WO2005054826A1 - 光分析装置及び光分析デバイス - Google Patents

光分析装置及び光分析デバイス Download PDF

Info

Publication number
WO2005054826A1
WO2005054826A1 PCT/JP2004/018315 JP2004018315W WO2005054826A1 WO 2005054826 A1 WO2005054826 A1 WO 2005054826A1 JP 2004018315 W JP2004018315 W JP 2004018315W WO 2005054826 A1 WO2005054826 A1 WO 2005054826A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
light
analysis device
switching
optical analysis
Prior art date
Application number
PCT/JP2004/018315
Other languages
English (en)
French (fr)
Inventor
Tomohiko Matsushita
Takeo Nishikawa
Yuko Tsuda
Shigemi Norioka
Tetsuichi Wazawa
Shigeru Aoyama
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to EP04819972A priority Critical patent/EP1701151A4/en
Priority to US10/582,188 priority patent/US7342663B2/en
Priority to JP2005516030A priority patent/JPWO2005054826A1/ja
Publication of WO2005054826A1 publication Critical patent/WO2005054826A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the present invention relates to an optical analysis device using surface plasmon resonance and an optical analysis device using the device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-131237
  • FIG. 1 Japanese Patent Application Laid-Open No. 2000-131237
  • cDNAs different from each other are applied in dots on the microarray chip 1
  • DNA labeled with different fluorescent dyes is dropped on the microarray chip 1 to hybridize the cDNA and DNA. Assume that the compound 2 is used.
  • the excitation light 4 emitted from the excitation light source 3 is squeezed by the collimator lens 5 and the condenser lens 6 to irradiate the combination 2 arranged on the microarray chip 1.
  • the fluorescence excited by the conjugate 2 is reflected by the polarization beam splitter 7 and received by the photomultiplier 8.
  • the microarray chip 1 is mounted on a stage 9, and each combination 2 can be sequentially scanned by driving the step motors 10 and 11 to move the stage 9.
  • the DNA is identified by determining to which conjugate 2 the DNA has been hybridized.
  • this analyzer is of a fluorescence detection type, and thus has problems such as detection errors caused by fluorescent molecules and inactivation of biomolecules such as DNA and proteins associated with fluorescent molecules. . Further, in this analyzer, the size and cost of the optical system for fluorescence detection are increased, and the drive unit for the scan is also increased. As a result, the entire device becomes large and expensive. In addition, since it takes time to scan the excitation light 4, it is difficult to achieve high throughput. [0006] (Conventional example 2)
  • FIG. 2 shows another conventional analyzer, which is described in Japanese Patent Application Laid-Open No. 2001-255267 (Patent Document 2).
  • Patent Document 2 a plurality of types of antibodies and the like are fixed on a metal thin film 22 formed on the surface of a prism 21, and a substance 25 to be measured is introduced there. Then, the light emitted in a lattice form from the light source 23 is incident from one side of the prism 21 as p-polarized parallel light.
  • the light reflected by the metal thin film 22 includes absorption due to the surface plasmon resonance phenomenon, and the two-dimensional amount of received light of the reflected light is photographed by the CCD camera 24.
  • the actual measurement surface 26 is distorted in the image 27 by the CCD camera 24 and the aspect ratio (aspect ratio) is changed.
  • image processing is performed to analyze the substance 25 to be measured.
  • An analyzer using such a surface plasmon resonance phenomenon has an advantage that no error occurs due to fluorescent molecules.
  • a high-precision optical system is required, and the conventional optical system using a Balta element has a problem that the device is large and expensive.
  • there have been problems such as an increase in the size of the apparatus and an increase in analysis time.
  • FIG. 3 shows another conventional analyzer utilizing the surface plasmon resonance phenomenon, in which an optical waveguide 33 having a plurality of cores 32 formed in a cladding 31 is used.
  • a metal thin film 34 is provided on each core 32 so as to be in contact with each core 32.
  • a different antibody is immobilized on each metal thin film 34, a substance to be measured is supplied thereto, p-polarized light is introduced into each core 32, and the spectrum of light emitted from the core 32 is measured.
  • the target substance is inspected using surface plasmon resonance.
  • this analyzer uses an optical waveguide instead of the prism, it is possible to measure the miniaturization of the optical system used in the surface plasmon resonance analyzer. However, with this apparatus, it is not possible to realize a sufficiently high throughput in which the number of tests that can be performed at one time is equal to the number of cores 32.
  • Patent Document 1 JP-A-2000-131237
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-255267
  • Patent Document 3 JP-A-2002-162346
  • the present invention has been made in view of the above technical problems, and an object of the present invention is to make it possible to reduce the size and cost, and to greatly improve the throughput by using multiple channels. It is an object of the present invention to provide an optical analysis device and an optical analysis apparatus which can perform the analysis. Another object of the present invention is to provide an optical analysis device and an optical analysis apparatus capable of measuring the binding force, interaction, equilibrium constant, and the like of genes and proteins with high accuracy.
  • An optical analysis device includes a light source unit, a plurality of cores, a waveguide unit that guides the inside of the core while repeatedly reflecting light from the light source unit, A light detection unit that receives light guided through the core, and a switching element that can be switched between a detection state and a non-detection state of the measurement object, wherein the switching element extends in a length direction of the core.
  • a plurality of switching units which are superposed on the waveguide unit so as to be arranged in a plurality, and a measurement target arrangement area defined at a position facing the waveguide unit via the switching unit.
  • the switching element may be V independently for each core, or may be provided across a plurality of cores! /, Or may be! /.
  • the switching element corresponding to the measurement location in the measurement location. Only the element is switched to the detection state, the light emitted from the light source unit is guided through the core, and the light modulated at the measurement location through the switching element in the detection state is detected by the detection unit, whereby the detection is performed. It is possible to detect changes in light intensity and fluorescent colors at measurement points. By detecting a change in light intensity or a fluorescent color, it is possible to measure the type and amount of the measurement object placed at the measurement site, and also to determine the intermolecular interaction and the binding force of the measurement object. And characteristics such as equilibrium constant.
  • this optical analysis device uses the surface plasmon resonance phenomenon to determine the type, quantity, or characteristics (physical characteristics, chemical characteristics, biological characteristics, etc.) of the test object based on the output of the optical analysis device.
  • a surface plasmon resonance analyzer can be configured together with means for analysis (for example, analysis software or a computer system).
  • the waveguide portion (optical waveguide) is used to guide the light
  • the sensitivity can be increased as compared with a device that emits light into space.
  • measurement accuracy can be improved.
  • a switching section constituted by switching elements is used, the measurement location in the measurement target arrangement area can be multi-channeled, and high-speed switching can be performed as compared with the mechanical scanning method.
  • the measurement target can be measured in a short time, and the throughput is greatly improved.
  • the use of the waveguide section and the switching section makes it possible to reduce the size of the optical analysis device, and the cost can be reduced by mass production.
  • the optical analysis device further includes an inspection board positioned in the measurement target arrangement area, wherein the inspection board has a plurality of flow paths through which a subject flows.
  • a receptor is fixed to the flow path, and an intersection region between the flow path and the core overlaps with an overlapping portion of the core and the switching element when viewed from the test board.
  • the ligand contained in the receptor and the analyte is observed by observing a change in the light intensity along the flow channel and a time change thereof while the analyte flows through the flow channel in which the receptor is fixed. Force, intermolecular interaction, and equilibrium constant can be measured.
  • this embodiment includes a plurality of flow paths, the same receptor is fixed in the same flow path, and different receptors are fixed in each flow path. Can collectively measure the binding force, intermolecular interaction, and equilibrium constant between the analyte and multiple types of receptors, improving the throughput.
  • the same receptor is immobilized in each channel, a plurality of subjects can be detected at once by flowing different subjects in each channel, thereby improving the throughput. be able to.
  • a metal thin film is formed in the channel and a receptor is fixed on the metal thin film, measurement using surface plasmon resonance can be performed.
  • fluorescence detection problems such as detection errors caused by fluorescent molecules and inactivation of biomolecules caused by fluorescent molecules can be avoided.
  • a plurality of different measurement objects are arranged two-dimensionally in the measurement object arrangement area, and each of the measurement objects includes the core and the core. It is arranged directly above each overlapping portion with the switching element.
  • the throughput at the time of measurement work is extremely high.
  • the switching unit is arranged such that the switching element is in contact with the core, and in a non-detection state, light guided in the core is not detected.
  • the light reflected by the switching element and guided in the core in the detection state is transmitted through the switching element. Therefore, the switching element
  • the switching element By setting the element in the transmission state, the light guided through the core can be guided to the object to be measured, and the modulated light can be returned to the core. It is possible to avoid being affected by this measurement object.
  • the switching speed can be increased and the cost of the switching unit can be reduced.
  • a light detection method of the present invention is a light detection method for detecting a change in light using the optical analysis device according to the present invention, wherein a measurement location in the measurement target arrangement area is the core.
  • the switching element is located between any one of the cores, and the position is determined. Of the switching elements arranged along the core corresponding to the measurement point in the measurement target arrangement area, the position of the measurement target arrangement area is determined. Only the switching element corresponding to the measurement location is switched to the detection state, the light emitted from the light source unit is guided in the core, and the light modulated at the measurement location through the switching element in the detection state is detected by the detection unit. It is characterized by detecting with.
  • the light detection method of the present invention when performing measurement using the optical analysis device of the present invention, only the measurement result of a specific measurement point among a plurality of measurement points arranged along the core is separated. Can be obtained.
  • FIG. 1 is a schematic perspective view showing a conventional analyzer.
  • FIG. 2 is a schematic view showing another conventional analyzer.
  • FIG. 3 is a perspective view of another conventional analyzer using the surface plasmon resonance phenomenon.
  • FIG. 4 is an exploded perspective view showing a structure of an optical analysis device according to Example 1 of the present invention.
  • FIG. 5 is a plan view of the optical analysis device of Example 1.
  • FIG. 6 is a cross-sectional view of the optical analysis device of Example 1 along the core length direction.
  • FIG. 7 is a cross-sectional view of the optical device of Example 1 along the flow channel length direction.
  • FIG. 8 is a cross-sectional view showing a part of a switching unit.
  • FIG. 9 is a cross-sectional view showing a part of an inspection board.
  • FIG. 10 is a schematic diagram showing a receptor fixed in a flow channel.
  • FIG. 11 is a block diagram of an arithmetic processing unit included in the plasmon resonance analyzer of the present invention.
  • FIG. 12 is an explanatory diagram showing a state when a subject is supplied into the flow path of the test substrate.
  • FIG. 13 is an explanatory diagram showing light propagation in a core when the switching window is off.
  • FIG. 14 is an explanatory diagram showing light propagation in a core when a switching window is on and a ligand is not bound to a receptor.
  • FIG. 15 is an explanatory diagram showing light propagation in a core when a switching window is turned on and a ligand is bound to a receptor.
  • FIG. 16 is a time chart illustrating an example of a control method of the switching unit.
  • FIG. 17 is a time chart showing another control method of the switching unit.
  • FIG. 18 is a diagram showing a result of measuring a change in signal intensity along a certain flow path.
  • Figure 19 shows that when the binding strength or interaction between a specific ligand and a receptor is small, the ligand bound to the receptor separates its receptor power into another receptor on the downstream side.
  • FIG. 9 is an explanatory diagram showing a state of reconnection.
  • FIG. 20 is a diagram showing an example of a signal intensity curve and a measured amount from which the curve power is also extracted.
  • FIGS. 21 (a) to 21 (f) are explanatory views showing an example of a method of manufacturing a waveguide section.
  • FIG. 22 (a) to FIG. 22 (c) are explanatory views showing steps for manufacturing a waveguide portion following the step of FIG. 21 (f).
  • FIG. 23 (a) to FIG. 23 (f) are explanatory views showing an example of a method of manufacturing an inspection board.
  • FIGS. 24 (a) to 24 (e) are views for explaining another method of manufacturing the waveguide section.
  • FIG. 25 (a) to FIG. 25 (f) are views for explaining another method of manufacturing a waveguide portion.
  • FIG. 26 is an exploded perspective view showing a structure of an optical analysis device according to Embodiment 2 of the present invention.
  • FIG. 27 is a plan view of an optical analysis device of Example 2.
  • FIG. 28 is a schematic diagram showing the internal structure of the flow path of the test board.
  • FIG. 29 (a) is a cross-sectional view along the flow channel arrangement direction of the switching unit and the test board
  • FIG. 29 (b) is a cross-sectional view along the flow channel length direction.
  • FIG. 30 is a schematic diagram illustrating another arrangement of the receptor in the flow path of the test substrate.
  • FIG. 31 is an exploded perspective view showing a structure of an optical analysis device according to Embodiment 3 of the present invention.
  • FIG. 32 is a cross-sectional view showing a cross section of the optical analysis device of Example 3 along the arrangement direction of the cores and the flow paths.
  • FIG. 33 is a cross-sectional view along the length direction of the core and the flow channel in the optical analysis device of Example 3.
  • FIG. 34 is an exploded perspective view showing a structure of an optical analysis device according to Example 4 of the present invention.
  • FIG. 35 is a plan view showing a positional relationship between a switching window and a core in the optical analysis device of Example 4.
  • FIG. 36 is an exploded perspective view showing a structure of an optical analysis device according to Embodiment 5 of the present invention.
  • FIG. 37 is a plan view for explaining the positional relationship of each part in the optical analysis device of Example 5.
  • FIG. 38 is a perspective view showing another configuration of the inspection board.
  • FIG. 39 is an exploded perspective view showing a structure of an optical analysis device according to Embodiment 6 of the present invention.
  • FIG. 40 is an exploded perspective view illustrating a modification of the sixth embodiment.
  • FIG. 41 is an exploded perspective view for explaining another modification of the sixth embodiment.
  • FIG. 42 is an exploded perspective view showing a structure of an optical analysis device according to Embodiment 7 of the present invention.
  • FIG. 43 is a partially broken cross-sectional view showing a structure of a switching unit used in the optical analysis device of Example 7.
  • FIG. 44 is a plan view showing a configuration of a light source unit, a waveguide unit, and a detection unit used in an optical analysis device according to Embodiment 8 of the present invention.
  • FIG. 45 is a plan view showing a configuration of a light source unit, a waveguide unit, and a detection unit used in an optical analysis device according to Embodiment 9 of the present invention.
  • FIG. 46 is an exploded perspective view of an optical branching unit used in Embodiment 9.
  • FIG. 47 is a perspective view showing a configuration of a light source unit used in an optical analysis device according to Embodiment 10 of the present invention.
  • FIG. 48 is an explanatory diagram for explaining the operation of the modulation unit used in the light source unit according to the tenth embodiment.
  • the surface plasmon resonance analyzer (a type of optical analyzer) of the present invention mainly includes an optical analyzer (41) and the type of the inspection object based on the output of the optical analyzer using the optical plasmon resonance phenomenon.
  • the optical analysis device includes a light source unit (42), a waveguide unit (43), a switching unit (44), an inspection board (45), and a detection unit (43). It is composed by The waveguide section has a plurality of cores (51) and guides the light from the light source section in the core while repeating reflection.
  • the plurality of light emitting elements (47) constituting the light emitting section are arranged so as to face one end face of each core, and the plurality of light receiving elements (49) constituting the detecting section face the other end face of each core. It is arranged to be. Therefore, light emitted from the light emitting element enters the core and is guided while repeating reflection in the core. On the other hand, light emitted from the other end of the core is received by the light receiving element of the light detection unit.
  • the switching unit is overlaid on the waveguide unit.
  • the switching unit has a switching window (52; switching element! /, In the claims) capable of switching between a detection state and a non-detection state of the object to be measured, and the switching window extends in a length direction of the core.
  • the switching section is arranged so that the switching window is in contact with the core of the waveguide. In the non-detection state, light guided in the core is reflected by the switching window, and in the detection state, light guided in the core is detected. Is a switching window Is transmitted.
  • Such a switching unit is composed of, for example, a liquid crystal device utilizing the anisotropy of the refractive index of the liquid crystal, and for each switching window, it is possible to select whether to transmit or completely transmit the guided light. Can be used.
  • the measurement target arrangement area is defined as a surface. Therefore, at the measurement point where the switching window is in the non-detection state, the light guided in the core is reflected by the switching window and does not act on the measurement target arrangement area. On the other hand, at the measurement point where the switching window is in the detection state, the light guided through the core is transmitted through the switching window and acts on the measurement area, and the affected light returns to the core again. , And finally received by the photodetector.
  • the test substrate has a plurality of flow paths through which a subject flows, and a metal thin film is formed in each flow path, and a receptor is fixed on the metal thin film.
  • the inspection board is arranged such that each switching window overlaps an intersection region between the flow path and the core when viewed from a direction perpendicular to the inspection board.
  • This inspection board is arranged in the measurement object arrangement area above the switching unit.
  • the analyte is passed through the flow path of the test substrate toward one side and the other, and if the analyte contains a specific ligand, the specific ligand is captured by the receptor.
  • the switching window with the switching section when the switching window with the switching section is in the detection state, the light and the analyte (specific ligand that binds to the receptor) interact at the measurement point corresponding to the switching window. Since the light is modulated, the type, amount, or characteristics of the measurement object can be evaluated by detecting the light with the light detection unit.
  • the above-mentioned optical analysis device is provided with a type of receptor (the same receptor or a different receptor force) to be fixed to each measurement point, and a switching timing of the ON state of the switching window (the switching window is sequentially turned on).
  • a type of receptor the same receptor or a different receptor force
  • a switching timing of the ON state of the switching window the switching window is sequentially turned on.
  • Various measurement methods can be considered depending on the force to be applied, whether the switching windows along the flow path are simultaneously turned on, and the like.
  • the same receptor may be fixed in the same channel, and different receptors may be fixed in each channel. In this case, it is possible to know the degree of binding between each receptor and the specific ligand in the direction along the flow path, so that it is possible to know the change in the interaction along the flow path. It is possible to evaluate the strength of binding and interaction between isomer ligands and receptors, and to evaluate the response to multiple receptors at once by fixing different receptors in multiple channels.
  • Example 1 the power of the surface plasmon resonance analyzer of Example 1 has been outlined.
  • the surface plasmon resonance analyzer will be specifically described.
  • FIG. 4 to FIG. 7 show Example 1 of the present invention, which is an optical analysis device constituting a surface plasmon resonance analyzer of the present invention utilizing the surface plasmon resonance phenomenon.
  • FIG. 4 is an exploded perspective view showing the structure of the optical analysis device 41
  • FIG. 5 is a plan view of the optical analysis device 41.
  • 6 is a cross-sectional view of the optical analysis device 41 along the length direction of the core
  • FIG. 7 is a cross-sectional view of the optical analysis device 41 along the length direction of the flow path.
  • the optical analysis device 41 has a light source section 42, a waveguide section 43, a switching section 44, an inspection board 45, and a detection section 46.
  • the light source unit 42 includes a plurality of light emitting elements 47 such as a light emitting diode (LED) and a lamp.
  • the light source unit 42 may be composed of a plurality of independent light-emitting elements 47, or an LED array may be used.
  • the detection unit 46 includes a plurality of light receiving elements 49 such as a photodiode and a phototransistor.
  • the detection unit 46 may also be constituted by a plurality of independent light receiving elements 49, or a light receiving element array may be used.
  • the waveguide portion 43 is provided with a plurality of linear grooves in a plate-shaped clad 50 having a high refractive index transparent resin or glass force, and a transparent groove having a larger refractive index than the clad 50 in the groove.
  • a plurality of cores 51 are formed in parallel with each other by embedding resin. Each core 51 has the same cross-sectional shape and the same cross-sectional area.
  • the light source section 42 and the detection section 46 are arranged opposite to both ends of the waveguide section 43 such that each light emitting element 47 and each light receiving element 49 faces the end face of each core 51.
  • the switching unit 44 having a panel shape has a plurality of switching windows 52 arranged two-dimensionally or in a grid, and each switching window 52 is independently transmitted or non-transmitted by an electric signal. You can switch to the state. As shown in FIG. 5, the switching section 44 is laminated and integrated on the upper surface of the waveguide section 43, and the switching windows 52 of each row are arranged right above each core 51 of the waveguide section 43. I have. Also, a row lined on any core 51 The switching windows 52 are arranged at a constant pitch.
  • the switching unit 44 uses, for example, the refractive index anisotropy of the liquid crystal, and changes the refractive index of the liquid crystal layer between on and off.
  • a liquid crystal device such as a liquid crystal shutter which is almost equal to the above can be used.
  • FIG. 8 is a cross-sectional view showing a part of such a switching unit 44.
  • the switching unit 44 is a device in which a liquid crystal layer 55 is sealed between the outer substrate 53 and the inner substrate 54, and a transparent electrode 56 is provided on the inner surface of the outer substrate 53, and the inner surface of the inner substrate 54 is provided on the inner surface of the inner substrate 54.
  • a transparent aperture electrode 57 and a black matrix region 58 are formed.
  • Each of the aperture electrodes 57 is partitioned in a lattice shape by a black matrix region 58, and a portion of each of the aperture electrodes 57 serves as a switching window 52.
  • the voltage applied between each opening electrode 57 and the transparent electrode 56 can be turned on and off by controlling a switch element such as a TFT provided in the black matrix region 58.
  • the black matrix region 58 is a region to which a black paint that does not transmit light is applied, and in addition to the switch elements, wiring patterns connected to the switch elements and the like are provided.
  • the inner substrate 54, the opening electrode 57, the transparent electrode 56, and the outer substrate 53 constituting the switching section 44 are desirably made of a material having a refractive index substantially equal to that of the core 51 of the waveguide section 43. .
  • the refractive index of the liquid crystal layer 55 changes when a voltage is applied. When no voltage is applied between the transparent electrode 56 and the aperture electrode 57, the refractive index of the liquid crystal layer 55 is higher than the refractive index of the core 51. When a small voltage is applied, the refractive index of the liquid crystal layer 55 becomes substantially equal to the refractive index of the core 51 (the reverse may be the case). Therefore, the switching window 52 is turned off, and the transparent electrode 56 is turned off.
  • FIG. 9 is a sectional view showing a part of the inspection board 45.
  • the inspection substrate 45 has a plurality of parallel groove-shaped channels 60 formed in the upper surface of a support plate 59 having a force such as a thin glass plate or a transparent resin substrate, and the entire support plate 59 or the entire inside of each channel 60 is formed.
  • Metal thin film 61 such as Au thin film It is.
  • the flow path 60 is formed when the support plate 59 made of a transparent resin substrate is formed by resin molding. You may leave. It is desirable that the refractive index of the support plate 59 is equal to the refractive index of the core 51.
  • the bottom surface of the support plate 59 is thinned by etching and polishing so that the bottom surface of the metal thin film 61 is exposed to the bottom surface of the inspection board 45. It may be. Different types of receptors 62 and filtering receptors 63 for different purposes are fixed on the metal thin film 61 in each channel 60.
  • the inspection board 45 is detachably attached to the switching section 44 via the matching oil, and the length direction of the flow path 60 is orthogonal to the length direction of the core 51 when the overhead force is also observed. (It is not limited to orthogonal, but it is preferable that they are orthogonal.) O
  • the upper surface of the flow channel 60 is preferably covered with a cover member 64 such as a cover glass.
  • FIG. 10 is a schematic diagram showing the receptors 62 and 63 fixed in the channel 60.
  • ligands other than specific ligands hereinafter, specific ligands
  • a non-specific filtering protein (63) that binds to a ligand is fixed, and a receptor (probe) that binds to a specific ligand covers a region facing each of the switching windows 52 on the downstream side. protein) 62 is fixed.
  • FIG. 11 is a block diagram showing a configuration of the arithmetic processing unit 65 constituting the surface plasmon resonance analyzer of the present invention.
  • the arithmetic processing unit 65 is miniaturized by using a microcomputer, an IC, or the like.
  • the arithmetic processing unit 65 includes a light source unit driving circuit 66, a switching unit control circuit 67, a receiving circuit 68, an analog Z digital (hereinafter, referred to as AZD) conversion circuit 69, an analyzing unit 70, a main control unit 71, a storage unit 72, It consists of an input interface 73 and an output interface 74.
  • the light source drive circuit 66 controls each light emitting element 47 of the light source 42 to emit light with a constant power.
  • the switching section control circuit 67 sequentially turns on the switching windows 52 of the switching section 44 in a predetermined order based on a command from the main control section 71.
  • the receiving circuit 68 receives the analog signal output from each light receiving element 49 of the detecting unit 46, and the AZD converting circuit 69 converts the analog signal into a digital signal and transmits the digital signal to the analyzing unit 70.
  • the main control unit 71 is controlled by a microcomputer or the like. It is configured and controls each part in an integrated manner.
  • the storage means 72 includes a rewritable storage medium such as a hard disk, and stores analysis software for analyzing the type of a subject, a signal intensity curve, and the like.
  • the input unit interface 73 is connected to input devices and communication lines such as a keyboard 75 and a mouse 76, and the data for analysis, which also includes the input device power, is sent from the input unit interface 73 to the main control unit 71. Sent and stored in storage means 72.
  • the analysis unit 70 calculates the signal intensity curve of the subject and the type and amount of the specific ligand contained in the subject based on the data received from the detection unit 46 via the receiving circuit 68 and the AZD conversion circuit 69. .
  • Output devices such as a monitor 77 and a printer 78 are connected to the output section interface 74, and the measurement results such as the signal intensity curve calculated by the analysis section 70 are displayed on the screen of the monitor 77 through the output section interface 74. Alternatively, it is output from the printer 78.
  • a test board 45 in which a plurality of types of receptors 62 and filtering receptors 63 according to the purpose are fixed to each channel 60, and a matching oil is applied to the lower surface of the test board 45, and the switching section is provided. Align and paste on top of 44. Looking at the upward force in this state, as shown in FIG. 5, each of the switching windows 52 of the switching section 44 is located at the intersection area between each core 51 and each flow path 60, and the intersection area and the switching window 52 corresponds to one-to-one. As shown in FIG.
  • the light 48 emitted from each light emitting element 47 of the light source section 42 enters the corresponding core 51 with an end face force, and propagates through the core 51 while repeating total reflection at the interface of the core 51. Then, the light is emitted from the other end of the core 51 and received by each light receiving element 49 of the detection unit 46.
  • the light propagating in the core 51 may be totally reflected a plurality of times by one switching window 52 in some cases.
  • the change in signal intensity due to the surface plasmon resonance phenomenon is large.
  • the light 48 is reflected a plurality of times by the metal thin film 61 through the turned-on switching window 52, the light 48 is amplified and a large change can be detected.
  • the variation in the presence or absence of bonding in the area can be averaged, and stable detection can be performed.
  • Typical patterns for sequentially turning on the switching windows 52 in the direction along the flow path 60 include a pattern as shown in FIG. 16 and a pattern as shown in FIG.
  • the signal intensity in each channel 60 is detected by each light receiving element 49, and the measurement data can be transmitted from the detection unit 46 to the reception circuit 68 as parallel data.
  • the switching windows 52 are turned on one by one so that the on position of each switching window 52 is scanned.
  • the signal intensity in each flow channel 60 is detected by each light receiving element 49, and the measurement data can be transmitted from the detection unit 46 to the reception circuit 68 as serial data.
  • FIG. 18 is a diagram showing a result of measuring a change in signal intensity along the flow channel 60 as described above.
  • the receptor 63 for filtering is fixed near the injection position of the subject 79, and the non-specific ligand 80 is captured here.
  • signaling null intensity peak appears by a ligand 80 in the non-specific in the vicinity of 79 injection position of the (in practice, since there is no switching window 52 here, signal intensity here is not observed.)
  • the signal intensity of the non-specific ligand 80 is superimposed on the signal intensity in the region of the receptor 62 which is hard to reach the region where the receptor 62 is immobilized. Therefore, the signal intensity due to the non-specific ligand 80 and the signal intensity due to the specific ligand 81 can be separated, and erroneous detection of the specific ligand 81 can be reduced, and the detection accuracy can be improved. .
  • the specific ligand 81 that has reached the region where the receptor 62 is immobilized is Since it immediately binds to the receptor 62, a peak due to the specific ligand 81 is shown on the side closer to the injection position of the subject 79 as shown by the signal intensity curve shown by the thick solid line in FIG.
  • the binding force or interaction between the specific ligand 81 and the receptor 62 is small, the specific ligand 81 reaching the region where the receptor 62 is immobilized, Since it gradually binds to the receptor 62 while moving, as shown by the signal intensity curve shown by the thin dashed line in FIG. Smooths (that is, the peak height decreases and the peak width increases).
  • the surface plasmon resonance analyzer includes the optical analysis device 41 and the arithmetic processing unit 65.
  • the shape of the signal intensity curve in the direction along the flow channel 60 static characteristics
  • the change in the shape of the signal intensity curve dynamic characteristics
  • the ligand 81 and the receptor have specific forces. It is possible to evaluate the strength of the interaction and the interaction of 62.
  • the specific ligand is determined by the peak height H, half width B, peak position L from the analyte injection position, peak moving speed V, etc. of the signal intensity curve due to the specific ligand 81. It becomes possible to quantitatively determine the bonding force and interaction of 81. Therefore, the binding force and interaction can be measured from various physical quantities, and the binding force between the ligand 81 and the receptor 62 or the protein-protein interaction can be analyzed with high accuracy.
  • this surface plasmon resonance analyzer different types of receptors 62 are fixed in the plurality of flow channels 60, so that the same subject 79 is caused to flow through each flow channel 60, and thus the It is possible to simultaneously measure and compare the binding strength and interaction between a specific specific ligand 81 and various receptors 62. Conversely, if the same type of receptor 62 is immobilized in each flow channel 60, a plurality of types of receptors 79 containing ligands 81 of different specificities can be flowed through each flow channel 60 for measurement. The binding force and interaction of ligand 81 with specificity can be measured at once.
  • the same receptor 62 may be fixed in each flow channel 60, and a different type of subject 79 may flow in each flow channel 60.
  • the amount of the specific ligand 81 bound to the receptor 62 in the flow channel 60 is proportional to the area under the signal intensity curve as shown in FIG. The amount of binding of the isomer ligand 81 to each receptor 62 can be determined. Further, since the receptors 62 of the respective channels 60 are different from each other, the type of the specific ligand 81 can be specified by comparing the signal intensities from the respective receptors 62.
  • the light analysis device 41 can be miniaturized by propagating light from the light source unit 42 to the detection unit 46 using the optical waveguide (waveguide unit 43). Further, by providing the switching section 44 in which the switching windows 52 are arranged on the waveguide section 43, it becomes possible to measure the binding force and interaction between genes and proteins. Therefore, the size of the surface plasmon resonance analyzer can be reduced, and the manufacturing cost can be reduced.
  • FIG. 21 is an explanatory view showing an example of a method of manufacturing the waveguide section 43.
  • a clad master 82 is manufactured by a photolithography method, a plasma etching method such as DRIE (Deep Reactive Ion Etching), a laser processing method, a cutting method, or the like (FIG. 21 (a)).
  • a stamper 83 is manufactured by depositing a nickel alloy or the like on the master 82 by an electrodeposition method (FIG. 21 (b)), and the stamper 83 is separated from the master 82 (FIG. 21 (c)).
  • an ultraviolet-curable resin 85 is dropped onto the base glass 84 (FIG. 21D), and the ultraviolet-curable resin 85 is pressed by the stamper 83 to hold the ultraviolet-curable resin 85 and the base glass 84 and the base glass 84 together. Spread between dampers 83. Further, the ultraviolet curing resin 85 is irradiated with ultraviolet rays through the base glass 84 to be cured (FIG. 21 (e)), and the stamper 83 is peeled off to obtain the clad 50 (FIG. 21 (f)).
  • a core resin 86 such as an ultraviolet curable resin is dropped on the clad 50 (FIG. 22 (a)), and the core resin 86 is pressed with a holding glass 87 to cover the core resin 86 with the clad 50. Is filled in the groove. Further, the core resin 86 is cured by ultraviolet irradiation or the like to form the core 51 (FIG. 22 (b)), and the holding glass 87 is peeled to obtain the waveguide 43 (FIG. 22 (c)).
  • the base glass 84 may be left on the lower surface of the clad 50 as it is.
  • FIG. 23 is an explanatory view showing an example of a method of manufacturing the inspection substrate 45, which is manufactured by a stamper method in the same manner as the waveguide section 43.
  • plasma such as photolithography and DRIE
  • the master disk 88 of the support plate 59 is manufactured by an etching method, a laser processing method, a cutting method, or the like (FIG. 23A).
  • a stamper 89 is manufactured by depositing a nickel alloy or the like on the master disc 88 by an electroforming method (FIG. 23 (b)).
  • the UV-curable resin 91 is dropped onto the base glass 90, and the UV-curable resin 91 is pressed with the stamper 89 to spread the UV-curable resin 91 between the base glass 90 and the stamper 89. Then, the ultraviolet curing resin 91 is irradiated with ultraviolet rays through the base glass 90 to be cured (FIG. 23 (c)), and the stamper 89 is peeled off to obtain the support plate 59 having the flow path 60 (FIG. 23 (d)). ).
  • a metal thin film 61 such as an Au thin film is formed on the inner surface of the flow channel 60 of the support plate 59 or the entire upper surface of the support plate 59 by vacuum evaporation or the like (FIG. 23 (e)).
  • the test substrates 45 are obtained by fixing the receptors 62 and 63 on the metal thin film 61, respectively (FIG. 23 (f)).
  • the flow path 60 of the inspection substrate 45 may be open at the top, but as shown in FIG. 23 (f), a cover member 64 such as a cover glass is superimposed on a support plate 59 to form the flow path 60. It is desirable to keep the upper part closed.
  • FIG. 24 is a view for explaining another method of manufacturing the waveguide section 43.
  • a resist 93 is applied on a glass substrate 92 (FIG. 24A).
  • An exposure mask 94 opened in a region corresponding to a groove region of the clad 50 is brought close to and opposed to the resist 93, and the resist 93 is exposed through the opening 95 of the exposure mask 94 (FIG. 24 (b)).
  • the exposed portion is removed by developing the resist 93 on the glass substrate 92, and a window 96 is opened in the resist 93 (FIG. 24 (c)).
  • the glass substrate 92 is partially etched by bringing an etchant into contact with the glass substrate 92 through the window 96, thereby forming a plurality of grooves 97 in the glass substrate 92 (FIG. 24 (d)).
  • a clad 50 is obtained (FIG. 24 (e)).
  • the core 51 is buried in the groove of the cladding 50 by the same process as that shown in FIGS.
  • FIG. 25 is a view for explaining a method of manufacturing the inspection board 45 in the same manner as the second method of manufacturing the waveguide section 43.
  • a resist 99 is applied on a glass substrate 98 (FIG. 25A).
  • the exposure mask 100 opened in the area corresponding to the area to be the flow path 60 is brought close to and opposed to the resist 99, and the resist 99 is exposed through the opening 101 of the exposure mask 100 (FIG. 25 (b)).
  • the resist 99 on the glass substrate 98 is developed to expose the resist.
  • the light portion is removed, and a window 102 is opened in the resist 99 (FIG. 25 (c)).
  • the glass substrate 98 is partially etched by bringing an etchant into contact with the glass substrate 98 through the window 102, thereby forming a plurality of flow paths 60 in the glass substrate 98 (FIG. 25 (d)).
  • the support plate 59 having the flow channel 60 is obtained by peeling off the resist 99 on the top (FIG. 25 (e)).
  • the inspection substrate 45 is manufactured by forming the metal thin film 61 on the inner surface of the flow channel 60 or the entire upper surface of the support plate 59 (FIG. 25 (f)).
  • the optical analysis device of the second embodiment is characterized in that the inspection board 45 is used. That is, in the inspection board 45 used in the second embodiment, a plurality of flow paths are arranged in parallel with each other at a portion facing the switching unit 43. Each flow path gathers at the injection port 112 at one end. And the other end also gathers at the outlet 113. According to the second embodiment, injection and recovery of the subject can be facilitated.
  • FIG. 26 is an exploded perspective view showing the structure of the optical analysis device 111 according to Embodiment 2 of the present invention
  • FIG. 27 is a plan view thereof.
  • the light source unit 42, the waveguide unit 43, the switching unit 44, and the detection unit 46 have the same structure as the first embodiment.
  • a plurality of flow paths 60 are formed inside the test board 45, and an inlet 112 for supplying the test object 79 to the flow path 60 and a flow path from the flow path 60 are formed on the upper surface of the test board 45. It has an outlet 113 and an opening S for discharging the incoming subject 79 to the outside. From the inlet 112, it is branched to each flow path 60 by a branch portion 114, and on the opposite side of the flow path 60, each flow path 60 is united by a junction 115 and connected to the discharge port 113. ing.
  • the flow path 60 and the core 51 are orthogonal to each other, and the switching window 52 of the switching unit 44 is located at the intersection of the flow path 60 and the core 51 as in the first embodiment. It is.
  • FIG. 28 is a schematic diagram showing the internal structure of the flow channel 60.
  • a receptor 63 for filtering is fixed at a position near the inlet 112 of each channel 60, and receptors 62 of different types are fixed downstream of the receptor 63.
  • the density of the receptors 62 in each channel 60 is equal.
  • the subject 79 injected from the injection port 112 is It branches at 14, flows into each channel 60, passes through the filtering receptor 63 and each receptor 62, flows into the junction 115, and is discharged or recovered from the outlet 113 to the outside. Therefore, according to this embodiment, the subject 79 can be supplied to each flow path 60 in a lump, and the analysis operation is simplified and the throughput is improved.
  • the filtering receptor 63 may be arranged in a part (part of which there is only one flow path) before it is divided into the plurality of flow paths 60 at the branch part 114. Thereby, variation in non-specific ligand removal between the respective flow channels 60 can be suppressed.
  • FIGS. 29 (a) and 29 (b) are cross-sectional views of the switching unit 44 and the inspection board 45, and FIG. 29 (a) shows a cross section of the flow paths 60 along the arrangement direction. Indicates a cross section along the length direction of the flow channel 60.
  • the inspection board 45 mainly includes a cover member 116 and a support plate 117.
  • the cover member 116 is made of a resin molded product or glass (the material of the cover member 116 is not particularly limited); on the lower surface of the cover member 116, a flow channel 60, a branch portion 114, and a junction portion 115 are provided.
  • the injection port 112 and the discharge port 113 are opened at the end of the branch 114 and the end of the junction 115, respectively.
  • the support plate 117 is formed in a plate shape or a film shape by a transparent resin or glass plate, and a metal thin film 61 such as an Au thin film is formed on the upper surface of the support plate 117 by a vacuum evaporation method or the like. It is desirable to use a material having the same refractive index as the core 51 for the support plate 117. Then, on the metal thin film 61, a receptor 63 for filtering and each receptor 62 are fixed in advance at a position to be the flow path 60 (see FIG. 28).
  • the inspection board 45 is manufactured by attaching the support plate 117 to the lower surface of the cover member 116 so as to seal the lower surface of the cover member 116, and each of the receptors 63 and 62 is accommodated in each flow channel 60.
  • the support plate 117 may be omitted, and the lower surface of the cover member 116 may be closed with only the metal thin film 61.
  • a metal thin film 61 may be formed on the upper surface of the switching unit 44, and the lower surface of the cover member 116 may be closed by the switching unit 44.
  • the inspection board 45 manufactured in this manner is placed on the switching section 44 with the matching oil interposed therebetween.
  • the receiver 63 for filtering is located at a position deviating from any of the switching windows 52 of the switching unit 44, and the receiver 62 is disposed so as to straddle the end of the switching window 52 in a row.
  • the surface plasmon resonance analyzer of Example 2 Also, it becomes possible to measure the binding force and interaction of a specific ligand with high accuracy. Furthermore, in the second embodiment, the supply of the specimen 79 is facilitated, so that the usability of the surface plasmon resonance analyzer is further improved.
  • the receptor 62 fixed in the flow channel 60 does not necessarily need to extend long as shown in FIG. 28, and as shown in FIG. 30, the receptor 62 in one flow channel 60 May be divided into a plurality, and each receptor 62 may be arranged at a position corresponding to each switching window 52. In the latter case, it is desirable that the density and area of the receptor 62 in each receptor 62 (ie, the number of the receptors 62) be equal (if the ratio of the number of receptors is known, it is not necessarily equal). You don't have to.) 0
  • the optical analysis device is characterized in the arrangement direction of the inspection substrate 45. That is, in the test board 45 used in the third embodiment, the flow path of the test board 45 is parallel to the core 51 of the waveguide 43, and each flow path 60 is located directly above each core. It is arranged on the switching part 43 so as to be located at the position. This will be specifically described below.
  • FIG. 31 is an exploded perspective view showing the structure of the optical analysis device 121 according to Embodiment 3 of the present invention.
  • FIG. 32 is a cross-sectional view showing a cross section along the arrangement direction of the core 51 and the flow channel 60 of the optical analysis device 121
  • FIG. 33 is a cross-sectional view along a length direction of the core 51 and the flow channel 60 of the optical analysis device 121.
  • the flow path 60 of the inspection board 45 and the core 51 of the waveguide 43 are arranged so as to be orthogonal.
  • the flow path 60 are arranged in such a manner that the length direction is parallel to the core 51 of the waveguide section 43.
  • a force that illustrates the same thing as the test board 45 described in the second embodiment may be the test board 45 used in the first embodiment.
  • the inspection board 45 is arranged so that the flow path 60 is parallel to the core 51.
  • each flow path 60 is connected to each core 51 through the switching window 52. It is located directly above.
  • the switching windows 52 are sequentially turned on along the flow path 60.
  • the optical analysis device of the fourth embodiment is characterized by the structure of the switching unit 43. That is, in the switching unit 43 used in the fourth embodiment, a plurality of rectangular switching windows 52 are arranged along the short side direction. Each switching window 52 is disposed so as to be orthogonal to the length direction of the flow channel 60, and the length of the switching window 52 in the long side direction is longer than the length of the entire flow channel 60 in the width direction. . This will be specifically described below.
  • FIG. 34 is an exploded perspective view showing the structure of the optical analysis device 131 according to the fourth embodiment of the present invention.
  • each switching window 52 of the switching unit 44 has a rectangular shape, and the length in the long side direction is longer than the entire width of the plurality of cores 51 and the short side direction. There are several in a row. Note that the direction of the flow path 60 of the inspection substrate 45 may be parallel to the core 51 or may be orthogonal thereto.
  • the switching windows 52 are arranged in only one direction at a constant pitch. As shown in FIG. 35, the length direction of the core 51 and the long side direction of the switching windows 52 are different from each other. If they intersect (although not limited to being orthogonal, it is desirable to make them orthogonal), the intersection region between the core 51 and the switching window 52 is arranged in a matrix, so that signals from any intersection region The strength can be taken out. Therefore, by sequentially switching the switching windows 52 to be turned on, a signal intensity extracting method as shown in FIG. 16 in the first embodiment can be realized.
  • the switching window 52 by sequentially switching the switching window 52 to be turned on and sequentially extracting the signal from the light receiving element 49, the signal intensity at each intersection area can be sequentially extracted in a time-division manner.
  • a signal intensity extraction method as shown in FIG. 17 can be realized. Therefore, even in such a surface plasmon resonance analyzer, the interaction or binding force between proteins or The type and amount of specific ligand can be analyzed with high accuracy.
  • the optical analysis device of the fifth embodiment is characterized by the arrangement area of the measurement target or the structure of the inspection board 45. That is, in the fifth embodiment, a plurality of different receptors are arranged two-dimensionally in the measurement target arrangement area, and each receptor is positioned directly above each overlapping portion of the core and the switching window 52.
  • the inspection substrate has no flow path.
  • a metal thin film 61 is formed on the surface of the inspection board 45 corresponding to the measurement target arrangement area, and a plurality of different receptors are arranged two-dimensionally on the metal thin film 61. Each receptor is located directly above each overlap between the core and the switching window 52. The details are described below.
  • FIG. 36 is an exploded perspective view showing the structure of an optical analysis device 141 according to Embodiment 5 of the present invention.
  • FIG. 37 is a plan view for explaining the positional relationship between the components of the optical analysis device 141.
  • the optical analysis device 141 includes a light source section 42, a waveguide section 43, a switching section 44, a detection board 45, and a detection section 46.
  • the light source unit 42 includes a plurality of light emitting elements 47 such as light emitting diodes (LEDs) and lamps.
  • the light source unit 42 may be composed of a plurality of individual light emitting elements 47, or an LED array may be used.
  • the detection unit 46 is configured by a plurality of light receiving elements 49 such as a photodiode and a phototransistor.
  • the detection unit 46 may also be constituted by a plurality of individual light receiving elements 49, and may be a light receiving element array.
  • the waveguide section 43 is provided with a plurality of linear grooves in a plate-like cladding 50 having a high refractive index and a transparent resin or glass force, and has a refractive index larger than that of the cladding 50 in the groove.
  • a plurality of cores 51 are formed in parallel with each other by embedding transparent resin.
  • the cores 51 have the same cross-sectional shape and the same cross-sectional area.
  • the light source section 42 and the detection section 46 are arranged opposite to both ends of the waveguide section 43 such that each light emitting element 47 and each light receiving element 49 face the end face of each core 51.
  • the panel-shaped switching section 44 has a plurality of switching windows 52 arranged in a two-dimensional or lattice shape, and each switching window 52 is transmitted independently by an electric signal. Alternatively, it can be switched to a non-transmissive state.
  • the switching section 44 is laminated and integrated on the upper surface of the waveguide section 43, and the switching windows 52 in a row parallel to the cores 51 are arranged directly above each core 51 of the waveguide section 43. Further, a row of switching windows 52 arranged on an arbitrary core 51 are arranged at a constant pitch.
  • the switching unit 44 has the same structure as the switching unit 44 described in the first embodiment (see FIG. 8).
  • the inspection substrate 45 is formed by depositing a metal thin film 61 such as an Au thin film on almost the entire surface of a glass plate or a support plate 142 having a transparent resin film strength.
  • the body 62 is fixed vertically and horizontally at equal intervals.
  • the receptors 62 fixed on the test board 45 are all different types of receptors.
  • the inspection board 45 is detachably attached on the switching section 44 via the matching oil.
  • the receptors 62 fixed on the test substrate 45 may be separated one by one.
  • FIG. 38 shows an inspection substrate 45 in which the receivers 62 are separated by the frame 143 one by one.
  • the test substrate 45 is formed by forming a metal thin film 61 on the support plate 142, applying a photosensitive resin on the metal thin film 61, and etching the photosensitive resin in a lattice by photolithography.
  • a frame 143 having a plurality of rectangular space forces is provided. If the receptors 62 are separated by the frame 143 in this way, when the subject 79 is supplied to each receptor 62, the subjects 79 supplied to each receptor 62 do not mix with each other, and the inspection accuracy is improved. Can be improved.
  • this surface plasmon resonance analyzer also includes an arithmetic processing unit 65 as shown in FIG. 11 similarly to the first embodiment. For example, as shown in FIG. 16 or FIG. By controlling the receptor 51, it is possible to detect the degree of binding between each receptor 62 and a specific ligand and the signal intensity (see FIGS. 13 to 15).
  • the switching window 52 of the switching section 44 is closed as shown in FIG. Arranged above the core 51, the receptor 62 of the test board 45 is located above each switching window 52. Therefore, by supplying a test subject 79 containing a specific ligand 81 to each of the different types of receptors 62 and sequentially switching the ON state of the switching window 52 and detecting the signal intensity with the light receiving element 49, Collectively test the reaction with each receptor 62 And the type and amount of the specific ligand can be measured.
  • the reaction between the subject 79 and 10,000 kinds of receptors 62 can be analyzed at once with this surface plasmon resonance analyzer.
  • the throughput can be greatly improved.
  • Embodiment 6 of the present invention Since the configuration of the arithmetic processing unit 65 is almost the same as that of the first embodiment, the description is omitted.
  • the optical analysis device of the sixth embodiment is characterized in that the inspection board 45 is used. That is, the test board 45 used in the sixth embodiment is the same as the test board 45 in the second embodiment, but the types of the receptors 62 arranged in one channel 60 are all different. The feature is the point. The details are described below.
  • FIG. 39 is an exploded perspective view showing the structure of an optical analysis device 151 in Conventional Example 6.
  • an inspection board 45 having the same structure as that shown in FIG. 30 of the second embodiment is used.
  • the receptors 62 in one channel 60 are all of the same type, but in this embodiment, the types of the receptors 62 are all different and are in the same channel 60. Receptor 62 is also very different!
  • the receptors 62 of different types are arranged in the flow channel 60, so that the supply of the subject 79 to each receptor 62 is facilitated. Throughput is further improved.
  • the inspection substrate 45 having the flow channel 60 may be arranged such that the direction of the flow channel 60 is parallel to the core 51 of the waveguide 43 as in the optical analysis device 161 shown in FIG.
  • the switching section 44 is not limited to the switching windows 52 arranged in a lattice, but the rectangular switching windows 52 extend in the length direction of the core 51 as in an optical analysis device 171 shown in FIG. They may be lined up along! /.
  • the optical analysis device of the seventh embodiment is characterized by the structure of the measurement target arrangement area. That is, in Example 5, a plurality of different receptors are arranged two-dimensionally in the measurement target arrangement area, and And the switching window 52 is located immediately above each overlapping portion. Further, the switching part 44 and the inspection board 45 are formed integrally, and the inspection board 45 has no flow path.
  • the upper surface of the switching unit 44 is an arrangement area to be measured
  • a metal thin film 61 is formed on the upper surface of the switching unit 44
  • a plurality of different receptors are provided on the metal thin film 61.
  • FIG. 42 is an exploded perspective view showing the structure of the optical analysis device 181 according to the seventh embodiment.
  • FIG. 43 is a partially broken cross-sectional view showing the structure of the switching unit 44 used in the optical analysis device 181.
  • a metal thin film 61 such as an Au thin film is formed directly on the upper surface of the switching section 44 in which the plurality of switching windows 52 are arranged (that is, the upper surface of the outer substrate 53).
  • Different types of receptors 62 are fixed to each other.
  • the outer substrate 53 and the transparent electrode 56 of the switching section 44 are omitted, and the upper surface of the liquid crystal layer 55 is directly sealed with the metal thin film 61, and a voltage can be applied to the liquid crystal layer 55 by the metal thin film 61 and the opening electrode 57.
  • the switching unit 44 can be formed as an integrated structure of the switching unit 44 and the inspection board 45, so that the structure can be simplified and the entire manufacturing can be achieved. Cost can be reduced. Further, since the receptor 62 is directly fixed to the switching part 44, the positioning of the receptor 62 and the switching window 52 becomes easy.
  • the optical analysis device of the eighth embodiment is characterized by the structure of the light source unit 42 and the detection unit 46. That is, in the eighth embodiment, the condenser lens 191 is arranged between each light emitting element 47 of the light source section 42 and the end face of the core 51, and between the light receiving element 49 of the detection section 46 and the end face of the core 51. Each is characterized by a condenser lens 192. This will be specifically described below.
  • FIG. 44 is a plan view showing a configuration of the light source unit 42, the waveguide unit 43, and the detection unit 46 used in the optical analysis device according to the eighth embodiment of the present invention.
  • the light collecting lens 191 is disposed between each light emitting element 47 of the light source unit 42 and the end face of the core 51, and the light receiving element 49 of the detection unit 46 and the end face of the core 51 are connected to each other.
  • the condenser lens 192 is arranged.
  • the condenser lens 191 in the light source section 42 in this manner, light emitted from the light emitting element 47 can be collected and made to enter the core 51, so that the light use efficiency is improved. Further, by providing the condensing lens 192 in the detection unit 46, the light emitted from the core 51 can be collected and made incident on the light receiving element 49, so that the detection accuracy of the signal intensity can be improved.
  • the optical analysis device of the ninth embodiment has a feature in the structure of the light source section 42, and has a reduced number of light emitting elements 47 required. This will be specifically described below.
  • FIG. 45 is a plan view showing the configuration of the light source unit 42, the waveguide unit 43, and the detection unit 46 used in the optical analysis device according to Embodiment 9 of the present invention.
  • the light branching unit 201 is inserted between the light source unit 42 and the waveguide unit 43.
  • the optical branching section 201 is formed of an optical waveguide, and a plurality of branched and branched cores 203 are embedded in a lower cladding layer 202. Covered with layer 204.
  • the refractive index of the core 203 is larger than the refractive indexes of the lower cladding layer 202 and the upper cladding layer 204.
  • the light emitting element 47 faces the non-branch side end face of the core 203, and the end face of the core 51 of the waveguide section 43 faces each branch side end face of the core 203.
  • the light emitted from one light emitting element 47 can be branched by the light branching section 201 and sent to each core 51 of the waveguide section 43, so that the light source section 42
  • the number of the light emitting elements 47 can be reduced, the power consumption of the light source unit 42 can be suppressed, and the manufacturing cost can be reduced.
  • the light source unit 42 including one light emitting element 47 and one light branching unit It is also possible to configure with the part 201. Further, it is also possible to configure the optical branching unit 201 integrally with the waveguide unit 43. Also, on the light receiving side, the number of light receiving elements 49 to be used may be reduced by using an optical coupler having a structure similar to that of the light branching section.
  • the optical analysis device of the tenth embodiment has a feature in the structure of the light source section 42, and the required number of the light emitting elements 47 is reduced. This will be specifically described below.
  • FIG. 47 is a perspective view showing the configuration of the light source unit 42 used in the optical analysis device according to Embodiment 10 of the present invention.
  • the light source unit 42 includes one light emitting element 47, a polarizing element 211 such as a polarizing filter, and a modulating unit 212.
  • the modulation section 212 has a light guide section 213 formed of a transparent resin or glass having a large refractive index on the front face, and a plurality of liquid crystal shutters 214 on the rear face of the light guide section 213. Are arranged, and a reflection surface 215 is provided on the back surface of each liquid crystal shutter 214.
  • the modulator 212 is arranged so that each liquid crystal shutter 214 faces the core 51, and the light emitting element 47 faces the side surface of the light guide 213 via the polarizing element 211.
  • the light emitting element 47 when the light emitting element 47 emits light, the light emitted from the light emitting element 47 passes through the polarizing element 211 to become linearly polarized light, enters the light guide section 213 of the modulation section 212, and The light incident into the light guide 213 is guided inside the light guide 213 while repeating total reflection.
  • the liquid crystal shutter 214 reflects light when turned off and transmits light when turned on, so that light guided inside the light guide 213 passes while being reflected by the liquid crystal shutter 214 in the off state, but the liquid crystal in the on state.
  • the light When the light reaches the shutter 214, the light enters the liquid crystal shutter 214, is reflected by the reflection surface 215, passes through the liquid crystal shutter 214 and the light guide 213, and is emitted from the front of the modulator 212.
  • the light emitted from the front of the modulator 212 enters the core 51 of the corresponding waveguide 43 and propagates through the core 51. Therefore, by sequentially switching the liquid crystal shutters 214 to the ON state, it is possible to sequentially input measurement light from the modulation unit 212 to each core 51.
  • a light source unit may be configured by a light emitting element and a micro mirror, and light emitted from the light emitting element 47 may be guided to each core by controlling the angle of the micro mirror.
  • the optical analysis device of the present invention and the optical analysis device including the optical device and the arithmetic processing unit can be used for optical analysis devices other than the surface plasmon resonance analysis device. By measuring these signals, the presence / absence, quantity, intermolecular interaction, binding force, equilibrium constant, etc. of the target substance (gene, DNA, etc.) in the sample can be evaluated.
  • the target substance gene, DNA, etc.
  • the optical analysis device of the present invention and the optical analysis device including the optical device and the arithmetic processing unit can be used for optical analysis devices other than the surface plasmon resonance analysis device.
  • analysis method according to the present invention uses include analysis of SNP (Single Nucleotide Polymorphism), confirmation of the metabolism / absorption / excretion pathway or state of substances administered to experimental mice, measurement of intracellular ion concentration, For example, protein identification or functional analysis. Further, the analysis method according to the present invention can also be used for a health check for judging an individual's health condition, a test for personal security, and the like.
  • SNP Single Nucleotide Polymorphism

Abstract

 複数本のコア51を有する導波路部43の両端に、各コア51端面と対向させるようにして発光素子47と受光素子49を配置する。導波路部43の上には、スイッチング部44を重ねる。スイッチング部44には、コア51を伝搬する光を透過させる状態と反射させる状態とに切替可能となったスイッチング窓52を縦横に配列し、各コア51の上面に沿ってスイッチング窓52を複数配列させる。スイッチング部44の上には、金属薄膜61が形成された流路60を複数有する検査基板45を配置し、流路60内で金属薄膜61の上に受容体62を固定する。各流路60内には、特異性のリガンドを含んだ被検体を流す。

Description

光分析装置及び光分析デバイス
技術分野
[0001] 本発明は、表面プラズモン共鳴を利用した光分析デバイスと当該デバイスを用いた 光分析装置に関する。
背景技術
[0002] (従来例 1)
遺伝子やタンパク質を解析するための現状の分析装置について、以下に説明する
[0003] 遺伝子等を解析するための一般的な分析装置としては、特開 2000— 131237号公 報 (特許文献 1)に開示されたものが知られている。この分析装置を図 1に示す。この 分析装置は、マイクロアレイチップ 1の上に互いに異なる既知の cDNAがドット状に 塗布されており、ここに異なる蛍光色素で標識された DNAをマイクロアレイチップ 1に 滴下して cDNAと DNAをハイブリダィズさせて結合物 2とする。
[0004] ついで、励起光源 3から出射された励起光 4をコリメータレンズ 5及び集光レンズ 6で 絞ってマイクロアレイチップ 1に配列された結合物 2に照射する。結合物 2で励起され た蛍光は、偏光ビームスプリッタ 7で反射されてフォトマルチプライヤ 8で受光される。 一方、上記マイクロアレイチップ 1は、ステージ 9の上に載置されており、ステップモー タ 10、 11を駆動してステージ 9を移動させることによって各結合物 2を順次スキャンで きるようなつている。こうして DNAがどの結合物 2にハイブリダィズされたかを求めるこ とで、 DNAを特定する。
[0005] しかし、この分析装置は蛍光検出型となって!/、るので、蛍光分子に起因する検出誤 差や、蛍光分子に伴う DNA、プロテイン等の生体分子の失活などの問題がある。ま た、この分析装置では、蛍光検出用の光学系が大型化、高価格化し、さらに、スキヤ ン用の駆動部も大きくなるので、その結果装置全体が大型かつ高価となる。また、励 起光 4のスキャンに時間が掛カるので、高いスループットを実現することも困難であつ [0006] (従来例 2)
図 2は従来の別な分析装置であって、特開 2001— 255267号公報 (特許文献 2)に 記載されたものである。この分析装置にあっては、プリズム 21の表面に形成された金 属薄膜 22の上に複数種類の抗体等を固定しておき、そこに被測定物質 25を導入す る。そして、光源 23から格子状に出射された光を p偏向の平行光としてプリズム 21の 一方から入射させる。金属薄膜 22で反射された光は、表面プラズモン共鳴現象によ る吸収を含んでおり、この反射光の 2次元の受光光量を CCDカメラ 24で撮影される。
[0007] また、このような装置では、実際の計測面 26が CCDカメラ 24ではその画像 27が歪 んでアスペクト比(縦横比)が変化するので、画像のアスペクト比を補正して補正され た画像 28を生成した後、画像処理を行って被測定物質 25の分析を行う。
[0008] このような表面プラズモン共鳴現象を用いた分析装置では、蛍光分子に起因する エラー発生がないという利点がある。しかし、共鳴条件の変化が小さい場合には、高 精度な光学系が必要となり、従来のバルタ素子を使用した光学系では、装置が大型 で高価になってしまう問題があった。また、画像処理を施す必要があるので、装置が 大型となり、分析時間が力かるなどの問題もあった。
[0009] (従来例 3)
図 3は従来の別な表面プラズモン共鳴現象を利用した分析装置であって、クラッド 3 1内に複数本のコア 32を形成された光導波路 33を用いたものである。各コア 32の上 にはそれぞれのコア 32と接触するようにして金属薄膜 34が設けられて 、る。そして、 各金属薄膜 34の上に異なる抗体を固定しておき、そこに被測定物質を供給し、各コ ァ 32に p偏光光を導入し、コア 32から出射される光のスペクトルを計測し、表面ブラ ズモン共鳴を利用して被測定物質を検査する。
[0010] この分析装置は、プリズムに代えて光導波路を用いているので、当該表面ブラズモ ン共鳴分析装置に用いられている光学系の小型化を測ることができる。しかし、この 装置では、一度に行える検査数がコア 32の本数と等しぐ十分なハイスループットを 実現することができない。
[0011] 特許文献 1 :特開 2000— 131237号公報
特許文献 2:特開 2001— 255267号公報 特許文献 3:特開 2002— 162346号公報
[0012] 近年においては、個人の遺伝子やタンパク質を検査することにより、各人の健康状 態の把握、病気の早期発見、さらにはテーラーメード医療などが徐々に可能となって きている。しかし、これらの検査における遺伝子やタンパク質の解析には、大型で高 価な装置、例えば表面プラズモン共鳴法を利用した分析装置を使用する必要がある ので、その検査や解析は現状では主に研究機関で行われており、また、装置の普及 台数も限られており、幅広い普及には至っていない。従って、将来的には、このような 分析装置のさらなる普及が望まれている力 コンシユマ一レベルで使用されるために は、小型で安価な分析装置が求められている。望ましくは、個人が持ち運びのできる ような手の平サイズや携帯可能なサイズのものが望まれる。また、病院や公的機関な どで用いられる装置では、大量のサンプルを一度に検査できる、スループットの高い ものが必要とされる。
[0013] しかし、上記のような従来例 1一 3においては、いずれも大型の装置となり、価格も 非常に高価であり、スループットもまだ満足のゆくものではな力つた。さらには、遺伝 子やタンパク質等の結合力や相互作用、平衡定数などを高い精度で測定することも できなかった。
発明の開示
発明が解決しょうとする課題
[0014] 本発明は上記のような技術的課題に鑑みてなされたものであり、その目的とするとこ ろは、小型化とローコストィヒが可能であり、多チャンネルィヒによりスループットを大幅 に向上させることができる光分析デバイスや光分析装置を提供することにある。また、 遺伝子やタンパク質等の結合力や相互作用、平衡定数などを高 ヽ精度で測定する ことができる光分析デバイスや光分析装置を提供することにある。
課題を解決するための手段
[0015] 本発明の光分析デバイスは、光源部と、複数本のコアを有し、前記光源部からの光 を反射を繰り返しながらコア内を導波する導波路部と、前記導波路部のコアを導波し てきた光を受光する光検出部と、測定対象物の検知状態と非検知状態とに切替可能 となったスイッチング素子を有し、前記スイッチング素子が前記コアの長さ方向に沿つ て複数配列されるようにして前記導波路部に重ね合わされたスイッチング部と、前記 スイッチング部を介して前記導波路部と対向する位置に定められた測定対象配置ェ リアとを備えたことを特徴としている。ここでスイッチング素子は、各コア毎に独立して V、てもよく、複数のコア間に跨って!/、ても差し支えな!/、。
[0016] 上記のような光分析デバイスによれば、前記測定対象配置エリアにおける測定箇 所に対応するコアに沿って配列されたスイッチング素子のうち、測定対象配置エリア の前記測定箇所に対応するスイッチング素子のみを検知状態に切り換え、前記光源 部から出射されて前記コア内を導波し、検知状態にあるスイッチング素子を通して前 記測定箇所で変調された光を前記検出部で検知することにより、前記測定箇所にお ける光強度の変化や蛍光色を検出することができる。そして、光強度の変化や蛍光 色を検出することにより、前記測定箇所に置かれた測定対象物の種類や量を計測す ることができ、また、測定対象物の分子間相互作用や結合力、平衡定数等の特性を 評価することができる。特に、測定対象物として遺伝子やタンパク質等を用いれば、 ノィォチップとして使用することができる。また、この光分析デバイスは、表面ブラズモ ン共鳴現象を利用して当該光分析デバイスの出力に基づき検査対象物の種類、量 又は特性 (物理的特性、化学的特性、生物学的特性など)を解析するための手段( 例えば、解析ソフトやコンピュータシステム)と共に表面プラズモン共鳴分析装置を構 成することができる。
[0017] 本発明の光分析デバイスにおいては、光を導波するために導波路部 (光導波路)を 用いているので、空間に光を出射させるものに比較して高感度化することができ、計 測精度を向上させることができる。また、スイッチング素子によって構成されたスィッチ ング部を用いて 、るので、測定対象配置エリアの測定箇所を多チャンネルィ匕すると 共に機械的な走査方式に比べて高速切り換えを可能にでき、多種類の測定対象物 を短時間で計測することができ、スループットが大幅に向上する。さらに、導波路部や スイッチング部を用いることで光分析デバイスを小型化することができ、量産化により コストも安価にすることができる。
[0018] 本発明の光分析デバイスのある実施態様においては、前記測定対象配置エリアに 位置する検査基板を備え、前記検査基板は被検体が流れる複数の流路を有し、各 流路には受容体が固定されており、前記検査基板から見て、前記流路と前記コアの 交差領域は、前記コアと前記スイッチング素子との重複部分と重なり合つている。この ような実施態様においては、受容体が固定された流路に被検体を流しながら、流路 に沿った光強度の変化やその時間変化を観察することにより受容体と被検体に含ま れるリガンドとの結合力や分子間相互作用、平衡定数を計測することができる。
[0019] さらに、この実施態様は複数の流路を備えているので、同一流路内には同一の受 容体が固定され、各流路内には互いに異なる受容体が固定されている場合には、被 検体と複数種類の受容体との結合力や分子間相互作用、平衡定数を一括して計測 することができ、スループットが向上する。なお、各流路内には同じ受容体を固定して いる場合には、各流路に異なる被検体を流すことにより、複数の被検体を一度に検 查することができ、スループットを向上させることができる。
[0020] さらに、この実施態様では、前記流路内には金属薄膜を形成し、当該金属薄膜の 上に受容体を固定しておけば、表面プラズモン共鳴を利用した測定を行うことができ 、蛍光検出の場合のような、蛍光分子に起因する検出誤差や、蛍光分子に伴う生体 分子の失活などの問題を避けることができる。
[0021] 本発明の光分析デバイスの別な実施態様においては、前記測定対象配置エリアに 互いに異なる複数の測定対象物を 2次元状に配列させ、前記各測定対象物は、前 記コアと前記スイッチング素子との各重複部分の真上に配置されている。このような 実施態様にぉ 、ては、 2次元状に配列された複数の測定対象物を高速で計測するこ とができるので、計測作業時のスループットが非常に高くなる。
[0022] この別な実施態様においては、前記測定対象配置エリアには金属薄膜を形成し、 当該金属薄膜の上に測定対象物を固定しておけば、表面プラズモン共鳴を利用し た測定を行うことができ、蛍光検出の場合のような、蛍光分子に起因する検出誤差や 、蛍光分子に伴う生体分子の失活などの問題を避けることができる。
[0023] 本発明の光分析デバイスのさらに別な実施態様における前記スイッチング部は、前 記スイッチング素子が前記コアに接触するようにして配置され、非検知状態では前記 コア内を導波する光が前記スイッチング素子で反射され、検知状態では前記コア内 を導波する光が前記スイッチング素子を透過するものである。よって、スイッチング素 子を透過状態にすることで、コアを導波されていた光を測定対象物に導びいて変調 を受けた光をコアに戻すことができ、スイッチング素子を反射状態にすることで光がそ この測定対象物で影響を受けな 、ようにできる。
[0024] このスイッチング部として、液晶の屈折率異方性を利用した液晶デバイスを用いれ ば、スイッチング速度を高速ィ匕できると共に、スイッチング部のコストを安価にすること ができる。
[0025] 本発明の光検出方法は、本発明にかかる光分析デバイスを利用して光の変化を検 出するための光検出方法であって、前記測定対象配置エリアにおける測定箇所が、 前記コアのうちいずれかのコアとの間にスイッチング素子を挟んで位置を定められて おり、前記測定対象配置エリアにおける測定箇所に対応するコアに沿って配列され たスイッチング素子のうち、測定対象配置エリアの前記測定箇所に対応するスィッチ ング素子のみを検知状態に切り換え、前記光源部から出射されて前記コア内を導波 し、検知状態にあるスイッチング素子を通して前記測定箇所で変調された光を前記 検出部で検知することを特徴として 、る。
[0026] 本発明の光検出方法によれば、本発明の光分析デバイスにより測定を行なう場合 に、コアに沿って配列された複数の測定個所のうち特定の測定個所の測定結果だけ を分離して得ることができる。
[0027] なお、この発明の以上説明した構成要素は、可能な限り任意に組み合わせることが できる。
図面の簡単な説明
[0028] [図 1]図 1は、従来の分析装置を示す概略斜視図である。
[図 2]図 2は、従来の別な分析装置を示す概略図である。
[図 3]図 3は、従来のさらに別な表面プラズモン共鳴現象を利用した分析装置の斜視 図である。
[図 4]図 4は、本発明の実施例 1による光分析デバイスの構造を示す分解斜視図であ る。
[図 5]図 5は、実施例 1の光分析デバイスの平面図である。
[図 6]図 6は、実施例 1の光分析デバイスのコア長さ方向に沿った断面図である。 [図 7]図 7は、実施例 1の光デバイスの流路長さ方向に沿った断面図である。
[図 8]図 8は、スイッチング部の一部を示す断面図である。
[図 9]図 9は、検査基板の一部を示す断面図である。
[図 10]図 10は、流路内に固定されている受容体を示す概略図である。
[図 11]図 11は、本発明のプラズモン共鳴分析装置を構成する演算処理部のブロック 図である。
[図 12]図 12は、検査基板の流路内に被検体を供給したときの様子を示す説明図で ある。
[図 13]図 13は、スイッチング窓がオフとなっているときの、コア内の光の伝搬を示す 説明図である。
[図 14]図 14は、スイッチング窓がオンになっており、受容体にリガンドが結合していな いときの、コア内の光の伝搬を示す説明図である。
[図 15]図 15は、スイッチング窓がオンになっており、受容体にリガンドが結合している ときの、コア内の光の伝搬を示す説明図である。
[図 16]図 16は、スイッチング部の制御方法の一例を示すタイムチャートである。
[図 17]図 17は、スイッチング部の別な制御方法を示すタイムチャートである。
[図 18]図 18は、ある流路に沿ってシグナル強度の変化を計測した結果を表した図で ある。
[図 19]図 19は、特異性のリガンドと受容体との結合力や相互作用が小さい場合に、 受容体に結合していたリガンドがその受容体力 分離して下流側の別な受容体と再 結合する様子を示す説明図である。
[図 20]図 20は、シグナル強度曲線の一例と当該曲線力も抽出される計測量を示す 図である。
[図 21]図 21 (a)—図 21 (f)は、導波路部の製造方法の一例を示す説明図である。
[図 22]図 22 (a)—図 22 (c)は、図 21 (f)の工程に続ぐ導波路部製造のための工程 を示す説明図である。
[図 23]図 23 (a)—図 23 (f)は、検査基板の製造方法の一例を示す説明図である。
[図 24]図 24 (a)—図 24 (e)は、導波路部の別な製造方法を説明する図である。 [図 25]図 25 (a)—図 25 (f)は、導波路部の別な製造方法を説明する図である。
[図 26]図 26は、本発明の実施例 2による光分析デバイスの構造を示す分解斜視図で ある。
[図 27]図 27は、実施例 2の光分析デバイスの平面図である。
[図 28]図 28は、検査基板の流路の内部の構造を示す概略図である。
[図 29]図 29 (a)は、スイッチング部及び検査基板の流路配列方向に沿った断面図で あり、図 29 (b)はその流路長さ方向に沿った断面図である。
[図 30]図 30は、検査基板の流路内における受容体の別な配置を説明する概略図で ある。
[図 31]図 31は、本発明の実施例 3による光分析デバイスの構造を示す分解斜視図で ある。
[図 32]図 32は、実施例 3の光分析デバイスにおけるコア及び流路の配列方向に沿つ た断面を示す断面図である。
[図 33]図 33は、実施例 3の光分析デバイスにおけるコア及び流路の長さ方向に沿つ た断面図である。
[図 34]図 34は、本発明の実施例 4による光分析デバイスの構造を示す分解斜視図で ある。
[図 35]図 35は、実施例 4の光分析デバイスにおける、スイッチング窓とコアとの位置 関係を示す平面図である。
[図 36]図 36は、本発明の実施例 5による光分析デバイスの構造を示す分解斜視図で ある。
[図 37]図 37は、実施例 5の光分析デバイスにおける各部の位置関係を説明するため の平面図である。
[図 38]図 38は、検査基板の別な構成を示す斜視図である。
[図 39]図 39は、本発明の実施例 6による光分析デバイスの構造を示す分解斜視図で ある。
[図 40]図 40は、実施例 6の変形例を説明する分解斜視図である。
[図 41]図 41は、実施例 6の別な変形例を説明する分解斜視図である。 [図 42]図 42は、本発明の実施例 7による光分析デバイスの構造を示す分解斜視図で ある。
[図 43]図 43は、実施例 7の光分析デバイスで用いられているスイッチング部の構造を 示す一部破断した断面図である。
[図 44]図 44は、本発明の実施例 8による光分析デバイスに用いられる光源部、導波 路部及び検出部の構成を示す平面図である。
[図 45]図 45は、本発明の実施例 9による光分析デバイスに用いられる光源部、導波 路部及び検出部の構成を示す平面図である。
[図 46]図 46は、実施例 9で用いられている光分岐部の分解斜視図である。
[図 47]図 47は、本発明の実施例 10による光分析デバイスに用いられる光源部の構 成を示す斜視図である。
[図 48]図 48は、実施例 10の光源部で用いられている変調部の働きを説明する説明 図である。
符号の説明
42 光源部
43 導波路部
44 スイッチング部
45 検査基板
46 検出部
47 発光素子
49 受光素子
51 コア
52 スイッチング窓
58 ブラックマトリクス領域
60 流路
61 金属薄膜
62 受容体
63 フィルタリング用の受容体 65 演算処理部
79 被検体
80 非特異性のリガンド
81 特異性のリガンド
112 注入口
113 排出口
発明を実施するための最良の形態
[0030] 以下、本発明の実施例を図面に従って詳細に説明する。ただし、本発明は、以下 に示す実施例に限定されるものではなぐその用途や目的、各種の事情に応じて適 宜設計変更することができる。
実施例 1
[0031] 本発明の表面プラズモン共鳴分析装置 (光分析装置の一種)は、主として光分析 デバイス (41)と、光プラズモン共鳴現象を利用した光分析デバイスの出力に基づい て検査対象物の種類や量、特性等を解析するための演算処理部(65)とを備える。 概略的に述べると、本発明の実施例 1においては、光分析デバイスは、光源部 (42) 、導波路部 (43)、スイッチング部 (44)、検査基板 (45)および検出部 (43)によって 構成されている。導波路部は、複数本のコア(51)を有し、光源部からの光を反射を 繰り返しながらコア内を導波させる。発光部を構成する複数の発光素子 (47)は、各 コアの一方端面に対向させて配置され、また、検出部を構成する複数の受光素子 (4 9)は、各コアの他方端面に対向させて配置されている。よって、発光素子から出射さ れた光はコア内に入射し、コア内で反射を繰り返しながら導波する。一方、コアの他 端から出射された光は、光検出部の受光素子で受光される。
[0032] スイッチング部は、導波路部の上に重ね合わされている。スイッチング部は、測定対 象物の検知状態と非検知状態とに切替可能となったスイッチング窓(52;請求項で!/、 うスイッチング素子)を有し、スイッチング窓はコアの長さ方向に沿って複数配列され、 例えば全体として格子状に配置されている。また、スイッチング部は、スイッチング窓 が導波路のコアに接触するようにして配置され、非検知状態ではコア内を導波する 光がスイッチング窓で反射され、検知状態ではコア内を導波する光がスイッチング窓 を透過するようになっている。このようなスイッチング部は、例えば液晶の屈折率異方 性を利用した液晶デバイスによって構成され、各スイッチング窓について、導波光を 全反射させる力もしくは透過させるかを選択可能となるようにしたものを用いることが できる。また、スイッチング部の上の、導波路部と対向する位置には、測定対象配置 エリアが面として定められている。よって、スイッチング窓が非検知状態となっている 測定個所では、コア内を導波してきた光はスイッチング窓で反射されて測定対象配 置エリアと作用しない。一方、スイッチング窓が検知状態となっている測定個所では、 コア内を導波してきた光はスイッチング窓を透過した光が測定対象配置エリアと作用 し、作用を受けた光が再びコア内に戻り、最終的には光検出部で受光される。
[0033] 検査基板は被検体が流れる複数の流路を有し、各流路内には金属薄膜が形成さ れ、当該金属薄膜の上に受容体が固定されている。検査基板は、検査基板に垂直 な方向から見て、流路とコアの交差領域に各スイッチング窓が重なるように配置され ている。この検査基板は、スイッチング部の上において測定対象配置エリアに配置さ れている。特に、受容体が固定されている金属薄膜の面が測定対象配置エリアの面 と一致するように配置するのが望ましい。検査基板の流路には一方力 他方へ向け て被検体が通過させられ、被検体に特異性のリガンドが含まれて 、れば特異性のリ ガンドは受容体に補足される。よって、スイッチング部のあるスイッチング窓が検知状 態となつている場合には、そのスイッチング窓に対応する測定個所で光と測定対象 物 (受容体と結合する特異性のリガンド)が相互作用して光が変調されるので、これを 光検出部で検知することにより、測定対象物の種類、量又は特性などを評価すること ができる。
[0034] 上記光分析デバイスは、各測定個所に固定する受容体の種類(同一の受容体か、 それぞれ異なる受容体力、)や、スイッチング窓のオン状態の切替タイミング (スィッチ ング窓を順次オン状態にする力、流路に沿ったスイッチング窓を同時にオンにするか など)などにより種々の測定方法が考えられる。例えば、検査基板には、同一流路内 には同一の受容体を固定しておき、各流路内には互いに異なる受容体を固定してお いてもよい。この場合には、流路に沿った方向で各受容体と特異性のリガンドとの結 合具合を知ることができるので、流路に沿った相互作用の変化を知ることができ、特 異性のリガンドと受容体との結合力や相互作用の大きさを評価でき、複数の流路に 異なる受容体を固定しておくことで一度に複数の受容体に対する反応を評価するこ とがでさる。
[0035] 以上においては実施例 1の表面プラズモン共鳴分析装置の概略を説明した力 以 下においては当該表面プラズモン共鳴分析装置を具体的に説明する。
[0036] 図 4一図 7に示すものは本発明の実施例 1であって、表面プラズモン共鳴現象を利 用した本発明の表面プラズモン共鳴分析装置を構成する光分析デバイスである。図 4は光分析デバイス 41の構造を示す分解斜視図であり、図 5は当該光分析デバイス 41の平面図である。また、図 6は光分析デバイス 41のコアの長さ方向に沿った断面 図、図 7は光分析デバイス 41の流路の長さ方向に沿った断面図である。光分析デバ イス 41は、光源部 42、導波路部 43、スイッチング部 44、検査基板 45、および検出部 46力もなる。
[0037] 光源部 42は、発光ダイオード (LED)やランプ等の複数の発光素子 47によって構 成されている。光源部 42は、複数の独立した発光素子 47で構成されていてもよぐ L EDアレイが用いられていてもよい。検出部 46は、フォトダイオードやフォトトランジス タ等の複数の受光素子 49によって構成されている。検出部 46も、複数の独立した受 光素子 49によって構成されて!、てもよく、受光素子アレイが用いられて 、てもよ 、。
[0038] 導波路部 43は、高屈折率の透明榭脂又はガラス力もなる板状のクラッド 50に複数 本の直線状をした溝を設け、その溝内にクラッド 50よりも屈折率の大きな透明榭脂を 埋め込んで複数本のコア 51を互いに平行に形成したものである。また、各コア 51は 、同一断面形状及び同一断面積となっている。光源部 42と検出部 46は、各発光素 子 47と各受光素子 49が各コア 51の端面に対向するようにして、導波路部 43の両端 部に対向配置されている。
[0039] パネル状をしたスイッチング部 44は、 2次元状又は格子状に配列された複数のスィ ツチング窓 52を有しており、電気信号により各スイッチング窓 52を独立して透過状態 又は非透過状態に切替えることができる。図 5に示すように、スイッチング部 44は、導 波路部 43の上面に積層一体化されており、各列のスイッチング窓 52は、導波路部 4 3の各コア 51の真上に配置されている。また、任意のコア 51の上に並んでいる一列 のスイッチング窓 52は、一定ピッチで配列されて 、る。
[0040] スイッチング部 44としては、例えば液晶の屈折率異方性を利用し、オン時とオフ時 で液晶層の屈折率が変化し、透過状態における液晶層の屈折率がコア 51の屈折率 にほぼ等しくなるような液晶シャッター等の液晶デバイスを用いることができる。図 8は このようなスイッチング部 44の一部を示す断面図である。このスイッチング部 44は、 外側基板 53と内側基板 54との間に液晶層 55を封止したものであって、外側基板 53 の内面には透明電極 56が設けられ、内側基板 54の内面には透明な開口電極 57と ブラックマトリクス領域 58が形成されている。各開口電極 57はブラックマトリクス領域 5 8によって格子状に区切られており、各開口電極 57の部分がスイッチング窓 52となつ ている。各開口電極 57と透明電極 56との間に印加される電圧は、ブラックマトリクス 領域 58に設けられている TFT等のスィッチ素子を制御することによってオン、オフで きるようになつている。ブラックマトリクス領域 58は、光を通さない黒色塗料を塗布され た領域であって、スィッチ素子のほか、スィッチ素子につながる配線パターン等も設 けられている。
[0041] スイッチング部 44を構成する内側基板 54、開口電極 57、透明電極 56、外側基板 5 3は、導波路部 43のコア 51とほぼ等しい屈折率を有する材料によって構成されてい ることが望ましい。液晶層 55は電圧印加によって屈折率が変化するものであり、透明 電極 56と開口電極 57の間に電圧を印加していない場合には、液晶層 55の屈折率 はコア 51の屈折率よりも小さぐ電圧を印加すると、液晶層 55の屈折率はコア 51の 屈折率とほぼ等しくなる(この逆となっていてもよい。 ) o従って、スイッチング窓 52が オフになって ヽて透明電極 56と開口電極 57の間に電圧が印加されて!ヽな ヽ場合に は、コア 51内を伝搬する光がスイッチング窓 52に入射すると、その光はスイッチング 窓 52で全反射される力 スイッチング窓 52がオンになっていて透明電極 56と開口電 極 57の間に電圧印加されている場合には、コア 51内を伝搬する光がスイッチング窓 52に入射すると、その光はスイッチング窓 52を透過する。
[0042] 図 9は検査基板 45の一部を示す断面図である。検査基板 45は、ガラス薄板又は透 明榭脂基板等力もなる支持板 59の上面に複数本の平行な溝状の流路 60を凹設し、 支持板 59全体もしくは各流路 60内の全体に Au薄膜等の金属薄膜 61を形成したも のである。ガラス薄板力もなる支持板 59の上面をエッチングすることによって流路 60 を形成してもよぐ透明榭脂基板カゝらなる支持板 59を榭脂成形する際に流路 60を成 形しておいてもよい。この支持板 59の屈折率は、コア 51の屈折率と等しいことが望ま しい。支持板 59の流路 60に金属薄膜 61を成膜した後、支持板 59の底面をエツチン グゃ研磨によって薄くすることにより、金属薄膜 61の底面を検査基板 45の底面に露 出させておいてもよい。各流路 60内において金属薄膜 61の上には、 目的に応じた 互いに異なる種類の受容体 62とフィルタリング用の受容体 63が固定されている。検 查基板 45は、マッチングオイルを介してスイッチング部 44の上に着脱可能に貼り付 けられており、真上力も見た状態では流路 60の長さ方向がコア 51の長さ方向と直交 するように配置されている(直交に限らないが、直交していることが望ましい。 ) oなお 、流路 60の上面は、カバーガラス等のカバー部材 64で覆っておくことが望ましい。
[0043] 図 10は流路 60内に固定されている受容体 62、 63を示す概略図である。流路 60 内の上流側端部で、かつ、スイッチング部 44のスイッチング窓 52の外側の領域には 、特定のリガンド (以下、特異性のリガンドという。)以外のリガンド (以下、非特異性の リガンドという。)と結合するフィルタリング用の受容体(non specific filtering protein) 6 3が固定されており、その下流側の各スイッチング窓 52と対向する領域にわたって特 異性のリガンドと結合する受容体 (probe protein) 62が固定されている。
[0044] 図 11は本発明の表面プラズモン共鳴分析装置を構成する演算処理部 65の構成を 示すブロック図である。この演算処理部 65は、マイクロコンピュータや IC等を使用し て構成することによって小型化が図られている。演算処理部 65は、光源部駆動回路 66、スイッチング部制御回路 67、受信回路 68、アナログ Zデジタル (以下、 AZDと 記す。)変換回路 69、解析部 70、主制御部 71、記憶手段 72、入力部インターフェイ ス 73、出力部インターフェイス 74からなる。光源部駆動回路 66は、光源部 42の各発 光素子 47が一定のパワーで発光するように制御している。スイッチング部制御回路 6 7は、主制御部 71からの指令に基づき、スイッチング部 44の各スイッチング窓 52を所 定の順序で順次オン制御する。受信回路 68は、検出部 46の各受光素子 49から出 力されたアナログ信号を受信し、 AZD変換回路 69は、このアナログ信号をデジタル 信号に変換して解析部 70へ伝える。主制御部 71は、マイクロコンピュータ等によって 構成されており、各部を統合的に制御する。記憶手段 72は、ハードディスク等の書換 え可能な記憶媒体を備えており、被検体の種類やシグナル強度曲線等を解析する ための解析用ソフトウェア等が格納されている。入力部インターフェイス 73には、キ 一ボード 75やマウス 76等の入力用機器や通信回線が接続され、入力用機器力も入 力された分析用のデータは入力部インターフ イス 73から主制御部 71へ送られ、記 憶手段 72に保存される。解析部 70は、受信回路 68及び AZD変換回路 69を介して 検出部 46から受け取ったデータに基づき、被検体のシグナル強度曲線や被検体に 含まれる特異性のリガンドの種類や量などを算出する。出力部インターフェイス 74に は、モニター 77やプリンタ 78等の出力用機器が接続され、解析部 70で算出された シグナル強度曲線等の計測結果は、出力部インターフェイス 74を通じてモニター 77 の画面に表示され、あるいは、プリンタ 78から出力される。
[0045] 次に、実際に被検体の分析を行う工程を説明する。まず、目的に応じた複数種類 の受容体 62とフィルタリング用の受容体 63を各流路 60に固定した検査基板 45を用 意し、この検査基板 45の下面にマッチングオイルを塗布し、スイッチング部 44の上に 位置合せして貼り付ける。この状態を上方力も見ると、図 5に示すように、スイッチング 部 44の各スイッチング窓 52はいずれも、各コア 51と各流路 60の交差領域に位置し ており、当該交差領域とスイッチング窓 52とは 1対 1に対応している。図 6に示すよう に、光源部 42の各発光素子 47から出射された光 48は、それぞれ対応するコア 51内 に端面力 入射し、コア 51の界面で全反射を繰り返しながらコア 51内を伝搬し、コア 51の他端から出射され、検出部 46の各受光素子 49で受光される。ただし、コア 51 内を伝搬する光は、実際には図 6に示す光 48とは異なり、 1つのスイッチング窓 52で 複数回全反射されて!/ヽる場合もある。
[0046] 図 12に示すように、検査基板 45の各流路 60の一方力も被検体 79を供給すると、 被検体 79は流路 60内を上流側から下流側に向けて流れる。流路 60の上流側には 、フィルタリング用の受容体 63が固定されているので、流路 60に供給された被検体 7 9に含まれる非特異性のリガンド 80 (不純物)は、フィルタリング用の受容体 63と結合 して被検体 79から除かれる。受容体 62の固定位置には、非特異性のリガンド 80が ほぼ除去された被検体 79が供給され、特異性のリガンド 81が受容体 62に達すると、 特異性のリガンド 81は、受容体 62と結合する。
[0047] あるスイッチング窓 52がオフになっている場合には、図 13に示すように、コア 51を 伝搬する光は、そのスイッチング窓 52では、コア 51の界面で全反射するので、コア 5 1を伝搬する信号は受容体 62の状態に影響を受けることがなぐコア 51内を伝搬す る光の強度は変化しない。
[0048] これに対し、あるスイッチング窓 52がオンになっている場合には、図 14及び図 15に 示すように、コア 51を伝搬する光は、そのスイッチング窓 52を透過し、検査基板 45の 金属薄膜 61で反射され、金属薄膜 61で反射された光は表面プラズモン共鳴現象の 影響を受け、検出部 46で検出される光の強度が変化する(以下、この光の強度の変 化量をシグナル強度という。;)。しかし、図 14のように受容体 62に特異性のリガンド 81 が結合して 、な 、場合には、表面プラズモン共鳴現象によるシグナル強度の変化は 小さい。これに対し、図 15のように受容体 62に特異性のリガンド 81が結合している場 合には、表面プラズモン共鳴現象によるシグナル強度の変化が大きくなる。特に、ォ ンになっているスイッチング窓 52を通して金属薄膜 61で光 48が複数回反射するの で、光 48が増幅されて大きな変化を検出することができる。もしくは、エリア内での結 合の有無のバラツキを平均化することができ、安定した検出が可能になる。
[0049] 従って、流路 60に沿ったスイッチング窓 52を^!次オンにしていけば、各流路 60に おいて、流路 60に沿った方向におけるシグナル強度の変化を検出することができる 。流路 60に沿った方向でスイッチング窓 52を順次オンにする典型的なパターンとし ては、図 16に示すようなパターンと、図 17に示すようなパターンとがある。
[0050] 平行に並んだ m本のコア 51に M= l、 2、 3、 · ··、 mと番号を付け、これと直交するよ うにして並んだ n本の流路 60に N= l、 2、 3、… と番号を付け、番号 Mのコア 51と番 号 Nの流路 60の交点に位置するスイッチング窓 52を (M、 N)で表わすものとする(図 5参照)。図 16に示す方式は、流路 60と平行な方向に並んだ M= l— mのスィッチン グ窓 52を同時にオン、オフ制御すると共に、オンにするスイッチング窓 52の列 Nを順 次コア 51の長さ方向へ切替えていくようにしたものである。この方法によれば、各流 路 60におけるシグナル強度を各受光素子 49で検知して計測データを検出部 46から 受信回路 68へパラレルデータとして送信することができる。 [0051] 図 17に示す方式は、スイッチング窓 52を 1つずつオンにして各スイッチング窓 52の オン位置を走査させるようにしたものである。この方法によれば、各流路 60における シグナル強度を各受光素子 49で検知して計測データを検出部 46から受信回路 68 ヘシリアルデータとして送信することができる。
[0052] 図 18は、上記のようにしてある流路 60に沿ってシグナル強度の変化を計測した結 果を表した図である。図 12に示すように、被検体 79の注入位置の近傍にはフィルタ リング用の受容体 63が固定されていて非特異性のリガンド 80はここで捕捉されるの で、図 18では、被検体 79の注入位置の近傍には非特異性のリガンド 80によるシグ ナル強度のピークが現われる(実際には、ここにはスイッチング窓 52が無いので、ここ のシグナル強度は観測されない。 ) 0非特異性のリガンド 80はここで捕捉されるので、 受容体 62の固定されている領域まで達しにくぐ受容体 62の領域におけるシグナル 強度に非特異性のリガンド 80によるシグナル強度が重畳しに《なる。よって、非特 異性のリガンド 80によるシグナル強度と特異性のリガンド 81によるシグナル強度とを 分離することができ、特異性のリガンド 81の誤検出を低減することができ、検出精度 を向上させることができる。
[0053] 特異性のリガンド 81と受容体 62との間の結合力(affinity)や相互作用が大きい場 合には、受容体 62の固定されている領域に達した特異性のリガンド 81は、直ちに受 容体 62と結合するので、図 18に太実線で示すシグナル強度曲線のように被検体 79 の注入位置に近い側で特異性のリガンド 81によるピークを示す。これに対し、特異性 のリガンド 81と受容体 62との間の結合力や相互作用が小さい場合には、受容体 62 の固定されている領域に達した特異性のリガンド 81は、その領域を移動しながら徐 々に受容体 62と結合するので、図 18に細破線で示すシグナル強度曲線のように特 異性のリガンド 81によるピークが被検体 79の注入位置力も遠い側へ移動すると共に ピークがなだらかになる(つまり、ピークの高さが低くなり、ピークの幅が広くなる)。
[0054] また、特異性のリガンド 81と受容体 62との結合力や相互作用が小さい場合には、 図 19に示すように、ー且受容体 62と結合していた特異性のリガンド 81が受容体 62 力も分離し易ぐ分離した特異性のリガンド 81は流路 60内を流れて再び別な受容体 62と結合する。従って、流路 60に沿ったシグナル強度曲線の時間的変化を観察す るとき、特異性のリガンド 81と受容体 62との結合力や相互作用が大きい場合には、 シグナル強度曲線は時間が経過しても変化が小さいが、結合力や相互作用が小さ V、場合には、時間が経過するとシグナル強度曲線のピーク位置が下流側へ移動し、 結合力や相互作用が小さいほどピークの移動速度が大きくなる。また、変化が止まつ た状態のシグナル強度曲線からは平衡定数を求めることができる。
[0055] なお、従来にあってはリガンドが受容体と結合するときのシグナル強度の立ち上がり 速度や、リガンドが受容体力 分離するときのシグナル強度の立ち下がり速度を観測 することによってリガンドと受容体の結合力や相互作用を計測することができたが、十 分な確度の得られるものでな力つた。
[0056] 以上説明したように、本発明の実施例 1の表面プラズモン共鳴分析装置は、光分析 デバイス 41と演算処理部 65によって構成されている。この表面プラズモン共鳴分析 装置によれば、流路 60に沿った方向におけるシグナル強度曲線の形状 (静的特性) とシグナル強度曲線の形状の変化 (動的特性)力も特異性のリガンド 81と受容体 62 の結合力や相互作用の大きさを評価することができる。特に、図 20に示すように、特 異性のリガンド 81によるシグナル強度曲線のピーク高さ H、半値幅 B、被検体注入位 置からのピーク位置 L、ピークの移動速度 Vなどによって特異性のリガンド 81の結合 力や相互作用を定量ィ匕することが可能になる。よって、様々な物理量から結合力や 相互作用の測定を行うことができ、高い確度でリガンド 81と受容体 62の結合力、ある いはタンパク質間相互作用を解析することができる。
[0057] また、この表面プラズモン共鳴分析装置では、複数の流路 60内に互いに異なる種 類の受容体 62を固定しているので、各流路 60に同じ被検体 79を流すことにより、あ る特定の特異性のリガンド 81と種々の受容体 62との結合力や相互作用を同時に計 測して比較することができる。なお、逆に各流路 60に同種の受容体 62を固定してお けば、各流路 60に異なる特異性のリガンド 81を含んだ被検体 79を流して計測するこ とにより、複数種類の特異性のリガンド 81の結合力や相互作用を一度に計測するこ とがでさる。
[0058] なお、実施例 1においては、各流路 60内に同一の受容体 62を固定しておき、各流 路 60毎に異なる種類の被検体 79を流すようにしてもょ 、。 [0059] また、流路 60内の受容体 62と結合した特異性のリガンド 81の量は、図 20のような シグナル強度曲線の下の面積に比例するから、この面積を算出することによって特 異性のリガンド 81の各受容体 62との結合量を求めることができる。また、各流路 60の 受容体 62が互いに異なっているので、各受容体 62からのシグナル強度を比較する ことによって特異性のリガンド 81の種類を特定することができる。
[0060] また、本発明によれば、光導波路 (導波路部 43)を用いて光を光源部 42から検出 部 46へ伝搬させることで、光分析デバイス 41を小型化することができる。さらに、導 波路部 43の上にスイッチング窓 52が配列されたスイッチング部 44を設けることで、遺 伝子やタンパク質間の結合力や相互作用を計測することが可能になる。よって、表面 プラズモン共鳴分析装置を小型化すると共に製造コストを安価にすることができる。
[0061] つぎに、上記光分析デバイス 41に用いられている導波路部 43及び検査基板 45の 製造方法を説明する。図 21は導波路部 43の製造方法の一例を示す説明図である。 この製造方法では、まず、フォトリソグラフィ法、 DRIE(Deep Reactive Ion Etching)等 のプラズマエッチング法、レーザー加工法、切削法などにより、クラッドの原盤 82を製 作する(図 21 (a) )。ついで、電铸法により原盤 82の上にニッケル合金等を堆積させ てスタンパ 83を製作し(図 21 (b) )、スタンパ 83を原盤 82から剥離させる(図 21 (c) ) 。この後、ベースガラス 84の上に紫外線硬化型榭脂 85を滴下し (図 21 (d) )、紫外線 硬化型榭脂 85をスタンパ 83で押えて紫外線硬化型榭脂 85をベースガラス 84とスタ ンパ 83の間に押し広げる。さらに、ベースガラス 84を通して紫外線硬化型榭脂 85に 紫外線を照射して硬化させ(図 21 (e) )、スタンパ 83を剥離することによってクラッド 5 0を得る(図 21 (f) )。
[0062] ついで、クラッド 50の上に紫外線硬化型榭脂等のコア榭脂 86を滴下し(図 22 (a) ) 、コア榭脂 86を押えガラス 87で押えてコア榭脂 86をクラッド 50の溝内に充填させる。 さらに、紫外線照射等によってコア榭脂 86を硬化させてコア 51を成形し (図 22 (b) ) 、押えガラス 87を剥離して導波路部 43を得る(図 22 (c) )。なお、ベースガラス 84は このままクラッド 50の下面に残してあっても差し支えない。
[0063] 図 23は検査基板 45の製造方法の一例を示す説明図であって、導波路部 43と同 様にしてスタンパ法で製作される。すなわち、フォトリソグラフィ法、 DRIE等のプラズマ エッチング法、レーザー加工法、切削法などにより、支持板 59の原盤 88を製作する( 図 23 (a) )。ついで、電铸法により原盤 88の上にニッケル合金等を堆積させてスタン パ 89を製作する(図 23 (b) )。この後、ベースガラス 90の上に紫外線硬化型榭脂 91 を滴下し、紫外線硬化型榭脂 91をスタンパ 89で押えて紫外線硬化型榭脂 91をべ一 スガラス 90とスタンパ 89の間に押し広げ、ベースガラス 90を通して紫外線硬化型榭 脂 91に紫外線を照射して硬化させ(図 23 (c) )、スタンパ 89を剥離することによって 流路 60を有する支持板 59を得る(図 23 (d) )。
[0064] ついで、真空蒸着等により支持板 59の流路 60内面または支持板 59の上面全体に Au薄膜等の金属薄膜 61を成膜し(図 23 (e) )、各流路 60内において金属薄膜 61の 上にそれぞれ受容体 62、 63を固定して検査基板 45を得る(図 23 (f) )。なお、検査 基板 45の流路 60は上方が開放されていてもよいが、図 23 (f)に示すように、支持板 59の上にカバーガラス等のカバー部材 64を重ねて流路 60の上方を閉じておくのが 望ましい。
[0065] 図 24は導波路部 43の別な製造方法を説明する図である。この方法では、まず、ガ ラス基板 92の上にレジスト 93を塗布する(図 24 (a) )。クラッド 50の溝となる領域に対 応する領域で開口された露光マスク 94をレジスト 93に近接させて対向させ、露光マ スク 94の開口 95を通してレジスト 93に露光する(図 24 (b) )。ついで、ガラス基板 92 の上のレジスト 93を現像することによって露光部分を除去し、レジスト 93に窓 96を開 口する(図 24 (c) )。この窓 96を通してガラス基板 92にエツチャントを接触させてガラ ス基板 92を部分的にエッチングすることにより、ガラス基板 92に複数本の溝 97を形 成し(図 24 (d) )、ガラス基板 92の上のレジスト 93を剥離させることによってクラッド 50 を得る(図 24 (e) )。こうしてクラッド 50を製作した後、図 22 (a)—図 22 (c)の工程と同 じ工程によってクラッド 50の溝内にコア 51を埋め込んで導波路部 43を製作する。
[0066] 図 25は上記導波路部 43の 2番目の製造方法と同様にして検査基板 45を製造する 方法を説明する図である。この方法では、ガラス基板 98の上にレジスト 99を塗布する (図 25 (a) )。流路 60となる領域に対応する領域で開口された露光マスク 100をレジ スト 99に近接させて対向させ、露光マスク 100の開口 101を通してレジスト 99に露光 する(図 25 (b) )。ついで、ガラス基板 98の上のレジスト 99を現像することによって露 光部分を除去し、レジスト 99に窓 102を開口する(図 25 (c) )。この窓 102を通してガ ラス基板 98にエツチャントを接触させてガラス基板 98を部分的にエッチングすること により、ガラス基板 98に複数本の流路 60を形成し(図 25 (d) )、ガラス基板 98の上の レジスト 99を剥離させることによって流路 60を有する支持板 59を得る(図 25 (e) )。こ うして支持板 59を製作した後、流路 60の内面又は支持板 59の上面全体に金属薄 膜 61を成膜することによって検査基板 45を製作する(図 25 (f) )。
実施例 2
[0067] 次に、本発明の実施例 2による光分析デバイスを説明する。演算処理部 65の構成 は実施例 1とほぼ同様であるので、この説明は省略する。
[0068] 実施例2の光分析デバイスは、検査基板 45に特徴を有する。すなわち、実施例 2で 用いられる検査基板 45では、複数の流路はスイッチング部 43と対向する部分では互 いに平行に配列されている力 各流路は一方端部では注入口 112に集まっており、 他方端部も排出口 113に集まっている。この実施例 2によれば、被検体の注入と回収 を容易にすることができる。
[0069] 図 26は本発明の実施例 2における光分析デバイス 111の構造を示す分解斜視図 、図 27はその平面図である。実施例 2においては、光源部 42、導波路部 43、スイツ チング部 44及び検出部 46は実施例 1と同様な構造を有している。検査基板 45の内 部には複数本の流路 60が形成されており、検査基板 45の上面には流路 60へ被検 体 79を供給するための注入口 112と、流路 60から流れてきた被検体 79を外部へ排 出するための排出口 113と力 S開口されている。注入口 112からは分岐部 114によつ て各流路 60に分岐しており、流路 60の反対側においては、各流路 60は合流部 115 によって 1本にまとまって排出口 113につながっている。
[0070] 上方力も見ると流路 60とコア 51とは直交しており、流路 60とコア 51との交差領域に スイッチング部 44のスイッチング窓 52が位置している点は実施例 1と同様である。
[0071] 図 28は流路 60の内部の構造を示す概略図である。各流路 60の注入口 112に近 い位置にはフィルタリング用の受容体 63が固定されており、受容体 63よりも下流側に は互いに種類の異なる受容体 62が固定されている。各流路 60の受容体 62の密度 は等しいことが好ましい。しかして、注入口 112から注入された被検体 79は分岐部 1 14で分岐して各流路 60に流れ、フィルタリング用の受容体 63及び各受容体 62を通 過して合流部 115に流れ込み、排出口 113から外部へ排出又は回収される。よって 、この実施例によれば、各流路 60へ一括して被検体 79を供給することができ、分析 作業が簡略化され、スループットが向上する。
[0072] なお、フィルタリング用の受容体 63は、分岐部 114で複数の流路 60に別れる前の 部分 (流路がまだ 1本だけの部分)に配置してもよい。それにより、各流路 60間での 非特異的なリガンドの除去のバラツキを抑制することができる。
[0073] 図 29 (a) (b)はスイッチング部 44及び検査基板 45の断面図であって、図 29 (a)は 流路 60の配列方向に沿った断面を示し、図 29 (b)は流路 60の長さ方向に沿った断 面を示す。検査基板 45は主としてカバー部材 116と支持板 117からなる。カバー部 材 116は榭脂成形品やガラスでできており(カバー部材 116の材質は特に問わな ヽ 。;)、カバー部材 116の下面には、流路 60、分岐部 114及び合流部 115が凹設され 、分岐部 114の端部と合流部 115の端部にはそれぞれ注入口 112と排出口 113が 開口されている。支持板 117は透明榭脂又はガラス板によって板状ないしフィルム状 に形成されており、支持板 117の上面には真空蒸着法等によって Au薄膜等の金属 薄膜 61が成膜されている。支持板 117には、コア 51と屈折率の等しい材料を用いる のが望ましい。そして、金属薄膜 61の上には、流路 60となる位置にフィルタリング用 の受容体 63及び各受容体 62が予め固定されている(図 28参照)。検査基板 45は、 カバー部材 116の下面を封止するようにして支持板 117をカバー部材 116の下面に 取り付けることによって製作され、各受容体 63、 62は各流路 60内に納められる。な お、支持板 117を省略してカバー部材 116の下面を金属薄膜 61のみで塞ぐようにし てもよい。あるいは、スイッチング部 44の上面に金属薄膜 61を成膜しておき、カバー 部材 116の下面をスイッチング部 44で塞ぐようにしてもょ 、。
[0074] こうして製作された検査基板 45は、マッチングオイルを挟んでスイッチング部 44の 上に置かれる。このときフィルタリング用の受容体 63は、スイッチング部 44のいずれ のスイッチング窓 52からも外れた位置にあり、受容体 62は一列のスイッチング窓 52 の端力 端まで跨るように配置される。
[0075] よって、上記構成力も明らかなように、実施例 2の表面プラズモン共鳴分析装置によ つても、特異性のリガンドの結合力や相互作用を高 、確度で計測することが可能に なる。さらに、実施例 2では被検体 79の供給が容易になるので、表面プラズモン共鳴 分析装置の使い勝手がさらに向上する。
[0076] なお、流路 60内に固定された受容体 62は必ずしも図 28に示したように長く延びて いる必要はなぐ図 30に示すように、 1本の流路 60内における受容体 62を複数に分 割し、各受容体 62が各スイッチング窓 52に対応する位置に配置されるようにしてもよ い。後者の場合には、各受容体 62における受容体 62の密度及び面積 (すなわち、 受容体 62の数)は等しくしておくことが望ましい(受容体の数の比が既知であれば、 必ずしも等しくなくても差し支えない。 )0
実施例 3
[0077] 次に、本発明の実施例 3による光分析デバイスを説明する。演算処理部 65の構成 は実施例 1とほぼ同様であるので、この説明は省略する。
[0078] 実施例 3の光分析デバイスは、検査基板 45の配置の向きに特徴を有する。すなわ ち、実施例 3で用いられる検査基板 45では、検査基板 45の流路が導波路部 43のコ ァ 51と平行となるようにして、かつ、各流路 60が各コアの真上に位置するように、スィ ツチング部 43の上に配置されている。以下、具体的に説明する。
[0079] 図 31は本発明の実施例 3における光分析デバイス 121の構造を示す分解斜視図 である。図 32は光分析デバイス 121のコア 51及び流路 60の配列方向に沿った断面 を示す断面図、図 33は光分析デバイス 121のコア 51及び流路 60の長さ方向に沿つ た断面を示す断面図である。実施例 1及び実施例 2では、検査基板 45の流路 60と 導波路部 43のコア 51とが直交するように配置されていたが、実施例 3の光分析デバ イス 121では、流路 60の長さ方向が導波路部 43のコア 51と平行となるように配置さ れている。
[0080] 実施例 3では、実施例 2で説明した検査基板 45と同じものを図示している力 実施 例 1で用いたような検査基板 45であってもよい。この検査基板 45は、流路 60がコア 5 1と平行となるようにして配置されており、図 32及び図 33に示すように、各流路 60は スイッチング窓 52を介して各コア 51の真上に位置している。このように流路 60とコア 51が平行となっていても、流路 60に沿ってスイッチング窓 52を順次オンにすることに より、流路 60に沿って特異性のリガンドと受容体 62が結合している状態を計測するこ とができるので、流路 60に沿ったシグナル強度曲線を得ることができ、特異性のリガ ンドの結合力や相互作用、あるいは特異性のリガンドの種類、量などを計測すること ができる。
実施例 4
[0081] 次に、本発明の実施例 4による光分析デバイスを説明する。演算処理部 65の構成 は実施例 1とほぼ同様であるので、この説明は省略する。
[0082] 実施例 4の光分析デバイスは、スイッチング部 43の構造に特徴を有する。すなわち 、実施例 4で用いられるスイッチング部 43では、複数本の長方形状をしたスィッチン グ窓 52を短辺方向に沿って配列させている。各スイッチング窓 52は流路 60の長さ方 向と直交するように配置されており、スイッチング窓 52の長辺方向の長さは流路 60全 体の幅方向の長さよりも長くなつている。以下、具体的に説明する。
[0083] 図 34は本発明の実施例 4における光分析デバイス 131の構造を示す分解斜視図 である。実施例 4による光分析デバイス 131では、スイッチング部 44の各スイッチング 窓 52が長方形状をしていて、長辺方向の長さは複数のコア 51全体の幅よりも長くな つており、短辺方向に複数個並んでいる。なお、検査基板 45の流路 60の方向は、コ ァ 51と平行であってもよぐ直交していてもよい。
[0084] この光分析デバイス 131では、スイッチング窓 52は一定ピッチで一方向にのみ配 列されている力 図 35に示すように、コア 51の長さ方向とスイッチング窓 52の長辺方 向とが交差 (直交に限らないが、直交させておくことが望ましい。)するようにすれば、 コア 51とスイッチング窓 52の交差領域がマトリックス状に配列されるので、任意の交 差領域からのシグナル強度を取り出すことができる。よって、オンにするスイッチング 窓 52を順次切り換えることによって、実施例 1において図 16に示したようなシグナル 強度取り出し方法を実現することができる。また、オンにするスイッチング窓 52を順次 切り換えると共に受光素子 49から順次信号を取り出すことにより、各交差領域におけ るシグナル強度を順次時分割的に取り出すことができ、実施例 1にお!/、て図 17に示 したようなシグナル強度取り出し方法を実現することができる。よって、このような表面 プラズモン共鳴分析装置においても、タンパク質間の相互作用や結合力、あるいは 特異性のリガンドの種類や量なども高い確度で解析することができる。 実施例 5
[0085] 次に、本発明の実施例 5による光分析デバイスを説明する。実施例 5の光分析デバ イスは、測定対象配置エリアもしくは検査基板 45の構造に特徴を有する。すなわち、 実施例 5では、測定対象配置エリアに互いに異なる複数の受容体を 2次元状に配列 させ、各受容体がコアとスイッチング窓 52との各重複部分の真上に位置するようにし てあり、この実施例 5では検査基板は流路を持たない。実施例に即して言えば、測定 対象配置エリアに該当する検査基板 45の表面に金属薄膜 61を形成し、金属薄膜 6 1の上に互いに異なる複数の受容体を 2次元状に配列させ、各受容体がコアとスイツ チング窓 52との各重複部分の真上に位置するようにしている。以下、具体的に説明 する。
[0086] 図 36は本発明の実施例 5における光分析デバイス 141の構造を示す分解斜視図 である。図 37は当該光分析デバイス 141の各部の位置関係を説明するための平面 図である。光分析デバイス 141は、光源部 42、導波路部 43、スイッチング部 44、検 查基板 45、および検出部 46からなる。光源部 42は、発光ダイオード (LED)やラン プ等の複数の発光素子 47によって構成されている。光源部 42は、複数の個々の発 光素子 47で構成されていてもよぐ LEDアレイが用いられていてもよい。検出部 46 は、フォトダイオードやフォトトランジスタ等の複数の受光素子 49によって構成されて いる。検出部 46も、複数の個々の受光素子 49によって構成されていてもよぐ受光 素子アレイが用いられて 、てもよ 、。
[0087] 導波路部 43は、屈折率の高い透明榭脂又はガラス力もなる板状のクラッド 50に複 数本の直線状をした溝を設け、その溝内にクラッド 50よりも屈折率の大きな透明榭脂 を埋め込んで複数本のコア 51を互いに平行に形成したものである。また、各コア 51 は、同一断面形状及び同一断面積となっている。光源部 42と検出部 46は、各発光 素子 47と各受光素子 49が各コア 51の端面に対向するようにして、導波路部 43の両 端部に対向配置されている。
[0088] パネル状をしたスイッチング部 44は、 2次元状又は格子状に配列された複数のスィ ツチング窓 52を有しており、電気信号により各スイッチング窓 52を独立して透過状態 又は非透過状態に切替えることができる。スイッチング部 44は、導波路部 43の上面 に積層一体化されており、コア 51と平行な列のスイッチング窓 52は、導波路部 43の 各コア 51の真上に配置されている。また、任意のコア 51の上に並んでいる一列のス イッチング窓 52は、一定ピッチで配列されている。スイッチング部 44は、実施例 1に ぉ 、て説明したスイッチング部 44と同じ構造を有して 、る(図 8参照)。
[0089] 検査基板 45は、ガラス板又は透明榭脂フィルム力もなる支持板 142のほぼ表面全 体に Au薄膜等の金属薄膜 61を成膜したものであり、金属薄膜 61の上には、受容体 62が縦横に等間隔で固定されている。検査基板 45の上に固定されている受容体 62 はすべて異なる種類の受容体となっている。検査基板 45は、マッチングオイルを介し てスイッチング部 44の上に着脱可能に貼り付けられる。
[0090] 検査基板 45の上に固定されている受容体 62は、一つ一つ区切られていてもよい。
図 38はフレーム 143で受容体 62を一つ一つ区切った検査基板 45である。この検査 基板 45は、支持板 142の上に金属薄膜 61を成膜した後、金属薄膜 61の上に感光 性榭脂を塗布し、感光性榭脂をフォトリソグラフィ法により格子状にエッチングして複 数の矩形状スペース力もなるフレーム 143を設けたものである。このように各受容体 6 2をフレーム 143で区切っておけば、各受容体 62に被検体 79を供給するとき、各受 容体 62に供給された被検体 79どうしが混じり合わず、検査精度を向上させることが できる。
[0091] また、この表面プラズモン共鳴分析装置も、実施例 1と同様、図 11に示すような演 算処理部 65を備えており、例えば図 16又は図 17に示すようにスイッチング部 44のコ ァ 51を制御することにより、各受容体 62と特異性のリガンドとの結合具合やシグナル 強度を検出することができる(図 13—図 15を参照)。
[0092] しかして、導波路部 43の上にスイッチング部 44を載置し、スイッチング部 44の上に 検査基板 45を置 、た状態では、図 37のようにスイッチング部 44のスイッチング窓 52 はコア 51の上に並んでおり、検査基板 45の受容体 62は各スイッチング窓 52の上に 位置している。よって、種類の異なる一つ一つの受容体 62に特異性のリガンド 81を 含んだ被検体 79を供給し、スイッチング窓 52のオン状態を順次切り換えて受光素子 49でシグナル強度を検出することにより、各受容体 62との反応を一括して検査する ことができ、特異性のリガンドの種類や量を計測することができる。例えば、コア 51が 100本、スイッチング窓 52が 100 X 100個であるとすれば、この表面プラズモン共鳴 分析装置により被検体 79と 10000種類の受容体 62との反応を一度に分析すること ができ、スループットを大幅に向上させることができる。
実施例 6
[0093] 次に、本発明の実施例 6による光分析デバイスを説明する。演算処理部 65の構成 は実施例 1とほぼ同様であるので、この説明は省略する。実施例 6の光分析デバイス は、検査基板 45に特徴を有する。すなわち、実施例 6で用いられる検査基板 45その ものは、実施例 2の検査基板 45と同じものであるが、 1つの流路 60内に配列されてい る受容体 62の種類がすべて異なっている点が特徴となっている。以下、具体的に説 明する。
[0094] 図 39は従来例 6における光分析デバイス 151の構造を示す分解斜視図である。実 施例 6では、実施例 2の図 30に示したのと同じ構造の検査基板 45を用いている。た だし、図 30では、 1つの流路 60内の受容体 62はすべて同じ種類のものであつたが、 この実施例では受容体 62の種類はすべて異なっており、同じ流路 60内にある受容 体 62もすベて異なって!/、る。
[0095] しかして、このような表面プラズモン共鳴分析装置では、互いに種類の異なる受容 体 62を流路 60内に並べているので、各受容体 62への被検体 79の供給が容易にな り、スループットがより向上する。
[0096] 流路 60を有する検査基板 45は図 40に示す光分析デバイス 161のように、流路 60 の方向が導波路部 43のコア 51と平行となるように配置されていてもよい。また、スイツ チング部 44は、スイッチング窓 52が格子状に並んだものに限らず、図 41に示す光分 析デバイス 171のように、長方形状をしたスイッチング窓 52がコア 51の長さ方向に沿 つて並んだものであってもよ!/、。
実施例 7
[0097] 次に、本発明の実施例 7による光分析デバイスを説明する。実施例 7の光分析デバ イスは、測定対象配置エリアの構造に特徴を有する。すなわち、実施例 5では、測定 対象配置エリアに互いに異なる複数の受容体を 2次元状に配列させ、各受容体がコ ァとスイッチング窓 52との各重複部分の真上に位置するようにしている。また、スイツ チング部 44と検査基板 45とは一体に形成されており、検査基板 45は流路を持たな い。実施例に即して言えば、スイッチング部 44の上面が測定対象配置エリアとなって いて、スイッチング部 44の上面に金属薄膜 61が形成され、金属薄膜 61の上に互い に異なる複数の受容体を 2次元状に配列させ、各受容体がコアとスイッチング窓 52と の各重複部分の真上に位置するようにしている。以下、具体的に説明する。
[0098] 図 42は実施例 7における光分析デバイス 181の構造を示す分解斜視図である。図 43は光分析デバイス 181で用いられて ヽるスイッチング部 44の構造を示す一部破 断した断面図である。実施例 7においては、複数のスイッチング窓 52を配列されたス イッチング部 44の上面 (すなわち、外側基板 53の上面)に直接に Au薄膜等の金属 薄膜 61を形成し、この金属薄膜 61の上に互いに種類の異なる受容体 62を固定して いる。また、スイッチング部 44の外側基板 53及び透明電極 56を省略し、液晶層 55 の上面を金属薄膜 61で直接封止すると共に金属薄膜 61と開口電極 57によって液 晶層 55に電圧を印加できるようにしてもょ 、。
[0099] このような実施例によれば、スイッチング部 44をスイッチング部 44と検査基板 45の 一体化された構造とすることができるので、構造を簡略ィ匕することができ、全体の製 造コストを安価にすることができる。また、スイッチング部 44に直接受容体 62を固定 するので、受容体 62とスイッチング窓 52の位置決めが容易になる。
実施例 8
[0100] 次に、本発明の実施例 8による光分析デバイスを説明する。実施例 8の光分析デバ イスは、光源部 42と検出部 46の構造に特徴を有する。すなわち、実施例 8では、光 源部 42の各発光素子 47とコア 51端面との間にそれぞれ集光レンズ 191を配置し、 また、検出部 46の受光素子 49とコア 51端面との間にそれぞれ集光レンズ 192を配 置したことを特徴としている。以下、具体的に説明する。
[0101] 図 44は本発明の実施例 8における光分析デバイスに用いられる光源部 42、導波 路部 43及び検出部 46の構成を示す平面図である。実施例 8による表面プラズモン 共鳴分析装置では、光源部 42の各発光素子 47とコア 51端面との間にそれぞれ集 光レンズ 191を配置し、また、検出部 46の受光素子 49とコア 51端面との間にそれぞ れ集光レンズ 192を配置している。
[0102] このように光源部 42に集光レンズ 191を設けることにより、発光素子 47から出射さ れた光を集めてコア 51内に入射させることができるので、光の利用効率が向上する。 また、検出部 46に集光レンズ 192を設けることにより、コア 51から出射された光を集 めて受光素子 49に入射させることができるので、シグナル強度の検出精度を向上さ せることができる。
実施例 9
[0103] 次に、本発明の実施例 9による光分析デバイスを説明する。実施例 9の光分析デバ イスは、光源部 42の構造に特徴を有し、発光素子 47の必要個数を少なくしたもので ある。以下、具体的に説明する。
[0104] 図 45は本発明の実施例 9による光分析デバイスに用いられる光源部 42、導波路部 43及び検出部 46の構成を示す平面図である。実施例 9では、光源部 42と導波路部 43の間に光分岐部 201を挿入している。図 46に示すように、光分岐部 201は、光導 波路によって構成されており、下クラッド層 202内に複数に分岐して枝分かれしたコ ァ 203が埋め込まれており、コア 203の上面を上クラッド層 204で覆っている。コア 20 3の屈折率は、下クラッド層 202及び上クラッド層 204の屈折率よりも大きくなつている 。コア 203の非分岐側の端面には発光素子 47が対向しており、コア 203の分岐側の 各端面にはそれぞれ導波路部 43のコア 51の端面が対向して 、る。
[0105] このような実施例によれば、 1つの発光素子 47から出射された光を光分岐部 201で 分岐させて導波路部 43の各コア 51に送り込むことができるので、光源部 42における 発光素子 47の数を減らすことができ、光源部 42における消費電力を抑えることがで き、さらには製造コストを下げることも可能になる。
[0106] なお、図 45では 2枚の光分岐部 201を用いている力 光分岐部 201の分岐の度合 いを大きくすれば、 1つの発光素子 47からなる光源部 42と 1枚の光分岐部 201で構 成することも可能である。また、光分岐部 201を導波路部 43と一体に構成することも 可能である。また、受光側においても、この光分岐部と同じような構造を有する光結 合器を用いて受光素子 49の使用個数を減らすようにしてもょ 、。
実施例 10 [0107] 次に、本発明の実施例 10による光分析デバイスを説明する。実施例 10の光分析 デバイスは、光源部 42の構造に特徴を有し、発光素子 47の必要個数を少なくしたも のである。以下、具体的に説明する。
[0108] 図 47は本発明の実施例 10による光分析デバイスに用いられる光源部 42の構成を 示す斜視図である。この光源部 42は、 1つの発光素子 47、偏光フィルタ等の偏光素 子 211、変調部 212によって構成されている。また、変調部 212は、図 48に示すよう に、屈折率の大きな透明榭脂又はガラスによって形成された導光部 213を前面に備 え、導光部 213の背面には複数の液晶シャッター 214が配列され、各液晶シャッター 214の背面には反射面 215が設けられている。変調部 212は、各液晶シャッター 21 4がコア 51と対向するように配置され、導光部 213の側面には偏光素子 211を介して 発光素子 47が対向している。
[0109] しかして、発光素子 47を発光させると、発光素子 47から出射した光は偏光素子 21 1を透過することによって直線偏光となり、変調部 212の導光部 213に入射し、導光 部 213内に入射した光は全反射を繰り返しながら導光部 213内を導光する。液晶シ ャッター 214はオフ時には光を反射し、オン時には光を透過させるので、導光部 213 内を導光する光は、オフ状態の液晶シャッター 214は反射しながら通過するが、オン 状態の液晶シャッター 214に達すると液晶シャッター 214内に入射し、反射面 215で 反射されることによって液晶シャッター 214及び導光部 213を透過し、変調部 212の 正面から出射される。変調部 212の正面から出射した光は対応する導波路部 43のコ ァ 51内に入射し、コア 51内を伝搬する。よって、液晶シャッター 214を順次オン状態 に切り換えていくことにより、変調部 212から各コア 51に計測用の光を順次入射させ ることがでさる。
[0110] このような光源を用いることにより、光源部 42の消費電力を抑えると共に光源部 42 を小型化することができる。
[0111] また、図示しないが、発光素子とマイクロミラーによって光源部を構成し、マイクロミ ラーの角度を制御することによって発光素子 47から出射された光を各コアに導くよう にしてもよい。
[0112] (その他) 本発明の光分析デバイスや、光デバイス及び演算処理部からなる光分析装置は、 表面プラズモン共鳴分析装置以外の光分析装置にも用いることができ、これらの光 分析装置を用いて試料力 の光の信号を測定すれば、試料中の目的物質 (遺伝子、 DNA等)の有無、量、分子間相互作用、結合力、平衡定数などを評価することがで きる。例えば、蛍光検出型の光分析装置として構成した場合には、プローブ DNAが 高密度に貼り付けられた検査基板の流路に、蛍光色素などで標識したサンプル DN Aを流すと、互いに相補的な DNAは結合する。よって、検査基板上の各位置での信 号を検出すれば、各プローブ DNAとサンプル DNAとの相互作用の有無または程度 を評価することができる。この方法を用いれば、遺伝子配列の決定、特定遺伝子の 有無の確認、特定遺伝子の発現レベルの測定などが可能である。
本発明による分析方法の他の用途としては、 SNP (単一塩基多型)の解析、実験用 マウスに投与した物質の代謝 ·吸収'排泄の経路または状態の確認、細胞内のイオン 濃度測定、タンパク質の同定または機能解析などが挙げられる。また、本発明による 分析方法は、個人の健康状態を判別する健康診断や個人セキュリティーのための検 查などにも利用することができる。

Claims

請求の範囲
[1] 光源部と、
複数本のコアを有し、前記光源部からの光を反射を繰り返しながらコア内を導波す る導波路部と、
前記導波路部のコアを導波してきた光を受光する光検出部と、
測定対象物の検知状態と非検知状態とに切替可能となったスイッチング素子を有 し、前記スイッチング素子が前記コアの長さ方向に沿って複数配列されるようにして 前記導波路部に重ね合わされたスイッチング部と、
前記スイッチング部を介して前記導波路部と対向する位置に面として定められた測 定対象配置エリアと,
を備えた光分析デバイス。
[2] 前記測定対象配置エリアに位置する検査基板を備え、
前記検査基板は被検体が流れる複数の流路を有し、各流路には受容体が固定さ れており、
前記検査基板から見て、前記流路と前記コアの交差領域は、前記コアと前記スイツ チング素子との重複部分と重なり合つていることを特徴とする、請求項 1に記載の光 分析デバイス。
[3] 同一流路内には同一の受容体が固定され、各流路内には互いに異なる受容体が 固定されていることを特徴とする、請求項 2に記載の光分析デバイス。
[4] 前記流路内には金属薄膜が形成され、当該金属薄膜の上に受容体が固定されて いることを特徴とする、請求項 2に記載の光分析デバイス。
[5] 前記測定対象配置エリアに互いに異なる複数の測定対象物を 2次元状に配列させ 前記各測定対象物は、前記コアと前記スイッチング素子との各重複部分の真上に 配置されて!ヽることを特徴とする、請求項 1に記載の光分析デバイス。
[6] 前記測定対象配置エリアには金属薄膜が形成され、当該金属薄膜の上に測定対 象物が固定されていることを特徴とする、請求項 5に記載の光分析デバイス。
[7] 前記スイッチング部は、前記スイッチング素子が前記コアに接触するようにして配置 され、非検知状態では前記コア内を導波する光が前記スイッチング素子で反射され 、検知状態では前記コア内を導波する光が前記スイッチング素子を透過することを特 徴とする、請求項 1に記載の光分析デバイス。
[8] 前記スイッチング部は液晶の屈折率異方性を利用した液晶デバイスによって構成 され、各スイッチング素子について、導波光を全反射させる力もしくは透過させるかを 選択可能となっていることを特徴とする、請求項 7に記載の光分析デバイス。
[9] 請求項 1一 8に記載の光分析デバイスと、当該光分析デバイスの出力に基づいて 検査対象物の種類や量、特性等を解析するための手段とを備えた光分析装置。
[10] 請求項 4又は 6に記載の光分析デバイスと、表面プラズモン共鳴現象を利用して当 該光分析デバイスの出力に基づき検査対象物の種類、量又は特性を解析するため の手段とを備えた表面プラズモン共鳴分析装置。
[11] 請求項 1一 8に記載の光分析デバイスを用いたバイオチップ。
[12] 請求項 1に記載した光分析デバイスを利用して光の変化を検出するための光検出 方法であって、
前記測定対象配置エリアにおける測定箇所は、前記コアのうちいずれかのコアとの 間にスイッチング素子を挟んで位置を定められており、
前記測定対象配置エリアにおける測定箇所に対応するコアに沿って配列されたス イッチング素子のうち、測定対象配置エリアの前記測定箇所に対応するスイッチング 素子のみを検知状態に切り換え、
前記光源部から出射されて前記コア内を導波し、検知状態にあるスイッチング素子 を通して前記測定箇所で変調された光を前記検出部で検知することを特徴とする光 検出方法。
[13] 請求項 12に記載の光検出方法を用いて、測定対象物の種類、量又は特性を評価 する測定対象物の分析方法。
PCT/JP2004/018315 2003-12-08 2004-12-08 光分析装置及び光分析デバイス WO2005054826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04819972A EP1701151A4 (en) 2003-12-08 2004-12-08 OPTICAL ANALYSIS UNIT AND OPTICAL ANALYSIS DEVICE
US10/582,188 US7342663B2 (en) 2003-12-08 2004-12-08 Optical analyzing unit and optical analyzing device
JP2005516030A JPWO2005054826A1 (ja) 2003-12-08 2004-12-08 光分析装置及び光分析デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-409456 2003-12-08
JP2003409456 2003-12-08

Publications (1)

Publication Number Publication Date
WO2005054826A1 true WO2005054826A1 (ja) 2005-06-16

Family

ID=34650412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018315 WO2005054826A1 (ja) 2003-12-08 2004-12-08 光分析装置及び光分析デバイス

Country Status (5)

Country Link
US (1) US7342663B2 (ja)
EP (1) EP1701151A4 (ja)
JP (1) JPWO2005054826A1 (ja)
CN (1) CN100538331C (ja)
WO (1) WO2005054826A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205768A (ja) * 2006-01-31 2007-08-16 Niigata Prefecture 分子間相互作用の解析装置
JP2007248253A (ja) * 2006-03-15 2007-09-27 Omron Corp 光学部品、光学センサ、表面プラズモンセンサ及び指紋認証装置
WO2008075578A1 (ja) * 2006-12-19 2008-06-26 Omron Corporation 表面プラズモンセンサ
JP2008216055A (ja) * 2007-03-05 2008-09-18 Omron Corp 表面プラズモン共鳴センサ及び当該センサ用チップ
JP2008233691A (ja) * 2007-03-22 2008-10-02 Nikon Corp 表示装置および光学装置
US7569382B2 (en) * 2005-10-05 2009-08-04 Instantlabs Medical Diagnostic Corp. Disposable reactor module and detection system
JP2010096645A (ja) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology 周期構造を有するマイクロプレート、並びに、それを用いた表面プラズモン励起増強蛍光顕微鏡、蛍光マイクロプレートリーダーおよび特異的な抗原抗体反応の検出方法
WO2010109939A1 (ja) * 2009-03-26 2010-09-30 浜松ホトニクス株式会社 光照射装置及び光測定装置
JP2010230396A (ja) * 2009-03-26 2010-10-14 Hamamatsu Photonics Kk 光照射装置及び光測定装置
JP2010230397A (ja) * 2009-03-26 2010-10-14 Hamamatsu Photonics Kk 光照射装置及び光測定装置
WO2012023391A1 (ja) * 2010-08-17 2012-02-23 コニカミノルタホールディングス株式会社 非特異吸着の精製機構を備えたspfs用センサ
WO2012132312A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 分析装置および分析チップ、並びに分析装置における温度測定方法
JP2013101160A (ja) * 2013-03-05 2013-05-23 Hamamatsu Photonics Kk 光測定装置
JP2013108994A (ja) * 2013-03-05 2013-06-06 Hamamatsu Photonics Kk 光測定装置
US8564781B2 (en) 2008-09-01 2013-10-22 Hitachi Chemical Company, Ltd. SPR sensor
WO2014007134A1 (ja) * 2012-07-05 2014-01-09 コニカミノルタ株式会社 センサーチップ
TWI491058B (zh) * 2011-12-15 2015-07-01 Sony Corp 影像拾取面板及影像拾取處理系統
JPWO2014156379A1 (ja) * 2013-03-29 2017-02-16 ソニー株式会社 データ処理装置、光学検出システム、データ処理方法及びデータ処理プログラム
US10180525B2 (en) 2014-05-26 2019-01-15 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
WO2019039241A1 (ja) * 2017-08-25 2019-02-28 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
JP2021504672A (ja) * 2017-12-22 2021-02-15 イラミーナ インコーポレーテッド 二フィルタ光検出デバイスおよびそれに関連する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226921A (ja) * 2005-02-18 2006-08-31 Fuji Photo Film Co Ltd 表面プラズモン共鳴測定方法
JPWO2009148010A1 (ja) * 2008-06-04 2011-10-27 株式会社日本触媒 光導波路の製造方法およびそれに用いる型
JP5585138B2 (ja) * 2010-03-17 2014-09-10 オムロン株式会社 流路チップ及び治具
US8503848B2 (en) * 2011-01-27 2013-08-06 Hewlett-Packard Development Company, L.P. Waveguide arrays
TWI481849B (zh) * 2011-05-24 2015-04-21 Portable detection device
CN102519908B (zh) * 2011-12-12 2013-08-14 天津大学 成像式光微流体传感装置及方法
EP2916125A1 (en) * 2014-03-07 2015-09-09 One Drop Diagnostics Sàrl Fluorescence-detected assays on microfluidic chips
US10408752B2 (en) * 2016-10-18 2019-09-10 National Taiwan University Plasmonic sensor
JP2022553944A (ja) * 2019-10-15 2022-12-27 ラクリサイエンシィズ, リミテッド ライアビリティ カンパニー 液体試料中の分析物の多重化表面プラズモン共鳴感知

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933427A (ja) * 1994-12-16 1997-02-07 Toto Ltd バイオセンサとこれを用いた濃度測定装置
JP2002162346A (ja) * 2000-11-22 2002-06-07 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象測定装置
JP2003065945A (ja) * 2001-08-24 2003-03-05 Aisin Seiki Co Ltd 生化学測定装置
JP2003287493A (ja) * 2002-03-27 2003-10-10 Fuji Photo Film Co Ltd 測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432364B1 (en) * 1998-07-06 2002-08-13 Suzuki Motor Corporation SPR sensor cell and immunoassay apparatus using the same
JP3761726B2 (ja) 1998-10-22 2006-03-29 富士写真フイルム株式会社 マイクロアレイチップの読取方法および読取装置
JP3579321B2 (ja) 2000-03-10 2004-10-20 財団法人神奈川科学技術アカデミー 2次元イメージング表面プラズモン共鳴測定装置および測定方法
US6529277B1 (en) * 2000-07-07 2003-03-04 California Institute Of Technology Optical devices based on resonant configurational effects
JP2002148187A (ja) * 2000-11-08 2002-05-22 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象計測チップ、その製造方法およびspr現象計測方法
JP2003042947A (ja) * 2001-07-31 2003-02-13 Mitsubishi Chemicals Corp 表面プラズモン共鳴セル及びそれを利用した試料流体の分析方法
US6707958B2 (en) * 2001-11-20 2004-03-16 Agilent Technologies, Inc. Biochemical assay device using frustrated total internal reflection modulator with an imaging optical waveguide
WO2004023170A2 (en) * 2002-09-07 2004-03-18 Lightwave Bioapplications Bioanalysis systems including optical integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933427A (ja) * 1994-12-16 1997-02-07 Toto Ltd バイオセンサとこれを用いた濃度測定装置
JP2002162346A (ja) * 2000-11-22 2002-06-07 Nippon Telegr & Teleph Corp <Ntt> 光導波路型spr現象測定装置
JP2003065945A (ja) * 2001-08-24 2003-03-05 Aisin Seiki Co Ltd 生化学測定装置
JP2003287493A (ja) * 2002-03-27 2003-10-10 Fuji Photo Film Co Ltd 測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1701151A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569382B2 (en) * 2005-10-05 2009-08-04 Instantlabs Medical Diagnostic Corp. Disposable reactor module and detection system
US7795014B2 (en) 2005-10-05 2010-09-14 Instantlabs Medical Diagnostics Corp. Disposable reactor module and detection system
JP2007205768A (ja) * 2006-01-31 2007-08-16 Niigata Prefecture 分子間相互作用の解析装置
JP2007248253A (ja) * 2006-03-15 2007-09-27 Omron Corp 光学部品、光学センサ、表面プラズモンセンサ及び指紋認証装置
WO2008075578A1 (ja) * 2006-12-19 2008-06-26 Omron Corporation 表面プラズモンセンサ
JP2008216055A (ja) * 2007-03-05 2008-09-18 Omron Corp 表面プラズモン共鳴センサ及び当該センサ用チップ
JP2008233691A (ja) * 2007-03-22 2008-10-02 Nikon Corp 表示装置および光学装置
US8564781B2 (en) 2008-09-01 2013-10-22 Hitachi Chemical Company, Ltd. SPR sensor
JP2010096645A (ja) * 2008-10-17 2010-04-30 National Institute Of Advanced Industrial Science & Technology 周期構造を有するマイクロプレート、並びに、それを用いた表面プラズモン励起増強蛍光顕微鏡、蛍光マイクロプレートリーダーおよび特異的な抗原抗体反応の検出方法
WO2010109939A1 (ja) * 2009-03-26 2010-09-30 浜松ホトニクス株式会社 光照射装置及び光測定装置
JP2010230397A (ja) * 2009-03-26 2010-10-14 Hamamatsu Photonics Kk 光照射装置及び光測定装置
JP2010230396A (ja) * 2009-03-26 2010-10-14 Hamamatsu Photonics Kk 光照射装置及び光測定装置
US8941079B2 (en) 2009-03-26 2015-01-27 Hamamatsu Photonics K.K. Light irradiation device and light measurement device
WO2012023391A1 (ja) * 2010-08-17 2012-02-23 コニカミノルタホールディングス株式会社 非特異吸着の精製機構を備えたspfs用センサ
JP5821852B2 (ja) * 2010-08-17 2015-11-24 コニカミノルタ株式会社 非特異吸着の精製機構を備えたspfs用センサ
US9134235B2 (en) 2010-08-17 2015-09-15 Konica Minolta, Inc. SPFS sensor equipped with mechanism purifying non-specifically adsorptive contaminants
WO2012132312A1 (ja) * 2011-03-31 2012-10-04 富士フイルム株式会社 分析装置および分析チップ、並びに分析装置における温度測定方法
TWI491058B (zh) * 2011-12-15 2015-07-01 Sony Corp 影像拾取面板及影像拾取處理系統
WO2014007134A1 (ja) * 2012-07-05 2014-01-09 コニカミノルタ株式会社 センサーチップ
JP2013108994A (ja) * 2013-03-05 2013-06-06 Hamamatsu Photonics Kk 光測定装置
JP2013101160A (ja) * 2013-03-05 2013-05-23 Hamamatsu Photonics Kk 光測定装置
JPWO2014156379A1 (ja) * 2013-03-29 2017-02-16 ソニー株式会社 データ処理装置、光学検出システム、データ処理方法及びデータ処理プログラム
US10180525B2 (en) 2014-05-26 2019-01-15 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
US10495804B2 (en) 2014-05-26 2019-12-03 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
WO2019039241A1 (ja) * 2017-08-25 2019-02-28 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
JP2019039829A (ja) * 2017-08-25 2019-03-14 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
CN111051914A (zh) * 2017-08-25 2020-04-21 京瓷株式会社 电磁波检测装置、程序以及电磁波检测系统
US11675052B2 (en) 2017-08-25 2023-06-13 Kyocera Corporation Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system
JP2021504672A (ja) * 2017-12-22 2021-02-15 イラミーナ インコーポレーテッド 二フィルタ光検出デバイスおよびそれに関連する方法
US11256033B2 (en) 2017-12-22 2022-02-22 Illumina, Inc. Two-filter light detection devices and methods related to same

Also Published As

Publication number Publication date
JPWO2005054826A1 (ja) 2007-06-28
EP1701151A4 (en) 2008-02-27
EP1701151A1 (en) 2006-09-13
CN1890553A (zh) 2007-01-03
US7342663B2 (en) 2008-03-11
CN100538331C (zh) 2009-09-09
US20070211254A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2005054826A1 (ja) 光分析装置及び光分析デバイス
EP1582598B1 (en) Optoelectronic rapid diagnostic test system
RU2494375C2 (ru) Система и способ детектирования
EP2537053B1 (en) An analytical device comprising an optode array chip
US7175811B2 (en) Micro-array evanescent wave fluorescence detection device
CN1096297C (zh) 分析系统及方法
US7799558B1 (en) Ligand binding assays on microarrays in closed multiwell plates
EP2171431B1 (en) Microelectronic sensor device for optical examinations on a wetted surface
JP6603675B2 (ja) マイクロ流体検出システム及びマイクロ流体カートリッジ
US8686376B2 (en) Microarray characterization system and method
EP2916125A1 (en) Fluorescence-detected assays on microfluidic chips
CN104081210A (zh) 具有气动式样本致动的光学测定装置
WO1998010122A1 (en) Microfabricated hybrid capillary array and multichannel detection assembly
JP2003232725A (ja) 表面プラズモン共鳴測定法を用いる化学反応解析センサ
US20050274618A1 (en) Assay chip
US7863037B1 (en) Ligand binding assays on microarrays in closed multiwell plates
JP5786308B2 (ja) 表面プラズモン共鳴測定装置
US20060128034A1 (en) Diagnostic test using gated measurement of fluorescence from quantum dots
JP2004061222A (ja) マイクロ生化学評価装置
CN115372326A (zh) 一种荧光成像传感检测系统及方法
US20070231881A1 (en) Biomolecular interaction analyzer
CN117043583A (zh) 诊断性光子生物传感器方法、装置以及系统
KR20220046803A (ko) 생화학검사, 혈액검사, 면역검사 및 유전자분석을 개별 또는 동시에 수행하는 멀티시스템
US20080301632A1 (en) Controller programmed with graphical language driving molecular sensor
JP2006053050A (ja) 検査用微粒子の検査方法及び前記検査用微粒子の検査装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036386.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516030

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004819972

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004819972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10582188

Country of ref document: US

Ref document number: 2007211254

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10582188

Country of ref document: US