WO2005061387A1 - 滴下原液、滴下原液の調製方法、硝酸ウラニル溶液の調製方法、及びポリビニルアルコール溶液の調製方法 - Google Patents

滴下原液、滴下原液の調製方法、硝酸ウラニル溶液の調製方法、及びポリビニルアルコール溶液の調製方法 Download PDF

Info

Publication number
WO2005061387A1
WO2005061387A1 PCT/JP2004/019171 JP2004019171W WO2005061387A1 WO 2005061387 A1 WO2005061387 A1 WO 2005061387A1 JP 2004019171 W JP2004019171 W JP 2004019171W WO 2005061387 A1 WO2005061387 A1 WO 2005061387A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
preparing
polyvinyl alcohol
alcohol
nitrate
Prior art date
Application number
PCT/JP2004/019171
Other languages
English (en)
French (fr)
Inventor
Masashi Takahashi
Original Assignee
Nuclear Fuel Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003427059A external-priority patent/JP4334334B2/ja
Priority claimed from JP2004230327A external-priority patent/JP4621450B2/ja
Priority claimed from JP2004230385A external-priority patent/JP4639063B2/ja
Priority claimed from JP2004230481A external-priority patent/JP4679094B2/ja
Priority claimed from JP2004298114A external-priority patent/JP4596876B2/ja
Application filed by Nuclear Fuel Industries, Ltd. filed Critical Nuclear Fuel Industries, Ltd.
Priority to US10/583,906 priority Critical patent/US7628970B2/en
Priority to EP04807528.7A priority patent/EP1714943B1/en
Publication of WO2005061387A1 publication Critical patent/WO2005061387A1/ja

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • Stock solution for dropping method for preparing stock solution for dropping, method for preparing peranil nitrate solution, and method for preparing alcohol alcohol solution
  • the present invention relates to a stock solution for dropping, a method for preparing a stock solution for dropping, a method for preparing a peranyl nitrate solution, and a method for preparing a polyvinyl alcohol solution, and more particularly, to a true sphere used for manufacturing a fuel core for a high-temperature gas-cooled reactor.
  • Peranil nitrate-containing drop stock solution capable of producing ammonium biuranate particles of good degree
  • a method of preparing the drop stock solution and a method of preparing a peranil nitrate solution and a polyvinyl alcohol solution used for preparing the drop stock solution about.
  • a core structure into which fuel for a high-temperature gas furnace is charged is made of graphite having a large heat capacity and good high-temperature soundness.
  • This high-temperature gas furnace is evaluated as having high safety because no chemical reaction occurs even at high temperatures, and a gas such as helium gas is used as a cooling gas. Gas can be taken out safely. Therefore, the cooling gas heated to about 1000 ° C. enables heat utilization in a wide range of fields such as hydrogen production and the Iridaku Plant, as well as power generation.
  • a high-temperature gas-cooled reactor fuel to be charged into the high-temperature gas-cooled reactor generally includes a fuel core and a coating layer coated around the fuel core.
  • the fuel core is, for example, fine particles having a diameter of about 350 to 650 ⁇ m obtained by sintering silane dioxide into a ceramic.
  • the coating layer generally has a plurality of layer structures.
  • the coating layers having a four-layer structure are referred to as a first layer, a second layer, a third layer, and a fourth layer from the fuel core surface side.
  • the diameter of the coated particle composed of the fuel core and four layers is, for example, about 500 m to 1000 m.
  • Fuel nuclei are produced using an apparatus for producing ammonium biuranate particles as follows. First, the powder of Shiroi Uranium is dissolved in nitric acid to form a nitric acid perl solution. Next, the peranil nitrate solution is mixed with pure water, a thickener, and the like, and stirred to form a dripping stock solution. This dripping stock solution is stored in the dripping stock solution storage tank. The prepared dropping stock solution is at a predetermined temperature. After the viscosity is adjusted, it is transferred to the dropping nozzle device. The dripping nozzle device has one small diameter nozzle.
  • the transferred undiluted solution is dropped into the aqueous ammonia solution from a small-diameter nozzle, and the droplets falling into the aqueous ammonia solution react with peranil nitrate / ammonium biuranate from the surface of the aqueous solution to form an aqueous ammonia solution.
  • the droplets are present in the droplets for a sufficient time, formation of ammonium biuranate proceeds inside the droplets.
  • ADU particles ammonium biuranate particles
  • the ADU particles are washed and dried, and then roasted in the atmosphere to become uranium trioxide particles. Further, the uranium trioxide particles are reduced and sintered to become high-density ceramous uranium dioxide particles. The uranium dioxide particles are sieved, that is, classified to obtain fuel core fine particles having a predetermined particle diameter.
  • the high temperature gas reactor fuel is molded as a fuel compact or pebble sphere.
  • This fuel compact or pebble sphere is formed by pressing or molding a HTGR fuel into a solid cylindrical shape, hollow cylindrical shape or spherical shape together with graphite powder, a graphite matrix material which also has a binding agent, etc., and then fired. (See Non-Patent Documents 1 and 2)
  • Non-Patent Document 1 Reactor Materials, Ndbook, published on October 31, 1977, published by Nikkan Kogyo Shimbun
  • Non-Patent Document 2 Nuclear Power Handbook, published on December 20, 1995, Ohm Co., Ltd.
  • pure water and a thickener are added to a peranil nitrate stock solution, and the solution is stirred to obtain a dropping stock solution for forming ammonium biuranate particles.
  • the necessary detailed conditions are not described at all. With this alone, ammonium uranate particles with good sphericity and good internal structure Can not get, there is a problem.
  • peranil nitrate has been prepared by reacting nitric acid with uranium oxide, for example, uranium octanilide as follows.
  • nitric acid used is less than 2.66 moles per mole of uranium, from a stoichiometric point of view, unreacted uranium oxide, for example, triuranium octoxide, remains.
  • This unreacted uranium oxide, for example, unreacted triuranium octoxide is contained in the undiluted peranyl nitrate solution, so that it is not possible to produce ammonium biuranate particles as designed, and It was expected that it would not be possible to produce ammonium uranate particles with good sphericity.
  • An object of the present invention is to solve the conventional problems.
  • An object of the present invention is to provide a dripping stock solution from which a high-quality fuel core can be obtained.
  • An object of the present invention is to provide a method for preparing a dropping stock solution for producing ammonium biuranate particles that can be produced.
  • the present invention produces high-quality ammonium biuranate particles even though the nitric acid is reacted with the oxidized lanthanum under the reaction conditions in which the amount of the nitric acid to uranium is reduced.
  • peranyl nitrate solution which can reduce the burden on the environment. It is an object to provide a valuable preparation method.
  • a dropping stock for ⁇ beam particle production 4. a viscosity at 15 ° C OX 10- 2 - - heavy uranium acid ammonium 6.
  • dropwise stock which is a 5 X 10- 2 Pa 's Yes,
  • the undiluted solution according to claim 1 comprising peral nitrate, tetrahydrofurfuryl alcohol, and polybutyl alcohol.
  • a method for preparing a dropping stock solution for the production of ammonium biuranate particles comprising mixing a peranyl nitrate solution and tetrahydrofurfuryl alcohol to prepare a peranyl nitrate mixed solution, and dissolving polybutyl alcohol in water.
  • Preparing a polyvinyl alcohol aqueous solution mixing the polyvinyl alcohol aqueous solution and tetrahydrofurfuryl alcohol to prepare a polyvinyl alcohol solution, and mixing the peranil nitrate mixed solution and the polyvinyl alcohol solution. It is a method of preparing a dripping stock solution,
  • the volume is adjusted by mixing the peranil nitrate mixed solution and the polyvinyl alcohol solution while stirring, and then performing a degassing operation and an operation of adding pure water to the mixed solution.
  • a method for preparing a dripping stock solution characterized in that:
  • a method for preparing a peranyl nitrate solution used for preparing a stock solution for the production of ammonium biuranate particles comprising a molar ratio (AZB) force of nitric acid (A) and uranium (B).
  • AZB molar ratio
  • A nitric acid
  • B uranium
  • Claim 14 The method for preparing a peranil nitrate solution according to claim 12 or 13, further comprising a step of chemically treating NOx gas generated during a reaction between the nitric acid and uranium oxide.
  • a method for preparing a polyvinyl alcohol solution used for preparing a dropping stock solution for the production of ammonium biuranate particles comprising mixing polyvinyl alcohol and water,
  • a method for preparing a polyvinyl alcohol solution comprising: preparing a 9% by mass aqueous solution of polyvinyl alcohol; and mixing the aqueous solution of polyvinyl alcohol with tetrahydrofurfuryl alcohol.
  • aqueous ammonia dropwise stock When the droplet is dropped on the surface of the aqueous ammonia solution, the discharged droplet retains a spherical shape due to the surface tension and easily breaks or deforms due to the impact of the dropping undiluted solution on the surface of the aqueous ammonia solution. There is no clogging in the nozzle for dropping the stock solution.
  • a peranyl nitrate mixed solution is prepared by mixing a peranyl nitrate solution with tetrahydrofurfuryl alcohol (hereinafter sometimes referred to as THFA).
  • THFA tetrahydrofurfuryl alcohol
  • a polyvinyl alcohol aqueous solution (hereinafter sometimes referred to as PVA aqueous solution) prepared by dissolving polyvinyl alcohol (hereinafter sometimes referred to as PVA) in water is mixed with THFA to form a poly (vinyl alcohol).
  • a bull alcohol solution hereinafter sometimes referred to as a PVA solution
  • the above-mentioned nitric acid nitrate mixed solution and the PVA solution are mixed, the droplets discharged from the dropping nozzle cap are formed on the surface.
  • An undiluted solution having a viscosity that makes it difficult for the droplets to be broken or deformed due to the impact on the surface of the aqueous ammonia solution when a droplet of the undiluted solution is dropped onto an aqueous ammonia solution while maintaining a spherical shape by tension. Is prepared.
  • ammonium biuranate particles When ammonium biuranate particles are produced using the dropping stock solution prepared by the preparation method of the present invention, the ammonium biuranate particles have good sphericity, and thus have good sphericity. Fuel nuclei with good sphericity can be produced by using the proper ammonium biuranate particles.
  • the molar ratio of nitric acid to uranium (Z uranium nitrate) is set to 2.1 to 2.6, so that Udani uranium, for example, does not form a dissolution residue when dissolving octanoic acid uranium in nitric acid.
  • the amount can be reduced. Therefore, the final amount of waste liquid can be reduced, so that a peroxynitrate solution can be prepared at lower cost than the conventional method.
  • the stock solution having a predetermined uranium concentration can be dropped into the aqueous ammonia solution for each notch, thereby reducing internal defects.
  • Ammonia-uranium biuranate particles having a good particle size can be formed.
  • there is no dissolved residue in the prepared phenol nitrate solution. Can be manufactured. The use of ammonium uranate particles with good sphericity without internal defects produces fuel nuclei with good sphericity without internal defects.
  • the amount of nitrogen in the waste liquid can be reduced, and the amount of ammonium nitrate generated by the reaction between the aqueous ammonia solution and nitric acid can be reduced.
  • the amount of ammonium nitrate adhering to the surface of ammonium biuranate particles can be reduced. Therefore, it is possible to reduce the amount of hot water used for cleaning the ammonium nitrate adhered to the surface of the ammonium biuranate particles. Therefore, the load on the environment caused by the nitrogen in the waste liquid and the warm waste water can be reduced.
  • a PVA aqueous solution which is free from generation of a PVA dissolution residue and suitable for preparing a dropping stock solution containing peranil nitrate having a predetermined viscosity. Can be.
  • THFA and the PVA aqueous solution are mixed at a predetermined temperature with respect to the content of THFA contained in the undiluted solution containing peranil nitrate, the inside of the inside does not undergo deterioration due to gelling. It is possible to prepare a dropping stock solution having a predetermined viscosity capable of forming ammonium biuranate particles having good sphericity without defects.
  • FIG. 1 is a process chart showing a method for preparing a stock solution for dripping according to the present invention.
  • FIG. 2 is an explanatory view showing one example of a production apparatus for preparing a perchlor nitrate solution.
  • FIG. 3 is an optical micrograph showing a cross section of the ammonium biuranate particles obtained in Example 1.
  • FIG. 4 is a schematic diagram showing a method for evaluating the sphericity of a fuel core.
  • FIG. 5 is a graph showing the relationship between the yield of fuel nuclei and the viscosity of the stock solution for dripping.
  • FIG. 6 is an optical diagram showing a cut surface of ammonium biuranate particles produced in Comparative Example 2. It is a micrograph.
  • [0028] 1 is a reaction vessel
  • 2 is a nitric acid storage tank
  • 3 is an oxidizing uranium input hopper
  • 4 is a heating device
  • 5 is a NOx gas treatment device
  • 6 is a stirring device.
  • the stock solution for dropping according to the present invention is a solution containing peranil nitrate which is suitably used for producing a fuel core for a high-temperature gas-cooled reactor.
  • Dropping stock solution of the present invention 4. the viscosity thereof at 15 ° C 0 X 1 0- 2 - is a 6. 5 X 10- 2 Pa 's (40- value converted to 65cP).
  • the viscosity of the dropping solution is within the above range, it is possible to form ammonium biuranate particles having good sphericity.
  • the viscosity when the viscosity is lower than the lower limit, the shape of the heavy uranium ammonium particles may be deteriorated, and it may not be possible to form the heavy uranium ammonium particles having good sphericity. You. If the viscosity is larger than the upper limit, the viscosity of the undiluted solution is too high, which causes clogging of the drip nozzle and makes it impossible to drip, or the formation of ammonium uranate particles having internal defects. Sometimes.
  • the dropping stock having such viscosity, containing nitrate Uraniru and tetrahydrofurfuryl ⁇ alcohol and the poly Bulle alcohol, the viscosity of 4 at 15 ° C 0 X 10- 2 - 6. 5 X is 10- 2 Pa 's solution and the like.
  • water-soluble cyclic ethers having 14 to 14 carbon atoms such as oxetane, tetrahydrofuran, and dioxane, and 1 to 4 carbon atoms such as 2,5-tetrahydrofuranmethanol are used.
  • Water-soluble cyclic ethers containing an alkanol group that binds 13 alkanol groups to the cyclic ether can be mentioned.
  • polystyrene resin As an alternative to the above-mentioned polybutyl alcohol, synthetic polymers such as sodium polyacrylate and polyethylene oxide; carboxymethylcellulose; And starch-based polymers such as soluble starch and carboxymethyl starch, and water-soluble natural polymers such as dextrin and galactan.
  • the content of peranil nitrate in the dripping stock solution is usually 0.6-0.9moHJ / L.
  • the content of peranil nitrate is within the above range, a uranium diacid uranium fuel core having good sphericity can be produced with good reproducibility.
  • Uranium may form.
  • the content of the THFA in the whole stock solution for dropping is usually preferably from 40 to 50% by volume, more preferably from 43 to 47% by volume.
  • the content of the THFA in the dropping stock solution is within the above-mentioned range, it is possible to produce a diacid uranium fuel nucleus having good sphericity with good reproducibility. Poorly formed disulfide uranium fuel nuclei may be formed.
  • the content of the PVA in the stock solution for dropping is usually preferably 10 to 15 g / L.
  • the viscosity of the undiluted solution can be maintained at a high level, and a diacid uranium fuel nucleus having good sphericity can be produced with good reproducibility.
  • the content is less than 10 g / L, uranium dioxide fuel nuclei with low sphericity may be formed.
  • the content exceeds 15 g / L, a uranium dioxide nucleus having a defect in the internal structure may be generated.
  • the stock solution for dropping according to the present invention may contain other components as long as the object of the present invention is not hindered.
  • a thickener, a stabilizer and the like may be contained.
  • the dropping stock solution preparation method of the present invention comprises mixing a peranil nitrate solution with THF A to prepare a peranil nitrate mixed solution, dissolving PVA in water to prepare a PVA aqueous solution, and Basically, a PVA solution is prepared by mixing a PVA aqueous solution and THFA, and the PVA nitrate mixed solution and the PVA solution are mixed.
  • the peranyl nitrate solution can be obtained by the method for preparing a peranyl nitrate solution according to the present invention.
  • the molar ratio of nitric acid (A) to uranium (B) (AZB), that is, the number of moles of nitric acid is determined by For example, a value obtained by dividing by the number of moles of uranium in the octanoic acid uranium is important.
  • the peranil nitrate solution is obtained by reacting nitric acid with uranium oxide, for example, triuranium octoxide, according to the following reaction formula as described above.
  • the ratio is 2.1 -2.6 is preferred, especially 2.3-2.5.
  • uranium oxide for example, triuranium octoxide
  • the use amount of nitric acid increases, and the production cost of the nitric acid peral solution may increase.
  • the amount of nitrogen derived from nitric acid in the waste liquid increases, which may put a burden on the environment.
  • nitric acid having a concentration of 50% by mass or more, preferably 60% by mass or more is usually used.
  • the form of the uranium oxide for example, uranium oxalate, may be either granular or powdery, but it is a powdery form that is readily and completely dissolved in nitric acid. Preferably.
  • the nitric acid is reacted with the oxidized uranium, for example, octaniedated uranium at 70 to 110 ° C.
  • thiuranium acid may not be sufficiently dissolved, and a predetermined uranium concentration may not be obtained.
  • octanidanisan uranium it is preferable to use octanidanisan uranium as the anianidani uranium.
  • octahedral uranium for example, it is possible to use, for example, dylan uranium, uranium and the like.
  • the generated NOx gas is chemically treated. It is preferable to have a process.
  • Examples of the method of treating the NOx gas in the above step include a wet method in which the NOx gas is absorbed by an alkali and a dry method in which the NOx gas is reduced using a catalyst.
  • alkali examples include sodium hydroxide, sodium carbonate, magnesium hydroxide, calcium hydroxide, ammonia, and the like
  • examples of the catalyst include a three-way catalyst.
  • FIG. 2 shows an example of a production apparatus for preparing a peranil nitrate solution according to the present invention.
  • A is a nitric acid nitrate solution producing apparatus
  • 1 is a reaction vessel
  • 2 is a nitric acid storage tank
  • 3 is an oxidizing uranium charging hopper
  • 4 is a heating apparatus
  • 5 is a NOx gas processing apparatus
  • Reference numeral 6 denotes a stirring device.
  • the reaction vessel 1 is a vessel that reacts uranium acid, for example, triuranium octoxide with nitric acid to produce a peranyl nitrate solution.
  • the reaction vessel 1 is not particularly limited, but is preferably a vessel having corrosion resistance, heat resistance, pressure resistance, and airtightness.
  • Examples of the material of the reaction vessel 1 include an aluminum alloy, a magnesium alloy, a titanium alloy, and stainless steel.
  • the size and shape of the reaction vessel are not particularly limited. However, when criticality safety management is performed by shape limitation, the reaction vessel is formed into a size and shape having dimensions that satisfy the shape limitation. I do.
  • the nitric acid storage tank 2 is a tank for storing nitric acid, and is connected to the reaction container 1 via a pipe and a pump P2.
  • the material, size and shape of the nitric acid storage tank 2 are not particularly limited!
  • the nitric acid stored in the nitric acid storage tank 2 is sent into the reaction vessel 1 by the pump P2.
  • the liquid transfer may be continuous or intermittent.
  • the oxidizing uranium input hopper 3 stores oxidizing uranium, for example, octanodic uranium, and is connected to the reaction vessel 1 via a supply device (not shown). .
  • the material, size and shape of the uranium oxide hopper 3 are not particularly limited.
  • Uranium oxide, for example, triuranium octoxide, stored in the uranium oxide charging hopper 3 is charged into the reaction vessel 1 by the supply device.
  • a known supply device may be used.
  • a rotary feeder or a tape feeder may be used.
  • the heating device 4 is a device for heating the peranil nitrate solution.
  • a known heating device can be used, and examples thereof include a heating device having heating means using electricity, hot water, microwave irradiation, or the like. .
  • the NOx gas treatment device 5 is a device for detoxifying NOx gas, which is a by-product of the reaction, and is connected to the reaction vessel 1 via a pipe and a pump P1.
  • the size and shape of the NOx gas treatment device 5 are not particularly limited as long as the exhaust gas concentration after the treatment of the NOx gas concentration falls below the environmental standard value.
  • the stirring device 6 is not particularly limited, and examples thereof include a low-speed rotating stirrer and a medium-speed rotating stirrer.
  • the rotation speed of the stirring blade provided in the stirring device 6 is preferably 100 to 300 rpm, and the rotation thereof may be continuous or intermittent.
  • a peranyl nitrate solution can be produced as follows.
  • uranium oxide for example, octanoic acid uranium powder is charged from the uranium oxide charging hopper 3 into the reaction vessel 1.
  • nitric acid storage tank 2 a predetermined amount of nitric acid is sent from the nitric acid storage tank 2.
  • the temperature of the mixture in the reaction vessel 1 is kept constant, and the mixture is reacted for a predetermined time.
  • the peranil nitrate solution can be obtained by removing the solution after the reaction from the inside of the reaction vessel 1 using a known discharge means.
  • the peranyl nitrate solution prepared as above is mixed with THFA to form peranyl nitrate.
  • the THFA content in the whole stock solution is usually 40 to 50% by volume of the whole stock solution, and particularly preferably 43 to 47% by volume.
  • THFA in the whole of the dripping stock solution is within the above range, the content of peryl nitrate in the drops dropped from the dripping stock solution does not become too small, and a solution having an appropriate viscosity is formed.
  • the THF A used in the preparation of the peranil nitrate mixed solution is preferably from 50 to 99% by volume with respect to the whole stock solution from the viewpoint of mixing properties.
  • the mixing of the peranil nitrate solution with THFA is preferably performed while cooling to 15 ° C or less.
  • the mixing operation is preferably performed in a storage tank for preparing a stock solution for dropping, and the storage tank may be any device that can perform stirring of the peranyl nitrate solution and THFA at about 15 ° C or less. .
  • the PVA aqueous solution can be obtained by mixing PVA and water at normal temperature, preferably while heating.
  • dried PVA As the PVA!
  • the reason for using dried PVA is to accurately weigh PVA and to suitably produce ammonium biuranate particles capable of producing uranium dioxide particles with good sphericity with good yield. This is in order to prepare a dropping stock solution with good reproducibility.
  • the dried PVA can be obtained by sufficiently drying the absorbed PVA.
  • the degree of drying can be achieved by, for example, storing a desiccant that has absorbed moisture in a dryer containing a desiccant and maintaining a high vacuum under reduced pressure until no weight loss of PVA is observed. The degree can be mentioned.
  • the PVA can be obtained by storing the PVA in a desiccator or the like containing a desiccant and maintaining a high vacuum in the desiccator for at least one day.
  • the absorbed PVA is heated to a high temperature under normal pressure or reduced pressure.
  • a freeze drying method in which freezing and thawing are repeated under high vacuum may be employed.
  • the dried PVA is preferably stored under dry conditions to prevent moisture absorption, until used in the method of the present invention.
  • the treatment temperature such as the heating temperature and the treatment time such as the heating time in the heat drying or freeze drying are appropriately determined depending on the handling amount of PVA to be uniformly heat treated, the heating method, and the like. It is sufficient to judge that dry PVA was obtained in the state where the mass of PVA has been reduced. Heating conditions that cause deformation, alteration or decomposition of PVA should not be used. Appropriate heating temperature is 70-90 ° C and heating time is about 20 minutes to 2 hours.
  • the furnace or the tube contains the moisture-absorbed PVA, and the moisture-absorbed PVA is placed on a plate to be heated.
  • Heat treatment may be performed with hot air blown by laying a basket or storing the absorbed PVA in a basket.
  • the PVA is stored for a certain period in a container containing a desiccant such as activated carbon, activated alumina, or silica gel, for example, a desiccator.
  • a desiccant such as activated carbon, activated alumina, or silica gel, for example, a desiccator.
  • silica gel is preferable, and the storage period is appropriately determined depending on the type of PVA to be stored, the storage amount, and the like. It is only necessary to judge that dry PVA has been obtained in the state where the mass of PVA has been reduced.
  • the dried PVA obtained by heating the absorbed PVA is used, and the dried PVA is stored together with the desiccant.
  • PVA is preferably used.
  • the content of the PVA in the dripping stock solution is usually preferably 10 to 15 g / L.
  • the viscosity of the undiluted solution can be maintained at a good level, and the ammonium uranium biuranate particles having good sphericity can be produced with good reproducibility. If it is out of the above range, ammonium uranate particles having low sphericity may be generated.
  • the content ratio of the PVA in the aqueous PVA solution is usually 6 to 9% by mass, and particularly preferably 7 to 8% by mass.
  • nitric ⁇ La the viscosity of the dropping stock containing Le, 4. in 15 ° C OX 10- 2 - 6. 5 X 10- 2 Pa 's .
  • no PVA dissolution residue is formed in an aqueous PVA solution, for example, an aqueous polybutyl alcohol solution !.
  • the content ratio of the PVA in the aqueous PVA solution is less than 6% by mass, the viscosity of the finally obtained undiluted solution becomes too small to hinder dropping of the undiluted solution. Dissolution residue of PVA may be formed in aqueous solution.
  • the heating temperature for the melting that is, the temperature for heating the mixture of PVA and water, is preferably at least 75 ° C, that is, 75 ° C or more. When the heating temperature is 75 ° C. or more, there is no undissolved residue of PVA, and a uniform aqueous PVA solution can be prepared.
  • the mixture of PVA and water is usually stirred to improve the solubility.
  • the stirring time is usually preferably from 80 to 100 minutes. If the mixture is agitated and mixed while heating, water may evaporate and the water content in the mixture may decrease.However, the reduced amount of water may be caused by appropriately adding water to the heated mixture. To supplement.
  • the mixing ratio of the aqueous PVA solution and THFA is determined based on the amount of the THFA compounded with respect to the amount of the aqueous PVA solution at which the aqueous solution of PVA becomes 15-20% by volume of the total undiluted solution when the undiluted solution is prepared. It is adjusted so as to be 1 to 50% by volume, especially 30 to 40% by volume, based on the total amount of THFA in the stock solution.
  • THFA is added before the temperature of the mixture is lowered to 50 ° C, preferably 60 ° C at the lowest. Is preferred.
  • the undiluted solution is prepared by mixing the nitric acid / phenol mixed solution and the PVA solution.
  • the nitrate-perl mixed solution and the PVA solution are mixed with stirring, and then the volume is adjusted by performing a degassing operation and a pure water addition operation. With this operation, Uranium concentration can be kept constant. By doing so, it is possible to obtain ammonium biuranate particles having good sphericity and uniform uranium weight per particle without internal defects.
  • the uranium concentration of the stock solution after the volume and viscosity adjustment is preferably 0.6-0.9 md-U / L.
  • the uranium concentration of the undiluted solution after the volume adjustment is less than 0.6moHJ / L, the amount of PVA added becomes relatively large, the viscosity becomes too large, and the dropping nozzle is clogged. May not be formed, or there may be formation of ammonium biuranate particles having internal defects.
  • the undiluted solution prepared by the above-described method for preparing the undiluted solution is cooled to a predetermined temperature to adjust the viscosity, and then dropped into the aqueous ammonia solution using a small-diameter dropping nozzle.
  • the droplets dropped into the aqueous ammonia solution pass through the ammonia atmosphere before reaching the surface of the aqueous ammonia solution. Since the surface of the liquid droplet is gelled by passing through the ammonia atmosphere, deformation at the time of reaching the surface of the aqueous ammonia solution can be reduced.
  • Perchlor nitrate in the aqueous ammonia solution reacts sufficiently with ammonia to form ammonium biuranate particles (ADU particles).
  • ammonium biuranate particles are dried and then roasted in the air to form peranthium trioxide particles. Furthermore, the UO particles are reduced and sintered to become high-density ceramics UO particles. The uranium diacid particles are sieved, that is, classified to obtain a fuel core having a predetermined particle diameter.
  • the fuel for the high-temperature gas reactor is molded as a fuel compact or pebble sphere.
  • This fuel Compact or beveled spheres are formed by pressing or molding a HTGR fuel into a solid cylinder, hollow cylinder, or sphere together with a graphite matrix material consisting of graphite powder, binder, etc., and then firing. Is obtained.
  • a dropping stock solution was prepared under the following specific conditions. This condition is when the viscosity of the dropping stock solution is 15 ° C Odor Te 5. 2 X 10- 2 Pa 's ( a value obtained by converting the 52cP).
  • Uranium concentration ratio of undiluted solution after volume adjustment 0.76 mol / L
  • dripping stock solutions having various viscosities were prepared under different conditions. Then, a fuel core was manufactured as in the above embodiment. The viscosity of the undiluted solution was measured using a vibration type viscometer, Piscomate VM-1 A-L manufactured by Yama-Denki Co., Ltd.
  • the obtained ammonium biuranate particles were dried and then roasted in the air to obtain uranium trioxide particles.
  • the uranium trioxide particles were further reduced and sintered to obtain high-density ceramic uranium dioxide particles.
  • the uranium dioxide particles were sieved, that is, classified to obtain uranium oxide particles as fuel nuclei having a predetermined particle diameter. After that, the sphericity was evaluated using uranium oxide particles) for the obtained fuel core. Also, various viscosities After classifying the fuel cores in, the yield was evaluated.
  • the obtained ADU particles were polished, the cross section of the ADU particles was observed with an optical microscope, and the presence or absence of cracks and the like was evaluated to evaluate the internal structure. Observation of the cut surface confirmed that a uniform internal structure had been formed (see Fig. 3).
  • the sphericity of fuel nuclei was evaluated by the PSA method.
  • the PSA method uses a photodiode, a slit, and a light source as shown in FIG. Light emitted from the light source passes through the slit, and the shadow of the fuel nucleus (uranium particles) moving between the photodiode and the slit is measured by the photodiode.
  • the diameter of the fuel nuclei (dioxide uranium particles) measured by a photodiode is determined by the shading of the particles.
  • the sphericity of the fuel nucleus (dioxide uranium particles) is obtained by repeating the above measurement and performing the measurement in all directions of the fuel nuclei (dioxide uranium particles).
  • the diameter of one particle was measured 50 times, and the sphericity of 100 particles was determined from the ratio of the maximum diameter / minimum diameter. For example, if the sphericity is at least 95% of the total particle force of 1.2 or less, the sphericity is judged to be good.
  • outer diameter selection and sphericity selection are performed on the obtained fuel core particles.
  • the sieve operation was performed on the fuel core particles while changing the size of the sieve, and the fuel cores having a predetermined outer diameter range were accepted.
  • the sphericity selection is an operation that utilizes the fact that fuel nuclei particles are supplied to a surface that is inclined at a small angle and the nuclei with good sphericity fall vertically. As described above, the fuel core particles that dropped vertically were judged as acceptable.
  • a mixed solution obtained by adding 300 g of polyvinyl alcohol powder (PVA powder) to 4 L of pure water is stirred at 95 ° C for 90 minutes to obtain a PVA aqueous solution having a PVA concentration of 7% by mass. Got. No dissolved residue was found in the PVA aqueous solution thus obtained.
  • 4 L of tetrahydrofurfuryl alcohol (THFA) was added to the PVA solution at a temperature of 80 ° C. to obtain a PVA solution.
  • a peranil nitrate mixed solution obtained by mixing about 8 L of this PVA solution, about 9 L of peranil nitrate solution and about 7 L of THFA, and pure water were added to obtain a dropping stock solution containing peranil nitrate.
  • the viscosity of the dropping stock solution obtained in Example 2 was measured using a viscometer (manufactured by Yamaichi Electronics Co., Ltd.), at 12 ° C, 5. 5 X 10- 2 Pa 's Met. This, in terms of the viscosity of 15 ° C, 5. a 0 X 10- 2 Pa 's.
  • the dropping stock solution was dropped into aqueous ammonia to produce ammonium biuranate particles. After that, the dried diammonium uranate particles having been subjected to the drying step were cut into two at the diameter plane, and the cut surfaces were observed. As a result, it was confirmed that a uniform internal structure was formed.
  • the sphericity of the fuel core was evaluated by the sphericity evaluation method described above, and it was confirmed that the defect rate was 1% or less.
  • a dripping stock solution was obtained in the same manner as in Example 1 except that the amount of PVA added in the example was changed to 230 g. That is, an aqueous PVA solution having a PVA concentration of 5.4% by mass was used.
  • ammonium biuranate particles produced using this undiluted solution were dried and then roasted in the atmosphere to obtain uranium trioxide particles. Further, the uranium trioxide particles were reduced and sintered to obtain high density ceramic uranium particles. The uranium dioxide particles were sieved, that is, classified to obtain fuel nuclei (uranium dioxide particles) having a predetermined particle diameter.
  • Example 2 was repeated except that the amount of PVA was changed to 400 g.
  • the uranium powder was dissolved in nitric acid and stirred at 100 ° C. for 1.5 hours to prepare a Perr nitrate solution (2.4moHJ / L). 4 L of tetrahydrofurfuryl alcohol was mixed with this cellulose nitrate solution to obtain a cellulose nitrate mixed solution. On the other hand, tetrahydrofurfuryl alcohol is added to a 7% by mass aqueous solution of polyvinyl alcohol to form a polyvinyl alcohol solution. The mixture was stirred and mixed with the above-mentioned peranyl nitrate mixed solution, and water was added thereto to prepare a dropping stock solution. The viscosity of the stock solution was at 10 ° C 5. 3 X 10- 2 Pa 's (53cP). This is applicable to 4. 3 X 10- 2 Pa ' s at 15 ° C.
  • the thickener used at this time was previously subjected to an electric heating treatment at 85 ° C for 50 minutes, completely dried, and weighed.
  • 24 L of the stock solution prepared as described above was supplied to the stock liquid dropping device at a stock solution flow rate of 240 cm 3 Z via a stock solution flow control valve by a stock solution feed pump.
  • the raw liquid supplied to the raw liquid dropping apparatus is dropped from a raw liquid lower nozzle vibrated at a frequency of 75 Hz as a liquid drop in an ammonia gas atmosphere into a tank for storing a 28% aqueous ammonia solution. Ammonium biuranate particles were produced.
  • ammonium biuranate particles produced as described above were stored in a post-treatment tank, and aged at 80 ° C. for 1 hour while rotating the post-treatment tank. Thereafter, the substrate was washed with water at 80 ° C, further washed with ethyl alcohol at 70 ° C for 30 minutes, and then dried at 100 ° C for 3 hours to obtain dried ammonium biuranate particles. .
  • the dried ammonium biuranate particles obtained as described above were roasted at 550 ° C for 3 hours in the air to produce uranium trioxide particles.
  • the uranium trioxide particles were reduced at 600 ° C for 3 hours under a reducing atmosphere (hydrogen / nitrogen mixed gas atmosphere), and then sintered at 1550 ° C for 1 hour to form a ceramic material. To obtain uranium diacid particles.
  • the sphericity of the fuel core particles was determined by classifying (outer diameter selection and sphericity selection) the uranium dioxide particles obtained as described above, and the average was 1.04. Was. The yield of fuel core particles was 99.1% by mass.
  • Fuel core particles were produced in the same manner as in Example 1, except that polyvinyl alcohol powder stored in a desiccator loaded with silica gel for 3 days was used as a thickener. However, the viscosity of the stock solution was at 10 ° C 5. 1 X 10- 2 Pa 's (51cP). This corresponds to 4. 2 X 10- 2 Pa 's in viscosity at 15 ° C. As a result, the average sphericity of the fuel core particles was 1.05. The yield of fuel core particles was 98.5% by mass.
  • Fuel core particles were produced in the same manner as in Example 3, except that polyvinyl alcohol powder containing 9% by mass of water was used as a thickener. However, the viscosity of the stock solution, 4. a 4 X 10- 2 Pa 's ( 44cP) at 10 ° C. This corresponds to a viscosity of 3. 4 X 10- 2 Pa 's at 15 ° C. As a result, the average sphericity of the fuel core particles was 1.08. The yield of fuel core particles was 92% by mass.
  • Example 5 In a tank similar to that of Example 5, 5.1 kg of triuranium octoxide was charged, and 2.9 L of nitric acid was added little by little to this tank so that the molar ratio (Z uranium nitrate) became 2.05. After nitric acid was added, the heating device was operated, the liquid temperature in the tank was maintained at 100 ° C, and triuranium octoxide was reacted with nitric acid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、高品質の燃料核を得ることができる滴下原液及びその調製方法を提供することを課題とする。 本発明は、重ウラン酸アンモニウム粒子製造用の滴下原液であって、15°Cにおける粘度が4.0×10-2~6.5×10-2Pa・sであることを特徴とする滴下原液であり、硝酸ウラニル溶液とテトラヒドロフルフリルアルコールとを混合して硝酸ウラニル混合溶液を調製し、ポリビニルアルコールを水に溶解してポリビニルアルコール水溶液を調製し、前記ポリビニルアルコール水溶液とテトラヒドロフルフリルアルコールとを混合してポリビニルアルコール溶液を調製し、前記硝酸ウラニル混合溶液と前記ポリビニルアルコール溶液とを混合することを特徴とする滴下原液の調製方法である。

Description

明 細 書
滴下原液、滴下原液の調製方法、硝酸ゥラニル溶液の調製方法、及びポ リビュルアルコール溶液の調製方法
技術分野
[0001] この発明は、滴下原液、滴下原液の調製方法、硝酸ゥラニル溶液の調製方法、及 びポリビニルアルコール溶液の調製方法に関し、更に詳しくは、高温ガス炉用燃料 核製造に使用される真球度の良好な重ウラン酸アンモニゥム粒子を製造することの できる硝酸ゥラニル含有の滴下原液、その滴下原液の調製方法、並びにその滴下原 液の調製に使用される硝酸ゥラニル溶液及びポリビニルアルコール溶液の調製方法 に関する。
背景技術
[0002] 高温ガス炉は、高温ガス炉用燃料を投入する炉心構造を、熱容量が大きくて高温 健全性の良好な黒鉛で、構成している。この高温ガス炉においては、高温下でも化 学反応が起こらなくて安全性が高 、と評価されて 、るヘリウムガス等の気体を冷却ガ スとして用いているので、出口温度が高い場合でも冷却ガスを安全に取り出すことが できる。したがって、約 1000°Cくらいにまで高温にされた前記冷却ガスは、発電はも ちろん水素製造やィ匕学プラント等、幅広い分野での熱利用を可能にするものである。
[0003] 一方、この高温ガス炉に投入される高温ガス炉用燃料は、一般的に、燃料核と、こ の燃料核の周囲に被覆された被覆層とを備えて成る。燃料核は、例えば、二酸化ゥ ランをセラミックス状に焼結してなる直径約 350— 650 μ mの微小粒子である。
[0004] 被覆層は、一般的に複数の層構造を有する。 4層構造を有する被覆層は、燃料核 表面側より、第一層、第二層、第三層、および第四層と称される。燃料核と 4層の被 覆層力 構成される被覆粒子の直径は、例えば、約 500 m— 1000 mである。
[0005] 燃料核は、重ウラン酸アンモ-ゥム粒子製造装置を用いて、以下のようにして製造 される。まず、酸ィ匕ウランの粉末を硝酸に溶力して硝酸ゥラ -ル溶液とする。次に、こ の硝酸ゥラニル溶液と純水および増粘剤等とを混合し、攪拌して滴下原液とする。こ の滴下原液は滴下原液貯留槽に貯留される。調製された滴下原液は、所定の温度 に冷却され、粘度が調製された後、滴下ノズル装置に移送される。滴下ノズル装置に は一本の細径のノズルを備えている。移送されてきた滴下原液は、細径のノズルから アンモニア水溶液に滴下され、アンモニア水溶液内に落下した液滴はその表面から 、硝酸ゥラニルカ 重ウラン酸アンモ-ゥムへの反応が進行し、アンモニア水溶液内 に十分な時間前記液滴が存在すると、液滴の内部にまで重ウラン酸アンモニゥムの 形成が進行する。
[0006] なお、このアンモニア水溶液に滴下された液滴は、アンモニア水溶液表面に達する までの行程中に、アンモニアガス雰囲気中を通過する。このアンモニアガスによって 液滴表面がゲルイ匕して被膜が形成されるので、被膜を形成した液滴がアンモニア水 溶液表面に落下する際の衝撃による変形がある程度防止される。アンモニア水溶液 中に落下させられた液滴中の硝酸ゥラニルとアンモニアと十分に反応するならば、重 ウラン酸アンモ-ゥム粒子 (以下、「ADU粒子」と略す場合がある。)が形成される。
[0007] この ADU粒子は、洗浄、乾燥された後、大気中で焙焼され、三酸ィ匕ウラン粒子とな る。さらに、三酸ィ匕ウラン粒子は、還元および焼結されることにより、高密度のセラミツ タス状の二酸化ウラン粒子となる。この二酸化ウラン粒子を篩い分け、すなわち分級 して、所定の粒子径を有する燃料核微粒子を得る。
[0008] 被覆層が形成された後、高温ガス炉用燃料は、燃料コンパクトもしくはぺブル球とし て成型される。この燃料コンパクトもしくはぺブル球は、高温ガス炉用燃料を黒鉛粉 末、粘結剤等力もなる黒鉛マトリックス材とともに、中実円筒形,中空円筒形又は球形 にプレス成型またはモールド成型したのち、焼成して得られる (非特許文献 1,2参照)
[0009] 非特許文献 1 :原子炉材料ノ、ンドブック、昭和 52年 10月 31日発行、日刊工業新聞 社発行
[0010] 非特許文献 2:原子力ハンドブック、平成 7年 12月 20日発行、株式会社オーム社 し 力しながら、前述の非特許文献 1に記載の高温ガス炉用燃料の製造方法にぉ 、ては 、硝酸ゥラニル原液に純水、増粘剤を添加し、攪拌して重ウラン酸アンモ-ゥム粒子 とするための滴下原液を得ているが、必要な詳細条件が全く記載されておらず、これ のみでは、真球度が良好であり、内部組織も良好である重ウラン酸アンモニゥム粒子 を得ることができな 、と 、う問題がある。
[0011] ところで、硝酸ゥラニルは、硝酸と酸化ウラン、例えば、八酸ィ匕三ウランとを以下のよ うに反応させて調製されて 、た。
[0012] [化 1]
U38 + 8H 03→ 3U09 (N03) + 2N02 T + 4H 20 …(1 )
[0013] この反応式によると、ウラン 1モルに対して 2. 66モル以上の硝酸を使用すると未反 応の酸ィ匕ウラン、例えば、八酸ィ匕三ウランを生じさせることなく硝酸ゥラニルを調製す ることができると、化学量論的に考えることができた。ところが、硝酸を過剰に使用す る従来の方法では、費用がかかり、しかも、廃液中の窒素濃度が高くならざるを得ず 、環境負荷を増大させていた。といって、ウラン 1モルに対して硝酸の使用量を 2. 66 モルよりも少なくすると、化学量論的見地からすると、未反応の酸化ウラン、例えば、 八酸化三ウランが残存してしまい、この未反応の酸化ウラン、例えば、未反応の八酸 化三ウランが硝酸ゥラニル原液中に含まれてしまって重ウラン酸アンモ-ゥム粒子を 設計通りに製造することができず、また、真球度の良好な重ウラン酸アンモ-ゥム粒 子を製造することができな 、と予想された。
発明の開示
発明が解決しょうとする課題
[0014] この発明は従来の問題点を解消することを課題とする。
[0015] この発明は、高品質の燃料核を得ることができる滴下原液を提供することをその課 題とする。
[0016] この発明は、真球度が良好であり、内部組織も良好である重ウラン酸アンモニゥム 粒子を得ることができ、ひ 、ては良好な真球度を有する燃料核粒子を歩留まりよく製 造することのできる重ウラン酸アンモニゥム粒子製造用の滴下原液の調製方法を提 供することをその課題とする。
[0017] この発明は、ウランに対する硝酸の使用量を少なくした反応条件で硝酸と酸ィ匕ゥラ ンとを反応させるにもかかわらず、品質の良好な重ウラン酸アンモ-ゥム粒子を製造 することができ、かつ、環境への負荷を軽減することができる硝酸ゥラニル溶液の安 価な調製方法を提供することを課題とする。
課題を解決するための手段
前記課題を解決するための手段として、
請求項 1は、
重ウラン酸アンモ-ゥム粒子製造用の滴下原液であって、 15°Cにおける粘度が 4. O X 10— 2— 6. 5 X 10— 2Pa' sであることを特徴とする滴下原液であり、
請求項 2は、
硝酸ゥラ-ルとテトラヒドロフルフリルアルコールとポリビュルアルコールとを含有し てなる前記請求項 1に記載の滴下原液であり、
請求項 3は、
重ウラン酸アンモニゥム粒子製造用の滴下原液の調製方法であって、硝酸ゥラニル 溶液とテトラヒドロフルフリルアルコールとを混合して硝酸ゥラ -ル混合溶液を調製し 、ポリビュルアルコールを水に溶解してポリビュルアルコール水溶液を調製し、前記 ポリビュルアルコール水溶液とテトラヒドロフルフリルアルコールとを混合してポリビ- ルアルコール溶液を調製し、前記硝酸ゥラニル混合溶液と前記ポリビニルアルコー ル溶液とを混合することを特徴とする滴下原液の調製方法であり、
請求項 4は、
滴下原液全体中の前記ポリビュルアルコール水溶液は、滴下原液全体の 15— 20 体積%であることを特徴とする前記請求項 3に記載の滴下原液の調製方法であり、 請求項 5は、
滴下原液全体中のテトラヒドロフルフリルアルコールは、滴下原液全体の 40— 50 体積%であることを特徴とする前記請求項 3または請求項 4に記載の滴下原液の調 製方法であり、
請求項 6は、
前記硝酸ゥラニル混合溶液と前記ポリビニルアルコール溶液とを攪拌しながら混合 し、その後ガス抜き操作および純水添加操作をして体積調整を行うことを特徴とする 前記請求項 3—請求項 5のいずれか 1項に記載の滴下原液の調製方法であり、 請求項 7は、 前記滴下原液中のウラン濃度が 0. 6-0. 9md-U/Lであることを特徴とする滴下原 液の調整方法であり、請求項 3—請求項 6の 、ずれか 1項に記載の滴下原液の調製 方法であり、
請求項 8は、
前記ポリビニルアルコール水溶液と前記テトラヒドロフルフリルアルコールとを混合し てポリビニルアルコール溶液を調製する際には、ポリビュルアルコール水溶液の温度 が低くても 50°Cになる前に、テトラヒドロフルフリルアルコールを添加することを特徴と する前記請求項 3—請求項 7のいずれ力 1項に記載の滴下原液の調製方法であり、 請求項 9は、
重ウラン酸アンモ-ゥム粒子製造用の、硝酸ゥラエルとポリビュルアルコール水溶 液とテトラヒドロフルフリルアルコールとを含有して成る滴下原液の調製方法であって 、ポリビニルアルコールは乾燥重量で秤量して用いることを特徴とする滴下原液の調 製方法であり、
請求項 10は、
前記乾燥したポリビュルアルコール力 吸湿したポリビュルアルコールを加熱処理 して得られて成る請求項 9に記載の滴下原液の調製方法であり、
請求項 11は、
前記乾燥したポリビニルアルコール力 乾燥剤と共に保存されたポリビュルアルコ ールである請求項 9に記載の滴下原液の調製方法であり、
請求項 12は、
重ウラン酸アンモニゥム粒子製造用の滴下原液の調製に使用される硝酸ゥラニル 溶液の調製方法であって、硝酸 (A)とウラン (B)とのモル比 (AZB)力 2. 1-2. 6 となるように、前記硝酸と酸ィ匕ウランとを反応させることを特徴とする硝酸ゥラニル溶液 の調製方法であり、
請求項 13は、
前記硝酸と酸化ウランとを、 70— 110°Cで反応させる前記請求項 12に記載の硝酸 ゥラニル溶液の調製方法であり、
請求項 14は、 前記硝酸と酸化ウランとの反応時に発生する NOxガスを化学的に処理する工程を 有する前記請求項 12または 13に記載の硝酸ゥラニル溶液の調製方法であり、 請求項 15は、
重ウラン酸アンモ-ゥム粒子製造用の滴下原液を調製するのに使用されるポリビ- ルアルコール溶液の調製方法であって、ポリビュルアルコールと水とを混合して、 6—
9質量%のポリビニルアルコール水溶液を調製し、前記ポリビニルアルコール水溶液 とテトラヒドロフルフリルアルコールとを混合することを特徴とするポリビュルアルコー ル溶液の調製方法であり、
請求項 16は、
前記ポリビニルアルコールと水とを、低くても 75°Cに加熱しながら溶解させることを 特徴とする前記請求項 15に記載のポリビニルアルコール溶液の調製方法であり、 請求項 17は、
前記滴下原液に含まれるテトラヒドロフルフリルアルコール全量の 1一 50体積%に 相当するテトラヒドロフルフリルアルコールと前記ポリビュルアルコール水溶液とを、低 くとも 50°C以上で混合することを特徴とする前記請求項 15または請求項 16に記載 のポリビニルアルコール溶液の調製方法である。 発明の効果
[0019] この発明によれば、滴下原液の粘度が 15°Cで 4. 0 X 10— 2— 6. 5 X 10— 2Pa' sに調 整されていることにより、滴下原液をアンモニア水溶液に滴下する場合に滴下ノズル 力 放出された液滴は表面張力により球形を保持し、アンモニア水溶液の液面に滴 下原液が落下するときの衝撃により容易に破壊乃至変形を生じに《し、また、滴下 原液を滴下させるノズルの中で詰まりを生じることもない。したがって、前記特定の粘 度に調整された硝酸ゥラ -ルを含有する滴下原液をアンモニア水溶液に滴下するこ とにより真球度の良好な重ウラン酸アンモ-ゥム粒子を製造することができ、この真球 度の良好な重ウラン酸アンモ-ゥム粒子を用いることにより、高品質の燃料核を得る ことができる。
[0020] この発明によると、硝酸ゥラニル溶液とテトラヒドロフルフリルアルコール (以下にお いて THFAと称することがある。)とを混合して硝酸ゥラ -ル混合溶液を調製し、また ポリビニルアルコール(以下において PVAと称することがある。 )を水に溶解させて調 製されたポリビニルアルコール水溶液 (以下にお!、て PVA水溶液と称することがある 。)と THFAとを混合してポリビュルアルコール溶液(以下において PVA溶液と称す ることがある。)を調製し、次いで前記硝酸ゥラ -ル混合溶液と前記 PVA溶液とを混 合すると、滴下ノズルカゝら放出された液滴は表面張力により、球形を保持し、滴下原 液の液滴をアンモニア水溶液に滴下した場合にアンモニア水溶液の液面での衝撃 により前記液滴が破壊、又は変形を生じにくくする程度の粘度を有する滴下原液が 調製される。この発明の調製方法により調製された滴下原液を使用して重ウラン酸ァ ンモニゥム粒子を製造すると、その重ウラン酸アンモニゥム粒子は真球度が良好であ り、したがってそのように真球度の良好な重ウラン酸アンモ-ゥム粒子を用いることに より真球度の良好な燃料核が製造される。
[0021] この発明に係る滴下原液の調製方法は、硝酸ゥラ -ル混合溶液と混合される PVA 溶液中の PVAは乾燥した状態で秤量することから、秤量すべき PVA重量を正確に 秤りとることができる。その結果、湿潤した増粘剤を秤量して添加することにより所定 の粘度よりも低い粘度の原液が調製されてしまうといったことがなくなり、滴下ノズルか ら滴下された液滴は表面張力により球形を保持し、滴下原液がアンモニア水溶液中 に滴下する際の衝撃によっても、アンモニア水溶液中で形成される重ウラン酸アンモ -ゥム粒子が変形しに《することができる。したがって、真球度の良好な重ウラン酸 アンモ-ゥム粒子を製造することができ、これによつて、良好な真球度を有する燃料 核粒子を歩留まりよく製造することができるという効果を奏する。
[0022] この発明の硝酸ゥラニル溶液の調製方法によると、硝酸ゥラニル溶液を調製する際 に硝酸とウランとのモル比(硝酸 Zウラン)を 2. 1-2. 6にすることにより、酸ィ匕ウラン 、例えば、八酸ィ匕三ウランを硝酸に溶解する際に溶解残渣を生じることがなぐまた、 硝酸への八酸ィ匕三ウランの溶解性が良好になり、し力も、硝酸の使用量を少なくする ことができる。したがって、最終的な廃液量を少なくすることができるので、従来の方 法よりも安価に硝酸ゥラ -ル溶液を調製することができる。また、調製された硝酸ゥラ -ル中に溶解残渣が存在しな 、ので、ノ ツチ毎に所定のウラン濃度の滴下原液をァ ンモユア水溶液に滴下することができ、これによつて、内部欠陥のないし力も真球度 の良好な重ウラン酸アンモ-ゥム粒子を形成することができる。また 2種類以上の濃 縮度のウラン粉末を乾式でプレンデイングする場合、調製された硝酸ゥラ -ル溶液中 に溶解残渣が存在しないので所定の濃縮度を持つ重ウラン酸アンモ-ゥム粒子を製 造することができる。内部欠陥がなく真球度の良好な重ウラン酸アンモ-ゥム粒子を 用いると、内部欠陥がなく真球度の良好な燃料核が製造される。
[0023] また、硝酸の使用量の減少に伴って、廃液中の窒素量も減らすことができ、しかも、 アンモニア水溶液と硝酸との反応で生成する硝酸アンモニゥムの量を減らすことがで きるので、重ウラン酸アンモニゥム粒子表面に付着する硝酸アンモニゥムの量を減ら すことができる。したがって、重ウラン酸アンモ-ゥム粒子の表面に付着した硝酸アン モニゥムを洗浄するために用いられる温水の使用量を減らすことができる。したがつ て、廃液中の窒素および温廃水が環境に与える負荷を低減することができる。
[0024] この発明の PVA溶液の調製方法によると、 PVAの溶解残渣が発生することがなく 、かつ、所定粘度を有する硝酸ゥラニル含有の滴下原液を調製するのに好適な PV A水溶液を得ることができる。
[0025] PVAを水に溶解させるに際し、低くとも 75°Cに加熱するので、 PVAの水への溶解 が円滑に行われ、 PVAの固形分残渣を生じることがな!、。
[0026] 前記硝酸ゥラニル含有の滴下原液に含まれる THFAの含有量に対して所定量の T HFAと前記 PVA水溶液とを所定温度下で混合するので、ゲルィ匕による変質を生じ ることがなぐ内部欠陥がなぐ真球度の良好な重ウラン酸アンモニゥム粒子を形成 することのできる所定粘度の滴下原液を調製することができる。
図面の簡単な説明
[0027] [図 1]図 1はこの発明に係る滴下原液を調製する方法を示す工程図である。
[図 2]図 2は硝酸ゥラ -ル溶液を調製する製造装置の一例を示す説明図である。
[図 3]図 3は実施例 1で得られた重ウラン酸アンモニゥム粒子の裁断面を示す光学顕 微鏡写真である。
[図 4]図 4は燃料核の真球度を評価する方法を示す概略図である。
[図 5]図 5は燃料核の歩留まりと滴下原液の粘度との関係を示すグラフである。
[図 6]図 6は比較例 2で製造された重ウラン酸アンモニゥム粒子の裁断面を示す光学 顕微鏡写真である。
符号の説明
[0028] 1は反応容器、 2は硝酸貯留槽、 3は酸ィ匕ウラン投入ホッパー、 4は加熱装置、 5は NOxガス処理装置および 6は攪拌装置を示す。
発明を実施するための最良の形態
[0029] (1)滴下原液
この発明の滴下原液は、高温ガス炉用燃料核製造に好適に使用される硝酸ゥラニ ルを含有する液である。この発明の滴下原液は、その粘度が 15°Cにおいて 4. 0 X 1 0—2— 6. 5 X 10— 2Pa' s (40— 65cPを換算した値)である。滴下原液の粘度が前記範 囲内にあると真球度の良好な重ウラン酸アンモ-ゥム粒子を形成することができる。 一方、粘度が前記下限値よりも下回ると、重ウラン酸アンモ-ゥム粒子の形が悪くなり 易ぐ真球度の良好な重ウラン酸アンモ-ゥム粒子を形成することができないことがあ る。また粘度が前記上限値よりも大きいと、滴下原液の粘度が高すぎることによって、 滴下ノズルに詰まりを生じて滴下ができなくなったり、内部欠陥のある重ウラン酸アン モ -ゥム粒子が形成されることがある。
[0030] このような粘度を有する滴下原液としては、硝酸ゥラニルとテトラヒドロフルフリルァ ルコールとポリビュルアルコールとを含有し、 15°Cにおけるその粘度が 4. 0 X 10— 2— 6. 5 X 10— 2Pa' sである溶液を挙げることができる。
[0031] なお、前記テトラヒドロフルフリルアルコールの代替材料として、ォキセタン、テトラヒ ドロフラン、及びジォキサン等の炭素数 1一 4の水溶性環状エーテル、並びに 2, 5— テトラヒドロフランジメタノール等の、炭素数が 1一 3のアル力ノール基を前記環状エー テルに結合するアル力ノール基含有水溶性環状エーテル等を挙げることができる。
[0032] なお、前記ポリビュルアルコールの代替材料として、ポリアクリル酸ナトリウム及びポ リエチレンォキシド等の合成ポリマー、カルボキシメチルセルロース、ヒドロキシェチル セノレロース、メチノレセノレロース、及びェチノレセノレロース等のセノレロース系ポリマー、可 溶性でんぷん、及びカルボキシメチルでんぷん等のでんぷん系ポリマー、デキストリ ン、及びガラクタン等の水溶性天然高分子等を挙げることができる。
[0033] 硝酸ゥラニルの滴下原液における含有量としては、通常、 0. 6-0. 9moHJ/Lであ る。硝酸ゥラニルの含有量が前記範囲内にあると、真球度の良好な二酸ィ匕ウラン燃 料核を再現性よく製造することができ、前記範囲を外れると、真球度の低劣な二酸化 ウランが生成することがある。
[0034] 前記 THFAの滴下原液全体における含有量としては、通常、 40— 50体積%が好 ましぐ 43— 47体積%がより好ましい。前記 THFAの滴下原液における含有量が前 記範囲内にあると、真球度の良好な二酸ィ匕ウラン燃料核を再現性よく製造することが でき、前記範囲を外れると、真球度の低劣な二酸ィ匕ウラン燃料核が生成することがあ る。
[0035] 前記 PVAの滴下原液における含有量としては、通常、 10— 15g/Lが好ましい。前 記 PVAの滴下原液における含有量が前記範囲内にあると、滴下原液の粘度を良好 に維持することができて真球度の良好な二酸ィ匕ウラン燃料核を再現性よく製造するこ とができる。含有量が 10g/Lより小さい場合、真球度の低劣な二酸化ウラン燃料核が 生成することがある。一方、含有量が 15g/Lを超える場合、内部組織に欠陥のある二 酸ィ匕ウラン燃料核を生成することがある。
[0036] この発明に係る滴下原液は、この発明の目的を阻害しない限り、その他の成分を含 有することができる。その他の成分としては増粘剤、安定化剤等を含有していてもよ い。
[0037] (2)滴下原液の調製方法
この発明の滴下原液調製方法は、図 1に示されるように、硝酸ゥラニル溶液と THF Aとを混合して硝酸ゥラニル混合溶液を調製し、 PVAを水に溶解させて PVA水溶液 を調製し、前記 PVA水溶液と THFAとを混合して PVA溶液を調製し、前記硝酸ゥラ -ル混合溶液と前記 PVA溶液とを混合することを基本とする。
[0038] (2-1)硝酸ゥラニル溶液の調製
前記硝酸ゥラニル溶液は、この発明に係る硝酸ゥラニル溶液の調製方法により得る ことができる。
[0039] この発明に係る硝酸ゥラ -ル溶液の調製方法にぉ 、ては、硝酸 (A)とウラン (B)と のモル比 (AZB)、すなわち、硝酸のモル数を酸ィ匕ウラン、例えば、八酸ィ匕三ウラン におけるウランのモル数で除した値が重要である。 [0040] 前記硝酸ゥラニル溶液は、硝酸と酸化ウラン、例えば、八酸化三ウランとを反応させ ることにより、前述したように以下の反応式に従って得られる。
[0041] [化 2]
U308 + 8H 03→3U02 (N03) 2 + 2Ν02 Τ + 4Η 20 ' · ' (1 )
[0042] また、硝酸と酸化ウラン、例えば、八酸ィ匕三ウランとが、以下の反応式に従って反応 するとも考えられる。
[0043] [化 3]
3 U, Ο, + 20 HN03— 9UO, (NO , 3 5 +2NO+ 1 O H, O . -■ (2) したがって、この発明における硝酸ゥラニル溶液の調製方法において、前記モル比 は、 2. 1-2. 6であるのが好ましぐ特に、 2. 3-2. 5であるのが好ましい。
[0044] 前記モル比力 2. 1よりも小さいと、酸ィ匕ウラン、例えば、八酸化三ウランが完全に 溶解せず、残渣が発生することがある。一方、前記モル比力 2. 6よりも大きいと、硝 酸の使用量が多くなり、硝酸ゥラ -ル溶液の製造コストがかかることがある。さらに、廃 液中の硝酸由来の窒素量が増え、環境に負荷を与えてしまうことがある。
[0045] この発明においては、通常、濃度が 50質量%以上、好ましくは、 60質量%以上の 硝酸が用いられる。
[0046] 前記酸化ウラン、例えば、八酸ィ匕三ウランの形態としては、顆粒状または粉末状等 のいずれであってもよいが、硝酸に、素早ぐしかも完全に溶解しやすい粉末状であ るのが好ましい。
[0047] この発明における硝酸ゥラニル溶液の調製方法の好適な態様は、前記硝酸と前記 酸ィ匕ウラン、例えば、八酸ィ匕三ウランとを、 70— 110°Cで反応させることである。
[0048] 前記温度が 70°Cよりも低いと、酸ィヒウランが十分溶解しない事があり、所定のウラン 濃度を得られな ヽことがある。
[0049] この発明にお 、ては、酸ィ匕ウランとして、八酸ィ匕三ウランを用いるのが好適であるが
、前記八酸ィ匕三ウランの他にも、例えば、二酸ィ匕ウランおよび三酸ィ匕ウラン等を用い ることがでさる。
[0050] さらに、硝酸ゥラニル溶液を調製する場合、発生する NOxガスを化学的に処理する 工程を有することが好ま 、。
[0051] 前記工程における NOxガスの処理法としては、 NOxガスをアルカリに吸収させる湿 式法または NOxガスを触媒を用いて還元する乾式法等を挙げることができる。
[0052] 前記アルカリとしては、水酸化ナトリウム、炭酸ナトリウム、水酸化マグネシウム、水 酸ィ匕カルシウム、アンモニア等を挙げることができ、前記触媒としては、三元触媒等を 挙げることができる。
[0053] この発明における硝酸ゥラニル溶液を調製する製造装置の一例を図 2に示す。
[0054] 図 2において、 Aは硝酸ゥラ -ル溶液製造装置、 1は反応容器、 2は硝酸貯留槽、 3 は酸ィ匕ウラン投入ホッパー、 4は加熱装置、 5は NOxガス処理装置および 6は攪拌装 置を示す。
[0055] 前記反応容器 1は、酸ィ匕ウラン、例えば、八酸化三ウランと硝酸とを反応させて硝酸 ゥラニル溶液を生成させる容器である。
[0056] 前記反応容器 1としては、特に制限はないが、耐腐食性、耐熱性、耐圧性、密閉性 を有する容器が好ましい。
[0057] 前記反応容器 1の材料としては、例えば、アルミニウム合金、マグネシウム合金、チ タン合金、ステンレス鋼等を挙げることができる。
[0058] また、前記反応容器の大きさ及び形状については、特に制限はないが、臨界安全 管理を形状制限で行う場合は、形状制限を満たす寸法を有する大きさ及び形状に反 応容器を形成する。
[0059] 前記硝酸貯留槽 2は、硝酸を貯留する槽であり、配管およびポンプ P2を介して反 応容器 1に接続される。
[0060] 前記硝酸貯留槽 2の材質、大きさ及び形状につ!、ては、特に制限はな!/、。
[0061] 前記硝酸貯留槽 2内に貯留された硝酸は、前記ポンプ P2により反応容器 1内に送 液される。送液は、連続的であっても断続的であってもよい。
[0062] 前記酸ィ匕ウラン投入ホッパー 3は、酸ィ匕ウラン、例えば、八酸ィ匕三ウランを貯留して おり、供給器 (図示せず。)を介して反応容器 1に接続される。
[0063] 前記酸化ウラン投入ホッパー 3の材質、大きさ及び形状については、特に制限はな い。 [0064] 前記酸化ウラン投入ホッパー 3内に蓄えられた酸化ウラン、例えば、八酸化三ウラン は、前記供給器により反応容器 1内に投入される。
[0065] 前記供給器としては、公知の供給器であれば 、ずれの供給器であってもよぐ例え ば、ロータリーフィーダ一またはテープノレフィーダ一を挙げることができる。
[0066] 前記加熱装置 4は、硝酸ゥラニル溶液を加熱する装置である。
[0067] 硝酸ゥラニル溶液を好適な温度に加熱することができる限り、公知の加熱装置を用 いることができ、電気、熱水、マイクロ波照射等による加熱手段を有する加熱装置を 挙げることができる。
[0068] 前記 NOxガス処理装置 5は、反応の副生成物である NOxガスを無害化処理する 装置であり、配管およびポンプ P1を介して前記反応容器 1に接続される。
[0069] 前記 NOxガス処理装置 5の大きさ及び形状としては、前記 NOxガス濃度を処理し た後の排出ガス濃度が、環境基準値を下回る限りにおいて、特に制限はない。
[0070] 前記攪拌装置 6としては、特に制限はなぐ例えば、低速回転型攪拌機または中速 回転型攪拌機等を挙げることができる。
[0071] 前記攪拌装置 6に備えられた攪拌翼の回転数は、 100— 300rpmであるのが好ま しぐその回転は、連続的であっても、断続的であってもよい。
[0072] 前記硝酸ゥラエル溶液製造装置 Aを用いると、例えば、以下のようにして、硝酸ゥラ ニル溶液を製造することができる。
[0073] まず、酸化ウラン投入ホッパー 3から所定量の酸化ウラン、例えば、八酸ィ匕三ウラン 粉末が、反応容器 1に投入される。
[0074] 次 、で、 NOxガス処理装置 5を作動させた後、硝酸貯留槽 2から所定量の硝酸を 送液する。
[0075] その後、攪拌装置 6および加熱装置 4を作動させる。
[0076] 反応容器 1内の混合物の温度を一定に保ち、所定時間、反応させる。
[0077] 反応後の溶液を前記反応容器 1内から、公知の排出手段を用いて取り出すことによ り、硝酸ゥラニル溶液を得ることができる。
[0078] (2-2)硝酸ゥラ -ル混合溶液の調製
以上のようにして調製された硝酸ゥラ -ル溶液と THFAとを混合して硝酸ゥラニル 混合溶液を調製する。
[0079] 滴下原液全体中の THFAは、通常、滴下原液全体の 40— 50体積%であり、特に 、 43— 47体積%が好ましい。滴下原液全体中の THFAが前記範囲内にあると、滴 下原液から滴下される液滴中の硝酸ゥラエルの含有量が過少にならず、かつ、適正 な粘度を有する溶液が形成されて、最終的には真球度の良好な燃料核を得るため の液滴を調製することができる。この硝酸ゥラニル混合溶液調製の際に用いる THF Aは、滴下原液全体のそれに対して 50— 99体積%とするのが混合性の観点から良 い。
[0080] 前記硝酸ゥラニル溶液と THFAとの混合は、 15°C以下に冷却しながら行うことが好 ましい。混合操作は、滴下原液を調製する貯留槽で行うのが好ましぐその貯留槽は 、硝酸ゥラニル溶液と THFAとの攪拌を、約 15°C以下に保持しつつ実行可能な装置 であればよい。
[0081] (2-3)PVA水溶液の調製
PVA水溶液は、 PVAと水とを常温で、好ましくは加熱しながら混合して得ることが できる。
[0082] この発明にお!/、ては、 PVAとして、乾燥した PVAを用いることが好まし!/、。乾燥した PVAを用いるのは、 PVAを正確に秤量し、真球度の良好な二酸ィ匕ウラン粒子を歩 留まりよく製造することのできる重ウラン酸アンモ-ゥム粒子を好適に製造することの できる滴下原液を再現性よく調製するためである。
[0083] 前記乾燥した PVAは、吸湿した PVAを十分に乾燥することにより得ることができる 。乾燥の程度としては、例えば、乾燥剤を入れた乾燥器内に、吸湿した乾燥剤を収 容し、 PVAの重量減少が見られなくなるまで高真空の減圧状態に維持することにより 達成される乾燥度合 、を挙げることができる。 PVAを例えば乾燥剤を収容したデシ ケータ等の乾燥器内に収容し、少なくとも一昼夜デシケータ内を高真空に維持するこ とにより、乾燥した PVAを得ることができる。 PVAを乾燥する手法としては、前記した ような、乾燥剤と共に常圧下に、好ましくは高真空下に PVAを保管することのほかに 、常圧又は減圧下で、吸湿した PVAを高温度に加熱する乾燥手法、高真空下に凍 結と解凍とを繰り返す凍結乾燥手法等を採用することもできる。このような乾燥手法に より乾燥した PVAは、この発明の方法に使用されるまで、吸湿しないように乾燥状態 下に保管されて 、ることが好ま 、。
[0084] 加熱乾燥又は凍結乾燥における加熱温度等の処理温度及び加熱時間等の処理 時間は一律でなぐ加熱処理される PVAの取扱量、加熱方式などによって適宜、決 定される。 PVAの質量の減少がなくなった状態で、乾燥した PVAが得られたと判断 すればよい。 PVAが変形、変質又は分解するような加熱条件を採用すべきではない 。加熱温度は 70— 90°C、加熱時間は 20分一 2時間程度が適当である。
[0085] 吸湿した PVAの加熱処理に当っては、特別な加熱装置を用いる必要はな 、が、炉 又は管に吸湿した PVAを収容して加熱処理してもよぐ板上に吸湿した PVAを敷き 置いて、又は籠に吸湿した PVAを収容して、熱風を吹きかけて加熱処理してもよい。
[0086] 前記乾燥剤と共に一定期間、保存された PVAを用いる手段を採用する場合は、活 性炭、活性アルミナ、シリカゲルなどの乾燥剤を収容した容器、例えば、デシケータ に、一定期間、保存された後の PVAが用いられる。乾燥剤としては、シリカゲルが好 ましぐ保存期間は、保存される PVAの種類、保存量などによって適宜、決定される 。 PVAの質量の減少がなくなった状態で、乾燥した PVAが得られたと判断すればよ い。いずれにしてもこの発明の方法においては、具体的には、吸湿した PVAを加熱 処理して得られたところの、乾燥した PVAを使用し、及び、乾燥剤と共に保存された ところの、乾燥した PVAが好適に使用される。
[0087] 前記 PVAの滴下原液における含有量としては、通常、 10— 15g/Lが好ましい。前 記 PVAの滴下原液における含有量が前記範囲内にあると、滴下原液の粘度を良好 に維持することができて真球度の良好な重ウラン酸アンモ-ゥム粒子を再現性よく製 造することができ、前記範囲を外れると、真球度の低劣な重ウラン酸アンモニゥム粒 子が生成することがある。
[0088] 前記 PVAの PVA水溶液における含有割合としては、通常、 6— 9質量%であり、特 に、 7— 8質量%が好ましい。前記 PVAの PVA水溶液における含有割合が前記範 囲内にあると、硝酸ゥラ -ル含有の滴下原液の粘度を、 15°Cにおいて 4. O X 10—2— 6. 5 X 10— 2Pa' sの範囲内に良好に維持することができ、さらに、 PVA水溶液、例え ば、ポリビュルアルコール水溶液中に PVAの溶解残渣が生じることがな!、。 [0089] 前記 PVAの PVA水溶液における含有割合が 6質量%未満であると、最終的に得 られる滴下原液の粘度が小さくなり過ぎて滴下原液の滴下に支障を来たし、 9質量% を超えると PVA水溶液に PVAの溶解残渣を生じてしまうことがある。
[0090] 前記溶解に際する加熱温度つまり PVAと水との混合物を加熱する温度は、低くとも 75°Cつまり 75°C以上であるのが好ましい。前記加熱温度が 75°C以上であれば、 PV Aの未溶解残渣がなく、均一な PVA水溶液を調製することができる。
[0091] PVAと水との混合物は通常、溶解性をよくするため攪拌する。攪拌時間は、通常、 80— 100分であるのが好ましい。加熱しながら前記混合物を攪拌混合すると、水が 蒸発して混合物中の水分の含有量が低下することがあるが、減少した水分量は、加 熱されている混合物に適宜に水を添加することにより、補う。
[0092] (2-4)PVA溶液の調製
そして、前記 PVA水溶液と THFAとを混合して PVA溶液を調製する。
[0093] 前記 PVA水溶液と THFAとの混合割合は、滴下原液を調製する際の前記 PVA水 溶液が滴下原液全体の 15— 20体積%となる PVA水溶液の量に対し、前記 THFA の配合量力 滴下原液中の THFAの全量に対して 1一 50体積%、特に 30— 40体 積%となるように、調整される。
[0094] 前記 THFAの配合量が前記範囲内にあると、 PVAが均一に分散した PVA溶液を 得ることができる。
[0095] また、前記 THFAと前記 PVA水溶液とを混合する際には、それら混合物の温度を 低くても 50°C、好ましくは、低くても 60°Cになる前に、 THFAを添加するのが好まし い。
[0096] 前記 PVA水溶液の温度が、 50°C未満になつてから、 THFAを添カ卩すると、 PVA 溶液中の PVAがゲルイ匕してしまい、その結果、滴下原液を滴下するときに不都合を 生じることがある。
[0097] (2-5)硝酸ゥラニル混合溶液と PVA溶液との混合
滴下原液は、前記硝酸ゥラエル混合溶液と前記 PVA溶液とを混合する。
[0098] また、前記硝酸ゥラエル混合溶液と前記 PVA溶液とを攪拌しながら混合し、その後 ガス抜き操作および純水添加操作をして体積調整を行う。この操作によりバッチ毎の ウラン濃度を一定にすることができる。このようにすると、真球度が良好であり、内部欠 陥のない 1粒子あたりのウラン重量が均一な重ウラン酸アンモ-ゥム粒子を得ることが できる。
[0099] なお、体積及び粘度調製後の滴下原液のウラン濃度は、 0. 6-0. 9md-U/Lであ ることが好ましい。
[0100] ここで、体積調整後の滴下原液のウラン濃度力 0. 6moHJ/L未満であると、 PVA 添加量が相対的に多くなり、粘度が大きくなりすぎ、滴下ノズルに詰まりを生じて滴下 ができなくなったり、内部欠陥のある重ウラン酸アンモ-ゥム粒子が形成されることが ある。
[0101] 体積調整後の滴下原液のウラン濃度力 0. 9moHJ/Lを超えると、 PVA添加量が 相対的に少なくなり、滴下原液の粘度が低下し、真球度等の燃料核の品質に影響を 与えると 、う不利を生じることがある。
[0102] (3)高温ガス炉用燃料の製造
以上のような滴下原液の調製方法で調製された滴下原液は、所定の温度に冷却さ れて粘度を調整した後、細径の滴下ノズルを用いてアンモニア水溶液に滴下される
[0103] このアンモニア水溶液に滴下された液滴は、アンモニア水溶液表面に達するまで の間に、アンモニア雰囲気中を通過する。このアンモニア雰囲気の通過によって、液 滴表面をゲルイ匕させるため、アンモニア水溶液表面到達時における変形を軽減する ことができる。アンモニア水溶液中における硝酸ゥラ -ルは、アンモニアと十分に反 応し、重ウラン酸アンモ-ゥム粒子 (ADU粒子)となる。
[0104] この重ウラン酸アンモ-ゥム粒子は、乾燥された後、大気中で焙焼され、三酸化ゥラ ン粒子となる。さらに、三酸ィ匕ウラン粒子は、還元 '焼結されることにより、高密度のセ ラミックス状の二酸ィ匕ウラン粒子となる。この二酸ィ匕ウラン粒子をふるい分け、すなわ ち分級して、所定の粒子径を有する燃料核を得る。
[0105] なお、この燃料核を使用してなる高温ガス炉用燃料の構造は、既に述べたとおりで ある。
[0106] 高温ガス炉用燃料は、燃料コンパクトもしくはぺブル球として成型される。この燃料 コンパクトもしくはべブル球は、高温ガス炉用燃料を黒鉛粉末、粘結剤等からなる黒 鉛マトリックス材とともに、中実円筒形、中空円筒形又は球形にプレス成型またはモ 一ルド成型したのち、焼成して得られる。
実施例
[0107] (実施例 1)
以下、実施例および比較例を挙げて、この発明をより具体的に説明する。なお、こ の発明は実施例の内容に限定されるものではない。前記実施形態において、以下の 具体的条件で、滴下原液を調製した。この条件は、滴下原液の粘度が 15°Cにおい て 5. 2 X 10— 2Pa' s (52cPを換算した値)である場合である。
THFAの滴下原液全体の割合 :45体積%
PVA水溶液の滴下原液全体の割合 :18体積%
PVAの溶解時間 : 90分
PVA水溶液の濃度 :7. 3質量%
PVA溶液中に含まれる滴下原液全体の THFA量
に対する THFAの割合 :37体積%
体積調整後の滴下原液のウラン濃度割合 :0. 76mol/L
体積調整後の硝酸とウランとのモル比 :2. 3
さらに、条件を変えて、様々な粘度の滴下原液を作製した。そして、前記実施形態 のように、燃料核を製造した。なお、滴下原液の粘度は、振動式粘度計である山ー電 機 (株)製ピスコメイト VM— 1 A— Lを使用して、測定した。
[0108] [評価方法および評価結果]
実施例で得られた滴下原液を使用して得られた重ウラン酸アンモ-ゥム粒子 (AD
U粒子)の内部組織の評価を行った。
[0109] また、得られた重ウラン酸アンモ-ゥム粒子を、乾燥した後、大気中で焙焼して、三 酸ィ匕ウラン粒子とした。さら〖こ、三酸化ウラン粒子を、還元'焼結して、高密度のセラミ ック状の二酸ィ匕ウラン粒子とした。この二酸ィ匕ウラン粒子をふるい分け、すなわち分 級して、所定の粒子径を有する燃料核に酸化ウラン粒子)を得た。その後、得られ た燃料核に酸化ウラン粒子)を用いて、真球度の評価を行った。また、様々な粘度 における燃料核を分級後に、歩留まりの評価を行った。
[0110] [ADU粒子の内部組織の評価方法]
得られた ADU粒子を研磨し、 ADU粒子の断面を光学顕微鏡で観察し、クラック等 の有無を判断することにより、内部組織の評価を行った。その裁断面を観察したとこ ろ、均一な内部組織が形成されていることを確認した(図 3参照)。
[0111] 料核の真球度の評価方法]
PSA法によって、燃料核(二酸ィ匕ウラン粒子)の真球度の評価を行った。 PSA法と は、図 4に示されるように、フォトダイオード、スリット、光源を使用する方法である。光 源から照射された光がスリットを通過し、フォトダイオードおよびスリットの間を動く燃料 核 (二酸ィ匕ウラン粒子)の陰影をフォトダイオードにより測定する。フォトダイオードによ り測定された燃料核 (二酸ィ匕ウラン粒子)の陰影により粒子の直径が求められる。以 上の測定をくり返し、燃料核 (二酸ィ匕ウラン粒子)のあらゆる方向に関して行うことによ り、燃料核 (二酸ィ匕ウラン粒子)の真球度が求められる。
[0112] この PSA法により、 1粒子につき、 50回直径を測定し、最大直径/最小直径の比に より、 100粒子について真球度を求めた。例えば、真球度 1. 2以下の粒子力 全体 の 95%以上あれば、真球度は良好であると判断される。
[0113] 料核の歩留まりの評価]
歩留まりの評価は、以下の式に基づいて行った。なお、この評価結果を図 5に示す
[0114] [数 1] 外 遷別、 真球度選別に
合格したウラ ン重'量 (
X t o o (%)
投入ウラン遠量( g )
[0115] ここで、得られた燃料核粒子に対して、外径選別と真球度選別を行う。外径選別は 、篩い目の大きさを変えて、篩い作業を燃料核粒子に対して実施し、所定の外径範 囲内になった燃料核を合格とした。真球度選別は、振動をかけた微少角度傾けた面 に対し、燃料核粒子を供給し、真球度の良好な燃料核粒子が、垂直に落下すること を利用した作業であり、上記のように、垂直に落下した燃料核粒子を合格とした。 [0116] 以上のように、重ウラン酸アンモ-ゥム粒子 (ADU粒子)の内部組織、燃料核の真球 度の評価を行った結果、良好な重ウラン酸アンモニゥム粒子 (ADU粒子)及び燃料核 が得られたことが分力つた。さらに、図 5によれば、滴下原液温度が 15°Cのとき滴下 原液の粘度が約 4. 0 X 10— 2— 6. 5 X 10— 2Pa' s (40— 65cPを換算した値)の範囲内 で歩留まりがよいことがわ力つた。これにより、この発明に係る滴下原液を用いれば、 高品質の燃料核を得ることができることがわ力つた。
[0117] (実施例 2)
4Lの純水に、 300gのポリビュルアルコール粉末(PVA粉末)を添加して得た混合 液を、 95°Cで 90分間、攪拌することにより、 PVAの濃度が 7質量%である PVA水溶 液を得た。このようにして得られた PVA水溶液に溶解残渣は認められなカゝつた。次い で、この PVA水溶液の液温が 80°Cの状態で、 4Lのテトラヒドロフルフリルアルコール (THFA)を添カロして PVA溶液を得た。
[0118] さらに、この PVA溶液約 8Lと硝酸ゥラニル溶液約 9L及び THFA約 7Lを混合し てなる硝酸ゥラニル混合溶液と純水とを添加して、硝酸ゥラニル含有の滴下原液を得 た。
[0119] また、この実施例 2で得られた滴下原液の粘度を、粘度計(山一電機社製)を用い て測定したところ、 12°Cにおいて、 5. 5 X 10— 2Pa' sであった。これは、 15°Cの粘度に 換算すると、 5. 0 X 10— 2Pa' sである。
[0120] この滴下原液をアンモニア水中に滴下することにより重ウラン酸アンモ-ゥム粒子を 製造した。その後、乾燥工程を経た重ウラン酸アンモ-ゥム粒子の直径面で二つに 切断してその裁断面を観察したところ、均一な内部組織が形成されていることを確認 した。また、前記した真球度の評価方法によって、燃料核の真球度の評価を行い、 1 %以下の不良率であることを確認した。
(比較例 1)
実施例における PVAの添加量を 230gに変更した以外は、実施例 1と同様にして、 滴下原液を得た。すなわち、 PVAの濃度が 5. 4質量%である PVA水溶液を使用し た。
[0121] また、前記滴下原液の粘度を、前記粘度計を用いて測定したところ、 15°Cで 3. 5 X 10— 2Pa' sであり、実施例 2で調製した滴下原液よりも、粘度が低いことがわ力つた。
[0122] この滴下原液を用いて製造された重ウラン酸アンモ-ゥム粒子を、乾燥した後、大 気中で焙焼し、三酸ィ匕ウラン粒子とした。さらに、三酸ィ匕ウラン粒子は、還元'焼結さ れることにより、高密度のセラミックス状の二酸ィ匕ウラン粒子とした。この二酸ィ匕ウラン 粒子をふるい分け、すなわち分級して、所定の粒子径を有する燃料核 (二酸化ウラン 粒子)を得た。
[0123] 得られた燃料核 (二酸化ウラン粒子)を前述した真球度の評価方法を用いて真球度 の低劣な燃料核 (二酸化ウラン粒子)を分別したところ、 7%の燃料核が不良となった
[0124] これは、滴下原液の粘度が低いことにより、滴下ノズルより放出された液滴の表面 張力が小さく球形に形状を維持しにくいことにより重ウラン酸アンモ-ゥム粒子が変形 したことに起因すると思われる。
[0125] (比較例 2)
実施例 2における PVAの添加量を 400gに変更した以外は、実施例 2と同様にして
、滴下原液を得た。すなわち、 PVAの濃度が 9. 1質量%である PVA水溶液を使用 した。
[0126] 本比較例で得られた PVA水溶液中に残渣が確認され、 PVAが均一に分散した P VA水溶液を得ることができな力つた。この滴下原液をアンモニア水中に滴下すること により重ウラン酸アンモニゥム粒子を製造した。その後、乾燥工程を経た重ウラン酸ァ ンモ -ゥム粒子の直径面で二つに切断してその裁断面を観察したところ、内部欠陥 が形成されていることを確認した(図 6参照)。これは、滴下原液中の PVA濃度が高 すぎるので、アンモニアと硝酸ゥラエルとの反応力 粒子内部まで進行していないこと に起因すると思われる。
[0127] (実施例 3)
酸ィ匕ウラン粉末を硝酸に溶解し、 100°Cで 1. 5時間、撹拌して硝酸ゥラエル溶液( 2. 4moHJ/L)を調製した。この硝酸ゥラ -ル溶液に、テトラヒドロフルフリルアルコー ル 4Lをカ卩ぇ混合し、硝酸ゥラ -ル混合溶液とした。一方 7質量%のポリビュルアルコ ール水溶液にテトラヒドロフルフリルアルコールをカ卩えて、ポリビニールアルコール溶 液とし、これを上記硝酸ゥラニル混合溶液と攪拌混合の上、水を加えて滴下原液とし た。この原液の粘度は、 10°Cで 5. 3 X 10— 2Pa' s (53cP)であった。これは、 15°Cで 4 . 3 X 10— 2Pa' sに該当するものである。
[0128] このときに用いた前記増粘剤は、予め 85°Cで 50分間、電熱加熱処理して、完全に 乾燥させて秤量した。
[0129] 次!、で、前記のようにして調製された原液 24Lを、原液送液ポンプによって原液流 量調整弁を介して原液流量 240cm3Z分で原液滴下装置に供給した。この原液滴 下装置に供給された原液を、振動数 75Hzで振動させた原液滴下ノズルから、アン モ-ァガス雰囲気下に液滴として、 28%アンモニア水溶液を貯留する槽中に滴下さ せて、重ウラン酸アンモニゥム粒子を製造した。
[0130] 続いて、前記のようにして製造された重ウラン酸アンモ-ゥム粒子を後処理槽に収 容し、この後処理槽を回転させながら、 80°Cで 1時間、熟成処理した後、 80°Cの水 によって洗浄処理し、さらに、 70°Cのエチルアルコールによって 30分、洗浄処理した 後、 100°Cで 3時間、乾燥処理して、乾燥重ウラン酸アンモニゥム粒子を得た。
[0131] その後、前記のようにして得られた乾燥重ウラン酸アンモニゥム粒子を、大気中、 55 0°Cで 3時間、焙焼して、三酸ィ匕ウラン粒子を製造した。この三酸ィ匕ウラン粒子を、還 元雰囲気下 (水素 窒素混合ガス雰囲気下)、 600°Cで 3時間、還元処理し、さらに、 1550°Cで 1時間、焼結処理して、セラミックス状の二酸ィ匕ウラン粒子を得た。
[0132] 前記のようにして得られた二酸ィ匕ウラン粒子を分級 (外径選別及び真球度選別)し た、燃料核粒子の真球度を測定したところ平均が 1. 04であった。また、燃料核粒子 の歩留まりは、 99. 1質量%であった。
[0133] (実施例 4)
増粘剤として、シリカゲルを装荷したデシケータ中に 3日間、保存したポリビニルァ ルコール粉末を用いた以外は、実施例 1と同様にして、燃料核粒子を製造した。ただ し、原液の粘度は、 10°Cで 5. 1 X 10— 2Pa' s (51cP)であった。これは、 15°Cでの粘 度で 4. 2 X 10— 2Pa' sに相当する。その結果、燃料核粒子の平均真球度は 1. 05で あった。また、燃料核粒子の歩留まりは、 98. 5質量%であった。
[0134] (比較例 3) 増粘剤として、 9質量%の水分を含有したポリビニルアルコール粉末を用いた以外 は、実施例 3と同様にして、燃料核粒子を製造した。ただし、原液の粘度は、 10°Cで 4. 4 X 10— 2Pa' s (44cP)であった。これは、 15°Cで 3. 4 X 10— 2Pa' sの粘度に相当 する。その結果、燃料核粒子の平均真球度は 1. 08であった。また、燃料核粒子の 歩留まりは、 92質量%であった。
[0135] 実施例 3及び 4によって製造された、良好な真球度を有する燃料核粒子の歩留まり が高いのに対し、比較例 3におけるその歩留まりが劣るのは、 PVAが正確に秤量さ れず、本来添加されるべき量よりも少ない量の PVAが秤量されて用いられ、調製され た重ウラン酸アンモニゥム粒子製造用原液の粘度が低下したことに起因するものと推 測される。
[0136] (実施例 5)
NOxガス処理装置および加熱装置を備えたステンレス製タンク (縦 0. 3m X横 0. 3 m X高さ 0. 5m)に、八酸化三ウラン粉末 5. 1kgを入れ、このタンクに、モル比(硝酸 Zウラン)が 2. 3になるように、硝酸 3. 3Lを少しずつ添加した。硝酸添加後、加熱装 置を作動させ、タンク内の液温を 100°Cに保持し、八酸化三ウランと硝酸とを反応さ せた。
[0137] 反応開始から 90分後、八酸化三ウラン粉末は、完全に溶解しており、タンク内の溶 液中に残渣は確認されな力つた。
[0138] (比較例 4)
実施例 5と同様のタンクに、八酸化三ウラン粉末 5. 1kgを入れ、このタンクに、モル 比(硝酸 Zウラン)が 2. 05になるように、硝酸 2. 9Lを少しずつ添加した。硝酸添カロ 後、加熱装置を作動させ、タンク内の液温を 100°Cに保持し、八酸化三ウランと硝酸 とを反応させた。
[0139] 反応開始から 90分後、八酸化三ウラン粉末は、完全に溶解しておらず、 15gの残 渣が確認された。

Claims

請求の範囲
[1] 重ウラン酸アンモ-ゥム粒子製造用の滴下原液であって、 15°Cにおける粘度が 4.
O X 10— 2— 6. 5 X 10— 2Pa' sであることを特徴とする滴下原液。
[2] 硝酸ゥラ-ルとテトラヒドロフルフリルアルコールとポリビュルアルコールとを含有し てなる前記請求項 1に記載の滴下原液。
[3] 重ウラン酸アンモ-ゥム粒子製造用の滴下原液の調製方法であって、硝酸ゥラ -ル 溶液とテトラヒドロフルフリルアルコールとを混合して硝酸ゥラ -ル混合溶液を調製し
、ポリビュルアルコールを水に溶解してポリビュルアルコール水溶液を調製し、前記 ポリビュルアルコール水溶液とテトラヒドロフルフリルアルコールとを混合してポリビ- ルアルコール溶液を調製し、前記硝酸ゥラニル混合溶液と前記ポリビニルアルコー ル溶液とを混合することを特徴とする滴下原液の調製方法。
[4] 滴下原液全体中の前記ポリビニルアルコール水溶液は、滴下原液全体の 15— 20 体積%であることを特徴とする前記請求項 3に記載の滴下原液の調製方法。
[5] 滴下原液全体中のテトラヒドロフルフリルアルコールは、滴下原液全体の 40— 50 体積%であることを特徴とする前記請求項 3または請求項 4に記載の滴下原液の調 製方法。
[6] 前記硝酸ゥラニル混合溶液と前記ポリビニルアルコール溶液とを攪拌しながら混合 し、その後ガス抜き操作および純水添加操作をして体積調整を行うことを特徴とする 前記請求項 3—請求項 5のいずれか 1項に記載の滴下原液の調製方法。
[7] 前記滴下原液中のウラン濃度が 0. 6-0. 9md-U/Lであることを特徴とする請求項 3—請求項 6いずれか 1項に記載の滴下原液の調整方法。
[8] 前記ポリビニルアルコール水溶液と前記テトラヒドロフルフリルアルコールとを混合し てポリビニルアルコール溶液を調製する際には、ポリビュルアルコール水溶液の温度 が低くても 50°Cになる前に、テトラヒドロフルフリルアルコールを添加することを特徴と する前記請求項 3—請求項 7のいずれか 1項に記載の滴下原液の調製方法。
[9] 重ウラン酸アンモ-ゥム粒子製造用の、硝酸ゥラエルとポリビュルアルコール水溶 液とテトラヒドロフルフリルアルコールとを含有して成る滴下原液の調製方法であって 、ポリビニルアルコールは乾燥重量で秤量して用いることを特徴とする滴下原液の調 製方法。
[10] 前記乾燥したポリビュルアルコール力 吸湿したポリビュルアルコールを加熱処理 して得られて成る請求項 9に記載の滴下原液の調製方法。
[11] 前記乾燥したポリビニルアルコール力 乾燥剤と共に保存されたポリビュルアルコ ールである請求項 9に記載の滴下原液の調製方法。
[12] 重ウラン酸アンモニゥム粒子製造用の滴下原液の調製に使用される硝酸ゥラニル 溶液の調製方法であって、硝酸 (A)とウラン (B)とのモル比 (AZB)力 2. 1-2. 6 となるように、前記硝酸と酸ィ匕ウランとを反応させることを特徴とする硝酸ゥラニル溶液 の調製方法。
[13] 前記硝酸と酸化ウランとを、 70— 110°Cで反応させる前記請求項 12に記載の硝酸 ゥラニル溶液の調製方法。
[14] 前記硝酸と酸化ウランとの反応時に発生する NOxガスを化学的に処理する工程を 有する前記請求項 12または 13に記載の硝酸ゥラニル溶液の調製方法。
[15] 重ウラン酸アンモ-ゥム粒子製造用の滴下原液を調製するのに使用されるポリビ- ルアルコール溶液の調製方法であって、ポリビュルアルコールと水とを混合して、 6—
9質量%のポリビニルアルコール水溶液を調製し、前記ポリビニルアルコール水溶液 とテトラヒドロフルフリルアルコールとを混合することを特徴とするポリビュルアルコー ル溶液の調製方法。
[16] 前記ポリビニルアルコールと水とを、低くても 75°Cに加熱しながら溶解させることを 特徴とする前記請求項 15に記載のポリビニルアルコール溶液の調製方法。
[17] 前記滴下原液に含まれるテトラヒドロフルフリルアルコールの含有量の 1一 50体積 %に相当するテトラヒドロフルフリルアルコールと前記ポリビュルアルコール水溶液と を、低くとも 50°C以上で混合することを特徴とする前記請求項 15または請求項 16に 記載のポリビニルアルコール溶液の調製方法。
PCT/JP2004/019171 2003-12-24 2004-12-22 滴下原液、滴下原液の調製方法、硝酸ウラニル溶液の調製方法、及びポリビニルアルコール溶液の調製方法 WO2005061387A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/583,906 US7628970B2 (en) 2003-12-24 2004-12-22 Method of preparing feedstock liquid, method of preparing uranyl nitrate solution, and method of preparing polyvinyl alcohol solution
EP04807528.7A EP1714943B1 (en) 2003-12-24 2004-12-22 Liquid stock for dropping, method for preparing liquid stock for dropping, method for preparing uranyl nitrate solution, and method for preparing polyvinyl alcohol solution

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003427059A JP4334334B2 (ja) 2003-12-24 2003-12-24 硝酸ウラニル溶液の調製方法
JP2003-427059 2003-12-24
JP2004-230385 2004-08-06
JP2004230327A JP4621450B2 (ja) 2004-08-06 2004-08-06 滴下原液調製方法
JP2004-230481 2004-08-06
JP2004230385A JP4639063B2 (ja) 2004-08-06 2004-08-06 滴下原液
JP2004230481A JP4679094B2 (ja) 2004-08-06 2004-08-06 硝酸ウラニル含有滴下原液用ポリマー溶液調製方法
JP2004-230327 2004-08-06
JP2004298114A JP4596876B2 (ja) 2004-10-12 2004-10-12 重ウラン酸アンモニウム粒子製造用原液の調製方法
JP2004-298114 2004-10-12

Publications (1)

Publication Number Publication Date
WO2005061387A1 true WO2005061387A1 (ja) 2005-07-07

Family

ID=34714617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019171 WO2005061387A1 (ja) 2003-12-24 2004-12-22 滴下原液、滴下原液の調製方法、硝酸ウラニル溶液の調製方法、及びポリビニルアルコール溶液の調製方法

Country Status (3)

Country Link
US (1) US7628970B2 (ja)
EP (1) EP1714943B1 (ja)
WO (1) WO2005061387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182981A (zh) * 2017-12-27 2018-06-19 中核北方核燃料元件有限公司 一种球形核燃料元件生产线增稠剂熬制装置及其使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334316B2 (ja) * 2003-10-16 2009-09-30 原子燃料工業株式会社 重ウラン酸アンモニウム粒子製造装置
FR2936348B1 (fr) * 2008-09-23 2013-07-05 Commissariat Energie Atomique Procede de preparation d'un combustible mixte comprenant de l'uranium et au moins un actinide et/ou lanthanide mettant en oeuvre une resine echangeuse de cations.
DE102008055468B4 (de) * 2008-12-01 2010-09-02 Nukem Technologies Gmbh Verfahren und Anordnung zur Herstellung von Brennstoffkernen
EP2899725B1 (en) * 2014-01-27 2018-04-25 Urenco Limited Controlling the temperature of uranium material in a uranium enrichment facility
JP7368620B2 (ja) 2019-11-04 2023-10-24 エックス-エナジー, エルエルシー 酸欠乏硝酸ウラニル溶液の調製

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279043A (ja) * 1992-03-27 1993-10-26 Nuclear Fuel Ind Ltd 重ウラン酸アンモニウム粒子の製造方法と製造装置
JPH06191851A (ja) * 1992-12-24 1994-07-12 Nuclear Fuel Ind Ltd 三酸化ウラン粒子の製造方法及びその製造装置
JPH06294881A (ja) * 1993-02-01 1994-10-21 General Electric Co <Ge> Uo2 スクラップの粉末とペレットを再生利用して高焼結密度のuo2 ペレットを得る方法
JPH08151204A (ja) * 1994-11-24 1996-06-11 Japan Atom Energy Res Inst 亜化学量論的または化学量論的硝酸塩溶液調製方法
JPH0954187A (ja) * 1995-08-11 1997-02-25 Nuclear Fuel Ind Ltd ウラン酸化物粒子を原料とする核燃料ペレットの製造方法
JP2003509659A (ja) * 1999-09-06 2003-03-11 ユーロピーアン コンミュニティ (エセ) Moxタイプの核燃料ペレットの製法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202793A (en) * 1973-10-26 1980-05-13 Agip Nucleare S.P.A. Production of microspheres of thorium oxide, uranium oxide and plutonium oxide and their mixtures containing carbon
DE2519747C3 (de) * 1975-05-02 1980-03-06 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Verfahren zur Herstellung von Metalloxid- oder Metallcarbidteilchen
US4778665A (en) * 1986-09-09 1988-10-18 Mobil Oil Corporation Abatement of NOx in exhaust gases
JPH0666756A (ja) * 1992-08-24 1994-03-11 Tokyo Cosmos Electric Co Ltd 結露センサ感湿抵抗体用ペーストおよびその製造方法
US5698173A (en) * 1996-06-21 1997-12-16 The United States Of America As Represented By The United States Department Of Energy Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279043A (ja) * 1992-03-27 1993-10-26 Nuclear Fuel Ind Ltd 重ウラン酸アンモニウム粒子の製造方法と製造装置
JPH06191851A (ja) * 1992-12-24 1994-07-12 Nuclear Fuel Ind Ltd 三酸化ウラン粒子の製造方法及びその製造装置
JPH06294881A (ja) * 1993-02-01 1994-10-21 General Electric Co <Ge> Uo2 スクラップの粉末とペレットを再生利用して高焼結密度のuo2 ペレットを得る方法
JPH08151204A (ja) * 1994-11-24 1996-06-11 Japan Atom Energy Res Inst 亜化学量論的または化学量論的硝酸塩溶液調製方法
JPH0954187A (ja) * 1995-08-11 1997-02-25 Nuclear Fuel Ind Ltd ウラン酸化物粒子を原料とする核燃料ペレットの製造方法
JP2003509659A (ja) * 1999-09-06 2003-03-11 ユーロピーアン コンミュニティ (エセ) Moxタイプの核燃料ペレットの製法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182981A (zh) * 2017-12-27 2018-06-19 中核北方核燃料元件有限公司 一种球形核燃料元件生产线增稠剂熬制装置及其使用方法
CN108182981B (zh) * 2017-12-27 2019-11-22 中核北方核燃料元件有限公司 一种球形核燃料元件生产线增稠剂熬制装置及其使用方法

Also Published As

Publication number Publication date
US7628970B2 (en) 2009-12-08
EP1714943A1 (en) 2006-10-25
EP1714943A4 (en) 2009-11-11
EP1714943B1 (en) 2016-12-07
US20070178036A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP6230540B2 (ja) リチウム二次電池用正極活物質及びそれを用いた正極
JP6196175B2 (ja) リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
JP5830178B2 (ja) リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
US4475948A (en) Lithium aluminate/zirconium material useful in the production of tritium
JP5830179B2 (ja) リチウム二次電池用正極活物質の製造方法及びそれに用いられる活物質前駆体粉末
ZA200606050B (en) Feedstock liquid, method of preparing feedstock liquid, method of preparing uranyl nitrate solution, and method of preparing polyvinal alcohol solution
CN1247521A (zh) 制备锂过渡金属取代物的方法
WO2005061387A1 (ja) 滴下原液、滴下原液の調製方法、硝酸ウラニル溶液の調製方法、及びポリビニルアルコール溶液の調製方法
CN107134299B (zh) 一种钍基碳化物和/或钍基碳氧化物的陶瓷微球的制备方法
CN111952552B (zh) 一种玻璃态包覆型正极材料及其制备方法
JP4679094B2 (ja) 硝酸ウラニル含有滴下原液用ポリマー溶液調製方法
KR100812952B1 (ko) 지르코니아가 첨가된 중성자 흡수 소결체 및 이의 제조방법
JP4596876B2 (ja) 重ウラン酸アンモニウム粒子製造用原液の調製方法
JP3867971B2 (ja) 高温用トリチウム増殖材料
JP4621450B2 (ja) 滴下原液調製方法
KR102403373B1 (ko) 방사성 금속계 겔형 중간체의 제조 방법 및 방사성 금속계 겔형 중간체의 제조 장치
JP2007121128A (ja) ガドリニウム含有重ウラン酸アンモニウム粒子およびその製造方法、並びに高温ガス炉燃料用の燃料核、高温ガス炉用の被覆粒子および高温ガス炉用燃料。
JP4051732B2 (ja) 核燃料粒子の製造方法
JP4639063B2 (ja) 滴下原液
JP4636831B2 (ja) 重ウラン酸アンモニウム粒子の製造装置
JP2007084376A (ja) 重ウラン酸アンモニウム粒子の製造装置
JP2006038793A (ja) 燃料核粒子の製造方法
CN113698193A (zh) 一种耐腐蚀铝酸盐中子吸收材料及其制备方法
CN117800799A (zh) 一种AP-Al复合含能材料、制备方法及应用
JPH1172588A (ja) 核燃料粒子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10583906

Country of ref document: US

Ref document number: 2007178036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2004807528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004807528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006/06050

Country of ref document: ZA

Ref document number: 200606050

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 200480042034.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004807528

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10583906

Country of ref document: US