long-wave call sign, e.g. DCF77, JJY40, JJY60, MSF60 or WWVB
    • G04R20/10Tuning or receiving; Circuits therefor

Definitions

  • the present invention relates to a radio-controlled timepiece, an electronic device, and a time correction method for receiving a standard radio wave including time information and automatically correcting the time based on the received time information, and particularly relates to a transmission station in a plurality of countries or regions.
  • the present invention relates to an improvement of a radio-controlled timepiece, an electronic device, and a time correction method capable of receiving the standard radio wave of the present invention.
  • a radio-controlled timepiece that receives standard radio waves including time information with a small antenna and automatically corrects the time is a technology developed to reduce the size and performance of the antenna, reduce the power consumption of the receiver, and reduce costs. It is being developed and commercialized.
  • transmission stations that transmit standard radio waves are being constructed not only in Japan but also in the United States, Europe, Asia, and other regions, and are spreading worldwide. Therefore, the number of countries or regions that can receive standard radio waves from multiple transmitting stations is increasing, and as internationalization progresses, users of radio-controlled watches move around the world, and each time, The number of scenes receiving standard radio waves is increasing.
  • these standard radio waves have different time information formats in each country, and transmission frequencies may be different in each country or region. Therefore, in order for the radio-controlled timepiece to receive the standard time signal of each country or region and obtain time information, means for switching a decoding algorithm for decoding the time information format corresponding to the standard time signal of each transmitting station, If the transmission frequencies are different, a means for switching the reception frequency is required.
  • a switching means for receiving standard radio waves from a plurality of transmitting stations a manual reception switching method and an automatic reception switching method have been proposed.
  • the manual reception switching method is a method in which a user of a radio-controlled timepiece recognizes a transmitting station that can be received in the country or region where the user is located, and switches the transmitting station to be received by a reception switch or the like to receive. It is. In this case, the user needs to be aware of the transmitting station that transmits the standard radio wave in each country or region, and it is necessary to operate a reception switching switch to switch the reception, which is inconvenient. Furthermore, transmission suitable for reception There is a big problem that it is not possible to select a station and it is not possible to always display the correct time because there is a possibility.
  • the reception frequency of the standard radio wave is switched according to the frequency stored in the storage means, and the reception of the standard radio wave to be received succeeds.
  • a time data receiving apparatus that determines the standard radio wave suitable for reception from among standard radio waves having different frequencies by making a determination (see, for example, Patent Document 1).
  • receiving means for receiving a plurality of standard radio waves having different frequencies, receiving frequency switching means for switching the frequency of the received standard radio wave, control means for controlling the receiving frequency switching means, A current time correction unit that corrects the current time data based on the received time data, further comprising a success / failure determination unit that determines success / failure of reception of the standard radio wave by the reception unit, and a storage unit that stores a reception frequency.
  • the control means controls the reception frequency switching means so as to switch the frequency of the standard radio wave received by the reception means to the frequency stored in the storage means, and determines that the reception has failed by the success / failure determination means. If it is determined, the reception frequency switching means is controlled to switch to another frequency.
  • the reception frequency switching means is controlled.
  • Can be stored frequency of the standard radio wave means is receiving in said storage means.
  • a receiving unit that receives standard radio waves sequentially receives standard radio waves having different frequencies, and checks the reception status of each standard radio wave received by the reception status detection unit. detection was proposed to specify the standard radio time information for acquiring based on differences in the reception state has been made (for example, see Patent Document 2.) 0
  • a receiving unit that sequentially receives a plurality of standard radio waves having different frequencies, a reception state detecting unit that detects a reception state of the standard radio wave received by the receiving unit, A reception signal designating unit for designating one standard radio wave from among the standard radio waves for obtaining time information based on the respective reception states detected by the detection unit; A time information acquisition unit for acquiring time information from the standard time signal designated by the signal designation unit is included, and the time can be automatically adjusted based on the acquired time information.
  • a modified clock can be realized.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-270370 (Claims, FIG. 1)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-296374 (Claims, FIG. 1)
  • the two proposals described above can acquire time information by selecting a standard radio wave suitable for reception from among standard radio waves of different frequencies, but receive standard radio waves of different time information formats.
  • Japan there are two transmitting stations, the Fukushima station with a frequency of 40 KHz and the Kyushu station with a frequency of 60 KHz.
  • the standard radio waves transmitted from these two transmitting stations have different frequencies but have a time information format.
  • the radio-controlled timepiece proposed above automatically transmits the standard radio wave transmitted by the transmitting station in that country when the user moves to a country around the world. And time information cannot be obtained.
  • the above proposal has a problem that it is not possible to automatically receive standard radio waves from transmitting stations in two or more countries.
  • the present invention solves the above-mentioned problems, and even if a user of a radio-controlled timepiece moves between countries or regions, it selects a transmitting station that can automatically receive and obtains time information, and always obtains the time information. It is an object of the present invention to provide a globally fully automatic radio-controlled timepiece, an electronic device, and a time correction method that can be automatically corrected at a standard time in a country or a region.
  • a radio-controlled timepiece, an electronic device, and a time correction method of the present invention employ the following configurations and methods.
  • a radio-controlled timepiece comprises: Display means for displaying the time based on the information, a receiving means for receiving standard radio waves from transmitting stations in at least two or more countries or regions, and a demodulation obtained by the receiving means.
  • Second synchronization detecting means for detecting second synchronization information from a signal
  • transmission station determining means for analyzing the demodulated signal based on the second synchronization information and determining a transmitting station in a country or a region, and determining by the transmitting station determining means.
  • Decoding means for decoding the information contained in the standard radio wave of the transmitted transmission power and obtaining time information, and correcting the time information of the time measuring means based on the time information obtained by the decoding means. It is characterized by doing.
  • the radio-controlled timepiece of the present invention can receive standard radio waves from transmitting stations in two or more countries or regions and acquire time information, so that the user of the radio-controlled timepiece moves to each country or each region. However, it is always possible to automatically receive the standard time signal of the transmitting station in that country or region and adjust the time.
  • the receiving means includes a reception switching means, and if the second synchronization information cannot be detected by the second synchronization detecting means, or if the transmitting station cannot be determined by the transmitting station determining means, or When the time information cannot be decoded by the decoding means, the reception switching means receives a standard radio wave from another transmitting station.
  • the reception switching means when the time information of the received standard radio wave power cannot be obtained, the standard radio wave of another transmitting station power can be received by the reception switching means, so that the optimum transmitting station for reception can be selected, and the reception performance can be improved.
  • An excellent radio-controlled watch can be provided.
  • the radio-controlled timepiece of the present invention includes a timekeeping means for measuring time, and a display means for displaying time based on timekeeping information from the timekeeping means, and further includes at least the same frequency.
  • Receiving means for receiving standard radio waves from transmitting stations in two or more countries or regions; second synchronization detecting means for detecting second synchronization information from a demodulated signal obtained by the receiving means;
  • a transmitting station determining means for analyzing based on the synchronization information to determine a transmitting station in a country or a region, and deciphering information included in the standard radio wave of the transmitting station power determined by the transmitting station determining means to obtain time information.
  • Decoding means for correcting the clock information of the clock means based on the time information obtained by the decoding means.
  • the second synchronization detecting means may detect the rising of the demodulated signal.
  • An edge detecting means for sequentially detecting a rising edge and a falling edge, and a synchronization determining means for obtaining second synchronization information of the demodulated signal from the detected rising edge or the falling edge.
  • the second synchronization detecting means includes an edge detecting means for simultaneously detecting a rising edge and a falling edge of the demodulated signal, and the detected rising edge or the rising edge.
  • a synchronization determining unit that obtains second synchronization information of the demodulated signal from a falling edge.
  • the second synchronization detecting means detects the rising edge and the falling edge of the demodulated signal at regular intervals
  • the second synchronization detecting means detects the demodulated signal by the sampling means.
  • waveform determining means for obtaining second synchronization information of the demodulated signal based on the number of times of detection of the rising edge and the falling edge for each sampling position stored in the storage means.
  • the second synchronization detecting means detects the logic “1” or the logic “0” of the demodulated signal at regular intervals, and the second synchronization detecting means detects the demodulated signal by the sampling means.
  • the transmitting station determining means based on the result of the adding means of the second synchronization detecting means, the adding means adding the detected number of times of either the logical "1" or the logical "0".
  • the transmitting station of a country or a region is determined.
  • the transmitting station determining means analyzes the demodulated signal based on the second synchronization information, and receives position markers (P code, M code, Is characterized in that the transmitting station of the said country or region is determined from the waveform of a minute marker.
  • the transmitting station determining means analyzes the demodulated signal based on the second synchronization information, and determines a transmitting station in the country or region from a unique waveform of the demodulated signal. It is characterized by doing.
  • the second synchronization detecting means may detect the second synchronization. Based on the information, a priority is given to the order of determination of the transmitting station by the transmitting station determining means.
  • the radio-controlled timepiece of the present invention includes timekeeping means for measuring time, and display means for displaying time based on the time information from the timekeeping means.
  • receiving means for receiving a standard radio wave from a transmitting station in a region, and a demodulated signal obtained by the receiving means are analyzed, and a transmitting station in a country or region is determined from a specific waveform of the demodulated signal.
  • the timing information of the timing means is corrected based on the information.
  • the radio-controlled timepiece of the present invention is characterized in that the receiving means first receives a standard radio wave of a transmitting station that has successfully received last time.
  • the radio-controlled timepiece of the present invention includes storage means for storing information on a transmitting station that has successfully received in the past, and the receiving means stores the information on the transmitting station stored in the storage means.
  • the switching order is determined based on the.
  • an electronic apparatus of the present invention includes the above-described radio-controlled timepiece.
  • the time adjustment method of the present invention includes a timekeeping step of measuring time, and a display step of displaying time based on timekeeping information from the timekeeping step, and further includes at least two or more countries. Or a receiving step of receiving a standard radio wave of a local transmitting station, a second synchronization detecting step of detecting second synchronization information from a demodulated signal obtained in the receiving step, and a step of converting the demodulated signal based on the second synchronization information.
  • a transmitting station determining step of determining a transmitting station in a country or a region, and a decoding step of decoding information included in the standard radio wave of the transmitting station power determined in the transmitting station determining step to obtain time information. And correcting the timekeeping information of the timekeeping step based on the time information acquired in the decryption step.
  • standard radio waves from at least two or more transmitting stations in a country or region are received, and second synchronization information is detected from the received and obtained demodulated signal. Since the standard radio wave transmitting station is determined based on the Even if you move from one area to another, you can select a transmitting station that can automatically receive the signal and provide a radio-controlled clock that automatically adjusts to the standard time of the country or area at all times.
  • FIG. 11 is an explanatory diagram showing an example of the radio-controlled timepiece of the present invention.
  • FIG. 1-2 is an explanatory diagram showing a transmitting station that transmits a standard radio wave.
  • FIG. 2 is an explanatory diagram showing a waveform form of a demodulated signal obtained by demodulating a standard wave in each country.
  • FIG. 3 is a circuit block diagram of a radio-controlled timepiece according to Embodiments 1 and 2 of the present invention.
  • FIG. 4 is a flowchart (part 1) for explaining the operation of the first embodiment of the present invention.
  • FIG. 5 is a flowchart (part 2) for explaining the operation of the first embodiment of the present invention.
  • FIG. 6 is a flowchart (part 3) for explaining the operation of the first embodiment of the present invention.
  • FIG. 7 is a flowchart (part 4) for explaining the operation of the first embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating an operation of the second embodiment of the present invention.
  • FIG. 9 is a circuit block diagram of a radio-controlled timepiece according to a third embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an operation of a third embodiment of the present invention.
  • FIG. 11-1 is an explanatory diagram showing the operation of the waveform determination circuit of the second synchronization detecting means according to the third embodiment of the present invention, showing a demodulated signal of a Japanese standard radio wave and a sampling relationship.
  • FIG. 11-2 is an explanatory diagram showing the operation of the waveform determination circuit of the second synchronization detecting means according to the third embodiment of the present invention in which the number of times of detection of a rising edge is graphed.
  • FIG. 113 is an explanatory view showing the graph of the number of times of detection of the falling edge in relation to the operation of the waveform determination circuit of the second synchronization detecting means according to the third embodiment of the present invention.
  • Fig. 12-1 is an explanatory diagram that graphs the number of times the rising edge of the standard radio wave of the US station is detected.
  • Fig. 12-2 is an explanatory diagram showing the number of times of detection of the falling edge of the standard radio wave of the US station in a graph.
  • Fig. 13-1 is an explanatory diagram that graphs the number of times the rising edge of the standard radio wave of the British station was detected.
  • Fig. 13-2 shows the number of times of detection of the falling edge of the standard radio wave of the British station.
  • FIG. 11 is an explanatory diagram showing an example of the radio-controlled timepiece of the present invention
  • FIG. 1-2 is an explanatory diagram showing a transmitting station that transmits a standard radio wave.
  • An outline of the radio-controlled clock of the present invention and a transmitting station for transmitting a standard radio wave will be described with reference to FIGS. 11 and 12.
  • reference numeral 1 denotes an analog display radio-controlled timepiece of the present invention.
  • Reference numeral 2 denotes an exterior made of metal or the like
  • reference numeral 3 denotes a display unit serving as a display means, which includes a second hand 3a, a minute hand 3b, an hour hand 3c, and a date display unit 3d for displaying a date.
  • Reference numeral 4 denotes an ultra-small receiving antenna, which is a force arranged at 12:00 inside the exterior 2. The force is not limited to this position and may be arranged at, for example, 9 o'clock.
  • 5a is a crown for correcting the time and date corresponding to a part of the input means, and is linked with a plurality of electric switches (not shown).
  • 5b and 5c are operation buttons corresponding to a part of the input means, and each of them operates in conjunction with an electric switch (not shown).
  • Reference numeral 6 denotes a band to be worn on the arm of a user (not shown).
  • Reference numeral 10-15 denotes a transmitting station constructed in each country for transmitting the standard radio waves 10a to 15a including time information.
  • the transmitting station 10 is a Fukushima station in Japan having a transmission frequency of 40KHz.
  • 1 is a US station with a transmission frequency of 60 KHz
  • 12 is a UK station with a transmission frequency of 60 KHz
  • 13 is a German station with a transmission frequency of 77.5 KHz
  • 14 is a Swiss station with a transmission frequency of 75 KHz
  • 15 is a transmission station It is assumed to be the Kyushu Bureau of Japan with a frequency of 60 KHz.
  • the standard radio waves 10a-15a transmitted from these transmitting stations 10-15 can be received within a radius of about lOOOKm, and the time information format of these standard radio waves 10a-15a is individual for each country. Is set to
  • the position where the receiving antenna 4 of the radio-controlled timepiece 1 is arranged is determined by the transmitting station 10—15. Press the reception start button (for example, operation button 5c) in any direction. As a result, the radio-controlled timepiece 1 starts the receiving operation and receives any of the arriving standard radio waves 10a to 15a.
  • the radio-controlled timepiece 1 converts the received standard radio wave into a demodulated signal and analyzes it, determines which received standard radio wave is the standard radio signal of the transmitting station, and converts the received standard radio wave into the time information format of the received standard radio wave. It decodes using the corresponding decoding algorithm, acquires time information such as seconds, minutes, hours, and date, and if necessary, data on the presence or absence of leap years and daylight saving time, etc., measures the acquired time information, and displays the time information and Display date
  • FIG. 2 is an explanatory diagram showing a waveform form of a demodulated signal obtained by demodulating a standard wave in each country. Based on FIG. 2, a description will be given of the form of the standard radio wave of each representative country shown as an example in FIG.
  • These demodulated signals are precisely synchronized to 1 second.For example, the demodulated signal in Japan has a rising edge synchronized to 1 second, and falls in the United States, Germany and the United Kingdom. Edges are synchronized for 1 second.
  • Each demodulated signal represents one bit of information per second in Japan, the United States and Germany, and every second in the United Kingdom, based on the position synchronized with this one second (that is, the second synchronization position). It represents two bits of information.
  • a data break marker called a position marker (P code) is represented by an H level pulse of 20 OmS.
  • the second synchronization position ie, standing When a low level pulse of 200 mS continues from the falling edge
  • a logic "0” is expressed
  • a logic "1” is expressed.
  • the P code is represented by an 800 mS L level pulse.
  • the second synchronization position (ie, falling edge) force also indicates a logic "0" when an L level pulse of 100mS continues, and a logic "1" when a 200 mS L level pulse continues. ing.
  • a marker that occurs every minute indicating 59 seconds, called the M code is revealed by maintaining the H level.
  • A 1
  • the M code generated every minute indicating 00 seconds is represented by a 500 mS L level pulse!
  • a logical "0" appears when an LOOmS L level pulse continues from the second synchronization position (ie, the falling edge), and a logical "1" appears when a 200mS L level pulse continues. ing.
  • the minute marker is represented by two LOOmS L level pulses.
  • the standard radio wave expresses logic by a signal synchronized to one second, and expresses time information such as hour, minute, day, etc., with one minute as one cycle.
  • time information such as hour, minute, day, etc.
  • the details of the time information format of each country are not directly related to the present invention, and therefore the description is omitted.
  • the transmitting station (that is, the country) of the standard radio wave from the standard radio wave received by the radio-controlled clock is described below. First, it detects the second synchronization position of the received standard time signal, determines whether the second synchronization position is due to the rising edge or the falling edge of the demodulated signal, and then determines the detected second synchronization position. Analyze pulse width etc. as a reference and determine the transmitting station of the received standard radio wave
  • time information format of the standard time signal of each country is disclosed, if the transmitting station of the received standard time signal specifies and decodes the time information in accordance with the format, the time information format of any country can be received. , Time information can be obtained.
  • the present invention is based on the above-mentioned concept and proposes a radio wave It provides a positive clock. Hereinafter, description will be made based on embodiments.
  • FIG. 3 is a circuit block diagram of a radio-controlled timepiece according to the first and second embodiments of the present invention.
  • the circuit configuration of a radio-controlled timepiece 1 as Embodiment 1 of the present invention will be schematically described with reference to FIG.
  • reference numeral 20 denotes a receiving unit as a receiving means for selectively receiving the standard time signal of the transmitting station in each country.
  • the receiving unit 20 includes a receiving antenna 4 for receiving a standard radio wave, a tuning unit 20a as a reception switching unit forming a tuning circuit with the receiving antenna 4, and a receiving IC 21.
  • the tuning means 20a has a plurality of tuning capacitors inside, and switches the plurality of capacitors with respect to the receiving antenna 4, thereby changing the tuning frequency of the tuning circuit to reduce the standard frequency reception frequency. Switch and output tuning signal P1.
  • the receiving IC 21 includes an amplification circuit, a filter circuit, a decoding circuit and the like (not shown), receives the tuning signal P1, and outputs a demodulated signal P2 converted into a digital signal.
  • Reference numeral 22 denotes control means for controlling the whole of the radio-controlled timepiece 1; a second synchronization detection means 23 which receives the demodulated signal P2 and outputs second synchronization information P3; a RAM 24 for temporarily storing various data; and a second synchronization information P3. , Inputting the transmission station information P4, demodulated signal P2, and second synchronization information P3 from the transmission station determination means 25 to decode the time information format of the demodulated signal P2.
  • control means 22 outputs the reception control signal P10 to the reception unit 20, controls the tuning means 2 Oa, switches the reception frequency of the standard radio wave to be received, and controls the operation start of the reception IC 21.
  • the second synchronization detecting means 23 includes an edge detecting circuit 23a as an edge detecting means for detecting a rising edge and a falling edge of the demodulated signal P2, a counter 23b for measuring an edge interval, and synchronization for obtaining second synchronization information P3. It is composed of a synchronization judgment circuit 23c and the like as judgment means.
  • the control means 22 is a microcomputer operated by firmware stored in the ROM 29, so that the system has flexibility.
  • circuit configuration shown in FIG. 3 is not limited to this, and does not depart from the gist of the present invention! , Can be changed arbitrarily in the range.
  • the input means 5 includes the crown 5a and the operation buttons 5b and 5c as described above, and the input signal P8 is input to the control means 22 to perform a manual time correction, a reception start operation, and the like.
  • the display unit 3 receives the drive signal P7 from the display drive unit 28 of the control unit 22, and displays time, date, and the like.
  • Reference numeral 30 denotes a reference signal source having a built-in crystal oscillator (not shown), which outputs a reference signal P9 to the control means 22, and the reference signal P9 is a reference clock for measuring the timing information P6 stored in the timing means 27.
  • Function as Reference numeral 31 denotes a power supply unit including a primary battery or a secondary battery, which supplies power to each circuit block via a power supply line (not shown).
  • the control unit 22 executes an initialization process to initialize each circuit block.
  • the timing information P6 inside the timing means 27 of the control means 22 is initialized to AMOO: 00: 00, and based on the initialized timing information P6, the driving signal P7 Is output, the second hand 3a, minute hand 3b, and hour hand 3c of the display unit 3 move to AMOO: 00: 00, which is the reference position, and the date display unit 3d also moves to the reference position.
  • the automatic movement of the display unit 3 to the reference position is possible when the wheel train mechanism (not shown) inside the radio-controlled timepiece 1 that drives the display unit 3 has a position detection mechanism. However, if a position detection mechanism is not provided, the user should operate crown 5a etc. to manually move it to the reference position!
  • the timekeeping means 27 inputs the reference signal P9 from the reference signal source 30 to start timekeeping of the timekeeping information P6, and the display driving means 28 drives the drive signal based on the timekeeping information P6 which is sequentially timed. Outputs P7 to drive the display unit 3 continuously. Further, the control means 22 shifts to a time correction mode by a user's operation of the input means 5 or a timer at a predetermined time interval, and receives a standard radio wave to automatically correct the display time.
  • FIGS. 4 to 7 are flowcharts illustrating the operation of the first embodiment of the present invention. The operation in the time adjustment mode will be described based on the flowcharts in FIGS. Fig. 4 flow chart
  • the control unit 22 When the radio-controlled timepiece 1 shifts to the time correction mode in response to a user operation or a timer, the control unit 22 outputs the reception control signal P10 to the reception unit 20 and receives the reception control signal P10. Output to the unit 20, the tuning means 20a switches to the reception frequency specified by the reception control signal P10, and the reception IC 21 starts the reception operation of the standard radio wave (step S401).
  • the tuning means 20a outputs the tuning signal P1
  • the receiving IC 21 inputs and amplifies the tuning signal P1, which is a weak signal, and A noise component and the like are removed by a (not shown) and further converted into a digital signal by a decoding circuit (not shown), and a demodulated signal P2 is output (step S402).
  • the edge detection circuit 23a of the second synchronization detection means 23 receives the demodulated signal P2 and detects a falling edge for a period (for example, 10 seconds) (Step S403).
  • a period for example, 10 seconds
  • the position marker code is included every 10 seconds, so detecting the 10 seconds always includes the position marker code.
  • the inclusion of the position marker makes it possible to identify the standard radio wave. In other words, for a certain period of time (for example, only "0" and "1") in which position power is not included, it becomes impossible to judge whether the station is falling or rising when comparing the Japanese and US stations. Therefore, it is desirable to detect at least 10 seconds or more.
  • the counter 23b is reset, and the counting operation is performed by a clock signal (not shown) until the next falling edge is detected. «I will continue.
  • the counting operation of the counter 23b is stopped, the count data P11 is written into the RAM 24, and thereafter, the counter 23b is reset again to reset the next falling edge. The counting operation is continued again until is detected, and this operation is repeated for 10 seconds.
  • the RAM 24 stores the time interval data of the falling edge detected during 10 seconds.
  • the synchronization determination circuit 23c of the second synchronization detection means 23 reads the count data P11 stored in the RAM 24, checks how much each count data P11 is shifted from one second, and Whether the incoming falling edge is a second synchronization signal synchronized with 1 second Is determined (step S404). In other words, if the number of falling edge detections that arrived in 10 seconds is 10, and if the time interval between each falling edge (that is, the count data P11) is equal to or close to 1 second, the detected falling edge will be synchronized with the second. It is determined that the position of the falling edge is the second synchronization position.
  • step S404: Yes when it is determined that the signal is a second synchronization signal (step S404: Yes), the process proceeds to step S405, and when it is determined that the signal is not a second synchronization signal (step S404: No), the process proceeds to step S407. .
  • the detection time of 10 seconds may be arbitrarily changed.
  • step S404 when it is determined that the signal is a second synchronization signal (step S404: Yes), the second synchronization information P3 is transmitted from the second synchronization detection unit 23 to the transmission station determination unit 25. Output.
  • the second synchronization information P3 includes the waveform information of the demodulated signal P2, and information such as the second synchronization position and the falling edge of the second synchronization signal.
  • the transmitting station determining means 25 receives the second synchronization information P3 and determines whether the waveform of the demodulated signal P2 matches the form of the demodulated signal in the United States (step S405).
  • the transmitting station determining means 25 determines the force at which a pulse equal to or close to the pulse width of 200 mS, the pulse width of 500 mS, and the pulse width of 80 OmS exists from the second synchronization position (the position of the falling edge). Determine if there is a pulse width waveform.
  • the process proceeds to step S410. If it is determined that the signal is not the United States standard time signal (step S405: No), the process proceeds to step S406. I do.
  • step S405 when it is determined that the signal is a standard radio wave of the United States (step S405: Yes), the transmitting station determining means 25 outputs the transmitting station information P4 to the decoding means 26.
  • the transmission station information P4 includes information in which the received standard radio wave is an American standard radio wave.
  • the decoding means 26 inputs the demodulated signal P2 and the second synchronization information P3 together with the transmitting station information P4, decodes the demodulated signal P2 using a decoding algorithm corresponding to the U.S. time information format (step S410), and is able to decode.
  • step S413 It is determined whether or not the force is applied (step S413), and if it can be decoded (step S413: Yes), the time information P5 is output and time correction processing is performed (step S414). That is, the clocking means 27 inputs the time information P5, corrects the clocking information P6 which is internally clocked, and matches the clocking information P6 with the American standard time.
  • the display drive means 28 inputs the corrected timekeeping information P6 and outputs a drive signal P7 for driving the display unit 3, and the display unit 3 displays the received American standard time. Thereafter, the time adjustment mode ends, the timekeeping means 27 measures the timekeeping information P6, and the display unit 3 continuously displays the time. After that, the series of processing ends.
  • step S405 determines whether the signal is not a standard radio wave in the United States. It is determined whether the waveform power of the signal P2 matches the form of the Gilis demodulated signal (step S406). In other words, the transmitting station determining means 25 determines the force at which a pulse equal to or close to the pulse width of 100 mS, pulse width of 200 mS, pulse width of 300 mS, and pulse width of 500 mS from the second synchronization position (the position of the falling edge). Judge whether there is any waveform of pulse width other than. If it is determined that the signal is a British standard signal (step S406: Yes), the process proceeds to step S411.If it is determined that the signal is not a British standard signal (step S406: No), the process proceeds to step S407. I do.
  • the transmitting station determining means 25 outputs the transmitting station information P4 to the decoding means 26.
  • the transmitting station information P4 includes information that the received standard radio wave is a British standard radio wave.
  • the decoding means 26 inputs the demodulated signal P2 and the second synchronization information P3 together with the transmitting station information P4, and decodes the demodulated signal P2 using a decoding algorithm corresponding to the British time information format (step S411). It is determined whether or not the power has been successfully decoded (step S413). If the power has been decoded (step S413: Yes), the time information P5 is output and time correction processing is performed (step S414).
  • the clock means 27 inputs the time information P5, corrects the clock information P6 that is internally clocked, and matches the clock information P6 with the American standard time.
  • the display driving means 28 receives the corrected timing information P6, outputs a driving signal P7 for driving the display unit 3, and outputs the driving signal P7. Displays the received U.S. standard time. Thereafter, the time adjustment mode ends, the timekeeping means 27 measures the timekeeping information P6, and the display unit 3 continuously displays the time. After that, the series of processing ends.
  • step S406 determines whether or not the signal is not a British standard time signal (step S406: No)
  • the transmitting station using the falling edge as the second synchronization signal was not found. Then, the flow shifts to step S407 to confirm whether or not the second synchronization signal at the rising edge exists.
  • the edge detection circuit 23a of the second synchronization detection means 23 receives the demodulated signal P2 and detects a rising edge for a predetermined period (for example, 10 seconds) (step S407).
  • a predetermined period for example, 10 seconds
  • the counter 23b is reset, and the counting operation is continued by the clock signal (not shown) until the next rising edge is detected.
  • the counting operation of the counter 23b is stopped, the count data P11 is written to the RAM 24, and thereafter, the counter 23b is reset again and the next rising edge is generated. Until it is detected, the counting operation is continued again, and this operation is repeated for 10 seconds.
  • the RAM 24 stores the time interval data of the rising edge detected during 10 seconds.
  • the synchronization determination circuit 23c of the second synchronization detection means 23 reads the count data P11 stored in the RAM 24, checks how much each count data P11 deviates from one second, and It is determined whether the incoming rising edge is a second synchronization signal synchronized with one second (step S408). In other words, if the number of rising edges that arrive in 10 seconds is 10 and the time interval between each rising edge (that is, the count data P11) is equal to or close to 1 second, the detected rising edge is a second synchronization signal. It is determined that the position of the rising edge is the second synchronization position. However, if the time interval between the rising edges varies greatly with respect to 1 second, it is determined that the rising edge is not a second synchronization signal.
  • step S408: Yes when it is determined that the signal is a second synchronization signal (step S408: Yes), the process proceeds to step S409, and when it is determined that the signal is not a second synchronization signal (step S408: No), the process proceeds to step S415. .
  • step S408: Yes when it is determined that the signal is a second synchronization signal (step S408: Yes), the second synchronization information P3 is transmitted from the second synchronization detection unit 23 to the transmission station determination unit 25. Output.
  • the second synchronization information P3 includes the waveform information of the demodulated signal P2, and information such as the second synchronization position and the rising edge of the second synchronization signal.
  • the transmission station determining means 25 receives the second synchronization information P3 and determines whether the waveform of the demodulated signal P2 matches the form of the demodulated signal in Japan (step S409). In other words, the transmitting station determining means 25 determines the force at which a pulse equal to or close to the pulse width of 800 mS, the pulse width of 500 mS, and the pulse width of 20 OmS from the second synchronization position (the position of the rising edge). Determine if there is a width waveform. If it is determined that the signal is a Japanese standard time signal (step S409: Yes), the process proceeds to step S412. If it is determined that the signal is not a Japanese standard time signal (step S409: No), the process proceeds to step S412. Move to S415.
  • step S 409 if it is determined in step S 409 that the signal is a Japanese standard time signal (step S 409: Yes), the transmitting station determining means 25 outputs the transmitting station information P 4 to the decoding means 26.
  • the transmitting station information P4 includes information that the received standard radio wave is a Japanese standard radio wave.
  • the decoding means 26 inputs the demodulated signal P2 and the second synchronization information P3 together with the transmitting station information P4, decodes the demodulated signal P2 using a decoding algorithm corresponding to the Japanese time information format (step S412), and proceeds to step S413. Transition. The following time adjustment operations are duplicated and will not be described.
  • step S409 If it is determined in step S409 that the signal is not a Japanese standard time signal (step S409: No), it is determined whether or not there is another transmitting station (step S415), and another transmitting station (for example, Germany) is determined. Etc.) (Step S415: Yes), the transmitting station determining means 25 further determines a transmitting station in another country. That is, it is determined that the signal is not the Japanese standard time signal (step S409: No), and if the transmitting station cannot be determined, the control means 22 transmits the reception control signal P10 to the receiving section 20 which is the reception switching means of the receiving section 20.
  • step S401 To control the tuning means 20a to switch the tuning frequency of the tuning circuit by the receiving antenna 4, and to control the receiving IC 21 again from step S401 to control the receiving operation in order to receive the standard radio wave from another transmitting station.
  • the reception switching operation for receiving the standard radio wave from another transmitting station is performed only when the transmitting station cannot be determined. Even if the transmitting station is determined by the transmitting station determining means 25, even if the decoding means 26 cannot decode the time information format of the transmitting station, the transmitting station may be executed. On the other hand, if there is no other transmitting station (step 415: No), the reception is disabled and the time correction mode is ended.
  • the transmitting station determining means 25 examines each of the pulse widths of the demodulated signal P2 in detail, and checks the standard from the corresponding transmitting station in steps S405, S406, and S409. Although it is determined whether it is a radio wave, the present invention is not limited to this determination method, and an arbitrary determination method may be used. In other words, in the time information format of the standard radio waves in Japan and the United States, the transmitting station is determined by focusing on the pulse width of the P code, the presence of a delimiter code called the position marker (P code), and detecting the P code. May be. For example, the U.S.
  • the p-code has a pulse width of 800 mS from the falling edge.For example, if the transmitting station determining means 25 detects a waveform of a pulse equal to or close to the pulse width of 800 mS, the transmitting station immediately determines the U.S.A. May be determined.
  • steps S501 to S504 are the same as steps S401 to S404 shown in the flowchart of FIG. 4, and a description thereof will be omitted.
  • step S505 it is determined whether or not a pulse has been detected, equal to or near a pulse width of 800 mS! (Step S505).
  • the transmitting station is immediately determined (determined) to be the United States (step S506), and the flow chart shown in FIG. Move to step S410.
  • a pulse width equal to the detected 800 mS pulse width! /, Or close to it!
  • the transmitting station may immediately determine that it is in the United States. Further, the transmitting station may immediately determine that the power is good only when continuously detecting a pulse equal to or close to the pulse width of 800 mS. On the other hand, when a pulse equal to or close to the pulse width of 800 ms is not detected (step S505: No), the process proceeds to step S406 shown in the flowchart of FIG.
  • Step S601-S603 are the same as steps S401-S403 shown in the flowchart of FIG. 4 and steps S501-S503 shown in the flowchart of FIG. 5, and therefore description thereof will be omitted.
  • Step S604 Before determining whether or not the signal is a second synchronization signal in step S604, first, it is determined whether or not a pulse having a pulse width equal to or close to 80 OmS is detected (step S604).
  • Step S605 it is next determined whether the falling edge arriving in 10 seconds is a second synchronization signal synchronized with 1 second.
  • Step S605 it is determined that the signal is a second synchronization signal
  • Step S606 it is determined that the transmitting station is the United States (Step S606), and the process shifts to Step S410 shown in the flowchart of FIG.
  • step S605 determines that Japan is in Japan (step S607), and proceeds to step S412 shown in the flowchart of FIG.
  • the transmitting station may be determined by focusing on a waveform unique to the transmitting station other than the position marker described above. For example, if the received standard radio wave power is British or American! /, The demodulated signal in the UK has a pulse width of 300 mS from the falling edge as shown in Fig. 2. There is no 300mS pulse width in the demodulated signal, and the existing pulse widths are 200mS, 500mS and 800mS. Therefore, the transmitting station determining means 25 force is equal to or close to the noise width of 300 mS! If the pulse waveform is detected, the transmitting station may be immediately determined to be in the United Kingdom. In this way, the determination of the transmitting station can be performed quickly.
  • steps S701 to S703 are the same as steps S401 to S403 shown in the flowchart of FIG. 4, and thus description thereof will be omitted.
  • step S704 it is determined whether or not a pulse having a pulse width equal to or close to a pulse width of 300 ms is detected without determining whether or not the signal is a second synchronization signal (step S704).
  • Step S704: Yes it is immediately determined that the transmitting station is in the United Kingdom (Step S705), and the steps shown in the flowchart of FIG. 4 are performed. Move to S411.
  • step S704 if the pulse width is equal to or close to the pulse width of 300 mS! / Close to !, and no pulse is detected (step S704: No), the process proceeds to step S404 shown in the flowchart of FIG. .
  • the radio-controlled timepiece of the first embodiment of the present invention even if the frequency of the standard radio wave is different or equal, and if the second synchronization is the rising edge, the falling time Even if it is at the edge, or even if the time information format is different, it is possible to receive time information by receiving standard radio waves from transmitting stations in various countries or regions. Or, even if you move to each area, you can automatically receive the standard time signal from the transmitting station in that country or area and adjust the time.
  • the second synchronization detecting means 23 detects the falling edge and the rising edge of the demodulated signal P2 in order, the circuit size of the edge detecting circuit 23a of the second synchronization detecting means 23 can be simplified, and the operation flow is also improved. Since there are many repetitive flows, it is possible to reduce the storage capacity of the ROM 29 for storing the firmware and the RAM 24 for storing the temporary data which are easy to subroutine, thereby providing a low-cost and radio-controlled timepiece.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the difference between the circuit configurations of the second embodiment and the first embodiment described above is only the difference between the internal configurations of the edge detection circuit 23a and the counter 23b, and the edge detection circuit 23a of the first embodiment detects the internal edge.
  • the edge detection circuit 23a of the second embodiment has two sets of internal edge detection units, and the counter 23b has an internal counter unit, whereas the counter 23b has only one internal counter unit. There are two center units, and the rising edge and falling edge of the demodulated signal can be detected simultaneously. Therefore, the circuit block diagram shown in FIG. 3 can be applied to the second embodiment.
  • the operation of the second embodiment of the present invention will be described.
  • the operation of the second embodiment is based on the second synchronization detection. Since the operation other than the operation of the means 23 is the same as that of the first embodiment, the duplicate description will be omitted, and only the operation centering on the second synchronization detecting means 23 will be described based on the flowchart of FIG.
  • FIG. 8 is a flowchart illustrating the operation of the second embodiment of the present invention.
  • the control means 22 when the radio-controlled clock 1 shifts to the time correction mode, the control means 22 outputs a reception control signal P10 to the reception unit 20, and the tuning means 20a sets the reception frequency to the reception frequency specified by the reception control signal P10.
  • the tuning means 20a outputs the tuning signal P1, and the receiving IC 21
  • the tuning signal P1 which is a signal, is input and amplified, noise components and the like are removed by a filter circuit (not shown), and further converted to a digital signal by a decode circuit (not shown), and a demodulated signal P2 is output.
  • Step S802 the tuning signal
  • the edge detection circuit 23a of the second synchronization detection means 23 receives the demodulation signal P2, and has two falling edge detection units each having a falling edge and a falling edge for one period (for example, 10 seconds) (see FIG. (Not shown)) (step S803).
  • the first counter unit (not shown) inside the counter 23b is reset and the next rising edge is detected.
  • the counting operation is continued by the clock signal (not shown) until the falling edge is detected.
  • the counting operation of the counter 23b is stopped, the count data P11 is written to the RAM 24, and thereafter, the counter 23b is reset again to resume the next falling edge.
  • the counting operation continues until an edge is detected, and this operation is repeated for 10 seconds.
  • the RAM 24 stores the time interval data of the falling edge detected during 10 seconds.
  • the edge detection circuit 23a of the second synchronization detection means 23 performs the rising edge detection simultaneously with the falling edge detection as described above.
  • the second counter unit (not shown) inside the counter 23b is reset.
  • the counting operation is continued by the clock signal (not shown) until the next rising edge is detected.
  • the counting operation of the counter 23b is stopped, the count data P11 is written to the RAM 24, and the count data P11 is written to the RAM 24.
  • the counter 23b is reset again, and the counting operation is continued again until the next rising edge is detected, and this operation is repeated for 10 seconds.
  • the RAM 24 stores the time interval data of the rising edge detected during 10 seconds.
  • the synchronization determination circuit 23c of the second synchronization detection means 23 reads out the count data P11 which is the time interval data of the falling edge S edge stored in the RAM 24, and
  • step S804 it is determined whether the falling edge arriving within 10 seconds is a second synchronization signal synchronized with 1 second. That is, if the number of falling edges detected in 10 seconds is 10 and if the time interval between each falling edge (that is, the count data P11) is equal to or close to 1 second, the detected falling edge is seconds It is a synchronization signal, and it is determined that the falling edge position is the second synchronization position. However, if the time interval between the falling edges is largely different from 1 second, it is determined that the falling edge is not a second synchronization signal. If the determination is affirmative, the process proceeds to step S805. If the determination is negative, the process proceeds to step S807.
  • the second synchronization detecting means 23 outputs second synchronization information P3 to the transmitting station determining means 25.
  • the second synchronization information P3 includes the waveform information of the demodulated signal P2, and information such as the second synchronization position and the falling edge of the second synchronization signal.
  • the transmitting station determining means 25 receives the second synchronization information P3 and determines whether the waveform of the demodulated signal P2 matches the form of the demodulated signal in the United States (step S805).
  • the transmitting station determination means 25 has a pulse width of 200 mS, a pulse width of 500 mS, and a pulse width of 800 mS from the second synchronization position (the position of the falling edge) equal to! /, Near force, and no force ⁇ exist. Also, it is determined whether there is any other pulse width waveform. If the determination is affirmative (determined as the standard radio wave in the United States), the process proceeds to step S809; if the determination is negative, the process proceeds to step S806.
  • step S805 the force to shift to step S809 is step S809 and steps S812—S814 are steps S410 and S413—S415 in the flowchart of the first embodiment shown in FIG. The description is omitted because it is the same.
  • step S806 when a negative determination is made in step S805 will be described.
  • the transmitting station determining means 25 determines the waveform of the demodulated signal P2 based on the second synchronization information P3 already input. It is determined whether or not the power S matches the form of the demodulated signal of the United Kingdom (step S806). That is, the transmitting station determination means 25 determines that the second synchronous position (falling edge position) force has a pulse width of 100 ms, a pulse width of 200 ms, a pulse width of 300 ms, and a pulse with a pulse equal to or close to 500 ms. It is determined whether there is any other pulse width waveform. If the determination is affirmative (determined as a British standard radio wave), the process proceeds to step S810. If the determination is negative, the process proceeds to step S807.
  • step S806 the force to shift to step S810 is step S810 and steps S812—S814 are the same as steps S411 and S413—S415 in the flowchart of the first embodiment shown in FIG. The description is omitted because it is the same.
  • step S806 a transmitting station having a falling edge as a second synchronization signal has not been found, so that it is determined whether or not a second synchronization signal exists at the rising edge. Then, control is passed to step S807.
  • the operation flow is not limited to this. If there is a possibility of another country (for example, Germany), the transmitting station determining means 25 may further determine a transmitting station in another country. If a country having the falling edge as the second synchronization signal cannot be detected, the reception may be disabled and the time correction mode may be ended without moving to step S808. Step S807 is also executed when a negative determination is made in step S804.
  • the synchronization determination circuit 23c of the second synchronization detection means 23 reads the count data P11, which is the time interval data of the rising edge stored in the RAM 24, and checks how much each count data P11 deviates from 1 second. It is determined whether the rising edge arriving in 10 seconds is a second synchronization signal synchronized with 1 second (step S807). That is, if the number of detections of rising edges arriving in 10 seconds is 10, and if the time interval between each rising edge (that is, the count data P11) is equal to or close to 1 second, the detected rising edge is a second synchronization signal. Yes, and the position of the rising edge is determined to be the second synchronization position.
  • the second synchronization detecting means 23 outputs second synchronization information P3 to the transmitting station determining means 25.
  • the second synchronization information P3 includes the waveform information of the demodulated signal P2, and information such as the second synchronization position and the rising edge of the second synchronization signal.
  • the transmitting station determining means 25 receives the second synchronization information P3 and determines whether the waveform of the demodulated signal P2 matches the form of the demodulated signal in Japan (step S808). That is, the transmitting station determination means 25 has a pulse width of 8 OOmS, a pulse width of 500mS, and a pulse width of 200mS from the second synchronization position (the position of the rising edge). ! / Pull Power Also determine if there is any other pulse width waveform. If the determination is affirmative (determined as the Japanese standard radio wave), the process proceeds to step S811. If the determination is negative, the process proceeds to step S814. Judge the transmitting station.
  • Step S811-S814 are the same as steps S412-S415 in the flowchart of the first embodiment shown in FIG. Is omitted.
  • the detected falling edge after execution of step S803, the detected falling edge first determines the force as a second synchronization signal.However, the present invention is not limited to this operation flow. You may decide if it is a signal.
  • the circuit scale of the second synchronization detecting means 23 is slightly increased. Since the second synchronization information can be detected quickly and the transmitting station of the received standard radio wave can be quickly determined, it is possible to exert a great effect in shortening the time in the time correction mode.
  • the synchronization determination circuit 23c of the second synchronization detecting means 23 compares the time interval data of the rising edge and the time interval data of the falling edge as the second synchronization information stored in the RAM 24, and Alternatively, the edge direction with a smaller error may be calculated, and the determination order of the transmitting station determining means 25 may be prioritized. For example, in step S804, the time interval data of the rising edge and the time interval data of the falling edge stored in the RAM 24 are compared, and the edge direction with less error per second is calculated. If the time interval data has less error for 1 second, Proceed to the determination as to whether or not there is (step S807).
  • step S805 it is determined whether or not the signal is an American standard radio wave (ie, step S805).
  • the operation flow may have a priority in the determination order, such as proceeding to ()).
  • priorities are assigned to the determination order of the transmitting station determining means 25, the transmitting station of the received standard radio wave can be determined more efficiently and quickly.
  • a means for storing the previously-received transmitting station (for example, RAM24) is provided, and the receiving station from the previously-received transmitting station (for example, the United States) is provided. Priority may be given to do ⁇ .
  • Reference numeral 32 denotes a second synchronization detection unit in the third embodiment, which includes a sampling detection circuit 32a as a sampling detection unit, an addition circuit 32b as an addition unit, a RAM 32c as a storage unit, and a waveform determination circuit as a waveform determination unit. It is composed of 32d.
  • the sampling detection circuit 32a receives the demodulated signal P2, samples and detects the rising edge and the falling edge of the demodulated signal P2 at regular intervals (for example, at a 1Z64 second cycle).
  • the adding circuit 32b individually adds the number of times of detection of the rising edge or the falling edge detected by the sampling detection circuit 32a for each sampling position.
  • the RAM 32c individually stores, for each sampling position, the number of times of detection of the rising edge and the falling edge individually added by the adding circuit 32b for each sampling position.
  • the waveform determination circuit 32d reads the number of rising edge detections and the number of falling edge detections stored in the RAM 32c for each sampling position, and determines the sampling position where the number of detections equal to or greater than a certain value is stored as the demodulated signal P2. It is determined as the second synchronization position, and the edge direction is determined as the edge direction of the second synchronization signal.
  • the second synchronization information P3 output from the second synchronization detection means 32 includes the second synchronization position and the edge direction of the demodulated signal P2 determined as the waveform information of the demodulated signal P2.
  • the control means 22 When the radio-controlled timepiece 1 shifts to the time adjustment mode by a user operation, a timer, or the like, the control means 22 outputs a reception control signal P10 to the reception unit 20, and the tuning means 20a is designated by the reception control signal P10.
  • the receiving IC 21 switches to the received frequency, and the receiving IC 21 starts the receiving operation of the standard radio wave (step S1001).
  • the pointer a serving as a variable that functions as an address pointer described later
  • the number n serving as a variable for counting the number of cycles in which sampling is detected, and the number of times a rising edge and a falling edge are detected are stored.
  • the X and Y areas of the RAM 32c to be initialized are initialized in step S1001, and their values are set to 0.
  • the tuning means 20a outputs the tuning signal P1, and the receiving IC 21 inputs and amplifies the weak tuning signal P1, and the filter circuit.
  • a noise component or the like is removed by a (not shown), and further converted into a digital signal by a decoding circuit (not shown), and a demodulated signal P2 is output (step S1002).
  • the sampling detection circuit 32a of the second synchronization detection means 32 receives the demodulated signal P2 and starts a sampling operation (step S1003), and detects a rising edge or a falling edge.
  • step S1004 it is determined whether a rising edge has been detected by the sampling operation of the sampling detection circuit 32a (step S1004). If the determination is affirmative, the process proceeds to step S1005, and if the determination is negative, the process proceeds to step S1006.
  • step S1004 If an affirmative determination is made in step S1004 (that is, a rising edge is detected), the adder circuit 32b stores the data at the address indicated by the pointer a in the X area of the RAM 32c (shown as RAM_X (a)). Is read, 1 is added to the read data, and the result is stored again at the address indicated by the pointer a in the X area of the RAM 32c (step S1005), and the flow shifts to step S1008.
  • step S1004 it is determined whether a falling edge has been detected by the sampling operation of the sampling detection circuit 32a (step S1006). If the determination is affirmative, the process proceeds to step S1007, and if the determination is negative, the process proceeds to step S1008. [0096] If an affirmative determination is made in step S1006 (ie, a falling edge is detected), the adder circuit 32b stores the data (RAM—Y (a)) of the address indicated by the pointer a in the Y area of the RAM 32c. Is read out, 1 is added to the read data, and the result is stored again at the address indicated by the pointer a in the Y area of the RAM 32c (step S1007), and the process proceeds to step S1008.
  • the adding circuit 32b adds 1 to the pointer a, which is the address pointer of the X and Y areas of the RAM 32c, and advances the address pointer by one (step S1008).
  • the second synchronization detecting means 32 determines whether or not the pointer a is equal to a certain value (for example, 64) (Step S 1009). Here, if the determination is affirmative, the process proceeds to step S1010. If the determination is negative, the process returns to step S1003.
  • the constant value is a value corresponding to the sampling period in step S1003.When the sampling period is 1/64 seconds, the constant value is 64, and when the sampling period is 1Z32 seconds, the constant value is It becomes 32.
  • step S1009 If a negative determination is made in step S1009, the operation flow returns to step S1003. If the sampling cycle is 1Z64 seconds, the next sampling operation is started after the elapse of 1Z64 seconds (step S1003) and rises Edge or falling edge is detected. The subsequent operation flow is repeated until an affirmative determination is made in step S1009. That is, the operations from step S1003 to step S1009 are performed 64 times, and as a result, the rising edge and the falling edge are detected by the sampling operation every 1Z64 seconds during one second which is one cycle of the demodulated signal P2. Will be.
  • step S1009 the addition circuit 32b adds 1 to the number n indicating the number of cycles of the demodulated signal P2 that has been sampled and detected (step S1010 ).
  • the second synchronization detecting means 32 determines whether or not the number n is equal to a certain value (for example, 10) (Step S 1011). If the determination is affirmative, the process proceeds to step S1012. If the determination is negative, the process proceeds to step S1013.
  • the fixed value is 10
  • detection of the rising edge and falling edge is performed for 10 cycles of the demodulated signal P2, that is, for 10 seconds, and this fixed value is arbitrarily changed. May be.
  • step S1011 the address pointer of the RAM 32c is In order to reset, the pointer a is set to 0 (step S1013). Thereafter, the flow returns to step S1003. The subsequent operation flow is repeated until a positive determination is made in step S1011. That is, if the constant value in step S1011 is 10, the sampling operation for ten cycles of the demodulated signal P2 is repeatedly executed as described above. As a result, in the X area and the Y area of the RAM 32c, the number of times of detection of the rising edge and the falling edge for each sampling position is added and stored for 10 periods.
  • step S1011 the waveform determination circuit 32d determines the number of rising edge detections and the number of falling edges for each sampling position stored in the X and Y areas of the RAM 32c. Is read out, and the sampling position where the number of detections equal to or more than a certain value is stored is determined as the second synchronization position of the demodulated signal P2, and its edge direction is determined as the edge direction of the second synchronization signal (step S1012). .
  • step S1012 of the waveform determination circuit 32d will be described based on FIGS. 11-1 and 11-3.
  • FIG. 111 is an explanatory diagram showing the operation of the waveform determining circuit of the second synchronization detecting means according to the third embodiment of the present invention, showing a demodulated signal of a Japanese standard radio wave and a sampling relationship
  • FIG. With respect to the operation of the waveform determination circuit of the second synchronization detecting means according to the third embodiment of the present invention, an explanatory diagram in which the number of rising edge detections is graphed, that is, the number of rising edge detections stored in the X area of the RAM 32c is graphed.
  • FIG. 11-3 is an explanatory diagram of the operation of the waveform determination circuit of the second synchronization detecting means according to the third embodiment of the present invention, in which the number of times of detection of the falling edge is graphed, that is, stored in the Y area of the RAM 32c.
  • FIG. 9 is a graph showing the number of times of detection of a falling edge performed.
  • the standard radio wave from which the second synchronization information is detected is, for example, JJY in Japan, and the demodulated signal P 2 has the waveform shown in FIG. Further, the sampling detection circuit 32a samples the demodulated signal P2 for 10 periods, and the first sampling start point is determined at random with respect to the demodulated signal P2 because it is asynchronous with the demodulated signal P2.
  • the sampling start position is a point indicated by an arrow A about 100 mS after the second synchronization position (ie, the rising position) of the demodulated signal P2 shown in FIG.
  • the relationship between the cycle of the tuning signal P2 and the sampling cycle is as shown in Figure 11-1.
  • the X-axis in the graphs of FIGS. 112 and 113 represents the address of the RAM 32c, and its address range is 0 to 63, which is equal to the number of samplings of the demodulated signal P2 in one cycle. That is, the address 0 of the RAM 32c corresponds to the sampling start position indicated by the arrow A in FIG. 11A, and each address of the RAM 32c corresponds to the sampling position.
  • the Y-axis of the graph indicates the number of times of detection of the rising edge and the falling edge stored in the RAM 32c.
  • the detection data K1 in FIG. 11B is located near the address 58 in the X area of the RAM 32c, and its size is equal to 10. That is, the detection data K1 indicates that the rising edge of the demodulated signal shown in FIG. 11A has been detected exactly 10 times.
  • the detection data K2 is located near address 32, and its size is 1.
  • the detection data K2 is a result of adding a noise component mixed into the demodulated signal P2.
  • the detection data K3 in Fig. 11-3 is located near the address 6, and its size is one.
  • the detection data K3 is obtained by detecting the falling edge of the position marker (P code). Since the P code is generated once every 10 seconds except for 00 seconds, the number of detections is 1.
  • the detection data K4 is located near address 26, and its size is 5.
  • the detection data K4 is obtained by detecting the falling edge of the logic "1", and the number of times of detection is 5.
  • Detection data K5 is located near address 45, and its size is 4.
  • the detection data K5 is obtained by detecting the falling edge of logic "0", and the number of times of detection is four.
  • the detection data K6 is located near address 32, and its size is 1.
  • the detection data K6 is a result of adding a noise component mixed into the demodulated signal P2. Note that the detection data K4 and K5 fluctuate according to the logic of the demodulated signal P2, and the detection data K2 and K6 due to noise naturally change both the detection position and the number of detections.
  • the waveform determination circuit 32d examines the storage contents of the X area and the Y area of the RAM 32c shown in FIGS. 11-2 and 11-3, and determines the sampling position of the detection data having the largest number of detections (ie, The address position of the RAM 32c) is determined as the second synchronization position of the demodulated signal P2, and the detected edge direction is determined as the edge direction of the second synchronization position. That is, in this example, the address 58 is determined to be the second synchronization position, and the edge direction is the rising edge.
  • the fixed value of the number of detections that determines the second synchronization position can be arbitrarily determined.
  • the detection data with the number of detections of 9 or more may be determined to be the second synchronization position. Also, even if a rising edge and a falling edge are detected due to noise as in the case of the detection data K2 and K6, the possibility that noise is repeatedly mixed into the same sampling position is small. By the determination, it can be understood that the possibility that the rising edge or the falling edge caused by the noise mixing is determined as the second synchronization signal is extremely small.
  • Fig. 12-1 is a graph illustrating the number of detections of the rising edge of the standard radio wave of the U.S. station.
  • Fig. 12-2 shows the number of detections of the falling edge of the standard radio wave of the U.S. station.
  • FIG. Fig. 13-1 is a graph illustrating the number of detections of the rising edge of the standard radio wave of the UK station.
  • Fig. 13-2 is a graph of the number of detections of the falling edge of the standard radio wave of the UK station.
  • FIG. 12-1 is a graph illustrating the number of detections of the rising edge of the standard radio wave of the U.S. station.
  • Fig. 12-2 shows the number of detections of the falling edge of the standard radio wave of the U.S. station.
  • FIG. 13-1 is a graph illustrating the number of detections of the rising edge of the standard radio wave of the UK station.
  • Fig. 13-2 is a graph of the number of detections of the falling edge of the standard radio wave of the UK station.
  • Fig. 12-1, Fig. 12-2, Fig. 13-1 and Fig. 13-2 when the rising edge is detected in both the US station and the UK station, different features (patterns) appear. .
  • the transmitting station may be determined based on these different characteristics. Specifically, features (patterns) appearing only in the United States and features (patterns) appearing only in the United Kingdom are stored, and if they match the corresponding pattern, the station is determined to be one of the transmitting stations. By doing so, it is only necessary to judge by pattern matching, so that it is not necessary to synchronize seconds.
  • the transmitting station determining means 25 inputs the waveform information of the demodulated signal P2 and the second synchronization information P3 including the second synchronization position and the edge direction, and analyzes the demodulation signal P2 based on the second synchronization position. Determine the transmitting station.
  • the operation flow of the transmitting station determining means 25 is the same as the operation after step S805 in the flowchart of the second embodiment shown in FIG. 8, for example, and the description thereof is omitted here.
  • the second synchronization detecting means 32 calculates the second based on the result of adding the number of times of detection of the rising edge and the falling edge of the demodulated signal P2 for each sampling position. Since synchronization information is detected, even if a rising edge or a falling edge due to noise occurs in the demodulated signal P2, the number of occurrences can also determine that the detected data is noise. Even if it is, it is hard to be affected by noise Second Embodiment Synchronous detection can be realized and a radio-controlled timepiece with excellent standard radio wave detection capability can be provided.
  • the sampling detection circuit 32a as the sampling detection means of the second synchronization detection means 32 has a function of sampling the logic level (logic "1" or logic "0") of the demodulated signal P2 at regular intervals.
  • the addition circuit 32b as addition means adds the number of detections of the logic level (either! / Of logic "1" or logic "0") sampled by the sampling detection circuit 32a. For example, when the sampling detection circuit 32a samples logic "1", each time the sampling detection circuit 32a detects logic "1", the addition circuit 32b sequentially adds the number of times of detection of logic "1". .
  • the second synchronization detecting means 32 calculates the ratio of the logic level of the sampled demodulated signal P2, that is, the ratio of the number of times of detection of the logic “1” and the logic “0”, from the addition result of the addition circuit 32b. calculate.
  • the sampling period for acquiring the logic level ratio information is not limited. For example, sampling may be performed for 10 seconds and then added to calculate the logic level ratio.
  • the transmission station determining means 25 receives the second synchronization information P3, and determines a transmission station based on the logical level ratio information included in the second synchronization information P3. For example, when the standard radio wave received by the radio-controlled timepiece is determined to be a second synchronization signal due to a falling edge, and the assumed transmitting station is either the United States or the United Kingdom, the fourth embodiment of the present invention is used. May be usable. That is, since the minimum pulse width of the demodulated signal P2 in the United States is 200 ms as shown in FIG. 2, the ratio of the logical "1" to the logical "0" of the demodulated signal P2 is 8: 2, that is, No more than 4Z1.
  • the ratio of the logical "1" to the logical "0" of the demodulated signal P2 may be 8: 2, that is, larger than 4Z1. For example, if the calculated logical level ratio is 8.5: 1.5, it can be determined that the received standard time signal is a British transmitting station.
  • the demodulation signal P2 is sampled by the second synchronization detection means 32, and the addition result of the number of times of detection of logic “1” or logic “0” is obtained. Since the ratio of the logical level of P2 is calculated and the transmitting station is immediately determined based on the ratio of the logical level, a method of determining the transmitting station by examining each pulse width of the demodulated signal (for example, in the embodiment) (Refer to step S405 of step 1)), it is possible to execute the determination of the transmitting station more quickly, and to speed up the time correction mode.
  • the receiving unit 20 when the receiving unit 20 starts receiving, if there is a standard radio wave that operates on a plurality of different frequencies, the standard radio wave of the transmitting station that succeeded in the previous reception is searched for the most. Good to receive first. Then, when the reception of the standard radio wave has failed once or a plurality of times set as a rough setting, it is preferable to switch to receiving the standard radio wave of another frequency. By doing so, the time correction process can be completed more quickly when the country or region is not moved.
  • the RAM 24 stores information on transmitting stations that have successfully received in the past. Then, when starting reception or switching reception, the frequency of the standard radio wave to be received first or the order of switching reception is determined based on the information on the transmitting station stored in the RAM 24. You may do so. For example, the one with the largest number of times stored may be received first, and then the reception may be switched in the order of the largest number. Alternatively, information about the date and time of successful reception may be stored in the RAM 24, and the switching order may be determined based on the date and time and the number of times. Therefore, it is also possible to switch the order of the most recently successful transmitting stations, or to switch to the order of the most successful transmitting stations in the latest predetermined number of receptions.
  • the order of reception may be determined by input from the operator. Thereby, an appropriate reception order can be executed according to the use situation of the operator (such as the travel situation to a foreign country).
  • the radio-controlled timepiece of the present invention can receive time information by receiving standard radio waves from transmitting stations in two or more countries or regions. Even if you move to an area, you can automatically receive the standard time signal from the transmitting station in that country or area and adjust the time.
  • the standard radio wave of another transmitting station can be received by the reception switching means, so that the optimum transmitting station for reception can be selected, and the reception performance can be selected. To provide an excellent radio-controlled watch.
  • time information can be obtained by receiving standard radio waves from transmitting stations in two or more countries or regions having the same frequency, the user of the radio-controlled timepiece moves to each country or region and Also, it is possible to automatically receive the standard time signal of the transmitting station of the country or the area at all times and adjust the time.
  • the circuit scale of the second synchronization detecting means can be simplified. Further, since the second synchronization detecting means simultaneously detects the rising edge and the falling edge of the demodulated signal, the second synchronization information can be detected quickly, and the transmitting station of the received standard radio wave can be quickly determined.
  • the second synchronization detecting means obtains second synchronization information based on the result of adding the number of times of detection of the rising edge and the falling edge of the demodulated signal for each sampling position, noise is mixed in the demodulated signal. Thus, even if a rising edge or a falling edge occurs due to noise, it is possible to perform second synchronization detection with little influence of noise.
  • the transmitting station determining means determines the transmitting station based on the result of adding the logic “1” or the logic “0” of the demodulated signal added by the second synchronization detecting means.
  • the transmitting station of the radio wave can be determined efficiently and quickly.
  • the transmitting station determining means determines the transmitting station of the waveform force of the position marker arriving at regular intervals, it is possible to efficiently and quickly determine the transmitting station of the received standard radio wave. Further, since the transmitting station determining means determines the transmitting station from the specific waveform of the demodulated signal, the transmitting station of the received standard radio wave can be efficiently and quickly determined.
  • the second synchronization detecting means assigns priority to the order of determination of the transmitting station by the transmitting station determining means, so that the transmitting station determining means efficiently and quickly determines the transmitting station of the received standard radio wave. can do.
  • Each flowchart shown as an embodiment of the present invention is not limited to this, and the operation flow can be arbitrarily changed as long as each function satisfies each function.
  • an analog display type radio-controlled timepiece is presented.
  • the present invention is not limited to this.
  • a radio-controlled timepiece of a digital display type or a combined analog and digital display type is provided. Is also good.
  • the time adjustment method of the present invention is not limited to a timepiece, and can be widely applied to electronic devices having a radio-controlled timepiece function.
  • the radio-controlled timepiece includes all types of timepieces such as watches, wall clocks, and table clocks. Also, the present invention relates to a camera, a digital camera, a digital video camera, a game device, a mobile phone, a PDA (Personal Digital Assistant), a notebook personal computer, which incorporates a radio-controlled timepiece which is not limited to a radio-controlled timepiece. It may be a portable information terminal device such as a computer, or an electronic device including a home appliance or a car.
  • the present invention is useful for a radio-controlled timepiece that receives a standard time signal.
  • a transmission station that can automatically receive a radio-controlled timepiece even if the user moves in each region of each country.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)

Abstract

 時刻を計時する計時手段(27)と、該計時手段(27)からの計時情報に基づいて時刻を表示する表示部(3)を備え、更に、少なくとも二つ以上の国または地域の送信局からの標準電波を受信する受信部(20)と、該受信部(20)によって得られた復調信号(P2)から秒同期情報(P3)を検出する秒同期検出手段(23)と、前記復調信号(P2)を前記秒同期情報(P3)に基づいて解析し、国または地域の送信局を決定する送信局決定手段(25)と、該送信局決定手段(25)によって決定された送信局からの前記標準電波に含まれる情報を解読して時刻情報を取得する解読手段(26)とを有し、該解読手段(26)により取得された前記時刻情報によって前記計時手段(27)の計時情報を修正する構成とした。

Description

明 細 書
電波修正時計、電子機器および時刻修正方法
技術分野
[0001] 本発明は時刻情報を含む標準電波を受信し、受信した時刻情報に基づいて時刻 を自動修正する電波修正時計、電子機器および時刻修正方法に関し、特に複数の 国または地域の送信局力 の標準電波を受信できる電波修正時計、電子機器およ び時刻修正方法の改良に関するものである。
背景技術
[0002] 時刻情報を含む標準電波を小型アンテナで受信し、時刻修正を自動的に行う電波 修正時計は、アンテナの小型高性能化、受信装置の低消費電力化、コストダウン等 の技術開発が進み、製品化が盛んに行われている。また、標準電波を送信する送信 局も日本だけでなぐアメリカ、ヨーロッパ、アジアと各国各地域で建設が進み世界的 な広がりを見せている。それ故、複数の送信局からの標準電波を受信できる国または 地域が増えつつあり、また、国際化が進んで電波修正時計の使用者が世界各国を 移動し、その都度、各国または各地域の標準電波を受信する場面が増えつつある。
[0003] し力しながら、これらの標準電波は各国毎に時刻情報フォーマットが異なっており、 また、国や地域で送信周波数が異なっている場合もある。このため、電波修正時計が 各国または各地域の標準電波を受信して時刻情報を得るには、各送信局の標準電 波に対応して時刻情報フォーマットを解読する解読アルゴリズムを切り替える手段と、 また、送信周波数が異なっている場合は、受信周波数を切り替える手段とが必要とな る。このように複数の送信局からの標準電波を受信するための切り替え手段には、手 動受信切替方式と自動受信切替方式が提案されて 、る。
[0004] 手動受信切替方式は、電波修正時計の使用者が自分の居る国または地域にぉ ヽ て受信可能な送信局を認識し、受信する送信局を受信切り替えスィッチ等で切り替 えて受信する方式である。この場合、使用者は各国または各地域において標準電波 を送信する送信局を認識している必要があり、また、受信切り替えのために受信切り 替えスィッチ等による操作が必要となるので利便性が悪ぐ更に、受信に適した送信 局を選択できな 、可能性があるので、正確な時刻を常に表示できな 、と 、う大きな問 題を含んでいる。
[0005] このような問題点を解決するために、自動受信切替の一つの方式として、記憶手段 に記憶されて 、る周波数によって標準電波の受信周波数を切り替え、受信する標準 電波の受信成功 Z失敗の判定を行って、周波数の異なる標準電波の中から受信に 適した標準電波を選択する時刻データ受信装置の提案がなされている (例えば、特 許文献 1参照。)。
[0006] この提案によれば、周波数の異なる複数の標準電波を受信する受信手段と、受信 する標準電波の周波数を切り替える受信周波数切替手段と、該受信周波数切替手 段を制御する制御手段と、受信した時刻データに基づいて現在時刻データを修正す る現在時刻修正手段を備え、前記受信手段による標準電波の受信の成功 Z失敗を 判定する成否判定手段と、受信周波数を記憶する記憶手段を更に備え、前記制御 手段は、受信手段が受信する標準電波の周波数を前記記憶手段に記憶された周波 数に切り替えるように前記受信周波数切替手段を制御し、前記成否判定手段によつ て受信失敗と判定された場合は、前記受信周波数切替手段を他の周波数に切り替 えるように制御し、前記成否判定手段により受信成功と判定された場合には、前記受 信手段が受信している標準電波の周波数を前記記憶手段に記憶させることができる 。この結果、周波数の異なる複数の標準電波の中から受信に成功した標準電波を迅 速に選択し、選択された標準電波カゝら時刻情報を取得して自動的に時刻修正を行う ことができる。
[0007] また、自動受信切替の他の方式として、標準電波を受信する受信部が周波数の異 なる標準電波を順番に受信し、受信状態検出部によって受信したそれぞれの標準電 波の受信状態を検出し、該受信状態の違いに基づいて時刻情報取得用の標準電波 を指定する提案がなされている (例えば、特許文献 2参照。 )0
[0008] この提案によれば、周波数の異なる複数の標準電波を順番に受信する受信部と、 前記受信部が受信した前記標準電波の受信状態を検出する受信状態検出部と、前 記受信状態検出部が検出したそれぞれの受信状態に基づき前記標準電波の中から 一つの標準電波を時刻情報取得用として指定する受信信号指定部と、前記受信信 号指定部が指定した前記標準電波から時刻情報を取得する時刻情報取得部を含み 、該取得された時刻情報によって自動的に時刻修正を行うことができる。この結果、 周波数の異なる複数の標準電波をそれぞれ受信して受信状態を検出するので、受 信に最適な標準電波を指定して時刻情報を取得することが可能となり、信頼性の高 V、電波修正時計を実現できる。
[0009] 特許文献 1 :特開 2003— 270370号公報 (特許請求の範囲、第 1図)
特許文献 2 :特開 2002-296374号公報 (特許請求の範囲、第 1図)
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、上記二つの提案は、周波数の異なる標準電波の中から、受信に適し た標準電波を選択して時刻情報を取得できるが、時刻情報フォーマットの異なる標 準電波を受信することはできない。例えば、日本国内であれば、送信局は周波数 40 KHzの福島局と、周波数 60KHzの九州局の二つがあり、この二つの送信局から送 信される標準電波は、周波数が異なるが時刻情報フォーマットは同一であるので、上 記提案のような自動受信切替方式で問題なく受信することができる。しかし、標準電 波の時刻情報フォーマットは各国毎に異なっているため、上記提案による電波修正 時計では、使用者が世界各国に移動した場合は、その国の送信局が送信する標準 電波を自動的に受信し、時刻情報を取得することはできない。すなわち、上記提案で は、二つ以上の国の送信局からの標準電波を自動的に受信することはできないとい う問題点があった。
[0011] 本発明は、上記課題を解決し、電波修正時計の使用者が各国または各地域を移 動したとしても、自動的に受信できる送信局を選択し時刻情報を取得して、常にその 国またはその地域の標準時に自動修正できる全地球的な完全自動型の電波修正時 計、電子機器および時刻修正方法を提供することを目的とする。
課題を解決するための手段
[0012] 上記課題を解決するために、本発明の電波修正時計、電子機器および時刻修正 方法は、下記記載の構成と方法を採用する。
[0013] 本発明の電波修正時計は、時刻を計時する計時手段と、該計時手段からの計時情 報に基づいて時刻を表示する表示手段と、を備え、更に、少なくとも二つ以上の国ま たは地域の送信局からの標準電波を受信する受信手段と、該受信手段によって得ら れた復調信号から秒同期情報を検出する秒同期検出手段と、前記復調信号を前記 秒同期情報に基づいて解析し、国または地域の送信局を決定する送信局決定手段 と、該送信局決定手段によって決定された送信局力 の標準電波に含まれる情報を 解読して時刻情報を取得する解読手段とを有し、該解読手段によって取得された前 記時刻情報に基づいて前記計時手段の計時情報を修正することを特徴とする。
[0014] 本発明の電波修正時計により、二つ以上の国または地域の送信局からの標準電波 を受信して時刻情報を取得できるので、電波修正時計の使用者が各国または各地 域に移動しても、常にその国またはその地域の送信局力もの標準電波を自動的に受 信し、時刻修正を行うことができる。
[0015] また、前記受信手段は受信切替手段を含み、前記秒同期検出手段によって秒同 期情報が検出できない場合、または、前記送信局決定手段によって送信局が決定で きない場合、または、前記解読手段によって時刻情報が解読できない場合は、前記 受信切替手段によって、他の送信局からの標準電波を受信することを特徴とする。
[0016] これにより、受信する標準電波力 の時刻情報を取得できない場合は、受信切替 手段によって他の送信局力 の標準電波を受信できるので、受信に最適な送信局を 選択でき、受信性能に優れた電波修正時計を提供できる。
[0017] また、本発明の電波修正時計は、時刻を計時する計時手段と、該計時手段からの 計時情報に基づいて時刻を表示する表示手段と、を備え、更に、同一周波数からな る少なくとも二つ以上の国または地域の送信局からの標準電波を受信する受信手段 と、該受信手段によって得られた復調信号から秒同期情報を検出する秒同期検出手 段と、前記復調信号を前記秒同期情報に基づいて解析し、国または地域の送信局 を決定する送信局決定手段と、該送信局決定手段によって決定された送信局力 の 標準電波に含まれる情報を解読して時刻情報を取得する解読手段とを有し、該解読 手段によって取得された前記時刻情報に基づいて前記計時手段の計時情報を修正 することを特徴とする。
[0018] また、本発明の電波修正時計は、前記秒同期検出手段が、前記復調信号の立ち 上がりエッジと立ち下がりエッジを順次検出するエッジ検出手段と、検出された前記 立ち上がりエッジまたは前記立ち下がりエッジから、前記復調信号の秒同期情報を 得る同期判定手段とを含むことを特徴とする。
[0019] また、本発明の電波修正時計は、前記秒同期検出手段が、前記復調信号の立ち 上がりエッジと立ち下がりエッジを同時に検出するエッジ検出手段と、検出された前 記立ち上がりエッジまたは前記立ち下がりエッジから、前記復調信号の秒同期情報 を得る同期判定手段とを含むことを特徴とする。
[0020] また、本発明の電波修正時計は、前記秒同期検出手段が、前記復調信号の立ち 上がりエッジと立ち下がりエッジを一定間隔毎に検出するサンプリング手段と、該サン プリング手段によって検出された前記立ち上がりエッジと前記立ち下がりエッジの検 出回数をサンプリング位置毎に加算する加算手段と、該加算手段によってサンプリン グ位置毎に加算された立ち上がりエッジと立ち下がりエッジの前記検出回数を記憶 する記憶手段と、該記憶手段に記憶されたサンプリング位置毎の立ち上がりエッジと 立ち下がりエッジの前記検出回数によって前記復調信号の秒同期情報を得る波形 判定手段とを含むことを特徴とする。
[0021] また、本発明の電波修正時計は、前記秒同期検出手段が、前記復調信号の論理" 1"あるいは論理" 0"を一定間隔毎に検出するサンプリング手段と、該サンプリング手 段によって検出された論理" 1"あるいは論理" 0"のいずれか一方の検出回数を加算 する加算手段を含み、前記送信局決定手段が、前記秒同期検出手段の加算手段の 結果に基づ 、て、前記国または地域の送信局を決定することを特徴とする。
[0022] また、本発明の電波修正時計は、前記送信局決定手段が前記復調信号を前記秒 同期情報に基づいて解析し、一定周期毎に到来するポジションマーカ(Pコード、 M コードあまたる 、はミニッッマーカ(minute marker) )の波形から前記国または地域 の送信局を決定することを特徴とする。
[0023] また、本発明の電波修正時計は、前記送信局決定手段が前記復調信号を前記秒 同期情報に基づいて解析し、前記復調信号の特有の波形から前記国または地域の 送信局を決定することを特徴とする。
[0024] また、本発明の電波修正時計は、前記秒同期検出手段が、検出された前記秒同期 情報に基づ!、て、前記送信局決定手段による送信局の判定順序に優先順位を付け ることを特徴とする。
[0025] また、本発明の電波修正時計は、時刻を計時する計時手段と、該計時手段からの 計時情報に基づいて時刻を表示する表示手段と、を備え、更に、少なくとも二つ以上 の国または地域の送信局からの標準電波を受信する受信手段と、該受信手段によつ て得られた復調信号を解析し、前記復調信号の特有の波形から国または地域の送 信局を決定する送信局決定手段と、該送信局決定手段によって決定された送信局 力 の標準電波に含まれる情報を解読して時刻情報を取得する解読手段とを有し、 該解読手段によって取得された前記時刻情報に基づいて前記計時手段の計時情報 を修正することを特徴とする。
[0026] また、本発明の電波修正時計は、前記受信手段が、前回受信に成功した送信局の 標準電波を最初に受信することを特徴とする。
[0027] また、本発明の電波修正時計は、過去に受信に成功した送信局に関する情報を記 憶する記憶手段を備え、前記受信手段が、前記記憶手段に記憶された送信局に関 する情報に基づいて、切り替える順序を決定することを特徴とする。
[0028] また、本発明の電子機器は、上記電波修正時計を備えたことを特徴とする。
[0029] 本発明の時刻修正方法は、時刻を計時する計時工程と、該計時工程からの計時情 報に基づいて時刻を表示する表示工程と、を備え、更に、少なくとも二つ以上の国ま たは地域の送信局力 の標準電波を受信する受信工程と、該受信工程によって得ら れた復調信号から秒同期情報を検出する秒同期検出工程と、前記復調信号を前記 秒同期情報に基づいて解析し、国または地域の送信局を決定する送信局決定工程 と、該送信局決定工程によって決定された送信局力 の標準電波に含まれる情報を 解読して時刻情報を取得する解読工程とを有し、該解読工程によって取得された前 記時刻情報に基づいて前記計時工程の計時情報を修正することを特徴とする。 発明の効果
[0030] 本発明によれば、少なくとも二つ以上の国または地域の送信局からの標準電波を 受信し、該受信して得られた復調信号から秒同期情報を検出し、該秒同期情報に基 づ 、て標準電波の送信局を決定するので、電波修正時計の使用者が各国または各 地域を移動したとしても、 自動的に受信できる送信局を選択し、常にその国またはそ の地域の標準時に自動修正する電波修正時計を提供することができる。
図面の簡単な説明
圆 1-1]図 1 1は、本発明の電波修正時計の一例を示す説明図である。
圆 1-2]図 1-2は、標準電波を送信する送信局を示した説明図である。
圆 2]図 2は、各国の標準電波を復調した復調信号の波形形態を示す説明図である
[図 3]図 3は、本発明の実施例 1と実施例 2の電波修正時計の回路ブロック図である。
[図 4]図 4は、本発明の実施例 1の動作を説明するフローチャート (その 1)である。
[図 5]図 5は、本発明の実施例 1の動作を説明するフローチャート (その 2)である。
[図 6]図 6は、本発明の実施例 1の動作を説明するフローチャート (その 3)である。
[図 7]図 7は、本発明の実施例 1の動作を説明するフローチャート (その 4)である。
[図 8]図 8は、本発明の実施例 2の動作を説明するフローチャートである。
[図 9]図 9は、本発明の実施例 3の電波修正時計の回路ブロック図である。
[図 10]図 10は、本発明の実施例 3の動作を説明するフローチャートである。
圆 11-1]図 11 1は、本発明の実施例 3の秒同期検出手段の波形判定回路の動作 に関し、 日本の標準電波の復調信号とサンプリング関係を示す説明図である。
圆 1ト 2]図 11— 2は、本発明の実施例 3の秒同期検出手段の波形判定回路の動作 に関し、立ち上がりエッジの検出回数をグラフ化した説明図である。
圆 11-3]図 11 3は、本発明の実施例 3の秒同期検出手段の波形判定回路の動作 に関し、立ち下がりエッジの検出回数をグラフ化した説明図である。
[図 12- 1]図 12— 1は、アメリカ局の標準電波の立ち上がりエッジの検出回数をグラフ 化した説明図である。
[図 12- 2]図 12— 2は、アメリカ局の標準電波の立ち下がりエッジの検出回数をグラフ 化した説明図である。
[図 13-1]図 13— 1は、イギリス局の標準電波の立ち上がりエッジの検出回数をグラフ 化した説明図である。
[図 13- 2]図 13— 2は、イギリス局の標準電波の立ち下がりエッジの検出回数をグラフ 化した説明図である。
符号の説明
1 電波修正時計
3 表示部
4 受信アンテナ
5 (5a— 5c) 入力手段 10 15 送信局
10a— 15a 標準電波 20 受信部
20a 同調手段
21 受信 IC
22 制御手段
23, 32 秒同期検出手段 23a エッジ検出回路 23b カウンタ
23c 同期判定回路 24, 32c RAM
25 送信局決定手段 26 解読手段
27 計時手段
28 表示駆動手段
29 ROM
30 基準信号源
31 電源部
32a サンプリング検出回路 32b 加算回路
32d 波形判定回路 P1 同調信号 P2 復調信号
P3 秒同期情報
P4 送信局情報
P5 時刻情報
P6 計時情報
P7 駆動信号
P8 入力信号
P9 基準信号
P10 受信制御信号
P11 カウントデータ
発明を実施するための最良の形態
[0033] 以下に、本発明にかかる電波修正時計、電子機器および時刻修正方法の実施例 を図面に基づいて詳細に説明する。なお、この実施例によってこの発明が限定され るものではない。
[0034] 図 1 1は、本発明の電波修正時計の一例を示す説明図であり、図 1—2は、標準電 波を送信する送信局を示した説明図である。図 1 1および図 1 2に基づいて、本発 明の電波修正時計と標準電波を送信する送信局の概略を説明する。図 1 1にお 、 て、 1は本発明のアナログ表示方式の電波修正時計である。 2は金属等によってなる 外装であり、 3は表示手段としての表示部であり、秒針 3a、分針 3b、時針 3c、および 日付を表示する日付表示部 3dによって構成される。 4は超小型の受信アンテナであ り、外装 2の内部の 12時方向に配置されている力 この位置に限定されるものではな ぐ例えば 9時方向に配置されてもよい。 5aは入力手段の一部に相当する時刻や日 付を修正するリューズであり、複数の電気的なスィッチ(図示せず)と連動している。 5 bと 5cは入力手段の一部に相当する操作ボタンであり、それぞれ電気的なスィッチ( 図示せず)と連動して 、る。 6は使用者(図示せず)の腕に装着するためのバンドであ る。
[0035] 10-15は時刻情報を含む標準電波 10a— 15aを送信する各国に建設されて ヽる 送信局であり、一例として送信局 10は送信周波数 40KHzの日本の福島局であり、 1 1は送信周波数 60KHzのアメリカ局であり、 12は送信周波数 60KHzのイギリス局で あり、 13は送信周波数 77. 5KHzのドイツ局であり、 14は送信周波数 75KHzのスィ ス局であり、 15は送信周波数 60KHzの日本の九州局であるとする。これらの送信局 10— 15より送信される標準電波 10a— 15aは、半径 lOOOKm程度の範囲で受信す ることができ、また、これらの標準電波 10a— 15aの時刻情報フォーマットは、各国で それぞれ個別に設定されている。
[0036] ここで、電波修正時計 1で標準電波 10a— 15aのいずれかを受信するには、好まし くは電波修正時計 1の受信アンテナ 4が配置されている位置を、送信局 10— 15があ るいずれかの方向に向け、受信開始ボタン (例えば操作ボタン 5c)を押下する。これ により、電波修正時計 1は受信動作を開始し、到来している標準電波 10a— 15aのい ずれ力を受信する。次に電波修正時計 1は受信した標準電波を復調信号に変換して 解析し、受信した標準電波がどの送信局力もの標準電波であるかを判定して、受信 した標準電波の時刻情報フォーマットに対応する解読アルゴリズムを用いて解読し、 秒分時や日付等の時刻情報と必要に応じて閏年やサマータイムの有無データ等を 取得し、取得した時刻情報を計時して表示部 3によって時刻情報や日付を表示する
[0037] 図 2は、各国の標準電波を復調した復調信号の波形形態を示す説明図である。図 2に基づいて、図 1 2で一例として示した代表的な各国の標準電波の形態について 説明する。これらの復調信号は、 1秒に対して正確に同期した同期信号であり、例え ば、 日本の復調信号は立ち上がりエッジが 1秒に対して同期しており、アメリカ、ドイツ 、イギリスでは共に立ち下がりエッジが 1秒に対して同期している。各復調信号は、こ の 1秒に対して同期した位置 (すなわち秒同期位置)を基準として、 日本、アメリカ、ド イツでは 1秒毎に 1ビットの情報を現し、イギリスでは、 1秒毎に 2ビットの情報を現して いる。
[0038] 例えば、日本では、秒同期位置(すなわち立ち上がりエッジ)から 800mSの Hレべ ルのパルスが続くと論理" 0"を現し、 500mSの Hレベルのパルスが続くと論理" 1"を 現している。また、ポジションマーカ(Pコード)と呼ばれるデータの区切りマーカは 20 OmSの Hレベルのパルスで現される。また、アメリカでは、秒同期位置(すなわち立ち 下がりエッジ)から 200mSの Lレベルのパルスが続くと論理" 0"を現し、 500mSの L レベルのパルスが続くと論理" 1"を現している。また、 Pコードは 800mSの Lレベルの パルスで現される。
[0039] また、ドイツでは、秒同期位置(すなわち立ち下がりエッジ)力も lOOmSの Lレベル のパルスが続くと論理" 0"を現し、 200mSの Lレベルのパルスが続くと論理" 1"を現 している。また、 Mコードと呼ばれる 59秒を示す 1分毎に発生するマーカは Hレベル を維持することによって現される。また、イギリスでは、前述した如ぐ 1秒間で 2ビット の情報を現し、該 2ビットの情報を A, Bとすると、図示する如ぐ A=0, B=0は、秒 同期位置から lOOmSの Lレベルのパルスで現し、 A= l, B = 0は、 200mSの Lレべ ルのパルスで現し、 A=0, B= lは、二つの lOOmSの Lレベルのパルスで現し、 A= 1, B= lは、 300mSの Lレベルのパルスで現している。また、 00秒を示す 1分毎に発 生する Mコードは、 500mSの Lレベルのパルスで現して!/、る。
[0040] また、スイスでは、秒同期位置(すなわち立ち下がりエッジ)から lOOmSの Lレベル のパルスが続くと論理" 0"を現し、 200mSの Lレベルのパルスが続くと論理" 1"を現 している。また、ミ-ッツマ一力(minute marker) )は、二つの lOOmSの Lレべノレの パルスで現される。
[0041] 以上のように、標準電波は 1秒に秒同期した信号によって論理を現しており、 1分間 を 1周期として時、分、日等の時刻情報を表現している。ここでは、各国の時刻情報フ ォーマットの詳細は本発明に直接関わらないので説明は省略する力 S、電波修正時計 が受信した標準電波から、その標準電波の送信局 (すなわち国)を特定するには、ま ず、受信した標準電波の秒同期位置を検出し、また、その秒同期位置が復調信号の 立ち上がりエッジによるのか立ち下がりエッジによるのかを判定し、次に、検出された 秒同期位置を基準としてパルス幅等を解析し受信した標準電波の送信局を決定する
[0042] そして、各国の標準電波の時刻情報フォーマットは公開されているので、受信した 標準電波の送信局が特定し、フォーマットに従って時刻情報を解読すれば、どの国 の標準電波を受信したとしても、時刻情報を取得することができる。本発明は、以上 のような考えに基づいて各国の標準電波力 時刻情報を自動的に取得できる電波修 正時計を提供するものである。以下、実施例に基づいて説明する。
実施例 1
[0043] 図 3は、本発明の実施例 1と実施例 2の電波修正時計の回路ブロック図である。図 3 に基づいて、本発明の実施例 1としての電波修正時計 1の回路構成の概略を説明す る。図 3において、 20は各国の送信局の標準電波を選択的に受信する受信手段とし ての受信部である。該受信部 20は、標準電波を受信する受信アンテナ 4と、該受信 アンテナ 4と同調回路を形成する受信切替手段としての同調手段 20aと、受信 IC21 によって構成される。同調手段 20aは、図示しないが内部に複数の同調用コンデン サを有し、該複数のコンデンサを受信アンテナ 4に対して切り替えることにより、同調 回路の同調周波数を変化させて標準電波の受信周波数を切り替え、同調信号 P1を 出力する。
[0044] 受信 IC21は、図示しないが内部に増幅回路、フィルタ回路、デコード回路等を有し 、同調信号 P1を入力してデジタル信号に変換された復調信号 P2を出力する。 22は 電波修正時計 1の全体を制御する制御手段であり、復調信号 P2を入力して秒同期 情報 P3を出力する秒同期検出手段 23、各種データを一時的に記憶する RAM24、 秒同期情報 P3を入力して送信局を決定する送信局決定手段 25、該送信局決定手 段 25からの送信局情報 P4と復調信号 P2と秒同期情報 P3を入力して復調信号 P2 の時刻情報フォーマットを解読する解読手段 26、該解読手段 26が取得した時刻情 報 P5によって計時情報 P6を修正し出力する計時手段 27、計時情報 P6を入力して 表示部 3を駆動するための駆動信号 P7を出力する表示駆動手段 28、各動作フロー を制御するためのファームウェアを記憶する ROM29等によって構成される。
[0045] また、制御手段 22は、受信制御信号 P10を受信部 20に対して出力し、同調手段 2 Oaを制御して受信する標準電波の受信周波数を切り替えたり、受信 IC21の動作開 始制御を行う。受信また、秒同期検出手段 23は復調信号 P2の立ち上がりエッジと立 ち下がりエッジを検出するエッジ検出手段としてのエッジ検出回路 23aと、エッジ間隔 を計測するカウンタ 23bと、秒同期情報 P3を得る同期判定手段としての同期判定回 路 23c等によって構成される。なお、制御手段 22は、 ROM29に記憶されるファーム ウェアによって動作するマイクロコンピュータであることがシステムに柔軟性があって 好ましいが、これに限定されず、各機能をノヽードウエアによって構成するカスタム IC であってもよい。また、図 3で示す回路構成は、これに限定されず、本発明の要旨を 逸脱しな!、範囲で任意に変更できる。
[0046] 次に、入力手段 5は前述した如ぐリューズ 5aや操作ボタン 5b、 5cによってなり、入 力信号 P8が制御手段 22に入力されて手動による時刻修正や受信開始動作等を実 行する。表示部 3は、制御手段 22の前記表示駆動手段 28からの駆動信号 P7を入力 して時刻や日付等を表示する。 30は水晶振動子(図示せず)を内蔵する基準信号源 であり、基準信号 P9を制御手段 22に出力し、該基準信号 P9は計時手段 27が記憶 する前記計時情報 P6を計時する基準クロックとして機能する。 31は一次電池または 二次電池等によってなる電源部であり、図示しないが電源ラインを介して各回路プロ ックに電源を供給する。
[0047] 次に、図 3に基づいて電波修正時計 1の概略動作を説明する。電源部 31によって 各回路ブロックに電源が供給されると、制御手段 22は初期化処理を実行して各回路 ブロックを初期化する。この結果、制御手段 22の計時手段 27の内部の計時情報 P6 は初期化されて AMOO: 00: 00となり、この初期化された計時情報 P6に基づ 、て表 示駆動手段 28から駆動信号 P7が出力され、表示部 3の秒針 3a、分針 3b、時針 3c は基準位置である AMOO : 00 : 00に移動し、また、 日付表示部 3dも基準位置に移動 する。なお、表示部 3の基準位置への自動的な移動は、表示部 3を駆動する電波修 正時計 1内部の輪列機構 (図示せず)に位置検出機構が備えられている場合に可能 となるが、位置検出機構が備えられていない場合は、使用者がリューズ 5a等を操作 してマニュアルで基準位置に移動させるとよ!/、。
[0048] 次に、計時手段 27は基準信号源 30からの基準信号 P9を入力して計時情報 P6の 計時を開始し、表示駆動手段 28は順次計時される計時情報 P6に基づいて駆動信 号 P7を出力して表示部 3を継続的に駆動する。また、制御手段 22は、使用者による 入力手段 5の操作や一定時間毎のタイマー等によって時刻修正モードに移行し、標 準電波を受信して表示時刻の自動修正を実行する。
[0049] 図 4一図 7は、本発明の実施例 1の動作を説明するフローチャートである。図 4一図 7のフローチャートに基づいて、時刻修正モードの動作を説明する。図 4のフローチヤ ートにおいて、電波修正時計 1が使用者の操作やタイマー等によって時刻修正モー ドに移行すると、制御手段 22は受信制御信号 P10を受信部 20に対して出力し、受 信制御信号 P10を受信部 20に対して出力し、同調手段 20aは、受信制御信号 P10 によって指定された受信周波数に切り替え、受信 IC21は標準電波の受信動作を開 始する(ステップ S401)。
[0050] 次に、標準電波が受信アンテナ 4によって受信されると、同調手段 20aは同調信号 P1を出力し、受信 IC21は微弱な信号である同調信号 P1を入力して増幅し、フィル タ回路(図示せず)によってノイズ成分等を除去し、更にデコード回路(図示せず)に よってデジタル信号に変換し、復調信号 P2を出力する (ステップ S402)。
[0051] 次に、秒同期検出手段 23のエッジ検出回路 23aは復調信号 P2を入力し、一定期 間(例えば 10秒間)立ち下がりエッジを検出する (ステップ S403)。 日本とアメリカの 場合、ポジションマーカのコードが 10秒おきに入っているので、 10秒間を検出するこ とで必ずポジションマーカのコードが含まれることになる。ポジションマーカが含まれる ことによって、標準電波を識別することができるようになる。すなわち、ポジションマー 力が含まれないような一定期間(例えば、 "0 "ど' 1 "のみ)では、日本局とアメリカ局を 比較した場合、立ち下がりなのか立ち上がりなのかを判断できなくなってしまうからで ある。したがって、少なくとも 10秒以上検出するのが望ましい。
[0052] ここで、エッジ検出回路 23aによって最初の立ち下がりエッジが検出されると、カウ ンタ 23bはリセットされ、次の立ち下がりエッジが検出されるまでクロック信号(図示せ ず)によってカウント動作が «I続される。エッジ検出回路 23aによって次の立ち下がり エッジが検出されると、カウンタ 23bのカウント動作は停止され、カウントデータ P11が RAM24に書き込まれ、その後、カウンタ 23bは再びリセットされて次の立ち下がりェ ッジが検出されるまで、再びカウント動作が継続され、 10秒間この動作が繰り返され る。この結果、 RAM24には、 10秒間の間に検出された立ち下がりエッジの時間間 隔データが記憶される。
[0053] 次に、秒同期検出手段 23の同期判定回路 23cは、 RAM24に記憶されたカウント データ P11を読み出し、各カウントデータ P11が 1秒に対してどの程度ずれているか を調べ、 10秒間に到来した立ち下がりエッジが 1秒に同期した秒同期信号であるか を判定する (ステップ S404)。すなわち、 10秒間に到来した立ち下がりエッジの検出 回数が 10個であり、各立ち下がりエッジの時間間隔 (すなわちカウントデータ P11)が 1秒に等しいか近ければ、検出された立ち下がりエッジは秒同期信号であり、その立 ち下がりエッジの位置が秒同期位置であると判定される。しかし、各立ち下がりエッジ の時間間隔が 1秒に対してバラツキが大きければ、その立ち下がりエッジは秒同期信 号ではないと判定される。ここで、秒同期信号であると判定された場合 (ステップ S40 4 : Yes)は、ステップ S405へ移行し、秒同期信号でないと判定された場合 (ステップ S404 :No)は、ステップ S407へ移行する。なお、検出時間の 10秒は任意に変更し てよい。
[0054] 次に、ステップ S404にお 、て、秒同期信号であると判定された場合 (ステップ S40 4 : Yes)は、秒同期検出手段 23から秒同期情報 P3が送信局決定手段 25に対して 出力される。ここでの秒同期情報 P3は、復調信号 P2の波形情報と秒同期位置と秒 同期信号が立ち下がりエッジである等の情報を含んでいる。送信局決定手段 25は前 記秒同期情報 P3を入力し、復調信号 P2の波形がアメリカの復調信号の形態に一致 しているかを判定する (ステップ S405)。すなわち、送信局決定手段 25は秒同期位 置(立ち下がりエッジの位置)からパルス幅 200mS、ノ レス幅 500mS、パルス幅 80 OmSに等しいか近いパルスが存在している力、また、それ以外のパルス幅の波形が 無いかを判定する。ここで、アメリカの標準電波であると判定した場合 (ステップ S405 : Yes)は、ステップ S410へ移行し、アメリカの標準電波ではないと判定した場合 (ス テツプ S405 :No)は、ステップ S406へ移行する。
[0055] 次に、ステップ S405において、アメリカの標準電波であると判定した場合 (ステップ S405 :Yes)は、送信局決定手段 25は送信局情報 P4を解読手段 26に対して出力 する。ここで、送信局情報 P4は、受信した標準電波がアメリカの標準電波である情報 を含んでいる。解読手段 26は、送信局情報 P4と共に、復調信号 P2と秒同期情報 P3 を入力し、アメリカの時刻情報フォーマットに対応する解読アルゴリズムを用いて復調 信号 P2を解読し (ステップ S410)、解読できた力否かを判定し (ステップ S413)、解 読できた場合 (ステップ S413 : Yes)は、時刻情報 P5を出力し、時刻修正処理を行う (ステップ S414)。 [0056] すなわち、計時手段 27は、時刻情報 P5を入力して内部で計時している計時情報 P 6を修正し、アメリカの標準時に計時情報 P6を一致させる。表示駆動手段 28は修正 された計時情報 P6を入力して、表示部 3を駆動する駆動信号 P7を出力し、表示部 3 は、受信されたアメリカの標準時を表示する。以降、時刻修正モードは終了し、計時 手段 27によって計時情報 P6が計時され、表示部 3は時刻を継続的に表示する。そ の後、一連の処理を終了する。なお、実際にはアメリカ(すなわちアメリカ合衆国)で は地域によって時差があるので、アメリカの各送信局が送信する標準時は UTC (協 定世界時)を用いている。このため、アメリカ現地時刻を正しく表示するには、 UTCに 対して時差修正 (一 5H 8H、夏時間では 4H—— 7H)が必要である。
[0057] 一方、ステップ S405にお 、て、アメリカの標準電波でな 、と判定した場合 (ステップ S405 :No)は、送信局決定手段 25は、すでに入力している秒同期情報 P3によって 、復調信号 P2の波形力 ギリスの復調信号の形態に一致しているかを判定する (ス テツプ S406)。すなわち、送信局決定手段 25は秒同期位置(立ち下がりエッジの位 置)からパルス幅 100mS、パルス幅 200mS、パルス幅 300mS、パルス幅 500mSに 等しいか近いパルスが存在している力、また、それ以外のパルス幅の波形が無いか を判定する。ここで、イギリスの標準電波であると判定した場合 (ステップ S406 : Yes) は、ステップ S411へ移行し、イギリスの標準電波ではないと判定した場合 (ステップ S 406 : No)は、ステップ S407へ移行する。
[0058] 次に、イギリスの標準電波であると判定した場合 (ステップ S406: Yes)は、送信局 決定手段 25は送信局情報 P4を解読手段 26に対して出力する。ここで、送信局情報 P4は、受信した標準電波がイギリスの標準電波である情報を含んでいる。解読手段 26は、送信局情報 P4と共に、復調信号 P2と秒同期情報 P3を入力し、イギリスの時 刻情報フォーマットに対応する解読アルゴリズムを用いて復調信号 P2を解読し (ステ ップ S411)、解読できた力否かを判定し (ステップ S413)、解読できた場合 (ステップ S413 :Yes)は、時刻情報 P5を出力し、時刻修正処理を行う(ステップ S414)。
[0059] すなわち、計時手段 27は、時刻情報 P5を入力して内部で計時している計時情報 P 6を修正し、アメリカの標準時に計時情報 P6を一致させる。表示駆動手段 28は修正 された計時情報 P6を入力して、表示部 3を駆動する駆動信号 P7を出力し、表示部 3 は、受信されたアメリカの標準時を表示する。以降、時刻修正モードは終了し、計時 手段 27によって計時情報 P6が計時され、表示部 3は時刻を継続的に表示する。そ の後、一連の処理を終了する。
[0060] 一方、ステップ S406にお 、て、イギリスの標準電波でな 、と判定した場合 (ステップ S406 :No)は、立ち下がりエッジを秒同期信号とする送信局が見つ力 なかったの で、立ち上がりエッジでの秒同期信号が存在するかを確認するためにステップ S407 へ移行する。
[0061] 以下、ステップ S407以降の処理について説明する。秒同期検出手段 23のエッジ 検出回路 23aは復調信号 P2を入力し、一定期間(例えば 10秒間)立ち上がりエッジ を検出する (ステップ S407)。ここで、エッジ検出回路 23aによって最初の立ち上がり エッジが検出されると、カウンタ 23bはリセットされ、次の立ち上がりエッジが検出され るまでクロック信号(図示せず)によってカウント動作が継続される。エッジ検出回路 2 3aによって次の立ち上がりエッジが検出されると、カウンタ 23bのカウント動作は停止 され、カウントデータ P11が RAM24に書き込まれ、その後、カウンタ 23bは再びリセ ットされて次の立ち上がりエッジが検出されるまで、再びカウント動作が «I続され、 10 秒間この動作が繰り返される。この結果、 RAM24には 10秒間の間に検出された立 ち上がりエッジの時間間隔データが記憶される。
[0062] 次に、秒同期検出手段 23の同期判定回路 23cは、 RAM24に記憶されたカウント データ P11を読み出し、各カウントデータ P11が 1秒に対してどの程度ずれているか を調べ、 10秒間に到来した立ち上がりエッジが 1秒に同期した秒同期信号であるか を判定する (ステップ S408)。すなわち、 10秒間に到来した立ち上がりエッジの検出 回数が 10個であり、各立ち上がりエッジの時間間隔 (すなわちカウントデータ P11)が 1秒に等しいか近ければ、検出された立ち上がりエッジは秒同期信号であり、その立 ち上がりエッジの位置が秒同期位置であると判定される。しかし、各立ち上がりエッジ の時間間隔が 1秒に対してバラツキが大きければ、その立ち上がりエッジは秒同期信 号ではないと判定される。ここで、秒同期信号であると判定された場合 (ステップ S40 8 : Yes)は、ステップ S409へ移行し、秒同期信号でないと判定された場合 (ステップ S408 :No)は、ステップ S415へ移行する。 [0063] 次に、ステップ S408にお 、て、秒同期信号であると判定された場合 (ステップ S40 8 : Yes)は、秒同期検出手段 23から秒同期情報 P3が送信局決定手段 25に対して 出力される。ここでの秒同期情報 P3は、復調信号 P2の波形情報と秒同期位置と秒 同期信号が立ち上がりエッジである等の情報を含んでいる。送信局決定手段 25は、 前記秒同期情報 P3を入力し、復調信号 P2の波形が日本の復調信号の形態に一致 しているかを判定する (ステップ S409)。すなわち、送信局決定手段 25は秒同期位 置(立ち上がりエッジの位置)からパルス幅 800mS、ノ レス幅 500mS、パルス幅 20 OmSに等しいか近いパルスが存在している力、また、それ以外のパルス幅の波形が 無いかを判定する。ここで、 日本の標準電波であると判定された場合 (ステップ S409 : Yes)は、ステップ S412へ移行し、 日本の標準電波でな 、と判定された場合 (ステツ プ S409 :No)は、ステップ S415へ移行する。
[0064] 一方、ステップ S409にお 、て、 日本の標準電波であると判定された場合 (ステップ S409 :Yes)は、送信局決定手段 25は送信局情報 P4を解読手段 26に対して出力 する。ここで、送信局情報 P4は、受信した標準電波が日本の標準電波である情報を 含んでいる。解読手段 26は、送信局情報 P4と共に、復調信号 P2と秒同期情報 P3を 入力し、 日本の時刻情報フォーマットに対応する解読アルゴリズムを用いて復調信号 P2を解読し (ステップ S412)、ステップ S413へ移行する。以下の時刻修正動作は重 複するので説明は省略する。
[0065] ステップ S409において、 日本の標準電波でないと判定された場合 (ステップ S409 : No)は、他の送信局があるか否かを判定し (ステップ S415)、他の送信局(例えばド イツ等)があれば (ステップ S415 :Yes)、送信局決定手段 25で更に他国の送信局の 判定を行う。すなわち、 日本の標準電波でないと判定され (ステップ S409 : No)、送 信局を決定できな 、場合は、制御手段 22は受信制御信号 P10を受信部 20の受信 切替手段である受信部 20に出力し、同調手段 20aを制御して受信アンテナ 4による 同調回路の同調周波数を切り替え、他の送信局からの標準電波を受信するために、 ステップ S401から再び、受信 IC21を制御して受信動作を開始する。また、他の送信 局からの標準電波を受信するための受信切り替え動作は、送信局が決定できない場 合だけでなぐ秒同期検出手段 23によって秒同期情報 P3を検出できない場合や、 送信局決定手段 25によって送信局が決定されても、解読手段 26によって、その送 信局の時刻情報フォーマットを解読することができな力つた場合においても、実行す るようにさせてよい。一方、他の送信局がなければ (ステップ 415 :No)は、受信不可 として時刻修正モードを終了する。
[0066] また、ステップ S405、ステップ S406、ステップ S409【こお!ヽて、送信局決定手段 25 は、復調信号 P2のパルス幅の一つ一つを詳細に調べ、対応する送信局からの標準 電波であるかを判定しているが、この判定方法に限定されず、任意の判定方法を用 いてもよい。すなわち、 日本やアメリカの標準電波の時刻情報フォーマットでは、ポジ シヨンマーカ(Pコード)と呼ばれる区切りコードが存在する力 この Pコードのパルス幅 に着目し、 Pコードを検出することによって送信局を決定してもよい。例えば、アメリカ の pコードは立ち下がりエッジから 800mSのパルス幅を有する波形である力 送信局 決定手段 25がこの 800mSのパルス幅に等しいか近いパルスの波形を検出したなら ば、直ちに送信局はアメリカであると決定してもよい。
[0067] 図 5のフローチャートにおいて、ステップ S501— S504までは、図 4のフローチヤ一 トに示したステップ S401— S404と同様であるので、その説明は省略する。ステップ S505にお!/、て、 800mSのノ レス幅に等し!/、か近!、パルスを検出したか否かを判定 する(ステップ S505)。ここで、 800mSのパルス幅に等しいか近いパルスを検出した 場合 (ステップ S505 :Yes)は、直ちに送信局はアメリカであると判断 (決定)し (ステツ プ S506)、図 4のフローチャートに示したステップ S410に移行する。ここで、検出さ れた 800mSのパルス幅に等し!/、か近!、パルスがノイズである場合も考えられるため 、 800mSのパルス幅に等しいか近いパルスを 1度だけでなぐ複数個検出した場合 にのみ、直ちに送信局はアメリカであると判断するようにしてもよい。更に、 800mSの パルス幅に等しいか近いパルスを連続して検出した場合にのみ、直ちに送信局はァ メリ力であると判断するようにしてもよい。一方、 800mSのパルス幅に等しいか近いパ ルスを検出しなかった場合 (ステップ S505 : No)は、図 4のフローチャートに示したス テツプ S406へ移行する。
[0068] また、その際、秒同期信号である力否かを判定する前に、 800mSのパルス幅に等 しいか近いパルスを検出するようにしてもよい。図 6のフローチャートにおいて、ステツ プ S601— S603まで ίま、図 4のフローチャートに示したステップ S401— S403、図 5 のフローチャートに示したステップ S501— S503と同様であるので、その説明は省略 する。ステップ S604において、秒同期信号であるか否かを判定する前に、まず、 80 OmSのパルス幅に等し!/、か近!、パルスを検出したか否かを判定する(ステップ S604 )。ここで、 800mSのパルス幅に等しいか近いパルスを検出した場合 (ステップ S604 : Yes)は、次に、 10秒間に到来した立ち下がりエッジが 1秒に同期した秒同期信号 であるかを判定する (ステップ S605)。ここで、秒同期信号であると判定された場合( ステップ S605 :Yes)は、送信局はアメリカであると判断し (ステップ S606)、図 4のフ ローチャートに示したステップ S410へ移行する。一方、秒同期信号でないと判定さ れた場合 (ステップ S605 :No)は、 日本の Pコードは立ち上がりエッジから 200mSの パルス幅を有する波形であり、結果として、立ち下がりから次の立ち上がりまで 800m Sのパルス幅を有する波形となるため、送信局は日本であると判断し (ステップ S607 )、図 4のフローチャートに示したステップ S412へ移行する。
[0069] また、送信局決定手段 25による送信局の決定において、前述のポジションマーカ 以外で、その送信局の特有の波形に着目して送信局を決定してもよい。例えば、受 信した標準電波力イギリスもしくはアメリカの!/、ずれかであるような場合、図 2で示すよ うにイギリスの復調信号は立ち下がりエッジから 300mSのパルス幅の波形が存在す る力 アメリカの復調信号では 300mSのパルス幅は存在せず、存在するパルス幅は 200mSと 500mSと 800mSである。よって、送信局決定手段 25力 ^300mSのノ ノレス 幅に等 ヽか近!ヽパルスの波形を検出したならば、直ちに送信局はイギリスであると 決定してもよい。このようにして、送信局の決定を迅速に実行することができる。
[0070] 図 7のフローチャートにおいて、ステップ S701— S703までは、図 4のフローチヤ一 トに示したステップ S401— S403と同様であるので、その説明は省略する。ステップ S704において、秒同期信号であるか否かを判定することなぐ 300mSのパルス幅に 等しいか近いパルスを検出したか否かを判定する(ステップ S704)。ここで、 300mS のパルス幅に等しいか近いパルスを検出した場合 (ステップ S 704 : Yes)は、直ちに 、送信局はイギリスであると判断し (ステップ S705)、図 4のフローチャートに示したス テツプ S411へ移行する。 300mSのノ レス幅に等し 、か近!、パルスを検出した場合 は、直ちに、送信局はイギリスであると判断するのは、 300mSのパルス幅は、送信局 力 Sイギリスの場合のみだ力もである(図 2を参照)。ただし、ここで、検出された 300mS のパルス幅に等しいか近いパルスがノイズである場合も考えられるため、 300mSの パルス幅に等しいか近いパルスを 1度だけでなぐ複数個検出した場合にのみ、直ち に送信局はイギリスであると判断するようにしてもよい。一方、ステップ S 704において 、 300mSのノ レス幅に等し!/、か近!、パルスを検出しなかった場合 (ステップ S 704: No)は、図 4のフローチャートに示したステップ S404へ移行する。
[0071] 以上のように、本発明の実施例 1の電波修正時計によれば、標準電波の周波数が 異なっていても、または等しくても、また、秒同期が立ち上がりエッジであっても立ち 下がりエッジであっても、更に、時刻情報フォーマットが異なっていても、様々な国ま たは地域の送信局からの標準電波を受信して時刻情報を取得できるので、電波修正 時計の使用者が各国または各地域に移動しても、常にその国またはその地域の送 信局からの標準電波を自動的に受信し、時刻修正を行うことができる。また、秒同期 検出手段 23は、復調信号 P2の立ち下がりエッジと立ち上がりエッジを順番に検出す るので、秒同期検出手段 23のエッジ検出回路 23aの回路規模を簡素化でき、また、 動作フローも繰り返しフローが多いのでサブルーチンィ匕し易ぐファームウェアを記憶 する ROM29や一時的なデータを記憶する RAM24の記憶容量を小さくすることが 可能であり、コストの安!、電波修正時計を提供できる。
実施例 2
[0072] 次に本発明の実施例 2の構成を図 3を用いて説明する。ここで、実施例 2と前述の 実施例 1の回路構成の違 ヽは、エッジ検出回路 23aとカウンタ 23bの内部構成の差 だけであり、実施例 1でのエッジ検出回路 23aは内部のエッジ検出ユニットが一組、 カウンタ 23bも内部のカウンタユニットが一組だけであるのに対して、実施例 2でのェ ッジ検出回路 23aは内部のエッジ検出ユニットが二組、また、カウンタ 23bも内部の力 ゥンタユニットがニ糸且あり、復調信号の立ち上がりエッジと立ち下がりエッジを同時に 検出できる構成である。よって、図 3で示す回路ブロック図は実施例 2においても適応 できる。
[0073] 次に、本発明の実施例 2の動作を説明する。ここで、実施例 2の動作は秒同期検出 手段 23の動作以外は、実施例 1と同様であるので重複する説明は省略し、秒同期検 出手段 23を中心とした動作のみを図 8のフローチャートに基づいて説明する。
[0074] 図 8は、本発明の実施例 2の動作を説明するフローチャートである。図 8において電 波修正時計 1が時刻修正モードに移行すると、制御手段 22は受信制御信号 P10を 受信部 20に対して出力し、同調手段 20aは、受信制御信号 P10によって指定された 受信周波数に切り替え、受信 IC21は標準電波の受信動作を開始する (ステップ S80 D o次に、標準電波が受信アンテナ 4によって受信されると、同調手段 20aは同調信 号 P1を出力し、受信 IC21は微弱な信号である同調信号 P1を入力して増幅し、フィ ルタ回路(図示せず)によってノイズ成分等を除去し、更にデコード回路(図示せず) によってデジタル信号に変換し、復調信号 P2を出力する (ステップ S802)。
[0075] 次に、秒同期検出手段 23のエッジ検出回路 23aは復調信号 P2を入力し、一定期 間(例えば 10秒間)立ち下がりエッジと立ち下がりエッジを内蔵する二つのエッジ検 出ユニット(図示せず)によって同時に検出する (ステップ S803)。ここで、エッジ検出 回路 23aの内部の第 1のエッジ検出ユニットによって最初の立ち下がりエッジが検出 されると、カウンタ 23bの内部の第 1のカウンタユニット(図示せず)はリセットされ、次 の立ち下がりエッジが検出されるまでクロック信号 (図示せず)によってカウント動作が 継続される。エッジ検出回路 23aによって次の立ち下がりエッジが検出されると、カウ ンタ 23bのカウント動作は停止され、カウントデータ P11が RAM24に書き込まれ、そ の後、カウンタ 23bは再びリセットされて次の立ち下がりエッジが検出されるまで、再 びカウント動作が継続され、 10秒間この動作が繰り返される。この結果、 RAM24〖こ は 10秒間の間に検出された立ち下がりエッジの時間間隔データが記憶される。
[0076] また、秒同期検出手段 23のエッジ検出回路 23aは、前述した如ぐ前記立ち下がり エッジ検出と同時に立ち上がりエッジ検出も実行する。ここで、エッジ検出回路 23aの 内部の第 2のエッジ検出ユニット(図示せず)によって最初の立ち上がりエッジが検出 されると、カウンタ 23bの内部の第 2のカウンタユニット(図示せず)はリセットされ、次 の立ち上がりエッジが検出されるまでクロック信号(図示せず)によってカウント動作が 継続される。エッジ検出回路 23aによって次の立ち上がりエッジが検出されると、カウ ンタ 23bのカウント動作は停止され、カウントデータ P11が RAM24に書き込まれ、そ の後、カウンタ 23bは再びリセットされて次の立ち上がりエッジが検出されるまで、再 びカウント動作が継続され、 10秒間この動作が繰り返される。この結果、 RAM24〖こ は 10秒間の間に検出された立ち上がりエッジの時間間隔データが記憶される。
[0077] 次に、秒同期検出手段 23の同期判定回路 23cは、 RAM24に記憶された立ち下 力 Sりエッジの時間間隔データであるカウントデータ P11を読み出し、各カウントデータ
P11が 1秒に対してどの程度ずれているかを調べ、 10秒間に到来した立ち下がりェ ッジが 1秒に同期した秒同期信号であるかを判定する (ステップ S804)。すなわち、 1 0秒間に到来した立ち下がりエッジの検出回数が 10個であり、各立ち下がりエッジの 時間間隔 (すなわちカウントデータ P11)が 1秒に等しいか近ければ、検出された立ち 下がりエッジは秒同期信号であり、その立ち下がりエッジの位置が秒同期位置である と判定される。しかし、各立ち下がりエッジの時間間隔が 1秒に対してバラツキが大き ければ、その立ち下がりエッジは秒同期信号ではないと判定される。ここで、肯定判 定ならばステップ S805へ移行し、否定判定ならばステップ S807へ移行する。
[0078] 次に、ステップ S804で肯定判定がなされた場合は、秒同期検出手段 23から秒同 期情報 P3が送信局決定手段 25に対して出力される。ここでの秒同期情報 P3は、復 調信号 P2の波形情報と秒同期位置と秒同期信号が立ち下がりエッジである等の情 報を含んでいる。送信局決定手段 25は、前記秒同期情報 P3を入力し、復調信号 P2 の波形がアメリカの復調信号の形態に一致しているかを判定する (ステップ S805)。 すなわち、送信局決定手段 25は秒同期位置(立ち下がりエッジの位置)からパルス 幅 200mS、ノ ノレス幅 500mS、ノ ノレス幅 800mSに等し!/、力近! 、ノ ノレス力 ^存在して いるか、また、それ以外のパルス幅の波形が無いかを判定する。肯定判定 (アメリカ の標準電波と判定)ならばステップ S809へ移行し、否定判定ならばステップ S806へ 移行する。
[0079] 次に、ステップ S805で肯定判定がなされたならばステップ S809へ移行する力 ス テツプ S809およびステップ S812— S814は図 4に示した実施例 1のフローチャート のステップ S410およびステップ S413— S415と同様であるので説明は省略する。
[0080] 次に、ステップ S805で否定判定がなされた場合のステップ S806を説明する。送信 局決定手段 25は、すでに入力している秒同期情報 P3によって、復調信号 P2の波形 力 Sイギリスの復調信号の形態に一致しているかを判定する (ステップ S806)。すなわ ち、送信局決定手段 25は秒同期位置(立ち下がりエッジの位置)力もパルス幅 100 mS、パルス幅 200mS、パルス幅 300mS、パルス幅 500mSに等しいか近いパルス が存在している力、また、それ以外のパルス幅の波形が無いかを判定する。肯定判 定 (イギリスの標準電波と判定)ならばステップ S810へ移行し、否定判定ならばステツ プ S807へ移行する。
[0081] 次に、ステップ S806で肯定判定がなされたならばステップ S810へ移行する力 ス テツプ S810およびステップ S812— S814は図 4に示した実施例 1のフローチャート のステップ S411およびステップ S413— S415と同様であるので説明は省略する。
[0082] 次に、ステップ S806で否定判定がなされた場合は、立ち下がりエッジを秒同期信 号とする送信局が見つからなかったので、立ち上がりエッジでの秒同期信号が存在 するかを確認するためにステップ S807へ移行する。なお、この動作フローに限定さ れず、他国(例えばドイツ等)の可能性があれば、送信局決定手段 25で更に他国の 送信局の判定を行ってよい。また、立ち下がりエッジを秒同期信号とする国が検出で きなかった場合には、ステップ S808へ移行せずに、受信不可として時刻修正モード を終了してもよい。なお、ステップ S807は、ステップ S804で否定判定がなされた場 合にも実行される。
[0083] 次にステップ S807以降の説明を行う。秒同期検出手段 23の同期判定回路 23cは 、RAM24に記憶された立ち上がりエッジの時間間隔データであるカウントデータ P1 1を読み出し、各カウントデータ P11が 1秒に対してどの程度ずれているかを調べ、 1 0秒間に到来した立ち上がりエッジが 1秒に同期した秒同期信号であるかを判定する (ステップ S807)。すなわち、 10秒間に到来した立ち上がりエッジの検出回数が 10 個であり、各立ち上がりエッジの時間間隔 (すなわちカウントデータ P11)が 1秒に等 しいか近ければ、検出された立ち上がりエッジは秒同期信号であり、その立ち上がり エッジの位置が秒同期位置であると判定される。しかし、各立ち上がりエッジの時間 間隔が 1秒に対してバラツキが大きければ、その立ち上がりエッジは秒同期信号では ないと判定される。ここで、肯定判定ならばステップ S808へ移行し、否定判定ならば ステップ S814へ移行する。 [0084] 次に、ステップ S807で肯定判定がなされた場合は、秒同期検出手段 23から秒同 期情報 P3が送信局決定手段 25に対して出力される。ここでの秒同期情報 P3は、復 調信号 P2の波形情報と秒同期位置と秒同期信号が立ち上がりエッジである等の情 報を含んでいる。送信局決定手段 25は、前記秒同期情報 P3を入力し、復調信号 P2 の波形が日本の復調信号の形態に一致しているかを判定する (ステップ S808)。す なわち、送信局決定手段 25は秒同期位置(立ち上がりエッジの位置)からパルス幅 8 OOmS、ノ ノレス幅 500mS、ノ ノレス幅 200mSに等し!/ヽカ近! ヽノ ノレス力 ^存在して!/ヽる 力 また、それ以外のパルス幅の波形が無いかを判定する。肯定判定(日本の標準 電波と判定)ならばステップ S811へ移行し、否定判定ならばステップ S814へ移行し 、更に他国の標準電波である可能性があれば、送信局決定手段 25で更に他国の送 信局の判定を行う。
[0085] 次に、ステップ S808で肯定判定がなされたならばステップ S811へ移行する力 ス テツプ S811— S814は図 4に示した実施例 1のフローチャートのステップ S412— S4 15と同様であるので説明は省略する。なお、図 8のフローチャートでは、ステップ S80 3の実行後、検出された立ち下がりエッジが秒同期信号である力を最初に判定したが 、この動作フローに限定されず、最初に立ち上がりエッジが秒同期信号であるかを判 定してちよい。
[0086] 以上のように、本発明の実施例 2によれば、復調信号 P2の立ち下がりエッジと立ち 上がりエッジを同時に検出するので、秒同期検出手段 23の回路規模は若干大きくな るが、秒同期情報を素速く検出でき、受信した標準電波の送信局を迅速に判定でき るので、時刻修正モードの時間短縮に大きな効果を発揮できる。
[0087] また、秒同期検出手段 23の同期判定回路 23cは、 RAM24に記憶された秒同期 情報としての立ち上がりエッジの時間間隔データと立ち下がりエッジの時間間隔デー タを比較し、 1秒に対してより誤差の少ないエッジ方向を算出し、送信局決定手段 25 の判定順序に優先順位を付けてもよい。例えば、ステップ S804において、 RAM24 に記憶された立ち上がりエッジの時間間隔データと立ち下がりエッジの時間間隔デ ータを比較し、 1秒に対してより誤差の少ないエッジ方向を算出し、もし、立ち上がり エッジの時間間隔データの方が 1秒に対して誤差が少なければ、 日本の標準電波で あるかどうかの判定(すなわちステップ S807)へ進み、もし、立ち下がりエッジの時間 間隔データの方が 1秒に対して誤差が少なければ、アメリカの標準電波であるかどう かの判定 (すなわちステップ S805)へ進むなど、判定順序に優先順位を持った動作 フローであってもよい。このように、送信局決定手段 25の判定順序に優先順位を付 けるならば、受信した標準電波の送信局を更に効率よく迅速に決定することが可能と なる。また例えば、立ち下がりエッジが秒同期と判定された場合、図示しないが前回 受信成功した送信局を記憶する手段 (例えば RAM24など)を設け、前回受信成功し た送信局(例えばアメリカ)からの受信を行うように優先順位をつけてもょ ヽ。
実施例 3
[0088] 次に、図 9に基づいて本発明の実施例 3としての電波修正時計 1の回路構成の概 略を説明する。なお、実施例 3の回路構成は、実施例 1および 2に対して秒同期検出 手段だけが異なるので、他の回路構成の同一要素には同一番号を付し重複する説 明は省略する。 32は実施例 3における秒同期検出手段であり、サンプリング検出手 段としてのサンプリング検出回路 32aと、加算手段としての加算回路 32bと、記憶手 段としての RAM32cと、波形判定手段としての波形判定回路 32dによって構成され る。
[0089] サンプリング検出回路 32aは、復調信号 P2を入力して該復調信号 P2の立ち上がり エッジと立ち下がりエッジを一定間隔 (例えば 1Z64秒周期)でサンプリングし検出す る。加算回路 32bは、サンプリング検出回路 32aで検出された立ち上がりエッジまた は立ち下がりエッジの検出回数を、サンプリング位置毎に個別に加算する。 RAM32 cは、加算回路 32bによってサンプリング位置毎に個別に加算された立ち上がりエツ ジと立ち下がりエッジの検出回数を、サンプリング位置毎に個別に記憶する。波形判 定回路 32dは、 RAM32cに記憶されたサンプリング位置毎の立ち上がりエッジの検 出回数と立ち下がりエッジの検出回数を読み出し、一定値以上の検出回数が記憶さ れたサンプリング位置を復調信号 P2の秒同期位置と判定し、また、そのエッジ方向を 秒同期信号のエッジ方向と判定する。なお、秒同期検出手段 32が出力する秒同期 情報 P3は、復調信号 P2の波形情報と判定された復調信号 P2の秒同期位置とエツ ジ方向を含む。 [0090] 次に、本発明の実施例 3の動作フローを秒同期検出動作を中心に図 10のフローチ ヤートに基づいて説明する。電波修正時計 1が使用者の操作やタイマー等によって 時刻修正モードに移行すると、制御手段 22は受信制御信号 P10を受信部 20に対し て出力し、同調手段 20aは、受信制御信号 P10によって指定された受信周波数に切 り替え、受信 IC21は標準電波の受信動作を開始する (ステップ S1001)。なお、後述 するアドレスポインタとして機能する変数としてのポインタ aと、何周期目のサンプリン グ検出であるかをカウントする変数としての回数 nと、立ち上がりエッジと立ち下がりェ ッジの検出回数がそれぞれ記憶される RAM32cの X領域と Y領域をステップ S1001 にお 、て初期化してその値をそれぞれ 0とする。
[0091] 次に、標準電波が受信アンテナ 4によって受信されると、同調手段 20aは同調信号 P1を出力し、受信 IC21は微弱な信号である同調信号 P1を入力して増幅し、フィル タ回路(図示せず)によってノイズ成分等を除去し、更にデコード回路(図示せず)に よってデジタル信号に変換し、復調信号 P2を出力する (ステップ S1002)。
[0092] 次に、秒同期検出手段 32のサンプリング検出回路 32aは復調信号 P2を入力して サンプリング動作を開始し (ステップ S1003)、立ち上がりエッジまたは立ち下がりエツ ジを検出する。
[0093] 次に、サンプリング検出回路 32aのサンプリング動作によって立ち上がりエッジが検 出されたかを判定する(ステップ S 1004)。ここで、肯定判定ならばステップ S 1005へ 進み、否定判定ならばステップ S 1006へ進む。
[0094] ステップ S 1004で肯定判定がなされたならば (すなわち、立ち上がりエッジが検出 された)、加算回路 32bは RAM32cの X領域のポインタ aで示されるアドレスのデータ (RAM_X(a)として示す)を読み出して、読み出されたデータに 1を加算して再び R AM32cの X領域のポインタ aで示されるアドレスに記憶させ (ステップ S 1005)、ステ ップ S 1008へ移行する。
[0095] 次に、ステップ S 1004で否定判定がなされたならば、サンプリング検出回路 32aの サンプリング動作によって立ち下がりエッジが検出されたかを判定する (ステップ S10 06)。ここで、肯定判定ならばステップ S1007へ移行し、否定判定ならばステップ S1 008へ移行する。 [0096] ステップ S1006で肯定判定がなされたならば (すなわち、立ち下がりエッジが検出 された)、加算回路 32bは RAM32cの Y領域のポインタ aで示されるアドレスのデータ (RAM— Y(a)として示す)を読み出して、読み出されたデータに 1を加算して再び R AM32cの Y領域のポインタ aで示されるアドレスに記憶させ (ステップ S 1007)、ステ ップ S 1008へ移行する。
[0097] 次に、加算回路 32bは、 RAM32cの X領域と Y領域のアドレスポインタであるポイン タ aに 1をカ卩算して、アドレスポインタを一つ進める(ステップ S1008)。
[0098] 次に、秒同期検出手段 32は、ポインタ aが一定値 (例えば 64)に等しいかどうかを 判定する(ステップ S 1009)。ここで、肯定判定ならば、ステップ S 1010へ移行し、否 定判定ならば、ステップ S 1003へ戻る。なお、一定値はステップ S 1003でのサンプリ ング周期に対応する値であり、サンプリング周期が 1/64秒である場合は一定値は 6 4となり、サンプリング周期が 1Z32秒である場合は一定値は 32となる。
[0099] ステップ S1009で否定判定がなされたならば、動作フローはステップ S1003へ戻り 、サンプリング周期が 1Z64秒であるならば、 1Z64秒経過後に、次のサンプリング 動作が開始され (ステップ S1003)、立ち上がりエッジまたは立ち下がりエッジが検出 される。以降の動作フローは、ステップ S1009で肯定判定がなされるまで繰り返され る。すなわち、ステップ S1003からステップ S1009までの動作が 64回実行され、この 結果、復調信号 P2の 1周期である 1秒間の期間、立ち上がりエッジと立ち下がりエツ ジが 1Z64秒毎のサンプリング動作によって検出されることになる。
[0100] 次に、ステップ S 1009で肯定判定がなされたならば、加算回路 32bは、復調信号 P 2の何周期分目をサンプリング検出しているかを示す回数 nに 1を加算する (ステップ S1010)。
[0101] 次に、秒同期検出手段 32は、回数 nが一定値 (例えば 10)に等しいかどうかを判定 する (ステップ S 1011)。肯定判定ならばステップ S1012へ移行する、否定判定なら ばステップ S1013へ移行する。ここで、一定値が 10である場合は、復調信号 P2の 1 0周期分、すなわち、 10秒間立ち上がりエッジと立ち下がりエッジの検出が実行され ることになり、この一定値は、任意に変更してよい。
[0102] 次に、ステップ S 1011で否定判定がなされたならば、 RAM32cのアドレスポインタ をリセットするために、ポインタ aを 0とする(ステップ S1013)。その後、ステップ S100 3へ戻る。以降の動作フローはステップ S1011で肯定判定がなされるまで繰り返され る。すなわち、ステップ S1011の一定値が 10であるならば、前述した如ぐ復調信号 P2の 10周期分サンプリング動作が繰り返し実行される。この結果、 RAM32cの X領 域と Y領域には、サンプリング位置毎の立ち上がりエッジと立ち下がりエッジの検出回 数が 10周期分加算されて記憶される。
[0103] 次に、ステップ S 1011で肯定判定がなされたならば、波形判定回路 32dは、 RAM 32cの X領域と Y領域に記憶されたサンプリング位置毎の立ち上がりエッジの検出回 数と立ち下がりエッジの検出回数を読み出し、一定値以上の検出回数が記憶された サンプリング位置を復調信号 P2の秒同期位置と判定し、また、そのエッジ方向を秒 同期信号のエッジ方向と判定する (ステップ S 1012)。
[0104] 次に、波形判定回路 32dのステップ S1012の動作を図 11—1一図 11— 3に基づい て説明する。
[0105] 図 11 1は、本発明の実施例 3の秒同期検出手段の波形判定回路の動作に関し、 日本の標準電波の復調信号とサンプリング関係を示す説明図であり、図 11 2は、本 発明の実施例 3の秒同期検出手段の波形判定回路の動作に関し、立ち上がりエッジ の検出回数をグラフ化した説明図、すなわち、 RAM32cの X領域に記憶された立ち 上がりエッジの検出回数をグラフ化した図であり、図 11— 3は、本発明の実施例 3の秒 同期検出手段の波形判定回路の動作に関し、立ち下がりエッジの検出回数をグラフ 化した説明図、すなわち、 RAM32cの Y領域に記憶された立ち下がりエッジの検出 回数をグラフ化した図である。
[0106] 秒同期情報が検出される標準電波は一例として日本の JJYであり、その復調信号 P 2の波形形態は図 11 1に示す波形であるとする。また、サンプリング検出回路 32a は、復調信号 P2を 10周期分サンプリングするが、その最初のサンプリング開始ボイ ントは、復調信号 P2と非同期であるので復調信号 P2に対してランダムに決定される
[0107] ここで、サンプリング開始位置を図 11 1で示す復調信号 P2の秒同期位置 (すなわ ち立ち上がり位置)から約 lOOmS後の矢印 Aで示すポイントであると仮定すると、復 調信号 P2の周期とサンプリング周期の関係は図 11—1のようになる。図 11 2と図 11 3のグラフの X軸は、 RAM32cのアドレスを現しており、そのアドレス範囲は、復調 信号 P2の 1周期のサンプリング回数に等しい 0— 63である。すなわち、 RAM32cの アドレス 0が図 11—1の矢印 Aで示すサンプリング開始位置に対応し、 RAM32cの各 アドレスがサンプリング位置に対応する。グラフの Y軸は、 RAM32cに記憶される立 ち上がりエッジと立ち下がりエッジの検出回数である。
[0108] ここで、図 11— 2の検出データ K1は RAM32cの X領域のアドレス 58付近に位置し 、その大きさは 10に等しい。すなわち、該検出データ K1は、図 11-1で示す復調信 号の立ち上がりエッジを正確に 10回分検出したことを示している。同じく検出データ K2は、アドレス 32付近に位置しており、その大きさは 1である。該検出データ K2は、 復調信号 P2に混入したノイズ成分を加算した結果である。
[0109] 次に、図 11— 3の検出データ K3はアドレス 6付近に位置しており、その大きさは 1で ある。該検出データ K3はポジションマーカ(Pコード)の立ち下がりエッジを検出した ものであり、 Pコードは 00秒を例外として 10秒に 1回の割合で発生するので検出回数 は 1となる。検出データ K4はアドレス 26付近に位置しており、その大きさは 5である。 該検出データ K4は論理" 1"の立ち下がりエッジを検出したものであり、その検出回 数は 5である。検出データ K5はアドレス 45付近に位置しており、その大きさは 4であ る。該検出データ K5は論理" 0"の立ち下がりエッジを検出したものであり、その検出 回数は 4である。検出データ K6は、アドレス 32付近に位置しており、その大きさは 1 である。該検出データ K6は、復調信号 P2に混入したノイズ成分を加算した結果であ る。なお、検出データ K4と K5は復調信号 P2の論理に応じて変動し、また、ノイズに よる検出データ K2と K6は、検出位置も検出回数も当然ながら変化する。
[0110] ここで、波形判定回路 32dは、図 11— 2と図 11— 3で示した RAM32cの X領域と Y 領域の記憶内容を検査し、最も検出回数の大きい検出データのサンプリング位置( すなわち RAM32cのアドレス位置)を復調信号 P2の秒同期位置と判定し、また、検 出したエッジ方向を秒同期位置のエッジ方向として判定する。すなわち、この一例で は、アドレス 58を秒同期位置と判定し、そのエッジ方向は立ち上がりエッジとする。な お、秒同期位置を決める検出回数の一定値は任意に定めてよぐ一例として、検出 時間が 10秒間である場合、検出回数が 9回以上ある検出データを秒同期位置であ ると判定してよい。また、検出データ K2や K6のように、ノイズによって立ち上がりエツ ジゃ立ち下がりエッジが検出されたとしても、同じサンプリング位置にノイズが繰り返し 混入する可能性は少な 、ので、サンプリング位置毎による検出回数を判定することに より、ノイズの混入によって生じた立ち上がりエッジや立ち下がりエッジを秒同期信号 と判定する可能性は極めて少ないことが理解できる。
[0111] 図 12— 1は、アメリカ局の標準電波の立ち上がりエッジの検出回数をグラフ化した説 明図であり、図 12— 2は、アメリカ局の標準電波の立ち下がりエッジの検出回数をダラ フ化した説明図である。また、図 13— 1は、イギリス局の標準電波の立ち上がりエッジ の検出回数をグラフ化した説明図であり、図 13— 2は、イギリス局の標準電波の立ち 下がりエッジの検出回数をグラフ化した説明図である。
[0112] 図 12— 1、図 12— 2、図 13— 1および図 13— 2に示すように、アメリカ局、イギリス局と もに、立ち上がりエッジを検出すると、それぞれ異なる特徴 (パターン)が現れる。これ らの異なる特徴に基づいて、送信局を決定するようにしてもよい。具体的には、ァメリ 力でのみ現れる特徴 (パターン)およびイギリスでのみ現れる特徴 (パターン)を記憶 しておき、該当するパターンと一致した場合には、何れかの送信局に決定する。この ようにすることによって、パターンの一致によって判断すればよいので、秒同期を取ら なくてもよい。
[0113] 次に、送信局決定手段 25は、復調信号 P2の波形情報と秒同期位置とエッジ方向 を含んだ秒同期情報 P3を入力し、復調信号 P2を秒同期位置を基準に解析して送 信局を決定する。なお、該送信局決定手段 25の動作フローは、例えば、図 8に示し た、実施例 2のフローチャートのステップ S805以降の動作と同様であるので、ここで の説明は省略する。
[0114] 以上のように、本発明の実施例 3によれば、秒同期検出手段 32は復調信号 P2の 立ち上がりエッジと立ち下がりエッジの検出回数をサンプリング位置毎に加算した結 果に基づいて秒同期情報を検出するので、復調信号 P2にノイズによる立ち上がりェ ッジゃ立ち下がりエッジが発生しても、その発生回数力も検出データがノイズであるこ とを判定できるので、ノイズ環境下の標準電波であっても、ノイズの影響を受け難い 秒同期検出を実現でき、標準電波の検出能力に優れた電波修正時計を提供できる 実施例 4
[0115] 次に、本発明の実施例 4を説明する。なお、実施例 4の回路構成は、実施例 3と同 様であるので、実施例 4の固有の動作のみを図 9に基づいて説明する。図 9において 、秒同期検出手段 32のサンプリング検出手段としてのサンプリング検出回路 32aは、 一定間隔毎に復調信号 P2の論理レベル (論理" 1"あるいは論理" 0")をサンプリング する機能が付加されている。加算手段としての加算回路 32bは、サンプリング検出回 路 32aがサンプリングした論理レベル(論理" 1"あるいは論理" 0 "の!/、ずれか一方)の 検出回数を加算する。例えば、サンプリング検出回路 32aが、論理" 1"をサンプリン グする場合は、サンプリング検出回路 32aが論理" 1"を検出する毎に、加算回路 32b は、論理" 1"の検出回数を順次加算する。
[0116] 次に、秒同期検出手段 32は、加算回路 32bの加算結果から、サンプリングされた 復調信号 P2の論理レベルの比率、すなわち、論理" 1"と論理" 0"の検出回数の比率 を算出する。例えば、サンプリング検出回路 32aが、 1Z64秒間隔で復調信号 P2の サンプリングを 1秒間実行し、加算回路 32cが加算した論理" 1"の検出回数が 40回 であった場合は、論理" 0"の検出回数は 64— 40 = 24回と想定されるので、復調信号 P2の論理レベルの比率は 40 : 24であると算出され、この論理レベルの比率情報が 秒同期検出手段 32から出力される秒同期情報 P3に含まれ送信局決定手段 25に入 力される。なお、この論理レベルの比率情報を取得するためのサンプリング期間は限 定されず、例えば、 10秒間サンプリングを行い加算し、論理レベルの比率を算出す るとよ 、。
[0117] 送信局決定手段 25は秒同期情報 P3を入力し、該秒同期情報 P3に含まれる前記 論理レベル比率情報に基づいて送信局を決定する。例えば、電波修正時計が受信 した標準電波が立ち下がりエッジによる秒同期信号であると判定し、想定される送信 局がアメリカまたはイギリスのいずれかであるような場合は、本発明の実施例 4が使用 できる可能性がある。すなわち、図 2で示す如ぐアメリカの復調信号 P2の最小パル ス幅は 200mSであるので、復調信号 P2の論理" 1"と論理" 0"の比率は 8 : 2、すなわ ち 4Z1より大きくなることはない。一方、イギリスの復調信号 P2の最小パルス幅は 10 OmSであるので、復調信号 P2の論理" 1"と論理" 0"の比率は 8 : 2、すなわち 4Z1よ り大きくなる可能性がある。例えば、算出された論理レベルの比率が 8. 5 : 1. 5である ならば、受信された標準電波はイギリスの送信局であると判定できる。
[0118] 以上のように、本発明の実施例 4によれば、秒同期検出手段 32によって復調信号 P2をサンプリングし、論理" 1"あるいは論理" 0"の検出回数の加算結果力 復調信 号 P2の論理レベルの比率を算出し、該論理レベルの比率に基づいて送信局を直ち に決定するので、復調信号の一つ一つのパルス幅を調べて送信局を決定する手法( 例えば実施例 1のステップ S405参照)と比較して、より迅速に送信局の判定を実行 することが可能であり、時刻修正モードのスピードアップを実現できる。
実施例 5
[0119] また、上記実施例 1一 4において、受信部 20が受信を開始する際に、複数の異なる 周波数に力かる標準電波があるときは、前回受信に成功した送信局の標準電波を最 初に受信するとよい。そして、その標準電波の受信に 1度あるいはあら力じめ設定し た複数回、受信に失敗した場合に、他の周波数の標準電波を受信するように切り替 えるとよい。このようにすることで、国または地域を移動しない場合により迅速に時刻 修正処理を完了することができる。
[0120] また、 RAM24は、過去に受信に成功した送信局に関する情報を記憶しておく。そ して、受信を開始する際または受信の切り替えを行う際に、 RAM24に記憶された送 信局に関する情報に基づいて、最初に受信を行う標準電波の周波数、または受信を 切り替える順序を決定するようにしてもよい。例えば、記憶されている回数が最も多い ものを最初に受信し、その後、回数の多い順番で受信を切り替えることができる。また 、 RAM24に受信が成功した日時に関する情報もあわせて記憶し、その日時と回数 とに基づいて切り替え順序を決定するようにしてもよい。したがって、より最近受信に 成功したもの力 順番切り替えるようにしてもよぐ最近の所定の受信回数において 最も多く成功した送信局順に切り替えるようにしてもよい。更に、受信の順序は、操作 者からの入力によって決定するようにしてもよい。それによつて、操作者の使用状況( 外国への渡航状況など)に応じて、適切な受信順序を実行することができる。 [0121] このように、本発明の電波修正時計により、二つ以上の国または地域の送信局から の標準電波を受信して時刻情報を取得できるので、電波修正時計の使用者が各国 または各地域に移動しても、常にその国またはその地域の送信局からの標準電波を 自動的に受信し、時刻修正を行うことができる。
[0122] また、受信する標準電波からの時刻情報を取得できない場合は、受信切替手段に よって他の送信局力 の標準電波を受信できるので、受信に最適な送信局を選択で き、受信性能に優れた電波修正時計を提供できる。
[0123] また、同一周波数からなる二つ以上の国または地域の送信局からの標準電波を受 信して時刻情報を取得できるので、電波修正時計の使用者が各国または各地域に 移動しても、常にその国またはその地域の送信局力もの標準電波を自動的に受信し 、時刻修正を行うことができる。
[0124] また、復調信号の立ち上がりエッジと立ち下がりエッジを順番に検出するので、秒 同期検出手段の回路規模を簡素化できる。また、秒同期検出手段は復調信号の立 ち上がりエッジと立ち下がりエッジを同時に検出するので、秒同期情報を素速く検出 でき、受信した標準電波の送信局を迅速に決定することができる。
[0125] また、秒同期検出手段は復調信号の立ち上がりエッジと立ち下がりエッジの検出回 数をサンプリング位置毎に加算した結果に基づ 、て秒同期情報を得るので、復調信 号にノイズが混入してノイズによる立ち上がりエッジや立ち下がりエッジが発生しても 、ノイズの影響が少ない秒同期検出を行うことができる。
[0126] また、送信局決定手段は、秒同期検出手段が加算した復調信号の論理" 1"あるい は論理" 0"の加算結果に基づ 、て送信局を決定するので、受信した標準電波の送 信局を効率よく迅速に決定することができる。
[0127] また、送信局決定手段は、一定周期毎に到来するポジションマーカの波形力 送 信局を決定するので、受信した標準電波の送信局を効率よく迅速に決定することが できる。また、送信局決定手段は、復調信号の特有の波形から送信局を決定するの で、受信した標準電波の送信局を効率よく迅速に決定することができる。
[0128] また、秒同期検出手段は、送信局決定手段による送信局の判定順序に優先順位 を付けるので、送信局決定手段は受信した標準電波の送信局を効率よく迅速に決定 することができる。
[0129] なお、本発明の実施例として示した各フローチャートは、これに限定されるものでは なぐ各機能を満たすものであれば、動作フローは任意に変更することができる。また 、本発明の実施の形態ではアナログ表示方式の電波修正時計を提示したが、これに 限定されることはなぐデジタル表示方式、または、アナログとデジタルの複合表示方 式の電波修正時計であってもよい。また、本発明の時刻修正方法は時計に限定され るものではなぐ電波修正時計機能を有する電子機器に幅広く応用することが可能 である。
[0130] すなわち、上記実施例においては、電波修正時計について説明した力 この電波 修正時計は、腕時計、掛け時計、置き時計などすベての種類の時計が含まれる。ま た、本発明は、電波修正時計に限定されるものではなぐ電波修正時計を内蔵した、 カメラ、デジタルカメラ、デジタルビデオカメラ、ゲーム機器、携帯電話機、 PDA (Per sonal Digital Assistant)、ノート型パーソナルコンピュータなどの携帯可能な情 報端末装置、更には、家電や自動車を含む電子機器であってもよい。
産業上の利用可能性
[0131] 以上のように、本発明は、標準電波を受信する電波修正時計に有用であり、特に、 電波修正時計の使用者が各国各地域を移動したとしても、自動的に受信できる送信 局を選択し時刻情報を取得して、常にその国またはその地域の標準時に自動修正 できる全地球的な完全自動型の電波修正時計に適して!/、る。

Claims

請求の範囲
[1] 時刻を計時する計時手段と、
該計時手段からの計時情報に基づいて時刻を表示する表示手段と、を備え、 更に、少なくとも二つ以上の国または地域の送信局力 の標準電波を受信する受 信手段と、
該受信手段によって得られた復調信号から秒同期情報を検出する秒同期検出手 段と、
前記復調信号を前記秒同期情報に基づ ヽて解析し、国または地域の送信局を決 定する送信局決定手段と、
該送信局決定手段によって決定された送信局からの標準電波に含まれる情報を解 読して時刻情報を取得する解読手段とを有し、
該解読手段によって取得された前記時刻情報に基づいて前記計時手段の計時情 報を修正することを特徴とする電波修正時計。
[2] 前記受信手段は受信切替手段を含み、前記秒同期検出手段によって秒同期情報 が検出できない場合、または、前記送信局決定手段によって送信局が決定できない 場合、または、前記解読手段によって時刻情報が解読できない場合は、前記受信切 替手段によって、他の送信局力 の標準電波を受信することを特徴とする請求項 1に 記載の電波修正時計。
[3] 時刻を計時する計時手段と、
該計時手段からの計時情報に基づいて時刻を表示する表示手段と、を備え、 更に、同一周波数からなる少なくとも二つ以上の国または地域の送信局からの標準 電波を受信する受信手段と、
該受信手段によって得られた復調信号から秒同期情報を検出する秒同期検出手 段と、
前記復調信号を前記秒同期情報に基づ ヽて解析し、国または地域の送信局を決 定する送信局決定手段と、
該送信局決定手段によって決定された送信局からの標準電波に含まれる情報を解 読して時刻情報を取得する解読手段とを有し、 該解読手段によって取得された前記時刻情報に基づいて前記計時手段の計時情 報を修正することを特徴とする電波修正時計。
[4] 前記秒同期検出手段は、
前記復調信号の立ち上がりエッジと立ち下がりエッジを順次検出するエッジ検出手 段と、
検出された前記立ち上がりエッジまたは前記立ち下がりエッジから、前記復調信号 の秒同期情報を得る同期判定手段と、
を含むことを特徴とする請求項 1または 3に記載の電波修正時計。
[5] 前記秒同期検出手段は、
前記復調信号の立ち上がりエッジと立ち下がりエッジを同時に検出するエッジ検出 手段と、
検出された前記立ち上がりエッジまたは前記立ち下がりエッジから、前記復調信号 の秒同期情報を得る同期判定手段と、
を含むことを特徴とする請求項 1または 3に記載の電波修正時計。
[6] 前記秒同期検出手段は、
前記復調信号の立ち上がりエッジと立ち下がりエッジを一定間隔毎に検出するサン プリング手段と、
該サンプリング手段によって検出された前記立ち上がりエッジと前記立ち下がりエツ ジの検出回数をサンプリング位置毎に加算する加算手段と、
該加算手段によってサンプリング位置毎に加算された立ち上がりエッジと立ち下が りエッジの前記検出回数を記憶する記憶手段と、
該記憶手段に記憶されたサンプリング位置毎の立ち上がりエッジと立ち下がりエツ ジの前記検出回数によって前記復調信号の秒同期情報を得る波形判定手段と、 を含むことを特徴とする請求項 1または 3に記載の電波修正時計。
[7] 前記秒同期検出手段は、
前記復調信号の論理" 1"あるいは論理" 0"を一定間隔毎に検出するサンプリング 手段と、
該サンプリング手段によって検出された論理" 1"あるいは論理" 0"のいずれか一方 の検出回数を加算する加算手段と、を含み、
前記送信局決定手段は、前記秒同期検出手段の加算手段の結果に基づいて、前 記国または地域の送信局を決定することを特徴とする請求項 1または 3に記載の電波 修正時計。
[8] 前記送信局決定手段は、前記復調信号を前記秒同期情報に基づ!、て解析し、一 定周期毎に到来するポジションマーカの波形力 前記国または地域の送信局を決定 することを特徴とする請求項 1または 3に記載の電波修正時計。
[9] 前記送信局決定手段は、前記復調信号を前記秒同期情報に基づ!、て解析し、前 記復調信号の特有の波形力 前記国または地域の送信局を決定することを特徴とす る請求項 1または 3に記載の電波修正時計。
[10] 前記秒同期検出手段は、検出された前記秒同期情報に基づいて、前記送信局決 定手段による送信局の判定順序に優先順位を付けることを特徴とする請求項 1また は 3に記載の電波修正時計。
[11] 時刻を計時する計時手段と、
該計時手段からの計時情報に基づいて時刻を表示する表示手段と、を備え、 更に、少なくとも二つ以上の国または地域の送信局力 の標準電波を受信する受 信手段と、
該受信手段によって得られた復調信号を解析し、前記復調信号の特有の波形から 国または地域の送信局を決定する送信局決定手段と、
該送信局決定手段によって決定された送信局からの標準電波に含まれる情報を解 読して時刻情報を取得する解読手段とを有し、
該解読手段によって取得された前記時刻情報に基づいて前記計時手段の計時情 報を修正することを特徴とする電波修正時計。
[12] 前記受信手段は、前回受信に成功した送信局の標準電波を最初に受信することを 特徴とする請求項 1、 3または 11のいずれか一つに記載の電波修正時計。
[13] 過去に受信に成功した送信局に関する情報を記憶する記憶手段を備え、
前記受信手段は、前記記憶手段に記憶された送信局に関する情報に基づ 、て、 切り替える順序を決定することを特徴とする請求項 1、 3または 11のいずれか一つに 記載の電波修正時計。
[14] 請求項 1、 3または 11のいずれか一つに記載の電波修正時計を備えたことを特徴と する電子機器。
[15] 時刻を計時する計時工程と、
該計時工程力 の計時情報に基づいて時刻を表示する表示工程と、を備え、 更に、少なくとも二つ以上の国または地域の送信局力 の標準電波を受信する受 信工程と、
該受信工程によって得られた復調信号から秒同期情報を検出する秒同期検出ェ 程と、
前記復調信号を前記秒同期情報に基づ ヽて解析し、国または地域の送信局を決 定する送信局決定工程と、
該送信局決定工程によって決定された送信局からの標準電波に含まれる情報を解 読して時刻情報を取得する解読工程と、を有し、
該解読工程によって取得された前記時刻情報に基づいて前記計時工程の計時情 報を修正することを特徴とする時刻修正方法。
PCT/JP2004/019339 2003-12-24 2004-12-24 電波修正時計、電子機器および時刻修正方法 WO2005062137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005516524A JPWO2005062137A1 (ja) 2003-12-24 2004-12-24 電波修正時計、電子機器および時刻修正方法
US10/584,254 US7680485B2 (en) 2003-12-24 2004-12-24 Radio controlled timepiece, electronic device and time correction method
EP04807696A EP1698950B1 (en) 2003-12-24 2004-12-24 Radio controlled clock, electronic device and time correction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-426012 2003-12-24
JP2003426012 2003-12-24

Publications (1)

Publication Number Publication Date
WO2005062137A1 true WO2005062137A1 (ja) 2005-07-07

Family

ID=34708838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019339 WO2005062137A1 (ja) 2003-12-24 2004-12-24 電波修正時計、電子機器および時刻修正方法

Country Status (5)

Country Link
US (1) US7680485B2 (ja)
EP (1) EP1698950B1 (ja)
JP (1) JPWO2005062137A1 (ja)
CN (1) CN100476640C (ja)
WO (1) WO2005062137A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139705A (ja) * 2005-11-22 2007-06-07 Casio Comput Co Ltd 時刻受信装置及び電波時計
JP2007147328A (ja) * 2005-11-24 2007-06-14 Seiko Instruments Inc 電波時計
JP2010160097A (ja) * 2009-01-09 2010-07-22 Casio Computer Co Ltd 時刻情報受信装置、電波時計およびプログラム
JP2011069685A (ja) * 2009-09-25 2011-04-07 Casio Computer Co Ltd 時刻情報取得装置、および、電波時計
JP2011075299A (ja) * 2009-09-29 2011-04-14 Casio Computer Co Ltd 時刻情報取得装置、および、電波時計
JP2011095082A (ja) * 2009-10-29 2011-05-12 Casio Computer Co Ltd 時刻情報取得装置、および、電波時計
US8089918B2 (en) 2007-03-26 2012-01-03 Casio Computer Co., Ltd. Time information receiver and radio controlled watch
JP2012002769A (ja) * 2010-06-21 2012-01-05 Casio Comput Co Ltd 秒同期検出装置および電波時計
US8218691B2 (en) 2009-01-09 2012-07-10 Casio Computer Co., Ltd. Time information receiver, radio wave timepiece and storage medium having program stored therein
JP2012163541A (ja) * 2011-02-09 2012-08-30 Seiko Epson Corp 時刻受信装置、電波修正時計及び符号化方法
US8264913B2 (en) 2009-01-15 2012-09-11 Casio Computer Co., Ltd. Time information obtaining apparatus and radio wave timepiece
JP2013019723A (ja) * 2011-07-08 2013-01-31 Seiko Epson Corp 時刻受信装置、電波修正時計およびタイムコード種別判別方法
CN109754766A (zh) * 2017-11-08 2019-05-14 卡西欧计算机株式会社 电子表、显示控制方法以及记录介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417860A (en) * 2004-09-01 2006-03-08 Tak Ming Leung Identifying the modulation format of a received signal
DE102005056483B3 (de) * 2005-11-26 2007-01-11 Atmel Germany Gmbh Funkuhr und Verfahren zur Gewinnung von Zeitinformationen
US7664527B2 (en) * 2006-08-04 2010-02-16 At&T Mobility Ii Llc Network identity and timezone (NITZ) functionality for non-3GPP devices
JP5087071B2 (ja) * 2007-02-22 2012-11-28 シチズンホールディングス株式会社 電波修正時計
EP2299337B1 (fr) * 2009-09-22 2013-02-27 The Swatch Group Research and Development Ltd. Récepteur de signaux radiosynchrones pour le réglage d'une base de temps, et procédé de mise en action du récepteur
JP2012242194A (ja) * 2011-05-18 2012-12-10 Casio Comput Co Ltd 電波時計
JP5494599B2 (ja) * 2011-09-27 2014-05-14 カシオ計算機株式会社 電子時計
JP5678972B2 (ja) * 2013-02-15 2015-03-04 カシオ計算機株式会社 電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142363A (ja) * 1991-11-26 1993-06-08 Seikosha Co Ltd 電波修正時計
JPH11211857A (ja) * 1998-01-30 1999-08-06 Rhythm Watch Co Ltd アナログ式電波修正時計
JP2003270370A (ja) 2002-03-15 2003-09-25 Casio Comput Co Ltd 時刻データ受信装置、及び時刻データ修正方法
JP2003279676A (ja) 2002-03-25 2003-10-02 Seiko Epson Corp 電波修正時計および電波修正時計の制御方法
JP2004325278A (ja) * 2003-04-25 2004-11-18 Seiko Clock Inc 時刻データ供給装置及び時刻データ供給方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918033B2 (ja) * 1996-12-18 1999-07-12 日本電気株式会社 自動時刻修正機能付き無線選択呼出受信機
JP2972715B2 (ja) * 1998-04-24 1999-11-08 静岡日本電気株式会社 無線選択呼出受信機
JP3481878B2 (ja) * 1999-02-25 2003-12-22 リズム時計工業株式会社 時刻信号中継装置および時刻修正システム
US6728533B2 (en) * 2001-01-25 2004-04-27 Sharp Laboratories Of America, Inc. Clock for mobile phones
JP2002296374A (ja) 2001-03-30 2002-10-09 Seiko Clock Inc 時刻情報取得方法、時刻情報取得装置および電波修正時計
JP4233311B2 (ja) 2001-11-20 2009-03-04 シチズンホールディングス株式会社 電波時計、標準電波受信方法および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142363A (ja) * 1991-11-26 1993-06-08 Seikosha Co Ltd 電波修正時計
JPH11211857A (ja) * 1998-01-30 1999-08-06 Rhythm Watch Co Ltd アナログ式電波修正時計
JP2003270370A (ja) 2002-03-15 2003-09-25 Casio Comput Co Ltd 時刻データ受信装置、及び時刻データ修正方法
JP2003279676A (ja) 2002-03-25 2003-10-02 Seiko Epson Corp 電波修正時計および電波修正時計の制御方法
JP2004325278A (ja) * 2003-04-25 2004-11-18 Seiko Clock Inc 時刻データ供給装置及び時刻データ供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1698950A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631667B2 (ja) * 2005-11-22 2011-02-16 カシオ計算機株式会社 時刻受信装置及び電波時計
JP2007139705A (ja) * 2005-11-22 2007-06-07 Casio Comput Co Ltd 時刻受信装置及び電波時計
JP2007147328A (ja) * 2005-11-24 2007-06-14 Seiko Instruments Inc 電波時計
US8089918B2 (en) 2007-03-26 2012-01-03 Casio Computer Co., Ltd. Time information receiver and radio controlled watch
JP2010160097A (ja) * 2009-01-09 2010-07-22 Casio Computer Co Ltd 時刻情報受信装置、電波時計およびプログラム
US8391422B2 (en) 2009-01-09 2013-03-05 Casio Computer Co., Ltd. Time information receiver, radio wave timepiece and storage medium having program stored therein
US8218691B2 (en) 2009-01-09 2012-07-10 Casio Computer Co., Ltd. Time information receiver, radio wave timepiece and storage medium having program stored therein
JP4743280B2 (ja) * 2009-01-09 2011-08-10 カシオ計算機株式会社 時刻情報受信装置、電波時計およびプログラム
US8264913B2 (en) 2009-01-15 2012-09-11 Casio Computer Co., Ltd. Time information obtaining apparatus and radio wave timepiece
JP2011069685A (ja) * 2009-09-25 2011-04-07 Casio Computer Co Ltd 時刻情報取得装置、および、電波時計
JP2011075299A (ja) * 2009-09-29 2011-04-14 Casio Computer Co Ltd 時刻情報取得装置、および、電波時計
JP2011095082A (ja) * 2009-10-29 2011-05-12 Casio Computer Co Ltd 時刻情報取得装置、および、電波時計
JP2012002769A (ja) * 2010-06-21 2012-01-05 Casio Comput Co Ltd 秒同期検出装置および電波時計
JP2012163541A (ja) * 2011-02-09 2012-08-30 Seiko Epson Corp 時刻受信装置、電波修正時計及び符号化方法
JP2013019723A (ja) * 2011-07-08 2013-01-31 Seiko Epson Corp 時刻受信装置、電波修正時計およびタイムコード種別判別方法
CN109754766A (zh) * 2017-11-08 2019-05-14 卡西欧计算机株式会社 电子表、显示控制方法以及记录介质

Also Published As

Publication number Publication date
CN1886704A (zh) 2006-12-27
US20070152900A1 (en) 2007-07-05
EP1698950B1 (en) 2012-03-14
EP1698950A1 (en) 2006-09-06
JPWO2005062137A1 (ja) 2008-01-17
US7680485B2 (en) 2010-03-16
CN100476640C (zh) 2009-04-08
EP1698950A4 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
WO2005062137A1 (ja) 電波修正時計、電子機器および時刻修正方法
JP4882610B2 (ja) 電波修正時計および電波修正時計の時刻修正方法
EP1722286A1 (en) Radio controlled clock/watch and its control method
JP4214721B2 (ja) 時計システムおよび時計システムの制御方法
WO2007004270A1 (ja) 電波修正時計
US20180217563A1 (en) Timepiece and control method of timepiece
JP3632674B2 (ja) 電波修正時計および電波修正時計の制御方法
JP2011112472A (ja) 腕装着型端末および時刻修正方法
JP2002296374A (ja) 時刻情報取得方法、時刻情報取得装置および電波修正時計
JPH1082874A (ja) パルス検出回路および電波修正時計
JP4377150B2 (ja) 電波修正時計及びその制御方法
JP2011214871A (ja) 時刻受信装置、電波修正時計および時刻受信装置の制御方法
JP2009168825A (ja) 電波時計
JP2003114288A (ja) 電波修正時計
JP3551567B2 (ja) 時刻データ受信装置
JP4655498B2 (ja) 電波修正時計、その制御方法、その制御プログラム、記録媒体
JPH11211857A (ja) アナログ式電波修正時計
JPH11183666A (ja) 電波修正時計及び時刻表示システム
JPH08201546A (ja) 電波修正機能付き時計
JP2005331303A (ja) 時刻データ受信装置、時刻データ受信制御プログラム及び時刻データ受信装置の制御方法
JP4613038B2 (ja) 電波修正時計、電子機器および時刻修正方法
JP5751280B2 (ja) 電波時計
JP4258213B2 (ja) 時刻データ受信装置
JP2008241669A (ja) 電波修正時計
JP2008215973A (ja) 電波修正時計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035521.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516524

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004807696

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10584254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807696

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10584254

Country of ref document: US