JP2007139705A - 時刻受信装置及び電波時計 - Google Patents

時刻受信装置及び電波時計 Download PDF

Info

Publication number
JP2007139705A
JP2007139705A JP2005337047A JP2005337047A JP2007139705A JP 2007139705 A JP2007139705 A JP 2007139705A JP 2005337047 A JP2005337047 A JP 2005337047A JP 2005337047 A JP2005337047 A JP 2005337047A JP 2007139705 A JP2007139705 A JP 2007139705A
Authority
JP
Japan
Prior art keywords
time
radio wave
standard radio
signal
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005337047A
Other languages
English (en)
Other versions
JP4631667B2 (ja
Inventor
Takashi Sano
貴司 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2005337047A priority Critical patent/JP4631667B2/ja
Publication of JP2007139705A publication Critical patent/JP2007139705A/ja
Application granted granted Critical
Publication of JP4631667B2 publication Critical patent/JP4631667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electromechanical Clocks (AREA)
  • Electric Clocks (AREA)

Abstract

【課題】受信信号に含まれるノイズ成分による時刻情報の誤検出を防止し、時刻情報を適切に検出すること。
【解決手段】受信する標準電波種別に応じて、検波信号を波形整形する際に用いるスレッシュレベルを調整する。例えばJJY標準電波を受信する場合、スレッシュレベルを予め定められた標準値とする。WWVB標準電波を受信する場合には、スレッシュレベルを標準値と比べて高めの値とする。DCF77標準電波を受信する場合には、スレッシュレベルを標準値と比べて低めの値とする。
【選択図】図20

Description

本発明は、時刻受信装置及び電波時計に関する。
現在、日本やアメリカ、ドイツ等の各国において、時刻情報すなわちタイムコード入りの長波標準電波(以下、単に「標準電波」という。)が送出されており、この標準電波を受信する時刻受信装置の一種として、計時時刻を修正する電波時計が実用化されている。
また、受信信号に混入されたノイズ成分による時刻情報の誤検出を防ぐための技術として、受信信号の復調結果をサンプリングして平滑化することによりその波形を判別し、時刻情報を検出するものが知られている(特許文献1参照。)。
特開2003−222687号公報
ところで、受信信号を復調する工程では、受信信号を増幅、フィルタ及び検波した検波信号を2値化してタイムコード信号に波形整形するが、この際、受信信号に混入されたノイズ成分もパルス波形として整形される。このため、タイムコード信号中の符号を判定する際にノイズの影響を受け、時刻情報を誤検出するという問題があった。
本発明は、上記した従来の問題に鑑みて為されたものであり、受信信号に含まれるノイズ成分による時刻情報の誤検出を防止し、時刻情報を適切に検出することを目的とする。
以上の課題を解決するため、請求項1に記載の発明の時刻受信装置は、
時刻情報を含む標準電波を送信する送信局を選択する選択手段(例えば、図18の入力部600,CPU100;図19の同調切替回路301;図24のステップa10)と、
この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段(例えば、図19の検波整流回路309)と、
前記選択手段により選択された送信局に対応する閾値を出力するように制御する閾値出力制御手段(例えば、図19のスレッシュレベル制御回路317b)と、
前記受信検波手段により検波され出力された検波信号と前記閾値出力制御手段により出力された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段(例えば、図19の波形整形回路311b)と、
この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段(例えば、図18のCPU100;図22のステップa150)と、
を備えたことを特徴としている。
また、請求項5に記載の発明の電波時計は、
時刻を計時する時刻計時手段(例えば、図18の計時回路部500)と、
この時刻計時手段により計時された時刻を表示する出力表示手段(例えば、図18の表示部700)と、
時刻情報を含む標準電波を送信する送信局を選択する選択手段(例えば、図18の入力部600,CPU100;図19の同調切替回路301;図24のステップa10)と、
この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段(例えば、図19の検波整流回路309)と、
前記選択手段により選択された送信局に対応する閾値を出力するように制御する閾値出力制御手段(例えば、図19のスレッシュレベル制御回路317b)と、
前記受信検波手段により検波され出力された検波信号と前記閾値出力制御手段により出力された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段(例えば、図19の波形整形回路311b)と、
この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段(例えば、図18のCPU100;図22のステップa150)と、
この時刻情報抽出手段により抽出された時刻に基づいて前記時刻計時手段により計時された時刻を修正する時刻修正手段(例えば、図18のCPU100;図22のステップa160)と、
を備えたことを特徴としている。
請求項2に記載の発明は、請求項1に記載の時刻受信装置において、
前記閾値出力制御手段は、前記標準電波を受信する受信国に基づいて前記送信局を特定することを特徴としている。
請求項3に記載の発明は、請求項1に記載の時刻受信装置において、
前記比較値制御手段は、前記検波手段から出力された検波信号のピーク値及びボトム値の中間値に基づいて、前記比較値を可変に制御することを特徴としている。
請求項4に記載の発明の時刻受信装置は、
時刻情報を含む標準電波を送信する送信局を選択する選択手段(例えば、図18の入力部600,CPU100;図19の同調切替回路301;図24のステップa10)と、
この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段(例えば、図19の検波整流回路309)と、
各送信局に対応した閾値を記憶する記憶手段(例えば、図18のスレッシュレベル制御回路317b;図23に示す対応関係を定義したデータテーブル)と、
前記選択手段により選択された送信局に対応した閾値を前記記憶手段から抽出する閾値抽出手段(例えば、図19のスレッシュレベル制御回路317b)と、
前記受信検波手段により検波され出力された検波信号と前記閾値抽出手段により抽出された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段(例えば、図19の波形整形回路311b)と、
この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段(例えば、図18のCPU100;図22のステップa150)と、
を備えたことを特徴としている。
また、請求項6に記載の発明の電波時計は、
時刻を計時する時刻計時手段(例えば、図18の計時回路部500)と、
この時刻計時手段により計時された時刻を表示する出力表示手段(例えば、図18の表示部700)と、
時刻情報を含む標準電波を送信する送信局を選択する選択手段(例えば、図18の入力部600,CPU100;図19の同調切替回路301;図24のステップa10)と、
この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段(例えば、図19の検波整流回路309)と、
各送信局に対応した閾値を記憶する記憶手段(例えば、図23に示す対応関係を定義したデータテーブル)と、
前記選択手段により選択された送信局に対応した閾値を前記記憶手段から抽出する閾値抽出手段(例えば、図19のスレッシュレベル制御回路317b)と、
前記受信検波手段により検波され出力された検波信号と前記閾値抽出手段により抽出された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段(例えば、図19の波形整形回路311b)と、
この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段(例えば、図18のCPU100;図22のステップa150)と、
この時刻情報抽出手段により抽出された時刻に基づいて前記時刻計時手段により計時された時刻を修正する時刻修正手段(例えば、図18のCPU100;図22のステップa160)と、
を備えたことを特徴としている。
請求項1又は5に記載の発明によれば、時刻情報を含む標準電波を送信する送信局を選択手段により選択し、選択した送信局から送信された標準電波を受信検波手段により受信して検波する。そして、波形整形手段が、受信検波手段により検波された検波信号と、閾値出力制御手段により出力された閾値とに基づいて2値の値から成るタイムコード信号を生成するが、このとき、閾値出力制御手段が、前記選択手段により選択した送信局に対応する閾値を出力するように制御することができる。そして、時刻修正手段が、波形整形手段により波形整形されたタイムコード信号から時刻情報を抽出することができる。これによれば、検波信号を波形整形する際に用いる閾値を送信局に応じて調整することで、時刻情報の誤検出を防止することができる。
請求項2に記載の発明によれば、搬送波信号を受信した受信国に基づいて、当該搬送波信号の送信局を特定することができる。
請求項3に記載の発明によれば、前記検波した検波信号のピーク値及びボトム値の中間値に基づいて、比較値を可変に制御することができる。
請求項4又は6に記載の発明によれば、時刻情報を含む標準電波を送信する送信局を選択手段により選択し、選択した送信局から送信された標準電波を受信検波手段により受信して検波する。そして、波形整形手段が、受信検波手段により検波された検波信号と、閾値抽出手段により抽出された閾値とに基づいて2値の値から成るタイムコード信号を生成するが、このとき、閾値抽出手段が、標準電波の各送信局に対応した閾値を記憶した記憶手段から、前記選択手段により選択した送信局に対応した閾値を抽出することができる。そして、時刻修正手段が、波形整形手段により波形整形されたタイムコード信号から時刻情報を抽出することができる。これによれば、検波信号を波形整形する際に用いる閾値を送信局に応じて調整することで、時刻情報の誤検出を防止することができる。
以下、図1〜図27を参照し、本発明の好適な実施形態について詳細に説明する。尚、以下では、本発明を適用した電波時計を例にとって説明するが、その他の電波を受信するための装置にも同様に適用できる。
〔第1実施形態〕
先ず、第1実施形態について説明する。
[機能構成]
図1は、第1実施形態における電波時計1aの機能構成の一例を示すブロック図である。第1実施形態では、電波時計1aは、CPU100、受信回路部300a、発振回路部400、計時回路部500、入力部600、表示部700、RAM800、ROM900aの各機能部を備えて構成されている。
CPU100は、所定のタイミングや入力部600から入力される操作信号等に応じて、ROM900aに格納されたプログラムを読み出してRAM800内に展開し、当該プログラムに基づいた処理を実行して各機能部への指示やデータの転送等を行う。例えば、後述する同調切替回路301に対して受信する標準電波の周波数を切り替える切替信号を出力し、アンテナ200の受信周波数を切り替える制御や、受信回路部300aから入力されるタイムコード信号を復号して時刻修正する処理等を行う。
受信回路部300aは、アンテナ200で受信された標準電波の不要な周波数成分をカットして目的とする周波数信号を取り出し、この周波数信号を電気信号に変換してCPU100に出力する。
図2は、第1実施形態における受信回路部300aの構成の一例を示すブロック図である。第1実施形態では、受信回路部300aは、同調切替回路301と、AGCアンプ303と、フィルタ回路305と、ポストアンプ307と、検波整流回路309と、波形整形回路311aと、AGC電圧制御回路313とを備えて構成されている。
同調切替回路301は、CPU100から入力される切替信号に従ってアンテナ200の受信周波数を切り替える。例えばアンテナ200は、40kHz又は60kHzのJJY標準電波(日本)、WWVB標準電波(アメリカ)、DCF77標準電波(ドイツ)の各国の標準電波を受信可能に構成されたバーアンテナであり、同調切替回路301の制御に応じた受信周波数の電波信号を受信する。
AGCアンプ303は、同調切替回路301から入力される電波信号(受信信号)を、AGC電圧制御回路313から入力される制御信号に応じて増幅或いは減衰して出力する。
フィルタ回路305は、通過帯域が極めて狭いBPFであり、例えば水晶フィルタにより構成される。このフィルタ回路305は、AGCアンプ303から入力される信号に対して所定の周波数範囲の信号を通過させ、範囲外の周波数成分を遮断して出力する。
ポストアンプ307は、フィルタ回路305から入力される信号を、所定の信号レベルまで増幅して出力する。
検波整流回路309は、ポストアンプ307から入力される信号を検波して出力する。
波形整形回路311aは、検波整流回路309から入力される検波信号を、予め定められた閾値と比較して2値の値に波形整形して出力する。この波形整形回路311aにより波形整形されて出力されたタイムコード信号(TCO)はCPU100に入力される。
AGC電圧制御回路313は、検波整流回路309から入力される検波信号のレベルに応じて、AGCアンプ303の増幅度を調整する制御信号を出力する。
また、波形整形回路311aは、秒同期検出回路315を含む。この秒同期検出回路315は、波形整形回路311aから入力されるタイムコード信号に基づいて毎正秒を示す秒同期点を検出し、タイムコード信号のデータの時間間隔に同期し1秒毎に出力される秒同期信号(同期信号)を生成して出力する。この秒同期検出回路315から出力された秒同期信号はCPU100に入力される。
図1に戻る。発振回路部400は、水晶発振器を備え、常時一定周波数のクロック信号を出力する。
計時回路部500は、発振回路部400から入力されるクロック信号を計数して現在時刻を計時し、現在時刻データをCPU100に出力する。
入力部600は、ユーザが各種操作を入力するための操作スイッチ等で構成され、この操作スイッチ等による入力に応じた操作信号をCPU100に出力する。
表示部700は、小型液晶ディスプレイ等で構成される表示装置であって、CPU100から入力される表示信号に基づいて、現在時刻や現在の受信周波数等を表示する。
RAM800は、CPU100により実行される各種プログラムや、これらのプログラムの実行に係るデータ等を一時的に保持するためのメモリ領域を備え、CPU100の作業領域として用いられる。
ROM900aには、各種初期設定値や初期化プログラムの他、電波時計1aの備える種々の機能を実現するためのプログラムやデータ等が格納される。特に、第1実施形態を実現するため、第1時刻修正プログラム911、タイムコード変換プログラム913、及びサンプリングプログラム915を含む制御プログラム910aと、符号対応テーブル920とが格納される。
第1時刻修正プログラム911は、例えば所定時間毎にアンテナ200及び受信回路部300aを制御して標準電波を受信し、受信回路部300aから入力されるタイムコード信号に基づいて計時回路部500で計時されている現在時刻を修正するとともに、当該修正した現在時刻に基づく表示信号を表示部700に出力して表示時刻を更新させるためのプログラムであり、CPU100は、この第1時刻修正プログラム911に従って第1時刻修正処理を実行する。
この第1時刻修正処理において、CPU100は、受信回路部300aから入力されるタイムコード信号を復号し、復号結果に従って時刻修正を行うが、このとき、受信する標準電波の種類に応じた処理を行う。以下、標準電波種別毎の符号データの判定方法について順に詳述する。
(1)JYY標準電波(40kHz/60kHz)
図3は、JJY標準電波のタイムコード体系を示す図である。図3に示すように、JJY標準電波のタイムコードは、1周期60秒のフォーマットからなる時刻情報を1フレームとし、1分毎に送出される。そして、このフレーム内には、1秒毎に区分された複数個のデータから成る時刻情報が、予め定められた閾値と比較することにより得られた2値で表されるタイムコード信号として、配列されている。つまり、データの時間間隔が1秒毎に区分された2値で表される秒データが、タイムコードとして配列されている。
また、フレーム内には、フレームの開始を認識するための先頭マーカ(M)やポジションマーカ(P0〜P5)、分、時、通算日(1月1日からの日数)、年(西暦下2桁)、曜日、閏秒情報、予備ビット等の各データを示すフィールドが符号化されて配されている。
より詳細には、そのパルス幅によって「0」、「1」、及び先頭マーカ又はポジションマーカである「P」の何れかの符号データが表される。図4は、JJY標準電波に係るパルス幅の定義について説明するための図である。すなわちJJY標準電波では、時刻情報が40KHz、又は60KHzの搬送波に変調され、時刻情報が有るときに100%の振幅、無いときに10%の振幅として受信される。
ここでは、パルス波の立ち上がりを正秒毎のタイミング(すなわち秒同期点)と同期させており、図4(a)に示すパルス幅800(ms)のものが「0」、(b)に示すパルス幅500(ms)のものが「1」、(c)に示すパルス幅200(ms)のものが「P」に各々対応する。したがって、この毎正秒の間隔が、「0」「1」又は「P」を示す1つの符号データを表す時間間隔となる。
例えば、1秒毎に送信される秒データ信号のうち、符号データ「0」に対応する秒データ信号は、当該秒データ信号の起点から800msで反転するように規定されている(図4(a))。また、符号データ「1」に対応する秒データ信号は、当該秒データ信号の起点から500msで反転するように規定されている(図4(b))。つまり、重要な符号データである「0」「1」を表す反転は秒データ信号の後半に存在する確率が高く、前半に出現する反転はノイズの可能性が高い。また、秒データ信号の起点から800ms付近においてノイズマージンが少なく、この付近で信号が変化しやすい。
このJJY標準電波を受信する場合には、各秒期間における最後の立ち下がり、即ち最後の変化点のタイミングがパルス波の終わりと判断されて、タイムコード信号が復号される。すなわち、CPU100は、秒同期検出回路315から入力される秒同期信号間の期間である秒期間内で、タイムコード信号が最後に立ち下がる変化点を検出(検知)する。又は、CPU100は、秒データの期間内で、該秒データの開始点から最後に変化する変化点までの時間を算出する。つまり、CPU100は、検出した最後の変化点の変化時点に基づいて、当該秒期間の開始時から最後の変化点までの時間を算出する。そして、CPU100は、算出した時間によって、当該秒期間におけるタイムコード信号が示す符号データを判定する。
図5を参照して具体的に説明する。図5は、JJY標準電波の送信波形と、実際にアンテナ200で受信され、受信回路部300aで波形整形されたタイムコード信号の一例を示す図である。例えば、秒期間T1(t1〜t2)に着目すれば、秒期間T1内でタイムコード信号が最後に立ち下がる時点t11が検出され、検出された変化時点t11に基づいて、当該秒期間T1におけるタイムコード信号が示す符号データが判定される。一方、秒期間T2(t2〜t3)内では、タイムコード信号は時点t21及びt23で立ち下がるが、このうち最後に立ち下がる時点t23に基づいて、当該秒期間T2内におけるタイムコード信号が示す符号データが判定される。
実際には、CPU100は、タイムコード信号を所定のサンプリング周期(例えば64kHz)でサンプリングし、サンプリング処理の結果生成されたサンプリングデータから、当該秒期間におけるタイムコード信号が最後に変化する変化点を検出することでその符号データを判定する。
図6は、JJY標準電波受信時の符号データの判定処理について説明するための図であり、同図において、受信回路部300aから入力されるタイムコード信号と、秒同期検出回路315から入力される秒同期信号と、サンプリング処理の結果生成されたサンプリングデータとを示している。
図6に示すように、タイムコード信号が最後に変化する変化点の変化時点が、秒同期信号の開始点としての秒同期点を起点として、例えば700(ms)〜900(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“0”と判定される。
また、タイムコード信号が最後に変化する変化点の変化時点が、秒同期点を起点として、例えば400(ms)〜600(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“1”と判定される。
そして、タイムコード信号が最後に変化する変化点の変化時点が、秒同期点を起点として、例えば100(ms)〜300(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“P”と判定される。
(2)WWVB標準電波
図7は、WWVB標準電波のタイムコード体系を示す図である。図7に示すように、JJY標準電波のタイムコードは、JJY標準電波と同様に、1周期60秒のフォーマットからなる時刻情報を1フレームとし、1分毎に送出される。そして、このフレーム内には、1秒毎に区分された複数個のデータから成る時刻情報が、予め定められた閾値と比較することにより得られた2値で表されるタイムコード信号として、配列されている。つまり、データの時間間隔が1秒毎に区分された2値で表される秒データがタイムコードとして配列されている。
また、フレーム内には、フレームの開始を認識するための先頭マーカ(M)やポジションマーカ(P0〜P5)、分、時、通算日(1月1日からの日数)、年(西暦下2桁)、曜日、閏年情報、閏秒情報、予備ビット等の各データを示すフィールドが符号化されて配されている。
より詳細には、そのパルス幅によって「0」、「1」、「P」の何れかの符号データが表される。図8は、WWVB標準電波に係るパルス幅の定義について説明するための図である。すなわちWWVB標準電波では、時刻情報が60KHzの搬送波に変調され、時刻情報が有るときに100%の振幅、無い時に33%の振幅として受信される。
ここでは、パルス波の立ち下がりを正秒毎のタイミング(すなわち秒同期点)と同期させており、図8(a)に示すパルス幅800(ms)のものが「0」、(b)に示すパルス幅500(ms)のものが「1」、(c)に示すパルス幅200(ms)のものが「P」に各々対応する。
例えば、1秒毎に送信される秒データ信号のうち、符号データ「0」に対応する秒データ信号は、当該秒データ信号の起点から200msで反転するように規定されている(図8(a))。また、符号データ「1」に対応する秒データ信号は、当該秒データ信号の起点から500msで反転するように規定されている(図8(b))。つまり、重要な符号データである「0」「1」を表す反転は秒データ信号の前半に存在する確率が高く、後半に出現する反転はノイズの可能性が高い。
このWWVB標準電波を受信する場合には、各秒期間における最初の立ち上がり、即ち最初の変化点のタイミングがパルス波の始まりと判断されて、タイムコード信号が復号される。すなわち、CPU100は、秒同期検出回路315から入力される秒同期信号間の期間である秒期間内で、タイムコード信号が最初に立ち上がる変化点を検出(検知)する。又は、CPU100は、秒データの期間内で、該秒データの開始点から最初に変化する変化点までの時間を算出する。つまり、CPU100は、検出した最初の変化点の変化時点に基づいて、当該秒期間の開始時から変化点までの時間を算出する。そして、CPU100は、算出した時間によって、当該秒期間におけるタイムコード信号が示す符号データを判定する。
実際には、CPU100は、JJY標準電波の場合と同様にサンプリング処理を行い、生成されたサンプリングデータから、当該秒期間におけるタイムコード信号が最初に変化する変化点を検出することでその符号データを判定する。
図9は、WWVB標準電波受信時の符号データの判定処理について説明するための図であり、同図において、受信回路部300aから入力されるタイムコード信号と、秒同期検出回路315から入力される秒同期信号と、サンプリング処理の結果生成されたサンプリングデータとを示している。
図9に示すように、タイムコード信号が最初に変化する変化点の変化時点が、秒同期信号の開始点としての秒同期点を起点として、例えば100(ms)〜300(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“0”と判定される。
また、タイムコード信号が最後に変化する変化点の変化時点が、秒同期点を起点として、例えば400(ms)〜600(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“1”と判定される。
そして、タイムコード信号が最後に変化する変化点の変化時点が、秒同期点を起点として、例えば700(ms)〜900(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“P”と判定される。
(3)DCF77標準電波
図10は、DCF77標準電波のタイムコード体系を示す図である。図10に示すように、DCF77標準電波のタイムコードは、JJY標準電波と同様に、1周期60秒のフォーマットからなる時刻情報を1フレームとし、1分毎に送出される。そして、このフレーム内には、1秒毎に区分された複数個のデータから成る時刻情報が、予め定められた閾値と比較することにより得られた2値で表されるタイムコード信号として、配列されている。つまり、データの時間間隔が1秒毎に区分された2値で表される秒データがタイムコードとして配列されている。
また、フレーム内には、フレームの開始を認識するための先頭マーカ(M)や、アンテナビット(R)、閏秒情報、時刻情報の開始ビット(S)、分、時、日、曜日、月、年(西暦下2桁)等の各データを示すフィールドが符号化されて配されている。
より詳細には、そのパルス幅によって「0」、「1」、「マーカ」の何れかの符号データが表される。図11は、DCF77標準電波に係るパルス幅の定義について説明するための図である。すなわちDCF77標準電波では、時刻情報が77.5KHzの搬送波に変調され、時刻情報が有るときに100%の振幅、無い時に25%の振幅として受信される。
ここでは、パルス波の立ち下がりを正秒毎のタイミング(すなわち秒同期点)と同期させており、図11(a)に示すパルス幅900(ms)のものが「0」、(b)に示すパルス幅800(ms)のものが「1」に各々対応する。また、DCF77標準電波では、図11(c)に示すように、正秒のタイミングでパルス波が立ち下がらずに変化しないものが「マーカ」に対応する。
例えば、1秒毎に送信される秒データ信号のうち、符号データ「0」に対応する秒データ信号は、当該秒データ信号の起点から100msで反転するように規定されている(図11(a))。また、符号データ「1」に対応する秒データ信号は、当該秒データ信号の起点から200msで反転するように規定されている(図11(b))。つまり、重要な符号データである「0」「1」を表す反転は秒データ信号の前半に存在する確率が高く、後半に出現する反転はノイズの可能性が高い。また、符号データ「1」を表す秒データ信号は、信号の符号変化後にノイズに乱される可能性が高くなる。
このDCF77標準電波を受信する場合には、各秒期間における最初の立ち上がり、即ち最初の変化点のタイミングがパルス波の始まりと判断されて、タイムコード信号が復号される。すなわち、CPU100は、秒同期検出回路315から入力される秒同期信号間の期間である秒期間内で、タイムコード信号が最初に立ち上がる変化点を検出(検知)する。又は、CPU100は、秒データの期間内で、該秒データの開始点から最初に変化する変化点までの時間を算出する。つまり、CPU100は、検出した最初の変化点の変化時点に基づいて、当該秒期間の開始時から変化点までの時間を算出する。そして、CPU100は、算出した時間によって、当該秒期間におけるタイムコード信号が示す符号データを判定する。
実際には、CPU100は、JJY標準電波の場合と同様にサンプリング処理を行い、生成されたサンプリングデータから、当該秒期間におけるタイムコード信号が最初に変化する変化点を検出することでその符号データを判定する。
図12は、DCF77標準電波受信時の符号データの判定処理について説明するための図であり、同図において、受信回路部300aから入力されるタイムコード信号と、秒同期検出回路315から入力される秒同期信号と、サンプリング処理の結果生成されたサンプリングデータとを示している。
図12に示すように、タイムコード信号が最初に変化する変化点の変化時点が、秒同期信号の開始点としての秒同期点を起点として、例えば100(ms)〜150(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“0”と判定される。
そして、タイムコード信号が最後に変化する変化点の変化時点が、秒同期点を起点として、例えば150(ms)〜300(ms)の範囲に含まれる場合には、当該秒期間におけるタイムコード信号が示す符号データは“1”と判定される。
また、秒同期点を起点として、例えば100(ms)〜300(ms)の範囲内で変化点が検出されない場合には、当該秒期間におけるタイムコード信号が示す符号データは“マーカ”と判定される。
図1に戻る。タイムコード変換プログラム913は、受信回路部300aを制御して標準電波の受信を行わせ、受信信号をタイムコード信号に波形整形させるためのプログラムであり、CPU100は、このタイムコード変換プログラム913に従ってタイムコード変換処理を実行する。
サンプリングプログラム915は、受信回路部300aから入力されるタイムコード信号を所定のサンプリング周期(例えば64kHz)でサンプリングし、サンプリングデータを生成するためのプログラムであり、CPU100は、このサンプリングプログラム915に従ってサンプリング処理を実行する。
符号対応テーブル920は、標準電波種別毎に、変化点の変化時点と符号データとの対応関係を定義したデータテーブルであり、符号データを判定する際に参照される。図13は、符号対応テーブル920のデータ構成例を示す図である。
例えば40kHzのJJY標準電波を受信する場合には、符号対応テーブル920に従い、上記の通り検出した変化点の変化時点が秒同期点を起点として700(ms)〜900(ms)の範囲内ならば「0」、400(ms)〜600(ms)の範囲内ならば「1」、100(ms)〜300(ms)の範囲内ならば「P」として符号データが判定される(レコードL11)。
60kHzのJJY標準電波を受信する場合も同様に、検出した変化点の変化時点が秒同期点を起点として700(ms)〜900(ms)の範囲内ならば「0」、400(ms)〜600(ms)の範囲内ならば「1」、100(ms)〜300(ms)の範囲内ならば「P」として符号データが判定される(レコードL13)。尚、検出した変化点の変化時点が何れの範囲内にも属さない場合には、例えばエラーとして判定される。
一方、WWVB標準電波を受信する場合には、検出した変化点の変化時点が秒同期点を起点として100(ms)〜300(ms)の範囲内ならば「0」、400(ms)〜600(ms)の範囲内ならば「1」、700(ms)〜900(ms)の範囲内ならば「P」として符号データが判定される(レコードL15)。尚、検出した変化点の変化時点が何れの範囲内にも属さない場合には、例えばエラーとして判定される。
また、DCF77標準電波を受信する場合には、検出した変化点の変化時点が秒同期点を起点として100(ms)〜150(ms)の範囲内ならば「0」、150(ms)〜300(ms)の範囲内ならば「1」として符号データが判定され、100(ms)〜300(ms)の範囲内で変化点が検出されない場合には「マーカ」として符号データが判定される(レコードL17)。尚、検出した変化点の変化時点が何れの範囲内にも属さない場合には、例えばエラーとして判定される。
[処理の流れ]
次に、第1時刻修正処理の流れについて説明する。図14は、第1時刻修正処理の流れを説明するためのフローチャートである。尚、ここで説明する処理は、例えば所定の時間間隔毎に、或いは標準電波の受信開始操作に応じて実行される処理であり、CPU100が第1時刻修正プログラム911を読み出して実行することにより実現される。
第1時刻修正処理では、CPU100は、先ず、ユーザ操作に従って標準電波の送信局を選択する(ステップa10)。このとき、CPU100は、選択した送信局に従って受信する標準電波種別を判断する。
そして、CPU100は、タイムコード変換プログラム913を読み出してタイムコード変換処理を実行し、受信回路部300aを制御して標準電波の受信を開始させる(ステップa20)。またCPU100は、サンプリングプログラム915を読み出してサンプリング処理を実行し、受信回路部300aから入力されるタイムコード信号のサンプリングを開始する(ステップa30)。
続いてCPU100は、秒同期検出回路315からの秒同期信号の入力タイミングを符号幅計測起点に設定するとともに(ステップa40)、受信する標準電波種別に応じて符号幅計測終点を設定する(ステップa50)。
例えば、JJY標準電波又はWWVB標準電波を受信するならば符号幅計測起点から900(ms)のタイミングを符号幅計測終点とし、DCF77標準電波を受信するならば符号幅計測起点から300(ms)のタイミングを符号幅計測終点とする等、適宜設定する。尚、以下では、ここで設定した符号幅計測終点に従い、秒期間内の一部期間を対象データ期間として変化点を検出することとして説明するが、次の秒同期信号の入力タイミングを符号幅計測終点とし、秒期間内の全期間を対象データ期間として変化点を検出することとしても勿論構わない。
続いてCPU100は、受信する標準電波種別に応じて処理を分岐する(ステップa60)。
すなわち、受信する標準電波種別が40kHzのJJY標準電波又は60kHzのJJY標準電波ならば、CPU100は、ステップa30で開始したサンプリング処理の結果生成されたサンプリングデータから、ステップa40で設定した符号幅計測起点とステップa50で設定した符号幅計測終点との間の期間である対象データ期間内でタイムコード信号が最後に変化する変化点を検出する(ステップa70)。そして、CPU100は、符号対応テーブル920のJJY標準電波用のレコードを参照し、検出した変化点の変化時点に基づいて符号データを判定する(ステップa80)。
受信する標準電波種別がWWVB標準電波ならば、CPU100は、ステップa30で開始したサンプリング処理の結果生成されたサンプリングデータから、対象データ期間内でタイムコード信号が最初に変化する変化点を検出する(ステップa90)。そして、CPU100は、符号対応テーブル920のWWVB標準電波用のレコードを参照し、検出した変化点の変化時点に基づいて符号データを判定する(ステップa100)。
受信する標準電波種別がDCF77標準電波ならば、CPU100は、ステップa30で開始したサンプリング処理の結果生成されたサンプリングデータから、対象データ期間内でタイムコード信号が最初に変化する変化点を検出する(ステップa110)。そして、CPU100は、符号対応テーブル920のDCF77標準電波用のレコードを参照し、検出した変化点の変化時点に基づいて符号データを判定する(ステップa120)。
そして、CPU100は、ステップa80、ステップa100、又はステップa120で判定した符号データをRAM800内に一時記憶させる(ステップa130)。
そして、CPU100は、上記したステップa40〜ステップa130の処理を繰り返し、1フレーム分のタイムコード信号を復号したならば(ステップa140:YES)、復号結果に従って時刻を検出(抽出)し(ステップa150)、計時回路部500で計時されている現在時刻を修正する(ステップa160)。
以上説明したように、第1実施形態によれば、40kHz又は60kHzのJJY標準電波を受信する場合には、秒同期検出回路315から入力される秒同期信号間の期間である秒期間内でタイムコード信号が最後に立ち下がる変化点、即ち最後の変化点を検出し、この検出した最後の変化点の変化時点に基づいて当該秒期間におけるタイムコード信号が示す符号データを判定することができる。また、WWVB標準電波又はDCF77標準電波を受信する場合には、秒期間内でタイムコード信号が最初に立ち上がる変化点、即ち最初の変化点を検出し、この検出した最初の変化点の変化時点に基づいて当該秒期間におけるタイムコード信号が示す符号データを判定することができる。
このように、受信する標準電波により、そのデータフォーマットの性質や転送特性を考慮して、データが含まれる変化時点を選択し、復調を行うことができる。
したがって、受信信号にノイズ成分が混入している場合であっても、タイムコード信号を適切に復号することができるので、時刻情報の誤検出を防止でき、受信性能を向上させることができる。
尚、各秒期間内でタイムコード信号の変化が複数検出された場合、具体的には、40kHzのJJY標準電波又は60kHzのJJY標準電波を受信する場合であれば、各秒期間内でタイムコード信号の立ち下がりが複数検出された場合、WWVB標準電波又はDCF77標準電波を受信する場合であれば、各秒期間内でタイムコード信号の立ち上がりが複数検出された場合に、受信状態が悪いと判断して、表示部700に警告表示を行うこととしてもよい。
また、上記した第1実施形態では、40kHzのJJY標準電波又は60kHzのJJY標準電波を受信する場合には、各秒期間内でタイムコード信号が最後に立ち下がる変化時点に基づき、タイムコード信号を復号することとした。また、WWVB標準電波又はDCF77標準電波を受信する場合には、各秒期間内でタイムコード信号が最初に立ち上がる変化時点に基づき、タイムコード信号を復号することとしたが、以下のようにしてもよい。
すなわち、タイムコード信号の変化のうち、秒期間内の予め定められた複数の区間それぞれでの変化の有無を検出し、各区間の変化の有無の変化パターンに基づきタイムコード信号を復号することとしてもよい。
具体的には、40kHzのJJY標準電波又は60kHzのJJY標準電波を受信する場合には、各区間それぞれでのタイムコード信号の立ち下がりの有無に基づきタイムコード信号を復号し、WWVB標準電波又はDCF77標準電波を受信する場合には、各区間それぞれでのタイムコード信号の立ち上がりの有無に基づきタイムコード信号を復号する。この場合には、例えば、符号対応テーブル920のデータ構成を以下説明するデータ構成に変更する。
図15(a)は、JJY標準電波用の符号対応テーブルのデータ構成の変形例を示す図であり、100(ms)〜300(ms)、400(ms)〜600(ms)、及び700(ms)〜900(ms)の各区間それぞれでのタイムコード信号の変化の有無を定義した変化パターンと、符号データとの対応関係が設定されている。
例えば図15(a)に示す符号対応テーブルによれば、秒同期点を起点とした100(ms)〜300(ms)及び700(ms)〜900(ms)の範囲内でタイムコード信号の立ち下がりが検出されず、且つ秒同期点を起点とした400(ms)〜600(ms)の範囲内でタイムコード信号の立ち下がりが検出された場合には、レコードL21に示す変化パターンに該当するとして、符号データは「1」と判定される。
さらに、秒同期点を起点とした700(ms)〜900(ms)の範囲内でタイムコード信号の立ち下がりが検出されず、且つ100(ms)〜300(ms)及び400(ms)〜600(ms)の範囲内でタイムコード信号の立ち下がりが検出された場合には、レコードL22に示す変化パターンに該当するとして、この場合も符号データは「1」と判定される。
また、図15(b)は、JJY標準電波用の符号対応テーブルの他の変形例を示す図であり、タイムコード信号の変化の有無を定義した変化パターンと、符号データとの対応関係を、同図のように設定することとしてもよい。
例えば、秒同期点を起点とした100(ms)〜300(ms)、400(ms)〜600(ms)、及び700(ms)〜900(ms)の各範囲内でタイムコード信号の立ち下がりが検出された場合、図15(a)に示す符号対応テーブルでは、符号データは「0」と判定される(レコードL23)のに対し、図15(b)に示す符号対応テーブルでは、エラーと判定される(レコードL24)。
このように、変化パターンを予め設定しておくことによって符号データを判定し、タイムコード信号を復号することとしてもよい。
また図16(a)は、WWVB標準電波用の符号対応テーブルのデータ構成の変形例を示す図であり、100(ms)〜300(ms)、400(ms)〜600(ms)、及び700(ms)〜900(ms)の各区間それぞれでのタイムコード信号の変化の有無を定義した変化パターンと、符号データとの対応関係が設定されている。
また、図16(b)は、WWVB標準電波用の符号対応テーブルの他の例を示す図であり、タイムコード信号の変化の有無を定義した変化パターンと、符号データとの対応関係を、同図のように設定することとしてもよい。
例えば、秒同期点を起点とした400(ms)〜600(ms)の範囲内でタイムコード信号の立ち下がりが検出されず、且つ秒同期点を起点とした100(ms)〜300(ms)及び700(ms)〜900(ms)の範囲内でタイムコード信号の立ち下がりが検出された場合、図16(a)に示す符号対応テーブルでは、符号データは「P」と判定される(レコードL25)のに対し、図16(b)に示す符号対応テーブルでは、符号データは「0」と判定される(レコードL26)。
また図17は、DCF77標準電波用の符号対応テーブルのデータ構成の変形例を示す図であり、100(ms)〜150(ms)、及び150(ms)〜300(ms)の各区間それぞれでのタイムコード信号の変化の有無を定義した変化パターンと、符号データとの対応関係が設定されている。
〔第2実施形態〕
次に、第2実施形態について説明する。尚、以下では、第1実施形態と同様の部分については、同一の符号を付して説明は省略する。
[機能構成]
図18は、第2実施形態における電波時計1bの機能構成の一例を示すブロック図である。第2実施形態では、電波時計1bは、CPU100、受信回路部300b、発振回路部400、計時回路部500、入力部600、表示部700、RAM800、ROM900bの各機能部を備えて構成されている。
第2実施形態では、受信回路部300bは、第1実施形態の受信回路部300bの構成に加えて、スレッシュレベル制御回路317bを備える。図19は、第2実施形態における受信回路部300bの構成の一例を示すブロック図である。すなわち、受信回路部300bは、同調切替回路301と、AGCアンプ303と、フィルタ回路305と、ポストアンプ307と、検波整流回路309と、波形整形回路311bと、AGC電圧制御回路313と、秒同期検出回路315と、スレッシュレベル制御回路317bとを備えて構成されている。
スレッシュレベル制御回路317bは、CPU100から入力される標準電波種別の識別情報(すなわち、受信する標準電波の送信局)に基づいて、所定の閾値(スレッシュレベル)を調整する制御信号を出力する。このスレッシュレベル制御回路317bから出力された制御信号は、波形整形回路311bに入力される。
そして、波形整形回路311bは、検波整流回路309から入力される検波信号をタイムコード信号に波形整形する。具体的には、検波信号と、スレッシュレベル制御回路317bにより調整されるスレッシュレベルとを比較して2値の値から成るタイムコード信号を生成する。
図20を参照して具体的に説明する。図20は、アンテナ200で受信され、検波整流回路309で検波された検波信号を示す図である。例えば、図20(a)に示すように、検波信号の振幅の中央にスレッシュレベルを設定した場合、秒期間T11では、3回の立ち下がり変化が検出される。一方、図20(b)に示すように、前述のスレッシュレベルと比べて高めの値にスレッシュレベルを設定した場合、秒期間T11では、2回の立ち下がり変化が検出されることとなる。第2実施形態では、標準電波を送出した送信局(具体的には、受信する標準電波の種類、即ち標準電波種別)に応じて、検波信号を波形整形する際に用いるスレッシュレベルを調整する。
ところで、検波整流回路309の出力段には、一般的にノイズ除去用のローパスフィルタが設けられるが、通常、DCF77標準電波を受信する場合には、時定数が小さい。一方、JJY標準電波やWWVB標準電波を受信する場合には、時定数が大きい。
図21は、DCF77標準電波の受信時における検波整流回路309の出力波形を示す図である。前述のように、DCF77標準電波を受信する場合、検波整流回路309の出力段に設けられるローパスフィルタは時定数が小さいので、高周波ノイズが含まれる。図21の例では、高周波ノイズに加えてのこぎり波状のパルスノイズが出現している。この場合、スレッシュレベルを低くすることで2値化する際のパルスノイズの影響を削減することができる。
図22は、WWVB標準電波の受信時における検波整流回路309の出力波形を示す図である。WWVB標準電波を受信する場合、検波整流回路309の出力段に設けられるローパスフィルタは、時定数を大きくして出力波形に高調波ノイズがのらないようにしている。しかし、図22に示すように、データ波形そのものに含まれるノイズは除去できず、データ波形にノイズが重畳されてしまう。このような場合には、スレッシュレベルを高くすることで2値化する際のノイズの影響を抑え、データのみを抽出することができる。JJY標準電波を受信する場合も同様である。
図23は、スレッシュレベルの調整例を示す図である。スレッシュレベル制御回路317bは、図23に示す標準電波種別(すなわち、受信する標準電波を送信する送信局)とスレッシュレベルの値との対応関係を定義したデータテーブルを記憶しており、このデータテーブルを参照して受信する標準電波の送信局に応じたスレッシュレベルの値を選択する。そして、選択した値をスレッシュレベルとする制御信号を波形整形回路311bに出力する。
例えば、40KHzのJJY標準電波を受信する場合、スレッシュレベル制御回路317bは、スレッシュレベルを予め定められた標準値とする制御信号を波形整形回路311bに出力する(レコードL31)。
WWVB標準電波を受信する場合には、スレッシュレベル制御回路317bは、スレッシュレベルを前述の標準値と比べて高めの値とし、例えば1.1倍した値とする制御信号を波形整形回路311bに出力する(レコードL33)。
DCF77標準電波を受信する場合には、スレッシュレベル制御回路317bは、スレッシュレベルを標準値と比べて低めの値とし、例えば0.9倍した値とする制御信号を波形整形回路311bに出力する(レコードL35)。
また図18に戻り、電波時計1bのROM900bには、第2実施形態を実現するため、第2時刻修正プログラム912、タイムコード変換プログラム913、及びサンプリングプログラム915を含む制御プログラム910bと、符号対応テーブル920とが格納される。
第2時刻修正プログラム912は、例えば所定時間毎にアンテナ200及び受信回路部300bを制御して標準電波を受信し、受信回路部300bから入力されるタイムコード信号に基づいて計時回路部500で計時されている現在時刻を修正するとともに、当該修正した現在時刻に基づく表示信号を表示部700に出力して表示時刻を更新させるためのプログラムであり、CPU100は、この第2時刻修正プログラム912に従って第2時刻修正処理を実行する。
この第2時刻修正処理において、CPU100は、受信する標準電波種別の識別情報をスレッシュレベル制御回路317bに出力し、スレッシュレベルを調整させる。
[処理の流れ]
次に、第2時刻修正処理の流れについて説明する。図24は、第2時刻修正処理の流れを説明するためのフローチャートである。尚、ここで説明する処理は、例えば所定の時間間隔毎に、或いは標準電波の受信開始操作に応じて実行される処理であり、CPU100が第2時刻修正プログラム912を読み出して実行することにより実現される。
第2時刻修正処理では、CPU100は、ステップa10において標準電波の送信局を選択し、選択した送信局に従って受信する標準電波種別を判断した後、当該標準電波種別の識別情報をスレッシュレベル制御回路317bに出力する(ステップb15)。そして、CPU100は、第1実施形態で説明したステップa20に移り、以後、第1実施形態と同様の処理を行う。
以上説明したように、第2実施形態によれば、検波信号を波形整形する際に用いるスレッシュレベルを、受信する標準電波の種別(送信局)に応じてそのデータフォーマットの性質や転送特性を考慮し、最も正確に2値化することができるように調整することができるので、時刻情報の誤検出を防止し、受信性能を向上させることが可能となる。
尚、上記した第2実施形態では、予め定められた標準値を基準値として、受信する標準電波種別に応じたスレッシュレベルの調整を行うこととしたが、以下のようにしてもよい。
すなわち、例えば、タイムコード復号時の変化点の検出方法に応じてスレッシュレベルを制御することとしてもよい。この場合には、CPU100は、図24のステップb15の処理に換えて、タイムコード復号時の変化点の検出方法に係る情報をスレッシュレベル制御回路317bに出力する処理を行う。
図25は、この場合のスレッシュレベルの調整例を示す図である。
例えば、秒期間内でタイムコード信号が最後に変化する変化点を検出することによりタイムコードを復号する場合、すなわち、40kHz又は60kHzのJJY標準電波を受信する場合、スレッシュレベル制御回路317bは、スレッシュレベルを予め定められた標準値と比べて高めの値とし、例えば1.1倍した値とする制御信号を波形整形回路311bに出力する(レコードL41)。
JJY標準電波は、図4(a),図4(b)に示すように、「0」「1」を示す符号データを表す時間間隔が長い。この場合、図20(b)のように、符号データのデータを表す時間間隔以外の部分にノイズが重畳された場合に、スレッシュレベルが高めに設定されていれば重畳されたノイズを2値化しないですむ。
また、秒期間内でタイムコード信号が最初に変化する変化点を検出することによりタイムコードを復号する場合、すなわち、WWVB標準電波又はDCF77標準電波を受信する場合には、スレッシュレベル制御回路317bは、スレッシュレベルを前述の標準値と比べて低めの値とし、例えば0.9倍した値とする制御信号を波形整形回路311bに出力する(レコードL43)。
WWVB標準電波、及びDCF77標準電波は、「0」「1」を示す符号データを表す時間間隔が短い。この場合、データを表すパルスがのこぎり波状となる可能性があるが、もしそのような波形となった場合には、スレッシュレベルを標準値と比べて低めの値としたほうが正確に2値化することができる。
また、検波信号のピーク値及びボトム値に応じてスレッシュレベルを制御することとしてもよい。図26は、本変形例における受信回路部300cの構成を示すブロック図である。本変形例では、受信回路部300cは、第2実施形態のスレッシュレベル制御回路317bに換えて、ピーク/ボトム検出回路319を具備したスレッシュレベル制御回路317cを備える。
ピーク/ボトム検出回路319は、検波整流回路308から入力される検波信号のピーク値及びボトム値を検出する。そして、スレッシュレベル制御回路317cは、ピーク/ボトム検出回路319により検出された検波信号のピーク値及びボトム値に基づいて、スレッシュレベルを調整する制御信号を波形整形回路311cに出力する。
図27は、この場合のスレッシュレベルの調整例を示す図である。
例えばJJY標準電波を受信する場合、スレッシュレベル制御回路317cは、ピーク/ボトム検出回路319により検出された検波信号のピーク値及びボトム値の中間値とする制御信号を波形整形回路311cに出力する(レコードL51)。
WWVB標準電波を受信する場合には、スレッシュレベル制御回路317cは、スレッシュレベルを前述の中間値と比べて高めの値とし、例えば1.1倍した値とする制御信号を波形整形回路311cに出力する(レコードL53)。
DCF77標準電波を受信する場合には、スレッシュレベル制御回路317cは、スレッシュレベルを中間値と比べて低めの値とし、例えば0.9倍した値とする制御信号を波形整形回路311cに出力する(レコードL55)。
或いは、電波時計1bが使用される地域(国)に応じてスレッシュレベルを制御することとしてもよい。この場合には、CPU100は、図24のステップb15の処理に換えて、当該使用される地域に係る情報をスレッシュレベル制御回路317cに出力する処理を行う。
第1実施形態における電波時計の機能構成の一例を示すブロック図。 第1実施形態における受信回路部の構成の一例を示すブロック図。 JJY標準電波のタイムコード体系を示す図。 JJY標準電波に係るパルス幅の定義について説明するための図。 JJY標準電波の送信波形と波形整形されたタイムコード信号の一例を示す図。 JJY標準電波受信時の符号データの判定処理について説明するための図。 WWVB標準電波のタイムコード体系を示す図。 WWVB標準電波に係るパルス幅の定義について説明するための図。 WWVB標準電波受信時の符号データの判定処理について説明するための図。 DCF77標準電波のタイムコード体系を示す図。 DCF77標準電波に係るパルス幅の定義について説明するための図。 DCF77標準電波受信時の符号データの判定処理について説明するための図。 符号対応テーブルのデータ構成例を示す図。 第1時刻修正処理の流れを説明するためのフローチャート。 JJY標準電波用の符号対応テーブルのデータ構成の変形例を示す図。 WWVB標準電波用の符号対応テーブルのデータ構成の変形例を示す図。 DCF77標準電波用の符号対応テーブルのデータ構成の変形例を示す図。 第2実施形態における電波時計の機能構成の一例を示すブロック図。 第2実施形態における受信回路部の構成の一例を示すブロック図。 検波された検波信号の一例を示す図。 DCF77標準電波の受信時における検波整流回路からの出力波形を示す図。 WWVB標準電波の受信時における検波整流回路からの出力波形を示す図。 スレッシュレベルの調整例を示す図。 第2時刻修正処理の流れを説明するためのフローチャート。 スレッシュレベルの調整例(変形例)を示す図。 受信回路部の構成の変形例を示すブロック図。 スレッシュレベルの調整例(変形例)を示す図。
符号の説明
1a 電波時計
100 CPU
200 アンテナ
300a 受信回路部
315 秒同期検出回路
317 スレッシュレベル制御回路
400 発信回路部
500 計時回路部
600 入力部
700 表示部
800 RAM
900a ROM
910a 制御プログラム
911 第1時刻修正プログラム
913 タイムコード変換プログラム
915 サンプリングプログラム
920 符号対応テーブル

Claims (6)

  1. 時刻情報を含む標準電波を送信する送信局を選択する選択手段と、
    この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段と、
    前記選択手段により選択された送信局に対応する閾値を出力するように制御する閾値出力制御手段と、
    前記受信検波手段により検波され出力された検波信号と前記閾値出力制御手段により出力された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段と、
    この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段と、
    を備えたことを特徴とする時刻受信装置。
  2. 前記閾値出力制御手段は、前記標準電波を受信する受信国に基づいて前記送信局を特定することを特徴とする請求項1に記載の時刻受信装置。
  3. 前記閾値出力制御手段は、前記検波手段から出力された検波信号のピーク値及びボトム値の中間値に基づいて前記閾値を可変に制御することを特徴とする請求項1に記載の時刻受信装置。
  4. 時刻情報を含む標準電波を送信する送信局を選択する選択手段と、
    この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段と、
    各送信局に対応した閾値を記憶する記憶手段と、
    前記選択手段により選択された送信局に対応した閾値を前記記憶手段から抽出する閾値抽出手段と、
    前記受信検波手段により検波され出力された検波信号と前記閾値抽出手段により抽出された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段と、
    この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段と、
    を備えたことを特徴とする時刻受信装置。
  5. 時刻を計時する時刻計時手段と、
    この時刻計時手段により計時された時刻を表示する出力表示手段と、
    時刻情報を含む標準電波を送信する送信局を選択する選択手段と、
    この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段と、
    前記選択手段により選択された送信局に対応する閾値を出力するように制御する閾値出力制御手段と、
    前記受信検波手段により検波され出力された検波信号と前記閾値出力制御手段により出力された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段と、
    この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段と、
    この時刻情報抽出手段により抽出された時刻に基づいて前記時刻計時手段により計時された時刻を修正する時刻修正手段と、
    を備えたことを特徴とする電波時計。
  6. 時刻を計時する時刻計時手段と、
    この時刻計時手段により計時された時刻を表示する出力表示手段と、
    時刻情報を含む標準電波を送信する送信局を選択する選択手段と、
    この選択手段により選択された送信局から送信された標準電波を受信して検波する受信検波手段と、
    各送信局に対応した閾値を記憶する記憶手段と、
    前記選択手段により選択された送信局に対応した閾値を前記記憶手段から抽出する閾値抽出手段と、
    前記受信検波手段により検波され出力された検波信号と前記閾値抽出手段により抽出された閾値とに基づいて2値の値から成るタイムコード信号を生成する波形整形手段と、
    この波形整形手段により生成されたタイムコード信号から時刻情報を抽出する時刻情報抽出手段と、
    この時刻情報抽出手段により抽出された時刻に基づいて前記時刻計時手段により計時された時刻を修正する時刻修正手段と、
    を備えたことを特徴とする電波時計。
JP2005337047A 2005-11-22 2005-11-22 時刻受信装置及び電波時計 Active JP4631667B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337047A JP4631667B2 (ja) 2005-11-22 2005-11-22 時刻受信装置及び電波時計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337047A JP4631667B2 (ja) 2005-11-22 2005-11-22 時刻受信装置及び電波時計

Publications (2)

Publication Number Publication Date
JP2007139705A true JP2007139705A (ja) 2007-06-07
JP4631667B2 JP4631667B2 (ja) 2011-02-16

Family

ID=38202741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337047A Active JP4631667B2 (ja) 2005-11-22 2005-11-22 時刻受信装置及び電波時計

Country Status (1)

Country Link
JP (1) JP4631667B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020298A (ja) * 2006-07-12 2008-01-31 Seiko Epson Corp 受信回路、電波修正時計および受信回路の制御方法
JP2008020291A (ja) * 2006-07-12 2008-01-31 Seiko Epson Corp 標準電波受信回路
JP2009069129A (ja) * 2007-09-18 2009-04-02 Citizen Holdings Co Ltd 電波修正時計
JP2009168666A (ja) * 2008-01-17 2009-07-30 Casio Comput Co Ltd 電波受信装置および電波時計
JP2010112782A (ja) * 2008-11-05 2010-05-20 Citizen Holdings Co Ltd 時刻受信装置および電波修正時計
JP2011232067A (ja) * 2010-04-26 2011-11-17 Casio Comput Co Ltd 信号処理装置および電波時計
JP2013185843A (ja) * 2012-03-06 2013-09-19 Casio Comput Co Ltd 時刻情報取得装置、及び、電波時計
US8665674B2 (en) 2008-06-30 2014-03-04 Casio Computer Co., Ltd. Time code discrimination apparatus and wave clock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151055A (ja) * 2002-11-01 2004-05-27 Seiko Clock Inc ホールド回路、それを使用した時刻コード復調回路及び電波修正時計
WO2005062137A1 (ja) * 2003-12-24 2005-07-07 Citizen Watch Co., Ltd. 電波修正時計、電子機器および時刻修正方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151055A (ja) * 2002-11-01 2004-05-27 Seiko Clock Inc ホールド回路、それを使用した時刻コード復調回路及び電波修正時計
WO2005062137A1 (ja) * 2003-12-24 2005-07-07 Citizen Watch Co., Ltd. 電波修正時計、電子機器および時刻修正方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020298A (ja) * 2006-07-12 2008-01-31 Seiko Epson Corp 受信回路、電波修正時計および受信回路の制御方法
JP2008020291A (ja) * 2006-07-12 2008-01-31 Seiko Epson Corp 標準電波受信回路
JP2009069129A (ja) * 2007-09-18 2009-04-02 Citizen Holdings Co Ltd 電波修正時計
JP2009168666A (ja) * 2008-01-17 2009-07-30 Casio Comput Co Ltd 電波受信装置および電波時計
JP4569635B2 (ja) * 2008-01-17 2010-10-27 カシオ計算機株式会社 電波受信装置および電波時計
US8077808B2 (en) 2008-01-17 2011-12-13 Casio Computer Co., Ltd. Radio wave receiver and wave clock
US8665674B2 (en) 2008-06-30 2014-03-04 Casio Computer Co., Ltd. Time code discrimination apparatus and wave clock
JP2010112782A (ja) * 2008-11-05 2010-05-20 Citizen Holdings Co Ltd 時刻受信装置および電波修正時計
JP2011232067A (ja) * 2010-04-26 2011-11-17 Casio Comput Co Ltd 信号処理装置および電波時計
JP2013185843A (ja) * 2012-03-06 2013-09-19 Casio Comput Co Ltd 時刻情報取得装置、及び、電波時計

Also Published As

Publication number Publication date
JP4631667B2 (ja) 2011-02-16

Similar Documents

Publication Publication Date Title
JP2007139703A (ja) 時刻受信装置及び電波時計
JP4631667B2 (ja) 時刻受信装置及び電波時計
US8264915B2 (en) Time information-acquiring apparatus and radio wave timepiece
JP2015175808A (ja) 電波時計及び受信制御方法
JP3903986B2 (ja) 時刻情報送受信装置、及び、時刻情報送受信用回路
US8570839B2 (en) Time-information obtaining apparatus and radio-controlled timepiece
JP4544347B2 (ja) 時刻情報取得装置および電波時計
JP4905536B2 (ja) 時刻情報取得装置、および、電波時計
JP4522525B2 (ja) 電波修正時計
JP3234997B2 (ja) フィルタ回路
JP7375447B2 (ja) 電波修正時計及び電波修正時計の時刻修正方法
JP5810978B2 (ja) 時刻情報取得装置、及び、電波時計
JP7201527B2 (ja) 電波時計
JP3138910B2 (ja) 電波修正時計
JP5316375B2 (ja) 時刻情報取得装置、および、電波時計
US11119449B2 (en) Electronic timepiece
JP2012021920A (ja) マーカー検出装置および電波時計
JP5012947B2 (ja) 時刻情報取得装置、および、電波時計
JP5012948B2 (ja) 時刻情報取得装置、および、電波時計
JP4108528B2 (ja) 標準電波による正分検出方法及び電波修正時計
JP6191653B2 (ja) 電波時計
JP2017138274A (ja) 電波修正時計
JP2016212018A (ja) 電波受信装置および電波修正時計
JP2009139322A (ja) 電波受信装置および電波時計
JP2014077695A (ja) 電波修正時計および電波修正時計の時刻修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3