WO2005062025A1 - Verfahren zur spektroskopischen analyse einer biologischen oder chemischen substanz - Google Patents

Verfahren zur spektroskopischen analyse einer biologischen oder chemischen substanz Download PDF

Info

Publication number
WO2005062025A1
WO2005062025A1 PCT/EP2004/014397 EP2004014397W WO2005062025A1 WO 2005062025 A1 WO2005062025 A1 WO 2005062025A1 EP 2004014397 W EP2004014397 W EP 2004014397W WO 2005062025 A1 WO2005062025 A1 WO 2005062025A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electromagnetic radiation
ionized
substance
spectrum
Prior art date
Application number
PCT/EP2004/014397
Other languages
English (en)
French (fr)
Inventor
Christoph Russmann
Thilo Enderle
René BEIGANG
Original Assignee
Carl Zeiss Jena Gmbh
F. Hoffmann-La Roche Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Jena Gmbh, F. Hoffmann-La Roche Ag filed Critical Carl Zeiss Jena Gmbh
Publication of WO2005062025A1 publication Critical patent/WO2005062025A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the invention relates to a method for the spectroscopic analysis of a preferably biological or chemical substance, in which a sample of the substance is irradiated with electromagnetic radiation, the spectrum of the electromagnetic radiation influenced by the sample is registered, and the spectral distribution is used to infer the sample properties becomes.
  • the object of the invention is to further develop methods of the type described at the outset such that the examination of biological or chemical substances by means of electromagnetic radiation, the frequencies of which are in the infrared range and above, also leads to meaningful results in their native state.
  • the spectrum of the electromagnetic radiation influenced by the sample is registered and it is concluded from the spectral distribution that the sample properties are derived the sample is at least partially ionized, electromagnetic radiation with a frequency in the range of infrared, gigahertz or terahertz frequency is used, and the influence of ionized sample parts on the spectrum of the electromagnetic radiation is registered and evaluated.
  • spectroscopy at frequencies in the ranges mentioned is possible for the first time for the investigation of substances, in particular biological molecules in their native state.
  • the method can also be used for spectroscopic examinations in which molecules remain in their native state on the one hand, but on the other hand background disturbances are also to be minimized, in particular because in this way the volume of the interfering water content in the sample is reduced. This is the case, for example, when analyzing samples in physico-chemistry, in medical diagnostics, drug discovery, genomics and proteomics.
  • the background reduction is essentially achieved by generating small, electrically charged droplets of the sample with the ionization of the sample or of sample parts and registering and evaluating their influence on the spectrum of the electromagnetic radiation.
  • droplets of the order of 100 to 1 ⁇ m are generated, so that on the one hand the disturbing absorption of the solvent, such as water, is minimized as far as possible, but the chemical environment of the sample is not significantly disturbed.
  • the application extends not only to terahertz spectroscopy, but also to spectroscopy with electromagnetic radiation in the infrared and in the gigahertz frequency range.
  • the ionization of the sample or the formation of small electrically charged droplets can be realized in a technologically advantageous manner by an electrospray apparatus, as described, for example, by M. Wilm et al. (1996), "Femtomole sequencing of proteins from polyacrylamide gels by nanoelectrospray ass spectrometry", Nature, Vol. 379 (6564), pp. 466-469.
  • Embodiments of the method according to the invention are also advantageous, in which systems for beam processing are used in order to influence the direction and / or the distribution of the ion beam in the analysis space, if necessary.
  • electromagnetic lenses such as quadrupole lenses
  • So-called ion cages which are known per se from the prior art, are advantageously used for ion storage. They allow a longer integration time of the sample particles, which means that the amount of sample substance required for a significant analysis can be kept low.
  • all conventional radiation sources which emit radiation in the range of the infrared frequencies and in the gigahertz range, but in particular terahertz radiation sources, can serve as sources of the electromagnetic radiation.
  • Radar radiation sources may also be suitable for carrying out the method according to the invention.
  • a sample 1 to be analyzed a device 2 for ionizing sample 1 or at least a part thereof, a system 3 for beam processing, a source 4 for electromagnetic radiation and a detection device 5 for receiving samples 1 electromagnetic radiation is suitable and communicates with an evaluation device which is not shown in the drawing.
  • sample 1 can come from a wide variety of fields in biology or chemistry.
  • sample 1 is a biological substance in which the receptor-ligand interaction is to be investigated.
  • sample droplets subsequently enter the system 3 for beam processing, which can be used to influence or change the direction and the distribution of the sample droplets within an analysis space 6 as required.
  • the electromagnetic radiation is received with the aid of the detection device 5.
  • the received signals are fed to the evaluation device and evaluated there in a manner known per se with regard to the spectral distribution of the electromagnetic radiation. From the comparison of the spectral distribution of the uninfluenced by the sample radiation with the spectral distribution of d he influenced sample radiation conclusions are drawn on the properties of Sample 1 and obtained information about the corresponding molecules in their In ⁇ formation content over the previous possibilities prior go beyond technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur spektroskopischen Analyse einer bevorzugt biologischen oder chemischen Substanz, bei dem eine Probe der Substanz mit elektromagnetischer Strahlung durchstrahlt, das von der Probe beeinflußte Spektrum der elektromagnetischen Strahlung registriert und aus der Spektralverteilung auf die Probeneigenschaften geschlußfolgert wird. Erfindungsgemäß ist bei einem solchen Verfahren vorgesehen, daß - die Probe mindestens zum Teil ionisiert wird, - elektromagnetische Strahlung mit einer Frequenz im Bereich der Infrarot-, Gigahertz- oder Terahertzfrequenz verwendet wird, und - der elektromagnetischen Strahlung registriert gewertet wird,und - der Einfluß ionisierter Probenteile auf das Spektrum und ausgewertet wird.

Description

Verfahren zur spektroskopischen Analyse einer biologischen oder chemischen Substanz
Die Erfindung bezieht sich auf ein Verfahren zur spektro- skopischen Analyse einer bevorzugt biologischen oder chemischen Substanz, bei dem eine Probe der Substanz mit elektromagnetischer Strahlung durchstrahlt wird, das von der Probe beeinflußte Spektrum der elektromagnetischen Strahlung registriert wird und aus der Spektralverteilung auf die Probeneigenschaften geschlußfolgert wird.
Bei der Untersuchung von Substanzen, insbesondere von biologischen und chemischen Substanzen, besteht zunehmend das Bedürfnis über die Informationen hinaus, die mit der Massenspektroskopie gewonnen werden können und die sich im wesentlichen auf die Bereitstellung von Summenformeln von Molekülen beziehen, zusätzlich strukturelle Informationen über die Moleküle der zu untersuchenden Substanz sowie deren intra- und intermolekulare Wechselwirkungen zu erhalten, wie z.B. Wasserstoffbrücken- und OH-Bindungen sowie Dipol-Dipol-Wechselwirkungen, Proteinfaltung und ähnlich.
In jüngster Zeit gibt es Versuche, elektromagnetische Strahlung mit Frequenzen im Terahertzbereich anzuwenden, wobei sich die bekannt gewordenen Untersuchungen im wesentlichen auf DNA-DNA-Wechselwirkungen beziehen, wie beispielsweise die DNA-Hybridisation (beschrieben in: Bruchseifer et al. (2000), „Label free probing of the bind- ings state of DNA by time-domain terahertz sensing", Applied Physics Letters, Vol.77, Nr. 23, S. 4049-4051; sowie in: Nagel et al . (2002), „Integrated THz technology for la- bel free genetic diagnostic", Applied Physics Letters, Vol.80, Nr. 1, S. 154-156) .
Nachteiligerweise ist die Untersuchung von biologischen und chemischen Substanzen bzw. von deren Molekülen in ihrem na- tiven Zustand, also in einem wässrigen Umfeld, mit Strahlungsfrequenzen, die im Infrarotbereich und darüber liegen, bisher nicht bzw. nur mit unbefriedigenden Ergebnissen gelungen, da die Strahlung mit zunehmender Frequenz auch in zunehmendem Maße in Wasser absorbiert wird, was demzufolge insbesondere für die Terahertzstrahlung gilt.
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, Verfahren der eingangs beschriebenen Art dahingehend weiterzubilden, daß die Untersuchung biologischer oder chemischer Substanzen mittels elektromagnetischer Strahlung, deren Frequenzen im Infrarotbereich und darüber liegen, auch in deren nativen Zustand zu aussagefähigen Ergebnissen führt .
Erfindungsgemäß ist bei einem Verfahren zur spektroskopischen Analyse einer biologischen oder chemischen Substanz, bei dem eine Probe der Substanz mit elektromagnetischer Strahlung durchstrahlt wird, das von der Probe beeinflußte Spektrum der elektromagnetischen Strahlung registriert wird und aus der Spektralverteilung auf die Probeneigenschaften geschlußfolgert wird, vorgesehen, daß die Probe mindestens zum Teil ionisiert wird, elektromagnetische Strahlung mit einer Frequenz im Bereich der Infrarot-, Gigahertz- oder Terahertzfrequenz verwendet wird, und der Einfluß ionisierter Probenteile auf das Spektrum der elektromagnetischen Strahlung registriert und ausgewertet wird.
Mit dem erfindungsgemäßen Verfahren ist die Spektroskopie bei Frequenzen in den genannten Bereichen erstmals zur Untersuchung von Substanzen, insbesondere von biologischen Molekülen in deren nativen Zustand, möglich. Das Verfahren ist weiterhin anwendbar für spektroskopische Untersuchungen, bei denen einerseits Moleküle in ihrem nativen Zustand verbleiben, andererseits aber auch Hintergrundstörungen minimiert werden sollen, insbesondere weil auf diese Weise das Volumen des störend wirkenden Wasseranteils in der Probe verringert wird. Dies ist beispielsweise der Fall bei der Analyse von Proben in der Physiko-Chemie, in der medizinischen Diagnostik, Drugdiscovery, Genomics und Proteo- mics .
Darüber hinaus ist es nicht nur möglich, den unerwünschten Hintergrund von Wasser bei der Probenuntersuchung zu reduzieren, sondern es wird auch der Einfluß anderer Lösungsmittel verringert, um auch hierbei die Analyse mit reduziertem störenden Hintergrund zu ermöglichen.
Die Hintergrundreduktion wird im wesentlichen erreicht, indem mit der Ionisierung der Probe bzw. von Probenteilen kleine elektrisch geladene Tröpfchen der Probe erzeugt werden und deren Einfluß auf das Spektrum der elektromagnetischen Strahlung registriert und ausgewertet- wird. Dabei werden Tröpfchen in der Größenordnung von 100 bis 1 μm erzeugt, so daß einerseits die störende Absorption des Lösungsmittels, wie Wasser, weitestgehend minimiert, die chemische Umgebung der Probe jedoch nicht signifikant gestört wird.
Dabei erstreckt sich die Anwendung nicht nur auf die Tera- hertzspektroskopie, sondern auch auf die Spektroskopie mit elektromagnetischer Strahlung im infraroten sowie im Gigahertz-Frequenzbereich.
Die Ionisierung der Probe bzw. die Bildung kleiner elektrisch geladener Tröpfchen kann technologisch vorteilhaft durch eine Elektrospray-Apparatur realisiert werden, wie beispielsweise bei M. Wilm et al. (1996), „Femtomole se- quencing of proteins from polyacrylamide gels by nanoelec- trospray ass spectrometry", Nature, Vol. 379(6564), S. 466-469 beschrieben.
Vorteilhaft sind weiterhin Ausgestaltungen des erfindungsgemäßen Verfahrens, bei denen Systeme zur Strahlaufarbeitung genutzt werden, um bei Bedarf die Richtung und/oder die Verteilung des Ionenstrahls im Analysenraum zu beeinflussen. Hierfür können beispielsweise elektromagnetische Linsen, wie Quadrupollinsen, zur Anwendung kommen. Zur Io- nenspeicherung werden vorteilhaft sogenannte Ionenkäfige genutzt, die aus dem Stand der Technik an und für sich bekannt sind. Sie ermöglichen eine längere Integrationszeit der Probenteilchen, wodurch die Menge der Probensubstanz, die zu einer signifikanten Analyse erforderlich ist, gering gehalten werden kann. Als Quellen- der elektromagnetischen Strahlung können prinzipiell alle herkömmlichen Strahlungsquellen dienen, die Strahlung im Bereich der infraroten Frequenzen und im Gigahertz-Bereich abgeben, insbesondere aber Terahertz- Strahlungsquellen. Die Erzeugung von Terahertzstrahlung ist beispielsweise beschrieben in D. M. Mittleman et al. (1996) , „T-ray imaging", IEEE Journal of Selected Topics in Quantum Electronics, Vol.2, Nr. 3, S 679-692. Auch Radarstrahlungsquellen sind unter Umständen zur Ausführung des erfindungsgemäßen Verfahrens geeignet.
Für den Nachweis bzw. die Detektion der von den Probenteilchen beeinflußten elektromagnetischen Strahlung kommen vor allem schnelle photoleitende Schalter, bekannt unter der Bezeichnung „photoconductiv switch", und elektro-opti-sche Detektoren zur Anwendung. Die Auswahl der Detektoren ist dabei jeweils in Abhängigkeit von den Parametern der zur Probenuntersuchung vorgesehenen elektromagnetischen Strahlung zu treffen.
Die Erfindung soll nachfolgend anhand eines Ausführungsbeispieles näher erläutert werden. Die zugehörige Zeichnung zeigt in Fig.l den prinzipiellen Aufbau einer Anordnung, die zur Anwendung der erfindungsgemäßen Verfahrensschritte geeignet ist.
Vorgesehen sind eine zu analysierende Probe 1, eine Einrichtung 2 zur Ionisierung der Probe 1 oder zumindest eines Teils davon, ein System 3 zur Strahlaufarbeitung, eine Quelle 4 für elektromagnetische Strahlung sowie eine Detek- tionseinrichtung 5, die zum Empfang der von der Probe 1 beeinflußten elektromagnetischen Strahlung geeignet ist und mit einer Auswerteeinrichtung in Verbindung steht, die zeichnerisch nicht dargestellt ist.
Die Probe 1 kann prinzipiell aus verschiedensten Gebieten der Biologie oder Chemie kommen. Für das hier dargestellte Ausführungsbeispiel sei angenommen, um es sich um eine biologische Substanz handelt, bei der die Rezeptor-Ligand- Wechselwirkung untersucht werden soll.
In der Einrichtung 2 werden von der Probe 1 durch Ionisierung kleine elektrisch geladene Tröpfchen erzeugt.
Die Probentröpfchen gelangen nachfolgend in das System 3 zur Strahlaufarbeitung, das dazu genutzt werden kann, die Richtung und die Verteilung der Probentröpfchen innerhalb eines Analyseraumes 6 nach Bedarf zu beeinflussen bzw. zu verändern.
Die von der Quelle 4 ausgehende elektromagnetische Strahlung, hier beispielhaft mit einer Frequenz im Terahertzbe- reich, ist so gerichtet, daß sie die sich innerhalb des Analysenraumes 6 ausbreitenden ionisierten Probenteilchen durchdringt und dabei hinsichtlich ihrer Spektralverteilung beeinflußt wird.
Nach der Durchdringung des Analysenraumes 6 wird die elektromagnetische Strahlung mit Hilfe der Detektionseinrich- tung 5 empfangen. Die Empfangssignale werden der Auswerteeinrichtung zugeführt und dort in an sich bekannter Weise im Hinblick auf die Spektralverteilung der elektromagnetischen Strahlung bewertet. Aus dem Vergleich der Spektralverteilung der von der Probe unbeeinflußten Strahlung mit der Spektralverteilung der von der Probe beeinflußten Strahlung werden Schlußfolgerungen auf die Eigenschaften der Probe 1 gezogen und Informationen über die entsprechenden Moleküle gewonnen, die in ihrem In¬ formationsgehalt über die bisherigen Möglichkeiten nach Stand der Technik hinausgehen.
Bezugszeichenliste
1 Probe
2 Einrichtung zur Erzeugung von Ionen
3 System zur Strahlaufarbeitung
4 Quelle für elektromagnetische Strahlung
5 Detektionseinrichtung
6 Analyseraum

Claims

Patentansprüche
1. Verfahren zur spektroskopischen Analyse einer Substanz, bei dem eine Probe (1) der Substanz mit elektromagnetischer Strahlung durchstrahlt wird, das von der Probe (1) beeinflußte Spektrum der elektromagnetischen Strahlung registriert wird und aus der Spektralverteilung auf die Probeneigenschaften geschlußfolgert wird, &-, dadurch gekennzeichnet, daß die Probe (1) mindestens zum Teil ionisiert wird, elektromagnetische Strahlung mit einer Frequenz im Infrarot-, - Gigahertz- oder Terahertzbereich verwendet wird, und der Einfluß ionisierter Probenteile auf das Spektrum der elektromagnetischen Strahlung registriert und ausgewertet wird.
2 !. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Probe (1) nach dem Prinzip der Elektrospray- Ionisation versprüht wird, wobei sich ein lonenstrahl von Probenteilen in Form von Tröpfchen bildet und der . Einfluß der Tröpfchen auf das Spektrum der elektromagnetischen Strahlung registriert und ausgewertet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß während der Probenuntersuchung eine Veränderung der Richtung des Ionenstrahls und/oder eine Veränderung der Verteilung des Ionenstrahls, beispielsweise mittels Quadrupollinsen, vorgesehen ist.
4. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß eine Speicherung von ionisierten Probenteilchen, beispielsweise mittels Ionenkäfigen, vorgesehen ist, um deren Verweilzeit im Untersuchungsraum zu erhöhen und dadurch die zur Untersuchung benötigte Substanzmenge zu reduzieren.
5. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß zur Detektion der von den ionisierten Probenteilchen beeinflußten elektromagnetischen Strahlung photoleitende Schalter oder elektroop- tische Sensoren verwendet werden.
6. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die zu untersuchenden, ionisierten Probentröpfchen in einer Größenordnung von 100 bis 1 μm erzeugt werden.
PCT/EP2004/014397 2003-12-22 2004-12-17 Verfahren zur spektroskopischen analyse einer biologischen oder chemischen substanz WO2005062025A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003161903 DE10361903A1 (de) 2003-12-22 2003-12-22 Verfahren zur spektroskopischen Analyse einer biologischen oder chemischen Substanz
DE10361903.8 2003-12-22

Publications (1)

Publication Number Publication Date
WO2005062025A1 true WO2005062025A1 (de) 2005-07-07

Family

ID=34706737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014397 WO2005062025A1 (de) 2003-12-22 2004-12-17 Verfahren zur spektroskopischen analyse einer biologischen oder chemischen substanz

Country Status (2)

Country Link
DE (1) DE10361903A1 (de)
WO (1) WO2005062025A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355420B2 (en) 2001-08-21 2008-04-08 Cascade Microtech, Inc. Membrane probing system
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247842A (en) * 1991-09-30 1993-09-28 Tsi Incorporated Electrospray apparatus for producing uniform submicrometer droplets
US20020113144A1 (en) * 1999-09-06 2002-08-22 Hitachi, Ltd. Analytical apparatus using nebulizer
US20020158196A1 (en) * 2001-03-29 2002-10-31 Berggren William Travis Piezoelectric charged droplet source

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4036167A (en) * 1976-01-30 1977-07-19 Inficon Leybold-Heraeus Inc. Apparatus for monitoring vacuum deposition processes
DD127021B1 (de) * 1976-04-29 1979-12-27 Joachim Mohr Vorrichtung fuer spektrochemische untersuchungen, insbesondere fuer die laser-mikrospektralanalyse
DD127779A1 (de) * 1976-05-27 1977-10-12 Winfried Quillfeldt Anordnung fuer die laser-spektralanalyse
DE4006790A1 (de) * 1990-03-03 1991-09-12 Kernforschungsz Karlsruhe Verfahren zur reduktion der spektralen breite von anregungsspektrallinien
DE10006361A1 (de) * 1999-05-25 2000-11-30 Deutsche Telekom Ag Miniaturisierte Terahertz-Strahlungsquelle
DE10002970B4 (de) * 2000-01-25 2004-09-16 Gkss-Forschungszentrum Geesthacht Gmbh Vorrichtung zur Analyse von in tröpfchenförmigen Flüssigkeitsproben enthaltenen Elementen
DE10002969A1 (de) * 2000-01-25 2001-08-02 Geesthacht Gkss Forschung Vorrichtung zur Analyse von in Flüssigkeitsproben enthaltenen Elementen
DE10054476A1 (de) * 2000-07-10 2002-01-31 Bolivar Peter Haring Verfahren zum Nachweis von Polynucleotidsequenzen
DE10125849A1 (de) * 2001-05-25 2002-11-28 Carbotec Ges Fuer Instr Analyt Elektrosprayvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247842A (en) * 1991-09-30 1993-09-28 Tsi Incorporated Electrospray apparatus for producing uniform submicrometer droplets
US20020113144A1 (en) * 1999-09-06 2002-08-22 Hitachi, Ltd. Analytical apparatus using nebulizer
US20020158196A1 (en) * 2001-03-29 2002-10-31 Berggren William Travis Piezoelectric charged droplet source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGEL M ET AL: "Integrated THz technology for label-free genetic diagnostics", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 80, no. 1, 7 January 2002 (2002-01-07), pages 154 - 156, XP012030208, ISSN: 0003-6951 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355420B2 (en) 2001-08-21 2008-04-08 Cascade Microtech, Inc. Membrane probing system
US7492175B2 (en) 2001-08-21 2009-02-17 Cascade Microtech, Inc. Membrane probing system
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7876115B2 (en) 2003-05-23 2011-01-25 Cascade Microtech, Inc. Chuck for holding a device under test
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
US8013623B2 (en) 2004-09-13 2011-09-06 Cascade Microtech, Inc. Double sided probing structures

Also Published As

Publication number Publication date
DE10361903A1 (de) 2005-07-28

Similar Documents

Publication Publication Date Title
DE112004000746B4 (de) Verfahren und Vorrichtung zum Verarbeiten von LC-MS- oder LC-MS-/MS-Daten bei Stoffwechseluntersuchungen
DE102015201624B4 (de) SCHNELLES VERFAHREN ZUM MESSEN EINES STOßQUERSCHNITTS VON IONEN UNTER VERWENDUNG VON IONENBEWEGLICHKEITSSPEKTROMETRIE
DE102016012302B4 (de) Verfahren zum Auswerten von Daten einer Massenspektrometrie und massenspektrometrisches Verfahren
DE102015007027A1 (de) Verbessertes bildgebendes Massenspektrometrieverfahren und Vorrichtung
DE112012002078T5 (de) Flugzeit-basierendes Massenmikroskopsystem zur Ultrahochgeschwindigkeits-multimodalen Massenanalyse
DE4032491A1 (de) Massenspektroskopische vorrichtung und massenspektroskopisches verfahren
DE10000324A1 (de) Analysegerät
DE19640318A1 (de) Vorrichtung zur Analyse von Mischgaskomponenten
EP3100039B1 (de) Vorrichtung und verfahren zur messung biologischer und/oder elektronischer eigenschaften einer probe sowie verwendungen derselben
DE112004001212T5 (de) System und Verfahren für die Analyse isotopischer Signaturen und die Massenanalyse
DE102004037512A1 (de) Massenspektrometrische Gewebezustandsdifferenzierung
DE102016221065A1 (de) Kanüle zum Nachweis von Zell-Partikel-Verbindungen sowie zugehöriges System und zugehöriges Verfahren
WO2005062025A1 (de) Verfahren zur spektroskopischen analyse einer biologischen oder chemischen substanz
DE102017127189B4 (de) Bestimmung von isobaren Interferenzen in einem Massenspektrometer
DE102010050198B3 (de) Verfahren zur Bestimmung von chemischen Bestandteilen von festen oder flüssigen Substanzen mit Hilfe der THz-Spektroskopie
DE102013200058B3 (de) Automatisierte Auswertung der Rohdaten eines MR-Spektrums
DE10393475B4 (de) Verfahren und Vorrichtung zur Identifizierung von Verbindungen in einer Probe
DE2649912A1 (de) Trennung und analyse von teilchenueberzuegen
DE19713194A1 (de) Verfahren und Anordnung zum Erkennen komplexer Gas-, Geruchs-, Aromamuster einer jeweiligen Substanz auf der Basis der Massenspektroskopie
DE19810917A1 (de) Automatisches Kalibrationsverfahren
DE112004000338B4 (de) System und Verfahren zum Verarbeiten identifizierter Metaboliten
DE102020111240B3 (de) Prozessieren von ortsaufgelösten, Ionen-spektrometrischen Messsignaldaten zur Ermittlung von Molekül-Gehaltsmaßzahlen in flächigen Proben
DE102004064078B4 (de) ESI/APCI-Ionenquelle und Verfahren zur Erzeugung von Ionen
EP1734359A1 (de) Raman-spektroskopisches Analyseverfahren sowie Vorrichtung dafür
DE19628310A1 (de) Optischer Gasanalysator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase