WO2005056798A1 - 抗体の活性を増強させる方法 - Google Patents

抗体の活性を増強させる方法 Download PDF

Info

Publication number
WO2005056798A1
WO2005056798A1 PCT/JP2004/018493 JP2004018493W WO2005056798A1 WO 2005056798 A1 WO2005056798 A1 WO 2005056798A1 JP 2004018493 W JP2004018493 W JP 2004018493W WO 2005056798 A1 WO2005056798 A1 WO 2005056798A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
chain variable
linker
activity
cells
Prior art date
Application number
PCT/JP2004/018493
Other languages
English (en)
French (fr)
Inventor
Toshihiko Ohtomo
Naohiro Yabuta
Hiroyuki Tsunoda
Masayuki Tsuchiya
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to EP04820305A priority Critical patent/EP1710308A4/en
Priority to CA002548950A priority patent/CA2548950A1/en
Priority to AU2004296336A priority patent/AU2004296336B2/en
Priority to JP2005516194A priority patent/JP4634305B2/ja
Priority to US10/582,413 priority patent/US20080009038A1/en
Publication of WO2005056798A1 publication Critical patent/WO2005056798A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/75Agonist effect on antigen

Definitions

  • the present invention relates to a method for enhancing the activity of an antibody.
  • Antibodies have attracted attention as pharmaceuticals because of their high stability in blood and low antigenicity.
  • an agonistic antibody capable of recognizing a protein such as a receptor expressed on the cell surface and generating a specific reaction in a cell is considered to be useful as a pharmaceutical.
  • Several agonist antibodies have already been reported, including agonist antibodies against erythropoietin receptor (see Non-Patent Document 1), agonist antibodies against thrombopoietin receptor and agonist antibodies against CD47 (see Patent Documents 1 and 2). Have been.
  • each of these agonist antibodies has been measured by various Atsey methods, their activities are all weak compared to natural ligands.
  • their activities are all weak compared to natural ligands.
  • an agonist antibody against thrombopoietin receptor belonging to the cytodynamic receptor family in order to exhibit agonist activity, first dimerize the TPO receptor, and then set an appropriate distance for transmitting the signal. It is essential to take it.
  • antibody molecules are divalent and are considered to have no problem in dimerization of the receptor.However, since the molecular weight is about 150 kD, which is a huge molecule and the degree of structural freedom is considered to be small, binding is not possible. It is expected that it will not be possible to transmit sufficient activity because it is difficult to keep the appropriate receptor at a suitable distance for signal transduction.
  • Patent Document 1 International Publication No. 02/33072
  • Patent Document 2 WO 02/33073
  • Non-Patent Document 1 Elliott S et al., J. Biol. Chem., 1996, Vol.271 (40), p.24691-24697 Disclosure of the invention
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for enhancing the activity of an antibody. Specifically, two or more heavy chain variable regions and two or more It is an object of the present invention to provide a method for enhancing the activity of an antibody by linking the light chain variable regions with a linker to form a single-chain polypeptide.
  • Small antibodies specifically Diabody and sc (Fv) 2, have a molecular weight of about 60 kD, which is less than half, and have a relatively high degree of structural freedom. It would be possible to dimerize the receptor efficiently or to the same extent as the ligand, and it would be possible to exhibit high activity.
  • the present inventors obtained and purified an anti-human Mpl antibody, and prepared a single-chain anti-human Mpl antibody VB22B using genetic engineering techniques.
  • an anti-human Mpl antibody sc (Fv) 2 expression vector was constructed, and a single-chain antibody was transiently expressed in CHO-DG44 cells.
  • VB22B sc (Fv) 2 was obtained.
  • an anti-human Mpl antibody Diabody expression vector was constructed, and VB22B Diabody was obtained from the culture supernatant using C0S7 cells.
  • the TP0-like agonist activity of each antibody was evaluated, it was confirmed that the single-chain antibody had a higher agonist activity. This indicates that antibody activity can be enhanced by combining two or more heavy chain variable regions and two or more light chain variable regions with a linker to form a single-chain polypeptide. .
  • the present invention relates to a method for enhancing the activity of an antibody, more specifically,
  • the DNA is characterized by encoding a heavy chain variable region, a peptide linker, a light chain variable region, a peptide linker, a heavy chain variable region, a peptide linker, and a light chain variable region in this order; [11] A production method according to [11].
  • FIG. 1 is a view showing an amino acid sequence of an anti-human Mpl antibody (H chain and L chain).
  • the amino acid sequence of VB140 (H chain) shown in the figure is SEQ ID NO: 19
  • the amino acid sequence of VB45B (H chain) is SEQ ID NO: 20
  • the amino acid sequence of VB22B (H chain) is SEQ ID NO: 21, VB16
  • the amino acid sequence of H chain is shown in SEQ ID NO: 22
  • the amino acid sequence of TA136 (H chain) is shown in SEQ ID NO: 23.
  • the amino acid sequence of VB140 (L chain) is SEQ ID NO: 24, the amino acid sequence of VB45B (L chain) is SEQ ID NO: 25, the amino acid sequence of VB22B (L chain) is SEQ ID NO: 26, the amino acid sequence of VB16 (L chain) The sequence is shown in SEQ ID NO: 27, and the amino acid sequence of TA136 (L chain) is shown in SEQ ID NO: 28.
  • FIG. 2 is a view showing a process for producing a main chain antibody sc (Fv) 2.
  • FIG. 3 is a graph showing the results of evaluating the VB22B antibody's agonistic activity using BaF3-human Mpl.
  • FIG. 4 is a graph showing the results of evaluating the VB22B antibody's agonist activity using BaF3-monkey Mpl. It is.
  • FIG. 5 is a graph showing the results of evaluation of the agonist activity of VB16 antibody using BaF3-human Mpl.
  • FIG. 6 is a graph showing the results of evaluation of the agonist activity of VB140 antibody using BaF3-human Mpl.
  • FIG. 7 is a graph showing the results of evaluating the VB45B antibody's agonist activity using BaF3-human Mpl.
  • FIG. 8 is a graph showing the results of evaluation of the agonist activity of TA136 antibody using BaF3-human Mpl.
  • the present invention provides a method for enhancing the activity of an antibody by linking two or more heavy chain variable regions and two or more light chain variable regions with a linker to form a single-chain polypeptide.
  • the antibody whose activity is enhanced by the method of the present invention may be any antibody, such as a mouse antibody, a human antibody, a rat antibody, a rabbit antibody, a camel antibody, or any other animal-derived antibody.
  • a modified antibody in which the amino acid sequence has been substituted such as a chimeric antibody or a humanized antibody, or any antibody such as a modified antibody, an antibody fragment, or a sugar chain-modified antibody to which various molecules are bound may be used. Good.
  • the antibody whose activity is enhanced by the antibody of the present invention may be a full-length antibody or a low-molecular-weight antibody such as a diabody! /.
  • the single-chain polypeptide of the present invention includes, for example, a first polypeptide including a heavy chain variable region and a light chain variable region of an antibody, and a first polypeptide including a heavy chain variable region and a light chain variable region of the antibody.
  • a first polypeptide including a heavy chain variable region and a light chain variable region of an antibody includes, for example, a single-chain polypeptide in which two polypeptides are linked by a linker.
  • the first polypeptide containing the heavy chain variable region and the light chain variable region of the antibody and the second polypeptide containing the heavy chain variable region and the light chain variable region of the antibody may be the same polypeptide, or Different polypeptides may be used.
  • the first polypeptide and the second polypeptide may be antibodies recognizing the same antigen or epitope, or bispecific antibodies recognizing different antigens or epitopes. Yo! / ⁇ .
  • polypeptide containing a heavy chain variable region and a light chain variable region of an antibody include: For example, scFv (single chain Fv) can be mentioned. Accordingly, a single-chain polypeptide in which a first polypeptide containing a heavy chain variable region and a light chain variable region of an antibody and a second polypeptide containing a heavy chain variable region and a light chain variable region of the antibody are linked with a linker Examples of the peptide include sc (Fv) 2.
  • sc (Fv) 2 is an antibody in which two heavy chain variable regions and two light chain variable regions are linked to each other with a linker or the like to form a single-chain polypeptide (Hudson et al, J Immunol. Methods 1999; 231: 177-189).
  • the order of the two heavy-chain variable regions (VH) and two light-chain variable regions (VL) to be combined is not particularly limited, and may be arranged in any order. However, for example, the following arrangement can be given.
  • sc (Fv) 2 having an arrangement of [VH] linker- [VL] linker- [VH] linker- [VL] is preferable.
  • the amino acid sequence of the heavy chain variable region or light chain variable region may be substituted, deleted, added and Z- or inserted. Furthermore, when the heavy chain variable region and the light chain variable region are associated, a portion may be deleted or another polypeptide may be added as long as it has antigen-binding activity. Further, the variable region may be chimerized or humanized.
  • Amino acid substitutions, deletions, additions and modifications of the amino acid sequence such as Z or insertion, humanization, chimerization, etc. may be performed after enhancing the activity by the method of the present invention, or the amino acid sequence may be modified. After modification, the activity may be enhanced by the method of the present invention.
  • a chimeric antibody is an antibody produced by combining sequences derived from different animals.For example, an antibody composed of a heavy chain and a light chain variable region of a mouse antibody and a heavy chain and a light chain constant region of a human antibody is used. is there.
  • a chimeric antibody can be prepared by a known method.For example, a DNA encoding the antibody V region is ligated to a DNA encoding the human antibody C region and expressed. It is obtained by incorporation into a container, introduction into a host, and production.
  • a humanized antibody is also called a reshaped human antibody, which is used to determine the complementarity determining region (CDR) of a non-human mammal, for example, a mouse antibody. It has been transplanted into a region, and its general genetic recombination technique is also known (see European Patent Application Publication No. EP 125023, WO 96/02576).
  • a CDR of a mouse antibody and a framework region of a human antibody (framework region;
  • a DNA sequence designed to ligate to FR is synthesized by a PCR method using as primers several oligonucleotides prepared to have overlapping portions in both CDR and FR terminal regions (W098 / 13388).
  • the framework region of a human antibody to be linked via CDR is selected so that the complementarity-determining region forms a favorable antigen-binding site. If necessary, the amino acids of the framework region in the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato, K. et al., Cancer Res. (1993) 53, 851-856).
  • a chimeric antibody comprises a variable region of an antibody derived from a non-human mammal and a constant region derived from a human antibody.
  • a humanized antibody is composed of a complementarity determining region of an antibody derived from a mammal other than human, a framework region and a C region derived from a human antibody.
  • variable region eg, FR
  • amino acids in the variable region may be further substituted with another amino acid.
  • the sequence of the variable region of the antibody may be the sequence of the variable region of an antibody that is already known, or an antibody may be prepared using any antigen by a method known to those skilled in the art and the sequence of the antibody It is also possible to obtain and use it. Specifically, for example, it can be performed as follows. Using an antigen, an immunized animal such as a mouse is immunized in accordance with a usual immunization method, the obtained immune cells are fused with known parent cells by a usual cell lysis method, and a monoclonal antibody is obtained by a conventional screening method. Screen for null antibody-producing cells (no, hybridoma). Preparation of the antigen can be performed by a known method. The production of a hybridoma is carried out, for example, by the method of Milstein et al. (
  • V region variable region
  • human lymphocytes can be sensitized in vitro, and the sensitized lymphocytes can be fused with human-derived myeloma cells having permanent division ability to obtain a desired human antibody having binding activity (Japanese Patent Publication No. No. 59878).
  • an antigen may be administered to a transgenic animal having the entire repertoire of human antibody genes to obtain antibody-producing cells, and human antibodies to the antigen may be obtained from the immortalized cells (International Patent Application publication numbers WO 94/25585, WO 93/12227, WO 92/03918, WO 94/02602).
  • a linker that binds a heavy chain variable region and a light chain variable region may be any peptide linker or synthetic compound linker (for example, Protein Engineering, 9 (3) ), 299-305, 1996.
  • the length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art depending on the purpose. Usually, the length is 110 amino acids, preferably 5-30 amino acids, and particularly preferably. 12-18 amino acids (for example, 15 amino acids).
  • amino acid sequence of the peptide linker examples include the following sequences.
  • Synthetic chemical linkers are commonly used crosslinking agents for peptide crosslinking, for example, N-hydroxysuccinimide (NHS) disuccinimidyl suberate (DSS), bis (Sulfosuccinimidyl) suberate (BS 3 ), dithiobis (succinimidyl propionate) (DSP), dithiopis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol Bis (succinimidyl succinate) (EGS), ethylene glycol bis (sulfosuccinimidyl succinate) (sulfo EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (Sulfo DST), bis [2- (succinimidoxycarbo-roxy) ethyl] sulfone (BSOCOES), bis [2- (sulfosuccinimid
  • the present invention also provides an antibody whose activity has been enhanced by the above method.
  • the present invention also provides a method for producing an antibody, comprising the following steps (a) to (d).
  • DNAs encoding two or more antibody heavy chain variable regions, two or more antibody light chain variable regions, and a peptide linker that binds each variable region are prepared.
  • DNAs include, for example, DNAs encoding two heavy chain variable regions (VH), two light chain variable regions (VL), and three peptide linkers, preferably sc (Fv) 2 Are listed.
  • the order of two VHs and two VLs to be combined is not particularly limited, and may be arranged in any order. For example, the following arrangements can be given.
  • the amino acid sequence of the heavy chain variable region or light chain variable region may be substituted, deleted, added and Z or inserted. Further, when the heavy chain variable region and the light chain variable region are associated, a part thereof may be deleted as long as it has antigen-binding activity.
  • the variable region may be chimerized or humanized.
  • E. coli when E. coli is used as a host, the vector is amplified in E. coli (for example, JM109, DH5a, HB101, XLlBlue) or the like in order to prepare a large amount of the vector.
  • E. coli for example, JM109, DH5a, HB101, XLlBlue
  • the gene has "ori” and further has a transformed gene for selection of Escherichia coli (for example, a drug resistance gene that can be identified by any drug (ampicillin, tetracycline, kanamycin, chloramphenicol)).
  • solid vectors include M13-based vectors, pUC-based vectors, pBR322, pBluescript,
  • an expression vector is particularly useful.
  • the expression vector is intended for expression in Escherichia coli, in addition to having the above characteristics such that the vector is amplified in Escherichia coli, the host can be used in combination with Escherichia coli such as JM109, DH5a, HB101, and XL1-Blue. In such cases, promoters that can be efficiently expressed in E.
  • coli such as the lacZ promoter (Ward et al., Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427), the araB promoter (Better Et al., Science (1988) 240, 1041-1043), or have a T7 promoter.
  • lacZ promoter Ward et al., Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427
  • araB promoter Better Et al., Science (1988) 240, 1041-1043
  • T7 promoter include pGEX-5X-1 (Pharmacia), “QIAexpress system” (Qiagen), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase in addition to the above vectors).
  • BL21 is preferred).
  • the vector contains a signal sequence for polypeptide secretion!
  • a signal sequence for protein secretion a pelB signal sequence (Lei, SP, et al J. Bacteriol. (1987) 169, 4379) may be used for production in E. coli periplasm.
  • the introduction of the vector into the host cell can be performed using, for example, the Shii-Dani calcium method or the electroporation method.
  • the vector of the present invention includes mammalian expression vectors (for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18 ( 17), p5322), pEF, pCDM8), insect cell-derived expression vectors (eg, “pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18 ( 17), p5322), pEF, pCDM8), insect cell-derived expression vectors (eg, “pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18 ( 17), p5322), pEF, pCDM8), insect cell-derived expression vectors (eg, “pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18 ( 17), p
  • Bac-to-BAC baculovairus expression systemj (manufactured by Gibco BRL), pBacPAK8), plant-derived expression vectors (eg, ⁇ 1, pMH2), animal virus-derived expression vectors (eg, pHSV, pMV, pAdexLcw), retrovirus-derived Expression vectors (for example, pZIPneo), yeast-derived expression vectors (for example, "Pichia Expression KitJ (manufactured by Invitrogen), pNVll, SP-Q01), and Bacillus subtilis-derived expression vectors (for example, pPL608, pKTH50) No.
  • plant-derived expression vectors eg, ⁇ 1, pMH2
  • animal virus-derived expression vectors eg, pHSV, pMV, pAdexLcw
  • retrovirus-derived Expression vectors for example, pZIPneo
  • yeast-derived expression vectors for example, "Pichia Expression KitJ (man
  • promoters required for expression in cells for example, SV40 promoter (Muligan et al., Nature (1979) 277, 108), MMTV-LTR promoter, EF1 ⁇ promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc. It is indispensable to have a gene for selecting transformation into cells (for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)). Vectors having such properties include, for example, pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, pOP13, and the like.
  • a DHFR gene complementing the CHO cell lacking the nucleic acid synthesis pathway is used.
  • MTX methotrexate
  • a method of using a COS cell having a gene expressing the SV40 T antigen on the chromosome and transforming it with a vector having a replication origin of SV40 is used.
  • a replication origin of SV40 such as pcD
  • those derived from poliovirus, adenovirus, ⁇ papilloma virus (BPV) and the like can also be used.
  • the expression vector is selected as a selection marker for aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, Escherichia coli xanthinguanine phosphoribosyltransferase (Ecogpt) gene, It can contain the folate reductase (dhfr) gene and the like.
  • the vector is introduced into a host cell in the following!
  • the host cell into which the vector is introduced is not particularly limited.
  • Escherichia coli and various animal cells can be used.
  • the host cell may be used, for example, to produce or express a polypeptide comprising two or more antibody heavy chain variable regions, two or more antibody light chain variable regions, and a peptide linker that binds each variable region of the present invention.
  • Production systems for polypeptide production include in vitro and in vivo production systems. Production systems in vitro include production systems using eukaryotic cells and production systems using prokaryotic cells.
  • animal cells for example, animal cells, plant cells, and fungal cells can be used as hosts.
  • Animal cells include mammalian cells, for example, CH0 (J. Exp. Med. (1995) 108, 945), COS-3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, for example, African Megafrog oocytes (Valle, et al., Nature (1981) 291, 358-340) or insect cells such as S19, Sf21, and Tn5 are known.
  • CH0 J. Exp. Med. (1995) 108, 945
  • myeloma myeloma
  • BHK baby hamster kidney
  • HeLa Vero
  • amphibian cells for example, African Megafrog oocytes (Valle, et al., Nature (1981) 291, 358-340) or insect cells such as S19, Sf21, and Tn5 are known.
  • CHO cells are particularly preferred for the purpose of large-scale expression.
  • the vector can be introduced into a host cell by, for example, a calcium phosphate method, a DEAE dextran method, a method using catonic ribosome DOTAP (manufactured by Boehringer Mannheim), an electoral poration method, a Lipofexion method, or the like. .
  • a cell force S protein production system derived from Nicotiana tabacum (Nicotiana tabacum) is known, and it may be callus cultured.
  • Fungal cells include yeast, for example, Saccharomyces, for example, Saccharomyces cerevisiae, Saccharo; Saccharomyces pombe, filamentous fungi, for example, Aspergillus, for example. Aspergillus nigerj is known.
  • bacterial cells When using prokaryotic cells, there is a production system using bacterial cells.
  • bacterial cells include Escherichia coli (E. coli), for example, JM109, DH5a, HB101, and the like, and Bacillus subtilis.
  • the above host cells are then cultured.
  • An antibody can be obtained by culturing cells transformed with the target DNA in vitro.
  • the culturing can be performed according to a known method.
  • DMEM, MEM, RPMI1640, IMDM can be used as a culture solution of animal cells.
  • a serum replacement fluid such as FBS or fetal calf serum (FCS) can be used together, or serum-free culture may be performed.
  • the pH during the culturing is preferably about 6-8. Culture is usually performed at about 30-40 ° C for about 15-200 hours, and the medium is replaced, aerated, and agitated as necessary.
  • examples of a system for producing a polypeptide in vivo include a production system using animals and a production system using plants.
  • the desired DNA is introduced into these animals or plants, and the polypeptide is produced in the animals or plants and collected.
  • the “host” in the present invention includes these animals and plants.
  • the target DNA is prepared as a fusion gene with a gene encoding a polypeptide, such as goat / 3-casein, which is specifically produced in milk.
  • a polypeptide such as goat / 3-casein
  • the DNA fragment containing the fusion gene is injected into a goat embryo, and the embryo is transplanted into a female goat.
  • the target protein can be obtained from milk produced by the transgenic goat born from the goat that has received the embryo or its progeny.
  • Transgeneic zebras can also use hormones in transgenetics as appropriate to increase the amount of milk containing the protein produced (Ebert, KM et al., Bio / Technology (1994). ) 12, 699-702).
  • a silkworm can be used as an insect.
  • the target antibody can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus into which DNA encoding the protein of interest has been inserted (Susumu, M. et al., Nature ( 1985) 315, 592-594) o
  • tobacco when using a plant, for example, tobacco can be used.
  • DNA encoding the antibody of interest is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into bacteria such as Agrobacterium tumefaciens.
  • the bacteria are infected with tobacco, for example, Nicotiana tabacum, and the desired antibody can be obtained from the leaves of the tobacco (Julian K.-C. Ma et al, Eur. J. Immunol. (1994) 24, 131-138).
  • the antibody thus obtained can be isolated from the host cell or outside the cell (such as a medium) and purified as a substantially pure and homogeneous antibody.
  • the separation and purification of the antibody is not limited at all, provided that the separation and purification methods used in ordinary purification of polypeptides are used. For example, select chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If combined, antibodies can be separated and purified.
  • Examples of the chromatography include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification and Ed Daniel R. Marshak et al "Cold Spring Harbor Laboratory Press, 1996). These chromatographies are performed using liquid chromatography such as liquid phase chromatography such as HPLC and FPLC.
  • Columns used for affinity chromatography include protein A columns and protein G columns, for example, columns using protein A include Hyper D, POROS, Sepharose FF (Pharmacia) and the like.
  • modification can be arbitrarily performed or the peptide can be partially removed.
  • protein modifying enzyme for example, trypsin, chymotrypsin, lysyl endopeptidase, protein kinase, dalcosidase and the like are used.
  • the activity of the antibody enhanced in the present invention may be any activity such as a binding activity, a neutralizing activity, a cytotoxic activity, an agonist activity, an antagonist activity, and an enzymatic activity, and is particularly limited.
  • agonist activity which is preferably an activity that causes quantitative and / or qualitative changes or effects on living organisms, tissues, cells, proteins, DNA, RNA, etc., is particularly preferred.
  • the agonist activity is an activity that induces a change in some physiological activity by, for example, transmitting an intracellular signal by binding of an antibody to an antigen such as a receptor.
  • Physiological activities include, for example, proliferation activity, survival activity, differentiation activity, transcription activity, membrane transport activity, binding activity, proteolytic activity, phosphorylation Z, dephosphorylation activity, redox activity, transfer activity, Forces that can include nucleolytic activity, dehydration activity, cell death inducing activity, apoptosis inducing activity, and the like, but are not limited thereto.
  • the antigen is not particularly limited, and any antigen may be used!
  • antigens include, for example, receptors, cancer antigens, MHC antigens, differentiation antigens, and the like.
  • the receptor examples include, for example, hematopoietic factor receptor family, cytokinin receptor family, tyrosine kinase type receptor family, serine Z threonine kinase type receptor family, TNF receptor family, G protein Receptors belonging to the receptor family such as the coupled receptor family, the GPI-anchored receptor family, the tyrosine phosphatase receptor family, the adhesion factor family, the holmon receptor family, and the like can be given.
  • Specific receptors belonging to the above receptor family include, for example, human or mouse erythropoietin (EPO) receptor, human or mouse granulocyte colony stimulating factor (G-CSF) receptor, human or mouse thrombopoi.
  • EPO erythropoietin
  • G-CSF granulocyte colony stimulating factor
  • Etin (TPO) receptor human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet derived growth factor (PDGF) receptor, human or mouse interferon (IFN)-a, j8 receptor Human or mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL) -10 receptor, human or mouse insulin-like growth factor (IGF) -I receptor, human or mouse Examples include leukemia inhibitory factor (LIF) receptor, human or mouse ciliary neurotrophic factor (CNTF) receptor (hEPOR: Simon, S. et al. (1990) Blood 76, 31-35 .; mE POR: D'Andrea, AD. Et al.
  • LIF leukemia inhibitory factor
  • CNTF ciliary neurotrophic factor
  • hG— CSFR Fukunaga, R. et al. (1990) Proc. Natl. Acad. Sci. USA. 87, 8702— 8706 .
  • mG—CSFR Fukunaga, R. et al. (1990) Cell 61, 341-350 .
  • hTPOR Vigon, I. et al. (1992) 89, 5640-5644 .
  • mTPOR Skoda, RC. Et al. (1993) 12, 2645-2653 .
  • hlnsR Ullrich, A. et al.
  • Cancer antigens are antigens that are expressed as cells become malignant, and are also called tumor-specific antigens.
  • abnormal sugar chains that appear on the cell surface or on protein molecules when cells become cancerous also serve as cancer antigens, and are particularly called cancer sugar chain antigens.
  • cancer antigens include, for example, CA19-9, CA15-3, serial SSEA-1 (SLX) and the like.
  • MHC antigens are roughly classified into MHC class I antigens and MHC class II antigens, and MHC class I antigens include HLA-LA, - ⁇ , -C, - ⁇ , -F, -G,- H, MHC class II antigens include:
  • any quantitative and Z or qualitative change can be used as long as it can be measured.
  • an index for a cell-free system (cell free assay), an index for a cell system (ceU-based assay), an index for a silk tissue system, and an index for a biological system can be used.
  • an enzymatic reaction or a quantitative and Z- or qualitative change of protein, DNA, or RNA can be used.
  • the enzyme reaction for example, an amino acid transfer reaction, a sugar transfer reaction, a dehydration reaction, a dehydrogenation reaction, a substrate cleavage reaction and the like can be used.
  • protein phosphorylation, dephosphorylation, dimerization, multimerization, degradation, dissociation, etc., and amplification and cleavage and extension of DNA and RNA can be used.
  • phosphorylation of a protein existing downstream of the signal transduction pathway can be used as a detection index.
  • Cell line indicators include changes in cell phenotype, for example, changes in the quantity and Z or qualitative of a product, changes in proliferation activity, changes in cell number, changes in morphology, changes in characteristics, and the like. Can be used. As a substance to be produced, secretory proteins, surface antigens, intracellular proteins, mRNA and the like can be used. Changes in morphology include projection formation and changes in the number of Z or projections, changes in flatness, changes in elongation Z, aspect ratio, changes in cell size, and changes in internal structure. Changes, heterogeneity as a cell population z uniformity, changes in cell density, etc. can be used. These morphological changes can be confirmed by observation under a microscope.
  • scaffold dependency As the property change, scaffold dependency, site force-in response, hormone dependency, drug resistance, cell motility, cell migration activity, pulsatility, change in intracellular substance, and the like can be used.
  • Cell motility includes cell infiltration activity and cell migration activity.
  • examples of the change of the intracellular substance include an enzyme activity, an mRNA amount, an intracellular information transmitting substance amount such as Ca 2+ and cAMP, an intracellular protein mass, and the like.
  • a change in cell proliferation activity induced by receptor stimulation can be used as an index.
  • a change in function according to the tissue to be used can be used as a detection index.
  • Indicators of biological systems include changes in tissue weight, changes in blood systems, such as changes in the number of blood cells, changes in protein amount, enzyme activity, and electrolytic mass, and changes in circulatory systems, such as blood pressure and heart rate Can be used.
  • Methods for measuring these detection indices include, but are not limited to, light absorption, luminescence, color development, fluorescence, radioactivity, fluorescence polarization, surface plasmon resonance signal, time-resolved fluorescence, mass, absorption spectrum, light Scattering, fluorescence resonance energy transfer, and the like can be used. These measurement methods are well known to those skilled in the art, and can be appropriately selected according to the purpose.
  • the absorption spectrum can be measured with a commonly used photometer or plate reader
  • the emitted light can be measured with a luminometer or the like
  • the fluorescence can be measured with a fluorimeter or the like.
  • the mass can be measured using a mass spectrometer. Radioactivity is measured using a measuring instrument such as a gamma counter according to the type of radiation, fluorescence polarization is measured by BEACON (Takara Shuzo), surface plasmon resonance signal is measured by BIACORE, time-resolved fluorescence, fluorescence resonance energy transfer is measured by ARVO, etc. it can. Further, a flow cytometer or the like can be used for the measurement.
  • fluorescence and fluorescence resonance energy transfer can be measured simultaneously with a fluorimeter.
  • agonist activity can be measured by a method known to those skilled in the art. Noh. For example, it can be determined by a method of measuring an agonist activity using cell proliferation as an index as described in the Examples. More specifically, an antibody whose agonist activity is to be measured is added to cells exhibiting agonist-dependent proliferation, and cultured. After that, it is possible to add a reagent that produces a color reaction at a specific wavelength according to the number of viable cells, such as WST-8, and measure the absorbance, and measure the agonist activity using the obtained absorbance as an index. .
  • Cells exhibiting an agonist-dependent proliferation can also be prepared by a method known to those skilled in the art.
  • the receptor when the antigen is a receptor that emits a cell proliferation signal, the receptor may be used.
  • An expressing cell may be used.
  • the antigen is a receptor that does not emit a cell proliferation signal
  • a chimeric receptor comprising an intracellular region of a receptor that emits a cell proliferation signal and an extracellular region of a receptor that does not emit a cell proliferation signal is used.
  • the receptor that emits a cell proliferation signal include, for example, G-CSF receptor, mpl, neu, GM-CSF receptor, EPO receptor, c-kit, FLT-3 and the like.
  • Examples of cells that express the receptor include BaF3, NFS60, FDCP-1, FDCP-2, CTLL-2, DA-1, KT-3 and the like.
  • the virulent monkey Mpl cDNA (SEQ ID NO: 1, the DNA encoded by the base sequence) was used.
  • the amino acid sequence of the protein was cloned according to SEQ ID NO: 2).
  • the obtained force-quiz cDNA was inserted into pCOS2 to construct pCOS2-monkeyMplfoll.
  • Each vector was prepared (20 mu g) was mixed with BaF3 cells (lxl0 7 cells / mL) suspended into PBS, using Karoe, Gene Pulser II a (Bio- manufactured Rad) in Gene Pulser cuvettes A pulse was produced with a capacity of 0.33 kV and 950 ⁇ FD.
  • BaF3 cells transfected by electoral poration were transfected with Ing / mL mouse interleukin 3 (hereinafter, mIL-3, manufactured by Peprotech), 500 g / mL Geneticin (manufactured by Invitrogen), and 10% FBS (manufactured by Invitrogen).
  • the cells were selected in addition to the RPMI1640 medium (manufactured by Invitrogen) and a human Mpl-expressing BaF3 cell line (hereinafter, BaF3-human Mpl) and a monkey Mpl-expressing BaF3 cell line (hereinafter, BaF3-monkey Mpl) were established. After the selection, the cells were cultured and maintained using RPMI1640 medium containing Ing / mL rhTPO (R & D) and 10% FBS.
  • RPMI1640 medium manufactured by Invitrogen
  • BaF3-human Mpl human Mpl-expressing BaF3 cell line
  • BaF3-monkey Mpl a monkey Mpl-expressing BaF3 cell line
  • a CHO cell line expressing the full-length Mpl gene was established.
  • the DHFR gene expression site of pCHOI was inserted into the Hindlll site of pCXN2 (Niwa et al., Gene 1991; 108: 193-199) to produce an expression vector PCXND3.
  • pCOS2-hMplfoll and pCOS2-monkeyMplfoll as ⁇ type
  • each Mpl gene amplified by PCR using Primer containing His-tag sequence was cloned into pCXND3, and pCXND3-hMp His and pCXND3-monkey Mp His was built.
  • Each vector was prepared (25 mu g) were mixed in suspended CHO- DG44 cells (lxl0 7 cells / mL) into PBS, added to the Gene Pulser cuvette, the Gene Pulser II (Bio- manufactured Rad) Pulses were obtained at a capacity of 1.5 kV and 25 ⁇ FD.
  • CHO cells transfected by electoral poration were added to a CHO-S-SFMII medium (Invitrogen) containing 500 ⁇ g / mL Geneticin and lxHT (Invitrogen) and selected, and a human Mpl-expressing CHO cell line was selected.
  • CHO-human Mpl and a monkey Mpl-expressing CHO cell line (hereinafter, CHO-monkey Mpl) were established.
  • soluble human Mpl protein an expression system secreted and produced in insect cell S19 cells was constructed as follows.
  • a FLAG-tagged gene was prepared downstream of the extracellular region of human Mpl (Gln26 force Trp491), inserted into the Pstl-Smal site of pBACSurf-1 Transfer Plasmid (Novagen), and inserted into pBACSurfl-hMp FLAG.
  • Bac-N-Blue Using Transfection Kit Invitrogen
  • 4 g of pBACSurfl-hMp-FLAG was introduced into S19 cells. After 3 days of culture, the culture supernatant was collected, and the recombinant virus was isolated by plaque assay. After preparation of the virus stock, S19 cells were infected and the culture supernatant was collected.
  • soluble human Mpl protein was purified as follows. After adsorbing the culture supernatant to Q Sepharose Fast Flow (manufactured by Amersham Biosciences), the culture supernatant was eluted using 50 mM Na-Phosphate Buffer, 0.01% (v / v) Tween 20, 500 mM NaCl (pH 7.2). After adsorbing the eluate on FLAG M2-Agarose (manufactured by SIGMA-ALDRICH), the eluate was eluted using lOOmM Glycine-HC1, 0.01% (v / v) Tween20 (pH 3.5).
  • the human MpHgG Fc fusion protein gene was prepared according to the method of Bennett et al. (Bennett et al., J. Biol. Chem. 1991; 266: 23060-23067).
  • the nucleotide sequence encoding the extracellular region of human Mpl (Gln26 to Trp491) is linked to the nucleotide sequence encoding the Fc region of human IgG- ⁇ 1 (the region downstream from Asp216), and BstEII is used as a fusion linker at the junction.
  • a sequence (amino acid VaKThr) was added.
  • the signal sequence used was 19 amino acids of the signal peptide of the human IgG heavy chain variable region.
  • the obtained human MpHgG Fc fusion protein gene was cloned into pCXND3 to construct pCXND3-hMpFc.
  • Each vector was prepared (25 mu g) were mixed and suspended in PBS CHO- DG44 cells (lxl0 7 cells / mL), Karoe the Gene Pulser cuvette, Gene Pulser II (Bio- Rad, Inc.) A pulse was produced at 1.5 kV, 25 FD capacity using.
  • CHO cells transfected by electoral poration were added to a CHO-S-SFMII medium containing 500 g / mL Geneticin and ⁇ to select, and a shMPL-Fc expressing CHO cell line (CHO-hMp Fc) was established. .
  • a human MpHgG Fc fusion protein was purified as follows. After adsorbing the culture supernatant to Q Sepharose Fast Flow (manufactured by Amersham Biosciences), it was eluted using 50 mM Na-Phosphate Buffer, 0.01% (v / v) Tween20, 1M NaCl (pH 7.6). The eluate is adsorbed on a HiTrap protein G HP column (Amersham Biosciences). After that, elution was performed using 0.1 M Glycine-HC1, 150 mM NaCl, 0.01% (v / v) Tween20 (pH 2.7).
  • MRL / MpJUmmCrj-lpr / lpr mice purchased from Nippon Charles' Riva.
  • MRL / lpr mice purchased from Nippon Charles' Riva.
  • 100 / z g / animal shMPL-FLAG was supplemented with Freund's complete adjuvant (H37 Ra, manufactured by Betaton's Dickinson), and the emulsion was subcutaneously administered.
  • a booster immunization was performed by adding 50 g / animal shMPL-FLAG to Freund's incomplete adjuvant (Betaton-Dickinson) and subcutaneously administering the emulsified preparation.
  • a final immunization was performed by intravenously administering shMPL-FLAG to each animal.
  • P3-X63Ag8Ul (P3U1, purchased from ATCC) and mouse spleen cells were mixed, and cell fusion was performed by mixing Polyethylene Glycol 1500 (manufactured by Roche Diagnostics) while mixing. From the next day, selection was performed using a HAT medium, and the culture supernatant was used as an indicator for ELISA using an immunoplate with immobilized shMp-FLAG or hMp-Fc and cell growth activity using BaF3-hMpl as an index. Screening was performed. After the positive clones were subjected to monoclonal dilution by the limiting dilution method, expansion culture was performed, and the culture supernatant was recovered. By this method, hybridomas VB22B, VB16, VB140, and VB45B producing anti-human Mpl antibodies were obtained.
  • BaF3-human Mpl was administered to Balb / C mice (purchased from Nippon Chill's Liver) at 1x10 7 cells intraperitoneally at intervals of 1 week to 5 months for a total of 11 mice. Spleen cells were fused with mouse myeloma cell P3U1 in the same manner as described above. From the next day, selection was carried out using a HAT medium, and screening using the culture supernatant was performed using BaF3-hMpl as an indicator of cell proliferation activity. Positive clones were subjected to monoclonal dilution by the limiting dilution method, then expanded, and the culture supernatant was recovered. According to this method, a hybridoma TA136 producing an anti-human Mpl antibody was obtained.
  • Antibody concentration was determined by performing mouse IgG sandwich ELISA using goat anti-mouse IgG (gamma) (manufactured by ZYMED) and alkaline phosphatase anti-mouse IgG (manufactured by gammaXZYMED) to obtain commercially available antibodies of the same isotype.
  • a calibration curve was prepared using GraphPad Prism (GraphPad Software, USA) as a standard, and the antibody concentration was converted.
  • the antibody isotype was determined by an antigen-dependent ELISA using an isotype-specific secondary antibody. Adjust the coating buffer (O.lmM NaHCO) so that the hMp Fc becomes 1 ⁇ g / mL.
  • Diluent buffer 50 mM Tris-HCl (pH8.1), ImM MgCl, 150 mM NaCl,
  • shMp FLAG and hMPL-Fc The binding activity to shMp FLAG and hMPL-Fc was evaluated by ELISA.
  • the purified shMp FLAG and hMPL-Fc were coated at a concentration of 1 ⁇ g / mL, and blocking treatment was performed with a Diluent buffer.
  • the culture supernatant of the hybridoma was dried and left at room temperature for 1 hour, and an anti-mouse IgG antibody (Zymed) labeled with Alkaline Phosphatase was added thereto, followed by color development in the same manner as described above. After color development at room temperature for 1 hour, the absorbance at 405 was measured, and the EC value was calculated using GraphPad Prism.
  • CHO- human Mp Fireflys is recovered CHO- monkey Mpl, and suspended in FACS Buffer (1% FBS / PBS ) so as to lxl0 6 cells / mL.
  • FACS Buffer 1% FBS / PBS
  • the solution was dispensed into Multiscreen (manufactured by Millipore) at 100 L / well, and the culture supernatant was removed by centrifugation.
  • the culture supernatant diluted to 5 g / mL was added and reacted on ice for 30 minutes.
  • the cells were washed once with FACS buffer, added with FITC-labeled anti-mouse IgG antibody (manufactured by Beckman Coulter), and allowed to react on ice for 30 minutes.
  • the mixture was centrifuged at 500 rpm for 1 minute, the supernatant was removed, the cells were suspended in 400 ⁇ l of FACS Buffer, and subjected to flow cytometry using EPICS ELITE ESP (Beckman Coulter). Gates were set on the live cell population using histograms of forward scatter and side scatter.
  • the agonist activity of the antibody is similar to that of BaF3-human Mp
  • Anti-human Mpl antibody was purified using the culture supernatant of hybridoma as described below.
  • the culture supernatant was adsorbed on a HiTrap protein G HP column (Amersham Biosciences) and eluted with 0.1 M Glycine-HC1 (pH 2.7).
  • Glycine-HC1 pH 2.7
  • the mixture was immediately neutralized with 1M Tris-Cl (pH 9.0), dialyzed against PBS for 24 hours, and replaced with a buffer.
  • the following shows an example of preparing a single-chain antibody of the anti-human Mpl antibody VB22B.
  • dNTPs 0.2 mM dNTPs (dATP, dGTP, dCTP, dTTP),
  • the reaction temperature conditions are as follows.
  • reaction product was heated at 72 ° C for 7 minutes.
  • the PCR product was purified by agarose gel using a QIAquick Gel Extraction Kit (manufactured by QIAGEN) and then cloned into a pGEM-T Easy vector (manufactured by Promega). Furthermore, the nucleotide sequence was determined using ABI 3700 DNA Analyzer (manufactured by Perkin Elmer).
  • VB22B-VH The nucleotide sequence of the cloned VB22B H chain variable region (hereinafter, VB22B-VH) is shown in SEQ ID NO: 5, the amino acid sequence of the protein encoded by the nucleotide sequence is shown in SEQ ID NO: 6, and the L chain variable region (hereinafter, referred to as VB22B-VH). , VB22B-VL) is shown in SEQ ID NO: 7, and the amino acid sequence of the protein encoded by the nucleotide sequence is shown in SEQ ID NO: 8.
  • FIG. 1 shows the amino acid sequences of VB22B, VB16, VB140, VB45B, and TA136.
  • VB22B Diabody a single-chain Fv (hereinafter referred to as “VB22B Diabody”) using a linker sequence consisting of 5 amino acids is the 3 ′ end of the gene encoding VB22B-VH and the gene encoding VB22B-VL. 'A linker with a terminal (Gly Ser) force
  • VB22B-VH front primer 70 ⁇ 115HF (SEQ ID NO: 9) was designed to have an EcoRI site
  • VB22B-VH rear primer 33 ⁇ 115HR (SEQ ID NO: 10) was designed to have a VB22B-VH primer.
  • VB22B-VL forward primer 33-115LF (SEQ ID NO: 11) is a primer consisting of the nucleotide sequence encoding the N-terminus of VB22B-VL and (Gly Ser).
  • composition of the PCR reaction solution (50 L) is shown below.
  • dNTPs dATP, dGTP, dCTP, dTTP
  • pGEM-T Easy vector containing lOng VB22B-VH or VB22B-VL gene, lOpmol synthetic oligonucleotide 70 '115HF, 33115 HR or 33115LF, 33115LR
  • the reaction temperature conditions are as follows.
  • reaction product was heated at 72 ° C for 5 minutes.
  • composition of the PCR reaction solution (50 L) is shown below.
  • dNTPs dATP, dGTP, dCTP, dTTP
  • the reaction temperature conditions are as follows.
  • reaction product was heated at 72 ° C for 5 minutes.
  • the PCR product of about 800 bp was purified for agarose gel using QIAquick Gel Extraction Kit (QIAGEN), and then digested with restriction enzymes EcoRI (Takara Shuzo) and restriction enzyme Notl (Takara Shuzo). After that, the resultant was purified using a QIAquick PCR Purification Kit (manufactured by QIAGEN) and cloned into pCXND3 to prepare pCXND3-VB22B db.
  • QIAquick Gel Extraction Kit QIAquick Gel Extraction Kit
  • a plasmid expressing a modified antibody [sc (Fv) 2] containing two H chain variable regions and two L chain variable regions derived from VB22B was used as follows. It was modified by the PCR method.
  • Fig. 2 shows the construction process of the sc (Fv) 2 gene.
  • nucleotide sequence encoding a linker (Gly Ser) having 15 amino acids is added to the 3 ′ end of the gene encoding VB22B-VH and the 5 ′ end of the gene encoding VB22B-VL.
  • VB22B-VH The forward primer VB22B_ft) vu (Primer A, SEQ ID NO: 14) was designed to have an EcoRI site at the 5 'end and to convert Gln22 and Leu23 of VB22B db to a PvuII site.
  • the rear primer sc-rL15 (primer B, SEQ ID NO: 15) of VB22B-VH hybridizes to the DNA encoding the C-terminus of VB22B-VH and has a (Gly Ser) linker.
  • the forward primer SC-1L15 (primer C, SEQ ID NO: 16) of VB22B-VL is composed of a nucleotide sequence encoding the N-terminus of VB22B-VL and (Gly Ser)
  • composition of the PCR reaction solution (50 L) is shown below.
  • dNTPs dATP, dGTP, dCTP, dTTP
  • the reaction temperature conditions are as follows.
  • reaction product was heated at 72 ° C for 5 minutes.
  • dNTPs dATP, dGTP, dCTP, dTTP
  • the reaction temperature conditions are as follows.
  • reaction product was heated at 72 ° C for 5 minutes.
  • the PCR product of about 800 bp was also purified using a QIAquick Gel Extraction Kit (manufactured by QIAGEN) to purify agarose gel, and then digested with EcoRI (Takara Shuzo) and Notl (Takara Shuzo). After that, the product was purified using a QIAquick PCR Purification Kit (manufactured by QIAGEN) and cloned into pBacPAK9 (manufactured by CLONTECH) to prepare pBacPAK9-scVB22B.
  • QIAquick Gel Extraction Kit manufactured by QIAGEN
  • a fragment to be inserted into the PvuII site of pBacPAK9_scVB22B was prepared. That is, an amino acid in which VB22B-VH and VB22B-VL lacking the N-terminal are linked by a linker (Gly Ser) force.
  • the forward primer Fv2_f (primer E, SEQ ID NO: 17) of the target fragment was designed to have a PvuII site at the 5 ′ end and a sequence at the 5 ′ end of VB22B-VH.
  • the rear primer Fv2-r (Primer F, SEQ ID NO: 18) of the target fragment hybridizes to the DNA encoding the C-terminus of VB22B-VL and comprises a linker consisting of (Gly Ser).
  • Nucleotide sequence that encodes the nucleotide sequence that hybridizes to the DNA encoding the N-terminus of VB22B-VH It was designed to have a PvuII site. Using pBacPAK9-scVB22B as type III, PCR was performed as follows.
  • composition of the PCR reaction solution (50 L) is shown below.
  • dNTPs dATP, dGTP, dCTP, dTTP
  • the reaction temperature conditions are as follows.
  • reaction product was heated at 72 ° C for 5 minutes.
  • the approximately 800 bp PCR product was purified from agarose gel using the QIAquick Gel Extraction Kit (QIAGEN), and then cloned into a pGEM-T Easy vector (Promega). After the nucleotide sequence was determined, the target fragment was recovered after digestion with the restriction enzyme PvuII (Takara Shuzo). After digestion with restriction pBacPAK9_scVB22B enzyme PvuII (manufactured by Takara Shuzo) was ligated to recovered fragment to prepare a P BacPAK9-VB22B sc (Fv) 2.
  • CHO-DG44 cells (1 ⁇ 10 7 cells / mL) suspended in expression vector (25 ⁇ g) and PBS ) was cooled on ice for 10 minutes, transferred to a cuvette and pulsed at 1.5 kV, 25 FD capacity. After a 10-minute recovery period at room temperature, electroporated cells should contain 500 ⁇ g / mL Geneticin (Invitrogen).
  • a CHO-S-SFMII medium (manufactured by Invitrogen) was selected for selection to establish an expression CHO cell line.
  • VB22B sc (Fv) 2 a cell line stably expressing and a culture supernatant thereof were prepared by this method.
  • Transient expression of a single-chain antibody using COS7 cells was performed as follows. A mixture of expression vector (10 ⁇ g) and 0.75 mL of COS7 cells (1 ⁇ 10 7 cells / mL) suspended in PBS was cooled on ice for 10 minutes, transferred to a cuvette, and then transferred to a 1.5 kV, 25 kV cell. Pulses were given with a ⁇ FD capacity. After a recovery period of 10 minutes at room temperature, the cells treated with the electoral port were treated with DMEM medium (manufactured by Invitrogen) containing 10% FBS, cultured for 1 hour, washed with PBS, and washed with CHO-S- The SFMII medium was cultured and cultured for about 3 days. The culture supernatant of VB22B Diabody was prepared by this method.
  • DMEM medium manufactured by Invitrogen
  • the concentration of the anti-human Mpl-chain antibody transiently expressed in COS7 cells or CHO cells in the culture supernatant was measured using surface plasmon resonance.
  • ANTI-FLAG M2 Monoclonal Antibody SIGMA-ALDRICH
  • a sample of an appropriate concentration was flowed at a flow rate of 5 mL / sec, and 50 mM getylamine was flowed to dissociate the bound antibody.
  • the mass change when flowing the sample was measured, and the concentration was calculated using a calibration curve created based on the mass change of the standard product.
  • the standard for Diabody used was dbl2E10 (see Japanese Patent Application No. 2001-27734), and the standard for sc (Fv) 2 used was 12E10 sc (Fv) 2 having the same gene structure.
  • Anti-Flag M2 Affinity Gel (SIGMA-ALDRICH) column prepared by equilibrating the culture supernatant of VB22B Diabody expressing C0S7 cells or CH0 cells with 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% Tween20 And eluted with 100 mM Glycine-HCl (pH 3.5). The eluted fraction is immediately neutralized with 1 M Tris-HCl (pH 8.0), and subjected to gel filtration chromatography using a HiLoad 26/60 Superdex200pg (Amersham-Bioscience) column. Did one. As a buffer for gel filtration chromatography, PBS and 0.01% Tween20 were used.
  • VB22B sc (Fv) 2-expressing culture supernatants of COS7 cells or CHO cells were purified under the same conditions as for Diabody purification.
  • the culture supernatant of CH0 cells is applied to a Macro-Prep Ceramic Hydroxyapatite Type I (Bio-Rad) column equilibrated with 20 mM phosphate buffer (pH 6.8), Elution was performed stepwise with a phosphate buffer (pH 6.8).
  • the eluted fraction was concentrated using an ultrafiltration membrane, and then subjected to gel filtration chromatography using a HiLoad 26/60 Superdex 200pg column to collect a fraction having a molecular weight of about 70 kD to 40 kD. This fraction was adsorbed to an Anti-Flag M2 Affinity Gel column equilibrated with 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% Tween20, and eluted with 100 mM Glycine-HCl (pH 3.5).
  • 50 mM Tris-HCl pH 7.4
  • 150 mM NaCl 150 mM NaCl
  • Tween20 0.05%
  • the eluted fraction was immediately neutralized with 1M Tris-HCl (pH 8.0) and subjected to gel filtration chromatography using a HiLoad 26/60 Superdex200pg column.
  • 1M Tris-HCl pH 8.0
  • gel filtration chromatography As a buffer for gel filtration chromatography, 20 mM acetic acid (pH 6.0), 150 mM NaCl, and 0.01% Tween 80 were used.
  • FIGS. 3 and 4 show the results of evaluation of TPO-like agonist activity using BaF3-monkey Mpl.
  • single-chain antibodies (Diabody, sc (Fv) 2) of VB16, VB140, VB45B, and TA136 were expressed on COS7, and TPO-like agonist activity on BaF3-human Mpl was determined using the culture supernatant.
  • the evaluation results are shown in Figs. 5, 6, 7, and 8, respectively.
  • Table 50 is shown in Table 1.
  • the optimal linker length is considered to depend on each antibody.
  • the linker length is as short as 5-12mer, non-covalent diabody is formed, but when the linker length is longer (12mer or longer), scFv-mer is formed without diabody formation.
  • scFv-mer is formed without diabody formation.
  • the full-length antibody can be activated by reducing the molecular weight, specifically, to a diabody or sc (Fv) 2. Can be raised.
  • the activity of a full-length antibody has been weak in the past, it has been difficult to develop it as a drug or the like.
  • various types of expression systems such as animal cells, yeast, and E. coli can be used even when recombinants are produced, which is highly convenient. Become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 抗ヒトMpl抗体を取得・精製し、更に遺伝子工学的手法を用いて抗ヒトMpl抗体の一本鎖抗体を作製した。該抗体は高いアゴニスト活性を示した。このことは、2つ以上の重鎖可変領域と、2つ以上の軽鎖可変領域をリンカーで結合し、一本鎖ポリペプチドとすることにより抗体の活性を増強できることを示している。

Description

抗体の活性を増強させる方法
技術分野
[0001] 本発明は、抗体の活性を増強させる方法に関する。
背景技術
[0002] 抗体は血中での安定性が高ぐ抗原性も少ないことから医薬品として注目されてい る。その中でも、受容体などの細胞表面に発現するタンパク質を認識し、特異的反応 を細胞に生じさせることが可能なァゴ-スト抗体は医薬品として有用であると考えられ ている。エリスロポエチン受容体に対するァゴ-スト抗体 (非特許文献 1参照)、トロン ボポェチン受容体に対するァゴニスト抗体や CD47に対するァゴニスト抗体 (特許文献 1および 2参照)など、既に幾つかのァゴ-スト抗体が報告されている。
[0003] これらのァゴニスト抗体は、それぞれ各種アツセィ法でァゴニスト活性が測定されて はいるが、その活性は、天然のリガンドと比較すれば、いずれも弱いものである。例え ば、サイト力イン受容体ファミリーに属するトロンボポェチン受容体に対するァゴニスト 抗体では、ァゴニスト活性を示すためには、まず TPO受容体を 2量体化させ、そのシ グナルを伝達するための適当な距離をとらせることが必須である。ところが、抗体分子 は 2価であり、受容体の 2量体化には問題ないと考えられるが、分子量が約 150kDと 巨大な分子であり、構造の自由度は少ないと考えられることから、結合した受容体を シグナル伝達に適した距離をとらせることが難しいため充分な活性を伝えることがで きないと予想される。
[0004] 特許文献 1 :国際公開第 02/33072号
特許文献 2:国際公開第 02/33073号
非特許文献 1 : Elliott Sら著、 J.Biol.Chem., 1996年、 Vol.271(40)、 p.24691-24697 発明の開示
発明が解決しょうとする課題
[0005] 本発明はこのような状況に鑑みて為されたものであり、その目的は抗体の活性を増 強させる方法を提供することにある。詳しくは、 2つ以上の重鎖可変領域と、 2つ以上 の軽鎖可変領域をリンカ一で結合し、一本鎖ポリペプチドとすることにより抗体の活性 を増強させる方法を提供することを目的とする。
課題を解決するための手段
[0006] 低分子化抗体、具体的には Diabodyや sc(Fv)2では、分子量は約 60kDと半分以下と なり、さらに構造上の自由度も比較的高いと推定されることなどから、より効率的に、 あるいはリガンドと同程度に、受容体を 2量体化することも可能と考えられ、高い活性 を示すことができるようになると考えられる。
[0007] 本発明者らは、抗ヒト Mpl抗体を取得 '精製し、更に遺伝子工学的手法を用いて抗ヒ ト Mpl抗体 VB22Bの一本鎖抗体を作製した。更に、抗ヒト Mpl抗体 sc(Fv)2発現べクタ 一を構築し、 CHO-DG44細胞で一本鎖抗体の一過性発現を行い、培養上清より抗ヒ ト Mpl—本鎖抗体である VB22B sc(Fv)2を取得した。なお、対照として、抗ヒト Mpl抗体 Diabody発現ベクターを構築し、 C0S7細胞を用いてその培養上清より VB22B Diabodyを取得した。それぞれの抗体の TP0様ァゴニスト活性を評価したところ、一本 鎖抗体の方がァゴ-スト活性が高いことが確認された。このことは、 2つ以上の重鎖可 変領域と、 2つ以上の軽鎖可変領域をリンカ一で結合し、一本鎖ポリペプチドとするこ とにより抗体の活性を増強できることを示している。
[0008] つまり本発明は、抗体の活性を増強させる方法に関し、より具体的には、
〔1〕 2つ以上の重鎖可変領域と、 2つ以上の軽鎖可変領域をリンカ一で結合し、一 本鎖ポリペプチドにすることにより、抗体の活性を増強させる方法、
〔2〕 抗体の重鎖可変領域と軽鎖可変領域を含む第一のポリペプチドと、抗体の重 鎖可変領域と軽鎖可変領域を含む第二のポリペプチドをリンカ一で結合することによ り、抗体の活性を増強させる方法、
〔3〕 抗体を sc(Fv)2にすることにより、抗体の活性を増強させる方法、
〔4〕 活性がァゴ-スト活性である〔1〕一〔3〕のいずれか〖こ記載の方法、
〔5〕 リンカ一がペプチドリンカ一であることを特徴とする、〔1〕一〔4〕のいずれかに記 載の方法、
〔6〕 ペプチドリンカ一の長さが 5— 30アミノ酸であることを特徴とする、〔5〕に記載の 方法、 〔7〕 ペプチドリンカ一の長さが 12— 18アミノ酸であることを特徴とする、〔6〕に記載の 方法、
〔8〕 ペプチドリンカ一の長さが 15アミノ酸であることを特徴とする、〔7〕に記載の方法
〔9〕 〔1〕一〔8〕のいずれかに記載の方法により、活性が増強された抗体、 〔10〕 以下の工程を含む、〔9〕に記載の抗体の製造方法、
(a) 2つ以上の抗体重鎖可変領域、 2つ以上の抗体軽鎖可変領域、及び各可変領 域を結合するペプチドリンカ一をコードする DNAを作製する工程、
(b) 該 DNAを含むベクターを作製する工程、
(c) 該ベクターを宿主細胞に導入する工程、
(d) 該宿主細胞を培養する工程
〔11〕 DNAが、 2つの重鎖可変領域、 2つの軽鎖可変領域、 3つのペプチドリンカ一 をコードしていることを特徴とする、〔10〕に記載の製造方法、
〔12〕 DNAが、重鎖可変領域、ペプチドリンカ一、軽鎖可変領域、ペプチドリンカ一 、重鎖可変領域、ペプチドリンカ一、軽鎖可変領域の順でコードしていることを特徴と する、〔11〕に記載の製造方法、に関する。
図面の簡単な説明
[図 1]抗ヒト Mpl抗体 (H鎖および L鎖)のアミノ酸配列を示す図である。図中に示した VB140 (H鎖)のアミノ酸配列を配列番号: 19、 VB45B (H鎖)のアミノ酸配列を配列番 号: 20、 VB22B (H鎖)のアミノ酸配列を配列番号: 21、 VB16 (H鎖)のアミノ酸配列を 配列番号: 22、 TA136 (H鎖)のアミノ酸配列を配列番号: 23に示す。 また VB140 (L 鎖)のアミノ酸配列を配列番号: 24、 VB45B (L鎖)のアミノ酸配列を配列番号: 25、 VB22B (L鎖)のアミノ酸配列を配列番号: 26、 VB16 (L鎖)のアミノ酸配列を配列番号 : 27、 TA136 (L鎖)のアミノ酸配列を配列番号: 28に示す。
[図 2]—本鎖抗体 sc(Fv)2の作製過程を示す図である。
[図 3]BaF3-human Mplを用いた VB22B抗体のァゴ-スト活性評価の結果を示すグラ フである。
[図 4]BaF3-monkey Mplを用いた VB22B抗体のァゴ-スト活性評価の結果を示すグラ フである。
[図 5]BaF3-human Mplを用いた VB16抗体のァゴ-スト活性評価の結果を示すグラフ である。
[図 6]BaF3-human Mplを用いた VB140抗体のァゴ-スト活性評価の結果を示すグラ フである。
[図 7]BaF3-human Mplを用いた VB45B抗体のァゴ-スト活性評価の結果を示すグラ フである。
[図 8]BaF3-human Mplを用いた TA136抗体のァゴ-スト活性評価の結果を示すグラ フである。
発明を実施するための最良の形態
[0010] 本発明は、 2つ以上の重鎖可変領域と、 2つ以上の軽鎖可変領域をリンカ一で結合 し、一本鎖ポリペプチドにすることにより、抗体の活性を増強させる方法を提供する。 本発明の方法により、活性が増強される抗体は如何なる抗体でもよぐマウス抗体、 ヒト抗体、ラット抗体、ゥサギ抗体、ラクダ抗体など、どのような動物由来の抗体でもよ い。さらに、例えば、キメラ抗体、ヒト化抗体などのアミノ酸配列を置換した改変抗体で もよいし、又、各種分子を結合させた抗体修飾物、抗体断片、糖鎖改変抗体など、い かなる抗体でもよい。
又、本発明の抗体によって活性が増強される抗体は、全長抗体でもよいし、 Diabodyなどの低分子化抗体でもよ!/、。
[0011] 本発明の一本鎖ポリペプチドとしては、例えば、抗体の重鎖可変領域と軽鎖可変 領域を含む第一のポリペプチドと、抗体の重鎖可変領域と軽鎖可変領域を含む第二 のポリペプチドをリンカ一で結合した一本鎖ポリペプチドを挙げることができる。
抗体の重鎖可変領域と軽鎖可変領域を含む第一のポリペプチドと、抗体の重鎖可 変領域と軽鎖可変領域を含む第二のポリペプチドは、同一のポリペプチドでもよ 、し 、異なるポリペプチドでもよい。第一のポリペプチドと第二のポリペプチドが異なる場 合、同一の抗原又はェピトープを認識する抗体でもよいし、異なる抗原又はェピトー プを認識する二種特異性抗体 (bispecific antibody)であってもよ!/ヽ。
[0012] 抗体の重鎖可変領域と軽鎖可変領域を含むポリペプチドの具体的な例としては、 例えば、 scFv (シングルチェイン Fv)を挙げることができる。よって、抗体の重鎖可変 領域と軽鎖可変領域を含む第一のポリペプチドと、抗体の重鎖可変領域と軽鎖可変 領域を含む第二のポリペプチドをリンカ一で結合した一本鎖ポリペプチドとしては、 sc(Fv)2が挙げられる。 sc(Fv)2は、 2つの重鎖可変領域及び 2つの軽鎖可変領域をリ ンカ一等で結合して一本鎖ポリペプチドにした抗体である(Hudson et al、 J Immunol. Methods 1999 ; 231 : 177- 189)。
[0013] sc(Fv)2の場合、結合される 2つの重鎖可変領域 (VH)と 2つの軽鎖可変領域 (VL) の順序は特に限定されず、どのような順序で並べられていてもよいが、例えば、以下 のような配置を挙げることができる。
[VH]リンカ一 [VL]リンカ一 [VH]リンカ一 [VL]
[VL]リンカ一 [VH]リンカ一 [VH]リンカ一 [VL]
[VH]リンカ一 [VL]リンカ一 [VL]リンカ一 [VH]
[VH]リンカ一 [VH]リンカ一 [VL]リンカ一 [VL]
[VL]リンカ一 [VL]リンカ一 [VH]リンカ一 [VH]
[VL]リンカ一 [VH]リンカ一 [VL]リンカ一 [VH]
本発明においては、好ましくは、 [VH]リンカ一 [VL]リンカ一 [VH]リンカ一 [VL]の 配置を有する sc(Fv)2である。
[0014] 重鎖可変領域又は軽鎖可変領域のアミノ酸配列は、置換、欠失、付加及び Z又は 挿入されていてもよい。さらに、重鎖可変領域と軽鎖可変領域を会合させた場合に、 抗原結合活性を有する限り、一部を欠損させてもよいし、他のポリペプチドを付加し てもよい。又、可変領域はキメラ化ゃヒト化されていてもよい。
アミノ酸の置換、欠失、付加及び Z又は挿入や、ヒト化、キメラ化などのアミノ酸配列 の改変は、本発明の方法により活性を増強させた後に行ってもよいし、又、アミノ酸配 列の改変を行った後に本発明の方法により活性を増強させてもよい。
キメラ抗体は、異なる動物由来の配列を組み合わせて作製される抗体であり、例え ば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定常領域からなる 抗体などである。キメラ抗体の作製は公知の方法を用いて行うことができ、例えば、抗 体 V領域をコードする DNAをヒト抗体 C領域をコードする DNAと連結し、これを発現べ クタ一に組み込んで宿主に導入し産生させることにより得られる。
[0015] ヒト化抗体は、再構成 (reshaped)ヒト抗体とも称され、これは、ヒト以外の哺乳動物、 例えばマウス抗体の相補性決定領域(CDR; complementarity determining region)を ヒト抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法 も知られている(欧州特許出願公開番号 EP 125023号公報、 WO 96/02576号公報 参照)。
[0016] 具体的には、マウス抗体の CDRとヒト抗体のフレームワーク領域(framework region ;
FR)とを連結するように設計した DNA配列を、 CDR及び FR両方の末端領域にオーバ 一ラップする部分を有するように作製した数個のオリゴヌクレオチドをプライマーとして 用いて PCR法により合成する (W098/13388号公報に記載の方法を参照)。
CDRを介して連結されるヒト抗体のフレームワーク領域は、相補性決定領域が良好 な抗原結合部位を形成するものが選択される。必要に応じ、再構成ヒト抗体の相補 性決定領域が適切な抗原結合部位を形成するように、抗体の可変領域におけるフレ ームワーク領域のアミノ酸を置換してもよい(Sato, K.et al., Cancer Res. (1993) 53, 851-856)。
[0017] キメラ抗体及びヒト化抗体の C領域には、ヒト抗体のものが使用され、例えば H鎖で は、 C γ 1、 C γ 2、 C γ 3、 C γ 4を、 L鎖では C κ、 C λを使用することができる。また、 抗体またはその産生の安定性を改善するために、ヒト抗体 C領域を修飾してもよ 、。 一般的に、キメラ抗体は、ヒト以外の哺乳動物由来抗体の可変領域とヒト抗体由来 の定常領域とからなる。一方、ヒト化抗体は、ヒト以外の哺乳動物由来抗体の相補性 決定領域と、ヒト抗体由来のフレームワーク領域および C領域とからなる。
[0018] なお、キメラ抗体やヒト化抗体を作製した後に、さらに可変領域 (例えば、 FR)ゃ定 常領域中のアミノ酸を他のアミノ酸で置換等してもょ 、。抗体の可変領域の配列は、 既に公知の抗体の可変領域の配列を用いてもよいし、又、任意の抗原を用いて当業 者に公知の方法により抗体を作製し、その抗体の配列を取得して用いることも可能で ある。具体的には、例えば以下のようにして行うことができる。抗原を用いて、通常の 免疫方法にしたがってマウス等の免疫動物を免疫し、得られる免疫細胞を通常の細 胞融法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクロ一 ナルな抗体産生細胞 (ノ、イブリドーマ)をスクリーニングする。抗原の調製は公知の方 法により行うことができる。ハイプリドーマの作製は、例えば、ミルスティンらの方法(
Kohler, G. and Milstein, C, Methods Enzymol. (1981) 73:3- 46)等に準じて行うこと ができる。抗原の免疫原性が低い場合には、アルブミン等の免疫原性を有する巨大 分子と結合させ、免疫を行えばよい。その後、ハイプリドーマの mRNAから逆転写酵 素を用いて抗体の可変領域 (V領域)の cDNAを合成し、得られた cDNAの配列を公知 の方法により解読すればよい。
[0019] 又、ヒト抗体の取得方法も広く知られて 、る。例えば、ヒトリンパ球を in vitroで感作し 、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞と融合させ、結合活 性を有する所望のヒト抗体を得ることもできる (特公平 1-59878号公報参照)。さらに、 ヒト抗体遺伝子の全てのレパートリーを有するトランスジエニック動物に抗原を投与し て抗体産生細胞を取得し、これを不死化させた細胞から抗原に対するヒト抗体を取 得してもよい(国際特許出願公開番号 WO 94/25585号公報、 WO 93/12227号公報 、 WO92/03918号公報、 WO 94/02602号公報参照)。
[0020] 本発明において、重鎖可変領域と軽鎖可変領域を結合するリンカ一は、遺伝子ェ 学により導入し得る任意のペプチドリンカ一、又は合成化合物リンカ一(例えば、 Protein Engineering, 9(3), 299-305, 1996に開示されるリンカ一)を用いることができる
[0021] ペプチドリンカ一の長さは特に限定されず、目的に応じて当業者が適宜選択するこ とが可能であるが、通常、 1一 100アミノ酸、好ましくは 5— 30アミノ酸、特に好ましくは 12— 18アミノ酸 (例えば、 15アミノ酸)である。
[0022] ペプチドリンカ一のアミノ酸配列としては、例えば、以下のような配列を挙げることが できる。
Ser
GlySer
GlyGlySer
Sef ulyuly
Gly GlyGlySer Ser'GlyGlyGly
Gly · Gly · Gly · Gly · Ser
Ser · Gly · Gly · Gly · Gly
Gly · Gly · Gly · Gly · Gly · Ser
Ser · Gly · Gly · Gly · Gly · Gly
Gly · Gly · Gly · Gly · Gly · Gly · Ser
Ser · Gly · Gly · Gly · Gly · Gly · Gly
(Gly · Gly · Gly · Gly · Ser)n
(Ser · Gly · Gly · Gly · Gly)n
[nは 1以上の整数である]等を挙げることができる。
[0023] 合成化学物リンカ一 (ィ匕学架橋剤)は、ペプチドの架橋に通常用いられている架橋 剤、例えば、 N-ヒドロキシスクシンイミド(NHS)ジスクシンイミジルスべレート(DSS)、ビ ス(スルホスクシンィミジル)スべレート(BS3)、ジチォビス(スクシンィミジルプロビオネ ート)(DSP)、ジチオピス(スルホスクシンィミジルプロピオネート)(DTSSP)、エチレン グリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホ スクシンイミジルスクシネート)(スルホー EGS)、ジスクシンィミジル酒石酸塩(DST)、ジ スルホスクシンィミジル酒石酸塩 (スルホー DST)、ビス [2- (スクシンイミドォキシカルボ -ルォキシ)ェチル]スルホン(BSOCOES)、ビス [2- (スルホスクシンイミドォキシカル ボ -ルォキシ)ェチル]スルホン (スルホ— BSOCOES)などであり、これらの架橋剤は 市販されている。
また本発明は、上記方法により活性が増強された抗体も提供する。
[0024] また本発明は、以下の (a)— (d)に記載の工程を含む抗体の製造方法を提供する
(a) 2つ以上の抗体重鎖可変領域、 2つ以上の抗体軽鎖可変領域、及び各可変領 域を結合するペプチドリンカ一をコードする DNAを作製する工程、
(b) 該 DNAを含むベクターを作製する工程、
(c) 該ベクターを宿主細胞に導入する工程、
(d) 該宿主細胞を培養する工程 この方法においてはまず、 2つ以上の抗体重鎖可変領域、 2つ以上の抗体軽鎖可 変領域、及び各可変領域を結合するペプチドリンカ一をコードする DNAを作製する。 このような DNAとしては、例えば 2つの重鎖可変領域 (VH)、 2つの軽鎖可変領域 (VL ) , 3つのペプチドリンカ一をコードしている DNAが挙げられ、好ましくは sc(Fv)2が挙 げられる。
[0025] 結合される 2つの VHと 2つの VLの順序は特に限定されず、どのような順序で並べら れていてもよぐ例えば、以下のような配置を挙げることができる。
[VH]リンカ一 [VL]リンカ一 [VH]リンカ一 [VL]
[VL]リンカ一 [VH]リンカ一 [VH]リンカ一 [VL]
[VH]リンカ一 [VL]リンカ一 [VL]リンカ一 [VH]
[VH]リンカ一 [VH]リンカ一 [VL]リンカ一 [VL]
[VL]リンカ一 [VL]リンカ一 [VH]リンカ一 [VH]
[VL]リンカ一 [VH]リンカ一 [VL]リンカ一 [VH]
本発明にお 、ては、 [VH]リンカ一 [VL]リンカ一 [VH]リンカ一 [VL]の配置が好まし い。
[0026] 重鎖可変領域又は軽鎖可変領域のアミノ酸配列は、置換、欠失、付加及び Z又は 挿入されていてもよい。さらに、重鎖可変領域と軽鎖可変領域を会合させた場合に、 抗原結合活性を有する限り、一部を欠損させてもよい。又、可変領域はキメラ化ゃヒト 化されていてもよい。
[0027] 本方法においては次いで、上記 DNAを含むベクターを作製する。
ベクターとしては、例えば、大腸菌を宿主とする場合には、ベクターを大腸菌(例え ば、 JM109、 DH5 a、 HB101、 XLlBlue)などで大量に増幅させ大量調製するために、 大腸菌で増幅されるための「ori」をもち、さらに形質転換された大腸菌の選抜遺伝子 (例えば、なんらかの薬剤(アンピシリンやテトラサイクリン、カナマイシン、クロラムフエ 二コール)により判別できるような薬剤耐性遺伝子)を有すれば特に制限はない。ベタ ターの例としては、 M13系ベクター、 pUC系ベクター、 pBR322、 pBluescript、
pCR-Scriptなどが挙げられる。また、 cDNAのサブクローユング、切り出しを目的とした 場合、上記ベクターの他に、例えば、 pGEM- T、 pDIRECT、 pT7などが挙げられる。 [0028] 本発明のベクターとしては、特に、発現ベクターが有用である。発現ベクターとして は、例えば、大腸菌での発現を目的とした場合は、ベクターが大腸菌で増幅されるよ うな上記特徴を持つほかに、宿主を JM109、 DH5 a、 HB101、 XLl-Blueなどの大腸菌 とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、 lacZプロモーター(Wardら, Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422- 2427)、 araBプロモーター(Betterら, Science (1988) 240, 1041- 1043 )、または T7プロモーターなどを持っていることが不可欠である。このようなベクターとしては、上 記ベクターの他に pGEX- 5X- 1 (フアルマシア社製)、「QIAexpress system] (キアゲン 社製)、 pEGFP、または pET (この場合、宿主は T7 RNAポリメラーゼを発現している BL21が好ましい)などが挙げられる。
[0029] また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれて!/、てもよ!/ヽ 。タンパク質分泌のためのシグナル配列としては、大腸菌のペリブラズムに産生させ る場合、 pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379)を使用す ればよい。宿主細胞へのベクターの導入は、例えば塩ィ匕カルシウム法、エレクトロボ レーシヨン法を用いて行うことができる。
[0030] 大腸菌以外にも、例えば、本発明のベクターとしては、哺乳動物由来の発現べクタ 一(例えば、 pcDNA3 (インビトロゲン社製)や、 pEGF- BOS (Nucleic Acids. Res.1990, 18(17),p5322)、 pEF、 pCDM8)、昆虫細胞由来の発現ベクター(例えば「
Bac-to-BAC baculovairus expression systemj (ギブコ BRL社製)、 pBacPAK8)、植物 由来の発現ベクター(例えば ρΜΗ1、 pMH2)、動物ウィルス由来の発現ベクター(例え ば、 pHSV、 pMV、 pAdexLcw)、レトロウイルス由来の発現ベクター(例えば、 pZIPneo) 、酵母由来の発現ベクター(例えば、「Pichia Expression KitJ (インビトロゲン社製)、 pNVl l、 SP-Q01)、枯草菌由来の発現ベクター(例えば、 pPL608、 pKTH50)が挙げ られる。
[0031] CHO細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合には 、細胞内で発現させるために必要なプロモーター、例えば SV40プロモーター( Mulliganら, Nature (1979) 277, 108)、 MMTV-LTRプロモーター、 EF1 αプロモータ 一(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322)、 CMVプロモーターなどを持 つていることが不可欠であり、細胞への形質転換を選抜するための遺伝子 (例えば、 薬剤 (ネオマイシン、 G418など)により判別できるような薬剤耐性遺伝子)を有すれば さらに好ましい。このような特性を有するベクターとしては、例えば、 pMAM、 pDR2、 pBK- RSV、 pBK-CMV, pOPRSV、 pOP13などが挙げられる。
[0032] さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を 目的とする場合には、核酸合成経路を欠損した CHO細胞にそれを相補する DHFR遺 伝子を有するベクター(例えば、 pCHOIなど)を導入し、メトトレキセート (MTX)により 増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、
SV40 T抗原を発現する遺伝子を染色体上に持つ COS細胞を用いて SV40の複製起 点を持つベクター (pcDなど)で形質転換する方法が挙げられる。複製開始点として は、また、ポリオ一マウィルス、アデノウイルス、ゥシパピローマウィルス(BPV)等の由 来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発 現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ (APH)遺伝子、 チミジンキナーゼ (TK)遺伝子、大腸菌キサンチングァニンホスホリボシルトランスフエ ラーゼ (Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
[0033] 本方法にお!、ては次!、で、該ベクターを宿主細胞に導入する。ベクターが導入さ れる宿主細胞としては特に制限はなぐ例えば、大腸菌や種々の動物細胞などを用 いることが可能である。宿主細胞は、例えば、本発明の 2つ以上の抗体重鎖可変領 域、 2つ以上の抗体軽鎖可変領域、及び各可変領域を結合するペプチドリンカ一か らなるポリペプチドの製造や発現のための産生系として使用することができる。ポリべ プチド製造のための産生系は、 in vitroおよび in vivoの産生系がある。 in vitroの産 生系としては、真核細胞を使用する産生系や原核細胞を使用する産生系が挙げら れる。
[0034] 真核細胞を使用する場合、例えば、動物細胞、植物細胞、真菌細胞を宿主に用い ることができる。動物細胞としては、哺乳類細胞、例えば、 CH0 (J. Exp. Med. (1995) 108, 945)、 COSゝ 3T3、ミエローマ、 BHK(baby hamster kidney)、 HeLa、 Vero、両生 類細胞、例えばアフリカッメガエル卵母細胞(Valle, et al., Nature (1981) 291, 358-340)、あるいは昆虫細胞、例えば、 S19、 Sf21、 Tn5が知られている。本発明にお いては、 CHO- DG44、 CHO-DXBl l、 COS7細胞、 BHKが好適に用いられる。動物細 胞において、大量発現を目的とする場合には特に CHO細胞が好ましい。宿主細胞 へのベクターの導入は、例えば、リン酸カルシウム法、 DEAEデキストラン法、カチォ ニックリボソーム DOTAP (ベーリンガーマンハイム社製)を用いた方法、エレクト口ポー レーシヨン法、リポフエクシヨンなどの方法で行うことが可能である。
[0035] 植物細胞としては、例えば、ニコチアナ 'タパカム(Nicotiana tabacum)由来の細胞 力 Sタンパク質生産系として知られており、これをカルス培養すればよい。真菌細胞とし ては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えば、サッカロミセス'セレ ヒンェ (saccharomyces cerevisiae)、サッカロ;セス-ホンへ (Saccharomyces pombe)、 糸状菌、例えば、ァスペルギルス(Aspergillus)属、例えば、ァスペルギルス '二ガー( Aspergillus nigerjが知られている。
原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大 腸菌(E. coli)、例えば、 JM109, DH5 a、 HB101等が挙げられ、その他、枯草菌が知 られている。
[0036] 本方法においては次いで上記宿主細胞を培養する。 目的とする DNAにより形質転 換された細胞を in vitroで培養することにより、抗体が得られる。培養は、公知の方法 に従い行うことができる。例えば、動物細胞の培養液として、例えば、 DMEM、 MEM, RPMI1640、 IMDMを使用することができる。その際、 FBS、牛胎児血清(FCS)等の血 清補液を併用することもできるし、無血清培養してもよい。培養時の pHは、約 6— 8で あるのが好ましい。培養は、通常、約 30— 40°Cで約 15— 200時間行い、必要に応じて 培地の交換、通気、攪拌を加える。
[0037] 一方、 in vivoでポリペプチドを産生させる系としては、例えば、動物を使用する産生 系や植物を使用する産生系が挙げられる。これらの動物又は植物に目的とする DNA を導入し、動物又は植物の体内でポリペプチドを産生させ、回収する。本発明におけ る「宿主」とは、これらの動物、植物を包含する。
[0038] 動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物として は、ャギ、ブタ、ヒッジ、マウス、ゥシを用いることができる(Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。また、哺乳類動物を用いる場合、トランスジェ- ック動物を用いることができる。
[0039] 例えば、 目的とする DNAを、ャギ /3カゼインのような乳汁中に固有に産生されるポリ ペプチドをコードする遺伝子との融合遺伝子として調製する。次いで、この融合遺伝 子を含む DNA断片をャギの胚へ注入し、この胚を雌のャギへ移植する。胚を受容し たャギから生まれるトランスジエニックャギ又はその子孫が産生する乳汁から、 目的の タンパク質を得ることができる。トランスジエニックャギカも産生されるタンパク質を含 む乳汁量を増加させるために、適宜ホルモンをトランスジエニックャギに使用してもよ い(Ebert, K.M. et al., Bio/Technology (1994) 12, 699—702)。
[0040] また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場合、 目的 のタンパク質をコードする DNAを挿入したバキュロウィルスをカイコに感染させることに より、このカイコの体液から目的の抗体を得ることができる(Susumu, M. et al., Nature (1985) 315, 592-594) o
[0041] さらに、植物を使用する場合、例えばタバコを用いることができる。タバコを用いる場 合、 目的とする抗体をコードする DNAを植物発現用ベクター、例えば pMON 530に揷 入し、このベクターをァグロバタテリゥム'ッメファシエンス(Agrobacterium tumefaciens )のようなバクテリアに導入する。このバクテリアをタバコ、例えば、ニコチアナ 'タパ力 ム(Nicotiana tabacum)に感染させ、本タバコの葉より所望の抗体を得ることができる( Julian K.-C. Ma et al, Eur. J. Immunol. (1994) 24, 131—138)。
[0042] これにより得られた抗体は、宿主細胞内または細胞外 (培地など)から単離し、実質 的に純粋で均一な抗体として精製することができる。抗体の分離、精製は、通常のポ リペプチドの精製で使用されている分離、精製方法を使用すればよぐ何ら限定され るものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶 媒沈殿、溶媒抽出、蒸留、免疫沈降、 SDS-ポリアクリルアミドゲル電気泳動、等電点 電気泳動法、透析、再結晶等を適宜選択、組み合わせれば抗体を分離、精製するこ とがでさる。
[0043] クロマトグラフィーとしては、例えばァフィユティークロマトグラフィー、イオン交換クロ マトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着ク 口マトグラフィ一等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al" Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液ネ目クロマト グラフィー、例えば HPLC、 FPLC等の液相クロマトグラフィーを用いて行うことができる 。ァフィユティークロマトグラフィーに用いるカラムとしては、プロテイン Aカラム、プロテ イン Gカラムが挙げられる。例えば、プロテイン Aを用いたカラムとして、 Hyper D, POROS, Sepharose F. F. (Pharmacia)等が挙げられる。
[0044] なお、抗体の精製前又は精製後に適当なタンパク質修飾酵素を作用させることによ り、任意に修飾を加えたり部分的にペプチドを除去することもできる。タンパク質修飾 酵素としては、例えば、トリプシン、キモトリブシン、リシルエンドべプチダーゼ、プロテ インキナーゼ、ダルコシダーゼなどが用いられる。
[0045] 本発明にお ヽて増強される抗体の活性は、結合活性、中和活性、細胞傷害活性、 ァゴ-スト活性、アンタゴ-スト活性、酵素活性など、いかなる活性でもよく特に限定さ れないが、生体、組織、細胞、タンパク質、 DNA、 RNA等に量的及び Z又は質的な変 ィ匕、影響をもたらす活性であることが好ましぐ特にァゴニスト活性が好ましい。
[0046] ァゴ-スト活性とは、受容体などの抗原に抗体が結合することにより、細胞内にシグ ナルが伝達される等して、何らかの生理的活性の変化を誘導する活性である。生理 的活性としては、例えば、増殖活性、生存活性、分化活性、転写活性、膜輸送活性、 結合活性、タンパク質分解活性、リン酸ィ匕 Z脱リン酸ィ匕活性、酸化還元活性、転移 活性、核酸分解活性、脱水活性、細胞死誘導活性、アポトーシス誘導活性、などを 挙げることができる力 これらに限定されるわけではない。
[0047] 本発明にお ヽて抗原は特に限定されず、どのような抗原でもよ!/ヽ。抗原の例として は、例えば、受容体、癌抗原、 MHC抗原、分化抗原、などを挙げることができる。
[0048] 受容体の例としては、例えば、造血因子受容体ファミリー、サイト力イン受容体フアミ リー、チロシンキナーゼ型受容体ファミリー、セリン Zスレオニンキナーゼ型受容体フ アミリー、 TNF受容体ファミリー、 Gタンパク質共役型受容体ファミリー、 GPIアンカー型 受容体ファミリー、チロシンホスファターゼ型受容体ファミリー、接着因子ファミリー、ホ ルモン受容体ファミリー、等の受容体ファミリーに属する受容体などを挙げることがで きる。これら受容体ファミリーに属する受容体、及びその特徴に関しては多数の文献 が存在し、例えば、 Cooke BA., King RJB., van der Molen HJ. ed. New Comprehesive Biochemistry V0I.I8B "Hormones and their Actions Part ΐΓ'ρρ.1- 46 (1988) Elsevier Science Publishers BV., New York, USAゝ Patthy L. (1990) Cell, 61: 13—14.、 Ullrich A" et al. (1990) Cell, 61: 203— 212.、 Massagul J. (1992) Cell, 69: 1067— 1070.、 Miyajima A., et al. (1992) Annu. Rev. Immunol, 10: 295— 331.、 Taga T. and Kishimoto T. (1992) FASEB J" 7: 3387-3396.、 Fantl WL, et al. (1993) Annu. Rev. Biochem., 62: 453— 481.、 Smith CA., et al. (1994) Cell, 76: 959—962.、 Flower DR. (1999) Biochim. Biophys. Acta, 1422: 207- 234.、宫坂昌之監修,細胞工学別冊 ハンドブックシリーズ「接着因子ハンドブック」(1994) (秀潤社,東京, 日本)等が挙げ られる。
[0049] 上記受容体ファミリーに属する具体的な受容体としては、例えば、ヒト又はマウスェ リスロポェチン (EPO)受容体、ヒト又はマウス顆粒球コロニー刺激因子 (G-CSF)受容 体、ヒト又はマウストロンボポイエチン (TPO)受容体、ヒト又はマウスインスリン受容体、 ヒト又はマウス Flt-3リガンド受容体、ヒト又はマウス血小板由来増殖因子 (PDGF)受 容体、ヒト又はマウスインターフェロン(IFN) - a、 j8受容体、ヒト又はマウスレプチン受 容体、ヒト又はマウス成長ホルモン (GH)受容体、ヒト又はマウスインターロイキン (IL) -10受容体、ヒト又はマウスインスリン様増殖因子 (IGF) -I受容体、ヒト又はマウス白血 病抑制因子 (LIF)受容体、ヒト又はマウス毛様体神経栄養因子 (CNTF)受容体等を 例示することができる(hEPOR: Simon, S. et al. (1990) Blood 76, 31-35.; mEPOR: D 'Andrea, AD. Et al. (1989) Cell 57, 277—285.; hG— CSFR: Fukunaga, R. et al. (1990) Proc. Natl. Acad. Sci. USA. 87, 8702— 8706.; mG— CSFR: Fukunaga, R. et al. (1990) Cell 61, 341- 350.; hTPOR: Vigon, I. et al. (1992) 89, 5640-5644. ; mTPOR: Skoda, RC. Et al. (1993) 12, 2645-2653.; hlnsR: Ullrich, A. et al. (1985) Nature 313, 756-761. ; hFlt- 3: Small, D. et al. (1994) Proc. Natl. Acad. Sci. USA. 91, 459-463.; hPDGFR: Gronwald, RGK. Et al. (1988) Proc. Natl. Acad. Sci. USA. 85, 3435-3439.; hlFN a / j8 R: Uze, G. et al. (1990) Cell 60, 225- 234.及び Novick, D. et al. (1994) Cell 77, 391—400.)。
[0050] 癌抗原は細胞の悪性化に伴って発現する抗原であり、腫瘍特異性抗原とも呼ばれ る。又、細胞が癌化した際に細胞表面やタンパク質分子上に現れる異常な糖鎖も癌 抗原となり、特に癌糖鎖抗原と呼ばれる。癌抗原の例としては、例えば、 CA19-9、 CA15-3、シリアル SSEA-l(SLX)などを挙げることができる。
[0051] MHC抗原には、 MHC class I抗原と MHC class II抗原に大別され、 MHC class I抗 原には、 HLA- Α,- Β,- C,- Ε,- F,- G,- Hが含まれ、 MHC class II抗原には、
HLA- DR,- DQ,- DPが含まれる。
分化抗原には、
CDl,CD2,CD3,CD4,CD5,CD6,CD7,CD8,CD10,CDlla,CDllb,CDllc,CD13,CD14 ,CD15s,CD16,CD18,CD19,CD20,CD21,CD23,CD25,CD28,CD29,CD30,CD32,CD3 3,CD34,CD35,CD38,CD40,CD41a,CD41b,CD42a,CD42b,CD43,CD44,CD45,CD45 RO,CD48,CD49a,CD49b,CD49c,CD49d,CD49e,CD49f,CD51,CD54,CD55,CD56,C D57,CD58,CD61,CD62E,CD62L,CD62P,CD64,CD69,CD71,CD73,CD95,CD102,C D106,CDl22,CDl26,CDwl30などが含まれる。
[0052] 活性の変化を測定する為に用いる検出指標としては、量的及び Z又は質的な変化 が測定可能である限り使用することができる。例えば、無細胞系 (cell free assay)の指 標、細胞系 (ceU-based assay)の指標、糸且織系の指標、生体系の指標を用いることが できる。
[0053] 無細胞系の指標としては、酵素反応やタンパク質、 DNA、 RNAの量的及び Z又は 質的な変化を用いることができる。酵素反応としては、例えば、アミノ酸転移反応、糖 転移反応、脱水反応、脱水素反応、基質切断反応等を用いることができる。また、タ ンパク質のリン酸化、脱リン酸化、二量化、多量化、分解、乖離等や、 DNA、 RNAの 増幅、切断、伸長を用いることができる。例えばシグナル伝達経路の下流に存在する タンパク質のリン酸ィ匕を検出指標とすることができる。
[0054] 細胞系の指標としては、細胞の表現型の変化、例えば、産生物質の量的及び Z又 は質的変化、増殖活性の変化、細胞数の変化、形態の変化、特性の変化等を用い ることができる。産生物質としては、分泌タンパク質、表面抗原、細胞内タンパク質、 mRNA等を用いることができる。形態の変化としては、突起形成及び Z又は突起の数 の変化、偏平度の変化、伸長度 Z縦横比の変化、細胞の大きさの変化、内部構造の 変化、細胞集団としての異形性 z均一性、細胞密度の変化等を用いることができる。 これらの形態の変化は検鏡下での観察で確認することができる。特性の変化としては 、足場依存性、サイト力イン依存応答性、ホルモン依存性、薬剤耐性、細胞運動性、 細胞遊走活性、拍動性、細胞内物質の変化等を用いることができる。細胞運動性とし ては、細胞浸潤活性、細胞遊走活性がある。また、細胞内物質の変化としては例え ば、酵素活性、 mRNA量、 Ca2+や cAMP等の細胞内情報伝達物質量、細胞内タンパク 質量等を用いることができる。また、細胞膜受容体の場合には、受容体の刺激によつ て誘導される細胞の増殖活性の変化を指標とすることができる。
[0055] 組織系の指標としては、使用する組織に応じた機能変化を検出指標とすることがで きる。生体系の指標としては組織重量変化、血液系の変化、例えば血球細胞数の変 ィ匕、タンパク質量や、酵素活性、電解質量の変化、また、循環器系の変化、例えば、 血圧、心拍数の変化等を用いることができる。
[0056] これらの検出指標を測定する方法としては、特に制限はなぐ吸光、発光、発色、蛍 光、放射活性、蛍光偏光度、表面プラズモン共鳴シグナル、時間分解蛍光度、質量 、吸収スペクトル、光散乱、蛍光共鳴エネルギー移動、等を用いることができる。これ らの測定方法は当業者にとっては周知であり、目的に応じて、適宜選択することがで きる。
[0057] 例えば、吸収スペクトルは一般的に用いられるフォトメータやプレートリーダ等、発 光はルミノメータ等、蛍光はフルォロメータ等で測定することができる。質量は質量分 析計を用いて測定することができる。放射活性は、放射線の種類に応じてガンマカウ ンターなどの測定機器を用いて、蛍光偏光度は BEACON (宝酒造)、表面プラズモン 共鳴シグナルは BIACORE、時間分解蛍光、蛍光共鳴エネルギー移動などは ARVO などにより測定できる。さらに、フローサイトメータなども測定に用いることができる。こ れらの測定方法は、一つの測定方法で 2種以上の検出指標を測定しても良ぐ簡便 であれば、 2種以上の測定を同時及び Z又は連続して測定することによりさらに多数 の検出指標を測定することも可能である。例えば、蛍光と蛍光共鳴エネルギー移動を 同時にフルォロメータで測定することができる。
[0058] 本発明において、ァゴニスト活性の測定は当業者に公知の方法により行うことが可 能である。例えば、実施例に記載のように細胞増殖を指標にァゴ-スト活性を測定す る方法により判定することが可能である。より具体的には、ァゴニスト依存性増殖を示 す細胞に、ァゴニスト活性を測定したい抗体を添加し、培養する。その後、 WST-8の ような生細胞数に応じて特定の波長において発色反応を呈する試薬を添加して吸光 度を測定し、得られた吸光度を指標にァゴニスト活性を測定することが可能である。
[0059] ァゴ-スト依存性増殖を示す細胞も当業者に公知の方法により作製することが可能 であり、例えば、抗原が細胞増殖シグナルを発する受容体である場合には、該受容 体を発現している細胞を用いればよい。又、抗原が細胞増殖シグナルを出さない受 容体である場合には、細胞増殖シグナルを発する受容体の細胞内領域と、細胞増殖 シグナルを出さな ヽ受容体の細胞外領域からなるキメラ受容体を作製し、該キメラ受 容体を細胞で発現させればよ!ヽ。細胞増殖シグナルを発する受容体の例としては、 例えば、 G- CSF受容体、 mpl、 neu、 GM- CSF受容体、 EPO受容体、 c-kit、 FLT-3等を 挙げることができる。受容体を発現させる細胞としては、例えば、 BaF3、 NFS60、 FDCP- 1、 FDCP- 2、 CTLL- 2、 DA- 1、 KT- 3等を挙げることができる。
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に 組み入れられる。
実施例
[0060] 以下、実施例に基づいて本発明を更に具体的に説明する。
[0061] 〔実施例 1〕 抗ヒト Mpl抗体の作製
1.1 Mpl発現 BaF3細胞株の榭立
TPO依存増殖性細胞株を得るために、全長 Mpl遺伝子を発現する BaF3細胞株の 榭立を行った。全長ヒト Mpl cDNA (Palaciosら、 Cell 1985 ;41 : 727-734)
(GenBank#NM— 005373)を PCRにより増幅し、 pCHOI(Hirataら、 FEBS Letter 1994; 356 : 244- 248)の DHFR遺伝子発現部位を除去し、 HEF- VH- l(Satoら、 Mol Immunol. 1994 ;31 : 371-381)の Neomycin而性遺伝子発現部位を挿入した発現べクタ 一 PCOS2にクローユングし、 pCOS2- hMplfollを構築した。また、力-クイザル骨髄細 胞から抽出した Total RNAから SMART RACE cDNA Amplification Kit (Clontech社製 )を用いて、力-クイザル Mpl cDNA (配列番号: 1、該塩基配列によってコードされるタ ンパク質のアミノ酸配列を配列番号: 2)をクローユングした。得られた力-クイザル cDNAを pCOS2に挿入し、 pCOS2- monkeyMplfollを構築した。
[0062] 作製した各ベクター (20 μ g)を PBSに懸濁した BaF3細胞 (lxl07cells/mL)に混合し、 Gene Pulserキュベットにカロえ、 Gene Pulser II (Bio— Rad社製)を用いて 0.33kV, 950 ^ FDの容量でパルスをカ卩えた。エレクト口ポーレーシヨン処理により遺伝子導入した BaF3細胞を Ing/mLマウスインターロイキン 3 (以下、 mIL- 3、 Peprotech社製)、 500 g/mL Geneticin(Invitrogen社製)、 10% FBS(Invitrogen社製)を含む RPMI1640培地( Invitrogen社製)に加えて選抜し、ヒト Mpl発現 BaF3細胞株(以下、 BaF3-human Mpl) およびサル Mpl発現 BaF3細胞株(以下、 BaF3-monkey Mpl)を榭立した。選抜後は、 Ing/mL rhTPO(R&D社製)、 10% FBSを含む RPMI1640培地を用いて培養、維持した。
[0063] 1.2 Mpl発現 CHO細胞株の榭立
Flow Cytometryを用いた結合活性評価用の細胞株を得るために、全長 Mpl遺伝子 を発現する CHO細胞株の榭立を行った。はじめに、 pCXN2(Niwaら、 Gene 1991 ; 108 : 193-199)の Hindlll部位に pCHOIの DHFR遺伝子発現部位を挿入して、発現べクタ 一 PCXND3を作製した。 pCOS2- hMplfoll、 pCOS2- monkeyMplfollを铸型にして、 His-tag配列を含む Primerを用いて PCRにより増幅した各 Mpl遺伝子を pCXND3にクロ 一ユングし、 pCXND3-hMp卜 Hisおよび pCXND3- monkey Mp卜 Hisを構築した。
[0064] 作製した各ベクター (25 μ g)を PBSに懸濁した CHO- DG44細胞 (lxl07cells/mL)に 混合し、 Gene Pulserキュベットに加え、 Gene Pulser II (Bio- Rad社製)を用いて 1.5kV, 25 μ FDの容量でパルスをカ卩えた。エレクト口ポーレーシヨン処理により遺伝子導入し た CHO細胞を 500 μ g/mL Geneticin、 lxHT (Invitrogen社製)を含む CHO- S- SFMII 培地 (Invitrogen社製)に加えて選抜し、ヒト Mpl発現 CHO細胞株(以下、 CHO-human Mpl)およびサル Mpl発現 CHO細胞株(以下、 CHO- monkey Mpl)を榭立した。
[0065] 1.3 可溶型ヒト Mplタンパク質の調製
可溶型ヒト Mplタンパク質を調製するため、昆虫細胞 S19細胞で分泌産生する発現 系を以下のように構築した。ヒト Mplの細胞外領域(Gln26力 Trp491)の下流に FLAG タグを付カ卩した遺伝子を作製し、 pBACSurf- 1 Transfer Plasmid (Novagen社製)の Pstl- Smal部位に挿入し、 pBACSurfl- hMp卜 FLAGを作製した。続いて、 Bac- N- Blue Transfection Kit (Invitrogen)を用いて、 4 gの pBACSurfl- hMpト FLAGを S19細胞に 導入した。培養 3日後に培養上清を回収し、プラークアツセィにより組換えウィルスを 単離した。ウィルスストックを調製後に S19細胞に感染させて培養上清を回収した。
[0066] 得られた培養上清を用いて、以下のように可溶型ヒト Mplタンパク質を精製した。培 養上清を Q Sepharose Fast Flow (Amersham Biosciences社製)に吸着させた後に、 50mM Na- Phosphate Buffer, 0.01%(v/v) Tween20, 500mM NaCl (pH 7.2)を用いて溶 出した。溶出液を FLAG M2 -Agarose (SIGMA-ALDRICH社製)に吸着させた後に、 lOOmM Glycine- HC1, 0.01%(v/v) Tween20 (pH 3.5)を用いて溶出した。溶出後、直ち に 1M Tris-Cl (pH8.0)により中和し、 PD- 10 column (Amersham Biosciences社製)を 用いて、 PBS(-), 0.01% (v/v) Tween20に置換を行った。精製した可溶型 Mplタンパク 質を shMp卜 FLAGと称する。
[0067] 1.4 ヒト MpHgG Fc融合タンパク質の調製
ヒト MpHgG Fc融合タンパク質遺伝子は Bennettらの方法 (Bennettら、 J.Biol.Chem. 1991 ; 266 : 23060-23067)に従って作製した。ヒト Mplの細胞外領域 (Gln26から Trp491) をコードする塩基配列をヒト IgG- γ 1の Fc領域 (Asp216よりの下流の領域)をコードす る塩基配列に連結し、連結部に Fusion Linkerとして BstEII配列(アミノ酸 VaKThr)を 付加した。シグナル配列は、ヒト IgG H鎖可変領域のシグナルペプチド 19アミノ酸を使 用した。得られたヒト MpHgG Fc融合タンパク質遺伝子を pCXND3にクローユングし、 pCXND3- hMp卜 Fcを構築した。
[0068] 作製した各ベクター (25 μ g)を PBSに懸濁した CHO- DG44細胞 (lxl07cells/mL)に 混合し、 Gene Pulserキュベットにカロえ、 Gene Pulser II (Bio- Rad社製)を用いて 1.5kV, 25 FDの容量でパルスをカ卩えた。エレクト口ポーレーシヨン処理により遺伝子 導入した CHO細胞を 500 g/mL Geneticin、 ΙχΗΤを含む CHO-S-SFMII培地に加え て選抜し、 shMPL-Fc発現 CHO細胞株(CHO-hMp卜 Fc)を榭立した。
[0069] 得られた培養上清を用いて、以下のようにヒト MpHgG Fc融合タンパク質を精製し た。培養上清を Q Sepharose Fast Flow (Amersham Biosciences社製)に吸着させた後 に、 50mM Na- Phosphate Buffer, 0.01%(v/v) Tween20, 1M NaCl (pH 7.6)を用いて溶 出した。溶出液を HiTrap proteinG HPカラム(Amersham Biosciences社製)に吸着さ せた後に、 0.1 M Glycine— HC1, 150 mM NaCl, 0.01%(v/v) Tween20 (pH 2.7)を用い て溶出した。溶出後、直ちに 1M Tris-Cl (pH8.0)により中和し、 PD- 10 column (Amersham Biosciences社製)を用いて、 PBS (-) , 0.01% (v/v) Tween20に置換を行つ た。精製した可溶型 Mplタンパク質を hMpト Fcと称する。
[0070] 1.5 shMp卜 FLAGおよび BaF3- human Mplの免疫、ハイプリドーマの選抜
MRL/MpJUmmCrj- lpr/lprマウス(以下、 MRL/lprマウス、 日本チヤ一ルス'リバ一よ り購入)を用いて、 8週令より免疫を開始した。初回免疫は 100 /z g/匹の shMPL-FLAG にフロイント完全アジュバント(H37 Ra、ベタトン'ディッキンソン社製)をカ卩え、ェマル ジョン化したものを皮下に投与した。追加免疫は 50 g/匹の shMPL-FLAGにフロイン ト不完全アジュバント(ベタトン'ディッキンソン社製)を加え、ェマルジヨン化したものを 皮下に投与した合計 6回免疫を行ったマウス 3匹に対し、 g/匹の shMPL-FLAG を尾静脈内投与することにより最終免疫を行った。マウスミエローマ細胞
P3-X63Ag8Ul (P3U1、 ATCCより購入)とマウス脾臓細胞を混合し、 Polyethylene Glycol 1500 (Roche Diagnostics社製)をカ卩えながら混合することにより細胞融合を行 つた。翌日より HAT培地を用いて選抜を行 、、培養上清を用いて shMp卜 FLAGまた は hMpト Fcを固相化したィムノプレートを用いた ELISAおよび BaF3-hMplを用いた細 胞増殖活性を指標としたスクリーニングを実施した。陽性クローンについて、限界希 釈法によりモノクローンィ匕した後に、拡大培養を行い、培養上清を回収した。この方 法により、抗ヒト Mpl抗体を産生するハイブリドーマ VB22B, VB16, VB140, VB45Bを 取得した。
[0071] 一方で、 BaF3- human Mplを Balb/Cマウス(日本チヤ一ルス'リバ一より購入)に 1x10 7細胞を 1週間から 5ヶ月の間隔で腹腔内に合計 11回投与したマウスのマウス脾臓細 胞をマウスミエローマ細胞 P3U1と上述と同様に細胞融合を行った。翌日より HAT培 地を用いて選抜を行ヽ、培養上清を用いて BaF3-hMplを用いた細胞増殖活性を指 標としたスクリーニングを実施した。陽性クローンについて、限界希釈法によりモノクロ ーン化した後に、拡大培養を行い、培養上清を回収した。この方法により、抗ヒト Mpl 抗体を産生するハイプリドーマ TA136を取得した。
[0072] 1.6 抗ヒト Mpl抗体の解析 抗体濃度はャギ抗マウス IgG (gamma) (ZYMED社製)とアルカリフォスファタ一ゼ-ャ ギ抗マウス IgG (gammaXZYMED社製)を用いたマウス IgGサンドイッチ ELISAを行い、 アイソタイプの等しい巿販抗体をスタンダードにして、 GraphPad Prism (GraphPad Software, USA)を用いて検量線を作成し、抗体濃度の換算を行った。
[0073] 抗体のアイソタイプは、アイソタイプ特異的な二次抗体を用いた抗原依存的 ELISA にて決定した。 hMp卜 Fcを 1 μ g/mLとなるように coating buffer (O.lmM NaHCO
3
(pH9.6), 0.02%(w/v) NaN )で希釈したものをに加え、 4°Cにてー晚反応し、コーティン
3
グした。 Diluent buffer (50mM Tris— HCl(pH8.1), ImM MgCl , 150mM NaCl,
2
0.05%(v/v) Tween20, 0.02%(w/v) NaN , l%(w/v) BSA)にてブロッキング処理を行った
3
後、ノヽイブリドーマの培養上清をカ卩え、室温で 1時間放置した。 Rinse buffer
(0.05%(v/v) Tween20, PBS)にて洗浄した後、 Alkaline phosphatase標識したァイソタイ プ特異的二次抗体を加え、室温で 1時間放置した。発色は
SIGMA104(SIGMA— ALDRICH社製)を lmg/mLとなるように Substrate Buffer (50mM NaHCO (pH9.8), lOmM MgCl )に希釈したものを用い、 405nmの吸光度を Benchmark
3 2
Plus (Bio- Rad社製)にて測定した。
[0074] shMp卜 FLAGおよび hMPL-Fcに対する結合活性は、 ELISAにより評価した。精製し た shMp卜 FLAGおよび hMPL- Fcを 1 μ g/mLになるようにコーティングし、 Diluent bufferにてブロッキング処理を行った。ハイプリドーマの培養上清をカ卩え、室温で 1時 間放置した後、 Alkaline Phosphatase標識した抗マウス IgG抗体 (Zymed社製)を加え、 上記方法と同様に発色を行った。室温で 1時間発色させた後に 405應の吸光度を測 定し、 GraphPad Prismを用いて EC 値を算出した。
50
[0075] CHO- human Mpほたは CHO- monkey Mplを回収し、 lxl06cells/mLになるように FACS Buffer (1% FBS/ PBS)に懸濁した。 100 L/wellとなるように Multiscreen (Millipore社製)に分注し、遠心操作にて培養上清を除去した。 5 g/mLになるように 希釈した培養上清を加え、氷上にて 30分間反応させた。細胞を FACS bufferにて 1回 洗浄し、 FITC標識抗マウス IgG抗体(Beckman Coulter社製)を添カ卩し、氷上にて 30分 間反応させた。反応後、 500rpmで 1分間遠心し、上清を除き、 FACS Buffer 400 μしに 懸濁し、 EPICS ELITE ESP (Beckman Coulter)を用いてフローサイトメトリーを行った。 前方散乱光(forward scatter)及び側方散乱光(side scatter)のヒストグラムにて生細 胞集団にゲートを設定した。
[0076] 抗体のァゴニスト活性は、 TPO依存性増殖を示す BaF3-human Mpほたは
BaF3-monkey Mplを用いて評価した。各細胞をそれぞれ 4xl05cells/mLとなるように 10% Fetal Bovine Serum (Invitrogen社製)を含む RPMI1640(Invitrogen社製)に懸濁し 、 60 μ L/wellで 96well plateに分注した。 rhTPO (R&D社製)およびハイプリドーマ培養 上清の濃度を振り、各 wellに 40 L加え、 37°C、 5%CO条件下で、 24時間培養した。
2
10 μ L/wellで Cell Count Reagent SF (ナカライテスタ社製)をカ卩え、 2時間培養後に、 450 nmの吸光度 (対照 655nm)を Benchmark Plusにて測定し、 GraphPad Prismを用い て EC 値を算出した。
50
[0077] 以上に示す解析により、ヒト Mplに結合する抗体 VB22B, VB16, VB140,
VB45B,TA136を取得した。
[0078] 1.7 抗ヒト Mpl抗体の精製
ノ、イブリドーマの培養上清を用いて、以下のように抗ヒト Mpl抗体を精製した。培養 上清を HiTrap proteinG HPカラム(Amersham Biosciences社製)に吸着させた後に、 0.1 M Glycine- HC1 (pH 2.7)を用いて溶出した。溶出後、直ちに 1M Tris-Cl (pH9.0) により直ちに中和し、 PBSで一昼夜透析を行い、バッファー置換を行った。
[0079] 〔実施例 2〕 抗ヒト Mpl—本鎖抗体の作製
以下に抗ヒト Mpl抗体 VB22Bの一本鎖抗体作製例について示す。
2.1 抗ヒト Mpl抗体可変領域のクローニング
抗ヒト Mpl抗体を産生するハイブリドーマより抽出した Total RNAを用いて、 RT- PCR 法によって増幅した。 Total RNAは、 RNeasy Plant Mini Kits (QIAGEN社製)を用いて lxlO7細胞のハイプリドーマより抽出した。
[0080] 1 μ gの Total RNAを使用して、 SMART RACE cDNA Amplification Kit (
CLONTECH社製)を用いて、マウス IgG2b定常領域配列に相補的な合成オリゴヌタレ ォチド MHC-IgG2b (配列番号 : 3)またはマウス κ鎖定常領域塩基配列に相補的な 合成オリゴヌクレオチド kappa (配列番号: 4)を用いて、 5'末端側遺伝子断片を増幅し た。逆転写反応は 42°Cで 1時間 30分間反応させた。 PCR反応溶液 (50 L)の組成を次に示す。
5 μ Lの 10 X Advantage 2 PCR Buffer,
5 μ Lの 10 X Universal Primer A Mix、
0.2mM dNTPs (dATP, dGTP, dCTP, dTTP)、
1 μ Lの Advantage 2 Polymerase Mix
(以上の成分は!、ずれも CLONTECH社製)
2.5 Lの逆転写反応産物、
lOpmolの合成オリゴヌクレオチド MHC- IgG2bまたは kappa
また反応温度条件は次のとおりである。
94°Cの初期温度にて 30秒間、
94°C/5秒間、 72°C/3分間のサイクルを 5回反復
94°C/5秒間、 70°C/10秒間、 72°C/3分間のサイクルを 5回反復、
94°C/5秒間、 68°C/10秒間、 72°C/3分間のサイクルを 25回反復
最後に反応産物を 72°Cで 7分間加熱した。
[0081] PCR産物は QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガロースゲル 力 精製した後、 pGEM- T Easyベクター(Promega社製)へクローユングした。さらに、 ABI 3700 DNA Analyzer (Perkin Elmer社製)を用いて塩基配列を決定した。クロー- ングした VB22B H鎖可変領域(以下、 VB22B-VH)の塩基配列を配列番号: 5に、該 塩基配列によってコードされるタンパク質のアミノ酸配列を配列番号: 6に、 L鎖可変 領域 (以下、 VB22B-VL)の塩基配列を配列番号: 7に、該塩基配列によってコードさ れるタンパク質のアミノ酸配列を配列番号: 8に示す。また、 VB22B, VB16, VB140, VB45B, TA136のアミノ酸配列を図 1に示す。
[0082] 2.2 抗ヒト Mpl抗体 Diabody発現ベクターの作製
5アミノ酸からなるリンカ一配列を用いた VB22B—本鎖 Fv (以下、 VB22B Diabody)を コードする遺伝子は、 VB22B-VHをコードする遺伝子の 3'末端および VB22B-VLをコ ードする遺伝子の 5'末端に(Gly Ser)力も成るリンカ
4 1 一をコードする塩基配列を付カロ させた遺伝子について、それぞれ PCR法を用いて増幅し、連結することにより構築し [0083] VB22B-VHの前方プライマー 70 · 115HF (配列番号: 9)は、 EcoRI部位を有するよう に設計し、 VB22B-VHの後方プライマー 33 · 115HR (配列番号: 10)は、 VB22B-VH の C末端をコードする DNAにハイブリダィズし、かつ(Gly Ser)力 成るリンカ
4 1 一をコー ドする塩基配列ならびに VB22B-VLの N末端をコードする DNAにハイブリダィズする 塩基配列を有するように設計した。 VB22B-VLの前方プライマー 33 - 115LF (配列番 号: 11)は、 VB22B-VLの N末端をコードする塩基配列ならびに(Gly Ser)から成るリ
4 1 ンカーをコードする塩基配列、 VB22B-VHの C末端をコードする塩基配列を有するよ うに設計した。 VB22B-VLの後方プライマー 33 ' 115LR (配列番号: 12)は、
VB22B- VLの C末端をコードする DNAにハイブリダィズし、かつ FLAGタグ
(AspTyrLysAspAsp AspAspLysZ配列番号: 13)をコードする塩基配列を有し、さらに Notl部位を有するように設計した。
[0084] 第一 PCRにおいて、 VB22B- VHおよびリンカ一配列と VB22B- VLおよびリンカ一配 列を含む 2つの PCR反応物を以下のように合成した。
PCR反応溶液 (50 L)の組成を次に示す。
5 ;z L 10 X PCR Bufferゝ
0.4mM dNTPs (dATP, dGTP, dCTP, dTTP)、
2.5ユニットの DNAポリメラーゼ TaKaRa Ex Taq
(以上の成分は!、ずれも宝酒造社製)、
lOngの VB22B- VHまたは VB22B- VL遺伝子を含む pGEM- T Easyベクター、 lOpmolの合成オリゴヌクレオチド 70' 115HF、 33 · 115HRまたは 33 · 115LF、 33 · 115LR
また反応温度条件は次のとおりである。
94°Cの初期温度にて 30秒間、
94°C/15秒間、 72°C/2分間のサイクルを 5回反復
94°C/15秒間、 70°C/2分間のサイクルを 5回反復、
94°C/ 15秒間、 68°C/2分間のサイクルを 28回反復
最後に反応産物を 72°Cで 5分間加熱した。
[0085] 約 400bpの PCR産物を QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガ ロースゲル力も精製した後、各 PCR産物の一部を用いて以下のように第二 PCRを行 つた o
PCR反応溶液 (50 L)の組成を次に示す。
5 ;z L 10 X PCR Bufferゝ
0.4mM dNTPs (dATP, dGTP, dCTP, dTTP)、
2.5ユニットの DNAポリメラーゼ TaKaRa Ex Taq
(以上の成分は!、ずれも宝酒造社製)、
1 μ Lの第一 PCR産物(2種類)、
lOpmolの合成オリゴヌクレオチド 70 · 115HF、 33 - 115LR
また反応温度条件は次のとおりである。
94°Cの初期温度にて 30秒間、
94°C/15秒間、 72°C/2分間のサイクルを 5回反復
94°C/15秒間、 70°C/2分間のサイクルを 5回反復、
94°C/ 15秒間、 68°C/2分間のサイクルを 28回反復
最後に反応産物を 72°Cで 5分間加熱した。
[0086] 約 800bpの PCR産物を QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガ ロースゲル力も精製した後、制限酵素 EcoRI (宝酒造社製)および制限酵素 Notl (宝 酒造社製)で消化した後に、 QIAquick PCR Purification Kit (QIAGEN社製)を用いて 精製し、 pCXND3にクローユングし、 pCXND3- VB22B dbを作製した。
[0087] 2.3 抗ヒト Mpl抗体 sc(Fv)2発現ベクターの作製
VB22B由来の 2つの H鎖可変領域および 2つの L鎖可変領域を含む改変抗体 [sc(Fv)2]を発現するプラスミドを作製するために、前述の pCXND3-VB22B dbを用い て以下のように PCR法により修飾した。 sc(Fv)2遺伝子の構築過程について、図 2に示 した。
[0088] はじめに、 VB22B-VHをコードする遺伝子の 3'末端および VB22B-VLをコードする 遺伝子の 5'末端に 15アミノ酸力も成るリンカ一(Gly Ser)をコードする塩基配列を付
4 3
カロさせた遺伝子について、それぞれ PCR法を用いて増幅し、連結することにより構築 した。この構築過程において、 3種類のプライマーを新たに設計した。 VB22B-VHの 前方プライマー VB22B_ft)vu (プライマー A,配列番号: 14)は、 5'末端に EcoRI部位を 有し、 VB22B dbの Gln22および Leu23が PvuII部位に変換するように設計した。
VB22B- VHの後方プライマー sc- rL15 (プライマー B,配列番号: 15)は、 VB22B- VH の C末端をコードする DNAにハイブリダィズし、かつ(Gly Ser)力 成るリンカ
4 3 一をコー ドする塩基配列ならびに VB22B-VLの N末端をコードする DNAにハイブリダィズする 塩基配列を有するように設計した。 VB22B-VLの前方プライマー SC-1L15 (プライマー C,配列番号: 16)は、 VB22B-VLの N末端をコードする塩基配列ならびに(Gly Ser)
4 3 力 成るリンカ一をコードする塩基配列、 VB22B-VHの C末端をコードする塩基配列 を有するように設計した。
[0089] 第一 PCRにおいて、 VB22B- VHおよびリンカ一配列と VB22B- VLおよびリンカ一配 列を含む 2つの PCR反応物を以下のように合成した。
PCR反応溶液 (50 L)の組成を次に示す。
5 ;z L 10 X PCR Bufferゝ
0.4mM dNTPs (dATP, dGTP, dCTP, dTTP)、
2.5ユニットの DNAポリメラーゼ TaKaRa Ex Taq
(以上の成分は!、ずれも宝酒造社製)、
10ngの pCXND3- VB22B db、
lOpmolの合成オリゴヌクレオチド VB22B- ft)vu、 sc- rL15または sc- 1L15、 33 - 115LR (プライマー D)
また反応温度条件は次のとおりである。
94°Cの初期温度にて 30秒間、
94°C/15秒間、 72°C/2分間のサイクルを 5回反復
94°C/15秒間、 70°C/2分間のサイクルを 5回反復、
94°C/ 15秒間、 68°C/2分間のサイクルを 28回反復
最後に反応産物を 72°Cで 5分間加熱した。
[0090] 約 400bpの PCR産物を QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガ ロースゲル力も精製した後、各 PCR産物の一部を用いて以下のように第二 PCRを行 PCR反応溶液 (50 L)の組成を次に示す。
5 ;z L 10 X PCR Bufferゝ
0.4mM dNTPs (dATP, dGTP, dCTP, dTTP)、
2.5ユニットの DNAポリメラーゼ TaKaRa Ex Taq
(以上の成分は!、ずれも宝酒造社製)、
1 μ Lの第一 PCR産物(2種類)、
lOpmolの合成オリゴヌクレオチド 70 · 115HF、 33 - 115LR
また反応温度条件は次のとおりである。
94°Cの初期温度にて 30秒間、
94°C/15秒間、 72°C/2分間のサイクルを 5回反復
94°C/15秒間、 70°C/2分間のサイクルを 5回反復、
94°C/ 15秒間、 68°C/2分間のサイクルを 28回反復
最後に反応産物を 72°Cで 5分間加熱した。
[0091] 約 800bpの PCR産物を QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガ ロースゲル力も精製した後、制限酵素 EcoRI (宝酒造社製)および制限酵素 Notl (宝 酒造社製)で消化した後に、 QIAquick PCR Purification Kit (QIAGEN社製)を用いて 精製し、 pBacPAK9(CLONTECH社製)にクローユングし、 pBacPAK9- scVB22Bを作 製した。
[0092] 次に、 pBacPAK9_scVB22Bの PvuII部位に挿入する断片を作製した。すなわち N末 端が欠けた VB22B-VHと VB22B-VLを(Gly Ser)力 成るリンカ一で連結したアミノ酸
4 3
をコードする遺伝子をさらに VB22B-VHの N末端をコードする遺伝子と(Gly Ser)力も
4 3 成るリンカ一をコードする塩基配列で連結する断片で、両末端が PvuII認識配列とな る断片である。 2種類のプライマーを新たに設計し、 PCR法を用いて、この断片を作製 した。目的断片の前方プライマー Fv2_f (プライマー E,配列番号:17)は、 5'末端に PvuII部位を有し、 VB22B-VHの 5'末端側の配列を持つように設計した。 目的断片の 後方プライマー Fv2-r (プライマー F,配列番号: 18)は、 VB22B-VLの C末端をコード する DNAにハイブリダィズし、かつ(Gly Ser)から成るリンカ
4 3 一をコードする塩基配列 ならびに VB22B-VHの N末端をコードする DNAにハイブリダィズする塩基配列、さらに PvuII部位を有するように設計した。 pBacPAK9-scVB22Bを铸型にして、以下のように PCRを行った。
PCR反応溶液 (50 L)の組成を次に示す。
5 ;z L 10 X PCR Bufferゝ
0.4mM dNTPs (dATP, dGTP, dCTP, dTTP)、
2.5ユニットの DNAポリメラーゼ TaKaRa Ex Taq
(以上の成分は!、ずれも宝酒造社製)、
10 μ gの pBacPAK9— scVB22B、
lOpmolの合成オリゴヌクレオチド Fv2-f、 Fv2-r
また反応温度条件は次のとおりである。
94°Cの初期温度にて 30秒間、
94°C/15秒間、 72°C/2分間のサイクルを 5回反復
94°C/15秒間、 70°C/2分間のサイクルを 5回反復、
94°C/ 15秒間、 68°C/2分間のサイクルを 28回反復
最後に反応産物を 72°Cで 5分間加熱した。
[0093] 約 800bpの PCR産物を QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガ ロースゲルから精製した後、 pGEM- T Easyベクター(Promega社製)へクローユングし た。塩基配列の決定後、制限酵素 PvuII (宝酒造社製)で消化した後に、目的断片を 回収した。 pBacPAK9_scVB22Bを制限酵素 PvuII (宝酒造社製)で消化した後に、回 収した断片を連結し、 PBacPAK9-VB22B sc(Fv)2を作製した。作製したベクターを制 限酵素 EcoRI (宝酒造社製)および制限酵素 Notl (宝酒造社製)で消化した後に、 QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、約 1800bpの断片をァガロー スゲルから精製し、発現ベクター pCXND3にクローユングし、 pCXND3- VB22B sc(Fv)2を作製した。
[0094] 2.4 動物細胞を用いた抗ヒト Mpl—本鎖抗体の発現
CHO-DG44細胞を用いた一本鎖抗体の安定発現細胞株の作製は次のようにして 行った。 Gene Pulserll (BioRad社製)を用いたエレクト口ポレーシヨン法により遺伝子 導入した。発現ベクター (25 μ g)と PBSに懸濁した CHO- DG44細胞(1 X 107細胞/ mL )の 0.75mLを混合したものを氷上で 10分間冷却し、キュベットに移した後に 1.5kV、 25 FDの容量にてパルスを与えた。室温にて 10分間の回復期間の後、エレクトロボレ ーシヨン処理された細胞を、 500 μ g/mL Geneticin (Invitrogen社製)を含む
CHO-S-SFMII培地(Invitrogen社製)に加えて選抜し、発現 CHO細胞株を榭立した。 VB22B sc(Fv)2は、この方法で安定発現細胞株およびその培養上清を調製した。
[0095] COS7細胞を用いた一本鎖抗体の一過性発現は次のようにして行った。発現べクタ 一 (10 μ g)と PBSに懸濁した COS7細胞(1 X 107細胞/ mL)の 0.75mLを混合したものを 氷上で 10分間冷却し、キュベットに移した後に 1.5kV、 25 μ FDの容量にてパルスを与 えた。室温にて 10分間の回復期間の後、エレクト口ポレーシヨン処理された細胞を、 10% FBSを含む DMEM培地(Invitrogen社製)にカロえ、ー晚培養した後に、 PBSで洗浄 後に CHO-S-SFMII培地をカ卩えて約 3日間培養した。 VB22B Diabodyは、この方法で 培養上清を調製した。
[0096] 2.5 培養上清中の抗ヒト Mpl—本鎖抗体の定量
COS7細胞あるいは CHO細胞に一過性発現させた抗ヒト Mpl—本鎖抗体の培養上 清中の濃度は、表面プラズモン共鳴を利用して測定した。すなわち
BIAcore2000(Biacore社製)に Sensor Chip CM5 (Biacore社製)をセットし、
ANTI-FLAG M2 Monoclonal Antibody (SIGMA- ALDRICH社製)を結合した。流速 5mL/secで適濃度のサンプルを流し、 50mMジェチルァミンを流して結合した抗体を 解離させた。サンプルを流したときの質量変化を測定し、標準品の質量変化に基づ いて作成した検量線を用いて、濃度を算出した。 Diabodyについての標準品は、 dbl2E10 (特願 2001-27734参照)を使用し、 sc(Fv)2についての標準品は同じ遺伝子 構造を持つ 12E10 sc(Fv)2を使用した。
[0097] 2.6 抗 Mpl Diabodyおよび一本鎖抗体の精製
VB22B Diabody発現 C0S7細胞あるいは CH0細胞の培養上清を、 50 mM Tris-HCl(pH7.4), 150 mM NaCl, 0.05% Tween20で平衡化した Anti- Flag M2 Affinity Gel (SIGMA- ALDRICH社製)カラムに吸着させ、 100 mM Glycine- HCl(pH 3.5)で溶 出させた。溶出画分は、直ちに 1M Tris-HCl (pH8.0)で中和を行い、 HiLoad 26/60 Superdex200pg (Amersham- Bioscience社製)カラムを用いてゲルろ過クロマトグラフィ 一を行った。ゲルろ過クロマトグラフィーのバッファ一は、 PBS、 0.01% Tween20を使用 した。
[0098] VB22B sc(Fv)2発現 COS7細胞あるいは CHO細胞の培養上清を、 Diabody精製と同 一条件で精製を行った。また、大量に調製する場合には、 CH0細胞の培養上清を、 20mMリン酸緩衝液(pH6.8)で平衡化した Macro- Prep Ceramic Hydroxyapatite Type I (Bio-Rad社製)カラムにかけ、 250mMリン酸緩衝液 (pH6.8)で段階的に溶出し た。溶出画分は、限外ろ過膜を用いて濃縮後、 HiLoad 26/60 Superdex200pgカラム を用いて、ゲルろ過クロマトグラフィーを行い、分子量が約 70kD— 40kDに相当する画 分を分取した。この画分を、 50 mM Tris-HCl(pH7.4), 150 mM NaCl, 0.05% Tween20 で平衡化した Anti- Flag M2 Affinity Gelカラムに吸着させ、 100 mM Glycine- HCl(pH 3.5)で溶出させた。溶出画分は、直ちに 1M Tris-HCl (pH8.0)で中和を行い、 HiLoad 26/60 Superdex200pgカラムを用いてゲルろ過クロマトグラフィーを行った。ゲルろ過 クロマトグラフィーのバッファ一は、 20mM酢酸 (pH6.0), 150 mM NaCl, 0.01% Tween 80を使用した。
各精製ステップにおいて、 Diabodyおよび sc(Fv)2の確認は、 SDS- PAGEおよび抗 Flag抗体(SIGMA-ALDLICH社)を用いた Western Blottingを用いて行った。それぞ れ、分取したピーク画分を Laemliの方法に準じて電気泳動し、クマシ一ブリリアントブ ルーで染色した結果、 Diabodyでは、見かけ上の分子量約 29kDaに、また sc(Fv)2では 、見かけ上の分子量約 55kDaに、それぞれの単一のバンドが検出された。
[0099] 2.7 抗ヒト Mpl—本鎖抗体の TPO様ァゴニスト活性の評価
TP0依存性増殖を示す BaF3-human Mplを用いて TPO用ァゴ-スト活性を評価した 。各細胞を 1% Fetal Bovine Serum(Invitrogen社製)を含む RPMI1640 (Invitrogen社製) で 2回洗浄した後、 4xl05cells/mLとなるように 10% Fetal Bovine Serumを含む
RPMI1640に懸濁し、 60 μ L/wellで 96well plateに分注した。 rhTPO (R&D社製)、 COS7培養上清または精製品の濃度を振り、各 wellに 40 Lカ卩え、 37°C、 5%CO条件
2 下で、 24時間培養した。 10 μ L/wellで WST- 8試薬(Cell Count Reagent SF、ナカライ テスタ社製)をカ卩え、直後に Benchmark Plusを用いて 450 nmの吸光度 (対照 655nm) を測定し、 2時間培養後に、再度 450 nmの吸光度 (対照 655nm)を測定した。 WST-8試 薬は生細胞数に応じて 450nmの発色反応を呈することから、 2時間の吸光度変化を 指標に TPO様ァゴ-スト活性を評価した。また、 GraphPad Prismを用いて EC 値を算
50 出した。
[0100] 精製した VB22B Diabodyおよび VB22B sc(Fv)2を用いて、 BaF3- human Mpl,
BaF3-monkey Mplでの TPO様ァゴ-スト活性を評価した結果を図 3、図 4に示す。ま た、 COS7で VB16, VB140, VB45B, TA136の一本鎖抗体(Diabody, sc(Fv)2)を発現 させ、培養上清を用いて BaF3-human Mplでの TPO様ァゴ-スト活性を評価した結果 をそれぞれ図 5、図 6、図 7、図 8に示す。さらに、これらの解析により得られた EC 値
50 を表 1に示す。
[0101] [表 1]
Figure imgf000033_0001
各抗体を用いた BaF3- human Mpl, BaF3- monkey Mplのァゴニスト活性(EC 値: pM
50
)
[0102] この結果より、 Diabodyより sc(Fv)2構造をもつ一本鎖抗体の方力 ァゴ-スト活性が 高いことが確認された。ァゴニスト活性は、抗原結合部位が 2価であることが重要であ るが、抗原結合部位間の距離や角度も重要な要素であると考えられる (WO
02/33072および WO 02/33073参照)。取得した抗体の認識するェピトープの違いに より、最適な距離や角度が異なることから、最適なリンカ一の長さは、各抗体に依存 すると考えられる。し力し、リンカ一の長さが 5— 12merと短いときには、 non- covalentな Diabodyを形成するが、リンカ一長を長くする (12mer以上)では Diabodyは形成されず に scFv—量体を形成することが報告されている(Hudsonら、 J Immunol. Methods 1999 ; 231 : 177-189)。よって、長いリンカ一を使用しても 2価の抗原結合部位が形成 される sc(Fv)2は、高いァゴ-スト活性を有する可能性が高くなると推測される。また、 non- covalentな Diabodyよりもリンカ一で結合している sc(Fv)2の方が安定性に優れて いることから、高い活性を誘起できる可能性もある。
産業上の利用可能性
本発明により、完全長の抗体としては、ァゴニスト活性が弱いかあるいは、ほとんど 活性がない場合においても、低分子化、具体的には Diabody化、あるいは sc(Fv)2ィ匕 することによって、活性を上昇させることが可能となる。これにより、従来は、完全長抗 体としては活性が弱いため、医薬品等として開発が困難であったものであっても、低 分子化することにより、医薬品等として開発が可能となる。また、比活性が上昇するこ とにより、生産面でも、コストを削減することが可能になる。また、低分子化抗体は、糖 鎖の結合がないことから、組換え体を作製する場合においても、動物細胞、酵母、大 腸菌など各種発現系の利用が可能であり、利便性が高くなる。

Claims

請求の範囲
[I] 2つ以上の重鎖可変領域と、 2つ以上の軽鎖可変領域をリンカ一で結合し、一本鎖 ポリペプチドにすることにより、抗体の活性を増強させる方法。
[2] 抗体の重鎖可変領域と軽鎖可変領域を含む第一のポリペプチドと、抗体の重鎖可 変領域と軽鎖可変領域を含む第二のポリペプチドをリンカ一で結合することにより、 抗体の活性を増強させる方法。
[3] 抗体を sc(Fv)2にすることにより、抗体の活性を増強させる方法。
[4] 活性がァゴニスト活性である請求項 1一 3の ヽずれかに記載の方法。
[5] リンカ一がペプチドリンカ一であることを特徴とする、請求項 1一 4のいずれかに記 載の方法。
[6] ペプチドリンカ一の長さが 5— 30アミノ酸であることを特徴とする、請求項 5に記載の 方法。
[7] ペプチドリンカ一の長さが 12— 18アミノ酸であることを特徴とする、請求項 6に記載 の方法。
[8] ペプチドリンカ一の長さが 15アミノ酸であることを特徴とする、請求項 7に記載の方 法。
[9] 請求項 1一 8のいずれかに記載の方法により、活性が増強された抗体。
[10] 以下の工程を含む、請求項 9に記載の抗体の製造方法。
(a) 2つ以上の抗体重鎖可変領域、 2つ以上の抗体軽鎖可変領域、及び各可変領 域を結合するペプチドリンカ一をコードする DNAを作製する工程、
(b) 該 DNAを含むベクターを作製する工程、
(c) 該ベクターを宿主細胞に導入する工程、
(d) 該宿主細胞を培養する工程
[II] DNA力 2つの重鎖可変領域、 2つの軽鎖可変領域、 3つのペプチドリンカ一をコー ドしていることを特徴とする、請求項 10に記載の製造方法。
[12] DNAが、重鎖可変領域、ペプチドリンカ一、軽鎖可変領域、ペプチドリンカ一、重鎖 可変領域、ペプチドリンカ一、軽鎖可変領域の順でコードしていることを特徴とする、 請求項 11に記載の製造方法。
PCT/JP2004/018493 2003-12-12 2004-12-10 抗体の活性を増強させる方法 WO2005056798A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04820305A EP1710308A4 (en) 2003-12-12 2004-12-10 METHOD FOR ENHANCING THE ACTIVITY OF ANTIBODY
CA002548950A CA2548950A1 (en) 2003-12-12 2004-12-10 Methods for enhancing antibody activity
AU2004296336A AU2004296336B2 (en) 2003-12-12 2004-12-10 Methods for enhancing antibody activity
JP2005516194A JP4634305B2 (ja) 2003-12-12 2004-12-10 抗体の活性を増強させる方法
US10/582,413 US20080009038A1 (en) 2003-12-12 2004-12-10 Methods for Enhancing Antibody Activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-415760 2003-12-12
JP2003415760 2003-12-12

Publications (1)

Publication Number Publication Date
WO2005056798A1 true WO2005056798A1 (ja) 2005-06-23

Family

ID=34675143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018493 WO2005056798A1 (ja) 2003-12-12 2004-12-10 抗体の活性を増強させる方法

Country Status (9)

Country Link
US (1) US20080009038A1 (ja)
EP (1) EP1710308A4 (ja)
JP (1) JP4634305B2 (ja)
KR (1) KR20060130605A (ja)
CN (1) CN1918295A (ja)
AU (1) AU2004296336B2 (ja)
CA (1) CA2548950A1 (ja)
TW (1) TW200530266A (ja)
WO (1) WO2005056798A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107784A1 (ja) * 2004-05-11 2005-11-17 Chugai Seiyaku Kabushiki Kaisha 血小板減少症治療剤
US7993642B2 (en) 2003-12-12 2011-08-09 Chugai Seiyaku Kabushiki Kaisha Anti-MPL antibodies
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696325B2 (en) * 1999-03-10 2010-04-13 Chugai Seiyaku Kabushiki Kaisha Polypeptide inducing apoptosis
KR20030055274A (ko) 2000-10-20 2003-07-02 츄가이 세이야꾸 가부시키가이샤 저분자화 트롬보포에틴 아고니스트 항체
EP2351838A1 (en) * 2000-10-20 2011-08-03 Chugai Seiyaku Kabushiki Kaisha Crosslinking agonistic antibodies
DE60324700D1 (de) * 2002-10-11 2008-12-24 Chugai Pharmaceutical Co Ltd Zelltod-induzierender wirkstoff
JP2004279086A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
EP1609803A4 (en) * 2003-03-31 2006-05-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODY AGAINST CD22 AND ITS USE
WO2004111233A1 (ja) * 2003-06-11 2004-12-23 Chugai Seiyaku Kabushiki Kaisha 抗体の製造方法
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR
KR20060130606A (ko) * 2003-12-12 2006-12-19 추가이 세이야쿠 가부시키가이샤 세포사 유도제
US20070281327A1 (en) * 2003-12-12 2007-12-06 Kiyotaka Nakano Methods of Screening for Modified Antibodies With Agonistic Activities
WO2006106905A1 (ja) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha 会合制御によるポリペプチド製造方法
WO2006123724A1 (ja) * 2005-05-18 2006-11-23 The University Of Tokushima 抗hla抗体を利用した新規医薬品
TW200718780A (en) * 2005-06-10 2007-05-16 Chugai Pharmaceutical Co Ltd Sc(Fv)2 site-directed mutant
CN105177091A (zh) * 2006-03-31 2015-12-23 中外制药株式会社 用于纯化双特异性抗体的抗体修饰方法
EP2044956A4 (en) * 2006-06-14 2010-08-11 Chugai Pharmaceutical Co Ltd PROMOTER OF THE PROLIFERATION OF HEMATOPOIETIC STEM CELLS
AR061986A1 (es) * 2006-07-13 2008-08-10 Chugai Pharmaceutical Co Ltd Agentes inductores de muerte celular
CL2008000719A1 (es) * 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku Agente terapeutico para cancer resistente a agentes quimioterapeuticos que comprende un anticuerpo que reconoce hla de clase i como ingrediente activo; composicion farmaceutica que comprende dicho anticuerpo; y metodo para tratar cancer resistente a
US20110206672A1 (en) * 2010-02-25 2011-08-25 Melvyn Little Antigen-Binding Molecule And Uses Thereof
RU2730594C2 (ru) 2013-09-27 2020-08-24 Чугаи Сейяку Кабусики Кайся Способ получения полипептидного гетеромультимера

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079494A1 (fr) * 2000-04-17 2001-10-25 Chugai Seiyaku Kabushiki Kaisha Anticorps agonistes
WO2002033073A1 (fr) 2000-10-20 2002-04-25 Chugai Seiyaku Kabushiki Kaisha Anticorps agoniste degrade
WO2002033072A1 (en) 2000-10-20 2002-04-25 Chugai Seiyaku Kabushiki Kaisha Degraded tpo agonist antibody

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
CA2126967A1 (en) * 1992-11-04 1994-05-11 Anna M. Wu Novel antibody construct
AU690528B2 (en) * 1992-12-04 1998-04-30 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
US5780021A (en) * 1993-03-05 1998-07-14 Georgetown University Method for treating type 1 diabetes using α-interferon and/or β-i
DE69434097T2 (de) * 1993-09-03 2006-02-02 Chugai Seiyaku K.K. Apoptose induzierender monoklonaler antikörper
US6719972B1 (en) * 1994-06-03 2004-04-13 Repligen Corporation Methods of inhibiting T cell proliferation or IL-2 accumulation with CTLA4- specific antibodies
US5885574A (en) * 1994-07-26 1999-03-23 Amgen Inc. Antibodies which activate an erythropoietin receptor
DE69534530T2 (de) * 1994-08-12 2006-07-06 Immunomedics, Inc. Für b-zell-lymphom und leukämiezellen spezifische immunkonjugate und humane antikörper
US8771694B2 (en) * 1994-08-12 2014-07-08 Immunomedics, Inc. Immunoconjugates and humanized antibodies specific for B-cell lymphoma and leukemia cells
US6451523B1 (en) * 1994-09-14 2002-09-17 Interneuron Pharmaceuticals, Inc. Detection of a leptin receptor variant and methods for regulating obesity
DE69611288T2 (de) * 1995-02-28 2001-07-19 The Procter & Gamble Company, Cincinnati Herstellung eines kohlensäurefreien getränks mit verbesserter mikrobieller stabilität
WO1997000271A1 (en) * 1995-06-14 1997-01-03 The Regents Of The University Of California Novel high affinity human antibodies to tumor antigens
FR2745008A1 (fr) * 1996-02-20 1997-08-22 Ass Pour Le Dev De La Rech En Recepteur nucleaire de glucocorticoides modifie, fragments d'adn codant pour ledit recepteur et procedes dans lesquels ils sont mis en oeuvre
WO1997032601A1 (fr) * 1996-03-06 1997-09-12 Chugai Seiyaku Kabushiki Kaisha Procede de criblage de substances induisant l'apoptose
ATE316792T1 (de) * 1996-05-09 2006-02-15 Pharma Pacific Pty Ltd Stimulierung wirtseigener abwehrmechanismen gegen krebs
US7531643B2 (en) * 1997-09-11 2009-05-12 Chugai Seiyaku Kabushiki Kaisha Monoclonal antibody inducing apoptosis
EP1035132B1 (en) * 1997-09-11 2008-05-14 Chugai Seiyaku Kabushiki Kaisha Monoclonal antibody inducing apoptosis
US7081360B2 (en) * 1998-07-28 2006-07-25 Cadus Technologies, Inc. Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties
US7696325B2 (en) * 1999-03-10 2010-04-13 Chugai Seiyaku Kabushiki Kaisha Polypeptide inducing apoptosis
US20020028178A1 (en) * 2000-07-12 2002-03-07 Nabil Hanna Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
US20040058393A1 (en) * 2000-04-17 2004-03-25 Naoshi Fukishima Agonist antibodies
EP2351838A1 (en) * 2000-10-20 2011-08-03 Chugai Seiyaku Kabushiki Kaisha Crosslinking agonistic antibodies
US7262278B2 (en) * 2001-10-15 2007-08-28 Kirin Beer Kabushiki Kaisha Anti-HLA-DR antibody
AU2003224624B2 (en) * 2002-02-21 2008-08-28 Duke University Reagents and treatment methods for autoimmune diseases
EP1510943A4 (en) * 2002-05-31 2007-05-09 Celestar Lexico Sciences Inc INTERACTION PREDICTION DEVICE
AU2003243651B2 (en) * 2002-06-17 2008-10-16 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Specificity grafting of a murine antibody onto a human framework
US7115373B2 (en) * 2002-06-27 2006-10-03 Genox Research, Inc. Method of testing for atopic dermatitis by measuring expression of the NOR-1 gene
US20070281327A1 (en) * 2003-12-12 2007-12-06 Kiyotaka Nakano Methods of Screening for Modified Antibodies With Agonistic Activities
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR
KR20060130606A (ko) * 2003-12-12 2006-12-19 추가이 세이야쿠 가부시키가이샤 세포사 유도제
KR20070010046A (ko) * 2004-04-06 2007-01-19 제넨테크, 인크. Dr5 항체 및 그의 용도
EP1757686A4 (en) * 2004-04-09 2008-03-12 Chugai Pharmaceutical Co Ltd INDUCER OF CELL DEATH
WO2006123724A1 (ja) * 2005-05-18 2006-11-23 The University Of Tokushima 抗hla抗体を利用した新規医薬品
AU2006256041B2 (en) * 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
TW200718780A (en) * 2005-06-10 2007-05-16 Chugai Pharmaceutical Co Ltd Sc(Fv)2 site-directed mutant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001079494A1 (fr) * 2000-04-17 2001-10-25 Chugai Seiyaku Kabushiki Kaisha Anticorps agonistes
WO2002033073A1 (fr) 2000-10-20 2002-04-25 Chugai Seiyaku Kabushiki Kaisha Anticorps agoniste degrade
WO2002033072A1 (en) 2000-10-20 2002-04-25 Chugai Seiyaku Kabushiki Kaisha Degraded tpo agonist antibody

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GOEL A. ET AL: "Genetically engineered tetravalent single-chain Fv of the pancarcinoma monoclonal antibody CC49: improved biodistribution and potential for therapeutic application", CANCER RES., vol. 60, no. 24, 2000, pages 6964 - 6971, XP001084295 *
GOEL A. ET AL: "Tc-Labeled Divalent and Tetravalent CC49 Single-Chain Fv's : Novel Imaging Agents for Rapid In Vivo Localization of Human Colon Carcinoma", J.NUCL.MED., vol. 42, no. 10, 2001, pages 1519 - 1527, XP002987162 *
HUDSON ET AL., J IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189
HUDSON P.J. ET AL: "High avidity scFv multimers; diabodies and triabodies", J. IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189, XP004186084 *
See also references of EP1710308A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993642B2 (en) 2003-12-12 2011-08-09 Chugai Seiyaku Kabushiki Kaisha Anti-MPL antibodies
US8008073B2 (en) 2003-12-12 2011-08-30 Chugai Seiyaku Kabushiki Kaisha Anti-Mpl antibodies
WO2005107784A1 (ja) * 2004-05-11 2005-11-17 Chugai Seiyaku Kabushiki Kaisha 血小板減少症治療剤
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9777066B2 (en) 2005-06-10 2017-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2

Also Published As

Publication number Publication date
CA2548950A1 (en) 2005-06-23
TW200530266A (en) 2005-09-16
AU2004296336A1 (en) 2005-06-23
CN1918295A (zh) 2007-02-21
US20080009038A1 (en) 2008-01-10
AU2004296336B2 (en) 2011-09-08
EP1710308A4 (en) 2008-11-19
KR20060130605A (ko) 2006-12-19
TWI347950B (ja) 2011-09-01
EP1710308A1 (en) 2006-10-11
JPWO2005056798A1 (ja) 2007-12-06
JP4634305B2 (ja) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4634305B2 (ja) 抗体の活性を増強させる方法
US20240294672A1 (en) Cytotoxicity-inducing therapeutic agent
JP4708190B2 (ja) 抗Mpl抗体
JP5224580B2 (ja) sc(Fv)2部位特異的変異体
US20070281327A1 (en) Methods of Screening for Modified Antibodies With Agonistic Activities
JP5620626B2 (ja) 会合制御によるポリペプチド製造方法
KR102398736B1 (ko) 중쇄와 경쇄의 회합이 제어된 항원 결합 분자
WO2005107784A1 (ja) 血小板減少症治療剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516194

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2548950

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004820305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004296336

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067013908

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004296336

Country of ref document: AU

Date of ref document: 20041210

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004296336

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200480041599.8

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004820305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10582413

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067013908

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10582413

Country of ref document: US