WO2005054486A1 - 遺伝子導入試薬調製法 - Google Patents

遺伝子導入試薬調製法 Download PDF

Info

Publication number
WO2005054486A1
WO2005054486A1 PCT/JP2004/018426 JP2004018426W WO2005054486A1 WO 2005054486 A1 WO2005054486 A1 WO 2005054486A1 JP 2004018426 W JP2004018426 W JP 2004018426W WO 2005054486 A1 WO2005054486 A1 WO 2005054486A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
cationic
cells
cell
introducing
Prior art date
Application number
PCT/JP2004/018426
Other languages
English (en)
French (fr)
Inventor
Tetsuyuki Akao
Kenichi Kusumoto
Original Assignee
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government filed Critical Fukuoka Prefectural Government
Priority to JP2005516037A priority Critical patent/JPWO2005054486A1/ja
Publication of WO2005054486A1 publication Critical patent/WO2005054486A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to the use of a cationic amphipathic molecular assembly that has been self-threaded, a method for preparing the same, and the like.
  • Methods for introducing genes into cells without using viruses include the calcium phosphate method, a method using DEAE-dextran reagent, and the like, lipofectin (trade name) ⁇ lipofectamine (trade name), and lipofectamine.
  • lipofectin trade name
  • lipofectamine trade name
  • lipofectamine cationic ribosomes
  • methods using microinjection or electoral poration methods are not suitable for processing large numbers of cells due to the fact that expensive »must be purchased and the operation requires skill. Absent.
  • the present inventors have proposed a method for efficiently introducing a gene into cells instead of a conventional method for introducing a gene into a cell, which is simple in operation, has no cytotoxicity, and a ribosome composed of an amphipathic molecule.
  • a method for efficiently introducing a gene into cells instead of a conventional method for introducing a gene into a cell, which is simple in operation, has no cytotoxicity, and a ribosome composed of an amphipathic molecule.
  • the introduction efficiency into part of cells of the nervous cells and the like is not still sufficient, and further improvement of the efficiency of introducing s i RNA has been demanded.
  • a method for introducing a peptide or protein into a cell for example, a method is known in which a peptide called a protein transduction domain (PTD) is bound to a protein or the like to introduce a target protein or the like into a cell.
  • PTD protein transduction domain
  • an object of the present invention is to provide a cationic and amphiphilic molecular assembly capable of introducing a compound such as a nucleic acid or a peptide into a cell with high efficiency, and a method for preparing the same.
  • the present inventors have conducted intensive studies to achieve the above object, and for example, mixed an aqueous solvent and a cationic amphipathic molecule at a temperature of 40 ° C. or less, and prepared the cationic amphiphilic molecule.
  • a cationic cationic amphiphilic aggregate obtained by self-fibrilation of nucleic acids, it is possible to produce desired compounds such as nucleic acids and peptides with extremely high efficiency compared to conventional methods using ribosomes and the like. They have found that they can be introduced into cells, and have completed the present invention.
  • the present invention relates to the following.
  • a method of preparing a cationic amphipathic molecule aggregate for use in introducing a conjugated compound into cells comprising converting a cationic amphiphilic molecule into a self-filament fiber.
  • the cationic amphiphilic molecule has the formula (I)
  • n represents an integer of 2 to 11
  • X represents Br or C1.
  • r is an integer of 12 to 16, s is 2 to: an integer of L1, and X is Br or C1
  • t represents an integer of 12 to 16
  • u represents 2 to: an integer of L1
  • X represents Br or C
  • a compound according to the above (6) which is a compound selected from the group consisting of a compound represented by X- (wherein, V represents an integer of 12 to 16, and X represents Br or C1).
  • a method for introducing a conjugate into a cell comprising removing the complex of the cationic amphiphilic aggregate and the compound according to (11) and the cell.
  • a method for introducing a compound into a cell in a living body which comprises administering to the subject a complex of the cationic amphipathic molecule aggregate according to (11) and a compound.
  • (22) Use of the cationic amphiphilic molecular assembly according to (11) for producing an agent for introducing a compound into a cell.
  • a method for introducing a compound into a cell comprising contacting a cell with a complex of a self-fused anionic amphiphilic molecular assembly and a conjugate.
  • a method of introducing a compound into cells in a living body which comprises administering to the target a complex of a self-amplified cationic amphiphilic molecular assembly and a compound.
  • nucleic acids can be introduced into nerve cells and the like with low efficiency with high efficiency, and siRNA can be introduced into cells with high efficiency.
  • Figure 1 shows the difference in gene (plasmid DNA) transfer efficiency due to the difference in the preparation method.
  • the white column shows the ratio of gene-generated cells when the aggregate prepared at 25 ° C was used.
  • the black column shows the ratio of gene-generated cells when the ribosome prepared at 50 ° C was used.
  • FIG. 2 shows the difference in siRNA introduction efficiency due to the difference in the preparation method.
  • the open circles indicate the aggregates prepared at 25 ° C: ⁇ , and the closed circles indicate the expression levels of the ⁇ target genes using ribosomes prepared at 50 ° C.
  • FIG. 3 is a graph showing the results of transfection of siRNA into each mouse ⁇ . a indicates lung, b indicates liver, and cd indicates kidney. Detailed description of the invention
  • the present invention relates to the use of a self-fiberized cationic amphiphilic molecular assembly and a method for preparing the same.
  • the cationic amphipathic molecular aggregate can be prepared by any method as long as the aggregate is applicable to the following uses (for example, introduction of a compound into cells). As a preferred method, for example, the following method can be mentioned.
  • the cationic cationic amphipathic molecule is self-induced.
  • the method requires the use of "cationic amphiphilic molecules”.
  • Amphiphilic molecule refers to a synthetic molecule having a hydrophilic part and a hydrophobic part in the same molecule.
  • amphiphilic molecules used in the present invention need to be cationic. This is because a compound such as an anionic nucleic acid and a cationic amphipathic molecule can form a stable complex by non-co-mingling with each other.
  • the anionic amphiphilic molecule is a synthetic molecule.
  • the “cationic amphipathic molecule” used in the present invention is applied to the introduction of a compound (nucleic acid, etc.) into a cell by the aggregation force of the cationic amphipathic molecule that has been converted into a self-filament II.
  • the hydrophilic part preferably has a quaternary ammonium group.
  • the “cationic amphiphilic molecule” used in the present invention has the formula (I) H 3 ) 3 (I)
  • n represents an integer of 2 to 11
  • X represents Br or C1.
  • r represents an integer of 12 to 16
  • s represents an integer of 2 to 11
  • X represents Br or C'1.
  • V represents an integer of 12 to 16, and X represents Br or C1
  • m is preferably 12 to 14, more preferably 12 or 14.
  • n is preferably from 2 to 8, and more preferably selected from the group consisting of 2, 4, 6 and 8.
  • X is preferably Br.
  • p is preferably 12 to 14, more preferably 12 or 14.
  • q is preferably an integer selected from the group consisting of f and 2 to 6, more preferably 2, 4 and 6. More preferably, q is 2 or 4 when X is Br, and q is 6 when X is C 1.
  • r is preferably 12 to: L4, more preferably 12 or 14.
  • s is preferably an integer selected from the group consisting of 2 to 6, more preferably 2, 4 and 6, and even more preferably 2.
  • t is preferably 12 to 14, more preferably 12 or 14, and even more preferably 14.
  • u is preferably selected from the group consisting of 2 to 6, more preferably 2, 4 and 6, and still more preferably 2.
  • X is preferably 1.
  • V is preferably selected from the group consisting of 12, 14 and 16.
  • X is preferably Br. From the viewpoints of the stability of the aggregate and the introduction efficiency of the conjugate (nucleic acid and the like), among the above compounds, the compound represented by the formula (IV) is more preferable.
  • the most preferred cationic amphiphilic molecule used in the present invention is a compound represented by the formula (IV) in which t is 14, 2, and X is C1, that is, a compound represented by the formula (VI)
  • the cationic amphiphilic molecule before preparation is not particularly limited, but is preferably a solid, and more preferably a powder.
  • the cationic amphiphilic molecule before preparation is not particularly limited, and preferably does not form ribosome.
  • cationic amphiphilic molecules are hydrophobically bound in a solvent such as 7 It means to form an aggregate by assembling through non-covalent bonds such as.
  • “Side-side oxidation” means that molecules are aggregated to form an aggregate.
  • the "operations to artificially induce aging” include sonication, ponoletex, ethanol / re injection method, French'press method, cholic acid method, Ca2 + fusion method, single melting angle method, calo This includes operations to apply physical stimuli such as heat.
  • ribosomes are artificially formed by an ultrasonic generator or the like as in the conventional method, the introduction efficiency of compounds (nucleic acids and the like) is rather reduced.
  • the “aggregate of amphipathic” refers to an aggregate formed by assembling of amphipathic molecules by self-filtration, which is difficult to identify as a single state.
  • the body there are two ribosomes formed by hydrophobic bonding of the amphiphilic ⁇ hydrophobic parts, multiple vesicles, string-like aggregates, disk-like aggregates, lamellar-like aggregates, rod-like aggregates, etc. Mixture; ⁇ included.
  • the “aggregate of ⁇ philicity ⁇ ” exists as a mixture of aggregates in the Sukhomi state.
  • a water-soluble solvent is preferably mixed with the cationic amphiphilic molecule in order to convert the cationic amphiphilic molecule into a self-filament fiber.
  • the “aqueous solvent” used in the preparation method of the present invention is not particularly limited as long as the aggregate obtained by the method is applicable to the introduction of a compound into cells.
  • a compound e.g., physiological saline, phosphate-buffered saline (PBS), media used by those skilled in the art for normal cell culture (eg, RPMI 164, DMEM, HAM F-12, kt land).
  • PBS phosphate-buffered saline
  • media used by those skilled in the art for normal cell culture eg, RPMI 164, DMEM, HAM F-12, kt land.
  • the aqueous solvent does not contain proteins such as serum. This is because proteins may inhibit the amphiphilic molecules from becoming self-reliant.
  • the ⁇ ⁇ of the ionic solvent is not particularly limited, it is preferably in the range of ⁇ 4 to 10, more preferably in the range of ⁇ 7 to 8.
  • a mixture of a 7_ solvent and anionic amphipathic molecule is prepared.
  • the concentration is not particularly limited as long as it is applicable to the introduction of the aggregate conjugate obtained by the method into cells, but is preferably 40 ° C. or lower.
  • the temperature is not particularly limited, but is preferably 40 ° C. or lower, more preferably 38 ° C. or lower, still more preferably 36 ° C. or lower, and most preferably 34 ° C. or lower.
  • Preparing the cationic amphiphilic molecule aggregate at a temperature exceeding 40 ° C inhibits the self-fragmentation of the cationic amphipathic molecule, and inhibits the formed cationic amphiphilic molecule assembly. Coalescence becomes unstable, and the introduction efficiency of chemical (nucleic acid etc.) when using the aggregate decreases.
  • the temperature of the liquid mixture is preferably higher than the freezing point of the liquid mixture for convenience in operation.
  • the freezing point depends on the composition of the aqueous solvent, the type of the cationic amphipathic molecule, the concentration, etc., and is difficult to set uniformly, but it is difficult to uniformly set the solidification point. If it is more preferably 2 ° C or more, still more preferably 3 ° C or more, and most preferably 4 ° C or more, it does not cause many age problems.
  • the liquid mixture freezes, making it difficult to continue the operation.
  • the temperature of the mixed solution is preferably 1 ° C or more and 40 ° C or less, more preferably 2 ° C or more and 38 ° C or less, still more preferably 3 ° C or more and 36 ° C or less, most preferably. It is in the range of 4 to 34 ° C.
  • a mixed solution is obtained by first mixing an aqueous solvent and a cationic amphiphilic molecule.
  • the concentration of the cationic amphiphile in the liquid mixture can be appropriately set in consideration of the type of the cationic amphiphilic molecule used. 2200 mM, preferably 1-10 O mM, more preferably 1-5 O mM, more preferably 5-50 mM, most preferably 1 O-30 mM.
  • concentration is too low, a sufficient amount of cationic amphiphilic molecular aggregates will not be formed, and if the concentration is too high, cationic amphiphilic molecules may precipitate.
  • the cationic amphipathic molecule is self-threaded, and an aggregate is formed.
  • the above-mentioned operation such as ultrasonic treatment for inducing the artificial yarn is not performed.
  • the mixture is left standing or gently stirred (for example, by pipetting).
  • the mixture is incubated in a thermostat to control the temperature.
  • the incubation time can be appropriately set in consideration of conditions such as the type of the cationic ⁇ amphiphilic molecule used, but is usually 1 to 96 hours, preferably 1 to 72 hours, more preferably The range is 1 to 48 hours, more preferably 1 to 24 hours, and most preferably 2 to 24 hours.
  • the desired compound By using a cationic amphipathic molecular aggregate (for example, the aggregate prepared by the method of the present invention) that has been converted into a self-threaded yarn, the desired compound can be introduced into cells with extremely high efficiency. It is possible to do.
  • the compound that can be introduced into cells using the aggregate is not particularly limited as long as the compound can be introduced. Examples thereof include nucleic acids, peptides, proteins, lipids, sugars, and physiological activities.
  • Substances and drugs Doxorubicin (antitumor key), Daunorubicin (antitumor drug), Vincristine (antitumor drug), Vinblastine (antitumor drug), Idarubicin (antitumor drug), Dibucaine (local anesthetic), Propranolol () 3 blockers), Quinidine (antiarrhythmic drug), Dopamine (intensity and vasopressor), Imipramine (antidepressant), Diphenhydramine (antihistamine), Quinine (antimalarial), Chloroquine 3 ⁇ 4 malaria, Diclofenac Inflammatory drugs) and the like, and moisturizing agents for cosmetics and the like (mannitol and the like).
  • nucleic acid DNA or RNA can be used as the “nucleic acid”.
  • the type of DNA can be appropriately selected according to the purpose of use, and is not particularly limited. Examples thereof include plasmid DNA, antisense DNA, chromosomal DNA, PAC, and BAC, and preferably plasmid DNA, Antisense DNA, and more preferably, plasmid DNA. Circular DNA such as plasmid DNA can be appropriately digested with a restriction enzyme or the like and used as linear DNA.
  • RNA can be appropriately selected according to the purpose of use, and is not particularly limited. Examples thereof include si RNA, antisense RNA, messenger RNA, transfer RNA, and liposomal RNA. Is siRNA or antisense RNA, and more preferably siRNA.
  • siRNA self-assembled cationic amphipathic molecular aggregates (for example, the aggregates prepared by the method of the present invention), compared with conventional methods using ribosomes, It is possible to introduce siRNA into cells with high efficiency.
  • the nucleic acid is a single-stranded or double-stranded one, preferably a single- or double-stranded nucleic acid.
  • the nucleic acid may be modified such as by phosphorothioation.
  • the size of the nucleic acid is not particularly limited, and is a large nucleic acid molecule such as a chromosome (artificial chromosome).
  • the size of a high nucleic acid such as plasmid DNA is 2 to 15 kbp, preferably 2 to 10 kbp.
  • the size of a low-molecular-weight nucleic acid such as siRNA is 5 to 50 bp, preferably 10 to 30 bp.
  • the nucleic acid may be either naturally occurring or synthesized, but if it has a size of about 100 bp or less, a commonly used automatic nucleic acid synthesizer can be used by the phosphotriethyl method, the phosphodiester method, or the like. It is possible to synthesize using.
  • the nucleic acid used in the present invention is not particularly limited, but is preferably purified by a method usually used.
  • Maako a compound that can be introduced into cells using the cationic cationic amphipathic molecular assembly that has been made into a self-filament fiber, is required from the viewpoint of the stability of the complex with the cationic cationic amphipathic molecular assembly. From the viewpoint of being anionic, it is preferred that the compound be anionic, but in addition to a cationic or neutral water-soluble compound, a lipid-soluble compound may be used.
  • the cationic amphipathic molecular aggregate In order to use the above cationic amphipathic molecular aggregate for introducing a compound (nucleic acid, etc.) into cells, the cationic amphiphilic molecular aggregate is brought into contact with a compound (nucleic acid, etc.). As a result, a complex (hereinafter sometimes simply referred to as “complex”) between the aggregate and a compound (nucleic acid or the like) is formed. Since the aggregate is cationic, it forms a non-covalent association with an anionic compound (nucleic acid or the like) to form a stable complex.
  • a complex of a cationic amphipathic molecular aggregate and a compound (nucleic acid or the like) can be obtained by mixing an aqueous solvent containing the aggregate with a compound (nucleic acid or the like) and incubating the mixture.
  • the type of the aqueous solvent is the same as described above.
  • the time of the incubation is set in the same range as in the method for preparing the cationic amphipathic molecular assembly.
  • the concentration of the cationic cationic amphipathic molecule aggregate in the mixed solution can be appropriately set in consideration of the type of cationic cationic amphipathic molecule used, etc., and is usually 0.05 to 500 mM, for example, 1 to 500 mM. 20 OmM, preferably :! 1010 OmM, more preferably 1-5 OmM, even more preferably 5-50 mM, most preferably 10-30 mM.
  • concentration is too low, a sufficient amount of the complex will not be formed, and if the concentration is too high, a cationic amphiphilic molecular aggregate may be precipitated.
  • the concentration of the compound (nucleic acid or the like) in the mixture can be appropriately set in consideration of the type and size (molecular weight) of the compound to be used, but when the compound is DNA, it is usually 3 to: L00 ng / nL. Range.
  • the DNA concentration in the mixture is preferably 10 to 90 ng / ⁇ L, more preferably 20 to 80 ngZL, and still more preferably 30 to 80 ng / L. 7070 ng / ⁇ L, most preferably in the range of 40-60 ng ZL.
  • the concentration is too low, the DNA introduced into the cells cannot exhibit the expected function, while if the concentration is too high, the nucleic acid introduction efficiency will decrease.
  • the concentration of # ⁇ which is RNA as the compound, can be appropriately set in consideration of the size of RNA, etc., but if the size of RNA is about several kbp ⁇ , the RNA concentration in the above mixture is Usually between 3 and 100 ng L, preferably between 10 and 90 ng / L, more preferably between 20 and 80 ng ZL, more preferably between 30 and 70 ng / L, most preferably between 40 and 60 ng / ⁇ L. is there.
  • the RNA concentration is usually 1-500 nM, preferably 20-400 nM, more preferably It is preferably in the range of 20 to 300 nM, more preferably 20 to 200 nM, most preferably 20 to: L000 nM.
  • the concentration is too low, the RNA introduced into the cells will not be able to express the expected function, and if the concentration is too high, the nucleic acid introduction efficiency will decrease.
  • the incubation time after mixing the aqueous solvent containing the aggregate with the compound (nucleic acid, etc.) can be determined in consideration of conditions such as the type of reagent used. ⁇ 100 minutes, preferably 0.5-30 minutes, more preferably 0.5-10 minutes, even more preferably 0.5-2 minutes, most preferably 0.5-1 minute. .
  • the compound (such as nucleic acid) will have a single amphipathic molecular assembly
  • a compound (nucleic acid or the like) contained in the complex can be introduced into the cell.
  • the type of the “cell” is not particularly limited, and may be a prokaryote or a cell of an organism, and is preferably an organism.
  • eukaryotes are not particularly limited, and include, for example, mammals including humans (humans, monkeys, mice, rats, hamsters, pests, etc.), fishes (zebrafish, etc.), and insects (silkworms, moths, Drosophila). And microorganisms such as plants and yeasts.
  • the cell may be a cultured cell line containing a cancer cell, or a cell isolated from an individual or a thread. Further, the cells may be adherent cells or non-adherent cells.
  • self-assembled cationic amphipathic aggregates for example, the aggregates prepared by the preparation method of the present invention
  • cells eg, neurons, leukocytes, etc.
  • non-adherent cells e.g., the aggregates prepared by the preparation method of the present invention
  • “neural cells” and “white blood cells” include a cultured cell line derived from oriori and a cultured cell line derived from leukocyte, respectively.
  • the cells are suspended in an appropriate medium several days before the larva with the hybrid and cultured under appropriate conditions, so that the cells are in a logarithmic growth phase at the time of inversion with the hybrid. Is preferred.
  • the culture solution at the time of the inversion may be a serum-containing medium or a serum-free medium, but the serum concentration in the medium is preferably 20% or less, preferably 10% or less! / ,. This is because if the medium contains an excess of proteins such as serum, the removal of the complex from the cells may be inhibited.
  • the cell concentration at the time of the insect is not particularly limited, and can be appropriately set in consideration of the type of the cell, etc., but is usually from 0.5 ⁇ 10 5 to 5 ⁇ 10 5 ce 11 s / mL, preferably rather it is 0. 5X 10 5 ⁇ 4 X 10 5 ce 1 1 s / mL, more preferably 0. 5 X 10 5 ⁇ 3 X 10 5 ce 1 1 s / mL, more preferably 1 X 10 5 ⁇ 3 X 10 5 ce 1 1 s / mL, and most preferably in the range of l X 10 5 ⁇ 2X 10 5 ce 1 1 s / mL.
  • the above-mentioned complex-containing ⁇ is added to the medium containing the cells thus prepared.
  • the amount of addition of the complex is not particularly limited and can be appropriately set in consideration of the number of cells, etc., but is usually 1 to 1000, preferably 1 to 500 L, more preferably 1 mL of the medium. It is in the range of l-300 / zL, more preferably l-200 / iL, most preferably 1-100 // L.
  • the cells After adding the complex-containing medium to the medium, the cells are cultured.
  • the temperature, humidity, CO 2 concentration, etc., during the culture are appropriately set in consideration of the type of cells.
  • ⁇ In mammalian cells is usually about 3
  • the culture time can also be appropriately set in consideration of conditions such as the type of cells to be used, but is usually 1 to 36 hours, preferably 1 to 24 hours, more preferably 1 to 12 hours, and still more preferably. It ranges from 2 to 8 hours, most preferably 3 to 6 hours. If the culture time is too short, the conjugate (nucleic acid or the like) will not be introduced into the cells, and if the culture time is too long, the cells may weaken.
  • the compound is introduced into the cells by the above culture.
  • the medium is replaced with a fresh medium, or the whole medium is added to the medium and the culture is further continued.
  • the ⁇ medium preferably contains serum or trophic factors.
  • the further culturing time can be appropriately set in consideration of the functions expected of the introduced compound (nucleic acid or the like).
  • ⁇ Is usually 16 to 72 hours, preferably 16 to 60 hours, more preferably 16 to 48 hours, even more preferably 16 to 36 hours, and most preferably 16 to 24 hours.
  • siRNA it is usually 16 to 72 hours, preferably 16 to 60 hours, more preferably 16 to 48 hours, and still more preferably 16 to 48 hours.
  • ⁇ 36 hours most preferably 16-24 hours.
  • the complex can be administered without particular limitation, for example, mammals including humans (humans, monkeys, mice, rats, hamsters, hamsters, etc.), fishes (zebrafish, etc.), birds (chicken, ostriches, etc.). Vertebrates, insects (silkworms, moths, etc.), plants, and the like.
  • the method of administering the t-merge is not particularly limited as long as the ⁇ m-merger reaches the target cell, and the compound contained in the complex can be introduced into the cell.
  • administration methods known per se oral administration, parenteral administration (intravenous administration, intramuscular administration, topical administration, dermal administration, subcutaneous administration, ⁇ , Etc.) can be appropriately selected.
  • the dose of the complex is not particularly limited as long as the compound can be introduced into cells, and the type of administration, the method of administration, the type of compound to be introduced, the type and site of the target cell, etc.
  • the single dose is about 0.001 mg to 100 000 as a complex. mg.
  • Parenteral administration: ⁇ eg, intravenous administration, etc.
  • is generally, for example, in humans (as 60 kg), a single dose of about 0.0000 mg 0 0 mg.
  • the dose can be administered in terms of 6 O kg.
  • the use of the self-threaded cationic amphipathic molecular assembly makes it possible to introduce the conjugate into the cell with extremely high efficiency.
  • an agent for introducing a compound into a cell in vitro or in vivo including an aggregating molecule assembly.
  • the agent is delivered as a research reagent, drug, or the like.
  • a desired compound can be easily introduced into cells.
  • the cationic amphipathic molecular assembly that has been made into a self-filament fiber can be formulated in a conventional manner, as long as it is used as an agent for introducing the conjugate into cells.
  • the self-fiberized cationic cationic amphiphilic molecular assembly may be used as such or as, for example, water or other physiologically acceptable liquid (eg, as described above). Water-soluble solvent, etc.) or as a suspension.
  • the agent may itself contain excipients, vehicles, preservatives, stabilizers, binders and the like, which are physiologically acceptable in the mouth itself.
  • the self-immobilized cationic amphiphilic molecular assembly may be used as it is or as a known pharmaceutically acceptable carrier, flavor, excipient, or base.
  • Oral eg, tablet, capsule, etc.
  • parenteral eg, drug
  • Additives that can be incorporated into tablets, capsules, etc. include, for example, binders such as gelatin, corn starch, tragacanth, gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid, etc.
  • Leavening agents such as Lubricants such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and fragrances such as peppermint, cocoa oil or cherry are used.
  • the unit dosage form is a capsule
  • the above type of material can further contain a liquid carrier such as an oil or fat.
  • a liquid carrier such as an oil or fat.
  • the aqueous liquid for the preparation include an isotonic solution containing physiological saline, grape, and other auxiliary agents (eg, D-sorbitol, D-manthout / re, sodium chloride, etc.).
  • agent if example embodiment, the alcohol (e.g.
  • ethanol e.g propylene glycol, polyethylene da recall
  • nonionic surfactants e.g., polysorbate 8 ⁇ ⁇ M, HC O- 5 0
  • oily liquid for example, sesame oil, soybean oil and the like are used, and may be used in combination with solubilizers such as benzyl benzoate and benzyl alcohol.
  • Examples of the above agents include a buffer (eg, phosphate buffer, sodium acetate buffer), a soothing agent (eg, benzalcoium chloride, pro-force hydrochloride, etc.), a stabilizer (eg, human serum albumin). , Polyethylene glycol, etc.), preservatives (eg, benzyl alcohol, phenol, etc.), antioxidants and the like.
  • a buffer eg, phosphate buffer, sodium acetate buffer
  • a soothing agent eg, benzalcoium chloride, pro-force hydrochloride, etc.
  • a stabilizer eg, human serum albumin
  • preservatives eg, benzyl alcohol, phenol, etc.
  • antioxidants e.g, antioxidants and the like.
  • the content of the self-threaded cationic amphipathic molecular assembly contained in these agents is particularly limited within the range in which the compound can be introduced into cells when used in the above method. There is no limitation, and it can be
  • kits containing the compound and introducing the compound into cells can be prepared.
  • the kit can further include all reagents and the like that can be used in the above method (for example, the above-mentioned water-soluble solvent, instructions describing the preparation protocol, a reaction vessel, and the like).
  • a desired compound can be easily introduced into cells according to the method described above.
  • the self contained in the agent of the present invention may be a complex with a compound desired to be introduced into cells.
  • the present invention provides a kit for preparing a cationic amphiphilic, child assembly by the preparation method of the present invention.
  • the kit contains at least the cationic amphiphilic molecule described above.
  • the kit can further include any of the reagents used in the preparation of the present invention (eg, the above-mentioned water-soluble solvent, instructions describing the preparation protocol, reaction ⁇ !, etc.).
  • a cationic amphiphilic molecular assembly for use in introducing a compound into cells can be easily prepared according to the above-mentioned preparation method.
  • the present invention eliminates a kit for introducing a compound (such as a nucleic acid) into a cell by the method of the present invention.
  • the kit contains at least the above-mentioned cationic amphiphilic monomer or an assembly thereof (an assembly made into a self-filament fiber).
  • the kit further includes any reagents and the like that can be used in the above method (for example, a compound that is desired to be introduced into cells, a solvent that is soluble in ⁇ ⁇ , a written instruction describing a test protocol, a reaction vessel, and the like). Can be further included.
  • the desired compound can be easily introduced into cells according to the method described above.
  • the compound of formula (VI) (referred to as compound (VI)) was used as the cationic amphiphilic molecule.
  • plasmid pQBI (Nippon Gene) was used as the plasmid DNA.
  • Plasmid pQBI is a plasmid with the GFP gene inserted downstream of the CMV-IE promoter, and expresses GFP when introduced into cells.
  • a complex of PQBI and an aggregate of compound (VI) was prepared.
  • the results obtained when using the aggregate of the compound (VI) prepared at 25 ° C. are shown.
  • As a conventional method 4.3 g of the ribosome of compound (VI) prepared at a temperature exceeding 4 and plasmid pQBI are added to 30 ⁇ L of serum-free medium and incubated for 5 minutes, and plasmid pQBI and compound (VI A complex with liposome was prepared. (Here, the results obtained using liposomes of compound (VI) prepared at 50 ° C are shown.)
  • Hela human ovarian cancer cells
  • Jurkat human leukemia cells
  • SME mouse neural stem cells
  • CH0 hamster ovary cells
  • the cells were prepared in 0.3 mL of serum-free medium.
  • the above-mentioned complex was admitted here, and cultured at 37 ° C. and 5% CO 2 for 4 hours. Further, 1 mL of a 10% FBS-containing medium was added, and the cells were cultured until the next day.
  • the cells were observed under a fluorescence microscope.
  • the compound of formula (VI) (referred to as compound (VI)) was used as the amphiphilic molecule.
  • the target gene of the s iRNA used was EGFP, and the s i RNA used was Nippon Gene.
  • 4.3 g of ribosomes of compound (VI) prepared at 40 ° C or higher and siRNA prepared at 20, 50, and 100 nM (concentration in the preparation) were used in a serum-free medium (30 L). Then, the mixture was incubated for 5 minutes to prepare a complex of siRNA and a liposome of compound (VI).
  • the results obtained using the ribosome of compound (VI) prepared at 50 ° C are shown.
  • CH0 cells stably expressing EGFP were used as cells.
  • Cells were prepared in 0.3 mL of serum-free medium. The above complex was added thereto, and the cells were cultured at 37 ° C. and 5% CO 2 for 4 hours. Further, 1 mL of a 10% FBS-containing medium was added and cultured until the next day.
  • the expression level of the EGFP gene was calculated as a relative value when the fluorescence intensity of the negative control cells was 100%.
  • the compound of formula (VI) (referred to as compound (VI)) was used as the amphiphilic molecule.
  • the following reagents were mixed by gentle pipetting.
  • a fluorescent-labeled siRNA labeled with Cy-3 was used as a nucleic acid molecule in order to observe the molecular eaves of the molecule. After working the mixture at room temperature for 5 minutes, the prepared ⁇ ⁇ was used.
  • BALB / c mice (7 weeks old) were exposed through the tail vein.4 hours after the injection, the lungs, liver, spleen and kidney were removed from the mice, cut into small pieces, and observed with a fluorescence microscope. Table 3 and Table 1 show the results.
  • Table 1 shows the results of siRNA introduction into each organ of the mouse.
  • ++ indicates that the siRNA was introduced into about 25% of the cells
  • + indicates that the siRNA was introduced into about 10% of the cells
  • soil was slightly introduced, and Respectively.
  • the siRNA could be introduced into each ⁇ in the living body by using the compound (VI).
  • the efficiency of introduction into the spleen and liver was excellent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Genetics & Genomics (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、自己組織化された陽イオン性両親媒性分子集合体の用途及び調製方法を提供する。当該自己組織化された陽イオン性両親媒性分子集合体を用いれば、非常に高い効率で核酸等の化合物を細胞内に導入することが可能であるので、従来法では導入効率が低かった神経細胞等へも高効率で核酸等の化合物を導入することができ、またsiRNAを高効率で細胞内へ導入することができる。

Description

明細書
遺伝子導入試薬調製法 技術分野
本発明は、 自己糸 1哉化された陽イオン性両親媒性分子集合体の用途、 及ぴその調 製方法等に関する。 背景技術 '
近年、 脳腫瘍、 ァ /レツハイマー病、 パーキンソン病やその他の脳疾患の治療法の 一つとして、 神経細胞に遺伝子を導入する遺伝子治療に期待が集まっている。 しか し、 適当な遺伝子導入法がないため、 これまで神経細胞への遺伝子導入や薬物運搬 について充分な検討がなされなかった。 また、 遺伝子治療を取り巻く環境において も、 最も実用化に近かつたウィルスを用 、た遺伝子導入法にお 、て導入細胞が癌ィ匕 するなどの事故が発生したため、 ウィルスを使用しない高効率な遺伝子導入法の開 発が求められている。
ウィルスを使用しない細胞内への遺伝子導入法としては、 リン酸カルシウム法、 D EAE—デキストラン試薬等を用いた方法や、 リポフエクチン (商標名) ゃリポ フエクトァミン (商標名) 、 リポフエクトァミン 2 0 0 0 (商標名) 等の陽イオン 性リボソームを用いた方法があるが、 導入効率が低かったり、 多くの場^田胞毒性 が認められる。 また、 マイクロインジェクション法やエレクト口ポレーシヨン法等 の機器をもちいる方法は、 高価な »を購入しなくてはならない点や、 操作に熟練 を要する等の問題から大量の細胞を処理するには適さない。
本願発明者らは、 従来の遺伝子の細胞内導入方法に換わる、 操作が簡単で、 細胞 毒性がなく、 且つ、 効率よく細胞内へ遺伝子を導入する方法として、 両親媒性分子 より構成されたリボソームを用いた方法を した (例えば特許第 1 9 8 4 7 3 7 号、 平 7— 2 0 4 2 9等参照) 。 しかし、 例えば神経細胞等の一部の細胞への 導入効率は依然充分ではなく、 また s i RNAの導入効率の更なる改善が求められ ていた。 また、ペプチドやタンパク質等を細胞内へ導入する方法としては、例えば Protein Transduction Domain (PTD)と呼ばれるぺプチドをタンパク質等に結合させることに より目的のタンパク質等を細胞内に導入する方法が知られているが (例えば、 Cell, vol. 88, p223-233, 1997等参照) 、 導入効率や副作用の点から満足できるものでは ない。 発明の開示
上記事情に鑑み、 本発明は、 高い効率で核酸、 ペプチド等の化合物を細胞内へ導 入することが可能である陽ィオン性两親媒性分子集合体、 及びその調製方法を することを目的とする。
本発明者らは、 上記目的を達成すべく鋭意研究したところ、 例えば、 4 0 °C以下 の温度で水性溶媒と陽イオン性両親媒性分子とを混合し、 当該陽イオン性両親媒性 分子を自己纖化させることにより得られる陽ィオン性両親媒性 集合体を用い ることで、 リボソーム等を用いた従来法と比較して、 極めて高い効率で核酸、 ぺプ チド等の所望の化合物を細胞内へ導入することができることを見出し、 本発明を完 成させるに至った。
即ち、 本発明は以下に関する。
( 1 ) 陽イオン性両親媒性分子を自己糸纖化させることを赚とする、 ィ匕合物の細 胞内への導入に用いるための陽イオン性両親媒性分子集合体の調 法。
( 2 ) 7性溶媒と陽イオン性両親媒性分子とを混合し、 当該陽イオン性両親媒性分 子を自己糸!!裁ィ匕させる、 上記 ( 1 ) 記載の調製方法。
( 3 ) 4 0 °C以下の温度で水性溶媒と陽ィオン性両親媒性分子とを混合する、 上記 ( 2 ) 記載の調 法。
( 4 ) 7性溶媒と陽ィオン性両親媒性分子の混合液の? が当該混合液の凝固点以 上である、 上記 (2 ) 記載の調製方法。
( 5 ) 陽イオン性両親媒性分子を自己糸纖化させる工程からなる、 上記 ( 1 ) 記載 の調製方法。 ( 6 ) 陽ィオン性両親媒性分子が第 4級ァンモニゥム基を有することを樹敷とする、 上記 (1) 〜 (5) のいずれかに記載の調 法。
(7) 陽イオン性両親媒性分子が式 (I)
CHs
Figure imgf000004_0001
(式中、 mは 12〜16の整数を、 nは 2〜11の整数を、 Xは B rまたは C 1を 示す)
で表される化合物、 式 (I I)
Figure imgf000004_0002
(式中、 ρは 12〜16の整数を、 qは 2〜11の整数を、 Xは B rまたは C 1を 示す)
で表される化合物、 式 (I I I)
Figure imgf000004_0003
(式中、 rは 12〜16の整数を、 sは 2〜: L 1の整数を、 Xは B rまたは C 1を 示す)
で表される化合物、 式 (I V)
Figure imgf000004_0004
(式中、 tは 12〜16の整数を、 uは 2〜: L 1の整数を、 Xは Brまたは C 1を 示す) .
で表される化合物、 及ぴ式 (V)
CH3(CH2)V_1 X + /CH3
GH3(CH2) 、CH3
X- (式中、 Vは 12〜 16の整数を、 Xは B rまたは C 1を示す) で表される化合物 力、らなる群から選ばれる化合物である上記 (6) 記載の調 法。
(8) 陽イオン性両親媒性分子が式 (IV) で表される化合物である上記 (7) 記 載の調製方法。
(9) t力 S14、 uが 2、 Xが C 1である上記 (8) 記載の調歡法。
(10) ィ匕合物が核酸である上記 (1) 記載の調 法。
(11) 上記 (1) 〜 (10) のいずれかに記載の調駄法により調製された陽ィ オン性両親媒性分子集合体。
(12) 上記 (11) 記載の陽イオン性両親媒性分子集合体と化合物との複合体。
(13) 化合物が核酸である、 上記 (12) 記載の複合体。
(14) 上記 (11) 記載の陽イオン性両親媒性 集合体と化合物との複合体と 細胞とを撤虫させることを特徴とする、 ィ匕合物を細胞内へ導入する方法。
(15) 化合物は核酸である、 上記 (14) 記載の方法。
(16) 核酸がプラスミド DNAである、 上記 (15) 記載の方法。
(17) 核酸が s i RNAである、 上記 (15) 記載の方法。
(18) 細胞が神経細胞である、上記 (14) 〜 (17) のいずれかに記載の方法。
(19) 上記 (11) 記載の陽イオン性両親媒性分子集合体と化合物との複合体を 対象に投与することを特徴とする、 生体内で化合物を細胞内へ導入する方法。
(20) 上記 (11) 記載の陽イオン性両親媒性分子集合体を含む、 ィ匕合物を細胞 内へ導入するための剤。
(21) 生体内で化合物を細胞内へ導入するための剤である、 上記 (20) 記載の 剤。 (22) 化合物を細胞内へ導入するための剤を製造するための、 上記 (11) 記載 の陽イオン性両親媒性分子集合体の使用。
(23) 該剤は生体内で化合物を細胞内へ導入するための剤である、 上記 (22) 記載の使用。
(24) 上記 (1) 〜 (10) のいずれかに記載の調 法で陽イオン性両親媒性 分子集合体を調製するためのキットであって、 当該陽イオン性両親媒性分子を含む キット。
(25) 上記 (14) 又は (19) 記載の方法で化合物を細胞内へ導入するための キットであって、 当該陽イオン性両親媒性分子又はその集合体を含むキット。
(26) 該化合物は核酸である、 上記 (25) 記載のキット。
(27) 自己糸 J哉化された陽イオン性両親媒性分子集合体と化合物との複合体。
( 28 ) 自己糸膽化された陽ィオン性両親媒性分子集合体とィ匕合物との複合体と細 胞とを接触させることを赚とする、 化合物を細胞内へ導入する方法。
(29) 自己 ¾戠化された陽イオン性両親媒性分子集合体と化合物との複合体を対 象に投与することを糊敷とする、 生体内で化合物を細胞内へ導入する方法。
(30) 自己系纖化された陽イオン性両親媒性分子集合体を含む、 化合物を細胞内 へ導入するための剤。
(31) 化合物を細胞内へ導入するための剤を製造するための、 自己糸 I戠化された 陽ィオン性両親媒性分子集合体の使用。
( 32) 上記 (11) に記載の陽イオン性両親媒性分子集合体を含む剤、 及び当該 剤を化合物の細胞内への導入に使用し得る又は使用すべきであることを記載した記 載物を含む商業的パッケージ。
(33) 自己 ¾哉化された陽イオン性両親媒性分子集合体を含 ¾¾、 及び当該剤を ィ匕合物の細胞内への導入に使用し得る又は使用すべきであることを記載した記載物 を含む商業的パッケージ。
本発明の調製方法を用いて調製された陽イオン性両親媒性分子集合体を用いれば、 非常に高い効率で核酸を細胞内に導入することが可能であるので、 従来法では導入 効率が低かった神経細胞等へも高効率で核酸を導入することができ、 また s i RN Aを高効率で細胞内へ導入することができる。 図面の簡単な説明
図 1は調製方法の違いによる遺伝子(プラスミド DNA) 導入効率の差を示す。 白色 カラムは 2 5 °Cで調製された集合体を用いた^ \ 黒色カラムは 5 0°Cで調製され たリボソームを用いた場合の遺伝子発 田胞の割合を示す。
図 2は調製方法の違いによる siRNA導入効率の差を示す。 白丸は 2 5 °Cで調製さ れた集合体を用いた:^、 黒丸は 5 0°Cで調製されたリボソームを用いた^^のタ ーゲット遺伝子の発現量を示す。
図 3はマウスの各 βへの siRNA導入の結果を示す^ ¾である。 aは肺、 bは肝 臓、 c dは腎臓をそれぞれ示す。 発明の詳細な説明
以下、 本発明を詳述する。
本発明は自己繊戠化された陽イオン性両親媒性分子集合体の用途及びその調製方 法等を^^するものである。
該陽イオン性両親媒性分子集合体は、 該集合体が下記に記す用途 (例えば化合物 の細胞内への導入等) に適用可能である範囲で任意の方法で調製することが可能で あるが、 好ましい調 法として、 例えば下記に記すような方法を挙げることが出 来る。
本発明の調製方法にぉレ、ては、 陽ィオン性両親媒性分子を自己糸赚化させる。 該方法は、 「陽イオン性両親媒性分子」 を用いることを要する。 「両親媒性分子」 とは、 同一分子内に親水部と疎水部とを有する合成分子をいう。
本発明において用いられる両親媒性分子は、 陽イオン性であることを要する。 陰 イオン性である核酸等の化合物と、 陽イオン性である両親媒性分子とが非共梳合 をし、 安定した複合体を形成することができるからである。
当該陽ィオン性両親媒性分子は合成分子であることが好まし 、。 本発明に用いられる 「陽イオン性両親媒性分子」 は、 自己糸 II戠化された該陽ィォ ン性両親媒性分子の集合体力 s化合物 (核酸等) の細胞内への導入に適用可能である 範囲において特に限定されないが、 好ましくは親水部に第 4級アンモユウム基を有 する。
より好ましくは、 本発明に用いられる 「陽イオン性両親媒性分子」 は、 式 (I) H3) 3 (I)
CHa
Figure imgf000008_0001
(式中、 mは 12〜16の整数を、 nは 2〜11の整数を、 Xは Brまたは C 1を 示す)
で表される化合物、 式 (I I) 、 + 、
(CH2)q—, - N(CH3)3
χ-
Figure imgf000008_0002
(式中、 ρは 12〜16の整数を、 qは 2〜11の整数を、 Xは B rまたは C 1を 示す)
で表される化合物、 式 (I I I)
3
Figure imgf000008_0003
(式中、 rは 12〜 16の整数を、 sは 2〜 11の整数を、 Xは B rまたは C' 1を 示す)
で表される化合物、 式 ( I V) GH3)3
Figure imgf000009_0001
(式中、 tは 12〜16の整数を、 uは 2〜11の整数、 Xは Brまたは C 1を示 す)
で表される化合物、 及び式 (V)
CH3(CH2)V—へ +ノ GH3
>( (V)
CH3(GH2)V_ XCH3
X
(式中、 Vは 12〜 16の整数を、 Xは B rまたは C 1を示す)
で表される化合物である。
ここで、 式 (I) 中、 mは好ましくは 12〜14、 より好ましくは 12又は 14 である。 nは好ましくは 2〜8であり、 より好ましくは 2、 4、 6及ぴ 8からなる 群から選ばれる である。 Xは好ましくは B rである。
式(I I) 中、 pは好ましくは 12〜14、 より好ましくは 12又は 14である。 qは好ましく fま 2〜6、 より好ましくは 2、 4及ぴ 6からなる群から選ばれる整数 である。 更に好ましくは、 Xが B rであるとき qは 2又は 4であり、 Xが C 1であ るとき qは 6である。
式 (I I I) 中、 rは好ましくは 12〜: L 4、 より好ましくは 12又は 14であ る。 sは好ましくは 2〜6、 より好ましくは 2、 4及ぴ 6からなる群から選ばれる 整数、 更に好ましくは 2である。
式 (IV) 中、 tは好ましくは 12〜14、 より好ましくは 12又は 14、 更に 好ましくは 14である。 uは好ましくは 2〜6、 より好ましくは 2、 4及ぴ 6から なる群から選ばれる ¾¾、 更に好ましくは 2である。 Xは好ましくは 1である。 式 (V) 中、 Vは好ましくは 12、 14及ぴ 16からなる群から選ばれる で ある。 Xは好ましくは B rである。 集合体の安定性や、 ィ匕合物 (核酸等) の導入効率の視点から、 上記化合物の中で も、 式 (I V) で表される化合物が更に好ましい。
即ち、本発明に用いられる、最も好ましい陽イオン性両親媒性分子は、 tが 1 4、 が 2、 Xが C 1である式 (I V) で表される化合物、 即ち式 (V I )
Figure imgf000010_0001
で表される化合物である。
式 ( I ) 及ぴ (I I ) で表されるィ匕合物は、 「Bulletin of the Chemical Society of Japan, vol. 64, p3677 (1991)」 、 「Journal of the American Chemical Society, vol. 102, p6642(1980)」 等に、 式 (I I I ) 、 (I V) 及ぴ (V I ) で表される化 合物は rBiochemistry and Molecular Biology International, vol. 34, p915 (1994)」、 Γ Journal of the American Chemical Society, vol. 102, p6642 (1980)」 等に、 式 (V) で表される化合物は 「Journal of the American Chemical Society, vol. 102, P6642 (1980)」 等にそれぞれ開示された方法で合成することができる。
調製 (例えば混合等) 前の陽イオン性両親媒性分子は、 特に限定されないが、 好 ましくは固体であり、 更に好ましくは粉体である。
また、 調製 (例えば混合等) 前の陽イオン性両親媒性分子は、 特に限定されない 力 好ましくはリボソームを形成していない。
「陽イオン性両親媒性分子の自己繊戠化」 とは、 人為的に織哉化を誘導する操作 を加えない状態で、 7性溶媒中等において、 陽イオン性両親媒性分子同士が疎水結 合等の非共有結合を介して集合することにより、 集合体を形成することをいう。
し側戠化」 とは、分子同士が集合することにより、集合体を形成することをいう。 「人為的に |¾戠化を誘導する操作」 には、 超音波処理、 ポノレテックス、 エタノー /レ注入法、 フレンチ 'プレス法、 コール酸法、 C a 2+融合法、 一融角军法、 カロ熱 等の物理的な刺激を与える操作が含まれる。 従来法のように超音波発生装置等により人為的にリボソームを形成させると、 か えって化合物 (核酸等) の導入効率が低下する。
本発明において 「両親媒性 の集合体」 とは、 両親媒性分子同士が自己糸 II哉化 により集合することにより形成された集合体をいい、 単一な状態として特定し難い が、 当該集合体には、 両親媒性^^の疎水部同士が疎水結合し形成される二 、 リボソーム、 多重べシクノレ、 ひも状会合体、 ディスク状会合体、 ラメラ状会合体、 ロッド状会合体等及びこれらの混合物;^含まれる。
通常、 「两親媒性^^の集合体」 は肅己多様な状態の集合体の混合物として存在 する。
本癸明の調 法においては、 陽イオン性両親媒性分子を自己糸纖化させるため に、 好ましくは水溶性溶媒と当該陽ィオン性両親媒性分子とを混合する。
本発明の調製方法において用いられる 「水性溶媒」 は、 該方法により得られる集 合体が化合物の細胞内への導入に適用可能である範囲において特に限定されなレヽが、 好ましい水性溶媒としては、 水 (脱イオン水等) 、 生理食 ¾¾Κ、 リン酸緩衝生理食 塩水 (P B S) 、 当業者が通常の細胞培養で用いる培地(例えば R PM I 1 6 4 0、 DMEM、 HAM F— 1 2、 ィーグノ kt咅地等) 等が挙げられる。 当該水性溶媒は 血清等のタンパク質を含有しないことが好ましい。 タンパク質は両親媒性分子の自 己糸慮化を阻害する可能性があるからである。
性溶媒の ρ Ηは、 特に限定されないが、 ρ Η 4〜 1 0の範囲であることが好ま しく、 より好ましくは ρ Η 7〜8の範囲である。
本発明の調製方法においては、 7_性溶媒と陽ィオン性両親媒性分子との混合液の ?显度は、該方法により得られる集合体力 Μ匕合物の細胞内への導入に適用可能である 範囲において特に限定されないが、 4 0°C以下であることが好ましい。
当該温度は特に限定されないが、 好ましくは 4 0°C以下、 より好ましくは 3 8 °C 以下、 更に好ましくは 3 6°C以下、 最も好ましくは 3 4°C以下である。
4 0°Cを超える温度で陽イオン性両親媒性分子集合体を調製すると、 陽イオン性 両親媒性分子の自己繊哉化が阻害され、 また形成された陽イオン性両親媒性分子集 合体が不安定となり、 当該集合体を用いた際の化 (核酸等) の導入効率が低下 する ^がある。
当該混合液の は、 操作上の便宜から、 当該混合液の凝固点以上であることが 好ましレ、。 当該凝固点は、 水性溶媒の組成、 陽イオン性両親媒性分子の種類、 濃度 等に依存し変ィ匕するため、一律に設定し難いが、当該混合液の献が好ましくは 1 °C 以上、 より好ましくは 2 °C以上、 更に好ましくは 3¾以上、 最も好ましくは 4°C以 上であれば多くの齢問題とはならない。
当該温度が凝固点以下であると、 混合液が凍結してしまい、 操作の続行が困難と なる。
即ち、 当該混合液の温度は、好ましくは 1 °C以上 4 0 °C以下、より好ましくは 2 °C 以上 3 8 °C以下、 更に好ましくは 3 °C以上 3 6 °C以下、 最も好ましくは 4 以上 3 4 °C以下の範囲である。
本発明の調製方法の工程をより具体的に説明すると、 次の通りである。
即ち、 例えばまず水性溶媒と陽イオン性両親媒性分子とを混合することにより、 混合液を得る。
当該混合液中の陽ィオン性両親媒性好の濃度は、 用いる陽イオン性両親媒性分 子の種類等を考慮し適宜設定できる力 通常:!〜 2 0 0 mM、 好ましくは 1〜 1 0 O mM、 より好ましくは 1〜5 O mM、 更に好ましくは 5〜 5 0 mM、 最も好まし くは 1 O〜 3 0 mMの範囲である。
濃度が低すぎると充分量の陽イオン性両親媒性分子集合体が形成されず、 濃度が 高すぎると陽イオン性両親媒性分子が析出することがある。
次に、 上記混合液をインキュベーションすることで、 陽イオン性両親媒性分子が 自己糸!^裁ィ匕され、 集合体が形成される。 「自己糸 1ί戠化」 の工程においては、 超音波 処理等の上記の人為的に! ¾戠化を誘導する操作を行わない。 好ましくは混合液を静 置又は緩やかに攪拌 (例えばピペッティング等) する。
温度をコントロールするために、 混合液は恒温槽中でィンキュベーションされる のが好ましい。 上記インキュベーションの時間は、 用いる陽イオン性两親媒性分子の種類等の条 件を考慮し適宜設定することが可能であるが、 通常 1〜96時間、 好ましくは 1〜 72時間、 より好ましくは 1〜48時間、 更に好ましくは 1~24時間、 最も好ま しくは 2〜 24時間の範囲である。
以上の工程により、 自己1哉化された陽イオン性両親媒性分子集合体を得ること が出来る。
自己糸 II哉化された陽イオン性両親媒性分子集合体 (例えば本発明の調 法によ り調製された該集合体) を用いれば、 極めて高い効率で所望の化合物を細胞内へ導 入することが可能である。 該集合体を用いて細胞内へ導入することが可能である化 合物としては、 該導入が可能である限り特に限定されないが、 例えば、 核酸、 ぺプ チド、 タンパク質、 脂質、 糖、 生理活性物質、 薬物 (Doxorubicin (抗腫鍵) 、 Daunorubicin (抗腫瘍薬) 、 Vincristine (抗腫瘍薬) 、 Vinblastine (抗腫瘍薬) 、 Idarubicin (抗膾瘍薬) 、 Dibucaine (局所麻酔薬) 、 Propranolol ()3遮断薬) 、 Quinidine (不整脈治療薬) 、 Dopamine (強心 ·昇圧薬) 、 Imipramine (抗うつ薬) 、 Diphenhydramine (抗ヒスタミン薬) 、 Quinine (抗マラリア薬) 、 Chloroquine ¾ マラリア薬) 、 Diclofenac (抗炎症薬) 等) 、 ィ匕粧品等用の保湿斉 « (マンニトール 等) 等が挙げられる。
「核酸」 としては DN A又は RN Aを用いることができる。
DNAの種類は、 使用の目的に応じて適宜選択することができ、 特に限定されな いが、 例えばプラスミド DNA、 アンチセンス DNA、 染色体 DNA、 PAC、 B AC等が挙げられ、 好ましくはプラスミド DNA、 アンチセンス DNAであり、 よ り好ましくはプラスミド DNAである。 プラスミド DNA等の環状 DNAは適宜制 限酵素等により消化され、 線形 DNAとして用いることもできる。
RNAの種類は、 使用の目的に応じて適宜選択することができ、 特に限定されな いが、 例えば s i RNA, アンチセンス RNA、 メッセンジャー RNA、 トランス ファー RNA、 リポゾ一マル RNA等が挙げられ、 好ましくは s i RNA, アンチ センス RNAであり、 更に好ましくは s i RNAである。 自己系職化された陽イオン性両親媒性分子集合体 (例えば本発明の調 法によ り調製された該集合体) を用いると、 リボソーム等を用いた従来法と比較して、 特 に s i R N Aを高い効率で細胞へ導入することが可能である。
核酸は 1〜 3本鎖のレ、ずれも用 、ることができる力 好ましくは 1本鎖又は 2本 鎖である。 核酸は、 ホスホロチォエート化等の修飾をされていてもよい。
核酸の大きさは、 特に限定されず、 染色体 (人工染色体等) 等の巨大な核酸分子
(例えば約 1 0 7 k b pの大きさ) 力ら、 低分子核酸 (例えば約 5 b pの大きさ) を 導入することが可能である力 細胞内への核酸導入効率を考慮すると、 1 5 k b p 以下であることが好ましい。 例えばプラスミド DN Aのような高 核酸の大きさ としては、 2〜 1 5 k b p、 好ましくは 2〜 1 O k b pが例示される。 また、 s i R N Aのような低分子核酸の大きさとしては 5〜 5 0 b p、 好ましくは 1 0〜3 0 b p力 S例示される。
核酸は天然に存在するもの又は合成されたもののいずれでもよいが、 1 0 0 b p 程度以下の大きさのものであれば、 ホスホトリェチル法、 ホスホジエステル法等に より、 通常用いられる核酸自動合成装置を利用して合成することが可能である。 本 明において用いられる核酸は、 特に限定されないが、 当 が通常用いる方 法により精製されていることが好まし 、。
ま†こ、 自己糸纖化された陽ィオン性両親媒性分子集合体を用いて細胞内へ導入し 得る化合物は、 上記陽ィオン性両親媒性分子集合体との複合体の安定性という観点 からほ、 陰イオン性であること力 S好ましいが、 陽イオン性、 中性の水溶性化合物の ほか、 脂溶性化合物であってもよい。
上記陽イオン性両親媒性分子集合体を化合物 (核酸等) の細胞内への導入に用い るためには、 当該陽イオン性両親媒性 集合体と化合物 (核酸等) とを接触させ ることにより、 当該集合体と化合物 (核酸等) との複合体 (以下単に 「複合体」 と 呼ぶことがある) を形成させる。 当該集合体は陽イオン性であるので、 陰イオン性 である化合物 (核酸等) と非共猫合をし、 安定な複合体が形成される。 陽イオン性両親媒性分子集合体と化合物 (核酸等) との複合体は、 当該集合体を 含む水性溶媒と化合物 (核酸等) とを混合し、 インキュベーションすることにより 得られる。
当該水性溶媒の種類は、 上述と同様である。
また、 当該インキュベーション時の献は、 上記陽イオン性両親媒性分子集合体 の調製方法における と同様の範囲で設定されることが好ましい。
当該混合液中の陽ィオン性両親媒性分子集合体の濃度は、 用いられる陽ィオン性 両親媒性分子の種類等を考慮して適宜設定できるが、 通常 0. 05〜 500 mM、 例えば 1〜20 OmM、好ましくは:!〜 10 OmM、より好ましくは 1〜5 OmM、 更に好ましくは 5〜 50 mM、 最も好ましくは 10〜 30 mMの範囲である。
濃度が低すぎると充分量の複合体が形成されず、 濃度が高すぎると陽イオン性両 親媒'性分子集合体が析出することがある。
混合物中の化合物 (核酸等) の濃度は、 用いる化合物の種類、 サイズ (分子量) 等を考慮し適宜設定できるが、 該化合物が DNAである場合は通常 3〜: L 00 n g / n Lの範囲である。
たとえば DNAが通常のプラスミド DNA (サイズが 3kbp@^) である は、 当該混合液中の DNA濃度は好ましくは 10〜 90 n g/μ L、 より好ましく は 20〜80 n gZ L、 更に好ましくは 30〜70 n g/μ L、 最も好ましくは 40〜60ngZ Lの範囲である。
濃度が低すぎると細胞へ導入された DNAが期待された機能を発現することがで きず、 濃度が高すぎるとかえつて核酸導入効率が低下する。
該化合物が RN Aである # ^も、 RN Aのサイズ等を考慮し、 濃度を適宜設定で きるが、 RN Aのサイズが数 k bp程度である^は、 上記混合液中の RNA濃度 は、 通常 3〜1 OOng L、 好ましくは 10〜90ng//iL、 より好ましく は 20〜80 n gZ L、 更に好ましくは 30〜 70 n g/ L、 最も好ましくは 40〜60 n g/ μ Lの範囲である。
RNAが s i RNAのように比較的サイズの小さいものである (22 bp程 度) は、 RNA濃度は通常 1〜500 nM、 好ましくは 20〜400 nM、 より好 ましくは 2 0〜3 0 0 nM、 更に好ましくは 2 0〜 2 0 0 nM、 最も好ましくは 2 0〜: L 0 0 nMの範囲である。
濃度が低すぎると細胞へ導入された RNAが期待された機能を発現することがで きず、 濃度が高すぎるとかえつて核酸導入効率が低下する。
当該集合体を含む水性溶媒と化合物 (核酸等) とを混合した後のインキュベーシ ョンの時間は、 用いる試薬の種類等の条件を考慮し適 定することが可能である ί 通常 0. 5〜1 0 0分間、 好ましくは 0. 5〜3 0分間、 より好ましくは 0 . 5〜1 0分間、 更に好ましくは 0. 5〜2分間、 最も好ましくは 0. 5〜1分間の 範囲である。
インキュベーション時間が短すぎると、 ィ匕合物 (核酸等) 一両親媒性分子集合体
(複合体) の形成が不十分となり、 インキュベーション時間が長すぎると、 形成さ れた化合物(核酸等) 一両親媒性分子集合体(複合体) が不安定化する があり、 それぞれィ匕合物 (核酸等) の導入効率が低下する。
上記工程によって、 化合物 (核酸等) の細胞内への導入に用いる陽イオン性両親 媒性分子集合体と化^^ (核酸等) の複合体を含む混合液 (以下 「複合体含有謙」 と記載することがある) を得ることができる。
更に、 上記工程で得られた複合体と細胞とを接触させることで、 複合体に含まれ る化合物 (核酸等) を細胞内へ導入することができる。
上記 「細胞」 の種類は、 特に限定されず、 原核生物及び,生物の細胞を用いる ことができるが、 好ましくは ¾ ^生物である。
真核生物の種類も、 特に限定されず、 例えば、 ヒトを含む哺乳類 (ヒト、 サル、 マウス、 ラット、 ハムスター、 ゥシ等) 、魚類 (ゼブラフィッシュ等) 、 昆虫 (蚕、 蛾、 ショウジヨウバエ等) 、 植物、 酵母等の微生物等が挙げられる。
当該細胞は、 癌細胞を含む培養細胞株であっても、 個体や糸職より単離された細 胞であってもよい。 また、細胞は接着細胞であっても、非接着細胞であってもよい。 自己組織化された陽イオン性両親媒性集合体 (例えば本発明の調製方法により調 製された該集合体) を用いると、 リボソーム等を用いた従来法と比較して、 特に哺 乳動物の細胞 (例えば神経細胞、 白血球等) へ化合物 (核酸等) を高い効率で導入 することが可能である。 ここで、 「神経細胞」 、 「白血球」 は、 それぞれ、 神織且 '織由来の培養細胞株、 白血球由来の培養細胞株を含む。
複合体と細胞とを翻虫させる工程をより具体的に説明すると、 例えば次の通りで ある。
即ち、 細胞は当赚合体との擲虫の数日前に適当な培地に懸濁され、 適切な条件 で培養されることにより、 当 合体との翻虫時に対数増殖期にあるように調製さ れることが好ましい。
当該翻虫時の培養液は、 血清含培地であっても血清不含培地であってもよいが、 培地中の血清濃度は 20 %以下、 好ましくは 10 %以下であることが好まし!/、。 培 地中に過剰な血清等のタンパク質が含まれていると、 複合体と細胞との撤虫が阻害 される可能性があるからである。
当該繳虫時の細胞濃度は、 特に限定されず、 細胞の種類等を考慮して適宜設定す ることが可能であるが、 通常 0. 5X 105〜5X 105c e 1 1 s/mL、 好まし くは 0. 5X 105〜4 X 105 c e 1 1 s/mL、 より好ましくは 0. 5 X 105 〜3 X 105 c e 1 1 s/mL、更に好ましくは 1 X 105〜3 X 105 c e 1 1 s/ mL、 最も好ましくは l X 105〜2X 105c e 1 1 s /mLの範囲である。 このように調製された細胞を含む培地に、 上述の複合体含有赚を添加する。 複 合体含有 の添加量は、 特に限定されず、 細胞数等を考慮して適宜設定すること が可能であるが、 培地 lmLにっき、 通常1〜1000 、 好ましくは 1〜50 0 L、 より好ましくは l〜300/zL、 更に好ましくは l〜200/iL、 最も好 ましくは 1〜 100// Lの範囲である。
培地に複合体含有赚を添加後、 細胞を培養する、 培養時の温度、 湿度、 CO2濃 度等は、 細胞の種類を考慮して適宜設定する。 哺乳動物の細胞の ^は、 通常約 3
7 °C、 湿度約 95 %、 C O 2濃度は約 5 %である。
また、 培養時間も用いる細胞の種類等の条件を考慮して適宜設定することが可能 であるが、 通常 1〜36時間、 好ましくは 1〜24時間、 より好ましくは 1〜12 時間、 更に好ましくは 2〜 8時間、 最も好ましくは 3〜 6時間の範囲である。 上記培養時間が短すぎると、 ィ匕合物 (核酸等) が充^!田胞内へ導入されず、 培養 時間が長すぎると、 細胞が弱ることがある。
上記培養により、 化合物 (核酸等) が細胞內へ導入されるが、 好ましくは培地を 新鮮な培地と交換するか、 培地に纏な培地を添加して更に培養を続ける。 細胞が 哺乳動物由来の細胞である は、 βな培地は血清又は栄養因子を含むことが好 ましい。
更なる培養の時間は、 導入された化合物 (核酸等) に期待される機能等を考慮し て、 適宜設定することが可能であるが、 該化合物力 S発現ベクター等のプラスミド D ΝΑである^^は、 通常 1 6〜7 2時間、 好ましくは 1 6〜6 0時間、 より好まし くは 1 6〜4 8時間、 更に好ましくは 1 6〜3 6時間、 最も好ましくは 1 6〜2 4 時間の範囲であり、 該化合物が s i RNAである場合は、 通常 1 6〜7 2時間、 好 ましくは 1 6〜6 0時間、 より好ましくは 1 6〜4 8時間、 更に好ましくは 1 6〜 3 6時間、 最も好ましくは 1 6〜 2 4時間の範囲である。
また、 上述の自己細裁化された陽ィオン性雨親媒性分子集合体とィ匕合物との複合 体を用いることで、 試験管内 (in vitro) のみならず、 生体内 (in vivo) において も該化合物を細胞内へ導入することが可能である。 即ち、 龍合体を対象に投与す ることにより、 赚合体がターゲットの細胞へ到達 ·纖虫し、 生体内で辦复合体に 含まれる化合物が細胞内へ導入される。
該複合体を投与可能な としては、 特に限定されず、 例えば、 ヒトを含む哺乳 類 (ヒト、 サル、 マウス、 ラット、 ハムスター、 ゥシ等) 、 魚類 (ゼブラフイツシ ュ等) 、 鳥類 (ニヮトリ、 ダチョウ等) 等の脊椎動物、 昆虫 (蚕、 蛾、 .ショウジョ ゥパェ等) 、 植物等を挙げることが出来る。
また、 ¾t合体の投与方法は、 ターゲットの細胞へ^ m合体が到達'纖虫し、 該 複合体に含まれる化合物を細胞内へ導入可能な範囲で特に限定されず、 導入される ィヒ合物の種類や、 ターゲット細胞の種類や部位等を考慮して、 自体公知の投与方法 (経口投与、 非経口投与 (静脈内投与、 筋肉内投与、 局所投与、 経皮投与、 皮下投 与、 赚内投与等) 等) を適宜選択することができる。 該複合体の投与量は、 化合物の細胞内への導入を達成可能な範囲で特に限定され ず、 投与 ¾ ^の種類、 投与方法、 導入される化合物の種類、 ターゲット細胞の種類 や部位等を考慮し適宜選択することが出来るが、 経口投与の 、 一般的に例えば ヒト (6 0 k gとして) においては、 その 1回投与量は複合体として約 0. 0 0 1 m g〜 1 0 0 0 0 m gである。 非経口的に投与する:^ (例えば静脈内投与等) は、 一般的に例えばヒト (6 0 k gとして) においては、 その 1回投与量は複合体とし て約 0. 0 0 0 l m g〜3 0 0 O m gである。 他の動物の場合も、 6 O k g当たりに 換算した量を投与することができる。
自己糸職化された陽イオン性両親媒性分子集合体を用いれば、 極めて高い効率で ィ匕合物を細胞内へ導入することが可能であるので、 本発明は、 該陽イオン性両親媒 性分子集合体を含む、 生体外又は生体内で化合物を細胞内へ導入するための剤を提 供する。 該剤は研究用試薬、 医薬等として搬さ L る。 該剤を上述の方法におい て用いることによって、 容易に所望の化合物を細胞内へ導入することが可能である。 自己糸纖化された陽イオン性両親媒性分子集合体を、 ィ匕合物を細胞内へ導入する ための剤として使用する^ 1ま、 常套手段に従って製剤ィ匕することができる。
該剤が研究用試薬として徹される は、 自己繊化された陽ィオン性両親媒 性分子集合体は、 そのままで、 あるいは例えば水もしくはそれ以外の生理学的に許 容し得る液 (例えば上述の水溶性溶媒等) との無菌性赚、 または懸濁液等として 撤され得る。該剤は適宜、 自体 口の生理学的に許容し得る、賦形剤、べヒクル、 防腐剤、 安定剤、 結合剤等を含むことが出来る。
また、 該剤が医薬として難される は、 自己糸 戠化された陽イオン性両親媒 性分子集合体は、 そのままで、 あるいは薬学的に認められる公知の担体、 香麵、 賦形剤、 べヒクル、 防腐剤、 安定剤、 結合剤などとともに、 一般に認められた製剤 実施に要求される単位用量形態で混和することによって経口剤 (例えば錠剤、 カブ セル剤等) あるいは非経口剤 (例えば謝剤等) として製造することができる。 錠剤、 カプセル剤などに混和することができる添加剤としては、 例えば、 ゼラチ ン、 コーンスターチ、 トラガント、 アラビアゴムのような結合剤、 結晶性セルロー スのような賦形剤、 コーンスターチ、 ゼラチン、 アルギン酸などのような膨化剤、 ステアリン酸マグネシゥムのような潤滑剤、 ショ糖、 乳糖またはサッカリンのよう な甘,、ペパーミント、 ァカモノ油またはチェリーのような香 などが用いら れる。 調剤単位形態がカプセルである には、 上記タイプの材料にさらに油脂の ような液状担体を含有することができる。 剤用の水性液としては、 例えば、 生 理食 、 ブドウ その他の補助薬を含む等張液 (例えば、 D—ソルビトール、 D—マンュトー/レ、 塩化ナトリウムなど) などが用いられ、 適当な溶解補助剤、 例 えば、 アルコール (例:エタノール) 、 ポリアルコール (例:プロピレングリコー ル、 ポリエチレンダリコール) 、 非イオン性界面活性剤 (例:ポリソルベート 8 Ο τ M、 HC O- 5 0 ) などと併用してもよい。 油性液としては、 例えば、 ゴマ油、 大豆 油などが用いられ、 溶解補助剤である安息香酸ベンジル、 ベンジルアルコールなど と併用してもよい。
また、 上記剤は、 例えば、 緩衝剤 (例えば、 リン酸塩緩衝液、 酢酸ナトリウム緩 衝液) 、 無痛化剤 (例えば、 塩化ベンザルコユウム、 塩酸プロ力インなど) 、 安定 剤 (例えば、 ヒ ト血清アルブミン、 ポリエチレングリコールなど) 、 保存剤 (例え ば、 ベンジルアルコール、 フエノールなど) 、 酸化防止剤などと配合してもよい。 これらの剤に含まれる自己糸 II哉化された陽イオン性両親媒性分子集合体の含有量 は、 上記方法において用いられたときに化合物の細胞内への導入が達成されうる範 囲において特に限定されず、剤型の種類、 導入される化合物の種類等に応じて適宜 選択することが可能である。
また、 本発明の剤と、 所望の化合物とを組み合わせることによって、 これらを含 む、 当該化合物を細胞内へ導入するためのキットとすることもできる。 当該キット は、 更に上記方法において用いられ得るあらゆる試薬等 (例えば上記水溶性溶媒、 調製プロトコ ルが記載された指示書、 反応容器等) を更に含むことが出来る。 該 キットを用いることにより、 上述の方法に従い、 容易に所望の化合物を細胞内へ導 入することが可能である。
あるいは、 本発明の剤に含まれる自己! ¾裁化された陽イオン性両親媒性分子集合 体は、 細胞内への導入が所望される化合物との複合体であってもよい。 また、 本発明は、 本発明の調 »法により陽イオン性両親媒性、子集合体を調製 するためのキットを する。 当該キットには少なくとも上記の陽イオン性両親媒 性分子が含まれる。 当該キットには、 更に本発明の調 法において用いら H る あらゆる試薬等 (例えば上記水溶性溶媒、 調製プロトコールが記載された指示書、 反応^!等) を更に含むことが出来る。 当該キットを用いることにより、 上記調製 方法に従って容易に化合物の細胞内への導入に用いるための陽イオン性両親媒性分 子集合体を調製することが出来る。
また、 本発明は、 本発明の方法により化合物 (核酸等) を細胞内へ導入するため のキットを撤する。 当該キットには少なくとも上記の陽イオン性両親媒性好又 はその集合体 (自己糸纖化された集合体) 力 s含まれる。 当該キットは、 更に上記方 法において用いられ得るあらゆる試薬等 (例えば、 細胞内への導入が所望される化 合物、 上曾 ¾κ溶性溶媒、 試験プロトコールが記載された指示書、 反応容器等) を更 に含むことが出来る。 該キットを用いることにより、 上述の方法に従レ、、 容易に目 的とする化合物を細胞内へ導入することが可能である。
以下、 例を示して本発明をより具体的に説明する力 本発明は以下に示す実 施例によって何ら限定されるものではない。 実施例
実施例 1
(プラスミド DNAの導入)
陽イオン性両親媒性分子として式 (VI)の化合物 (化合物 (VI)と呼ぶ) を用いた。 またプラスミド DNAとして、 プラスミド pQBI (日本ジーン ) を用いた。 プラス ミド pQBIは CMV-IEプロモーターの下流に GFP遺伝子が挿入されたプラスミドであ り、 細胞内に導入されると GFPを発現する。
4 0 °C以下の で調製された化合物 (VI)の集合体 4. 3 gとプラスミド pQBI
1. 5 gとを血清不含培地 3 0 μ Lに添加し 3 0秒間ィンキュベートし、 プラスミド
PQBIと化合物 (VI)の集合体との複合体を調製した。 (ここでは 2 5°Cで調製された ィ匕合物 (VI)の集合体を用いたときの結果を示す。 ) 従来法として、 4 を超える温度で調製された化合物 (VI)のリボソーム 4.3 gとプラスミド pQBIとを血清不^ t咅地 30 μ L·に添 し、 5分間ィンキュベートし、 プラスミド pQBIと化合物 (VI)のリポソ"ムとの複合体を調製した。(ここでは 50°C で調製された化合物 (VI)のリポソームを用いたときの結果を示す。 )
細胞としては、 Hela (ヒト子宫癌細胞) 、 Jurkat (ヒト白血病細胞) 、 SME (マ ウス神経幹細胞) 、 CH0 (ハムスター卵巣細胞) を用いた。
細胞は 0.3 mLの血清不^ t咅地中に調製した。ここへ上記複合体を勸口し、 37°C、 5%C02の条件で、 4時間培養した。更に 1 mLの 10 % F B S含有培地を添加し、 翌日まで培養した。
培養後、 細胞を蛍光顕微鏡下観察した。
GFP遺伝子を発現している細胞の割合を、
遺伝子発現細胞 (%) = (GFP発卿胞数 田胞数) X I 00
として算出した。 結果を図 1に示す。
図 1から明らかなように、 40°C以下の で調製された化合物 (VI)の集合体を 用いると、 40°Cを超える温度で調製された化合物 (VI)のリボソームを用いた時と 比較して高い効率でプラスミド DNAを細胞内へ導入できる。 実施例 2
(s i RNAの導入)
両親媒性分子として式 (VI)の化合物 (化合物 (VI)と呼ぶ) を用いた。 用いた s i RNAのターゲット遺伝子は EGFPであり、 s i RNAは日本ジーン社製のものを用 いた。
40°C以下の で調製されたィ匕合物 (VI)の集合体 4.3 gと 20、 50、 100 nM (調製後における濃度) にそれぞれ調製された s i RNAとを血清不含培地 30 μ Lに添加し、 30秒間ィンキュベートし、 s i R Ν Αと化合物 (VI)の集合体との複 合体を調製した。 (ここでは 25°Cで調製された化合物 (VI)の集合体を用いたとき の結果を示す。 ) 従来法として、 40°C以上の で調製された化合物 (VI) のリボソーム 4.3 g と 20、 50、 100 nM (調 »における濃度) にそれぞれ調製された s i RNAとを 血清不含培地 30〃Lに添カ卩し、 5分間インキュベートし、 s i RNAと化^ VI) のリポソームとの複合体を調製した。 (ここでは 50°Cで調製された化合物 (VI)の リボソームを用いたときの結果を示す。 )
また、陰 '|¾ ^照として、 40°C以下の で調製されたィ匕合物 (VI)の集合体 4.3 gのみを血清不含培地 0 μ L·に添加し、 5分間ィンキュベートしたものを調製し た。
細胞としては、 EGFPを安定的に発現している CH0細胞を用いた。
細胞は 0· 3 m Lの血清不含培地中に調製した。ここへ上記複合体を添加し、 3 7 °C、 5%C02の条件で、 4時間培養した。更に 1 m Lの 1 0 % F B S含有培地を添加し、 翌日まで培養した。
培養後、細胞を回収し、 EGFPの発現量をフローサイトメトリー法により籠した。 EGFP遺伝子発現量は、 陰'性対照細胞の蛍光強度を 1 00%としたときの相対値とし て算出した。
結果を図 2に示す。
図 2から明らかなように、 40で以下の で調製された化合物 (VI)の集合体を 用いると、 40°Cを超える温度で調製された化合物 (VI)のリボソームを用いた時と 比較して高い効率で siRNAを細胞内へ導入することができ、 ターゲット遺伝子の発 現をより強力に抑制できる。 実施例 3
(生体内での核酸分子の導入)
両親媒性分子として式 (VI)の化合物 (化合物 (VI)と呼ぶ) を用いた。 以下の試薬 を緩やかなピぺッティングにより混合した。
150 mM NaCl 175 1
DNA又は R A 10^g (1μ /μ1) ΙΟμΙ
1.3 mM化合物 (VI)集合体 15 μ 1 本実施例においては分子のデリパリ一の軒を観察するために核酸分子として、 蛍光^ " Cy-3で標識した siRNAを用いた。 混合物を室温で 5分間職した後に、 調 製された赚を BALB/cマウス (7週齢) に尾静脈より ¾Λした。 ¾Λから 4時間後 にマウスより肺、 肝臓、 脾臓及び腎臓を摘出し、 小片にカットした後で、 蛍光顕微 鏡で観察した。 図 3及び表 1に結果を示す。
Figure imgf000024_0001
表 1はマウスの各臓器への siRNA導入の結果を示す。 表中、 + +は siRNAが約 2 5 %の細胞に導入されていること、 +は約 1 0 %の細胞に導入されていること、 土 はわずかに導入されていること、 一は導入されていないことをそれぞれ示す。
図 3及び表 1に示される通り、 化合物 (VI)を用いることにより、 生体内の各 β へ siRNAを導入出来た。 特に脾臓と肝臓への導入効率力優れていた。 産業上の利用可能性
自己 裁化された陽ィオン性両親媒性分子集合体 (例えば本発明の調 法を用 いて調製された陽イオン性両親媒性分子集合体等) を用いれば、 非常に高い効率で 核酸等の化合物を細胞内に導入することが可能であり、 遺伝子治療等への応用が可 能であるので、 医薬産業上有用である。 本出願は日本で出願された特願 2 0 0 3 - 4 0 8 2 3 1 (出願日 : 2 0 0 3年 1 2月 5日) を基礎としており、 その内容は本明細書に全て包含されるものである。

Claims

請求の範囲
1. 陽イオン性両親媒性分子を自己細裁化させることを特徴とする、 ィ匕合物の細胞 内への導入に用いるための陽イオン性両親媒性分子集合体の調 法。
2. 7性溶媒と陽イオン性両親媒性好とを混合し、 当該陽イオン性両親媒性分子 を自己糸 II戠化させる、 請求項 1記載の調製方法。
3. 40で以下の温度で水性溶媒と陽イオン性両親媒性分子とを混合する、 請求項 2記載の調製方法。
4. 7j性溶媒と陽ィオン性両親媒性分子の混合液の温度が当該混合液の凝固点以上 である、 請求項 2記載の調製方法。
5. 陽イオン性両親媒性好を自己 mi戠化させる工程からなる、 請求項 1記載の調 製方法。
6. 陽ィオン性両親媒性分子が第 4級ァンモニゥム基を有することを特徴とする、 請求項 1〜 5のいずれか 1項に記載の調製方法。
7. 陽イオン性両親媒性^^が式 (I)
CHg
Figure imgf000025_0001
(式中、 mは 12〜16の整数を、 nは 2〜11の整数を、 Xは Brまたは C1を 示す)
で表される化合物、 式 (I I)
Figure imgf000025_0002
(式中、 ρは 12〜16の整数を、 qは 2〜: L 1の整数を、 Xは Brまたは C1を 示す) で表される化合物、 式 (I I I) ,' , '、
(I I I)
Figure imgf000026_0001
(式中、 rは 12〜: L 6の整数を、 sは 2〜; L 1の整数を、 Xは B rまたは C 1を 示す)
で表される化合物、 式 (IV)
Figure imgf000026_0002
(式中、 tは 12〜16の整数を、 uは 2〜: 11の整数を、 Xは B rまたは C 1を 示す)
で表される化合物、 及ぴ式 (V)
Figure imgf000026_0003
(式中、 Vは 12〜16の整数を、 Xは B rまたは C 1を示す) で表される化合物 からなる群から選ばれる化合物である請求項 6記載の調製方法。
8. 陽イオン性両親媒性分子が式 (IV) で表される化合物である請求項 7記載の 調製方法。
9. t力 14、 uが 2、 Xが C 1である請求項 8記載の調 法。
10. ィ匕合物が核酸である請求項 1記載の調製方法。
11. 請求項 1〜10のいずれか 1項に記載の調 法により調製された陽イオン 性両親媒性分子集合体。
12. 請求項 11に記載の陽イオン性両親媒性分子集合体と化合物との複合体。
13. 化合物が核酸である、 請求項 12記載の複合体。
1 4. 請求項 1 1に記載の陽ィオン性両親媒性分子集合体とィ匕合物との複合体と細 胞とを撤虫させることを樹敫とする、 化合物を細胞内へ導入する方法。
1 5 . 化合物は核酸である、 請求項 1 4記載の方法。
1 6 . 核酸がプラスミド DNAである、 請求項 1 5記載の方法。
1 7. 核酸が s i RNAである、 請求項 1 5記載の方法。
1 8 . 細胞が神経細胞である、 請求項 1 4〜1 7のいずれか 1項に記載の方法。
1 9 . 請求項 1 1記載の陽イオン性両親媒性分子集合体と化合物との複合体を ¾·象 に投与するこどを特徴とする、 生体内で化合物を細胞内へ導入する方法。
2 0. 請求項 1 1記載の陽イオン性両親媒性分子集合体を含む、 ィ匕合物を細胞 へ 導入するための剤。
2 1 . 生体内で化合物を細胞内へ導入するための剤である、 請求項 2 0記載の剤。
2 2. ィ匕合物を細胞内へ導入するための剤を製造するための、 請求項 1 1記載の陽 ィオン性両親媒性分子集合体の使用。
2 3 . 該剤は生体内で化合物を細胞内へ導入するための剤である、 請求項 2 2曹己载 の使用。
2 4. 請求項 1〜 1 0のレヽずれか 1項に記載の調 法で陽ィオン性両親媒性分子 集合体を調製するためのキットであって、 当該陽イオン性両親媒性分子を含むキッ
2 5 . 請求項 1 4又は 1 9記載の方法で化合物を細胞内へ導入するためのキットで あって、 当該陽イオン性両親媒性分子又はその集合体を含むキット。
2 6 . 該化合物は核酸である、 請求項 2 5記載のキット。
2 7. 自己編哉化された陽イオン性両親媒性分子集合体と化合物との複合体。
2 8 . 自己糸纖化された陽ィオン性両親媒性分子集合体と化合物との複合体と細胞 とを掘虫させることを特徴とする、 ィ匕合物を細胞内へ導入する ^去。
2 9 . 自己繊戠化された陽イオン性両親媒性分子集合体と化合物との複合体を対象 に投与することを特徴とする、 生体内で化合物を細胞内へ導入する方法。
3 0. 自己糸慮化された陽イオン性両親媒性分子集合体を含む、 ィ匕合物を細胞内へ 導入するための剤。
3 1 . 化合物を細胞内へ導入するための剤を製造するための、 自己糸纖化された陽 ィオン性両親媒性好集合体の使用。
PCT/JP2004/018426 2003-12-05 2004-12-03 遺伝子導入試薬調製法 WO2005054486A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516037A JPWO2005054486A1 (ja) 2003-12-05 2004-12-03 遺伝子導入試薬調製法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-408231 2003-12-05
JP2003408231 2003-12-05

Publications (1)

Publication Number Publication Date
WO2005054486A1 true WO2005054486A1 (ja) 2005-06-16

Family

ID=34650393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018426 WO2005054486A1 (ja) 2003-12-05 2004-12-03 遺伝子導入試薬調製法

Country Status (2)

Country Link
JP (1) JPWO2005054486A1 (ja)
WO (1) WO2005054486A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528258A (ja) * 2006-03-01 2009-08-06 福岡県 ペプチド脂質を含んだキャリア及びそれを用いた化合物の細胞内導入法
WO2012132022A1 (en) 2011-03-30 2012-10-04 Fukuoka Prefectural Government Agent for promoting gene transfer and method of gene transfer using the same
US9011196B2 (en) 2013-03-15 2015-04-21 Global Marketing Enterprise (Gme) Ltd. Developmental activity gym for babies
US9393315B2 (en) 2011-06-08 2016-07-19 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier
EP3686184A3 (en) * 2015-06-24 2020-08-26 Nitto Denko Corporation Ionizable compounds and compositions and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135092A (ja) * 1988-11-14 1990-05-23 Bitamin Kenkyusho:Kk 細胞への遺伝子導入法
JPH10139685A (ja) * 1996-11-11 1998-05-26 Fukuoka Pref Gov 合成二分子膜から成るアジュバントとその使用法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564739A (ja) * 1991-09-05 1993-03-19 Canon Inc 巨大リポソームの調製方法
JPH069710A (ja) * 1992-06-25 1994-01-18 Canon Inc 巨大リポソームの調製方法、lb膜製造装置及び該装置を用いたlb膜の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135092A (ja) * 1988-11-14 1990-05-23 Bitamin Kenkyusho:Kk 細胞への遺伝子導入法
JPH10139685A (ja) * 1996-11-11 1998-05-26 Fukuoka Pref Gov 合成二分子膜から成るアジュバントとその使用法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOKUBU T. ET AL: "Gosei Nibunshi Maku-Yuki Bunshi no Jiko Soshikika", BIOPHYSICS, vol. 21, no. 6, 1981, pages 289 - 301, XP002990298 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528258A (ja) * 2006-03-01 2009-08-06 福岡県 ペプチド脂質を含んだキャリア及びそれを用いた化合物の細胞内導入法
JP4911416B2 (ja) * 2006-03-01 2012-04-04 福岡県 ペプチド脂質を含んだキャリア及びそれを用いた化合物の細胞内導入法
WO2012132022A1 (en) 2011-03-30 2012-10-04 Fukuoka Prefectural Government Agent for promoting gene transfer and method of gene transfer using the same
US9393315B2 (en) 2011-06-08 2016-07-19 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US10000447B2 (en) 2011-06-08 2018-06-19 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US10100004B2 (en) 2011-06-08 2018-10-16 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier
US10669229B2 (en) 2011-06-08 2020-06-02 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US9011196B2 (en) 2013-03-15 2015-04-21 Global Marketing Enterprise (Gme) Ltd. Developmental activity gym for babies
EP3686184A3 (en) * 2015-06-24 2020-08-26 Nitto Denko Corporation Ionizable compounds and compositions and uses thereof
US11384051B2 (en) 2015-06-24 2022-07-12 Nitto Denko Corporation Ionizable compounds and compositions and uses thereof

Also Published As

Publication number Publication date
JPWO2005054486A1 (ja) 2007-06-28

Similar Documents

Publication Publication Date Title
Behr Synthetic gene transfer vectors II: back to the future.
CN103906504B (zh) 制备用于药物递送的脂质纳米颗粒的方法
CA3145913A1 (en) Nanomaterials containing constrained lipids and uses thereof
DE69822473T2 (de) Lipid-polyamid-konjugate und zusammensetzungen zur verabreichung von nucleinsäuremolekülen
EP3796893A1 (en) Delivery of dna
JP6280120B2 (ja) 干渉rnaの内在性メカニズムを調節することができる核酸配列を送達するための製剤
KR20140041593A (ko) 아미노 지질, 이의 합성 및 이의 용도
JP2007112768A (ja) 肝指向性リポソーム組成物
JP6887020B2 (ja) 生分解性化合物、脂質粒子、脂質粒子を含む組成物、およびキット
EP0905254A2 (de) Mit biologisch verträglichen niedermolekularen Polyethyleniminen assoziierte DNA-Vektor
US20030162293A1 (en) Cell transfection compositions comprising genetic material, an amphipathic compound and an enzyme inhibitor and method of use
JP2010059064A (ja) 薬物送達複合体
DE69928679T2 (de) Kationische dendrimer-verbindungen und deren verwendung als oligonucleotid/polynucleotid-träger
DE4110409C2 (de) Neue Protein-Polykation-Konjugate
US11252957B2 (en) Nucleic acid-peptide capsule complexes
WO2005054486A1 (ja) 遺伝子導入試薬調製法
JP2023171937A (ja) 改変型piggyBacトランスポゼースのポリペプチド、それをコードするポリヌクレオチド、導入キャリア、キット、細胞のゲノムに目的配列を組込む方法及び細胞製造方法
JP6826014B2 (ja) 生分解性化合物、脂質粒子、脂質粒子を含む組成物、およびキット
WO2022266083A2 (en) Engineered polynucleotides for cell-type or microenvironment-specific expression
US10961547B2 (en) Multifunctional metallic nanoparticle-peptide bilayer complexes
EP1007549B1 (en) Compositions and methods for highly efficient transfection
WO2012017119A2 (es) Vectores no virales para terapia génica
JP2000510334A (ja) 原核生物rnaポリメラーゼ自己遺伝子を利用する細胞質遺伝子発現系
WO2024131403A1 (zh) 基于核酸适体的脾脏及其亚细胞的mRNA靶向递送系统
US20230092306A1 (en) Substance delivery carrier and composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005516037

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase