WO2005054912A1 - 波長板 - Google Patents

波長板 Download PDF

Info

Publication number
WO2005054912A1
WO2005054912A1 PCT/JP2004/017800 JP2004017800W WO2005054912A1 WO 2005054912 A1 WO2005054912 A1 WO 2005054912A1 JP 2004017800 W JP2004017800 W JP 2004017800W WO 2005054912 A1 WO2005054912 A1 WO 2005054912A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
wave plate
film
retardation
phase difference
Prior art date
Application number
PCT/JP2004/017800
Other languages
English (en)
French (fr)
Inventor
Takuhiro Ushino
Tatsuya Hirono
Masayuki Sekiguchi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003401690A external-priority patent/JP2005164834A/ja
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US10/581,201 priority Critical patent/US7618715B2/en
Priority to EP04819835A priority patent/EP1691223A4/en
Publication of WO2005054912A1 publication Critical patent/WO2005054912A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a wave plate used for a laser optical system. More specifically, the present invention relates to a wave plate using at least two transparent resin films having a function of giving a phase difference to transmitted light (hereinafter, referred to as “retardation films”).
  • An optical disc device is an optical information recording / reproducing device whose use has been greatly expanded in recent years due to reasons such as non-contact, large amount of information per unit volume, high speed access, and low cost. Utilizing these characteristics, various recording media have been developed.
  • a laser such as a compact disc (CD), laser disc (LD), CD-ROM, or DVD-ROM that reproduces pre-recorded information as sound, images, or computer programs.
  • CD-R and DVD-R which can write information once and reproduce such information, magneto-optical disks (MO), DVD-RAM, and DVD-RW, which can repeatedly record and reproduce information, have been developed.
  • a 1Z2 ⁇ wave plate (hereinafter also referred to as a “1Z2 wavelength plate”) placed in the middle of the optical path to the photodetector, or a 1Z4 ⁇ wave plate (hereinafter also referred to as a “1 ⁇ 4 wavelength plate”). And the like having an optical pickup device in which an optical pickup device is disposed.
  • the 1Z2 wave plate gives an optical path difference of ⁇ ⁇ 2 (and thus a phase difference of ⁇ ) between two orthogonal polarization components of a specific wavelength. It gives an optical path difference of ⁇ ⁇ 4 (and thus a phase difference of ⁇ ⁇ 2) between two orthogonal polarization components of a specific wavelength.
  • a wave plate used in a liquid crystal projector functions, for example, as a polarization conversion element, and separates natural light incident on the polarization conversion element into P-polarized light and S-polarized light whose polarization planes are orthogonal to each other.
  • a 1Z2 wavelength plate is used as means for substantially rotating the polarization plane of incident polarized light by 90 degrees.
  • the light is separated into the three primary colors of light (RGB) by a dichroic mirror, then transmitted through the corresponding liquid crystal panels, combined by a cross prism, and emitted from the projection lens.
  • RGB primary colors of light
  • a 1Z4 wavelength plate may be used for the purpose of improving brightness.
  • the wavelength of the dispersed light has a certain width, there is a case where a wave plate that has a 1Z4 wavelength in a wide band as well as a specific short wavelength is required.
  • Wave plates used in these applications include a birefringent mica, a wave plate formed of a single crystal such as quartz, quartz, calcite, LiNbO, and LiTaO, and a glass substrate.
  • Inorganic materials such as a wave plate having a birefringent film on the surface of an undersubstrate obtained by depositing an inorganic material from an oblique direction on the undersubstrate, and a wave plate having a birefringent LB (Langmuir-Blodget) film are conventionally used.
  • PC polycarbonate
  • TAC triacetyl acetate
  • PVA polybutyl alcohol
  • PVB polybutyl butyral
  • PET polyethylene terephthalate
  • PP polypropylene
  • polyarylate polysulfone
  • a wave plate with a birefringent property is formed by forming a polymer liquid crystal film on a glass substrate for flatness, maintaining regularity, and molecular orientation, or sandwiching it between two glass substrates.
  • DVDs are rapidly spreading as high-density information recording media, but on the other hand, read-only or write-type optical disks such as CDs, CD-ROMs, and CD-Rs are already on the market. Due to its widespread use, optical disc devices are strongly required to be able to record and reproduce data on and from various types of optical discs of different types. Is also required.
  • Patent Documents 13 to 13 In order to respond to these demands, use of a broadband wave plate (retardation plate) corresponding to a plurality of read / write lasers has been proposed (Patent Documents 13 to 13).
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-1422278
  • a wave plate has been proposed in which is orthogonalized.
  • two or more retardation films are used in order to obtain desired optical characteristics, not only the retardation films are adhered and fixed to the glass substrate, but also the retardation films are usually adhered and fixed together.
  • each film may be independently incorporated into the laser optical system.
  • the optical axis of each retardation film is considered. It is indispensable to incorporate the device after precisely adjusting it, and it takes time and effort to manufacture the equipment. Problems arise.
  • Patent Document 1 JP 2001-101700 A
  • Patent Document 2 JP 2001-208913 A
  • Patent Document 3 JP-A-2002-14228
  • An object of the present invention has been made in view of the above-mentioned problems of the prior art, and is excellent in initial characteristics, hardly affected by use environment and manufacturing environment, and excellent in long-term reliability.
  • An object of the present invention is to provide a wave plate for a device and a liquid crystal projector.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, have obtained two or more wave plates having retardation film strength, which are suitable for a laser light transmitting portion.
  • Wave plates in which the retardation films are not adhered to each other and the retardation films are adhered to each other in at least a part of a portion excluding a laser light transmitting portion (hereinafter, also referred to as a “first wavelength plate”). ) was found to be suitable as a wave plate for optical information recording / reproducing devices and liquid crystal projectors, which has excellent initial characteristics, is not easily affected by the use environment and manufacturing environment, and has excellent long-term reliability.
  • Wave plate (hereinafter, also referred to as “second wave plate”) laminated and fixed in the optical information recording / reproducing device that has excellent initial characteristics, is not easily affected by the use environment and manufacturing environment, and has excellent long-term reliability.
  • the present invention has been found to be suitable as a wave plate for a liquid crystal projector or a liquid crystal projector.
  • Adhesive Adhesive whose glass transition temperature is 0 ° C or more and whose Young's modulus at 23 ° C is 30M Pa or more.
  • the difference in glass transition temperature between the adhesive (A) and the adhesive (B) is 60 ° C or more, and the Young's modulus of the adhesive (A) and the adhesive (B) at 3 ° C is The difference is 40MPa or more.
  • a film made of a cyclic olefin resin as a raw material (hereinafter, referred to as a resin) is excellent in heat resistance, low in moisture absorption, excellent in retardation stability and small in wavelength dependence of retardation.
  • the retardation film force obtained by stretching and orienting “cyclic cyclic resin film.”
  • they found that they were excellent in initial characteristics and excellent in long-term reliability, which is less affected by the use environment and manufacturing environment, and that they are most suitable for use in wave plates for liquid crystal projectors and optical information recording / reproducing devices.
  • the laser light transmitting portions of the two or more retardation films are not bonded and have a gap, and if necessary, are supported by the laser light transmitting portions.
  • the wave plate is fixed so that the body does not exist, and such a wave plate has a very small change in wavefront aberration for a long time and can maintain high performance.
  • the second wave plate of the present invention is a wave plate in which at least two retardation films are laminated, and a glass substrate is laminated on at least one surface of the laminated retardation film,
  • the retardation films are selected from each other, and the retardation film and the glass substrate are selected from adhesives (A) and (B), and are laminated and fixed with different adhesives, respectively.
  • the change in wavefront aberration is extremely small for a long time, and high performance can be maintained.
  • an optical information recording / reproducing apparatus and a liquid crystal projector apparatus which are inexpensive and maintain high performance for a long time can be manufactured.
  • FIG. 1 is a configuration diagram of a wave plate manufactured in Example 1, (a) is an observation diagram of an upward force, and (b) is an observation diagram from a side.
  • FIG. 2 is a configuration diagram of a wavelength plate manufactured in Example 2, (a) is an observation diagram of an upward force, and (b) is an observation diagram from a side.
  • Examples of the retardation film used in the first and second wave plates of the present invention include polycarbonate (PC), triacetyl acetate (TAC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), and polyethylene terephthalate ( PET), polypropylene (PP), polyacrylate, polysulfone, polyethersulfone, acrylic resin, cyclic olefin resin And a transparent resin film stretched and oriented. Above all, a stretched and oriented cyclic olefin resin film is preferably used.
  • Examples of the cyclic olefin resin preferably used for a retardation film in the present invention include the following (co) polymers.
  • a ring-opened polymer of a cyclic olefin (hereinafter, referred to as “specific monomer”) represented by the following general formula (I).
  • R 1 -R 4 are each a hydrogen atom, a halogen atom, a hydrocarbon group having 130 carbon atoms, or another monovalent organic group, and may be the same or different.
  • R 2 or R 3 are each a hydrogen atom, a halogen atom, a hydrocarbon group having 130 carbon atoms, or another monovalent organic group, and may be the same or different.
  • R 4 may be integrated to form a divalent hydrocarbon group.R 1 or R 2 and R 3 or may be bonded to each other to form a monocyclic or polycyclic structure. Good. m is 0 or a positive integer And p is 0 or a positive integer. ]
  • Specific examples of the specific monomer include the following compounds, but the present invention is not limited to these specific examples.
  • R 1 and R 3 are a hydrogen atom or a hydrocarbon group having 110, more preferably 114, and particularly preferably 112 hydrocarbon groups in the above general formula (I).
  • Examples of the polar group of the specific monomer include a carboxyl group, a hydroxyl group, an alkoxycarbyl group, an aryloxycarbol group, an amino group, an amide group, a cyano group, and the like. These polar groups are a methylene group. May be bonded via a linking group such as In addition, a hydrocarbon group or the like in which a divalent organic group having polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group is also exemplified as the polar group. . Of these, a carboxyl group, a hydroxyl group, an alkoxycarbyl group or an aryloxycarbonyl group is preferred, and an alkoxycarbyl group or an aryloxycarbonyl group is particularly preferred.
  • R 2 and R 4 are a polar group represented by the formula (CH) COOR
  • cyclic olefin resin has a high glass transition temperature, low hygroscopicity, and excellent adhesion to various materials.
  • R is a hydrocarbon group having 112, more preferably 114, particularly preferably 112 carbon atoms, preferably an alkyl group.
  • n is usually from 0 to 5. However, the smaller the value of n, the higher the glass transition temperature of the obtained cyclic olefin resin. The body is preferred because of its ease of synthesis.
  • R 1 or R 3 is preferably an alkyl group, an alkyl group having 114 carbon atoms, more preferably an alkyl group having 112 carbon atoms, particularly methyl.
  • this alkyl group be a specific polar group represented by the above formula (CH) COOR.
  • the functional group be bonded to the same carbon atom as the bonded carbon atom in that the resulting cyclic olefin resin can have low hygroscopicity.
  • the copolymerizable monomer examples include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclootaten, and dicyclopentadiene.
  • the number of carbon atoms of cycloolefin is preferably 4 to 20 atoms, more preferably 5 to 12. These can be used alone or in combination of two or more.
  • the specific monomer Z copolymerizable monomer is preferably used in a weight ratio of 100 ZO-50Z50, more preferably 100 ⁇ 0-60 ⁇ 40.
  • the ring-opening polymerization reaction for obtaining (1) a ring-opening polymer of a specific monomer and (2) a ring-opening copolymer of a specific monomer and a copolymerizable monomer is carried out by metathesis. Performed in the presence of a catalyst.
  • This metathesis catalyst comprises (a) at least one compound selected from the group consisting of W, Mo and Re; (b) a group IA element (eg, Li, Na, K, etc.) of the Deming periodic table; , ⁇ g, Ca, etc.), Group ⁇ elements (eg, Zn, Cd, Hg, etc.), Group ⁇ elements (eg, B, A1, etc.), Group IVA elements (eg, Si, Sn, Pb, etc.), or A compound of a group IVB element (for example, Ti, Zr, etc.) having at least one carbon bond or one element hydrogen bond of the element, and a catalyst capable of combining with at least one selected element. .
  • an additive (c) described below may be added.
  • a typical example of a compound of W, Mo or Re suitable as the component (a) is WC1
  • component (b) examples include n—C H Li, (C H) Al) A1C1
  • Representative examples of the component (c) as an additive include the ability to suitably use alcohols, aldehydes, ketones, and amines. Further, JP-A-1-132626, page 8, right The compound shown in the lower column, line 16, line 1, page 9, upper left column, line 17, can be used.
  • the amount of the metathesis catalyst to be used is generally in the range of 1: 500 to 1: 50,000 in terms of the molar ratio of the component (a) to the specific monomer, and is preferably from 1: 500 to 1: 50,000. Is 1: 1,000— 1
  • the range is 10,000.
  • the ratio of the component (a) to the component (b) is such that (a) :( b) is 1: 1 to 1:50, preferably 1 in terms of metal atomic ratio.
  • the molar ratio of component (a) to component (c) is such that (c) :( a) is in the range of 0.005: 1 to 15: 1, preferably 0.05: 1 to 7: 1. You.
  • Solvents used in the ring-opening polymerization reaction include, for example, pentane, hexane, heptane, octane, nonane, Alkanes such as decane; cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; chlorobutane, bromohexane, Halkanes such as methylene chloride, dichloroethane, hexamethylene dibutamide, cyclobenzene, chloroform, tetrachloroethylene, etc., aryl halides; ethyl acetate, n-butyl acetate,
  • solvent specific monomer (weight ratio)
  • weight ratio usually 1: 1 to 10: 1, preferably 1: 1 to 5: 1.
  • the molecular weight of the ring-opened (co) polymer obtained is controlled by the polymerization temperature, catalyst type, and solvent type.
  • the molecular weight regulator is adjusted to coexist in the reaction system.
  • suitable molecular weight regulators include, for example, ⁇ -age olefins such as ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1 heptene, 1-octene, 1-nonene, 1-decene and the like. And styrene. Of these, 1-butene and 1-hexene are particularly preferred.
  • molecular weight regulators can be used alone or in combination of two or more.
  • the amount of the molecular weight modifier to be used is in the range of 0.005 to 0.6 monol, preferably 0.02 to 0.5 monol per 1 mol of the specific monomer subjected to the ring-opening polymerization reaction.
  • a specific monomer and a copolymerizable monomer may be subjected to ring-opening copolymerization in the ring-opening polymerization step.
  • a co-gen compound such as isoprene, a styrene-butadiene copolymer, an ethylene non-conjugated gen copolymer, or an unsaturated hydrocarbon polymer containing two or more carbon-carbon double bonds in the main chain, such as polynorbornene
  • the specific monomer may be subjected to ring-opening polymerization.
  • the ring-opened (co) polymer obtained as described above can be used as it is, but is obtained by hydrogenating the olefinic unsaturated bond in the molecule of this (co) polymer.
  • Hydrogen-added (co) polymers are preferred because they have excellent heat-resistant coloring properties and light resistance and can improve the durability of the retardation film.
  • an ordinary method for hydrogenating an olefinic unsaturated bond can be applied. That is, a hydrogenation catalyst is added to a solution of the ring-opening polymer, and a hydrogen gas at normal pressure of 1 to 300 atm, preferably 3 to 200 atm is acted on at 0 to 200 ° C, preferably 20 to 180 ° C. It's done by letting it go.
  • the hydrogenation catalyst those used in the hydrogenation reaction of ordinary olefinic conjugates can be used.
  • the hydrogenation catalyst includes a heterogeneous catalyst and a homogeneous catalyst.
  • heterogeneous catalysts include solid catalysts in which noble metal catalyst substances such as radium, platinum, nickel, rhodium, and ruthenium are supported on a carrier such as carbon, silica, alumina, and titer. Catalysts may be mentioned.
  • the form of the catalyst may be powder or granular.
  • These hydrogenation catalysts are ring-opened (co) polymer: hydrogenation catalyst (weight ratio), 1: 1 X 10 - 6 - 1: is used in a ratio of two.
  • the hydrogenation rate of the hydrogenated (co) polymer is 50% or more, preferably 90% or more, more preferably 98% or more, and most preferably 99% or more, as measured by 500 MHz and single NMR.
  • the aromatic group When an aromatic group is contained in the ring-opened (co) polymer molecule, the aromatic group is less likely to reduce heat-resistant coloring and light resistance, but on the contrary, has an optical characteristic such as a refractive index or a refractive index. It may not necessarily be hydrogenated because it may exhibit more advantageous properties such as wavelength dispersion.
  • the cyclic olefin resin used in the present invention (4) the ring-opened (co) polymer of the above (1) or (2) is cyclized by a Friedel-Crafts reaction, and then hydrogenated (co). Polymers can also be used.
  • the method of cyclizing the ring-opened (co) polymer of the above (1) or (2) by the Friedel-Crafts reaction is not particularly limited, but the method described in Japanese Patent Application Laid-Open No. 50-154399 discloses an acid-forming polymer.
  • a known method using a compound can be employed.
  • Specific examples of the acidified compound include A1C1, BF
  • Stonsted acid is used.
  • the cyclized ring-opened (co) polymer can be hydrogenated similarly to the ring-opened (co) polymer of the above (1) or (2). Further, as the cyclic olefin resin used in the present invention, (5) a saturated copolymer of the above specific monomer and an unsaturated double bond-containing conjugate can also be used.
  • Examples of the unsaturated double bond-containing conjugate include ethylene, propylene, butene and the like, preferably a C 2-12, more preferably a C 2-8 olefin compound.
  • the preferred usage range of the specific monomer Z-unsaturated double bond-containing compound is 90Z10-40Z60 by weight, and more preferably 85Z15-50Z50.
  • a usual addition polymerization method can be used to obtain a saturated copolymer of a specific monomer and an unsaturated double bond-containing compound.
  • the catalyst for synthesizing the saturated copolymer (5) at least one selected from titanium compounds, zirconium compounds, and vanadium compounds, and an organic aluminum compound as a co-catalyst are used.
  • titanium tetrachloride, titanium trichloride, etc. are used as the titanium hydride, and bis (cyclopentagel) zirconium chloride and bis (cyclopentagel) zirconium are used as the zirconium compounds.
  • Dichloride and the like can be mentioned.
  • R is a hydrocarbon group
  • X is a halogen atom
  • Examples of the electron donor include oxygen-containing electron donors such as alcohols, phenols, ketones, aldehydes, esters of carboxylic acids, organic acids and inorganic acids, ethers, acid amides, acid anhydrides, and alkoxysilanes.
  • oxygen-containing electron donors such as alcohols, phenols, ketones, aldehydes, esters of carboxylic acids, organic acids and inorganic acids, ethers, acid amides, acid anhydrides, and alkoxysilanes.
  • nitrogen-containing electron donors such as ammonia, amine, nitrile, and isocyanate.
  • the organoaluminum compound as the co-catalyst includes at least one selected from compounds having at least one aluminum-carbon bond or aluminum-hydrogen bond. Seeds are used.
  • the ratio of the vanadium compound to the organoaluminum compound is such that the ratio of the aluminum atom to the vanadium atom (A1 / V) is 2 or more, preferably 2 to 50, and particularly preferably 2 to 50. It is in the range of 3-20.
  • the solvent for the polymerization reaction used for the addition polymerization the same solvent as that used for the ring-opening polymerization reaction can be used. Adjustment of the molecular weight of the obtained (5) saturated copolymer is usually performed using hydrogen.
  • cyclic olefin resin used in the present invention (6) at least one selected from the above-mentioned specific monomer and a butyl cyclic hydrocarbon monomer or a cyclopentadiene monomer Addition copolymers of the above monomers and hydrogenated copolymers thereof can also be used.
  • butyl-based cyclic hydrocarbon-based monomer examples include butylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopro- pylcyclopentene; 4-vinylcyclopentane; Vinylated 5-membered ring hydrocarbon monomers, such as butylcyclopentane monomers such as lecyclopentane, 4-butylcyclohexene, 4-isopropenylcyclohexene, 1-methyl-4 isopropyloxycyclohexene, 2- Methylenyl, such as 4-butylcyclohexene, 2-methyl-4-isoprobecyclohexene, and other cyclohexene monomers, such as 4-butylcyclohexane, and 2-methyl-4-isoprobecyclohexane.
  • butylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopro- pyl
  • Monomer styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methyl Styrene-based monomers such as styrene, 1-bulnaphthalene, 2-bi-lunanaphthalene, 4-phenylstyrene, and ⁇ -methoxystyrene; d-terpenes, 1-terpenes, diterpenes, d-limonene, 1-limonene, dipentene, etc.
  • butylcycloheptene monomer such as 4 bulcycloheptene, 4 isopropylcycloheptene, butylcycloheptane monomer such as 4 bulcycloheptane, 4 isopropylcycloheptone, etc.
  • they are styrene and ⁇ -methylstyrene. These can be used alone or in combination of two or more.
  • Examples of the cyclopentadiene-based monomer used for the monomer of the addition copolymer include cyclopentadiene, 1-methylcyclopentadiene, 2-methylcyclopentadiene, and 2-ethyl. Examples include cyclopentadiene, 5-methylcyclopentadiene, and 5,5-methylcyclopentadiene. Preferably it is cyclopentadiene. These can be used alone or in combination of two or more.
  • the addition type (co) polymer of at least one kind of monomer selected from the above-mentioned specific monomer, vinyl-based cyclic hydrocarbon-based monomer and cyclopentadiene-based monomer is as described in (5) above. It can be obtained by the same addition polymerization method as for a saturated copolymer of a specific monomer and an unsaturated double bond-containing compound.
  • the hydrogenated (co) polymer of the addition type (co) polymer can be obtained by the same hydrogenation method as the hydrogenated (co) polymer of the (3) ring-opened (co) polymer. .
  • cyclic olefin resin used in the present invention (7) an alternating copolymer of the specific monomer and acrylate may also be used.
  • Examples of the atalylate used in the production of the alternating copolymer of the specific monomer and the atalylate include, for example, carbon acrylates such as methyl acrylate, 2-ethylhexyl acrylate, and cyclohexyl acrylate.
  • C2-C20 heterocyclic group-containing acrylates such as linear, branched or cyclic alkyl acrylates, glycidyl acrylates, 2-tetrahydrofurfuryl acrylates, etc.
  • Examples include acrylates having a polycyclic structure having 7 to 30 carbon atoms, such as acrylates containing an aromatic ring group having 6 to 20 carbon atoms, isopropylol acrylate, dicyclopentyl acrylate, and the like.
  • the total of the above-mentioned specific monomer and atalylate is adjusted to 100 mol in the presence of a Lewis acid.
  • the specific monomer has a ratio of 30 to 70 mol and the acrylate has a ratio of 70 to 30 mol, preferably the specific monomer has a ratio of 0 to 60 mol and the acrylate has a ratio of 60 to 40 mol.
  • radical polymerization is carried out at a ratio of the specific monomer power of 5-55 mol and acrylate to 55-45 mol.
  • the amount of the Lewis acid used to obtain the alternating copolymer of the specific monomer and atalylate is 0.001 to 1 mol per 100 mol of atalylate.
  • known organic peroxides or azobis-based radical polymerization initiators that generate free radicals can be used, and the polymerization reaction temperature is usually 20 ° C to 80 ° C, preferably 5 ° C. — 60 ° C.
  • the solvent for the polymerization reaction the same solvent as that used in the ring-opening polymerization reaction can be used.
  • the "alternate copolymer” as used in the present invention means that the structural units derived from the specific monomer are not adjacent to each other, that is, the structural unit derived from the specific monomer is always adjacent to the atalylate. It means a copolymer having a structure that is a structural unit derived from a terephthalic acid, and does not deny a structure in which structural units derived from atalylate exist adjacent to each other.
  • the cyclic olefin resin used in the present invention includes (1) one (2) ring-opening (co) polymer, (3)-(4) hydrogenated (co) polymer, 5) a force selected from a saturated copolymer, (6) an addition type (co) polymer, or a hydrogenated (co) polymer thereof, and (7) an alternating copolymer. Further, an ultraviolet absorber or the like may be added for further stabilization.
  • antioxidants for example, 2,6-di-tert-butyl-4-methylphenol, 2,2'-dioxy-3,3'-di-tert-butyl-5,5'-dimethyldiphenylmethane, tetrakis [ Methylene —3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane; by adding UV absorbers such as 2,4-dihydroxybenzophenone and 2-hydroxy-4-methoxybenzophenone Can be stable. Further, additives such as a lubricant can be added for the purpose of improving workability.
  • the preferred molecular weight of the cyclic olefin resin used in the present invention is 0.2 to 5 dlZg, more preferably 0.3 to 3 dlZg, particularly preferably 0.4 to 1.5 dl inh in terms of intrinsic viscosity [ ⁇ ].
  • Zg the number average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC)
  • Mr is 8,000-100,000, more preferably 10,000-80,000, particularly preferred is ⁇ 12,000-50,000
  • Mw The molecular weight (Mw) is preferably in the range of 20,000 to 300,000, more preferably ⁇ 30,000 to 250,000, and particularly preferably ⁇ 40,000 to 200,000.
  • the intrinsic viscosity [r?] The number average molecular weight and the weight average molecular weight are within the above ranges,
  • the glass transition temperature (Tg) of the cyclic olefin resin used in the present invention is usually 120 ° C. or higher, preferably 120-350 ° C., more preferably 130-250 ° C., and particularly preferably. Or 140-200 ° C. If the Tg is lower than 120 ° C., the heat from the laser light source and its adjacent parts greatly changes the optical properties of the obtained cyclic olefin resin film, which is not preferable. On the other hand, if the Tg exceeds 350 ° C, the possibility of thermal degradation of the resin increases when the material is heated to a temperature close to Tg, such as in a stretching process.
  • the content of the gel contained in the cyclic olefin resin used in the present invention is usually as low as possible, usually 5% by weight or less, preferably 1% by weight or less. If the gel content is large, it may become an optical defect when the wave plate is formed.
  • the saturated water absorption at 23 ° C. of the cyclic olefin resin used in the present invention is preferably in the range of 0.05 to 2% by weight, more preferably 0.1 to 1% by weight.
  • the saturated water absorption is within this range, the phase difference is uniform, the adhesion between the obtained cyclic olefin resin film and a glass substrate is excellent, and no separation occurs during use, and It has excellent compatibility with antioxidants and the like, and can be added in large amounts.
  • the saturated water absorption is less than 0.05% by weight, adhesion to a support such as a glass substrate or a transparent support is poor, and peeling is liable to occur.
  • the resin film tends to change its dimensions due to water absorption.
  • the above saturated water absorption is a value obtained by immersing in 23 ° C water for one week and measuring the increased weight according to ASTM D570.
  • the cyclic olefin resin used in the present invention includes a photoelastic coefficient (C)
  • a large photoelastic coefficient (C) is an external factor when the polymer is used in a glassy state.
  • phase difference is easily generated due to the generated stress, etc., for example, when laminated or fixed to a support as in the present invention.
  • unnecessary phase difference is likely to be generated due to residual strain at the time of bonding and minute stress generated by material shrinkage due to temperature change and humidity change. Therefore, the smaller the photoelastic coefficient (C) is, the better.
  • a large stress optical coefficient (C) means that, for example, a cyclic olefin resin film.
  • the photoelastic coefficient (C) is preferably 0 to 100 (X 10 to 12 Pa—, more preferably
  • X10-Pa- 1 Preferably 0-80 (X10-Pa- 1 ), particularly preferably 0-50 (X10-Pa- 1 ), more preferably 0-30 (X10-Pa- 1 ), most preferably 0- 20 (X 10— Pa— 1 ).
  • C photoelastic coefficient
  • the stress generated when the retardation film is fixed to the support, or the phase difference caused by the environmental change during use the deviation of the allowable error range of the optimal bonding optical axis angle occurs.
  • the amount of transmitted light may decrease, which is not preferable.
  • the water vapor permeability of the cyclic olefin resin used in the present invention when formed into a 25 m thick film under the conditions of 40 ° C and 90% RH, is usually 1 to 400 gZm 2 ′24 hr. , Preferably 5 to 350 gZm 24 hr, more preferably 10 to 300 gZm 24 hr.
  • the water vapor permeability within this range, the water content and the wave plate of the adhesive (A) and the adhesive (B) used for bonding the support such as a glass plate or a transparent support to the retardation film can be reduced. Is it possible to reduce characteristic changes due to the humidity of the used environment? Are preferred.
  • the cyclic olefin resin film used in the first and second wave plates of the present invention is obtained by subjecting the above cyclic olefin resin to a melt molding method or a solution casting method (solvent casting method). Alternatively, it can be obtained by forming a sheet.
  • the solvent casting method is preferred from the viewpoint of improving the uniformity of the film thickness and the surface smoothness.
  • the melt molding method is preferred in terms of manufacturing cost.
  • the method for obtaining the cyclic olefin resin film by the solvent casting method is not particularly limited, and a known method may be applied.
  • the cyclic olefin resin film may be dissolved or dispersed in a solvent. Then, a liquid having an appropriate concentration is prepared, and a force or coating is applied onto an appropriate carrier, and after drying, the carrier is peeled off as much as possible.
  • various conditions of a method for obtaining a cyclic olefin resin film by a solvent casting method will be described, but the present invention is not limited to the various conditions.
  • the concentration of the resin is usually 0.1 to 90% by weight, preferably 1 to 50% by weight, more preferably 10 to 50% by weight. Make it 35% by weight. If the concentration of the resin is less than the above range, it becomes difficult to secure the thickness of the film, and problems such as the surface smoothness of the film being obtained due to foaming due to evaporation of the solvent are caused. On the other hand, if the concentration exceeds the above range, the solution viscosity becomes too high, and the thickness and surface of the obtained cyclic olefin resin film are not easily uniform, which is not preferable.
  • the viscosity of the above solution at room temperature is usually 11,000, OOmPa's, preferably 10-100, OOmPa, s, and more preferably 100-100, OOmPa, s. Especially preferred is 1,000 to 40,000 mPa's.
  • Solvents used include aromatic solvents such as benzene, toluene, and xylene; cellosolve solvents such as methyl cellosolve, ethyl ethyl solvent; 1-methoxy-2-propanol; diacetone alcohol, acetone, cyclohexanone, and methyl ethyl ketone.
  • the SP value (solubility parameter) force is usually 10-30 (MPa 1/2 ), preferably 10-25 (MPa 1/2 ), and more preferably 15-25 (MPa 1/2 ). 1/2 ), and particularly preferably a solvent in the range of 15-20 (MPa 12 ) can be used to obtain a cyclic olefin-based resin film having excellent surface uniformity and optical characteristics.
  • the above solvents can be used alone or in combination of two or more.
  • the range of the SP value in the case of the mixed system be within the above range.
  • the SP value in the mixed system can be predicted by the weight ratio.For example, in the case of two types of mixing, if the weight fractions are Wl and W2 and the SP values are SP1 and SP2, the mixed system can be predicted.
  • a metal drum, a steel belt, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or the like is prepared by applying the above solution using a die coater.
  • Teflon registered trademark
  • it can be produced by applying a solution to a substrate by spraying, brushing, roll spin coating, debbing, or the like, drying the obtained coating film, and peeling the film from the substrate.
  • the thickness and the surface smoothness may be controlled by repeatedly applying.
  • the drying step of the solvent casting method is not particularly limited, and may be carried out by a commonly used method, for example, a method of passing through a drying furnace through a number of rollers. When bubbles are generated, the characteristics of the film are remarkably deteriorated. To avoid this, it is preferable to use two or more drying steps, and to control the air volume at a certain temperature in each step.
  • the amount of residual solvent in the cyclic olefin resin film is usually 10% by weight or less, preferably 5% by weight or less, more preferably 1% by weight or less, and particularly preferably 0.5% by weight or less. is there. If the residual solvent amount exceeds 10% by weight, The dimensional change due to is large, which is not preferable. Further, Tg is lowered by the residual solvent, and heat resistance is also lowered, which is not preferable.
  • the amount of the residual solvent may need to be appropriately adjusted within the above range in some cases.
  • the amount of the residual solvent is usually 10 to 0.1% by weight, preferably 5 to 0.1% by weight, more preferably 1 to 0.1% by weight. May be 0.1% by weight.
  • the stretching process may be facilitated, or the control of the retardation may be facilitated.
  • the thickness of the cyclic olefin resin film used in the present invention is usually 0.1 to 500 / zm, preferably 0.1 to 300 ⁇ , and more preferably 1 to 250 m.
  • the thickness is less than 0.1 m, handling becomes substantially difficult.
  • it exceeds 500 / zm it becomes difficult to wind the film into a roll, and the wavelength plate of the present invention for high transmittance of light such as a laser beam has a low transmittance. Absent.
  • the thickness distribution of the cyclic olefin resin film used in the present invention is usually within ⁇ 20%, preferably within ⁇ 10%, more preferably within ⁇ 5%, particularly preferably within ⁇ 5% of the average value. Within 3%.
  • the variation in thickness per 1 cm is usually 10% or less, preferably 5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
  • the retardation film composed of the cyclic olefin resin film used in the first and second wave plates of the present invention is preferably a film obtained by stretching the cyclic olefin resin film obtained by the above method. Used for Specifically, it can be produced by a known uniaxial stretching method or biaxial stretching method. In other words, there are a horizontal uniaxial stretching method using a tenter method, a compression stretching method between holes, a vertical uniaxial stretching method using rolls with different circumferences, etc. ⁇ is a biaxial stretching method combining a horizontal uniaxial and a vertical uniaxial stretching, and an inflation method The stretching method can be used.
  • the stretching speed is usually 11 to 5,000% Z minutes, preferably 50 to 1,000% Z minutes, more preferably 100 to 1,000% Z minutes, and particularly preferably. Ten 0—500% Z min.
  • stretching may be performed simultaneously in two directions, or after uniaxial stretching, stretching may be performed in a direction different from the initial stretching direction.
  • the intersection angle between the two stretching axes is usually in the range of 120-60 degrees.
  • the stretching speed may be the same in each stretching direction, and may be different.
  • the stretching speed is 11 to 5,000% Z minutes, preferably 50 to 1,000% Z minutes, and more preferably 100 to 1,000% Z minutes. %, Particularly preferably 100 to 50% oZ.
  • the stretching temperature is not particularly limited, but is usually Tg ⁇ 30 ° C, preferably Tg ⁇ 10 °, based on the glass transition temperature (Tg) of the cyclic olefin resin of the present invention. C, more preferably in the range of Tg-5-Tg + 10 ° C. It is preferable that the content is within the above range, since it is possible to suppress the occurrence of the phase difference unevenness and to easily control the refractive index ellipsoid.
  • the stretching ratio is not particularly limited because it is determined by desired properties, but is usually 1.01 to 10 times, preferably 1.1 to 5 times, and more preferably 1.1 to 3.5 times. It is. If the stretching ratio exceeds 10 times, it may be difficult to control the phase difference.
  • the stretched film may be cooled as it is, but is allowed to stand for at least 10 seconds or more, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes, in an atmosphere of Tg-20 ° C-Tg. Is preferred.
  • a phase difference film having a stable cyclic resin type resin film with little change over time in the phase difference characteristic can be obtained.
  • the linear expansion coefficient of the annular Orefin system ⁇ film used Te Contact ⁇ the present invention in the range of 100 ° C from the temperature 20 ° C, preferably not more than 1 X 10- 4 (lZ ° C ) , and the preferably the further or less 9 X 10- 5 (1Z ° C ), especially Ri preferably 8 X 10- 5 (1Z ° C ) der less, and most preferably 7 X 10- 5 (1 / ° C) or less.
  • the difference between the linear expansion coefficients of the extending Shin direction it vertically preferably not greater than 5 X 10- 5 (1Z ° C ), more preferably 3 X 10- 5 (lZ ° C) or less, particularly preferably not more than 1 X 10- 5 (lZ ° C ).
  • the coefficient of linear expansion to be within the above range, when the above-described cyclic olefin resin film is used as the wave plate of the present invention, stress changes such as temperature and humidity during use are affected. The change in phase difference is suppressed, and the wave plate of the present invention is used. Long-term stability can be obtained when used.
  • the film stretched as described above is a force that causes molecules to be oriented by stretching to give a phase difference to transmitted light.
  • This phase difference is determined by the phase difference value of the film before stretching, the stretching ratio, the stretching temperature, It can be controlled by the thickness of the film after stretch orientation.
  • the phase difference is defined by the product (And) of the refractive index difference (An) of the birefringent light and the thickness (d).
  • the stretching ratio is large, and the absolute value of the retardation tends to be larger in the film, so that a retardation film having a desired retardation value is obtained by changing the stretching ratio. be able to.
  • the retardation value of each retardation film is required. May be the same or different.
  • the retardation value per sheet is preferably 2,000 nm or less, more preferably l, 500 nm or less, and still more preferably l, OOOnm or less, generally depending on the desired optical properties of the wave plate. If the retardation value per sheet is larger than 2, OOOnm, it is not preferable because the stretching ratio is too large and the film thickness unevenness and the retardation value unevenness increase.
  • a retardation value is larger than 2,000 nm and a retardation film is required
  • a plurality of retardation films having a retardation value of 2,000 nm or less can be laminated with the optical axes of the respective retardation films parallel. The above problem can be avoided.
  • the optical characteristics of the first and second wave plates of the present invention are determined as desired and are not particularly limited.
  • a “1Z4 wave plate” having a wavelength of light ranging from 00 to 800 nm is used.
  • Those that function and those that function as “1Z2 wavelength plates” are known.
  • the value is preferably within ⁇ 5 °, more preferably within ⁇ 3 °, and even more preferably within 1 °. If the deviation of the optical axis angle from the theoretical value is larger than 5 °, desired optical characteristics may not be obtained.
  • one of the retardation films has a wavelength (nm) defined by the following equation (1).
  • the retardation of Z2 is given, and the other retardation film has the wavelength defined by the following equation (1) ( (nm) light, a phase difference of ⁇ 4 is provided, and a film obtained by laminating these two retardation films so that their optical axes intersect is preferably used.
  • wavelength of shortest monochromatic light (nm)
  • wavelength of monochromatic light on the longest wavelength side (nm)
  • the angle formed by the optical axes of the two retardation films is, for example, “R1” for the first film and “R2” for the second film from the incident direction of light such as a laser beam.
  • the phase difference of R1 is 315-345 nm, preferably 320-340 nm, more preferably 325-335 nm
  • the phase difference of R2 is 150-180 nm, preferably 155-175 nm, more preferably 160 In the combination of -170 nm, it is usually 46-70 degrees, preferably 52-64 degrees, and more preferably 56-60 degrees.
  • the incident linearly polarized light plane t
  • R1 the plane of polarization of the linearly polarized light of the incident light
  • Is usually + 70— + 82 degrees, preferably + 72— + 80 degrees, more preferably + 74— + 78 degrees
  • the angle formed by R2 with the optical axis is usually +12-+24 degrees, preferably +14-+22 degrees, and more preferably +16-+20 degrees.
  • a broadband “1Z4 wavelength plate” having a good polarization change can be obtained.
  • the sign of the angle the counterclockwise angle was defined as positive and the clockwise angle was defined as negative when viewing the film with respect to the side force on which light was incident (the same applies hereinafter).
  • the phase difference of R1 is 230-260 nm, preferably 235-255 nm, more preferably 240-250 nm, and the order difference of R2 is 110-140 nm, preferably 115-135 nm, more preferably 120-130 nm.
  • the angle may be usually 45 to 69 degrees, preferably 51 to 63 degrees, and more preferably 55 to 59 degrees.
  • the angle formed by the plane of polarization of the incident linearly polarized light and the optical axis of R1 is usually + 68— + 80 degrees, preferably + 70—.
  • a phase difference of ⁇ is given to the light having a wavelength of ⁇ (nm), and the other retardation film has a phase difference of ⁇ ⁇ 4 or (3 ⁇ ) ⁇ 4 with respect to the light having the wavelength ⁇ (nm) defined by the above equation (1). It is preferable to use those two retardation films that are stacked so that the optical axes thereof intersect.
  • the angle formed by the optical axes of the two retardation films is such that the retardation of R1 is 690-750 nm, preferably 700-740 nm, more preferably 710-730 nm, and the retardation of R2 is In a combination of 165-195 nm, preferably 170-190 nm, more preferably 175-185 nm, the angle is usually 39-63 degrees, preferably 45-57 degrees, more preferably 49-53 degrees. Also, at this time, when the incident light such as laser light is linearly polarized, the angle formed by the plane of polarization of the incident linearly polarized light and the optical axis of R1 is usually 11-13 degrees, preferably 3 degrees.
  • the angle formed by R2 with the optical axis is usually + 38— + 50 degrees, preferably + 40— + 48 degrees, and more preferably + 42—. +46 degrees.
  • a broadband “1Z4 wavelength plate” having good polarization change can be obtained.
  • both retardation films are capable of responding to light having a wavelength (nm) defined by the above formula (1).
  • a film having a retardation of Z2 and being laminated so that the optical axes of these two retardation films intersect is preferably used.
  • the angle formed by the respective optical axes of the two retardation films is usually 33 to 57 in a combination where the retardation of R1 and R2 is 260 to 290, preferably 265 to 285 nm, and more preferably 270 to 280 nm. Degrees, preferably 39-51 degrees, more preferably 43-47 degrees. Also, at this time, when the incident light such as laser light is linearly polarized, the angle formed by the plane of polarization of the incident linearly polarized light and the optical axis of R1 is usually + 15— + 27 degrees, preferably +17.
  • the angle formed by R2 with the optical axis is usually + 59— + 71 degrees, preferably + 61— + 69 degrees, and more preferably + 63—. + 67 degrees.
  • a broadband “1Z2 wavelength plate” having a good polarization change can be obtained.
  • the phase difference between Rl and R2 is 235-265 nm, preferably 240-260 nm, more preferably 245-255 nm, usually 33-57 degrees, preferably 39-51 degrees, more preferably May be 43-47 degrees.
  • the angle formed between the plane of polarization of the incident linearly polarized light and the optical axis of R1 is usually + 19— + 31 degrees, preferably + 21—. +29 degrees, more preferably + 23— + 27 degrees, and the angle formed by R2 with the optical axis is usually + 63— + 75 degrees, preferably + 65— + 73 degrees, and more preferably + 67— +. 71 degrees.
  • a broadband “1Z2 wavelength plate” having a good polarization change can be obtained.
  • one retardation film has a wavelength (nm) defined by the above formula (1).
  • the other retardation film gives a phase difference of ⁇ ⁇ 2 to the light of wavelength ⁇ (nm) defined by the above equation (1).
  • a retardation film laminated so that the optical axes cross each other is also preferably used.
  • the angle formed by the optical axes of the two retardation films is such that the retardation of R1 is 690 to 750 nm, preferably 700 to 740 nm, more preferably 710 to 730 nm, and the retardation of R2 is Is 345-375 nm, preferably 350-370 nm, more preferably 355-365 nm, and the temperature is usually 50-73 degrees, preferably 54-67 degrees, more preferably 59-63 degrees.
  • the angle formed by the plane of polarization of the incident linearly polarized light and the optical axis of R1 is usually + 67— + 79 degrees, preferably +69 degrees.
  • the angle between the R2 and the optical axis is usually 40—52 degrees, preferably 42——50 degrees, and more preferably 44—48 degrees. It is. With the above-mentioned range, a broadband “1Z2 wavelength plate” having good polarization change can be obtained.
  • the first wave plate of the present invention is a wave plate having two or more retardation films, and the retardation films are not adhered to each other in a portion where one laser beam is transmitted. There are usually gaps between the retardation films.
  • the thickness of the gap at this time is not particularly limited.
  • the force is preferably 1 mm or less, more preferably 0.5 mm or less, and particularly preferably 0.1 mm or less.
  • the surface roughness (Rmax) of the film surface is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, particularly preferably 5-0.
  • the retardation films may be adhered to each other with an adhesive or an adhesive, or may be held simply by being sandwiched. Adhesion is preferred because it can suppress the influence of the vibration and the vibration during use on the optical axis of each retardation film.
  • a path may be formed so that air existing in the gap between the retardation films can freely enter and exit outside. By providing such a path, it is possible to maintain stable and good characteristics for a long period of time even under environmental changes such as changes in temperature and humidity during use.
  • the term "adhesion between retardation films” means that the retardation films are directly adhered to each other, or in addition to each other via a spacer or the like, in addition to the case where the retardation films are adhered directly.
  • the first wave plate of the present invention is preferably fixed by a support from the viewpoint of preventing the characteristics from being deteriorated due to a manufacturing environment or a use environment.
  • the fixing of the wave plate may be performed using a commercially available adhesive or adhesive, or may be performed mechanically using a pin or a screw.
  • the shape of the support is determined by desired characteristics and design, and is not particularly limited. However, in the case where the support does not exist in the laser beam transmitting portion, the shape of the support is not limited. There is no particular limitation on the material, and the material can be selected appropriately according to the cost, workability, manufacturing environment or use environment, etc. This is preferable because it can suppress the effects of aberrations and the effects of new aberrations and changes in phase difference that occur when the support and the retardation film are fixed. [0088] In the case of a shape in which the support is also present in the laser light transmitting portion, it is naturally necessary to be optically transparent, and the material is limited to glass or transparent resin. It is.
  • the support is preferably optically uniform, that is, a support having no birefringence.
  • the support has birefringence, there may be a problem that desired characteristics cannot be obtained, and even if obtained, delicate correction is required.
  • the support and the retardation film are bonded to the laser light transmitting portion.
  • the effect of the present invention may not be obtained in some cases. .
  • the shape in which the support does not exist in the laser beam transmitting portion include, for example, a "U" -shaped or round shape, or a round shape with one missing portion.
  • the thickness of such a support is usually 0.01-5 mm, preferably 0.05-3 mm, more preferably 0.05-1 mm. If it is less than Olmm, rigidity will be insufficient and handling properties will be poor. On the other hand, if it exceeds 5 mm, the size as a wave plate will be large, and it will be difficult to reduce the size of the optical system.
  • the support may be present between the retardation films, on one or both sides of each retardation film, or on one or both sides of a laminated retardation film.
  • a so-called spacer is provided between the retardation films.
  • an antireflection film can be laminated on one or both sides of the retardation film.
  • a fluorine-based copolymer is dissolved in an organic solvent, and the solution is applied on the retardation film by a casting method or the like using a bar coater or the like. Then, heating and curing.
  • the heating temperature is usually 80 to 165 ° C, preferably 100 to 150 ° C, and the heating time is usually 10 minutes to 3 hours, preferably 30 minutes to 2 hours. .
  • the thickness of the antireflection film is usually 5 to 2,000 nm, preferably 10 to 1, OOOnm, and more preferably 50 to 200 nm. If it is less than 5 nm, the antireflection effect cannot be exhibited. On the other hand, if it exceeds 2,000 nm, the thickness of the coating film tends to be uneven, and the appearance and the like are unfavorably deteriorated.
  • an antireflection film can be formed by providing a coating layer of a transparent inorganic oxide such as aluminum, magnesium, or silicon by using a vapor deposition method or a sputtering method.
  • the thickness of the transparent inorganic oxide coating layer is set to 1/4 of a specific light wavelength. Furthermore, it is described that antireflection performance can be further improved by laminating such a transparent inorganic oxide coating layer in multiple layers.
  • the adhesive or pressure-sensitive adhesive used for bonding the retardation films to each other or the retardation film and the support may be a natural rubber-based, a synthetic rubber-based, or a vinyl acetate Z
  • the material is appropriately selected from known materials such as a chloride chloride copolymer type, a silicon type, a polybutyl ether type, an acrylic type, a modified polyolefin type, an epoxy type and a urethane type.
  • acrylic adhesives are preferred because they have excellent adhesion to the adherend.
  • the surface of the retardation film or the support may be subjected to a base treatment such as a corona treatment, a plasma treatment, a coupling agent treatment or an anchor coat treatment.
  • the thickness of the adhesive layer or the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 100 ⁇ m, more preferably 2 ⁇ m to 70 ⁇ m, and particularly preferably 3 ⁇ m to 70 ⁇ m. ⁇ m—50 ⁇ m, most preferably 4 m—30 m.
  • the in-plane aberration (transmitted wavefront aberration) of the first wave plate of the present invention is naturally preferably as small as possible, usually within 50 (ml), preferably within 30 (ml). More preferably, it is within 20 (m 2), and it is preferable that the in-plane aberration of the wavelength plate be within the above range because a good SZN ratio and an acceptable jitter range can be obtained.
  • represents the wavelength of the transmitted light, and generally the wavelength of the laser light used is used.
  • the number of foreign substances in the first wave plate of the present invention those having a particle size of 10 m or more, preferably as small as possible, are usually 5 (pieces Zmm 2 ) or less, preferably 1 (pieces). Zmm 2 ) or less, and more preferably 0 (piece Zmm 2 ) or less. 5 (pieces Zmm 2 ) If the number exceeds the number, the noise signal increases and the SZN ratio decreases, which is not preferable.
  • the foreign substance in the wave plate includes a substance that reduces the transmission of the laser light and a substance that largely changes the traveling direction of the laser light due to the presence of the foreign substance. Examples of the former include dust and dirt, burns of resin, powders of metal powder, minerals, and the like, and examples of the latter include contamination of other resins and transparent substances having different refractive indices.
  • the first wave plate of the present invention may be colored using a known coloring agent or the like in order to block or reduce the transmission of light other than the desired wavelength as necessary, for example, to reduce noise. May be applied.
  • the first wave plate of the present invention can be manufactured by a conventionally known method except that two or more retardation films are not adhered to each other at a laser beam transmitting portion.
  • the two or more retardation films are not adhered to each other at the laser light transmitting portion, and a gap is formed between the retardation films.
  • the portion excluding the laser beam transmitting portion is fixed with a support as necessary, the use of the wave plate of the present invention makes it possible to achieve high performance with excellent long-term durability.
  • An optical information recording / reproducing apparatus can be manufactured.
  • the second wave plate of the present invention is a wave plate in which at least two retardation films are laminated, and a glass substrate is laminated on at least one surface of the laminated retardation film,
  • Each of the retardation films, and the retardation film and the glass substrate are selected from the following adhesives (A) and (B), and are laminated and fixed with different adhesives.
  • glass substrates are laminated on both sides of the laminated retardation film (the laminated retardation film force S is sandwiched between two glass substrates), and the retardation films are bonded with an adhesive (A ), And the retardation film and the glass substrate are preferably fixed with an adhesive (B).
  • the glass substrate used in the second wavelength plate of the present invention is preferably one having substantially no birefringence.
  • the transparent support has birefringence, it is not preferable because the properties as a wave plate are affected.
  • the shape of the glass substrate is not particularly limited, and even if it is flat, it has an optical function such as a lattice shape or a prism shape. It may be shaped.
  • the thickness is usually 0.01-5 mm, preferably 0.05-3 mm, and more preferably 0.05-1 mm. If the thickness is less than 0.01 mm, the rigidity is insufficient and the handleability is poor. On the other hand, if the thickness is more than 5 mm, the size of the wave plate becomes large, and it is difficult to reduce the size of the optical device.
  • an antireflection film having the same thickness as that of the first wavelength plate can be laminated on one or both surfaces of the glass substrate.
  • a fluorine-based copolymer is dissolved in an organic solvent, and the solution is cast using a bar coater or the like by a casting method or the like.
  • the heating temperature is usually 80 to 165 ° C, preferably 100 to 150 ° C, and the heating time is usually 10 minutes to 3 hours, preferably 30 minutes to 12 hours. .
  • the thickness of the antireflection film is usually 5 to 2,000 nm, preferably 10 to 1,000 nm, and more preferably 50 to 200 nm. If the thickness is less than 5 nm, the antireflection effect cannot be exerted. On the other hand, if it exceeds 2,000 nm, the thickness of the coating film tends to be uneven, and the appearance and the like are unfavorably deteriorated.
  • an antireflection film can be formed by providing a coating layer of a transparent inorganic oxide such as aluminum, magnesium, or silicon by using a vapor deposition method or a sputtering method.
  • the thickness of the transparent inorganic oxide coating layer is set to 1/4 of a specific light wavelength. Furthermore, it is described that antireflection performance can be further improved by laminating such a transparent inorganic oxide coating layer in multiple layers.
  • the adhesive (adhesive (A)) used for laminating and fixing the retardation films in the second wave plate of the present invention is a natural rubber type, a synthetic rubber type, a vinyl acetate Z
  • the adhesive is selected from known adhesives such as silicone, polyether ether, acrylic, modified polyolefin, epoxy, and urethane, which have the characteristics described below. Among them, acrylic adhesives are preferred because of their excellent adhesion to the adherend.
  • the glass transition temperature of the adhesive (A) that is, tan ⁇ (loss tangent in the dynamic viscoelasticity measurement (measurement frequency 1 Hz) of the adhesive (A) in a dried or cured state, is measured.
  • the glass transition temperature of the adhesive is controlled, for example, by appropriately selecting the contained acrylic polymer or acrylic monomer in the case of an acrylic adhesive.
  • acrylic monomers are classified into monofunctional, bifunctional, and polyfunctional according to the number of double bonds in the molecule, but in general, many monofunctional acrylic monomers are used. Since the glass transition temperature tends to be low and the glass transition temperature tends to be high when a large amount of polyfunctional acrylic monomer is used, it is used when polymerizing an acrylic polymer to be added to the adhesive.
  • an adhesive having a desired glass transition temperature can be obtained. .
  • the adhesive (A) has a Young's modulus (value at JIS Z1702, No. 3 dumbbell, tensile speed of lOmmZ) at room temperature (23 ° C) in a dried or cured state of lOMPa or less. Is required, preferably 5 MPa or less, more preferably 2 MPa or less.
  • each retardation film may be subjected to a base treatment such as a corona treatment, a plasma treatment, a coupling agent treatment or an anchor coat treatment.
  • a base treatment such as a corona treatment, a plasma treatment, a coupling agent treatment or an anchor coat treatment.
  • the adhesive (adhesive (B)) used for bonding the retardation film and the glass substrate in the second wavelength plate of the present invention is a natural rubber-based, synthetic rubber-based,
  • the adhesive is selected from known adhesives such as vinyl chloride copolymers, silicones, polybutyl ethers, acrylics, modified polyolefins, epoxies, and urethanes, which have the characteristics described below. Among them, acrylic adhesives are preferably used because of their excellent adhesion to the adherend.
  • the glass transition temperature of the adhesive (B) ie, drying or curing
  • the peak temperature (glass transition temperature) of tan ⁇ (loss tangent) in the dynamic viscoelasticity measurement (measuring frequency 1 Hz) of the adhesive (B) is 40 ° C or more, and preferably It is desirable that the temperature be 60 ° C or higher, more preferably 80 ° C or higher.
  • the peak temperature on the high temperature side is used.
  • the peak area of tan ⁇ on the high temperature side is preferably at least 10%, more preferably at least 30%, particularly preferably at least 50%, with respect to all the tan ⁇ peak areas.
  • the adhesive ( ⁇ ) is the value of Young's modulus (JIS Z1702, No. 3 dumbbell, tensile speed lOmmZ) of the adhesive ( ⁇ ) in a dried or cured state at room temperature (23 ° C). ) Must be greater than 30 MPa, preferably at least 50 MPa, more preferably at least 70 MPa.
  • the glass transition temperature difference between the adhesive (B) and the adhesive (A) is desirably 60 ° C or more, preferably 80 ° C or more, and more preferably 100 ° C or more.
  • the difference in Young's modulus between the adhesive (B) and the adhesive (A) at 23 ° C is desirably OMPa or more, preferably 50MPa or more, and more preferably 60MPa or more.
  • the surface of the retardation film or the glass substrate may be subjected to a base treatment such as a corona treatment, a plasma treatment, a coupling agent treatment or an anchor coat treatment.
  • a base treatment such as a corona treatment, a plasma treatment, a coupling agent treatment or an anchor coat treatment.
  • the acrylic adhesive examples include, for example, a composition containing a polymer of a monomer composition containing at least one kind of an acrylic monomer (atalyate ligated product) and a solvent, A composition containing at least one atalylate compound and a curing agent; Examples of the composition include a acrylated product and a curing agent, but the present invention is not limited to these.
  • the atalylate toy conjugate has at least one (meth) atalyloyl group in the molecule, for example, a monofunctional (meth) atalylate compound
  • monofunctional (meta) atalylate conjugates include methyl (meth) atalylate, ethyl (meth) atalylate, propyl (meth) atalylate, isopropyl (meth) atalylate, and butyl ( Meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, Heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nor (meth) acrylate, decyl (meth) acrylate, Isodecyl (meth) acrylate, undecyl (
  • Alkoxyalkyl (meth) acrylates such as methoxyethyl (meth) acrylate, ethoxyxyl (meth) acrylate, propoxyshethyl (meth) acrylate, butoxyshethyl (meth) acrylate, methoxybutyl (meth) acrylate, and the like;
  • Polyethylene glycol mono (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate, nor-phenoxy polyethylene glycol (meth) acrylate Polyethylene glycol (meth) acrylates such as;
  • Polypropylene glycol (meth) atalylates such as polypropylene glycol mono (meth) acrylate, methoxy polypropylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate, norphenoxypolypropylene glycol (meth) acrylate Cyclohexyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, dicyclopentyl (meth) acrylate, dicyclopentyl (meth) acrylate, dicyclopenta gel (meth) acrylate, Cycloalkyl (meth) atalylates such as vol (meth) acrylate, isovol (meth) acrylate, and tricyclodeyl (meth) acrylate; benzyl (meth) acrylate; tetrahydrofurfuryl ( These monofunctional (meth) atalylate conjugates can be used singly or as a
  • polyfunctional (meth) atalylate toyate examples include ethylene glycol di (meth) atalylate, diethylene glycol di (meth) atalylate, tetraethylene glycol di (meth) atalylate, polyethylene glycol di ( Alkylene glycol di (meth) atari such as (meth) acrylate, 1,4-butanediol di (meth) atalylate, 1,6-hexanediol di (meth) atalylate, neopentyl glycol di (meth) atalylate Rates (ru) (meth) atalylate, ditrimethylolpropanetetra (meth) atalylate, pentaerythritol tri (meth) atalylate, pentaerythritol tetra (meth) atalylate, dipentaerythritol hexa (meth) atalylate, hydroxybivalin
  • Poly (isocyanurate) such as isocyanurate tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate (Meth) atarylates;
  • polyfunctional (meth) atalylate toys can be used singly or as a mixture of two or more.
  • the adhesive strength of the adhesive (A) or the adhesive (B) needs to be one that does not easily peel off during handling.
  • a 90-degree peel force when the two retardation films are bonded to each other is preferably 0.5 N / cm 2 or more, more preferably 1 ⁇ « ⁇ or more, most preferably not more 3NZcm 2 above, in the adhesive) 90 degree peel strength force when bonding the retardation film and the glass substrate is preferably 0. 5N / cm 2 or more, more preferably l N / cm 2 or more , Most preferably 3 N / cm 2 or more. If the adhesive strength is less than 0.5 N / cm 2 , it is not preferable because the adhesive layer is peeled off due to an impact during handling, or the bonded layers are displaced from each other.
  • the thickness of the adhesive (A) or the adhesive (B) is not particularly limited as long as the above adhesive strength can be ensured, but is usually 1 ⁇ m to 100 ⁇ m, preferably 2 ⁇ m It is 70 ⁇ m, more preferably 3 m to 50 m, most preferably 4 m to 30 m. If the thickness of the adhesive (A) or the adhesive (B) is more than 100 m, the thickness of the wave plate becomes too thick, causing problems in optical characteristics such as light transmittance and inconvenient handling. There is. If the thickness is less than 1 ⁇ m, the adhesive strength may not be secured.
  • the difference between the refractive index of the retardation film and the refractive index of the adhesive for bonding the retardation films is preferably within 0.20, more preferably within 0.15, particularly preferably within 0.10, and most preferably within 0.10. Is preferably within 0.05, and the difference between the refractive index of the retardation film and the refractive index of the adhesive for bonding the glass substrate is preferably within 0.20, more preferably within 0.15, particularly Preferably it is within 0.10, most preferably within 0.05. Further, the difference between the refractive index of the retardation film and the refractive index of the glass substrate is preferably within 0.20, more preferably 0.15 or less. Within this range, particularly preferably within 0.10, and most preferably within 0.05, the difference in refractive index within this range is preferred because loss due to reflection of transmitted light can be minimized. No.
  • the in-plane aberration (transmitted wavefront aberration) of the second wave plate of the present invention is naturally preferably as small as possible, usually within 50 (ml), preferably within 30 (ml). , More preferably within 20 (m). It is preferable that the in-plane aberration of the wave plate be within the above range, since a favorable SZN and an acceptable jitter range can be obtained.
  • represents the wavelength of the transmitted light, and generally the wavelength of the laser light used is used.
  • the number of foreign substances in the second wave plate of the present invention those having a particle size of 10 m or more, preferably as small as possible, are usually 10 (pieces Zmm 2 ) or less, preferably 5 (pieces Zmm 2 ) or less. 2 ) or less, more preferably 1 (piece Zmm 2 ) or less. If the number of foreign substances of 10 ⁇ m or more exists in the wave plate in excess of 10 (pieces of Zmm 2 ), the noise signal increases and the SZN ratio decreases, which is not preferable.
  • the foreign substance in the wave plate includes a substance that reduces the transmission of the laser light and a substance that largely changes the traveling direction of the laser light due to the presence of the foreign substance. Examples of the former include dust and dirt, burns of resin, powders of metal powder, minerals, and the like, and examples of the latter include contamination of other resins and transparent substances having different refractive indices.
  • the second wave plate of the present invention may be colored using a known coloring agent or the like in order to block or reduce the transmission of light other than the desired wavelength, if necessary, for example, to reduce noise. May be applied.
  • the second wave plate of the present invention is selected from adhesives (A) and (B), and uses different adhesives for laminating and fixing the retardation films to each other and between the retardation film and the glass substrate. Other than this, it can be manufactured by employing a conventionally known method.
  • the second wave plate of the present invention is a wave plate in which at least two retardation films are laminated with an adhesive, and a glass substrate is laminated on at least one surface of the laminated retardation film. Since the retardation films and the retardation film and the glass are selected from the adhesive (A) and the adhesive (B) and are laminated and fixed with different adhesives, respectively, Characteristics can be maintained. Particularly, as the retardation film, a film obtained by stretching and orienting a cyclic olefin resin film is preferable.
  • the present invention By using a wave plate, it is possible to manufacture a highly durable optical information recording / reproducing apparatus or a liquid crystal projector apparatus capable of maintaining performance for a long time.
  • DSC scanning calorimeter
  • the measurement was performed using a laser focus displacement meter, LT8010, manufactured by Keyence Corporation.
  • the transmitted wavefront aberration was measured using a laser beam having a wavelength of 650 nm.
  • the environmental tester manufactured by Espec Corporation was set at 95 ° C and 95% RH. After being put in the tank for 1,000 hours, it was taken out, and visually observed, measured for phase difference value, and measured for in-plane aberration.
  • a strip-shaped test piece (5 mm x 7 cm) of the adhesive was prepared, and the measurement was performed at a temperature range of 100 to 150 ° C and a frequency of 1 Hz. When two or more peaks were present, the value on the high temperature side was defined as the peak temperature (glass transition temperature).
  • the PET base material is coated with an adhesive in advance, and the PET base material is shaped into a No. 3 dumbbell. A tensile test was performed by exposing.
  • the uih was 0.75 dlZg.
  • reaction A a hydrogenated polymer (hereinafter, referred to as “resin A”).
  • the resin A thus obtained was measured for hydrogenation rate using 1 H-NMR to find that it was 99.9%.
  • the glass transition temperature (Tg) of the resin was measured by DSC and found to be 165 ° C.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • MnZMn molecular weight distribution
  • the saturated water absorption of the resin at 23 ° C. was measured to be 0.3%.
  • SP value was measured, it was 19 (MPa 1/2 ).
  • the inherent viscosity (7?) Of the resin was measured at 30 ° C in a black hole form, and found to be 0.78 dl / g.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of polystyrene conversion of the resin were determined by the GPC method (solvent: tetrahydrofuran).
  • Mn was 46,000
  • Mw was 190,000
  • MwZMn molecular weight distribution
  • the saturated water absorption of the resin at 23 ° C. was measured, it was 0.18%.
  • the SP value was measured, it was 19 (MPa 1/2 ).
  • the gel content was 0.2%.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • MwZMn molecular weight distribution
  • Dissolve resin A in toluene to a concentration of 30% solution viscosity at room temperature is 30,000 mPa'S
  • an INVEX lab coater manufactured by Inoue Metal Industry Co., Ltd. A 100 ⁇ m-thick PET film (Lumirror U94, manufactured by Toray Co., Ltd.) is applied so that the film thickness after drying becomes 100 m, and this is first dried at 50 ° C and then dried at 90 ° C. Secondary drying was performed. A resin film A peeled from the PET film was obtained. The residual solvent content of the obtained film was 0.5%.
  • the photoelastic coefficient (C) and the stress optical coefficient (C) of this film were determined by the following method.
  • the photoelastic coefficient (C) of a strip-shaped film sample is several at room temperature (25 ° C).
  • Table 1 shows the characteristic values of the resin film A.
  • Resin film B was obtained in the same manner as in Film Production Example 1 using Resin B.
  • the residual solvent amount of the obtained resin film B was 0.5%, and the photoelastic coefficient (C) and the stress optical coefficient (C
  • Table 1 shows the characteristic values of the resin film B.
  • Resin film C was obtained in the same manner as in Film Production Example 1, except that Resin C was used and the solvent was changed to cyclohexane.
  • the residual solvent content of the obtained resin film C was 0.4%, and the photoelastic coefficient (C) and the stress optical coefficient (C)
  • Table 1 shows the characteristic values of the resin film C.
  • the above resin film A is heated in a tenter to 175 ° C, which is Tg + 10 ° C, stretched 1.4 times uniaxially at a stretching speed of 400% Z minutes, and then placed in an atmosphere at 110 ° C for 1 minute. Then, when cooled to room temperature and taken out, a retardation film A-1 having a thickness of 89 ⁇ m and a retardation of 160 nm at a wavelength of 655 nm of 160 nm was obtained.
  • the above Ilm A is heated in a tenter to 175 ° C, which is Tg + 10 ° C, stretched uniaxially at a draw rate of 400% Z for 2.1 times, and then held in an atmosphere at 110 ° C for 1 minute.
  • retardation films A-1 and A-2 were obtained as retardation films A-1 and A-2.
  • Rmax surface roughness
  • retardation films A-1 and A-2 are cut into a circular shape with a diameter of 10mm, and each optical axis is set to 60 °.
  • an acrylic adhesive (8142, manufactured by Sumitomo 3LM Co., Ltd.). At this time, the adhesive was not applied to a part of the glue allowance with a width of about lmm, and the part was made as an air vent to obtain a wave plate A.
  • Fig. 1 shows this wave plate A.
  • the thickness was 89 m and the phase difference at a wavelength of 655 nm was 275 nm as in Example 1, except that the stretching conditions were 1.3 times the stretching ratio and the heating temperature was 130 ° C.
  • a retardation film B-1 was obtained.
  • the surface roughness (Rmax) of the film surface was confirmed, the roughness was 0.1 ⁇ m.
  • the thickness was 96 m, and the phase difference at a wavelength of 655 nm was 125 ⁇ m, as in Example 1, except that the stretching conditions were set at a draw ratio of 1.08 and a heating temperature of 148 ° C. Was obtained as the retardation film C1.
  • the same procedure as in Example 1 was carried out except that stretching conditions were 1.18 times and heating temperature was 148 ° C using resin film C, and the thickness was 91 m and the phase difference at a wavelength of 655 nm was similar to that of Example 1.
  • a retardation film C-2 having a thickness of 250 nm was obtained. When the surface roughness (Rmax) of the film surface was confirmed, it was 0.1 ⁇ m.
  • a wave plate C was obtained in the same manner as in Example 1 except that the optical axes of these retardation films C-1 and C-2 were 55 °.
  • the number of foreign substances having a particle size of 10 m or more in the wave plate C was 10 or less Zmm 2 . Further, when the in-plane aberration of the wavelength plate C was confirmed, it was 16 m. When a high-temperature and high-humidity test was performed on this wave plate C, the change amount of the phase difference value was within 3%, the change amount of the in-plane aberration was 5 m ⁇ or less, and the appearance characteristics were not changed. Has been maintained.
  • Wave plate D was obtained in the same manner as in Example 1, except that an adhesive layer having a thickness of 10 ⁇ m was provided on the entire surface of the film and the films were adhered to each other.
  • retardation films A-1 and A-2 are bonded together using a 10 ⁇ m thick acrylic adhesive (Sumitomo 3rem Co., Ltd., 8142) so that their optical axes are at 60 °. Then, a glass plate with a thickness of 250 m is laminated on both sides of the laminated film using a 10 m-thick acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.). Got.
  • 8142 manufactured by Sumitomo 3LM Co., Ltd. used as the adhesive (A) had a tan ⁇ peak temperature of -63 ° C, a Young's modulus of 0.6 MPa, and Kyoritsu used as the adhesive (B).
  • XVL-90 manufactured by Chemical Industry Co., Ltd. had a tan ⁇ peak temperature of 61 ° C. and a Young's modulus of 75 MPa.
  • the phase difference of the wave plate E When the phase difference of the wave plate E was measured, the phase difference at 655 nm was 161 nm and the phase difference at 785 nm was 195 nm. Therefore, it was confirmed that the wave plate E functions as a “1/4 wave plate” in a wide band.
  • a retardation film 1-1 was obtained in the same manner as in Example 2.
  • This retardation film ⁇ -1 Two pieces of this retardation film ⁇ -1 are bonded together with an 10-meter-thick atalylic adhesive (Sumitomo 3rem Co., Ltd., 8142) so that each optical axis is at 45 °, and then further bonded.
  • a 250 ⁇ m thick glass plate is laminated on both sides of the combined film using a 10 m thick acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.) to obtain a wave plate F. Was.
  • the phase difference of the wavelength plate F was measured, the phase difference at 500nm was 246nm and the phase difference at 785nm was 395nm. Therefore, it was confirmed that the wave plate F functions as a “1/2 wave plate” in a wide band.
  • Polarization microscopy shows that the number of foreign substances with a particle size of 10 m or more in wave plate F is 10 or less Zmm 2 Confirmed by mirror.
  • retardation films C-1 and C-2 were bonded together with an acrylic adhesive (Sumitomo 3rem Co., Ltd., 8142) with a thickness of 10 m so that each optical axis was 55 °. Further, a glass plate having a thickness of 250 m was laminated on both sides of the laminated film using a 10 m-thick acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.), and a wave plate G was formed. Obtained.
  • the phase difference of the wave plate G was measured, the phase difference at 405 nm was 102 nm and the phase difference at 655 nm was 165 nm. Therefore, it was confirmed that the wave plate G functions as a “1/4 wave plate” in a wide band.
  • the number of foreign substances having a particle size of 10 m or more in the wave plate G was 10 Zmm 2 or less.
  • Two retardation films C-2 are bonded together with an acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.) with a thickness of 10 ⁇ m so that the optical axis of each is 40 °. Then, a glass plate having a thickness of 250 ⁇ m was laminated on one side of the bonded film using an acrylic adhesive having a thickness of 20 / zm (8142, manufactured by Sumitomo 3LM Limited) to obtain a wave plate H. Was.
  • an acrylic adhesive XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.
  • the phase difference of the wave plate H When the phase difference of the wave plate H was measured, the phase difference at 405 nm was 199 nm and the phase difference at 655 nm was 325 nm. Therefore, it was confirmed that the wave plate H functions as a “1/2 wave plate” in a wide band. [0155] It was confirmed by a polarizing microscope that the number of foreign substances having a particle size of 10 m or more in the wavelength plate H was 10 or less Zmm 2 .
  • Example 1 Except that the stretching conditions were set at 1.92 times the stretching ratio and the heating temperature at 148 ° C. using the “fat film”, the thickness was 70 m and the phase difference at a wavelength of 655 nm was 710 ⁇ m as in Example 1. Was obtained as the retardation film II-2.
  • These retardation films B-2 and A-3 are coated with an acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.) with a thickness of 10 m so that each optical axis is at 50 °.
  • a glass plate with a thickness of 250 m was laminated on one side of the laminated film using a 20 / zm-thick acrylic adhesive (8142, manufactured by Sumitomo 3LM Limited). Got I.
  • Wave plate I functions as a "1/4 wavelength plate" in a wide band.
  • Example 2 The same procedure as in Example 1 was carried out except that the stretching conditions were set at 1.58 times the stretching ratio and the heating temperature at 148 ° C using the “fat film”, and the thickness was 87 m and the phase difference at a wavelength of 655 nm was 355 ⁇ . As a result, a retardation film B-3 was obtained.
  • phase difference films B-2 and B-3 are applied to the optical axis at 60 ° using a 10 ⁇ m-thick acryl-based adhesive (Kyoritsu Chemical Industry Co., Ltd., XVL-90). Then, a glass plate with a thickness of 250 ⁇ m was laminated on one side of the laminated film using an acrylic adhesive with a thickness of 20 / zm (81 42, manufactured by Sumitomo 3rem Limited). Wavelength was obtained.
  • the phase difference force at 320 nm was 655 nm and the phase difference at 785 nm was 395 nm. Therefore, it was confirmed that the wavelength functioned as a “1/2 wavelength plate” in a wide band.
  • the amount of change in the phase difference value was within 3%
  • the amount of change in the in-plane aberration was 5 m ⁇ or less
  • good characteristics were observed without any change in appearance. It was confirmed that it was maintained.
  • each optical axis is at 60 °.
  • a glass plate with a thickness of 250 ⁇ m was laminated on both sides of the laminated film using an acrylic adhesive with a thickness of 20 / zm (81 42, manufactured by Sumitomo 3LEM). Wave plate K was obtained.
  • the phase difference of the wave plate K When the phase difference of the wave plate K was measured, the phase difference at 655 nm was 162 nm and the phase difference at 785 nm was 195 nm. Therefore, it was confirmed that the wave plate K functions as a “1/4 wave plate” in a wide band.
  • Two sheets of retardation film C-2 are bonded together using an acrylic adhesive (Sumitomo 3rem Co., Ltd., 8142) with a thickness of 10 ⁇ m so that the optical axis of each is 40 °, and further bonded together
  • an acrylic adhesive (Sumitomo 3rem Co., Ltd., 8142) with a thickness of 10 ⁇ m so that the optical axis of each is 40 °, and further bonded together
  • a glass plate with a thickness of 250 ⁇ m was laminated on one side of the film using an acrylic adhesive with a thickness of 10 m (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.) to obtain a wave plate L. Was.
  • the phase difference of the wave plate L When the phase difference of the wave plate L was measured, the phase difference at 405 nm was 201 nm and the phase difference at 655 nm was 326 nm. Therefore, it was confirmed that the wave plate L functions as a “1/2 wave plate” in a wide band.
  • the retardation films ⁇ -1 and ⁇ -2 use a 10 ⁇ m thick acryl adhesive (Kyoritsu Chemical Industry Co., Ltd., XVL-90) so that each optical axis is at 60 °.
  • a glass plate with a thickness of 250 ⁇ m was attached to both sides of the laminated film using an acrylic adhesive with a thickness of 10 m (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.). The layers were laminated to obtain a wave plate M.
  • the phase difference of the wave plate M When the phase difference of the wave plate M was measured, the phase difference at 655 nm was 160 nm and the phase difference at 785 nm was 196 nm. Therefore, it was confirmed that the wave plate M functions as a "1/4 wave plate" in a wide band.
  • Two retardation films B-1 are bonded together using an acrylic adhesive (8142, manufactured by Sumitomo 3LM Co., Ltd.) with a thickness of 10 ⁇ m so that each optical axis is at 45 °, and further bonded together
  • a glass plate having a thickness of 250 m was laminated on both sides of the film using an acrylic adhesive having a thickness of 10 / zm (8142, manufactured by Sumitomo 3LEm Limited) to obtain a wave plate N.
  • the retardation films C-1 and C-2 were attached to each other with a 10-meter-thick acryl adhesive (Kyoritsu Chemical Industry Co., Ltd., XVL-90) so that each optical axis was at 55 °.
  • a glass plate with a thickness of 250 ⁇ m is laminated on both sides of the laminated film using a 10-m-thick acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Sangyo Co., Ltd.) Then, a wave plate O was obtained.
  • Two retardation films C-2 are bonded together with an acrylic adhesive (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.) with a thickness of 10 ⁇ m so that the optical axis of each is 40 °. And further laminating A glass plate with a thickness of 250 ⁇ m was laminated on one side of the film using an acrylic adhesive with a thickness of lO / zm (XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.) to obtain a wave plate P. Was.
  • an acrylic adhesive XVL-90, manufactured by Kyoritsu Chemical Industry Co., Ltd.
  • the phase difference of the wave plate P was measured, the phase difference at 405nm was 200nm and the phase difference at 655nm was 323nm. Therefore, it was confirmed that the wave plate P functions as a “1/2 wave plate” in a wide band.
  • the retardation films B-2 and A-3 are bonded together using an acryl-based adhesive (Sumitomo 3rem Co., Ltd., 8142) with a thickness of 10 ⁇ m so that each optical axis is at 50 °. Further, a glass plate having a thickness of 250 ⁇ m was laminated on one side of the laminated film using an acrylic adhesive having a thickness of 10 / zm (8142, manufactured by Sumitomo 3LM Limited) to obtain a wave plate Q. .
  • an acryl-based adhesive Suditomo 3rem Co., Ltd., 8142
  • the phase difference of the wave plate Q When the phase difference of the wave plate Q was measured, the phase difference at 655 nm was 162 nm and the phase difference at 785 nm was 198 nm. Therefore, it was confirmed that the wave plate Q functions as a “1/4 wave plate” in a wide band.
  • the optical information recording / reproducing apparatus using the first and second wave plates of the present invention provides a read-only recording medium, a write-once recording medium, and a rewritable recording medium for recording audio and images. It can be applied to any recording media, such as CD-ROM, CD-R, rewritable DVD and other recording devices and OA equipment using them, sound reproducing devices such as CDs, image reproducing devices such as DVDs and the like. AV equipment, game machines using the above-mentioned CDs and DVDs, etc. Further, the first and second wave plates of the present invention can also be used for a liquid crystal projector device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明は、初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた、波長板を提供しようとするものであって、本発明の第1の波長板は、2枚以上の位相差フィルムからなる波長板であって、レーザー光の透過部分において位相差フィルム同士が接着されておらず、さらにレーザー光の透過部分を除く部分の少なくとも一部において位相差フィルム同士が接着されている波長板であり、第2の波長板は、少なくとも2枚の位相差フィルムが積層され、当該積層された位相差フィルムの少なくとも片面にガラス基板が積層されている波長板であって、位相差フィルム同士、および位相差フィルムとガラス基板とが、ガラス転移温度が0°C以下であり、かつ23°Cにおけるヤング率が10MPa以下である接着剤(A)、ガラス転移温度が40°C以上であり、かつ23°Cにおけるヤング率が30MPa以上である接着剤(B)(ただし、接着剤(A)と接着剤(B)とのガラス転移温度の差は60°C以上であり、かつ23°Cにおける接着剤(A)と接着剤(B)とのヤング率の差は40MPa以上である。)から選択され、かつ異なる接着剤でそれぞれ積層固定されている。

Description

明 細 書
波長板
技術分野
[0001] 本発明は、レーザー光学系に用いられる波長板に関する。さらに詳しくは、透過光 に位相差を与える機能を有する透明榭脂フィルム (以下、「位相差フィルム」という。 ) を少なくとも 2枚以上用いた波長板に関する。
背景技術
[0002] 光ディスク装置は、非接触、単位体積あたりの情報量の多さ、高速アクセス性、低コ ストなどの理由から、近年、その利用が大きく伸長している光学情報記録 '再生装置 であり、これらの特徴を生かし、各種の記録媒体が開発されている。例えば、あらかじ め記録された情報を音や画像あるいはコンピュータ用プログラムなどとして再生する コンパクトディスク(CD)、レーザーディスク(登録商標)(LD)、 CD— ROM、 DVD-R OMなど、レーザーによって情報を 1回だけ書き込め、係る情報を再生できる CD— R や DVD— R、情報の記録 ·再生が繰り返しできる光磁気ディスク(MO)や DVD— RA M、 DVD— RWなどが開発されている。
[0003] このような光学情報記録'再生装置での情報の記録および Zまたは再生を行うため の光学系装置としては様々なものが知られている力 その 1つとして書き換え型光磁 気ディスク装置が広く知られている。書き換え型光磁気ディスク装置では、レーザー 光源からの照射光が、偏光子、偏光ビームスプリツター(PBS)を通り光磁気ディスク に照射され、光磁気ディスクで反射された戻り光が、再び PBSを通り、光検出器にい たる光路の途中位置に 1Z2 λ波長板 (以下「1Z2波長板」ともいう。)が配置された 光ピックアップ装置を有するものや 1Z4 λ波長板 (以下「1Ζ4波長板」とも 、う)が配 置された光ピックアップ装置を有するものなどが知られている。
[0004] ここで、 1Z2波長板とは、特定波長の直交する 2つの偏光成分の間に λ Ζ2の光 路差 (したがって、 πの位相差)を与えるものであり、 1Z4波長板とは、特定波長の直 交する 2つの偏光成分の間に λ Ζ4の光路差 (したがって、 π Ζ2の位相差)を与え るものである。 また、液晶プロジェクターに用いられる波長板は、例えば、偏光変換素子として機 能し、当該偏光変換素子に入射される自然光を、偏光面が互いに直交する P偏光光 および S偏光光に分離し、分離された P偏光光および S偏光光の 、ずれか一方の偏 光面を実質的に 90度回転させることにより、当該偏光光における偏光面の角度を他 方の偏光光における偏光面と一致させる機能を有するものである。このような偏光変 換素子によれば、得られる偏光光の大部分が実質的に単一の偏光面を有するものと なるので、液晶プロジェクターにおいて高い光の利用効率を得られる。このような偏 光変換素子において、入射される偏光光における偏光面を実質的に 90度回転させ る手段としては、 1Z2波長板が用いられている。また、液晶プロジェクターでは、ダイ クロイツクミラーで光の三原色 (R. G. B)に分光された後に、対応する液晶パネルに それぞれ透過させ、クロスプリズムにより合成されて投射レンズから出光する力 液晶 パネルとクロスプリズムの間に輝度向上を目的に 1Z4波長板が用いられる場合があ る。その際、分光された光の波長はある程度幅を持っていることから、特定の短波長 だけではなく広い帯域で 1Z4波長とする波長板が求められる場合がある。
[0005] これらの用途に用いられる波長板としては、複屈折性を備える雲母、石英、水晶、 方解石、 LiNbO 、 LiTaOなどの単結晶から形成される波長板、ガラス基板などの
3 3
下地基板に対して斜め方向から無機材料を蒸着することにより得られる下地基板の 表面に複屈折膜を有する波長板、複屈折性を有する LB (Langmuir-Blodget)膜を有 する波長板など無機系のものが従来使用されている。
[0006] また、ポリカーボネート (PC)、トリァセチルアセテート(TAC)、ポリビュルアルコー ル(PVA)、ポリビュルプチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリプ ロピレン(PP)、ポリアリレート、ポリスルホン、ポリエーテルスルホン、アクリル榭脂など の透明榭脂フィルムを延伸し配向させることにより、複屈折性 (透過光に位相差を与 える機能)を付与した有機物薄膜である位相差フィルムを、平坦性、定形性維持のた めガラス基板に接着したり、 2枚のガラス基板で挾持したりした波長板も使用されてい る。さらに、高分子液晶膜を、平坦性、定形性維持および分子配向のためにガラス基 板上に形成したり、 2枚のガラス基板で挾持したりして複屈折性を付与した波長板も 使用されている。 [0007] また、最近、高密度の情報記録媒体として DVDが急速に普及しつつあるが、一方 、既に市場には CD、 CD-ROM, CD— Rといった再生専用や書き込み型の光デイス クが広く普及していることから、光ディスク装置には、これら方式の異なる多種の光デ イスクへの記録または再生を兼用できることが強く要求されており、また、応用分野の 拡大に伴い小型化、低価格化も求められている。そして、これらの要求に対応するた めに、複数の読み書き用のレーザーに対応するための広帯域波長板 (位相差板)の 使用が提案されている (特許文献 1一 3)。これらのうち、例えば、特許文献 3 (特開 20 02— 14228号公報)では、互いに偏波面が平行である 2種の入射直線偏光力 波長 板通過後は、 2種の出射直線偏光の偏波面が直交化されるという波長板が提案され ている。このような波長板では、所望の光学特性を得るために、位相差フィルムが 2枚 以上使用されているため、ガラス基板に接着固定されるだけでなぐ通常、位相差フ イルム同士も接着固定されていた。ところが、フィルム同士を接着する構成の波長板 では、面内収差が長期の連続使用によって変化してしまい、初期に得られていた良 好な特性が保持できないという問題があった。また、位相差フィルムの物性が波長板 の特性として反映されるため、使用環境によっては、長期の連続使用により波長板の 位相差値(レターデーシヨン)が徐々に変化したり、または、フィルムの厚みむらによつ て面内収差が大きくなつてしまったりして、結果として初期に得られていた良好な特 性が保持できな!/、場合が生じる問題が指摘されて!ヽた。
[0008] 上記問題を抑制する方法としては、位相差フィルム同士の接着を行わず、各々のフ イルムを独立にレーザー光学系に組み込むことも考えられる力 その場合には、各位 相差フィルムの光軸を精密に調整した上で組み込むことが必須となり機器の製造に 手間が掛かるば力りでなぐ使用時の振動などにより各位相差フィルムの光軸の相互 関係にズレが生じて特性が低下するなどの問題が生じる。
特許文献 1:特開 2001— 101700号公報
特許文献 2 :特開 2001— 208913号公報
特許文献 3:特開 2002-14228号公報
発明の開示
発明が解決しょうとする課題 [0009] 本発明の課題は、上記従来技術の課題を背景になされたもので、初期特性に優れ 、使用環境や製造環境の影響を受けにくく長期信頼性に優れた、光学情報記録,再 生装置用、液晶プロジェクター用の波長板を提供することにある。
課題を解決するための手段
[0010] 本発明者らは、上記従来技術の課題を解決すべく鋭意検討を進めた結果、 2枚以 上の位相差フィルム力 なる波長板であって、レーザー光の透過部分にぉ 、て位相 差フィルム同士が接着されておらず、さらにレーザー光の透過部分を除く部分の少な くとも一部において位相差フィルム同士が接着された波長板 (以下「第 1の波長板」と もいう。)が、初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性 に優れた光学情報記録 '再生装置用、液晶プロジェクター用の波長板として好適で あることを見出した。
[0011] また、レーザー光の透過部分において位相差フィルム同士が接着されている波長 板であっても、少なくとも 2枚の位相差フィルムが積層され、当該積層された位相差フ イルムの少なくとも片面にガラス基板が積層されて ヽる波長板であって、位相差フィ ルム同士、および位相差フィルムとガラス基板とが、下記接着剤 (A)、 (B)から選択さ れ、かつそれぞれ異なる接着剤で積層固定されてなる波長板 (以下「第 2の波長板」 ともいう。)が、初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼 性に優れた光学情報記録 ·再生装置用、液晶プロジェクター用の波長板として好適 であることを見出して本発明の完成に至った。
接着剤 (A):ガラス転移温度が 0°C以下であり、かつ 23°Cにおけるヤング率が 10MP a以下である接着剤
接着剤 ):ガラス転移温度力 0°C以上であり、かつ 23°Cにおけるヤング率が 30M Pa以上である接着剤
(ただし、接着剤 (A)と接着剤 (B)とのガラス転移温度の差は 60°C以上であり、かつ 3°Cにおける接着剤 (A)と接着剤 (B)とのヤング率の差は 40MPa以上。)
さらに、本発明者らは、耐熱性に優れ、低吸湿性であり、位相差の安定性に優れか つ位相差の波長依存性が小さ 、環状ォレフィン系榭脂を原料としたフィルム (以下、 「環状ォレフィン系榭脂フィルム」ともいう。)を延伸配向させた位相差フィルム力 特 に初期特性に優れ、使用環境や製造環境の影響を受けにくぐ長期信頼性に優れ た光学情報記録 ·再生装置用、液晶プロジェクター用の波長板用途に最適であるこ とを見出した。
発明の効果
[0012] 本発明の第 1の波長板は、 2枚以上の位相差フィルムのレーザー光の透過部分が 接着されておらず隙間を有し、また、必要に応じてレーザー光の透過部分に支持体 を存在させないようにして固定されており、このような波長板は長期にわたり波面収差 の変化が極めて小さく高性能を維持できる。本発明の第 1の波長板を使用すると、長 期にわたり高性能を維持した光学情報記録 ·再生装置、液晶プロジェクター装置を 製造することができる。
[0013] 本発明の第 2の波長板は、少なくとも 2枚の位相差フィルムが積層され、当該積層さ れた位相差フィルムの少なくとも片面にガラス基板が積層されて ヽる波長板であって 、位相差フィルム同士、および位相差フィルムとガラス基板とが、接着剤 (A)、 (B)か ら選択され、かつそれぞれ異なる接着剤で積層固定されており、このような波長板は 安価で、し力も長期にわたり波面収差の変化が極めて小さく高性能を維持できる。本 発明の第 2の波長板を使用すると、安価で長期にわたり高性能を維持した光学情報 記録 '再生装置、液晶プロジェクター装置を製造することができる。
図面の簡単な説明
[0014] [図 1]実施例 1で作製された波長板の構成図で、(a)は上力もの観察図、(b)は横か らの観察図である。
[図 2]実施例 2で作製された波長板の構成図で、(a)は上力もの観察図、(b)は横か らの観察図である。
発明を実施するための最良の形態
[0015] 以下本発明をより具体的に説明する。
本発明の第 1および第 2の波長板に用いられる位相差フィルムとしては、ポリカーボ ネート(PC)、トリァセチルアセテート (TAC)、ポリビュルアルコール(PVA)、ポリビ- ルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリ ァリレート、ポリスルホン、ポリエーテルスルホン、アクリル榭脂、環状ォレフィン系榭脂 などの透明榭脂フィルムを延伸し配向させたものが挙げられる。なかでも、環状ォレ フィン系榭脂フィルムを延伸し、配向させたものが好ましく用いられる。
[0016] 本発明で位相差フィルム用途に好ましく用いられる環状ォレフィン系榭脂としては、 次のような (共)重合体が挙げられる。
(1)下記一般式 (I)で表される環状ォレフィン (以下、「特定単量体」という。)の開環 重合体。
(2)特定単量体と共重合性単量体との開環共重合体。
(3)上記(1)または(2)の開環 (共)重合体の水素添加 (共)重合体。
(4)上記(1)または(2)の開環 (共)重合体をフリーデルクラフト反応により環化したの ち、水素添加した (共)重合体。
(5)特定単量体と不飽和二重結合含有化合物との飽和共重合体。
(6)特定単量体、ビニル系環状炭化水素系単量体およびシクロペンタジェン系単量 体から選ばれる 1種以上の単量体の付加型(共)重合体およびその水素添加(共)重 合体。
(7)特定単量体とアタリレートとの交互共重合体。
[0017] [化 1]
一般式 ( I )
Figure imgf000008_0001
[0018] 一般式 (I)
〔式中、 R1— R4は、それぞれ水素原子、ハロゲン原子、炭素数 1一 30の炭化水素基 、またはその他の 1価の有機基であり、それぞれ同一または異なっていてもよい。 と R2または R3
と R4は、一体ィ匕して 2価の炭化水素基を形成しても良ぐ R1または R2と R3または と は互いに結合して、単環または多環構造を形成してもよい。 mは 0または正の整数で あり、 pは 0または正の整数である。〕
<特定単量体 >
上記特定単量体の具体例としては、次のような化合物が挙げられるが、本発明は: れらの具体例に限定されるものではな 、。
ビシクロ [2.2.1]ヘプトー 2—ェン、
トリシクロ [4.3.0.12'5]— 8—デセン、
トリシクロ [4.4.0.12'5]— 3—ゥンデセン、
テトラシクロ [4.4.0.12'5.17 3—ドデセン、
ペンタシクロ [6.5.1.13'6.02'7.09'13]-4—ペンタデセン、
5—メチルビシクロ [2.2.1]ヘプト— 2—ェン、
5—ェチルビシクロ [2.2.1]ヘプト— 2—ェン、
5—メトキシカルボ-ルビシクロ [2.2.1]ヘプト— 2—ェン、
5—メチルー 5—メトキシカルボ-ルビシクロ [2.2.1]ヘプト— 2—ェン、
5—シァノビシクロ [2.2.1]ヘプトー 2—ェン、
8—メトキシカルボ-ルテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン、
8—エトキシカルボ-ルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8— η—プロポキシカルボ-ルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8—イソプロポキシカルボ-ルテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン、
8— η—ブトキシカルボ-ルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8—メチルー 8—メトキシカルボ-ルテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン、 8—メチルー 8—エトキシカルボ-ルテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン、 8—メチルー 8— η—プロポキシカルボ-ルテトラシクロ [4.4.0.12'5.1"°]— 3—ドデセン、 8—メチルー 8—イソプロポキシカルボ-ルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、 8—メチルー 8— η—ブトキシカルボ-ルテトラシクロ [4.4.0.12'5.1"°]— 3—ドデセン、 5—ェチリデンビシクロ [2.2.1]ヘプトー 2—ェン、
8—ェチリデンテトラシクロ [4.4.0.12'5.1"。]— 3—ドデセン、
5—フエ-ルビシクロ [2.2.1]ヘプト— 2—ェン、
8—フエ-ルテトラシクロ [4.4.0.12'5.17'10]— 3—ドデセン、 —フルォロビシクロ [2.2.1]ヘプト— 2 ェン、
—フルォロメチルビシクロ [2.2.1]ヘプトー 2 ェン、
—トリフルォロメチルビシクロ [2.2.1]ヘプト— 2 ェン、
ペンタフルォロェチルビシクロ [2.2.1]ヘプトー 2 ェン、
.5 ジフルォロビシクロ [2.2.1]ヘプト— 2 ェン、
.6 ジフルォロビシクロ [2.2.1]ヘプト— 2 ェン、
.5 ビス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト— 2—ェン、
.6 ビス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト— 2—ェン、
—メチルー 5—トリフルォロメチルビシクロ [2.2.1]ヘプト— 2—ェン、
,5,6—トリフルォロビシクロ [2.2.1]ヘプト— 2 ェン、
,5,6—トリス(フルォロメチル)ビシクロ [2.2.1]ヘプト— 2—ェン、
, 5, 6, 6—テトラフルォロビシクロ [2.2.1]ヘプト一 2—ェン、
, 5, 6, 6—テトラキス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト— 2 ェン、
.5 ジフルォロ— 6 , 6 ビス(トリフルォロメチル)ビシクロ [ 2.2.1 ]ヘプト— 2—ェン、.6 ジフルォロ— 5, 6 ビス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト— 2—ェン、,5,6—トリフルォロ— 5—トリフルォロメチルビシクロ [2.2.1]ヘプト— 2—ェン、—フルオロー 5 ペンタフルォロェチルー 6, 6—ビス(トリフルォロメチル)ビシクロ [2.2.]ヘプトー 2—ェン、
, 6—ジフルオロー 5—へプタフルオロー iso プロピル 6 トリフルォロメチルビシクロ [ 2 .1]ヘプトー 2—ェン、
—クロ口一 5,6,6—トリフルォロビシクロ [2.2.1]ヘプト一 2 ェン、
, 6—ジクロ口— 5, 6 ビス(トリフルォロメチル)ビシクロ [2.2.1]ヘプト— 2 ェン、,5,6—トリフルォロ— 6—トリフルォロメトキシビシクロ [2.2.1]ヘプト— 2—ェン、,5,6—トリフルォロ— 6—ヘプタフルォロプロポキシビシクロ [2.2.1]ヘプト— 2 ェン、—フルォロテトラシクロ [4.4.0.12'5.17'10]— 3—ドデセン、
—フルォロメチルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
—ジフルォロメチルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
—トリフルォロメチルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、 8—ペンタフルォロェチルテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8.8 ジフルォロテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8.9 ジフルォロテトラシクロ [4.4.0.12'5.1"。]— 3—ドデセン、
8.8 ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8.9 ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.1"°]— 3—ドデセン、
8—メチルー 8—トリフルォロメチルテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン、
8,8,9—トリフルォロテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8,8,9—トリス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8,8,9,9—テトラフルォロテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン、
8,8,9,9—テトラキス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.1"°]— 3—ドデセン、
8.8 ジフルォロ一 9, 9 ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5. l7'10]— 3—ド デセン、
8.9 ジフルォロ一 8, 9 ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.17'1()]— 3—ド デセン、
8,8,9—トリフルォロ— 9—トリフルォロメチルテトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセン
8,8,9—トリフルォロ— 9—トリフルォロメトキシテトラシクロ [4.4.0.1 5.17'1()]— 3—ドデセン
8,8,9—トリフルォロ— 9—ペンタフルォロプロポキシテトラシクロ [4.4.0.12'5.17'1Q]— 3— ドデセン、
8—フルォロ— 8—ペンタフルォロェチルー 9, 9—ビス(トリフルォロメチル)テトラシクロ [4. 4.0.12'5.17'10]— 3—ドデセン、
8, 9—ジフルオロー 8—ヘプタフルォロ iso プロピル 9 トリフルォロメチルテトラシクロ [4.4.0.12'5.17'1()]—3—ドデセン、
8—クロ口— 8,9,9—トリフルォロテトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセン、
8,9—ジクロ口— 8,9 ビス(トリフルォロメチル)テトラシクロ [4.4.0.12'5.17'ω]— 3—ドデセ ン、
8— (2,2,2—トリフルォロエトキシカルボ-ル)テトラシクロ [4.4.0.12'5.17'1()]— 3—ドデセ ン、
8—メチルー 8— (2,2,2—トリフルォロエトキシカルボ-ル)テトラシクロ [4.4.0.12'5.17'1Q] —3—ドデセン
などを挙げることができる。
[0019] これらは、 1種単独で、または 2種以上を併用することができる。
特定単量体のうち好ましいのは、上記一般式 (I)中、 R1および R3が水素原子または 炭素数 1一 10、さらに好ましくは 1一 4、特に好ましくは 1一 2の炭化水素基であり、 R2 および R4が水素原子または一価の有機基であって、 R2および R4の少なくとも一つは 水素原子および炭化水素基以外の極性を有する極性基を示し、 mは 0— 3の整数、 p は 0— 3の整数であり、より好ましくは m+p = 0— 4、さらに好ましくは 0— 2、特に好ま しくは m= l、 p = 0であるものである。 m= l、 p = 0である特定単量体は、得られる環 状ォレフイン系榭脂のガラス転移温度が高くかつ機械的強度も優れたものとなる点で 好ましい。
[0020] 上記特定単量体の極性基としては、カルボキシル基、水酸基、アルコキシカルボ- ル基、ァリロキシカルボ-ル基、アミノ基、アミド基、シァノ基などが挙げられ、これら極 性基はメチレン基などの連結基を介して結合していてもよい。また、カルボニル基、ェ 一テル基、シリルエーテル基、チォエーテル基、イミノ基など極性を有する 2価の有 機基が連結基となって結合して 、る炭化水素基なども極性基として挙げられる。これ らの中では、カルボキシル基、水酸基、アルコキシカルボ-ル基またはァリロキシカル ボニル基が好ましぐ特にアルコキシカルボ-ル基またはァリロキシカルボ-ル基が 好ましい。
[0021] さらに、 R2および R4の少なくとも一つが式 (CH ) COORで表される極性基である
2 n
単量体は、得られる環状ォレフィン系榭脂が高いガラス転移温度と低い吸湿性、各 種材料との優れた密着性を有するものとなる点で好ま Uヽ。上記の特定の極性基に 力かる式において、 Rは炭素原子数 1一 12、さらに好ましくは 1一 4、特に好ましくは 1 一 2の炭化水素基、好ましくはアルキル基である。また、 nは、通常、 0— 5であるが、 n の値が小さ 、ものほど、得られる環状ォレフィン系榭脂のガラス転移温度が高くなる ので好ましぐさらに nが 0である特定単量体はその合成が容易である点で好まし 、。 [0022] また、上記一般式 (I)にお 、て R1または R3がアルキル基であることが好ましく、炭素 数 1一 4のアルキル基、さらに好ましくは 1一 2のアルキル基、特にメチル基であること が好ましぐ特に、このアルキル基が上記の式 (CH ) COORで表される特定の極
2 n
性基が結合した炭素原子と同一の炭素原子に結合されていることが、得られる環状 ォレフィン系榭脂の吸湿性を低くできる点で好ましい。
[0023] <共重合性単量体 >
共重合性単量体の具体例としては、シクロブテン、シクロペンテン、シクロヘプテン 、シクロオタテン、ジシクロペンタジェンなどのシクロォレフインを挙げることができる。 シクロォレフインの炭素数としては、 4一 20力 子ましく、さらに好ましいのは 5— 12であ る。これらは、 1種単独で、または 2種以上を併用することができる。
特定単量体 Z共重合性単量体の好ましい使用範囲は、重量比で 100ZO— 50Z5 0であり、さらに好ましくは 100Ζ0— 60Ζ40である。
[0024] <開環重合触媒 >
本発明において、(1)特定単量体の開環重合体、および (2)特定単量体と共重合 性単量体との開環共重合体を得るための開環重合反応は、メタセシス触媒の存在下 に行われる。
このメタセシス触媒は、(a)W、 Moおよび Reの化合物力 選ばれた少なくとも 1種と 、(b)デミングの周期律表 IA族元素(例えば Li、 Na、 Kなど)、 ΠΑ族元素(例えば、 Μ g、 Caなど)、 ΠΒ族元素(例えば、 Zn、 Cd、 Hgなど)、 ΠΙΑ族元素(例えば、 B、 A1な ど)、 IVA族元素(例えば、 Si、 Sn、 Pbなど)、あるいは IVB族元素(例えば、 Ti、 Zrな ど)の化合物であって、少なくとも 1つの該元素 炭素結合あるいは該元素一水素結 合を有するもの力も選ばれた少なくとも 1種との組合せ力 なる触媒である。また、こ の場合に触媒の活性を高めるために、後述の(c)添加剤が添加されたものであって ちょい。
[0025] (a)成分として適当な W、 Moあるいは Reの化合物の代表例としては、 WC1
6、 MoC
1、 ReOClなどの特開平 1-132626号公報第 8頁左下欄第 6行一第 8頁右上欄第 1
6 3
7行に記載の化合物を挙げることができる。
(b)成分の具体例としては、 n— C H Li、 (C H ) Al ) A1C1
4 9 2 5 3 、(C H
2 5 2 、 (C H ) A1C1
2 5 1.5 1.5 、 (C H )A1C1、メチルアルモキサン、 LiHなど特開平 1—132626号公報第 8頁右上
2 5 2
欄第 18行一第 8頁右下欄第 3行に記載の化合物を挙げることができる。
[0026] 添加剤である(c)成分の代表例としては、アルコール類、アルデヒド類、ケトン類、ァ ミン類などが好適に用いることができる力 さらに特開平 1-132626号公報第 8頁右 下欄第 16行一第 9頁左上欄第 17行に示される化合物を使用することができる。 メタセシス触媒の使用量としては、上記 (a)成分と特定単量体とのモル比で「(a)成 分:特定単量体」力 通常、 1: 500— 1: 50,000となる範囲、好ましくは 1: 1,000— 1
: 10,000となる範囲とされる。
[0027] (a)成分と (b)成分との割合は、金属原子比で (a): (b)が 1: 1一 1: 50、好ましくは 1
: 2— 1 : 30の範囲とされる。
(a)成分と (c)成分との割合は、モル比で (c): (a)が 0. 005 : 1— 15 : 1、好ましくは 0 . 05 : 1— 7 : 1の範囲とされる。
<重合反応用溶媒 >
開環重合反応にお!ヽて用いられる溶媒 (分子量調節剤溶液を構成する溶媒、特定 単量体および Zまたはメタセシス触媒の溶媒)としては、例えば、ペンタン、へキサン 、ヘプタン、オクタン、ノナン、デカンなどのアルカン類;シクロへキサン、シクロへプタ ン、シクロオクタン、デカリン、ノルボルナンなどのシクロアルカン類;ベンゼン、トルェ ン、キシレン、ェチルベンゼン、クメンなどの芳香族炭化水素;クロロブタン、ブロモへ キサン、塩化メチレン、ジクロロエタン、へキサメチレンジブ口ミド、クロ口ベンゼン、クロ 口ホルム、テトラクロロエチレンなどのハロゲン化アルカン、ハロゲン化ァリール;酢酸 ェチル、酢酸 n—ブチル、酢酸 iso—ブチル、プロピオン酸メチル、ジメトキシェタンなど の飽和カルボン酸エステル類;ジブチルエーテル、テトラヒドロフラン、ジメトキシエタ ンなどのエーテル類などを挙げることができ、これらは単独であるいは混合して用い ることができる。これらのうち、芳香族炭化水素が好ましい。
溶媒の使用量としては、「溶媒:特定単量体 (重量比)」が、通常、 1 : 1一 10 : 1となる 量とされ、好ましくは 1 : 1-5 : 1となる量とされる。
[0028] <分子量調節剤 >
得られる開環 (共)重合体の分子量の調節は、重合温度、触媒の種類、溶媒の種 類によっても行うことができるが、本発明においては、分子量調節剤を反応系に共存 させること〖こより調節する。
ここに、好適な分子量調節剤としては、例えばエチレン、プロペン、 1-ブテン、 1- ペンテン、 1—へキセン、 1 ヘプテン、 1一才クテン、 1—ノネン、 1ーデセンなどの α—才 レフイン類およびスチレンを挙げることができ、これらのうち、 1ーブテン、 1一へキセン が特に好ましい。
これらの分子量調節剤は、単独であるいは 2種以上を混合して用いることができる。 分子量調節剤の使用量としては、開環重合反応に供される特定単量体 1モルに対し TO. 005— 0. 6モノレ、好ましくは 0. 02—0. 5モノレとされる。
[0029] (2)開環共重合体を得るには、開環重合工程において、特定単量体と共重合性単 量体とを開環共重合させてもよいが、さらに、ポリブタジエン、ポリイソプレンなどの共 役ジェン化合物、スチレン ブタジエン共重合体、エチレン 非共役ジェン共重合体 、ポリノルボルネンなどの主鎖に炭素 炭素間二重結合を 2つ以上含む不飽和炭化 水素系ポリマーなどの存在下に特定単量体を開環重合させてもよい。
[0030] 以上のようにして得られる開環(共)重合体は、そのままでも用いることができるが、 この(共)重合体の分子中のォレフィン性不飽和結合を水素添加して得られた (3)水 素添加(共)重合体は、耐熱着色性ゃ耐光性に優れ、位相差フィルムの耐久性を向 上させることができるので好まし 、。
<水素添加触媒 >
水素添加反応は、通常のォレフィン性不飽和結合を水素添加する方法が適用でき る。すなわち、開環重合体の溶液に水素添加触媒を添加し、これに常圧一 300気圧 、好ましくは 3— 200気圧の水素ガスを 0— 200°C、好ましくは 20— 180°Cで作用さ せること〖こよって行われる。
[0031] 水素添加触媒としては、通常のォレフィン性ィ匕合物の水素添加反応に用いられるも のを使用することができる。この水素添加触媒としては、不均一系触媒および均一系 触媒が挙げられる。
不均一系触媒としては、ノ《ラジウム、白金、ニッケル、ロジウム、ルテニウムなどの貴 金属触媒物質を、カーボン、シリカ、アルミナ、チタ-ァなどの担体に担持させた固体 触媒を挙げることができる。また、均一系触媒としては、ナフテン酸ニッケル Zトリェチ ルアルミニウム、ニッケルァセチルァセトナート/トリェチルアルミニウム、オタテン酸 コバルト Zn—ブチルリチウム、チタノセンジクロリド Zジェチルアルミニウムモノクロリド 、酢酸ロジウム、クロロトリス(トリフエ-ルホスフィン)ロジウム、ジクロロトリス(トリフエ- ルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフエ-ルホスフィン)ルテ- ゥム、ジクロロカルボ-ルトリス(トリフエ-ルホスフィン)ルテニウムなどを挙げることが できる。触媒の形態は、粉末でも粒状でもよい。
[0032] これらの水素添加触媒は、開環 (共)重合体:水素添加触媒 (重量比)が、 1 : 1 X 10 — 6— 1: 2となる割合で使用される。
水素添加(共)重合体の水素添加率は、 500MHz、 一 NMRで測定した値が 50 %以上、好ましくは 90%以上、さらに好ましくは 98%以上、最も好ましくは 99%以上 である。水素添加率が高いほど、熱や光に対する安定性が優れたものとなり、本発明 の波長板として使用した場合に長期にわたって安定した特性を得ることができる。
[0033] なお、開環 (共)重合体分子中に芳香族基を有する場合、係る芳香族基は耐熱着 色性や耐光性を低下させることが少なぐ逆に光学特性、例えば屈折率や波長分散 などにぉ 、て有利な特性を発現することもあるので、必ずしも水素添加される必要は ない。
また、本発明において用いられる環状ォレフィン系榭脂として、(4)上記(1)または (2)の開環(共)重合体をフリーデルクラフト反応により環化したのち、水素添加した( 共)重合体も使用できる。
[0034] <フリーデルクラフト反応による環化 >
上記(1)または(2)の開環 (共)重合体をフリーデルクラフト反応により環化する方法 は特に限定されるものではないが、特開昭 50-154399号公報に記載の酸性ィ匕合 物を用いた公知の方法が採用できる。酸性ィ匕合物としては、具体的には、 A1C1 、 BF
3
、 FeCl 、 Al O 、 HC1、 CH ClCOOH、ゼォライト、活性白土、などのルイス酸、ブレ
3 3 2 3 3
ンステッド酸が用いられる。
[0035] 環化された開環 (共)重合体は、上記(1)または(2)の開環 (共)重合体と同様に水 素添加できる。 さらに、本発明において用いられる環状ォレフィン系榭脂として、(5)上記特定単量 体と不飽和二重結合含有ィ匕合物との飽和共重合体も使用できる。
<不飽和二重結合含有化合物 >
不飽和二重結合含有ィ匕合物としては、例えばエチレン、プロピレン、ブテンなど、好 ましくは炭素数 2— 12、さらに好ましくは炭素数 2— 8のォレフイン系化合物を挙げる ことができる。
[0036] 特定単量体 Z不飽和二重結合含有化合物の好ましい使用範囲は、重量比で 90 Z10— 40Z60であり、さらに好ましくは 85Z15— 50Z50である。
本発明にお!、て、 (5)特定単量体と不飽和二重結合含有化合物との飽和共重合体 を得るには、通常の付加重合法を使用できる。
<付加重合触媒 >
上記(5)飽和共重合体を合成するための触媒としては、チタン化合物、ジルコユウ ム化合物およびバナジウム化合物力 選ばれた少なくとも一種と、助触媒としての有 機アルミニウム化合物とが用いられる。
[0037] ここで、チタンィ匕合物としては、四塩化チタン、三塩ィ匕チタンなどを、またジルコユウ ム化合物としてはビス(シクロペンタジェ -ル)ジルコニウムクロリド、ビス(シクロペンタ ジェ -ル)ジルコニウムジクロリドなどを挙げることができる。
さらに、バナジウム化合物としては、一般式
VO (OR) X、または V (OR) X
a b c d
〔ただし、 Rは炭化水素基、 Xはハロゲン原子であって、 0≤a≤3、 0≤b≤3, 2≤ (a +b)≤3、 0≤c≤4, 0≤d≤4, 3≤ (c + d)≤4である。〕
で表されるバナジウム化合物、あるいはこれらの電子供与付加物が用いられる。
[0038] 上記電子供与体としては、アルコール、フエノール類、ケトン、アルデヒド、カルボン 酸、有機酸または無機酸のエステル、エーテル、酸アミド、酸無水物、アルコキシシラ ンなどの含酸素電子供与体、アンモニア、ァミン、二トリル、イソシアナ一トなどの含窒 素電子供与体などが挙げられる。
さらに、助触媒としての有機アルミニウム化合物としては、少なくとも 1つのアルミ-ゥ ムー炭素結合あるいはアルミニウム一水素結合を有するものから選ばれた少なくとも一 種が用いられる。
[0039] 上記において、例えばバナジウム化合物を用いる場合におけるバナジウム化合物 と有機アルミニウム化合物の比率は、バナジウム原子に対するアルミニウム原子の比 (A1/V)が 2以上であり、好ましくは 2— 50、特に好ましくは 3— 20の範囲である。 付加重合に使用される重合反応用溶媒は、開環重合反応に用いられる溶媒と同じ ものを使用することができる。また、得られる(5)飽和共重合体の分子量の調節は、 通常、水素を用いて行われる。
[0040] さらに、本発明において用いられる環状ォレフィン系榭脂として、(6)上記特定単量 体、およびビュル系環状炭化水素系単量体またはシクロペンタジェン系単量体から 選ばれる 1種以上の単量体の付加型共重合体およびその水素添加共重合体も使用 できる。
<ビニル系環状炭化水素系単量体 >
ビュル系環状炭化水素系単量体としては、例えば、 4ービニルシクロペンテン、 2—メ チルー 4 イソプロべ-ルシクロペンテンなどのビュルシクロペンテン系単量体、 4ービ -ルシクロペンタン、 4 イソプロべ-ルシクロペンタンなどのビュルシクロペンタン系 単量体などのビニル化 5員環炭化水素系単量体、 4 ビュルシクロへキセン、 4 イソ プロぺニルシクロへキセン、 1ーメチルー 4 イソプロぺニルシクロへキセン、 2—メチノレー 4—ビュルシクロへキセン、 2—メチルー 4 イソプロべ-ルシクロへキセンなどのビュル シクロへキセン系単量体、 4 ビュルシクロへキサン、 2—メチルー 4 イソプロべ-ルシ クロへキサンなどのビュルシクロへキサン系単量体、スチレン、 α—メチルスチレン、 2 ーメチルスチレン、 3—メチルスチレン、 4ーメチルスチレン、 1 ビュルナフタレン、 2—ビ -ルナフタレン、 4 フエ-ルスチレン、 ρ—メトキシスチレンなどのスチレン系単量体、 d テルペン、 1 テルペン、ジテルペン、 d—リモネン、 1ーリモネン、ジペンテンなどの テルペン系単量体、 4 ビュルシクロヘプテン、 4 イソプロべ-ルシクロヘプテンなど のビュルシクロヘプテン系単量体、 4 ビュルシクロヘプタン、 4 イソプロべ-ルシク 口ヘプタンなどのビュルシクロヘプタン系単量体などが挙げられる。好ましくは、スチ レン、 α—メチルスチレンである。これらは、 1種単独で、または 2種以上を併用するこ とがでさる。 [0041] <シクロペンタジェン系単量体 >
(6)付加型共重合体の単量体に使用されるシクロペンタジェン系単量体としては、 例えばシクロペンタジェン、 1ーメチルシクロペンタジェン、 2—メチルシクロペンタジェ ン、 2—ェチルシクロペンタジェン、 5—メチルシクロペンタジェン、 5, 5—メチルシクロ ペンタジェンなどが挙げられる。好ましくはシクロペンタジェンである。これらは、 1種 単独で、または 2種以上を併用することができる。
[0042] 上記特定単量体、ビニル系環状炭化水素系単量体およびシクロペンタジェン系単 量体から選ばれる 1種以上の単量体の付加型 (共)重合体は、上記(5)特定単量体 と不飽和二重結合含有化合物との飽和共重合体と同様の付加重合法で得ることが できる。
また、上記付加型 (共)重合体の水素添加 (共)重合体は、上記 (3)開環 (共)重合 体の水素添加(共)重合体と同様の水添法で得ることができる。
さらに、本発明において用いられる環状ォレフィン系榭脂として、(7)上記特定単量 体とアタリレートとの交互共重合体も使用できる。
[0043] くアタリレート >
(7)上記特定単量体とアタリレートとの交互共重合体の製造に用いられるアタリレー トとしては、例えば、メチルアタリレート、 2—ェチルへキシルアタリレート、シクロへキシ ルアタリレートなどの炭素原子数 1一 20の直鎖状、分岐状または環状アルキルアタリ レート、グリシジルアタリレート、 2—テトラヒドロフルフリルアタリレートなどの炭素原子 数 2— 20の複素環基含有アタリレート、ベンジルアタリレートなどの炭素原子数 6— 2 0の芳香族環基含有アタリレート、イソポロ-ルアタリレート、ジシクロペンタ-ルアタリ レートなどの炭素数 7— 30の多環構造を有するアタリレートが挙げられる。
[0044] 本発明において、(7)上記特定単量体とアタリレートとの交互共重合体を得るため には、ルイス酸存在下、上記特定単量体とアタリレートとの合計を 100モルとしたとき 、通常、上記特定単量体が 30— 70モル、アタリレートが 70— 30モルの割合で、好ま しくは上記特定単量体力 0— 60モル、アタリレートが 60— 40モル割合で、特に好ま しくは上記特定単量体力 5— 55モル、アタリレートが 55— 45モルの割合でラジカル 重合する。 [0045] (7)上記特定単量体とアタリレートとの交互共重合体を得るために使用するルイス 酸の量は、アタリレート 100モルに対して 0. 001— 1モルとなる量とされる。また、公 知のフリーラジカルを発生する有機過酸ィ匕物またはァゾビス系のラジカル重合開始 剤を用いることができ、重合反応温度は、通常、 20°C— 80°C、好ましくは 5°C— 60 °Cである。また、重合反応用溶媒には、開環重合反応に用いられる溶媒と同じものを 使用することができる。
[0046] なお、本発明でいう「交互共重合体」とは、上記特定単量体に由来する構造単位が 隣接しない、すなわち、上記特定単量体に由来する構造単位の隣は必ずアタリレー トに由来する構造単位である構造を有する共重合体のことを意味しており、アタリレー ト由来の構造単位同士が隣接して存在する構造を否定するものではない。
本発明にお 、て用いられる環状ォレフィン系榭脂は、上記のような(1)一 (2)開環( 共)重合体、(3)— (4)水素添加 (共)重合体、(5)飽和共重合体、(6)付加型 (共) 重合体、もしくはその水素添加(共)重合体、および (7)交互共重合体より選択される 力 これに公知の酸ィ匕防止剤、紫外線吸収剤などを添加してさらに安定ィ匕することが できる。
[0047] 具体的には、酸化防止剤、例えば、 2,6—ジー tーブチルー 4 メチルフエノール、 2,2' ージォキシー 3, 3'—ジー tーブチルー 5, 5'—ジメチルジフエニルメタン、テトラキス [メチレン —3— (3, 5—ジー tーブチルー 4ーヒドロキシフエ-ル)プロピオネート]メタン;紫外線吸収 剤、例えば 2,4—ジヒドロキシベンゾフエノン、 2—ヒドロキシー 4ーメトキシベンゾフエノン などを添加することによって安定ィ匕することができる。また、加工性を向上させる目的 で、滑剤などの添加剤を添加することもできる。
[0048] 本発明において用いられる環状ォレフィン系榭脂の好ましい分子量は、固有粘度〔 η〕 で 0. 2— 5dlZg、さらに好ましくは 0. 3— 3dlZg、特に好ましくは 0. 4— 1. 5dl inh
Zgであり、ゲルパーミエーシヨンクロマトグラフ(GPC)で測定したポリスチレン換算の 数平均分子量(Mr は 8,000— 100,000、さらに好ましくは 10,000— 80,000、特 に好まし <は 12,000— 50,000であり、重量平均分子量(Mw)は 20,000— 300,00 0、さら【こ好まし <ίま 30,000一 250,000、特【こ好まし <ίま 40,000一 200,000の範囲 のものが好適である。 [0049] 固有粘度〔 r?〕 、数平均分子量および重量平均分子量が上記範囲にあることによ
uih
つて、環状ォレフィン系榭脂の耐熱性、耐水性、耐薬品性、機械的特性と、本発明の 波長板として使用したときの位相差の安定性とのバランスが良好となる。
本発明にお ヽて用いられる環状ォレフィン系榭脂のガラス転移温度 (Tg)としては、 通常、 120°C以上、好ましくは 120— 350°C、さらに好ましくは 130— 250°C、特に好 ましくは 140— 200°Cである。 Tgが 120°C未満の場合は、レーザー光源やその隣接 部品からの熱により、得られる環状ォレフィン系榭脂フィルムの光学特性変化が大き くなり好ましくない。一方、 Tgが 350°Cを超えると、延伸加工など、 Tg近辺まで加熱し て加工する場合に榭脂が熱劣化する可能性が高くなる。
[0050] 本発明にお ヽて用いられる環状ォレフィン系榭脂中に含まれるゲル含有量は可能 な限り少ないことが望ましぐ通常、 5重量%以下、好ましくは 1重量%以下である。ゲ ル含有量が多いと、波長板とした際に光学欠陥となることがある。
本発明にお 、て用いられる環状ォレフィン系榭脂の 23°Cにおける飽和吸水率は、 好ましくは 0. 05— 2重量%、さらに好ましくは 0. 1— 1重量%の範囲にある。飽和吸 水率がこの範囲内であると、位相差が均一であり、得られる環状ォレフィン系榭脂フィ ルムとガラス基板などとの密着性が優れ、使用途中で剥離などが発生せず、また、酸 化防止剤などとの相溶性にも優れ、多量に添加することも可能となる。飽和吸水率が 0. 05重量%未満であると、ガラス基板や透明支持体などの支持体との密着性が乏 しくなり、剥離を生じやすくなり、一方、 2重量%を超えると、環状ォレフィン系榭脂フ イルムが吸水により寸法変化を起こしやすくなる。
[0051] なお、上記の飽和吸水率は ASTM D570に従い、 23°C水中で 1週間浸漬して増 加重量を測定することにより得られる値である。
本発明において用いられる環状ォレフィン系榭脂としては、その光弾性係数 (C )
P
カ^ー 100 ( X 10— 12Pa— であり、かつ応力光学係数(C )カ 1,500 4,000 ( 10—12
R
Pa"1)を満たすようなものが好適に使用される。
[0052] ここで、光弾性係数 (C )および応力光学係数 (C )につ 、ては、種々の文献(
P R
Polymer Journal,Vol.27,No,9 p.943- 950(1995), 日本レオロジ一学会誌,
Vol.l9,No.2,p.93-97(1991),光弾性実験法, 日刊工業新聞社,昭和 50年第 7版に 記載されており公知の事実であり、前者がポリマーのガラス状態での応力による位相 差の発生程度を表すのに対し、後者は流動状態での応力による位相差の発生程度 を表す。
[0053] 光弾性係数 (C )が大きいことは、ポリマーをガラス状態下で使用した場合に外的因
P
子または自らの凍結した歪み力 発生した歪み力 発生する応力などにおいて敏感 に位相差を発生しやすくなつてしまうことを表し、例えば、本発明のように積層したり 支持体に固定したりした際の貼り合わせ時の残留歪みや、温度変化や湿度変化など にともなう材料の収縮により発生する微小な応力によって不必要な位相差を発生し やすいことを意味する。このことから、できるだけ光弾性係数 (C )は小さい程よい。
P
[0054] 一方、応力光学係数 (C )が大きいことは、例えば、環状ォレフィン系榭脂フィルム
R
に位相差の発現性を付与する際に少ない延伸倍率で所望の位相差を得られるよう になったり、大きな位相差を付与しうるフィルムを得やすくなつたり、同じ位相差を所 望の場合には応力光学係数 (C )が小さいものと比べてフィルムを薄肉化できるという
R
大きなメリットがある。
[0055] 以上のような見地から、光弾性係数 (C )が好ましくは 0— 100 ( X 10— 12Pa— 、さら
P
に好ましくは 0— 80 ( X 10— Pa—1)、特に好ましくは 0— 50 ( X 10— Pa—1)、より好ましく は 0— 30 ( X 10— Pa—1)、最も好ましくは 0— 20 ( X 10— Pa—1)である。光弾性係数 (C )が 100 ( X 10— 12Pa— を超えた場合には、位相差フィルム同士の貼り合わせ時に発
P
生する応力、位相差フィルムを支持体に固定した時に発生する応力や使用する際の 環境変化などによって発生する位相差変化などによって、最適貼り合わせ光軸角度 の許容誤差範囲力 のずれが発生してしまい波長板として使用したときに透過光量 が低下してしまう場合があり好ましくな 、。
[0056] また、本発明において用いられる環状ォレフィン系榭脂の水蒸気透過度は、 40°C , 90%RHの条件下で 25 m厚のフィルムとしたときに、通常、 1一 400gZm2' 24hr であり、好ましくは 5— 350gZm ' 24hrであり、さらに好ましくは 10— 300gZm 24 hrである。水蒸気透過度を本範囲とすることで、ガラス板や透明支持体などの支持体 と位相差フィルムとの貼り合わせに使用した接着剤 (A)や接着剤 (B)の含有水分や 波長板が使用される環境の湿度による特性変化を低減 '回避することができることか ら好ましい。
[0057] 本発明の第 1および第 2の波長板に用いられる環状ォレフィン系榭脂フィルムは、 上記の環状ォレフィン系榭脂を溶融成形法あるいは溶液流延法 (溶剤キャスト法)な どによりフィルムもしくはシートとすることで得ることができる。このうち、膜厚の均一性 および表面平滑性が良好になる点から溶剤キャスト法が好ましい。また、製造コスト面 からは溶融成形法が好まし 、。
[0058] 溶剤キャスト法により環状ォレフィン系榭脂フィルムを得る方法としては特に限定さ れるものではなぐ公知の方法を適用すればよいが、例えば、上記環状ォレフィン系 榭脂を溶媒に溶解または分散させて適度の濃度の液にし、適当なキヤリヤー上に注 ぐ力または塗布し、これを乾燥した後、キヤリャ一力も剥離させる方法が挙げられる。 以下に、溶剤キャスト法により環状ォレフィン系榭脂フィルムを得る方法の諸条件を 示すが、本発明は係る諸条件に限定されるものではない。
[0059] 環状ォレフィン系榭脂を溶媒に溶解または分散させる際には、該榭脂の濃度を、通 常は 0. 1— 90重量%、好ましくは 1一 50重量%、さらに好ましくは 10— 35重量%に する。該榭脂の濃度を上記未満にすると、フィルムの厚みを確保することが困難にな る、また、溶媒蒸発にともなう発泡などによりフィルムの表面平滑性が得に《なるなど の問題が生じる。一方、上記を超えた濃度にすると、溶液粘度が高くなりすぎて得ら れる環状ォレフィン系榭脂フィルムの厚みや表面が均一になりにくくなるために好ま しくない。
[0060] また、室温での上記溶液の粘度は、通常は 1一 l,000,OOOmPa' s、好ましくは 10 一 100,OOOmPa,s、さら【こ好ましく ίま 100一 50,OOOmPa,s、特【こ好ましく ίま 1,000 一 40,000mPa' sである。
使用する溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、メチル セロソルブ、ェチルセ口ソルブ、 1ーメトキシー 2—プロパノールなどのセロソルブ系溶媒 、ジアセトンアルコール、アセトン、シクロへキサノン、メチルェチルケトン、 4ーメチルー 2—ペンタノンなどのケトン系溶媒、乳酸メチル、乳酸ェチルなどのエステル系溶媒、 シクロへキサン、ェチルシクロへキサン、 1,2—ジメチルシクロへキサンなどのシクロォ レフイン系溶媒、 2,2,3, 3—テトラフルオロー 1 プロパノール、塩化メチレン、クロ口ホル ムなどのハロゲン含有溶媒、テトラヒドロフラン、ジォキサンなどのエーテル系溶媒、 1 ペンタノール、 1ーブタノールなどのアルコール系溶媒を挙げることができる。
[0061] また、上記以外でも、 SP値 (溶解度パラメーター)力 通常は 10— 30 (MPa1/2)、好 ましくは 10— 25 (MPa1/2)、さらに好ましくは 15— 25 (MPa1/2)、特に好ましくは 15— 20 (MPa1 2)の範囲の溶媒を使用すれば、表面均一性と光学特性の良好な環状ォ レフイン系榭脂フィルムを得ることができる。
上記溶媒は、単独であるいは複数を混合して使用することができる。その場合には 、混合系としたときの SP値の範囲を上記範囲内とすることが好ましい。このとき、混合 系での SP値の値は、重量比で予測することができ、例えば二種の混合ではそれぞ れの重量分率を Wl, W2、 SP値を SP1, SP2とすると混合系の SP値は下記式:
SPfg=Wl - SPl +W2- SP2
により計算した値として求めることができる。
[0062] 環状ォレフィン系榭脂フィルムを溶剤キャスト法により製造する方法としては、上記 溶液をダイスゃコーターを使用して金属ドラム、スチールベルト、ポリエチレンテレフ タレート(PET)やポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリ テトラフルォロエチレン (商品名;テフロン (登録商標) )ベルトなどの基材の上に塗布 し、その後、溶剤を乾燥して基材よりフィルムを剥離する方法が一般に挙げられる。ま た、スプレー、ハケ、ロールスピンコート、デッビングなどで溶液を基材に塗布し、得ら れた塗膜を乾燥した後、基材よりフィルムを剥離することにより製造することもできる。 なお、繰り返し塗布することで厚みや表面平滑性などを制御してもよ ヽ。
[0063] 上記溶剤キャスト法の乾燥工程については、特に制限はなく一般的に用いられる 方法、例えば多数のローラーを介して乾燥炉中を通過させる方法などで実施できる 1S 乾燥工程において溶媒の蒸発に伴い気泡が発生すると、フィルムの特性を著しく 低下させるので、これを避けるために、乾燥工程を 2段以上の複数工程とし、各工程 での温度ある ヽは風量を制御することが好ま 、。
[0064] また、環状ォレフィン系榭脂フィルム中の残留溶媒量は、通常は 10重量%以下、 好ましくは 5重量%以下、さらに好ましくは 1重量%以下、特に好ましくは 0. 5重量% 以下である。ここで、残留溶媒量が 10重量%を超えると、実際に使用したときに経時 による寸法変化が大きくなり好ましくない。また、残留溶媒により Tgが低くなり、耐熱 性も低下することから好ましくない。
[0065] なお、後述する延伸工程を好適に行うためには、上記残留溶媒量を上記範囲内で 適宜調節する必要がある場合がある。具体的には、延伸配向時の位相差を安定して 均一に発現させるために、残留溶媒量を通常は 10— 0. 1重量%、好ましくは 5— 0. 1重量%、さらに好ましくは 1一 0. 1重量%にすることがある。
溶媒を微量残留させることで、延伸加工が容易になる、あるいは位相差の制御が容 易になる場合がある。
[0066] 本発明において用いられる環状ォレフィン系榭脂フィルムの厚さは、通常は 0. 1— 500 /z m、好ましくは 0. 1— 300 πι、さらに好ましくは 1一 250 mである。 0. 1 m未満の厚みの場合実質的にハンドリングが困難となる。一方、 500 /z mを超える場 合、ロール状に巻き取ることが困難になるとともに、レーザー光などの光の高透過度 を目的とする本発明の波長板としては、透過率が低下するので好ましくない。
[0067] 本発明において用いられる環状ォレフィン系榭脂フィルムの厚み分布は、通常は 平均値に対して ± 20%以内、好ましくは ± 10%以内、さらに好ましくは ± 5%以内、 特に好ましくは ± 3%以内である。また、 1cmあたりの厚みの変動は、通常は 10%以 下、好ましくは 5%以下、さらに好ましくは 1%以下、特に好ましくは 0. 5%以下である ことが望ましい。力かる厚み制御を実施することにより、延伸配向した際の位相差ムラ を防ぐことができる。
[0068] 本発明の第 1および第 2の波長板に使用される環状ォレフィン系榭脂フィルムから なる位相差フィルムとしては、上記方法によって得た環状ォレフィン系榭脂フィルムを 延伸加工したものが好適に使用される。具体的には、公知の一軸延伸法あるいは二 軸延伸法により製造することができる。すなわち、テンター法による横一軸延伸法、口 ール間圧縮延伸法、周遠の異なるロールを利用する縦一軸延伸法などある ヽは横 一軸と縦一軸を組み合わせた二軸延伸法、インフレーション法による延伸法などを用 いることがでさる。
[0069] 一軸延伸法の場合、延伸速度は、通常は 1一 5,000%Z分であり、好ましくは 50— 1,000%Z分であり、さらに好ましくは 100— 1,000%Z分であり、特に好ましくは 10 0— 500%Z分である。
二軸延伸法の場合、同時 2方向に延伸を行う場合や一軸延伸後に最初の延伸方 向と異なる方向に延伸処理する場合がある。これらの場合、 2つの延伸軸の交わり角 度は、通常は 120— 60度の範囲である。また、延伸速度は各延伸方向で同じであつ てもよく、異なっていてもよぐ通常は 1一 5,000%Z分であり、好ましくは 50— 1,000 %Z分であり、さらに好ましくは 100— 1,000%Z分であり、特に好ましくは 100— 50 o%Z分である。
[0070] 延伸加工温度は、特に限定されるものではないが、本発明の環状ォレフィン系榭脂 のガラス転移温度 (Tg)を基準として、通常は Tg± 30°C、好ましくは Tg± 10°C、さら に好ましくは Tg— 5— Tg+ 10°Cの範囲である。上記範囲内とすることで、位相差ムラ の発生を抑えることが可能となり、また屈折率楕円体の制御が容易になることから好 ましい。
[0071] 延伸倍率は、所望する特性により決定されるため特に限定はされないが、通常は 1 . 01— 10倍、好ましくは 1. 1一 5倍、さらに好ましくは 1. 1-3. 5倍である。延伸倍 率が 10倍を超える場合、位相差の制御が困難になる場合がある。
延伸したフィルムは、そのまま冷却してもよいが、 Tg— 20°C— Tgの温度雰囲気下 に少なくとも 10秒以上、好ましくは 30秒一 60分、さらに好ましくは 1分一 60分静置さ れることが好ましい。これにより、位相差特性の経時変化が少なく安定した環状ォレフ イン系榭脂フィルム力 なる位相差フィルムが得られる。
[0072] また、本発明にお ヽて用いられる環状ォレフィン系榭脂フィルムの線膨張係数は、 温度 20°Cから 100°Cの範囲において、好ましくは 1 X 10— 4 (lZ°C)以下であり、さら に好ましくは 9 X 10— 5 (1Z°C)以下であり、特に好ましくは 8 X 10— 5 (1Z°C)以下であ り、最も好ましくは 7 X 10—5 (1/°C)以下である。また、位相差フィルムの場合には、延 伸方向とそれに垂直方向の線膨張係数差が好ましくは 5 X 10— 5 (1Z°C)以下であり、 さらに好ましくは 3 X 10—5 (lZ°C)以下であり、特に好ましくは 1 X 10—5 (lZ°C)以下 である。線膨張係数を上記範囲内とすることで、上記環状ォレフィン系榭脂フィルム 力もなる位相差フィルムを本発明の波長板としたときに、使用時の温度および湿度な どの影響力 なる応力変化が及ぼす位相差の変化が抑えられ、本発明の波長板とし て使用したときに長期の特性の安定が得ることができる。
[0073] 上記のようにして延伸したフィルムは、延伸により分子が配向し透過光に位相差を 与えるようになる力 この位相差は、延伸前のフィルムの位相差値と延伸倍率、延伸 温度、延伸配向後のフィルムの厚さにより制御することができる。ここで、位相差は複 屈折光の屈折率差 (An)と厚さ (d)の積 (And)で定義される。
延伸前のフィルムが一定の厚さの場合、延伸倍率が大き 、フィルムほど位相差の 絶対値が大きくなる傾向があるので、延伸倍率を変更することによって所望の位相差 値の位相差フィルムを得ることができる。
[0074] 本発明の第 1および第 2の波長板では少なくとも 2枚の位相差フィルムが使用される 力 波長板としての所望の光学特性を得るためには、各々の位相差フィルムの位相 差値は同じであっても良ぐ異なっていても良い。一枚当たりの位相差値は、所望す る波長板の光学特性にもよる力 一般的に 2,000nm以下が好ましぐより好ましくは l,500nm以下、さらに好ましくは l,OOOnm以下である。一枚当たりの位相差値が 2, OOOnmよりも大きくなると、延伸倍率が大きすぎてフィルムの厚さむら、位相差値むら が大きくなるために好ましくな!/、。位相差値が 2,000nmよりも大き 、位相差フィルム が必要な場合には、位相差値が 2,000nm以下の複数の位相差フィルムを、各位相 差フィルムの光軸を平行にして積層することで上記問題を回避可能である。
[0075] 本発明の第 1および第 2の波長板の光学特性は所望により決定され、特に限定さ れるものではないが、例えば光の波長力 00— 800nmの範囲で「1Z4波長板」とし て機能するものや、「1Z2波長板」として機能するものなどが知られている。このような 広帯域において特定の機能を発現する波長板を得るためには、例えば、 2枚の位相 差フィルムの光軸を交差して貼り合わせれば良ぐ交差させる光軸の角度の精度は、 理論値に対して ± 5° 以内が好ましぐより好ましくは ± 3° 以内、さらに好ましくは士 1° 以内である。上記光軸角度の理論値からのずれが 5° よりも大きくなると所望の 光学特性が得られな 、ことがある。
[0076] 2枚の位相差フィルムを用い、広帯域で「1Z4波長板」として機能するものとしては 、一方の位相差フィルムが下記式(1)により定義された波長え(nm)の光に対してえ Z2の位相差を与え、他方の位相差フィルムが下記式(1)により定義された波長え ( nm)の光に対して λ Ζ4の位相差を与え、これら 2枚の位相差フィルムの光軸が交差 するように積層されたものが好適に用いられる。
ί ( λ + λ ) /2]-200≤ λ≤ί ( λ + λ ) /2] + 200 …式(1)
S L S L
λ :最も短波長側の単色光の波長(nm)
S
λ :最も長波長側の単色光の波長 (nm)
このときの 2枚の位相差フィルムのそれぞれの光軸が成す角度は、例えば、レーザ 一光などの光の入射する方向から 1枚目のフィルムを「R1」、 2枚目のフィルムを「R2 」としたときに、 R1の位相差を 315— 345nm、好ましくは 320— 340nm、さらに好ま しくは 325— 335nmとし、 R2の位相差を 150— 180nm、好ましくは 155— 175應、 さらに好ましくは 160— 170nmとした組み合わせにおいて、通常 46— 70度、好まし くは 52— 64度、さらに好ましくは 56— 60度である。また、このとき、レーザー光などの 入射光が直線偏光である場合には、この入射光の直線偏光の偏波面 (以下「入射直 線偏光偏波面」 t 、うこともある。)と、 R1の光軸との成す角は、通常 + 70— + 82度、 好ましくは + 72— + 80度、さらに好ましくは + 74— + 78度であり、 R2の光軸との成 す角は、通常 + 12— + 24度、好ましくは + 14— + 22度、さらに好ましくは + 16— + 20度である。上述した範囲とすることで、偏光変 能が良好な広帯域「1Z4波 長板」とすることができる。なお、角度の符号は、光の入射する側力もフィルムを見た ときに、反時計回りの角度を正として、時計回りの角度を負として定義した (以下、同 じ。)。
また、 R1の位相差を 230— 260nm、好ましくは 235— 255nm、さらに好ましくは 2 40— 250nmとし、 R2の位ネ目差を 110— 140nm、好ましくは 115— 135nm、さらに 好ましくは 120— 130nmとした組み合わせにおいて、通常 45— 69度、好ましくは 51 一 63度、さらに好ましくは 55— 59度としてもよい。また、このとき、レーザー光などの 入射光が直線偏光である場合には、入射直線偏光偏波面と、 R1の光軸との成す角 は、通常 + 68— + 80度、好ましくは + 70— + 78度、さらに好ましくは + 72— + 76 度であり、 R2の光軸との成す角は、通常 + 11— + 23度、好ましくは + 13— + 21度 、さらに好ましくは + 15— + 19度である。上述した範囲とすることで、偏光変 能 が良好な広帯域「 1Z4波長板」とすることができる。 [0078] また、 2枚の位相差フィルムを用い、広帯域で「1Z4波長板」として機能するものと しては、一方の位相差フィルムが上記式(1)により定義された波長え(nm)の光に対 して λの位相差を与え、他方の位相差フィルムが上記式(1)により定義された波長 λ (nm)の光に対して λ Ζ4もしくは(3 λ ) Ζ4の位相差を与え、これら 2枚の位相差フ イルムの光軸が交差するように積層されたものも好適に用いられる。
[0079] このときの 2枚の位相差フィルムのそれぞれの光軸が成す角度は、 R1の位相差を 6 90— 750nm、好ましくは 700— 740nm、さらに好ましくは 710— 730nmとし、 R2の 位相差が 165— 195nm、好ましくは 170— 190nm、さらに好ましくは 175— 185nm とした組み合わせにおいて、通常 39— 63度、好ましくは 45— 57度、さらに好ましく は 49一 53度である。また、このとき、レーザー光などの入射光が直線偏光である場 合には、入射直線偏光偏波面と、 R1の光軸との成す角は、通常 1一— 13度、好ま しくは— 3—— 11度、さらに好ましくは 5—— 9度であり、 R2の光軸との成す角は、通 常 + 38— + 50度、好ましくは +40— +48度、さらに好ましくは +42— +46度であ る。上述した範囲とすることで、偏光変 能が良好な広帯域「1Z4波長板」とする ことができる。
[0080] 2枚の位相差フィルムを用い、広帯域で「1Z2波長板」として機能するものとしては 、両方の位相差フィルムが上記式(1)により定義された波長え(nm)の光に対してえ Z2の位相差を与え、これら 2枚の位相差フィルムの光軸が交差するように積層され たものが好適に用いられる。
このときの 2枚の位相差フィルムのそれぞれの光軸が成す角度は、 R1および R2の 位相差を 260— 290 好ましくは 265— 285nm、さらに好ましくは 270— 280nm とした組み合わせにおいて、通常 33— 57度、好ましくは 39— 51度、さらに好ましく は 43— 47度である。また、このとき、レーザー光などの入射光が直線偏光である場 合には、入射直線偏光偏波面と R1の光軸との成す角は、通常 + 15— + 27度、好ま しくは + 17— + 25度、さらに好ましくは + 19— + 23度であり、 R2の光軸との成す角 は、通常 + 59— + 71度、好ましくは + 61— + 69度、さらに好ましくは + 63— + 67 度である。上述した範囲とすることで、偏光変 能が良好な広帯域「1Z2波長板」 とすることができる。 [0081] また、 Rlおよび R2の位相差を 235— 265nm、好ましくは 240— 260nm、さらに好 ましくは 245— 255nmとした組み合わせにおいて、通常 33— 57度、好ましくは 39— 51度、さらに好ましくは 43— 47度としてもよい。また、このとき、レーザー光などの入 射光が直線偏光である場合には、入射直線偏光偏波面と、 R1の光軸との成す角は 、通常 + 19— + 31度、好ましくは + 21— + 29度、さらに好ましくは + 23— + 27度 であり、 R2の光軸との成す角は、通常 + 63— + 75度、好ましくは + 65— + 73度、 さらに好ましくは + 67— + 71度である。上述した範囲とすることで、偏光変 能が 良好な広帯域「1Z2波長板」とすることができる。
[0082] さらに、 2枚の位相差フィルムを用い、広帯域で「1Z2波長板」として機能するものと しては、一方の位相差フィルムが上記式(1)により定義された波長え(nm)の光に対 して λの位相差を与え、他方の位相差フィルムが上記式(1)により定義された波長 λ (nm)の光に対して λ Ζ2の位相差を与え、これら 2枚の位相差フィルムの光軸が交 差するように積層されたものも好適に用いられる。
[0083] このときの 2枚の位相差フィルムのそれぞれの光軸が成す角度は、 R1の位相差を 6 90— 750nm、好ましくは 700— 740nm、さらに好ましくは 710— 730nmとし、 R2の 位相差を 345— 375應、好ましくは 350— 370nm、さらに好ましくは 355— 365nm とした組み合わせにおいて、通常 50— 73度、好ましくは 54— 67度、さらに好ましく は 59— 63度である。また、このとき、レーザー光などの入射光が直線偏光である場 合には、入射直線偏光偏波面と R1の光軸との成す角は、通常 + 67— + 79度、好ま しくは + 69— + 77度、さらに好ましくは + 71— + 75度であり、 R2の光軸との成す角 は、通常 40—— 52度、好ましくは 42—— 50度、さらに好ましくは 44一一 48度で ある。上述した範囲とすることで、偏光変 能が良好な広帯域「1Z2波長板」とす ることがでさる。
[0084] 本発明の第 1の波長板は、 2枚以上の位相差フィルム力 なる波長板であって、レ 一ザ一光の透過部分において位相差フィルム同士が接着されておらず、各々の位 相差フィルムの間に通常隙間を有する。このときの隙間の厚さには特に制限は無い 力 好ましくは lmm以下、さらに好ましくは 0. 5mm以下、特に好ましくは 0. 1mm以 下である。このとき、係る隙間を設けるために必要に応じて光学特性を損ねない範囲 でフィルム同士が重なる面に凹凸が形成されていても良い。その際のフィルム面の面 粗さ(Rmax)は、好ましくは 10 μ m以下、さらに好ましくは 5 μ m以下、特に好ましくは 5-0. l ^ m,最も好ましくは 1一 0. である。レーザー光の透過部分位におい て位相差フィルム同士の間に隙間が存在することで、各々のフィルムで発生する使 用環境における温度や湿度の変化による変形や収縮を各フィルム単位にとどめ、相 互に影響をおよぼしあうことを最小限にすることができ、本発明の波長板の収差特性 や位相差の特性を初期から長期使用にわたって良好に発現することが可能となる。
[0085] また、レーザー光の透過部分以外は、接着剤や粘着剤などで位相差フィルム同士 を接着しても良ぐまた単に挟み合わせただけで保持しても良いが、機器に組み込む 際の振動や使用時の振動などにより各位相差フィルムの光軸の相互関係に影響が でることを抑制できる点で接着してある方が好まし 、。位相差フィルム同士を接着す る場合には、各位相差フィルム間の隙間に存在する空気が自由に外に出入りできる ような経路を形成させても良い。係る経路を設けることにより、使用時の温度や湿度の 変化などの環境変化に対しても安定であり良好な特性を長期にわたって維持するこ とが可能となる。
[0086] なお、本発明で ヽぅ「位相差フィルム同士の接着」とは、位相差フィルム同士が直接 接着されて 、る場合の他、スぺーサ一などを介して互!ヽに接着されて!、る場合も含 む。
本発明の第 1の波長板は、製造環境や使用環境による特性の低下を防ぐ観点から 、支持体で固定されていることが好ましい。係る波長板の固定は、市販の接着剤や粘 着剤を用いて行ってもょ 、し、ピンやビスなどを用いて機械的に行ってもょ 、。
[0087] 支持体の形状としては、所望の特性やデザインにより決定されるものであり、特に限 定されるものではな 、が、レーザー光の透過部分に支持体が存在しな 、形状の場合 には、材質に対する制限が特になくコスト、加工性、製造環境あるいは使用環境など に応じて適宜材質を選択できるほか、レーザー光の透過部分にも支持体がある場合 と比較して、支持体自体のもつ収差の影響や支持体と位相差フィルムを固定した際 に新たに生じる収差や位相差の変化の影響を抑制することが可能となるので好まし [0088] なお、レーザー光の透過部分にも支持体が存在するような形状の場合には、当然 のことながら光学的に透明である必要があり、ガラスや透明榭脂などに材質も限定さ れる。また、係る場合には光学的に均一である、すなわち、複屈折性を有さない支持 体であることが好ましい。支持体が複屈折性を有する場合、所望の特性を得られなか つたり、得られても微妙な補正が必要となったりする問題が生じることがある。さらに、 レーザー光の透過部分にぉ 、ては、支持体と位相差フィルムが接着されて 、な 、こ とが好ましい。特に、支持体を介して位相差フィルム同士が積層される構造の場合、 レーザー光の透過部分において各位相差フィルムと支持体とが接着されていると、 本発明の効果が得られない場合がある。
[0089] 上記レーザー光の透過部分に支持体が存在しない形状の具体例としては、例えば 、「コ」の字型や丸型、あるいは一箇所が欠けた丸型の支持体が挙げられ、このような 支持体の厚さは、通常、 0. 01— 5mm、好ましくは 0. 05— 3mm、さらに好ましくは 0 . 05— lmmである。 0. Olmm未満であると、剛性が不足するとともにハンドリング性 に劣り、一方、 5mmを超えると波長板としての大きさが大きくなり、光学系装置の小型 化が難しくなる。
[0090] また、支持体は、位相差フィルムの間に存在させたり、各位相差フィルムの片面もし くは両面に、または積層した位相差フィルムの片面もしくは両面に存在させたりするこ とができる。位相差フィルムの間に安定した隙間を形成させる目的で、いわゆるスぺ ーサ一として位相差フィルムの間に存在させることが好適に行われる。
本発明の第 1の波長板においては、位相差フィルムの片面または両面に、反射防 止膜を積層することができる。
[0091] 反射防止膜の形成方法としては、例えば、フッ素系共重合体を有機溶媒に溶解し 、その溶液をバーコ一ターなどを用いて、キャスト法などにより上記位相差フィルムの 上に塗布形成し、加熱し、硬化させる方法が挙げられる。加熱温度としては、通常は 80— 165°C、好ましくは 100— 150°Cの温度で、加熱時間としては、通常は 10分一 3時間、好ましくは 30分一 2時間であるとされている。
[0092] 反射防止膜の厚みは、通常は 5— 2,000nm、好ましくは 10— l,OOOnm、さらに好 ましくは 50— 200nmとされている。 5nm未満であると、反射防止効果が発揮できず 、一方、 2,000nmを超えると、塗膜の厚みにムラが生じやすくなり、外観などが悪ィ匕 し好ましくないとされている。
また、蒸着法やスパッタ法を用いて、アルミニウム、マグネシウムあるいはケィ素など の透明無機酸化物の被覆層を設けて反射防止膜を形成することもできる。
[0093] 係る無機系反射防止膜の場合、透明無機酸ィ匕物被覆層の厚みは、特定の光波長 の 1/4とされている。さらに、係る透明無機酸ィ匕物被覆層を多層積層することで、よ り反射防止性能を向上できるとされている。
本発明の第 1の波長板において、位相差フィルム同士や位相差フィルムと支持体と を接着するために使用される接着剤や粘着剤としては、天然ゴム系、合成ゴム系、酢 酸ビュル Z塩化ビュルコポリマー系、シリコン系、ポリビュルエーテル系、アクリル系、 変性ポリオレフイン系、エポキシ系あるいはウレタン系など公知のものから適宜選択さ れる。なかでも、アクリル系の接着剤が被接着物との密着性に優れており好ましく用 いられる。なお、接着にあたって、位相差フィルムや支持体の表面をコロナ処理、プ ラズマ処理、カップリング剤処理あるいはアンカーコート処理などの下地処理を施す ことがあってもよい。
[0094] 接着剤や粘着剤を使用する場合の接着剤層あるいは粘着剤層の厚さは、好ましく は 1 μ m— 100 μ m、さらに好ましくは 2 μ m— 70 μ m、特に好ましくは 3 μ m— 50 μ m、最も好ましくは 4 m— 30 mである。粘着剤層や接着剤層の厚さを本範囲とす ることで、良好な収差や位相差特性が得られやすくなるとともに長期にわたって安定 維持することができる。
[0095] また、本発明の第 1の波長板の面内収差 (透過波面収差)は、当然のことながら小さ ければ小さいほど好ましく、通常、 50 (m l )以内、好ましくは 30 (m l )以内、さらに 好ましくは 20 (m )以内であり、波長板の面内収差を上記範囲内とすることで、良好 な SZN比や許容されるジッター範囲となるために好ましい。ここで、 λは透過光の波 長を表し、一般には使用されるレーザー光の波長が用いられる。
[0096] 本発明の第 1の波長板中の異物数としては、可能な限り少ない方がよぐ粒径 10 m以上のものが、通常、 5 (個 Zmm2)以下、好ましくは 1 (個 Zmm2)以下、さらに好 ましくは 0 (個 Zmm2)以下である。 10 μ m以上の異物が波長板中に 5 (個 Zmm2)を 超えた数だけ存在すると、ノイズ信号が多くなり SZN比が小さくなり好ましくない。こ こで、波長板中の異物とは、レーザー光の透過を低下させるものやその異物の存在 によりレーザー光の進行方向を大きく変えるものが含まれる。前者の例としては、塵 や埃、榭脂の焼けや金属粉末、鉱物などの粉末などが挙げられ、後者の例としては、 他榭脂のコンタミや屈折率が異なる透明物質などが挙げられる。
[0097] なお、本発明の第 1の波長板は、ノイズの低減などの必要に応じて所望する波長以 外の光の透過を遮断もしくは低下させるために、公知の着色剤などを用いた着色が 施されたものであっても良い。
本発明の第 1の波長板は、 2枚以上の位相差フィルム同士をレーザー光の透過部 位において位相差フィルム同士を接着させないこと以外は従来公知の方法を採用し て製造することができる。
[0098] 本発明の第 1の波長板は、 2枚以上の位相差フィルム同士をレーザー光の透過部 位において位相差フィルム同士が接着されておらず、各々の位相差フィルムの間に 隙間を有しており、さらには、必要に応じてレーザー光の透過部分を除く部分を支持 体で固定してあるため、本発明の波長板を使用することで長期耐久性に優れた高性 能の光学情報記録'再生装置を製造することができる。
[0099] 本発明の第 2の波長板は、少なくとも 2枚の位相差フィルムが積層され、当該積層さ れた位相差フィルムの少なくとも片面にガラス基板が積層されて ヽる波長板であって 、位相差フィルム同士、および位相差フィルムとガラス基板とが、下記接着剤 (A)、 ( B)から選択され、かつそれぞれ異なる接着剤で積層固定されている。本発明では積 層された位相差フィルムの両面にガラス基板が積層され (積層された位相差フィルム 力 S 2枚のガラス基板に挟まれて 、る構造)、位相差フィルム同士が接着剤 (A)で積層 固定され、位相差フィルムとガラス基板とが接着剤 (B)で固定されて ヽることが好まし い。
[0100] 本発明の第 2の波長板において使用されるガラス基板としては、実質的に複屈折を 持たないものであることが好ましい。透明支持体が複屈折を持つと、波長板としての 特性に影響を与えることから好ましくない。また、ガラス基板の形状は特に限定される ものではなく、平板状であっても格子形状やプリズム形状など光学的な機能を有する 形状であってもよい。また、厚さは、通常、 0. 01— 5mm、好ましくは 0. 05— 3mm、 さらに好ましくは 0. 05— lmmである。 0. 01mm未満であると、剛性が不足するとと もにハンドリング性に劣り、一方、 5mmを超えると波長板としての大きさが大きくなり、 光学系装置の小型化が難しくなる。
[0101] 本発明の第 2の波長板においては、ガラス基板の片面または両面に、上記第 1の波 長板と同様の方法で同様の厚さの反射防止膜を積層することができる。
反射防止膜の形成方法としては、例えば、フッ素系共重合体を有機溶媒に溶解し 、その溶液を、バーコ一ターなどを用いて、キャスト法などにより上記フィルムやシート 材ゃ位相差板などの上に塗布形成し、プレスを用いて加熱し、硬化させる方法が挙 げられる。加熱温度としては、通常は 80— 165°C、好ましくは 100— 150°Cの温度で 、加熱時間としては、通常は 10分一 3時間、好ましくは 30分一 2時間であるとされて いる。
[0102] 反射防止膜の厚みは、通常は 5— 2,000nm、好ましくは 10— l,000nm、さらに好 ましくは 50— 200nmとされている。 5nm未満であると、反射防止効果が発揮できず 、一方、 2,000nmを超えると、塗膜の厚みにムラが生じやすくなり、外観などが悪ィ匕 し好ましくないとされている。
また、蒸着法やスパッタ法を用いて、アルミニウム、マグネシウムあるいはケィ素など の透明無機酸化物の被覆層を設けて反射防止膜を形成することもできる。
[0103] 係る無機系反射防止膜の場合、透明無機酸ィ匕物被覆層の厚みは、特定の光波長 の 1/4とされている。さらに、係る透明無機酸ィ匕物被覆層を多層積層することで、よ り反射防止性能を向上できるとされている。
本発明の第 2の波長板において位相差フィルム同士を積層固定するために使用さ れる接着剤 (接着剤 (A) )は、天然ゴム系、合成ゴム系、酢酸ビュル Z塩ィ匕ビュルコ ポリマー系、シリコン系、ポリビュルエーテル系、アクリル系、変性ポリオレフイン系、ェ ポキシ系あるいはウレタン系など公知の接着剤であって後述する特性を有するものか ら選択される。なかでもアクリル系の接着剤が被接着物との密着性に優れており好ま しく用いられる。
[0104] 初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた 波長板を得るためには、接着剤 (A)のガラス転移温度、すなわち、乾燥もしくは硬化 した状態での接着剤 (A)の動的粘弾性測定 (測定周波数 1Hz)における tan δ (損 失正接)のピーク温度は 0°C以下であることが必要であり、好ましくは 20°C以下、さ らに好ましくは 40°C以下であることが望ましい。
[0105] 接着剤のガラス転移温度については、例えば、アクリル系接着剤の場合には、含有 するアクリル系重合体もしくはアクリル系単量体を適宜選択することにより制御する。 すなわち、アクリル系単量体は、その分子中の二重結合の個数に応じて単官能、二 官能、多官能と分類されるが、一般に、単官能のアクリル系単量体を多く用いたもの はガラス転移温度が低くなり、多官能のアクリル系単量体を多く用いたものはガラス 転移温度が高くなる傾向があるため、接着剤に配合するアクリル系重合体を重合す る際に用 ヽるアクリル系単量体の種類や量を調節する、あるいは接着剤に配合する アクリル系単量体の種類や量を調節することにより、目的とするガラス転移温度の接 着剤を得ることができる。
[0106] また接着剤 (A)は、乾燥もしくは硬化した状態での室温(23°C)におけるヤング率( JIS Z1702、 3号ダンベル、引っ張り速度 lOmmZ分のときの値)が lOMPa以下で あることが必要であり、好ましくは 5MPa以下、さらに好ましくは 2MPa以下であること が望ましい。
なお、積層固定にあたっては、各位相差フィルムの表面にコロナ処理、プラズマ処 理、カップリング剤処理あるいはアンカーコート処理などの下地処理を施すことがあつ てもよい。
[0107] 本発明の第 2の波長板において位相差フィルムとガラス基板とを接着するために使 用される接着剤 (接着剤 (B) )は、天然ゴム系、合成ゴム系、酢酸ビュル Z塩化ビ- ルコポリマー系、シリコン系、ポリビュルエーテル系、アクリル系、変性ポリオレフイン 系、エポキシ系あるいはウレタン系など公知の接着剤であって後述する特性を有する ものから選択される。なかでもアクリル系の接着剤が被接着物との密着性に優れてお り好ましく用いられる。
[0108] 初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた 波長板を得るためには、接着剤(B)のガラス転移温度、すなわち、乾燥もしくは硬化 した状態での接着剤 (B)の動的粘弾性測定 (測定周波数 1Hz)における tan δ (損失 正接)のピーク温度 (ガラス転移温度)が 40°C以上であることが必要であり、好ましく は 60°C以上、さらに好ましくは 80°C以上であることが望ましい。ここで、接着剤(B)の ピーク温度が 2つ以上ある場合には高温側のピーク温度を採用する。また、このとき の高温側の tan δのピーク面積は全ての tan δのピーク面積に対して、好ましくは 10 %以上、さらに好ましくは 30%以上、特に好ましくは 50%以上であることが望ましい。
[0109] また接着剤 (Β)は、乾燥もしくは硬化した状態での接着剤 (Β)の室温(23°C)での ヤング率 (JIS Z1702、 3号ダンベル、引っ張り速度 lOmmZ分のときの値)が 30M Paより大きいことが必要であり、好ましくは 50MPa以上、さらに好ましくは 70MPa以 上であることが望ましい。
また接着剤 (B)と接着剤 (A)とのガラス転移温度差が 60°C以上、好ましくは 80°C 以上、さらに好ましくは 100°C以上であることが望ましい。
[0110] さらに 23°Cにおける接着剤 (B)と接着剤 (A)とのヤング率の差力 OMPa以上、好 ましくは 50MPa以上、さらに好ましくは 60MPa以上であることが望ましい。
なお、接着固定にあたっては、位相差フィルムやガラス基板の表面にコロナ処理、 プラズマ処理、カップリング剤処理あるいはアンカーコート処理などの下地処理を施 すことがあってもよい。
[0111] 位相差フィルム同士の積層と、位相差フィルムとガラスとの積層に、上述の接着剤 ( A)と接着剤 (B)を組み合わせて用いることにより、波長板の面内収差の変化量を小 さくすることができ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた波 長板となる。
この理由としては、明確には判明していないが、波長板への外部からの応力による 変形は、硬い接着剤 (B)を使用することにより防止でき、また温度の変化に際して発 生する歪みは軟ぃ接着剤 (A)を使用することによって、両者力バランスよく緩和され るためであろうと推測される。
[0112] アクリル系の接着剤としては、例えば、アクリル系単量体 (アタリレートイ匕合物)を少 なくとも 1種含有する単量体組成物の重合体と溶媒を含有する組成物、少なくとも 1 種のアタリレート化合物と硬化剤を含有する組成物、上記重合体と少なくとも 1種のァ クリレートイ匕合物および硬化剤を含有する組成物など挙げられるが、本発明はこれら に限定されるものではない。ここで、アタリレートイ匕合物は分子内に少なくとも一つの( メタ)アタリロイル基を有しているものであり、例えば、単官能 (メタ)アタリレート化合物
、多官能 (メタ)アタリレートイ匕合物が挙げられる。
単官能 (メタ)アタリレートイ匕合物の具体例としては、メチル (メタ)アタリレート、ェチ ル (メタ)アタリレート、プロピル (メタ)アタリレート、イソプロピル (メタ)アタリレート、ブチ ル (メタ)アタリレート、イソブチル (メタ)アタリレート、 tert-ブチル (メタ)アタリレート、 ペンチル (メタ)アタリレート、ァミル (メタ)アタリレート、イソアミル (メタ)アタリレート、へ キシル (メタ)アタリレート、ヘプチル (メタ)アタリレート、ォクチル (メタ)アタリレート、ィ ソォクチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ノ-ル (メタ)ァク リレート、デシル (メタ)アタリレート、イソデシル (メタ)アタリレート、ゥンデシル (メタ)ァ タリレート、ドデシル (メタ)アタリレート、ラウリル (メタ)アタリレート、ステアリル (メタ)ァ タリレート、イソステアリル (メタ)アタリレート等のアルキル (メタ)アタリレート類; ヒドロキシェチル (メタ)アタリレート、ヒドロキシプロピル (メタ)アタリレート、ヒドロキシブ チル (メタ)アタリレート等のヒドロキシアルキル (メタ)アタリレート類;フエノキシェチル( メタ)アタリレート、 2—ヒドロキシ 3-フエノキシプロピル (メタ)アタリレート等のフエノキ シアルキル (メタ)アタリレート類;
メトキシェチル (メタ)アタリレート、エトキシェチル (メタ)アタリレート、プロポキシェチ ル (メタ)アタリレート、ブトキシェチル (メタ)アタリレート、メトキシブチル (メタ)アタリレ ート等のアルコキシアルキル (メタ)アタリレート類;
ポリエチレングリコールモノ(メタ)アタリレート、エトキシジエチレングリコール (メタ)ァ タリレート、メトキシポリエチレングリコール (メタ)アタリレート、フエノキシポリエチレング リコール (メタ)アタリレート、ノ-ルフエノキシポリエチレングリコール (メタ)アタリレート 等のポリエチレングリコール (メタ)アタリレート類;
ポリプロピレングリコールモノ(メタ)アタリレート、メトキシポリプロピレングリコール (メタ )アタリレート、エトキシポリプロピレングリコール (メタ)アタリレート、ノ-ルフエノキシポ リプロピレングリコール (メタ)アタリレート等のポリプロピレングリコール (メタ)アタリレー 卜類) シクロへキシル (メタ)アタリレート、 4—ブチルシクロへキシル (メタ)アタリレート、ジシク 口ペンタ-ル (メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、ジシクロペンタ ジェ-ル (メタ)アタリレート、ボル-ル (メタ)アタリレート、イソボル-ル (メタ)アタリレ ート、トリシクロデ力-ル (メタ)アタリレート等のシクロアルキル (メタ)アタリレート類; ベンジル (メタ)アタリレート;テトラヒドロフルフリル (メタ)アタリレートなどが挙げられる これらの単官能 (メタ)アタリレートイ匕合物は、 1種単独で、または 2種以上を混合して 用!/、ることができる。
また、多官能 (メタ)アタリレートイ匕合物の具体例としては、エチレングリコールジ (メタ )アタリレート、ジエチレングリコールジ (メタ)アタリレート、テトラエチレングリコールジ( メタ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、 1,4—ブタンジオールジ (メタ)アタリレート、 1,6—へキサンジオールジ (メタ)アタリレート、ネオペンチルグリコ ールジ (メタ)アタリレート等のアルキレングリコールジ (メタ)アタリレート類; ルトリ(メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、ペンタエリ スリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタ エリスリトールへキサ(メタ)アタリレート、ヒドロキシビバリン酸ネオペンチルグリコール ジ (メタ)アタリレート等の多価アルコールのポリ(メタ)アタリレート類;
イソシァヌレートトリ(メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートジ( メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリレート等 のイソシァヌレートのポリ(メタ)アタリレート類;
トリシクロデカンジィルジメチルジ (メタ)アタリレート等のシクロアルカンのポリ(メタ)ァ タリレート類;
ビスフエノール Aのエチレンオキサイド付カ卩体のジ (メタ)アタリレート、ビスフエノール Aのプロピレンオキサイド付カ卩体のジ (メタ)アタリレート、ビスフエノール Aのアルキレ ンオキサイド付カ卩体のジ (メタ)アタリレート、水添ビスフエノール Aのエチレンォキサイ ド付加体のジ (メタ)アタリレート、水添ビスフエノール Aのプロピレンオキサイド付カロ体 のジ (メタ)アタリレート、水添ビスフエノール Aのアルキレンオキサイド付カ卩体のジ (メタ )アタリレート、ビスフエノール Aジグリシジルエーテルと(メタ)アクリル酸とから得られ る (メタ)アタリレート等のビスフエノール Aの (メタ)アタリレート誘導体類;
3, 3,4,4,5, 5, 6, 6—才クタフルォロオクタンジ (メタ)アタリレート、 3— (2—パーフルォロ へキシル)エトキシー 1 , 2—ジ(メタ)アタリロイルプロパン、 N— n プロピル N— 2, 3—ジ (メタ)アタリロイルプロピルパーフルォロォクチルスルホンアミド等の含フッ素(メタ)ァ タリレート類が挙げられる。
[0115] これらの多官能 (メタ)アタリレートイ匕合物は、 1種単独で、または 2種以上を混合して 用!/、ることができる。
接着剤 (A)や接着剤 (B)の接着強度は、取扱 ヽ中に容易に剥がれな 、ものである ことが必要である。接着強度の具体値としては、接着剤 (A)においては 2枚の位相差 フィルムを互いに接着したときの 90度剥離力力 好ましくは 0. 5N/cm2以上、さらに 好ましくは 1ΝΖ«η以上、最も好ましくは 3NZcm2以上であり、接着剤 )において は位相差フィルムとガラス基材とを接着したときの 90度剥離力力 好ましくは 0. 5N /cm2以上、さらに好ましくは lN/cm2以上、最も好ましくは 3N/cm2以上である。 接着強度が 0. 5N/cm2よりも小さくなると、取扱い時の衝撃により剥がれてしまった り、接着された層同士がずれてしまったりするために好ましくな 、。
[0116] 接着剤 (A)や接着剤 (B)の厚さは、上記接着強度が確保できる厚さであれば特に 限定されないが、通常 1 μ m— 100 μ m、好ましくは 2 μ m— 70 μ m、さらに好ましく は 3 m— 50 m、最も好ましくは 4 m— 30 mである。接着剤 (A)や接着剤(B) の厚さが 100 mよりも厚くなると、波長板の厚さが厚くなり光透過率等の光学特性 に問題が生じたり取扱いが不便になったりすることがある。また、厚さが 1 μ m未満の 場合、接着強度が確保できないことがある。
[0117] 位相差フィルムの屈折率と位相差フィルム同士を接着する接着剤の屈折率の差は 、好ましくは 0. 20以内、さらに好ましくは 0. 15以内、特に好ましくは 0. 10以内、最 も好ましくは 0. 05以内であり、また、位相差フィルムの屈折率とガラス基板を接着す る接着剤の屈折率の差は、好ましくは 0. 20以内、さらに好ましくは 0. 15以内、特に 好ましくは 0. 10以内、最も好ましくは 0. 05以内である。さらに、位相差フィルムの屈 折率とガラス基板との屈折率差は、好ましくは 0. 20以内、さらに好ましくは 0. 15以 内、特に好ましくは 0. 10以内、最も好ましくは 0. 05以内であり、屈折率差を本範囲 内とすることで、透過光の反射によるロスを最小限に抑えることができるために好まし い。
[0118] また、本発明の第 2の波長板の面内収差 (透過波面収差)は、当然のことながら小さ ければ小さいほど好ましく、通常、 50 (ml )以内、好ましくは 30 (ml )以内、さらに 好ましくは 20 (m )以内である。波長板の面内収差を上記範囲内とすることで、良 好な SZNや許容されるジッター範囲となるために好ましい。ここで、 λは、透過光の 波長を表し、一般には使用されるレーザー光の波長が用いられる。
[0119] 本発明の第 2の波長板中の異物数としては、可能な限り少ない方がよぐ粒径 10 m以上のものが、通常 10(個 Zmm2)以下、好ましくは 5 (個 Zmm2)以下、さらに好ま しくは 1 (個 Zmm2)以下である。 10 μ m以上の異物が波長板中に 10 (個 Zmm2)を 超えた数だけ存在すると、ノイズ信号が多くなり SZN比が小さくなり好ましくない。こ こで、波長板中の異物とは、レーザー光の透過を低下させるものやその異物の存在 によりレーザー光の進行方向を大きく変えるものが含まれる。前者の例としては、塵 や埃、榭脂の焼けや金属粉末、鉱物などの粉末などが挙げられ、後者の例としては、 他榭脂のコンタミや屈折率が異なる透明物質などが挙げられる。
[0120] なお、本発明の第 2の波長板は、ノイズの低減などの必要に応じて所望する波長以 外の光の透過を遮断もしくは低下させるために、公知の着色剤などを用いた着色が 施されたものであっても良い。
本発明の第 2の波長板は、位相差フィルム同士、および位相差フィルムとガラス基 板との積層固定に、接着剤 (A)、(B)から選択され、かつそれぞれ異なる接着剤を用 V、ること以外は従来公知の方法を採用して製造することができる。
[0121] 本発明の第 2の波長板は、少なくとも 2枚の位相差フィルムが接着剤で積層され、 当該積層された位相差フィルムの少なくとも一方の面にガラス基板が積層された波長 板であって、当該位相差フィルム同士、および位相差フィルムとガラスとが、接着剤( A)と接着剤 (B)とから選択され、かつ異なる接着剤でそれぞれ積層固定されて ヽる ため、長期にわたって初期特性を維持することができる。特に位相差フィルムとして、 環状ォレフィン系榭脂フィルムを延伸配向させたものが好ましい。このような本発明の 波長板を使用すると、長期にわたり性能を維持できる高耐久性の光学情報記録再生 装置や液晶プロジェクター装置を製造することができる。
[0122] [実施例]
以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明は、これらの実 施例により何ら限定されるものではない。なお、実施例中の部および%は、特に断ら ない限り重量部および重量%である。また、実施例中の各種の試験 ·測定は、次のと おりである。
有粘 (「 1
inn
溶媒にクロ口ホルムまたはシクロへキサンを使用し、 0. 5gZdlの重合体濃度で 30 °Cの条件下、ウベローデ粘度計にて測定した。
[0123] ゲル含有畺
25°Cの温度で、水素添加(共)重合体 50gを 1%濃度になるようにクロ口ホルムに溶 解し、この溶液をあら力じめ重量を測定してある孔径 0. 5 μ mのメンブランフィルター 〔アドバンテック東洋 (株)〕を用いてろ過し、ろ過後のフィルターを乾燥後、その重量 の増加量力 ゲル含有量を算出した。
[0124]
水素添カ卩単独重合体の場合には、 500MHz、 一 NMRを測定し、エステル基の メチル水素とォレフィン系水素のそれぞれの吸収強度の比、またはパラフィン系水素 とォレフイン系水素のそれぞれの吸収強度の比から水素化率を測定した。また、水素 添加共重合体の場合には、重合後の共重合体の1 H - NMR吸収と水素化後の水素 添加共重合体のそれを比較して算出した。
[0125] 榭脂のガラス転移温度
走査熱量計 (DSC)により、チッ素雰囲気下において、 10°CZ分の昇温速度で測 疋レ 7こ。
膜の厚み
キーエンス (株)製、レーザーフォーカス変位計、 LT 8010を用い、測定した。
[0126]
富士写真光機 (株)製、小口径レーザー干渉計 R10を用い、 5πιπι φの範囲につい て波長 650nmのレーザー光を使用して透過波面収差を測定した。
位相差値
王子計測機器 (株)製、 KOBRA— 21ADHを用い、波長 480、 550, 590, 630, 7 50nmで測定し、当該波長以外の部分にっ ヽては上記波長での位相差値を用いて コーシ一(Cauchy)の分散式を用いて算出した。
[0127] 高温高湿試験
エスペック (株)製、環境試験機を 95°C、 95%RHに設定した。 1,000時間槽内に 入れた後に取り出し、 目視観察、位相差値の測定、面内収差の測定を行った。
接着剤のガラス転移温度 (tan δピーク温度)
オリエンテック社製レオバイブロン(モデル DDV— 01FP)を用い、接着剤の短冊状 試験片(5mm X 7cm)を準備して、温度範囲— 100— 150°C、周波数 1Hzにて測定 した。ピークが 2種類以上存在する場合は高温側の値をピーク温度 (ガラス転移温度 )とした。
なお、ガラス転移温度が室温以下のものについては、予め単体で tan δピーク温度 を確認済みの基材 (JSR (株)製 ARTON、厚さ 10 m)上に厚さ lmmに塗布して測 定し、接着剤由来の tan δピーク温度を確認した。
[0128] 接着 1のヤング率
インストロン (株)製引っ張り試験機を用い、接着剤の 3号ダンベルを準備して、 JIS— Ζ 1702に準拠して 23°Cにて測定した。弓 Iつ張り速度は lOmmZ分とした。
なお、ガラス転移温度が室温以下のものについては、 PET基材に予め接着剤を塗 布してぉ 、たものを 3号ダンベル形状とし、測定直前に PET基材を除去して被検部 を露出させて引っ張り試験を行った。
[0129] <合成例 1 >
8—メチルー 8—メトキシカルボ-ルテトラシクロ [4.4.0.12'5.1"°]— 3—ドデセン(特定 単量体) 250部と、 1一へキセン (分子量調節剤) 18部と、トルエン(開環重合反応用 溶媒) 750部とを窒素置換した反応容器に仕込み、この溶液を 60°Cに加熱した。次 いで、反応容器内の溶液に、重合触媒としてトリェチルアルミニウム(1. 5モル ZDの トルエン溶液 0. 62部と、 tーブタノールおよびメタノールで変性した六塩化タンダステ ン(tーブタノール:メタノール:タングステン =0. 35モル: 0. 3モル: 1モル)のトルエン 溶液 (濃度 0. 05モル ZD 3. 7部とを添加し、この系を 80°Cで 3時間加熱攪拌するこ とにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転 化率は 97%であり、得られた開環重合体について、 30°Cのクロ口ホルム中で測定し た固有粘度( r? )
uih は 0. 75dlZgであった。
[0130] このようにして得られた開環重合体溶液 4, 000部をオートクレーブに仕込み、この 開環重合体溶液に、 RuHCl(CO)[P(C H ) ] 0. 48部を添カ卩し、水素ガス圧 100k
6 5 3 3
g/cm2,反応温度 165°Cの条件下で、 3時間加熱攪拌して水素添加反応を行った。 得られた反応溶液 (水素添加重合体溶液)を冷却した後、水素ガスを放圧した。こ の反応溶液を大量のメタノール中に注 、で凝固物を分離回収し、これを乾燥して、 水素添加重合体 (以下、「榭脂 A」という。)を得た。
[0131] このようにして得られた榭脂 Aについて1 H— NMRを用いて水素添加率を測定した ところ 99. 9%であった。また、当該榭脂について DSC法によりガラス転移温度 (Tg) を測定したところ 165°Cであった。また、当該榭脂について、 GPC法 (溶媒:テトラヒド 口フラン)により、ポリスチレン換算の数平均分子量 (Mn)および重量平均分子量 (M w)を測定したところ、 Mnは 32,000、 Mwは 137,000、分子量分布(MwZMn)は 4 . 29であった。また、当該榭脂について、 23°Cにおける飽和吸水率を測定したところ 、 0. 3%であった。また、 SP値を測定したところ、 19 (MPa1/2)であった。また、当該榭 脂について、 30°Cのクロ口ホルム中で固有粘度( 7? )を測定したところ、 0. 78dl/g
inh
であった。また、ゲル含有量は 0. 4%であった。
[0132] <合成例 2>
特定単量体として 8—メチルー 8—メトキシカルボ-ルテトラシクロ [4.4.0.12'5. l7 ]— 3 ードデセン 215部と、ビシクロ [2.2.1]ヘプトー 2—ェン 35部とを使用し 1一へキセン( 分子量調節剤)の添加量を 18部としたこと以外は、合成例 1と同様にして水素添カロ 重合体を得た。得られた水素添加重合体 (以下、「榭脂 B」という。)の水素添加率は 9 9. 9%であった。また、当該榭脂について DSC法によりガラス転移温度 (Tg)を測定 したところ 125°Cであった。また、当該榭脂について、 GPC法 (溶媒:テトラヒドロフラ ン)により、ポリスチレン換算の数平均分子量 (Mn)および重量平均分子量 (Mw)を 測定したところ、 Mnは 46,000、 Mwは 190,000、分子量分布(MwZMn)は 4. 15 であった。また、当該榭脂について、 23°Cにおける飽和吸水率を測定したところ、 0. 18%であった。また、 SP値を測定したところ、 19 (MPa1/2)であった。また、当該榭脂 について、 30°Cのクロ口ホルム中で固有粘度( 7? )を測定したところ、 0. 69dlZgで
inh
あった。また、ゲル含有量は 0. 2%であった。
[0133] <合成例 3 >
特定単量体として 8—ェチリデンテトラシクロ [4.4.0.12'5.1"°]— 3—ドデセン 225部 を使用し、 1一へキセン (分子量調節剤)の添加量を 30部、開環重合反応用溶媒とし てトルエンの代わりにシクロへキサンを使用したこと以外は、合成例 1と同様にして水 素添加重合体を得た。得られた水素添加重合体 (以下、「榭脂 C」という。)の水素添 加率は 99. 9%であった。また、当該榭脂について DSC法によりガラス転移温度 (Tg )を測定したところ 138°Cであった。また、当該榭脂について、 GPC法 (溶媒:シクロ へキサン)により、ポリスチレン換算の数平均分子量 (Mn)および重量平均分子量( Mw)を測定したところ、 Mnは 50,000、 Mwは 190,000、分子量分布(MwZMn) は 3. 80であった。また、当該榭脂について、 23°Cにおける飽和吸水率を測定したと ころ、 0. 01%であった。また、 SP値を測定したところ、 17 (MPa1/2)であった。また、 当該榭脂について、 30°Cのシクロへキサン中で固有粘度( 7? )を測定したところ、 0
inh
. 72dlZgであった。また、ゲル含有量は 0. 4%であった。
[0134] <フィルム製造例 1 >
榭脂 Aをトルエンに濃度 30% (室温での溶液粘度は 30,000mPa' S)になるように 溶解し、井上金属工業製、 INVEXラボコーターを用い、アクリル酸系で親水化 (易接 着)の表面処理した厚さ 100 μ mの PETフィルム (東レ製、ルミラー U94)に、乾燥後 のフィルム厚みが 100 mになるように塗布し、これを 50°Cで一次乾燥の後、 90°C で二次乾燥を行った。 PETフィルムより剥がした榭脂フィルム Aを得た。得られたフィ ルムの残留溶媒量は 0. 5%であった。
[0135] このフィルムを次の方法により光弾性係数 (C )および応力光学係数 (C )を求めた
P R
。具体的には、光弾性係数 (C )は短冊状のフィルムサンプルに室温(25°C)で数種
P
類の一定荷重を加え、発生する位相差とそのときサンプルが受けた応力とから計算し た。応力光学係数 (C )については、フィルム状サンプルを用いて Tg以上にて数種
R
類の一定荷重をかけて数パーセント伸びた状態でゆっくりと冷やして室温まで戻した 後に発生した位相差を測定してかけた応力とから計算した。結果は、それぞれ C =4
P
(X10— 12pa— , C =1,750(X10— 12pa— であった。
R
榭脂フィルム Aの特性値を表 1に示した。
[0136] <フィルム製造例 2 >
榭脂 Bを使用し、フィルム製造例 1と同様にして榭脂フィルム Bを得た。得られた榭 脂フィルム Bの残留溶媒量は 0.5%であり、光弾性係数 (C )および応力光学係数(
P
C )はそれぞれ C =9(X10"12pa_1), C = 2,350 (X 10— 12pa_1)であった。
R P R
榭脂フィルム Bの特性値を表 1に示した。
[0137] <フィルム製造例 3 >
榭脂 Cを使用し、溶媒をシクロへキサンとした以外は、フィルム製造例 1と同様にし て、榭脂フィルム Cを得た。得られた榭脂フィルム Cの残留溶媒量は 0.4%であり、光 弾性係数 (C )および応力光学係数 (C )
Rはそれぞれ C =4(X10
P P "1V1), C =1,9
R
50 (X 10— pa—1)であった。
榭脂フィルム Cの特性値を表 1に示した。
[0138] [表 1]
Figure imgf000046_0001
[0139] <実施例 1>
上記榭脂フィルム Aをテンター内で、 Tg+10°Cである 175°Cに加熱し、延伸速度 4 00%Z分で 1.4倍に一軸延伸した後 110°Cの雰囲気下で 1分間この状態を保持し 、その後室温まで冷却して取り出したところ、厚みが 89 μ mで、波長 655nmにおけ る位相差が 160nmである位相差フィルム A— 1を得ることができた。また、上記榭脂フ イルム Aをテンター内で、 Tg+ 10°Cである 175°Cに加熱し、延伸速度 400%Z分で 2. 1倍に一軸延伸した後 110°Cの雰囲気下で 1分間この状態を保持し、その後室温 まで冷却して取り出したところ、厚みが 81 μ mで、波長 655nmにおける位相差が 33 Onmである位相差フィルム A— 2を得ることができた。なお、各々のフィルム面の面粗 さ(Rmax)を確認したところ 0. 1 μ mであった。
[0140] これらの位相差フィルム A— 1と A— 2位相差フィルム A— 1と A— 2を得た。各々のフィ ルム面の面粗さ(Rmax)を確認したところ 0. 1 μ mであった。
これらの位相差フィルム A— 1と A— 2を、直径 10mmの円形にカットするとともに、各々 の光軸が 60° となるようにして円周部分に幅 lmmの糊代で厚さ 10 μ mのアクリル系 接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせた。このとき、糊代の一 部分に約 lmmの幅で上記接着剤をつけな 、部分を空気抜けとして作り、波長板 Aを 得た。本波長板 Aを図 1に示す。
[0141] 波長板 A中の粒径 10 μ m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。さらに、波長板 Aの面内収差を確認したところ、 18mえであった。 この波長板 Aにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持し ていることを確認した。
[0142] <実施例 2>
榭脂フィルム Βを用いて、延伸条件を延伸倍率 1. 3倍、加熱温度 130°Cとした以外 は、実施例 1と同様にして厚みが 89 mで、波長 655nmにおける位相差が 275nm である位相差フィルム B—1を得た。なお、フィルム面の面粗さ(Rmax)を確認したとこ ろ 0. 1 μ mで teつた。
[0143] この位相差フィルム B— 1を 2枚、直径 10mmの円形にカットするとともに、各々の光 軸が 45° となるようにして円周部分に幅 lmmの糊代で厚さ mのアクリル系接着 剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせた。このとき、糊代の一部分 に約 lmmの幅で上記接着剤をつけない部分を空気抜けとして作った。さらに、係る 積層した位相差フィルムの片面に、榭脂 Aを射出成形して得られた厚さ lmmのドー ナツ円盤状の支持体を、アクリル系接着剤 (住友スリーェム (株)製、 8142)を用いて 貼り合わせて波長板 Bを得た。本波長板 Bを図 2に示す。
[0144] 波長板 B中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。さらに、波長板 Bの面内収差を確認したところ、 12πι λであった。 この波長板 Βにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持し ていることを確認した。
[0145] <実施例 3 >
榭脂フィルム Cを用いて、延伸条件を延伸倍率 1. 08倍、加熱温度 148°Cとした以 外は、実施例 1と同様にして厚みが 96 mで、波長 655nmにおける位相差が 125η mである位相差フィルム C 1を得た。また、榭脂フィルム Cを用いて、延伸条件を延 伸倍率 1. 18倍、加熱温度 148°Cとした以外は、実施例 1と同様にして厚みが 91 mで、波長 655nmにおける位相差が 250nmである位相差フィルム C—2を得た。な お、フィルム面の面粗さ(Rmax)を確認したところ 0. 1 μ mであった。
[0146] これらの位相差フィルム C—1と C—2を、各々の光軸が 55° となるようにした以外は 実施例 1と同様にして波長板 Cを得た。
波長板 C中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。さらに、波長板 Cの面内収差を確認したところ、 16mえであった。 この波長板 Cにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持し ていることを確認した。
[0147] <比較例 1 >
フィルムの全面に厚さ 10 μ mの接着剤層を設けてフィルム同士を接着したこと以外 は、実施例 1と同様にして波長板 Dを得た。
波長板 D中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。さらに、波長板 Dの面内収差を確認したところ、 24m であった。 この波長板 Dにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり外観変化も見られな力つたが、面内収差の変化量は 18m λであり、波長板とし ての特性に問題が生じる可能性があることが明らかとなった。 [0148] <実施例 4>
実施例 1と同様にして位相差フィルム A— 1と A— 2を得た。
これらの位相差フィルム A— 1と A— 2を、各々の光軸が 60° となるように厚さ 10 μ m のアクリル系接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせ、さらに貼り 合わせたフィルムの両面に、厚さ 10 mのアクリル系接着剤 (協立化学産業 (株)製 、 XVL— 90)を用いて厚さ 250 mのガラス板を積層し、波長板 Eを得た。ここで、接 着剤 (A)として用いた住友スリーェム (株)製 8142の tan δピーク温度は- 63°C、ャ ング率は 0. 6Mpaであり、接着剤 (B)として用いた協立化学産業 (株)製 XVL— 90の tan δピーク温度は 61°C、ヤング率は 75Mpaであった。
[0149] 波長板 Eの位相差を測定したところ、 655nmにおける位相差が 161nmで 785nm における位相差が 195nmであった。したがって、波長板 Eは広帯域で「1/4波長板 」として機能することが確認された。
波長板 E中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Eの面内収差を確認したところ、 18mえであった。
この波長板 Eにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持し ていることを確認した。
[0150] <実施例 5 >
実施例 2と同様にして位相差フィルム Β— 1を得た。
この位相差フィルム Β— 1を 2枚、各々の光軸が 45° となるように厚さ 10 mのアタリ ル系接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせ、さらに貼り合わせ たフィルムの両面に、厚さ 10 mのアクリル系接着剤(協立化学産業 (株)製、 XVL- 90)を用いて厚さ 250 μ mのガラス板を積層し、波長板 Fを得た。
[0151] 波長板 Fの位相差を測定したところ、 500nmにおける位相差が 246nmで 785nm における位相差が 395nmであった。したがって、波長板 Fは広帯域で「1/2波長板 」として機能することが確認された。
波長板 F中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Fの面内収差を確認したところ、 15mえであった。
この波長板 Fにつ 、て高温高湿試験を行なったところ、位相差値の変化量は 3%以 内であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持 していることを確認した。
[0152] <実施例 6 >
実施例 3と同様にして位相差フィルム C-1と C-2を得た。
これらの位相差フィルム C—1と C— 2を、各々の光軸が 55° となるように厚さ 10 m のアクリル系接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせ、さらに貼り 合わせたフィルムの両面に、厚さ 10 mのアクリル系接着剤 (協立化学産業 (株)製 、 XVL— 90)を用いて厚さ 250 mのガラス板を積層し、波長板 Gを得た。
[0153] 波長板 Gの位相差を測定したところ、 405nmにおける位相差が 102nmで 655nm における位相差が 165nmであった。したがって、波長板 Gは広帯域で「1/4波長板 」として機能することが確認された。
波長板 G中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Gの面内収差を確認したところ、 35mえであった。
この波長板 Gにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持し ていることを確認した。
[0154] <実施例 7>
位相差フィルム C— 2を 2枚、各々の光軸が 40° となるように厚さ 10 μ mのアクリル 系接着剤 (協立化学産業 (株)製、 XVL-90)を用いて貼り合わせ、さらに貼り合わせ たフィルムの片面に、厚さ 20 /z mのアクリル系接着剤(住友スリーェム (株)製、 8142 )を用いて厚さ 250 μ mのガラス板を積層し、波長板 Hを得た。
波長板 Hの位相差を測定したところ、 405nmにおける位相差が 199nmで 655nmに おける位相差が 325nmであった。したがって、波長板 Hは広帯域で「1/2波長板」 として機能することが確認された。 [0155] 波長板 H中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Hの面内収差を確認したところ、 17mえであった。
この波長板 Hにつ 、て高温高湿試験を行なったところ、位相差値の変化量は 3% 以内であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維 持していることを確認した。
[0156] <実施例 8 >
榭脂フィルム Βを用いて、延伸条件を延伸倍率 1. 92倍、加熱温度 148°Cとした以 外は、実施例 1と同様にして厚みが 70 mで、波長 655nmにおける位相差が 710η mである位相差フィルム Β— 2を得た。また、榭脂フィルム Aを用いて、延伸条件を延 伸倍率 1. 42倍とした以外は、実施例 1と同様にして厚みが 90 mで、波長 655nm における位相差が 175nmである位相差フィルム A— 3を得た。これらの位相差フィル ム B— 2と A— 3を、各々の光軸が 50° となるように厚さ 10 mのアクリル系接着剤(協 立化学産業 (株)製、 XVL— 90)を用いて貼り合わせ、さらに貼り合わせたフィルムの 片面に、厚さ 20 /z mのアクリル系接着剤 (住友スリーェム (株)製、 8142)を用いて厚 さ 250 mのガラス板を積層し、波長板 Iを得た。
波長板 Iの位相差を測定したところ、 655nmにおける位相差が 164nmで 785nmに おける位相差が 196nmであった。したがって、波長板 Iは広帯域で「1/4波長板」と して機能することが確認された。
[0157] 波長板 I中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Iの面内収差を確認したところ、 32mえであった。
この波長板 Iにつ 、て高温高湿試験を行なったところ、位相差値の変化量は 3%以 内であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持 していることを確認した。
[0158] <実施例 9 >
榭脂フィルム Βを用いて、延伸条件を延伸倍率 1. 58倍、加熱温度 148°Cとした以 外は、実施例 1と同様にして厚みが 87 mで、波長 655nmにおける位相差が 355η mである位相差フィルム B— 3を得た。
位相差フィルム B— 2と B— 3を、各々の光軸が 60° となるように厚さ 10 μ mのアタリ ル系接着剤 (協立化学産業 (株)製、 XVL-90)を用いて貼り合わせ、さらに貼り合わ せたフィルムの片面に、厚さ 20 /z mのアクリル系接着剤 (住友スリーェム (株)製、 81 42)を用いて厚さ 250 μ mのガラス板を積層し、波長 を得た。
波長 ¾Jの位相差を測定したところ、 655nm〖こおける位相差力 320nmで 785nmに おける位相差が 395nmであった。したがって、波長 は広帯域で「1/2波長板」と して機能することが確認された。
[0159] 波長 中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長 ¾Jの面内収差を確認したところ、 32mえであった。
この波長 につ 、て高温高湿試験を行なったところ、位相差値の変化量は 3%以 内であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持 していることを確認した。
[0160] <実施例 10>
位相差フィルム Α— 1と Α— 2を、各々の光軸が 60° となるように厚さ 10 μ mのアタリ ル系接着剤 (協立化学産業 (株)製、 XVL-90)を用いて貼り合わせ、さらに貼り合わ せたフィルムの両面に、厚さ 20 /z mのアクリル系接着剤(住友スリーェム (株)製、 81 42)を用いて厚さ 250 μ mのガラス板を積層し、波長板 Kを得た。
波長板 Kの位相差を測定したところ、 655nmにおける位相差が 162nmで 785nmに おける位相差が 195nmであった。したがって、波長板 Kは広帯域で「1/4波長板」 として機能することが確認された。
[0161] 波長板 K中の粒径 10 μ m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さら〖こ、波長板 Kの面内収差を確認したところ、 31mえであった。
この波長板 Kにつ 、て高温高湿試験を行なったところ、位相差値の変化量は 3% 以内であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維 持していることを確認した。 [0162] く実施例 11 >
位相差フィルム C— 2を 2枚、各々の光軸が 40° となるように厚さ 10 μ mのアクリル 系接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせ、さらに貼り合わせた フィルムの片面に、厚さ 10 mのアクリル系接着剤 (協立化学産業 (株)製、 XVL-9 0)を用いて厚さ 250 μ mのガラス板を積層し、波長板 Lを得た。
波長板 Lの位相差を測定したところ、 405nmにおける位相差が 201nmで 655nmに おける位相差が 326nmであった。したがって、波長板 Lは広帯域で「1/2波長板」と して機能することが確認された。
[0163] 波長板 L中の粒径 10 m以上の異物数は lOZmm2個以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Lの面内収差を確認したところ、 31πι λであった。
この波長板 Lにつ 、て高温高湿試験を行なったところ、位相差値の変化量は 3%以 内であり、面内収差の変化量も 5m λ以下、外観変化も見られず良好な特性が維持 していることを確認した。
[0164] <比較例 2>
位相差フィルム Α— 1と Α— 2を、各々の光軸が 60° となるように厚さ 10 μ mのアタリ ル系接着剤 (協立化学産業 (株)製、 XVL-90)を用いて貼り合わせ、さらに貼り合わ せたフィルムの両面に、厚さ 10 mのアクリル系接着剤(協立化学産業 (株)製、 XV L-90)を用いて厚さ 250 μ mのガラス板を積層し、波長板 Mを得た。
波長板 Mの位相差を測定したところ、 655nmにおける位相差が 160nmで 785nm における位相差が 196nmであった。したがって、波長板 Mは広帯域で「1/4波長板 」として機能することが確認された。
[0165] 波長板 M中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Mの面内収差を確認したところ、 20mえであった。
この波長板 Mにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり外観変化も見られな力つたが、面内収差の変化量が 10m λであることが確認 された。 [0166] <比較例 3 >
位相差フィルム B—lを 2枚、各々の光軸が 45° となるように厚さ 10 μ mのアクリル 系接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせ、さらに貼り合わせた フィルムの両面に、厚さ 10 /z mのアクリル系接着剤(住友スリーェム (株)製、 8142) を用いて厚さ 250 mのガラス板を積層し、波長板 Nを得た。
[0167] 波長板 Nの位相差を測定したところ、 655nmにおける位相差が 328nmで 785nm における位相差が 390nmであった。したがって、波長板 Nは広帯域で「1/2波長板
」として機能することが確認された。
波長板 N中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Nの面内収差を確認したところ、 18πι λであった。
この波長板 Νにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり外観変化も見られな力つたが、面内収差の変化量が 15m λであることが確認 された。
[0168] <比較例 4>
位相差フィルム C— 1と C— 2を、各々の光軸が 55° となるように厚さ 10 mのアタリ ル系接着剤 (協立化学産業 (株)製、 XVL-90)を用いて貼り合わせ、さらに貼り合わ せたフィルムの両面に、厚さ 10 mのアクリル系接着剤(協立化学産業 (株)製、 XV L-90)を用いて厚さ 250 μ mのガラス板を積層し、波長板 Oを得た。
[0169] 波長板 O中の粒径 10 m以上の異物数は 10個 Zmm2以下であることを偏光顕微 鏡により確認した。
さらに、波長板 Oの面内収差を確認したところ、 40mえであった。
この波長板 Oにつ 、て高温高湿試験を行ったところ、位相差値の変化量は 3%以内 であり外観変化も見られな力つたが、面内収差の変化量が 15m λであることが確認 された。
[0170] <比較例 5 >
位相差フィルム C— 2を 2枚、各々の光軸が 40° となるように厚さ 10 μ mのアクリル 系接着剤 (協立化学産業 (株)製、 XVL-90)を用いて貼り合わせ、さらに貼り合わせ たフィルムの片面に、厚さ lO /z mのアクリル系接着剤 (協立化学産業 (株)製、 XVL- 90)を用いて厚さ 250 μ mのガラス板を積層し、波長板 Pを得た。
[0171] 波長板 Pの位相差を測定したところ、 405nmにおける位相差が 200nmで 655nm における位相差が 323nmであった。したがって、波長板 Pは広帯域で「1/2波長板 」として機能することが確認された。
波長板 P中の 10 m以上の異物数は 10個以下であることを偏光顕微鏡により確認 した。
さらに、波長板 Pの面内収差を確認したところ、 24mえであった。
[0172] この波長板 Pについて高温高湿試験を行なったところ、位相差値の変化量は 3%以 内であり外観変化も見られな力つたが、面内収差の変化量が 18m λであることが確 piひ ] Ho
<比較例 6 >
位相差フィルム B— 2と A— 3を、各々の光軸が 50° となるように厚さ 10 μ mのアタリ ル系接着剤 (住友スリーェム (株)製、 8142)を用いて貼り合わせ、さらに貼り合わせ たフィルムの片面に、厚さ 10 /z mのアクリル系接着剤(住友スリーェム (株)製、 8142 )を用いて厚さ 250 μ mのガラス板を積層し、波長板 Qを得た。
波長板 Qの位相差を測定したところ、 655nmにおける位相差が 162nmで 785nmに おける位相差が 198nmであった。したがって、波長板 Qは広帯域で「1/4波長板」 として機能することが確認された。
[0173] 波長板 Q中の 10 m以上の異物数は 10個以下であることを偏光顕微鏡により確 piひし/こ ο
さらに、波長板 Qの面内収差を確認したところ、 20mえであった。
この波長板 Qにつ 、て高温高湿試験を行なったところ、位相差値の変化量は 3% 以内であり外観変化も見られな力つたが、面内収差の変化量が 16m λであることが 確認された。
産業上の利用可能性
[0174] 本発明の第 1および第 2の波長板を使用した光学情報記録'再生装置は、音声、画 像の記録に関して、再生専用記録媒体、追記型記録媒体、および書き換え可能型 記録媒体のいずれにも適用でき、 CD-ROM, CD-R,書き換え可能 DVDなどの記 録装置およびそれらを用いた OA機器、 CDなどの音響再生装置、 DVDなどの画像 再生装置およびそれらを用いた AV機器、上記の CD、 DVDなどを用いたゲーム機 などに用いることができる。また、本発明の第 1および第 2の波長板は、液晶プロジェ クタ一装置にも用いることができる。

Claims

請求の範囲
[1] 2枚以上の位相差フィルム力 なる波長板であって、レーザー光の透過部分におい て位相差フィルム同士が接着されて 、な 、ことを特徴とする波長板。
[2] レーザー光の透過部分を除く部分の少なくとも一部において位相差フィルム同士 が接着されて 、る請求項 1に記載の波長板。
[3] 位相差フィルムの少なくとも一部が支持体に固定されている請求項 1または 2に記 載の波長板。
[4] 位相差フィルムが環状ォレフィン系榭脂フィルム力 なる請求項 1一 3 、ずれかに記 載の波長板。
[5] 少なくとも 2枚の位相差フィルムが積層され、当該積層された位相差フィルムの少な くとも片面にガラス基板が積層されている波長板であって、位相差フィルム同士、およ び位相差フィルムとガラス基板とが、下記接着剤 (A)、 (B)から選択され、かつそれ ぞれ異なる接着剤で積層固定されてなることを特徴とする波長板;
接着剤 (A):ガラス転移温度が 0°C以下であり、かつ 23°Cにおけるヤング率が 10MP a以下である接着剤
接着剤 ):ガラス転移温度力 0°C以上であり、かつ 23°Cにおけるヤング率が 30M Pa以上である接着剤
(ただし、接着剤 (A)と接着剤 (B)とのガラス転移温度の差は 60°C以上であり、かつ 23°Cにおける接着剤 (A)と接着剤 (B)とのヤング率の差は 40MPa以上である。 )。
[6] 前記積層された位相差フィルムの両面にガラス基板が積層され、位相差フィルム同 士が接着剤 (A)で積層固定され、位相差フィルムとガラス基板とが接着剤 (B)で固 定されて!/ヽることを特徴とする請求項 5に記載の波長板。
[7] 位相差フィルム力 環状ォレフィン系榭脂フィルムを延伸配向させて得られたもので あることを特徴とする請求項 5または 6に記載の波長板。
[8] 少なくとも 2枚の位相差フィルムを積層し、当該積層された位相差フィルムの少なく とも片面にガラス基板を積層する波長板の製造方法であって、位相差フィルム同士、 および位相差フィルムとガラスとを、下記接着剤 (A)、 (B)から選択され、かつそれぞ れ異なる接着剤で積層固定することを特徴とする波長板の製造方法; 接着剤 (A):ガラス転移温度が 0°C以下であり、かつ 23°Cにおけるヤング率が 10MP a以下である接着剤
接着剤 ):ガラス転移温度力 0°C以上であり、かつ 23°Cにおけるヤング率が 30M Pa以上である接着剤
(ただし、接着剤 (A)と接着剤 (B)とのガラス転移温度の差は 60°C以上であり、し力も 23°Cにおける接着剤 (A)と接着剤 (B)とのヤング率の差は 40MPa以上である。 )。
PCT/JP2004/017800 2003-12-01 2004-11-30 波長板 WO2005054912A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/581,201 US7618715B2 (en) 2003-12-01 2004-11-30 Wavelength plate
EP04819835A EP1691223A4 (en) 2003-12-01 2004-11-30 WAVELENGTH PLATE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-401690 2003-12-01
JP2003401690A JP2005164834A (ja) 2003-12-01 2003-12-01 波長板
JP2003425369 2003-12-22
JP2003-425369 2003-12-22

Publications (1)

Publication Number Publication Date
WO2005054912A1 true WO2005054912A1 (ja) 2005-06-16

Family

ID=34656186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017800 WO2005054912A1 (ja) 2003-12-01 2004-11-30 波長板

Country Status (5)

Country Link
US (1) US7618715B2 (ja)
EP (1) EP1691223A4 (ja)
KR (1) KR20060115757A (ja)
TW (1) TW200530730A (ja)
WO (1) WO2005054912A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969543B2 (en) * 2006-01-12 2011-06-28 The Hong Kong University Of Science And Technology Retardation films having single retardation value with variation
JP4371147B2 (ja) * 2007-03-15 2009-11-25 ソニー株式会社 積層体およびその製造方法、波長板ならびに光学フィルム
US7855834B2 (en) * 2007-03-27 2010-12-21 Epson Toyocom Corporation Multilayered phase difference plate and projector
JP2008268372A (ja) * 2007-04-17 2008-11-06 Fujinon Corp 位相差補償素子及びその製造方法
JP5051475B2 (ja) * 2008-10-27 2012-10-17 セイコーエプソン株式会社 1/4波長板、光ピックアップ装置及び反射型液晶表示装置
JP5347911B2 (ja) * 2009-11-02 2013-11-20 セイコーエプソン株式会社 1/2波長板、光ピックアップ装置、偏光変換素子及び投写型表示装置
CN106414071B (zh) * 2014-07-18 2018-07-13 日立化成株式会社 层叠膜
US10746912B2 (en) 2015-03-03 2020-08-18 Uk Choi Color generation device having first and second birefringence media for generating improved color by increasing tendency of linear-polarization and method for the same
KR101995977B1 (ko) * 2016-11-28 2019-07-04 삼성디스플레이 주식회사 플렉서블 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101700A (ja) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd 光ヘッド装置
JP2001159744A (ja) * 1999-12-02 2001-06-12 Kyocera Corp 光受動部品及びその組み立て方法
JP2001272542A (ja) * 2000-03-27 2001-10-05 Nitto Denko Corp 光学補償フィルム付き偏光板及び液晶表示装置
JP2001311821A (ja) * 2000-04-27 2001-11-09 Asahi Glass Co Ltd 位相子および光ヘッド装置
JP2002341290A (ja) * 2001-05-15 2002-11-27 Sumitomo Special Metals Co Ltd 光アイソレータおよびそれを備える光コネクタならびにレーザ光源装置
JP2003270435A (ja) * 2002-03-13 2003-09-25 Nippon Zeon Co Ltd 広帯域波長板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826124B2 (ja) 1987-11-17 1996-03-13 日本合成ゴム株式会社 光学材料
CN2051747U (zh) 1989-07-26 1990-01-24 郭亦武 立体影视眼镜
AUPM482194A0 (en) * 1994-03-31 1994-04-28 Commonwealth Scientific And Industrial Research Organisation Birefringent polariser
US6295109B1 (en) * 1997-12-26 2001-09-25 Sharp Kabushiki Kaisha LCD with plurality of pixels having reflective and transmissive regions
JP3918320B2 (ja) * 1998-09-29 2007-05-23 富士フイルム株式会社 固体撮像素子
DE60015289T2 (de) * 1999-08-26 2006-02-02 Asahi Glass Co., Ltd. Phasenverschieber und damit ausgestatteter Optik-Kopf
KR100711942B1 (ko) 1999-12-28 2007-05-02 군제 가부시키가이샤 편광판
JP2001208913A (ja) 2000-01-27 2001-08-03 Fuji Photo Film Co Ltd 位相差板および円偏光板
JP4631135B2 (ja) 2000-04-26 2011-02-16 旭硝子株式会社 位相子
CA2678208A1 (en) * 2000-12-18 2002-06-27 Nippon Kayaku Kabushiki Kaisha Optical film and polarizing film using the same, and method for improving view angle of the polarizing film
JP2003329834A (ja) 2002-05-13 2003-11-19 Nippon Zeon Co Ltd 分子配向した成形物の製法
JP2004264620A (ja) * 2003-03-03 2004-09-24 Jsr Corp 積層波長板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101700A (ja) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd 光ヘッド装置
JP2001159744A (ja) * 1999-12-02 2001-06-12 Kyocera Corp 光受動部品及びその組み立て方法
JP2001272542A (ja) * 2000-03-27 2001-10-05 Nitto Denko Corp 光学補償フィルム付き偏光板及び液晶表示装置
JP2001311821A (ja) * 2000-04-27 2001-11-09 Asahi Glass Co Ltd 位相子および光ヘッド装置
JP2002341290A (ja) * 2001-05-15 2002-11-27 Sumitomo Special Metals Co Ltd 光アイソレータおよびそれを備える光コネクタならびにレーザ光源装置
JP2003270435A (ja) * 2002-03-13 2003-09-25 Nippon Zeon Co Ltd 広帯域波長板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1691223A4 *

Also Published As

Publication number Publication date
US7618715B2 (en) 2009-11-17
EP1691223A1 (en) 2006-08-16
EP1691223A4 (en) 2009-12-09
KR20060115757A (ko) 2006-11-09
TW200530730A (en) 2005-09-16
US20070127130A1 (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4178810B2 (ja) 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP3912159B2 (ja) 光学用フィルムおよびその製造方法並びに偏光板
KR100992646B1 (ko) 파장판
WO2005054912A1 (ja) 波長板
WO2004079412A1 (ja) 積層波長板
JP2005164632A (ja) 光学用フィルムおよび偏光板
JP4465526B2 (ja) 波長板
JP4273321B2 (ja) 波長板
US7618716B2 (en) Wave plate
JP2005164834A (ja) 波長板
JP5878868B2 (ja) 位相差フィルム用ウレタン樹脂及び位相差フィルム
JP4048363B2 (ja) 光学ローパスフィルタ
JP4103469B2 (ja) 液晶プロジェクター用偏光変換素子用波長板および液晶プロジェクター用偏光変換素子
JP4344917B2 (ja) 2波長対応波長板
KR100944303B1 (ko) 레이저 광학계용 파장판
JP4092552B2 (ja) 波長板
JP2003344652A (ja) 波長板
JP2004029280A (ja) レーザー光学系用波長板
JP2008170990A (ja) レーザー光学系用波長板の製造方法
JP2007256603A (ja) 液晶プロジェクター用波長板
JP2008152271A (ja) 熱可塑性ノルボルネン系樹脂系光学用フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035508.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007127130

Country of ref document: US

Ref document number: 10581201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004819835

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067013224

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819835

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067013224

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10581201

Country of ref document: US