WO2005054312A1 - 環状オレフィン系付加重合体の製造方法 - Google Patents

環状オレフィン系付加重合体の製造方法 Download PDF

Info

Publication number
WO2005054312A1
WO2005054312A1 PCT/JP2004/017813 JP2004017813W WO2005054312A1 WO 2005054312 A1 WO2005054312 A1 WO 2005054312A1 JP 2004017813 W JP2004017813 W JP 2004017813W WO 2005054312 A1 WO2005054312 A1 WO 2005054312A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecular weight
polymer
compound
carbon atoms
Prior art date
Application number
PCT/JP2004/017813
Other languages
English (en)
French (fr)
Inventor
Satoshi Ebata
Michitaka Kaizu
Noboru Oshima
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US10/581,525 priority Critical patent/US20070155922A1/en
Priority to EP04819839A priority patent/EP1712572A4/en
Priority to KR1020067013445A priority patent/KR101157275B1/ko
Publication of WO2005054312A1 publication Critical patent/WO2005054312A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof

Definitions

  • the present invention relates to a method for producing a cyclic olefin-based addition polymer which is excellent in optical transparency, heat resistance and adhesion / adhesion and is suitable for an optical material. Specifically, the present invention relates to a production method for obtaining a cyclic olefin-based addition polymer in which the amount of a catalyst and the amount of a molecular weight regulator used can be reduced and the molecular weight is adjusted to a molecular weight suitable for processing or the like.
  • optically transparent resin As such an optically transparent resin, a norbornene (bicyclo [2.2.1] hept-2-ene) -based addition polymer, which has the characteristics of high transparency, high heat resistance, and low water absorption, attracts attention. Have been.
  • norbornene is a transparent resin having a small linear expansion coefficient, excellent thermal dimensional stability, chemical resistance, and excellent adhesion to other members.
  • An addition polymer of (bicyclo [2.2.1] hepter 2-ene) and a cyclic olefin having a hydrolyzable silyl group and a crosslinked product thereof have been proposed (see Patent Documents 117).
  • the molecular weight of the addition polymer used as a substitute for inorganic glass is adjusted to a certain range. It is necessary.
  • Polymers containing norbornene have different molecular weights, different arrangements of structural units derived from norbornene, and degrees of branching depending on the catalyst used in the polymerization, and as a result, different solubility in various solvents.
  • Catalysts containing transition metal compounds such as titanium, zirconium, nickel, conoreto, chromium, and palladium are also used as polymerization catalysts for norbornene. Of these, cyclic polar olefins having high polymerization activity and polarity are preferred.
  • a multi-component catalyst containing palladium is generally well known.
  • catalysts comprising a palladium compound, a trivalent phosphine conjugate, an ionic boron compound, and an organoaluminum compound are described in Patent Documents 8 and 9 as polymerization catalysts for norbornene monomers. ing.
  • Method 3 is a mechanism in which ⁇ -olefin is inserted into the polymer terminal and then the molecular weight is adjusted by
  • Patent Document 16 describes that when a palladium compound having a ligand coordinated in a chelate manner with an atom selected from P, O, and N is used, ethylene is addition-copolymerized with cyclic olefin. I have.
  • the present inventor has conducted intensive studies on the relationship between the ligand of the palladium catalyst and the one-year-old olefin of the molecular weight regulator.
  • the number average molecular weight can be reduced from 10,000 to 200,000 with a small amount of catalyst.
  • the present inventors have found that a caropolymer having a cyclic olefin system having a range of 1 to 2 can be easily produced, and have completed the present invention.
  • Patent Document 1 USP 5, 912, 313
  • Patent Document 2 USP 6, 031, 058
  • Patent Document 3 USP 6, 455, 650
  • Patent document 4 JP 2002-327024 A
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2003-160620
  • Patent Document 6 JP-A-2002-327024
  • Patent Document 7 JP-A-2003-48918
  • Patent Document 8 USP 6, 455, 650
  • Patent Document 9 JP-A-5-262821
  • Patent Document 10 USP 3, 330, 815
  • Patent Document 11 Japanese Patent Publication No. 9-508649
  • Patent Document 12 USP 6, 455, 650
  • Patent Document 13 USP 6, 455, 650
  • Patent document 14 JP-A-5-262821
  • Patent Document 15 W098Z56839
  • Patent Document 16 W098Z56839
  • Non-patent document l Macromolecules 1996, 2755-2763
  • Non-Patent Document 2 Macromol. Rapid Commun. 17, 173-180 (1996)
  • Non-Patent Document 3 Macromol. Symp. 89, 433-442 (1995)
  • Non-Patent Document 4 Macromolecules 2002, 35, 8969-8977,
  • Non-patent document 5 J. Polymer Sci.A, Polym. Chem., 40, 3604-3614 (2002)
  • Non-patent document 6 Macromol. Rapid Commun. 18, 689-697 (1997)
  • Non-Patent Document 7 Macromol. Symp. 89, 433-442 (1995)
  • Non-Patent Document 8 Organometallics, 2001, 20, 2802-2812
  • Non-Patent Document 9 John Lipian et al. Macromolecules, 2002, 35, 8969-8977 Disclosure of the Invention
  • the present invention is excellent in heat resistance, optical transparency, adhesion to other members, adhesion, and the molecular weight is controlled so that it can be easily formed into a film, sheet, or the like by a solution casting method, and a hydrocarbon solvent or Cyclic olefins soluble in solvents selected from halogenated hydrocarbons It is an object to provide a method for producing an addition polymer. It is still another object of the present invention to provide a method for producing the above-mentioned cyclic olefin-added polymer, characterized in that the amount of the catalyst and the molecular weight regulator is small and the polymerization activity is high.
  • the method for producing the cyclic olefin-based addition polymer of the present invention comprises:
  • an ionic compound selected from ionic boron compounds, ionic aluminum compounds, Lewis acidic aluminum and Lewis acidic boron compounds, and
  • a multi-component catalyst comprising:
  • a 1 to A 4 are each independently a hydrogen atom, an alkyl group having 11 to 15 carbon atoms, a cycloalkyl group, an aryl group, an ester group, an alkoxy group, a trialkylsilyl group, These are hydroxyl groups, each of which is linked to a ring structure by a linking group having at least one selected from the group consisting of an alkylene group having 1 to 20 carbon atoms, an oxygen atom, a nitrogen atom, and a sulfur atom.
  • a C 1-15 alkylidene group formed by A 1 and A 2 a substituted or unsubstituted alicyclic or aromatic ring having 5 to 20 carbon atoms, or a heterocyclic ring having 2 to 20 carbon atoms Ah You may use it. Further, it may be a substituted or unsubstituted alicyclic or aromatic ring having 5 to 20 carbon atoms formed by A 1 and A 3 , or a heterocyclic ring having 2 to 20 carbon atoms.
  • m is 0 or 1.
  • the multi-component catalyst comprises:
  • an ionic compound selected from ionic boron compounds, ionic aluminum compounds, Lewis acidic aluminum and Lewis acidic boron compounds, and
  • R 2 is a substituent selected from an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group or an aryl group and a halogen atom,
  • X is an alkoxy group having 115 carbon atoms
  • Y is a residue of a hydroxyl group of an aliphatic diol having 2 to 4 carbon atoms
  • k is an integer from 0-2, and n is 0 or 1.
  • the a) palladium compound is an organic carboxylate of noradium or a j8-diketone conjugate.
  • the amount of ethylene used in the addition polymerization is preferably 0.1 to 5.0 mol% based on all monomers.
  • a monomer containing at least 80 mol% of bicyclo [2.2.1] hept-2-ene in all the monomers is preferably carried out in the presence of a polymerization solvent containing at least 50% by weight of an aliphatic hydrocarbon solvent.
  • a small amount of a molecular weight regulator and a palladium catalyst can be obtained by addition polymerization of a cyclic olefin compound using a specific palladium catalyst and ethylene as a molecular weight regulator.
  • a cyclic olefin-based addition polymer having a molecular weight in a range suitable for an optical material sheet or film can be produced.
  • a specific catalyst system is used, so that the cyclic olefin addition polymer having a highly reactive methoxysilyl group can be used.
  • the addition polymerization of the cyclic olefin-based compound is carried out using a specific multi-component catalyst containing a palladium compound and using ethylene as a molecular weight regulator.
  • the multi-component catalyst used in the present invention is the multi-component catalyst used in the present invention.
  • Ich compounds selected from ionic boron compounds, ionic aluminum compounds, Lewis acidic aluminum and Lewis acidic boron compounds
  • Examples of the «radium compound a) include an organic carboxylate, an organic phosphite, an organic phosphate, an organic sulfonate, a j8-diketone compound, and a halogenated compound of radium.
  • 8-diketone conjugate is preferable because it has high polymerization activity immediately after being dissolved in a hydrocarbon solvent.
  • these compounds include palladium acetate, propionate, maleate, fumarate, butyrate, adipate, 2-ethylhexanoate, naphthenate, and oleic acid.
  • Salt dodecanoate, neodecanoate, 1,2-cyclohexanedicarboxylate, 5-norbornene-2-capillary organic carboxylates of palladium, such as sulfonates, benzoates, phthalates, terephthalates, and naphthoates; triphenylphosphine complexes of palladium acetate; (Tolyl) phosphine complexes, organic complexes of palladium organic carboxylic acids, such as tricyclium hexylphosphine complexes of palladium acetate, and salts of palladium, such as dibutyl phosphite, dibutyl phosphate, dioctyl phosphate, and
  • Organic salts of palladium such as phosphates, phosphates, palladium dodecylbenzenesulfonate, p-toluenesulfonate, bis (acetylacetonate) palladium, bis (hexafluoroacetylacetonate) ) Palladium, bis (ethyl acetate acetate) palladium, Palladium j8-diketone compounds such as (fe-acetoacetate) palladium, dichlorobis (triphenylphosphine) palladium, dichlorobis [tri (m-tolylphosphine)] palladium, dibromobis [tri (m-tolylphosphine)] palladium Pd, dichlorobis [tri (m-xylylphosphine)] palladium, dibromobis [tri (m-xylylphosphine)] palladium, imidazole complex represented by [CHN] [P
  • an aryl or aryl palladium halide is formed in combination with a halide such as a sulfide, bromobenzene, chlorobenzene, and bromonaphthalene. Palladium compounds are also included.
  • ionic boron compound examples include, for example, triphenylcarbumetetrakis (pentafluorophenyl) borate, triphenylcarbamatetetrakis [3,5-bis (trifluoromethyl) phenyl] borate, and triphenylcarbadimethyltetrakis (2) , 4, 6-Trifluorophenol) borate, triphenylcarbamatetetraphenylporate, tributylammoniumtetrakis (pentafluorophenol) borate, N, N-dimethylauri-dimtetrakis (pentafluorophore) -Le) borate, N, N-Jetilayuyuri-Pemtetrakis ( Pentafluorophore) borate, N, N-diphenyl-aluminum-tetrakis (pentafluorophenyl) borate, lithium tetrakis (pentafluor
  • Examples of the ionic aluminum compound include, for example, triphenylcarbenyltetrakis (pentafluorophenyl) aluminate, triphenylcarbenyltetrakis [3,5-bis (trifluoromethyl) phenyl] Examples include aluminate, triphenylcarbamatetetrakis (2,4,6-trifluorophenyl) aluminate, and triphenylcarbamatetetraphenylaluminate.
  • Lewis acidic aluminum compound examples include aluminum trifluoride ether complex, ethyldifluoroaluminum, ethoxydifluoroaluminum, tris (pentafluorophenyl) aluminum, and tris (3,5-difluorophenylaluminum).
  • -A aluminum, tris (3,5-ditrifluoromethylphenyl) aluminum, and the like.
  • Lewis acidic boron compound examples include tris (pentafluorophenyl) boron, tris (3,5-difluorophenyl) boron, and tris (3,5-ditrifluoromethylphenyl).
  • ionic boron compounds are most preferred in terms of polymerization activity.
  • the phosphine compound or the phosphonium salt which can be used as a catalyst component of the multi-component catalyst is selected from the group consisting of an alkyl group having 3 to 15 carbon atoms, a cycloalkyl group and an aryl group.
  • Cone angle (Cone) is selected from the group consisting of an alkyl group having 3 to 15 carbon atoms, a cycloalkyl group and an aryl group.
  • Angle; ⁇ deg) is 170-200 phosphine compound or its phospho-pium salt.
  • the phosphine conjugate used in the present invention may be an alkyl group, a cycloalkyl group or an aryl group. It is a trivalent electron-donating phosphorus compound (tertiary phosphine compound) having an aryl group as a substituent.
  • tertiary phosphine compound a trivalent electron-donating phosphorus compound having an aryl group as a substituent.
  • corn angle of the tertiary phosphine compound Cone
  • the phosphine compound having a cone angle of 0 to 170 to 200 used in the present invention includes, for example, tricyclohexylphosphine, di-tert-butylphenylphosphine, trine-pentylphosphine, tri (t-butyl) phosphine, and the like. Tri (pentafluorophenol) phosphine, tri (o-tolyl) phosphine and the like.
  • di-tert-butyl-2-biphenylphosphine di-tert-butyl-2'-dimethylamino-2-biphenylphosphine, dicyclohexyl-2-biphenylphosphine, dicyclohexynole 2,1-ipropyl-2-biphenylphosphine And the like.
  • Phospho-pam salts having a deg of 170-200 include, for example,
  • Organoaluminum compounds d) include methylalumoxane, ethylethylalumoxane, Alkyl alumoxane compounds such as tilalumoxane, alkylaluminum compounds such as trimethylaluminum, triethylaluminum, triisobutylaluminum, diisobutylaluminum hydride, getylaluminum chloride, getylaluminum fluoride, ethylaluminum sesquichloride, ethylaluminum dichloride And an alkylaluminum halide compound, or a mixture of the above-mentioned alkylalumoxane compound and the above-mentioned alkylaluminum compound is suitably used.
  • the catalyst components a), b), c) and d) optionally used can be preferably used as a multi-component catalyst in the following ranges of usage.
  • the palladium compound of a) is used in the range of 0.001 to 0.05 mmol Pd atom, preferably 0.0015 to 0.01 mmol Pd atom, per 1 mol of the monomer.
  • addition polymerization can be performed at 0.001 to 0.01 mmol Pd atom per mole of monomer.
  • the ionic boron compound or the like of b) is used in an amount of 0.1 to 20 mol, preferably 0.5 to 3.0 mol, per Pdl atom of the palladium compound a). .
  • the specific phosphine compound of c) or its phosphonium salt is used in an amount of 0.05 to 5 mol, preferably 0.1 to 2.0 mol, per Pdl atom of the palladium compound a). It is used in the range.
  • the organoaluminum compound of d) is used as needed, and by using the organoaluminum compound, the polymerization activity is improved and the catalyst system has increased resistance to impurities such as oxygen.
  • the multi-component catalyst contains an organoaluminum compound d
  • the organoaluminum compound d) is used in an amount of 0.1 to 100 mol per Pdl atom of the palladium compound a), preferably 1. Used in the range of 0-10 moles.
  • a multi-component catalyst containing each of the above-mentioned components is present in the polymerization system! / Although there is no limitation, for example, the following methods 1) to 3) can be mentioned.
  • each component of the catalyst is previously mixed at a temperature of 0 to 80 ° C. for a period of 1 to 200 minutes to form a catalyst, and the resulting mixture is added to a mixture of a polymerization solvent and a monomer.
  • a polymerization solvent a mixture of monomers, a) a palladium compound, c) the above specific phosphine compound or a phospho-dimethyl salt thereof, b) an ionic boron compound and other selected compounds.
  • the molecular weight of the produced cyclic olefin addition polymer is adjusted by adding ethylene into the polymerization system as a molecular weight regulator.
  • the molecular weight of the resulting cyclic olefin addition polymer decreases as the amount of ethylene added increases.
  • Ethylene is a force that can be added to a polymerization system under the condition that the pressure at 25 ° C is in the range of 0.1 to 5 MPa, and the produced cyclic olefin polymer is formed into a film or sheet.
  • the amount of ethylene used is based on all the monomers, usually the 0. 05 15 Monore 0/0, preferably 0. 1-5. 0 Monore 0/0, more preferably Is 0.5-2.
  • Ethylene has a specific effect in controlling the molecular weight of the cyclic olefin-based addition polymer according to the present invention, and other ⁇ -olefins and hydrogen have little or no effect in controlling the molecular weight. Absent. In the method for producing a cyclic olefin-based addition polymer of the present invention, ethylene does not act as a monomer for addition polymerization.
  • a cyclic olefinic compound represented by the following general formula (1) is used as a monomer (hereinafter, referred to as “specific monomer (1)”).
  • a 1 to A 4 each independently represent a hydrogen atom, an alkyl group having 11 to 15 carbon atoms, a cycloalkyl group, an aryl group, an ester group, an alkoxy group, a trialkylsilyl group, These are hydroxyl groups, each of which is linked to a ring structure by a linking group having at least one selected from the group consisting of an alkylene group having 1 to 20 carbon atoms, an oxygen atom, a nitrogen atom, and a sulfur atom.
  • a C 1-15 alkylidene group formed by A 1 and A 2 a substituted or unsubstituted alicyclic or aromatic ring having 5 to 20 carbon atoms, or a heterocyclic ring having 2 to 20 carbon atoms Further, it may be a substituted or unsubstituted alicyclic or aromatic ring having 5 to 20 carbon atoms or a heterocyclic ring having 2 to 20 carbon atoms formed by A 1 and A 3.
  • m is 0 Or 1.
  • Specific examples of the specific monomer (1) include the following compounds. The present invention is not limited to these specific examples.
  • bicyclo [2.2.1] Heputa 2- E emissions is the preferred instrument total monomer in the norbornene 20- 99 mole 0/0, It is preferable to use 70 to 97 mol% because the resulting polymer has excellent mechanical strength, elongation and toughness. Further, in the present invention, it is preferable to carry out addition polymerization of a monomer containing 80% by mole or more, preferably 80 to 99% by mole of bicyclo [2.2.1] heptane-2.
  • a monomer represented by the following general formulas (2) -1 and Z or formula (2) -2 (hereinafter, referred to as “specific monomer (2)”). It is preferable to use such a compound because crosslinking property can be imparted to the obtained cyclic olefin addition polymer.
  • a hydrolyzable silyl group can be introduced into the molecule of the cyclic olefin-based addition polymer, and the hydrolyzable silyl group is formed by a siloxane bond. Acts as a crosslinking site.
  • the hydrolyzable silyl group since the hydrolyzable silyl group also functions as a site for adhesion and adhesion to other members, it also contributes to improvement of adhesion and adhesion of the cyclic olefin-based addition polymer to other members. Can be expected.
  • R 2 is a substituent selected from an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group or an aryl group and a halogen atom,
  • X is an alkoxy group having 115 carbon atoms
  • Y is a residue of a hydroxyl group of an aliphatic diol having 2 to 4 carbon atoms
  • k is an integer from 0-2, and n is 0 or 1.
  • Specific examples of the specific monomer (2) include the following compounds, but the present invention is not limited to these specific examples.
  • Examples of the specific monomer (2) represented by the general formula (2) -1 include the following compounds.
  • Examples of the specific monomer (2) represented by the general formula (2) -2 include the following compounds.
  • the specific monomer (2) When the specific monomer (2) is used, it is used in the range of 2 to 30% by mole, preferably 5 to 20% by mole of all the monomers. When the ratio of the specific monomer (2) exceeds 30 mol%, problems such as a decrease in polymerization activity and an increase in water absorption of the resulting addition polymer may occur. If the proportion of the specific monomer (2) is less than 2 mol%, the effect of improving crosslinkability and adhesion to other members may not be obtained. ⁇ Production of Cyclic Olefin-Based Addition Polymer>
  • the above monomer is subjected to addition polymerization using a multi-component catalyst comprising the above components in the presence of ethylene acting as a molecular weight regulator.
  • the addition polymerization according to the present invention is usually performed in a polymerization solvent.
  • the polymerization solvent include alicyclic hydrocarbon solvents such as cyclohexane, cyclopentane, and methylcyclopentane; aliphatic hydrocarbon solvents such as hexane, heptane, and octane; and aromatic solvents such as toluene, benzene, xylene, and mesitylene.
  • Selected solvents or mixed solvents such as aromatic hydrocarbon solvents, dichloromethane, 1,2-dichloromouth ethane, 1,1-dichloroethane, tetrachloroethane, cyclobenzene benzene, dichlorobenzene, etc. Can be used.
  • bicyclo [2.2.1] is added to the cyclic olefin-based addition polymer of the present invention. Even if the structural unit derived from 2-ene contains 90 mol% or more in all the structural units, it can be uniformly dissolved to perform polymerization. Therefore, in the present invention, when a polymerization solvent containing at least 50% by weight, preferably 70% by weight of an alicyclic hydrocarbon solvent is used, 50% by weight of bicyclo [2.2.1] heptane 2-ene is used. A monomer containing at least 80 mol%, preferably at least 80 mol%, more preferably 80-99 mol% can be suitably subjected to addition polymerization.
  • the addition polymerization according to the present invention is desirably carried out in a temperature range of usually -20 to 120 ° C, preferably 20 to 100 ° C.
  • the amount of water in the polymerization solvent is small, but if the amount is usually 40 Oppm or less, almost no problem occurs.
  • the water content in the polymerization solvent is in the range of 100 to 400 ppm, the polymerization activity may decrease slightly.
  • the molecular weight distribution of the cyclic olefin-based addition polymer generated is sharp and the desired properties and applications Depending on the situation, such a condition may be intentionally selected.
  • the water power exceeds OO ppm, the polymerization activity is remarkably reduced, which is not preferable.
  • a structural unit represented by the following general formula (3) is formed by addition polymerization of the above-mentioned specific monomer (1).
  • the structural unit represented by the general formula (3) may be formed by further hydrogenating the resulting polymer after the addition polymerization, as described later.
  • the hydrogenation method is not particularly limited, and may be any method capable of efficiently hydrogenating an unsaturated unsaturated bond. Generally, hydrogenation is carried out in an inert solvent at a hydrogen pressure of 0.5 to 15 MPa and a reaction temperature of 0 to 200 ° C in the presence of a hydrogenation catalyst.
  • Examples of the inert solvent used in the hydrogenation include aliphatic hydrocarbons having 5 to 14 carbon atoms such as hexane, heptane, octane and dodecane; cyclohexane, cycloheptane, cyclodecane, methylcyclohexane and the like. Desirable are those selected from alicyclic hydrocarbons having 5 to 14 carbon atoms and aromatic hydrocarbons having 6 to 14 carbon atoms such as benzene, toluene, xylene and ethylbenzene, which can dissolve the polymer.
  • Examples of the hydrogenation catalyst include a solid obtained by supporting a Group VIII metal such as nickel, palladium, platinum, cobalt, ruthenium and rhodium or a compound thereof on a porous carrier such as carbon, alumina, silica, silica alumina and diatomaceous earth.
  • a catalyst or an organic carboxylate of group IV-VIII such as cobalt, nickel, palladium, ⁇ -diketone
  • a homogeneous catalyst such as a combination of organic lithium and a complex of ruthenium, rhodium, iridium and the like is used.
  • an aromatic group When an aromatic group is present in a polymer molecule, the aromatic group is relatively stable to heat and light, and thus does not necessarily need to be hydrogenated. Such an aromatic group may significantly affect the optical properties of the polymer, and it is necessary to select conditions under which the aromatic group is not substantially hydrogenated depending on the desired properties.
  • the catalyst used for the polymerization reaction and, if necessary, the catalyst used for the hydrogenation reaction are removed in the decontacting step.
  • the method applied in the decontacting step is not particularly limited, and is appropriately selected depending on the properties and shape of the used catalyst.
  • a method of filtering using a filter a method of performing adsorption filtration using an adsorbent such as diatomaceous earth, silica, alumina, activated carbon, and the like are exemplified.
  • a method of removing with an ion-exchange resin a method of filtering using a zeta potential filter, an organic substance having an action of forming a chelate with a metal contained in the catalyst,
  • a method of adding an aqueous solution of a carboxylic acid conjugate, an amine compound, an amino alcohol compound, a phosphine compound, etc. to a reaction solution to perform extraction and separation alcohols such as ethanol and propanol, acetone, methylethyl, etc.
  • a method in which a reaction solution is mixed with a solvent (poor solvent) for precipitating a polymer such as a ketone such as a ketone and coagulated and removed is mixed with a solvent (poor solvent) for precipitating a polymer such as a ketone such as a ketone and coagulated and removed.
  • a solvent poor solvent
  • two or more of the above methods may be applied in combination, or a method other than the above may be applied.
  • the concentration of the residual metal derived from the catalyst contained in the obtained cyclic olefin-based addition copolymer can be reduced through the decontacting step.
  • the residual metal concentration is preferably as low as possible, but it is usually 10 ppm or less, preferably 5 ppm or less, more preferably 1 ppm or less for each metal species.
  • the cyclic olefin-based addition polymer produced through the steps of polymerization, desorption and the like can be obtained by a known method, for example, by means of heating or decompression.
  • the polymer The solvent can be recovered by a method of directly removing the solvent from a solution containing the polymer, or a method of coagulating and separating the polymer by mixing a solution containing the polymer with a poor solvent for the polymer such as alcohol and ketone.
  • the solution can be used as a raw material and formed into a film or sheet by a solution casting method (casting method) and collected.
  • the cyclic olefin-based addition polymer produced by the method of the present invention includes aromatic hydrocarbon compounds such as toluene, benzene, xylene, ethylbenzene and trimethylbenzene, and cyclopentane.
  • Alicyclic hydrocarbon compounds such as methylcyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, cycloheptane, tetralin, decalin, hexane, heptane, otatan, decane, dodecane
  • the compound can be dissolved in a solvent or a mixed solvent having a selected force, such as an aliphatic hydrocarbon compound such as methylene chloride, 1,2-dichloroethylene, tetrachloroethylene, chlorobenzene, and dichlorobenzene.
  • ethers such as tetrahydrofuran, methyltetrahydrofuran, methoxytetrahydrofuran, anisol, methyl t-butyl ether, diphenyl ether, dibutyl ether, and diethyl ether, ethyl acetate, butyl acetate, butyl benzoate, and benzoic acid Esters such as cyclohexyl and dicyclohexyl phthalate can be used in combination.
  • the cyclic olefin polymer produced by the production method of the present invention can be formed into a film, a sheet, a thin film or the like by a solution casting method (cast method) using these solvents.
  • the molecular weight of the cyclic olefin-based addition copolymer produced by the method of the present invention is It is defined by the properties and uses of the product and is not specified, but the number average in terms of polystyrene measured by gel permeation chromatography at 120 ° C using o-dichlorobenzene as a solvent.
  • Molecular weight (Mn) force Usually 10,000-200,000, preferably 30,000-150,000, Weight average molecular weight (Mw) force 30,000-500,000, preferably ⁇ 100,000 — 300,000.
  • the film or sheet is liable to crack.
  • the number average molecular weight (Mn) exceeds 200,000 and the weight average molecular weight (Mw) exceeds 500,000, the solution viscosity of the polymer when a film or sheet is produced by a solution casting method (cast method). Can be too high and difficult to handle.
  • the cyclic olefin-based addition polymer having the structural unit (4) 1 or (4) 2 obtained by the production method of the present invention (hereinafter, referred to as “silyl group-containing polymer”) is used as a side chain substituent. Since it has a hydrolyzable silyl group, it can be hydrolyzed and condensed in the presence of an acid to form a crosslinked product crosslinked by a siloxane bond. Such a crosslinked product, when formed into a film or sheet, has a significantly reduced coefficient of linear expansion, and has excellent solvent resistance, chemical resistance, and liquid crystal resistance.
  • a compound capable of generating an acid by the action of light or heat is blended in a solution of a silyl group-containing polymer, and the solution is cast by a solution casting method (cast method).
  • a solution casting method cast method
  • Examples of the acid generator used in the present invention include compounds in which the group powers of the following 1), 2) and 3) are also selected, and at least one selected from these is a silyl group-containing polymer. It is preferably used in the range of 0.001 to 5 parts by weight per 100 parts by weight.
  • Aromatic sulfone whose aion is selected from BF, PF, AsF, SbF, B (CF), etc.
  • trialkyl phosphites triaryl phosphites, dialkyl phosphites, alkyl phosphites, hypophosphites, esters of secondary or tertiary alcohols of organic carboxylic acids, Hemiacetal esters of organic carboxylic acids, trialkylsilyl esters of organic carboxylic acids or ester compounds of organic sulfonic acids and secondary or tertiary alcohols, etc. in the presence or absence of water Compounds that generate an acid when heated to at least ° C.
  • the compound of 3) is preferred because it has good compatibility with the silyl group-containing polymer and has excellent storage stability when blended in a solution containing the silyl group-containing polymer.
  • the cyclic olefin-based addition polymer obtained by the production method of the present invention and the silyl group-containing polymer solution composition for obtaining a crosslinked product are further improved in oxidation resistance and color deterioration resistance.
  • at least one selected from the group consisting of a phenol-based antioxidant, a rataton-based antioxidant, a phosphorus-based antioxidant, and a thioether-based antioxidant is used in an amount of 0.001% per 100 parts by weight of the polymer. 5 parts by weight can be blended.
  • the cyclic olefin-based addition polymer obtained by the production method of the present invention may be, depending on desired properties, another cyclic olefin-based addition polymer, a hydrogenated cyclic olefin-based ring-opened polymer, ⁇ - Olefin and cyclic olefins, kappa copolymer, crystalline ⁇ -olefin copolymer, rubbery ethylene and ⁇ -olefin copolymer having 3 or more carbon atoms, hydrogenated butadiene polymer Coalesced, hydrogenated butadiene 'styrene block copolymer, hydrogenated It can be appropriately blended with the obtained isoprene-based polymer and the like.
  • the cyclic olefin polymer obtained by the production method of the present invention is formed into a sheet, film, or thin film, or is formed by mixing with other resins, and is further crosslinked as necessary. It can be used for optical and electronic parts, electronic and electrical parts, medical equipment, electrical insulation materials and packaging materials.
  • optical materials include light guide plates, protective films, deflection films, retardation films, touch panels, transparent electrode substrates, optical recording substrates such as CDs, MDs, and DVDs, TFT substrates, color filter substrates, and the like. It can be used for lenses, sealing materials, and the like.
  • the electronic / electric parts include containers, trays, carrier tapes, separation films, cleaning containers, pipes, tubes, and the like. Medical equipment can be used for drug containers, ampules, syringes, infusion bags, sample containers, test tubes, blood collection tubes, sterile containers, pipes, tubes, and the like.
  • an electrical insulating material it can be used as a covering material for electric wires and cables, an insulating material for OA equipment such as computers, printers and copiers, and an insulating material for printed circuit boards.
  • a packaging material it can be used for package films of foods, pharmaceuticals and the like.
  • Total light transmittance was measured for a 150 ⁇ m thick film according to ASTM D1003.
  • the dynamic viscoelasticity was measured using Leono Ku Ibron DDV-01FP (manufactured by Orientec), the measurement frequency was 10 ⁇ , the heating rate was 4 ° CZ, the excitation mode was a single waveform, and the excitation amplitude was 2.
  • the peak temperature of Tan ⁇ was measured using a thing of 5 m.
  • TMA Thermal Mechanical Analysis
  • SS6100 manufactured by Seiko Instruments Inc.
  • the temperature was raised from room temperature to 200 ° C at 5 ° CZmin., And then raised again from room temperature at 5 ° CZmin.
  • the linear expansion coefficient was also determined for the inclination force of elongation of the film piece.
  • test piece was measured at a pulling speed of 3 mmZmin.
  • the content in the resulting copolymer was determined.
  • the methoxy group absorbs 3.5 ppm (CH 2 of SiOCH), and the ethoxy group absorbs 3.9 ppm (Si
  • the methyl ester group absorbs 3.5 ppm (-C (O) OCH), and the ethyl ester group
  • the charging port was sealed with a perforated crown with rubber packing.
  • gaseous 25 ° C a molecular weight modifier, 0. IMPa ethylene 25 ml (1. based on all the monomers 0 mole 0/0) .
  • the pressure bottle containing the solvent and monomer was heated to 75 ° C, and the catalyst component palladium octoate (as Pd atom)
  • the polymerization reaction was carried out at 75 ° C for 3 hours, and the conversion to the polymer was determined by measuring the solid content of the polymer solution. Subsequently, the polymer solution was poured into 1 liter of 2-propanol, and the obtained solid was dried under reduced pressure at 80 ° C. for 17 hours to obtain a polymer.
  • Example 1 instead of using tricyclohexylphosphine as the phosphine compound, Instead, the polymerization was carried out in the same manner as in Example 1 except that tris (pentafluorophenol) phosphine was used and the polymerization time was set to 5 hours.
  • Example 1 instead of using tricyclohexylphosphine as the phosphine compound, tri-n-butylphosphine was used, and the amount of ethylene, which is a molecular weight regulator, was adjusted to 25 ° C and 2500 ml in terms of IMPa (all monomers). Polymerization was carried out in the same manner as in Example 1 except that 100 mol% of the
  • a pressure-resistant bottle containing a solvent and a monomer was heated to 75 ° C, and palladium acetate was used as a catalyst component. (0.0002 mg atom as Pd atom), 0.0002 mmol tricyclohexyl phosphine, 0.00024 mmol triphenylcarbapentapentafluorophenolate, 0.000024 mmol triethylaluminum in order. Then, polymerization was started.
  • the polymerization reaction was performed at 75 ° C. for 2 hours, and the conversion of the polymer solution to the polymer was determined by measuring the solid content of the polymer solution. Subsequently, the polymer solution was poured into 0.8 liter of 2-prono-Vul, and the obtained solid was dried under reduced pressure at 80 ° C. for 17 hours to obtain a polymer.
  • Example 5 the amount of gaseous ethylene used as a molecular weight regulator was changed to 40 ml (l.6 mmol, 2.0 mol% based on all monomers) at 25 ° C and 0.1 MPa. Polymerization was carried out in the same manner as in Example 5, except that the above was changed.
  • Example 5 the amount of gaseous ethylene used as a molecular weight regulator was changed to 100 ml (4.0 mmol, 5.0 mol% based on all monomers) at 25 ° C and 0.1 MPa. The polymerization was carried out in the same manner as in Example 5, except that the polymerization time was changed to 3.5 hours.
  • Example 5 the amount of gaseous ethylene used as a molecular weight regulator was 200 ml at 25 ° C and 0.1 MPa (8.0 mmol, equivalent to 10 mol% based on all monomers). The polymerization was carried out in the same manner as in Example 5, except that the polymerization time was changed to 3.5 hours.
  • Example 5 as a molecular weight modifier, 25 o C, the gaseous propylene instead of ethylene 0. 20 ml (0 in IMPa. 8 Mijimonore, 1. 0 Monore 0/0 based on all the monomers Ne Approximately)
  • the polymerization was carried out in the same manner as in Example 5, except that the polymerization time was changed to 3.0 hours.
  • the transfer ratio to the polymer was 99%, and the power polymerization system was solidified.
  • the obtained polymer was insoluble in deuterated benzene at 50 ° C and 0-dichlorobenzene at 120 ° C, and the content and weight of structural units derived from monomer A in the obtained polymer were The number average molecular weight (Mn) and weight average molecular weight (Mw) of the union could not be measured.
  • Example 5 200 ml (8 mmol, equivalent to 10 mol% based on all monomers) of gaseous propylene at 25 ° C. and 0.1 MPa was used as a molecular weight regulator instead of ethylene at 25 ° C. The polymerization was carried out in the same manner as in Example 5, except that the time was changed to 3.0 hours.
  • the transfer ratio to the polymer was 95%, and the power polymerization system was solidified.
  • the obtained polymer was insoluble in deuterated benzene at 50 ° C and 0-dichlorobenzene at 120 ° C, and the content and weight of structural units derived from monomer A in the obtained polymer were The number average molecular weight (Mn) and weight average molecular weight (Mw) of the union could not be measured.
  • Example 5 0.07 g (0.8 mmol, equivalent to 1.0 mol% based on all monomers) of 1-hexene was used instead of ethylene as a molecular weight regulator, and toluene having a water content of 10 ppm was used.
  • the polymerization was carried out in the same manner as in Example 5, except that the amount of the resin used was 54.Og and the polymerization time was changed to 3.0 hours.
  • Example 5 In Example 5, 6.73 g (80 mmol, equivalent to 100 mol% based on all monomers) of 1-hexene was used instead of ethylene as a molecular weight regulator, and the amount of toluene used was 100 ppm of water. The polymerization was carried out in the same manner as in Example 5 except that the polymerization time was changed to 47.7 g and the polymerization time was changed to 3.0 hours.
  • Example 5 13.47 g (160 mmol, equivalent to 200 mol% based on all monomers) of 1-hexene was used instead of ethylene as the molecular weight regulator, and toluene of 10 ppm water was used. The polymerization was carried out in the same manner as in Example 5, except that the amount was 40.6 g and the polymerization time was changed to 3.0 hours.
  • the polymerization reaction was carried out at 75 ° C, and 0.75 mmol of 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene was sequentially added to the polymerization system eight times every 15 minutes from the start of polymerization. Was added.
  • the total amount of 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene used in the polymerization reaction was 10 mmol.
  • the polymerization reaction was further performed for 2.5 hours, and the solid content of the polymer solution was measured to determine the amount of the polymer. When the conversion ratio was determined, the conversion ratio was 97%.
  • the polymer solution was poured into 1 liter of 2-prono-Vole, and the obtained solid was dried under reduced pressure at 80 ° C for 17 hours to obtain a polymer.
  • the ratio of structural units derived from 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene in the obtained polymer was 9.8 mol%.
  • the number average molecular weight (Mn) of the obtained polymer was 59,000, the weight average molecular weight (Mw) was 187,000, and the glass transition temperature (Tg) was 375 ° C.
  • This polymer solution was filtered through a membrane filter having a pore size of 1 Pm to remove foreign substances, and then cast on a polyester film at 25 ° C, and the temperature of the atmosphere was gradually raised to 50 ° C. Was evaporated to form a film.
  • the film was exposed to 180 ° C superheated steam at 1 atm for 1 hour to form a crosslinked product.
  • the film was exposed to a methylene chloride vapor atmosphere at 25 ° C for 30 minutes to remove residual solvent.
  • Example 5 [0131] In Example 5, 0.0005 mmol of tricyclohexylphospho-dimethyl-2-ethylhexanoate was used in place of tricyclohexylphosphine, and the amount of triethylaluminum was reduced.
  • the polymer had a number average molecular weight (Mn) of 65,000, a weight average molecular weight (Mw) of 178,000, and a glass transition temperature (Tg) of 370 ° C. Also, from 1 H- NMR analysis of 270 MHz, the co-polymer in 9-trimethoxysilyl over tetracyclo [6. 2. 1. I 3 '6 . 0 2' 7] Dodeka 4 from En The ratio of structural units was 9.8 mol%.
  • Example 2 The metals remaining in the polymer recovered in the same manner as in Example 1 were measured by atomic absorption spectroscopy. The results were: Pd power SO.5 ppm, A1 power SO.8 ppm.
  • Example 9 5- [1'-methyl-2 ', 6'-dioxer 4', 4 'dimethyl-1' instead of 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene was used.
  • -Silacyclohexyl] bicyclo [2.2.1] hept-2-ene (initial introduction amount: 4 mmol, sequential addition amount: 0.75 mmol x 8 times, total amount: 10 mmol) —
  • the polymerization time after the addition of [1,1-methyl-2,6, dioxer-4,4,1-dimethyl-1, -silacyclohexyl] -bicyclo [2.2.1] heptane-2 was 3.0
  • the polymerization was carried out in the same manner as in Example 9, except that the time was changed.
  • the polymer thus obtained had a number average molecular weight (Mn) of 51,000, a weight average molecular weight (Mw) of 182,000, and a glass transition temperature (Tg) of 375 ° C. .
  • a pressure-resistant bottle containing a solvent and a monomer was heated to 75 ° C, and palladium acetate (0.00033 milligram atom as Pd atom), tricyclohexylphosphine 0.00015 millimeter monole, trife- Nore-Power Nom-Pentapentanoleolofe-Noreborate
  • the polymerization was started by adding the monole to j jet. 30 minutes and 60 minutes after the start of polymerization, 1 mmol of 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene was added, and the polymerization reaction was carried out at 75 ° C for 3 hours. Was. The polymer solution was uniformly dissolved. The conversion to polymer was determined by measuring the solid content of the polymer solution. The conversion ratio of the monomer to the polymer was 97%. The polymer solution was put into 2 L of isoprono-Vall, coagulated, and further dried at 90 ° C. for 7 hours to obtain a polymer.
  • the number average molecular weight (Mn) of the produced polymer was 58,000, the weight average molecular weight (Mw) was 193,000, and the glass transition temperature (Tg) of this polymer was 380 ° C.
  • the ratio of structural units derived from 5-trimethoxysilylbicyclo [2.2.1] hept-2-ene in the polymer was 3.0 mol 0 /.
  • residual Pd and A1 in the polymer recovered in the same manner as in Example 1 were 0.3 ppm and 0.5 ppm, respectively.
  • Example 13 was carried out in the same manner as in Example 13, except that 67.6 g of toluene was used instead of 6.8 g of toluene and 60.8 g of cyclohexane as the solvent. [0145] After the initiation of the polymerization, the polymer was precipitated in 0.5 hour, the polymer solution became cloudy after 1 hour, completely solidified after 3 hours, and the polymerization was stopped. The conversion ratio to the polymer was 92%.
  • This polymer was soluble in cyclohexane at 50 ° C and o-dichlorobenzene at 120 ° C, and had a number average molecular weight of 67,000 and a weight average molecular weight of 200,400. there were.
  • Example 1 was carried out in the same manner as in Example 1 except that as the molecular weight regulator, instead of ethylene, 1.0 mmol of hydrogen gas of 0.1 IMPa at 25 ° C was charged. After polymerization for 3 hours, the polymer solution was solidified with high molecular weight. The conversion of the monomer to the polymer was 98%.
  • the molecular weight regulator instead of ethylene, 1.0 mmol of hydrogen gas of 0.1 IMPa at 25 ° C was charged. After polymerization for 3 hours, the polymer solution was solidified with high molecular weight. The conversion of the monomer to the polymer was 98%.
  • This polymer was insoluble in cyclohexane at 50 ° C and benzene at 120 ° C, and its molecular weight was too strong to measure.
  • the conversion ratio to the polymer was 78%.
  • the resulting polymer dissolves in cyclohexane, its number average molecular weight (Mn) is 41,000, its weight average molecular weight (Mw) is 145,000, and its glass transition temperature (Tg) is 265 ° C Met.
  • Tg glass transition temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

  (解決手段)本発明の環状オレフィン系付加重合体の製造方法は、 a)パラジウム化合物、b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムおよびルイス酸性のホウ素化合物から選ばれた化合物、c)特定のホスフィン化合物またはそのホスフォニウム塩を必須とする多成分系触媒と、エチレンとの存在下に、特定の環状オレフィン系化合物を含む単量体を付加重合することを特徴としている。   (効果)本発明によれば、特定のパラジウム系触媒を用い、かつ分子量調節剤としてエチレンを用いて、環状オレフィン系化合物を付加重合することにより、少ない量の分子量調節剤量およびパラジウム系触媒で、光学材料用のシート、フィルムに好適な範囲の分子量である環状オレフィン系付加重合体を製造することができる。

Description

環状ォレフィン系付加重合体の製造方法
技術分野
[0001] 本発明は光学透明性、耐熱性、接着'密着性に優れ、光学材料に好適な環状ォレ フィン系付加重合体の製造方法に関するものである。詳しくは、本発明は、触媒使用 量および分子量調節剤の使用量を低減でき、さらに、加工等に適した分子量に調整 された環状ォレフィン系付加重合体を得るための製造方法に関するものである。 背景技術
[0002] 近年、軽量化、小型、高密度化の要求に伴い、従来、無機ガラスが用いられていた レンズ類、封止材などの光学部品、ノ ックライト、導光板、 TFT基板、タツチパネルな ど液晶表示素子部品などの分野で光学透明な榭脂による代替が進んでいる。係る光 学透明な榭脂として、高透明性、高耐熱性、低吸水性という特徴を有する、ノルボル ネン(ビシクロ [2. 2. 1]ヘプタ— 2-ェン)系の付加重合体が注目されている。
[0003] また、上記特性に加えて、線膨張係数が小さく熱的な寸法安定性にも優れ、耐薬 品性があり、他の部材との接着'密着性に優れた透明榭脂として、ノルボルネン (ビシ クロ [2. 2. 1]ヘプター 2—ェン)と加水分解性のシリル基を有する環状ォレフィンとの 付加重合体およびその架橋体が提案されている(特許文献 1一 7参照)。
[0004] これらの技術においては、ノルボルネン(ビシクロ [2. 2. 1]ヘプター 2—ェン)単独付 加重合体やノルボルネンとその他の環状ォレフィンとの付カ卩共重合体が多く用いら れて!、るが、ノルボルネンを含む環状ォレフィン化合物から形成されるこれら付加重 合体は重合系に分子量調節剤が存在しないと、しばしば、数平均分子量が 30万以 上の高分子量になり、重合中に著しく増粘したり固化したりして、工業的な生産が困 難になることがある。また、例え重合体が製造できたとしても、溶液粘度が高くなり、溶 液流延法 (キャスト法)によるフィルム、シートへの加工に困難が生じることがある。ま た一方、分子量が低すぎても、成形して得られるフィルム、シートなどの機械的強度 ゃ靱性が小さく脆い材料となり、成形体を使用する上で問題となる。このため、無機 ガラス代替として用いられる付加重合体は、その分子量が一定の範囲に調節される ことが必要である。
[0005] ノルボルネンを含む重合体は、重合に用いる触媒により、分子量、生成するノルボ ルネン由来の構造単位の配列、分岐度が異なり、その結果、各種溶媒に対する溶解 性も異なる。チタニウム、ジルコニウム、ニッケル、コノ レト、クロム、パラジウムなどの 遷移金属化合物を含む触媒は 、ずれもノルボルネンの重合触媒となるが、これらのう ち、重合活性が高ぐかつ極性の環状ォレフィンィ匕合物との共重合が容易な触媒とし て、パラジウムを含む多成分系触媒が一般によく知られている。例えば、ノルボルネ ン系単量体の重合触媒として、パラジウム化合物 Z三価のホスフィンィ匕合物 Zイオン 性ホウ素化合物 Z有機アルミニウム化合物から構成される触媒が、特許文献 8およ び 9などに記載されている。
[0006] また、パラジウム化合物を触媒とする環状ォレフィン系付加重合体の分子量を調節 する方法としては、
1)触媒の種類を選択する方法 (特許文献 10、非特許文献 1, 2参照)
2)触媒量を増やして、低分子量化する方法 (非特許文献 3参照)
3) a一才レフインィ匕合物を分子量調節剤 (連鎖移動剤とも言う)とする方法 (特許文献 11 , 12、非特許文献 4, 5参照)
4)シクロペンテンを分子量調節剤とする方法 (特許文献 13参照)
5)エチレンを分子量調節剤とする方法 (非特許文献 6参照)
6)水を分子量調節剤とする方法 (非特許文献 7参照)
7)イソプロパノールを分子量調節剤とする方法 (非特許文献 8参照)
8)水素を分子量調節剤とする方法 (特許文献 14参照)
などが知られている。
[0007] し力しながら、上記 1)、 2)の方法は用いる触媒量が多ぐ得られた重合体から触媒 を除去するために多大のエネルギーを必要とするため工業的には問題がある。また、 3)の方法は α—ォレフィンが重合体末端に挿入し、その後、 |8—脱離により分子量が 調節される機構で、ニッケル系触媒には有効であるがパラジウム系触媒では効果が 小さぐ多くの分子量調節剤を必要とする。さらに、 4)の方法でも多くの分子量調節 剤が必要で分子量調節の効果が小さぐ 5)の方法は特定の単一の錯体である [Pd ( CH CN) ] [BF ]
3 4 4 2
触媒を多く用いた重合でし力も、エチレン圧を高くすることが必要であり、 6)、 7)の方 法は分子量調節剤が多くなると重合活性が低下し、 8)の方法は記載では、扱いが難 しい水素ガスを使用することが必要であるほか、分子量調節の効果そのものが明瞭 ではない。
[0008] さらに、特許文献 15の比較例 A, B, C, Eには、トリフエ-ルホスフィン、 2, 2,ービピ リジルを配位子とするパラジウム化合物やパラジウムのェチルへキサノエート化合物 を用いた触媒によるノルボルネン(ビシクロ [2. 2. 1]ヘプタ— 2—ェン)をエチレンの 存在下で重合することが開示されて ヽるが、係る方法で得られたポリノルボルネンは 炭化水素溶媒に必ずしも溶解しな ヽ。
[0009] また、特定のパラジウム系触媒における分子量調節の効果に関して、パラジウム原 子に配位するホスフィンィ匕合物と α—ォレフィンの種類との関連に関しては P(o-Tolyl) を配位子に用い、多量の 1一へキセンを用いることにより、分子量が制御できることが
3
非特許文献 9に記載されている。また、特許文献 16においては、 P, O, Nから選ば れた原子でキレート状に配位する配位子を有するパラジウム化合物を用いるとェチレ ンは環状ォレフィンと付加共重合することが記載されている。
[0010] し力しながら、これらの方法においても、極性基を有する環状ォレフィン系化合物と の共重合が可能で、少量の触媒量および分子量調節剤の添加ですみ、かつ重合活 性の低下を伴わないで分子量を調節する方法は見出されておらず、その方法の出 現が求められていた。
[0011] 本発明者は、このような状況において、パラジウム触媒の配位子と分子量調節剤の a一才レフインの関係につ 、て鋭意検討した結果、置換基が特定の範囲のコーンァ ングル (Cone Angle)を有するホスフィンまたはそのホスフォ-ゥム塩を含む多成分 系パラジウム触媒を用い、かつ分子量調節剤としてエチレンを用いることにより、少な い触媒量で数平均分子量が 10, 000— 200, 000の範囲の環状ォレフィン系付カロ 重合体が容易に製造できることを見出して本発明の完成に至った。
特許文献 1 : USP 5, 912, 313
特許文献 2 : USP 6, 031, 058 特許文献 3:USP 6, 455, 650
特許文献 4:特開 2002-327024号公報
特許文献 5:特開 2003— 160620号公報
特許文献 6:特開 2002— 327024号公報
特許文献 7:特開 2003 - 48918号公報
特許文献 8:USP 6, 455, 650
特許文献 9:特開平 5-262821号公報
特許文献 10:USP 3, 330, 815
特許文献 11:特表平 9- 508649号公報
特許文献 12:USP 6, 455, 650
特許文献 13:USP 6, 455, 650
特許文献 14:特開平 5—262821号公報
特許文献 15:W098Z56839号公報
特許文献 16:W098Z56839号公報
非特許文献 l:Macromolecules 1996, 2755-2763
非特許文献 2:Macromol. Rapid Commun. 17, 173—180(1996)
非特許文献 3:Macromol. Symp.89, 433-442(1995)
非特許文献 4:Macromolecules 2002, 35, 8969— 8977、
非特許文献 5 :J. Polymer Sci. A, Polym. Chem. , 40, 3604-3614(2002) 非特許文献 6:Macromol. Rapid Commun. 18, 689—697(1997)
非特許文献 7:Macromol. Symp.89, 433-442(1995)
非特許文献 8:Organometallics, 2001, 20, 2802-2812
非特許文献 9: John Lipian etal. Macromolecules, 2002, 35, 8969-8977 発明の開示
発明が解決しょうとする課題
本発明は、耐熱性、光学透明性、他の部材への接着'密着性に優れ、かつ溶液流 延法で容易にフィルム、シートなどに成形できるように分子量が制御され、かつ炭化 水素溶媒またはハロゲンィ匕炭化水素から選ばれた溶媒に溶解する環状ォレフィン系 付加重合体の製造方法を提供することを課題とする。さらに、触媒および分子量調 節剤の添加量が少なぐ重合活性が高いことを特徴とする上記環状ォレフィン系付 加重合体の製造方法を提供することを課題とする。
課題を解決するための手段
[0013] 本発明の環状ォレフィン系付加重合体の製造方法は、
a)パラジウム化合物、
b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムお よびルイス酸性のホウ素化合物から選ばれたィヒ合物、および
c)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力も選ばれた置 換基を有する、コーンアングル(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物またはそのホスフォ -ゥム塩、
を含む多成分系触媒と、
エチレンとの存在下に、
下記一般式(1)で表される環状ォレフィン系化合物を含む単量体を付加重合する ことを特徴としている。
[0014] [化 1]
Figure imgf000006_0001
[0015] (式(1)中、 A1— A4はそれぞれ独立に水素原子、炭素数 1一 15のアルキル基、シク 口アルキル基、ァリール基、エステル基、アルコキシ基、トリアルキルシリル基、水酸基 であり、これらは炭素数 1一 20のアルキレン基、酸素原子、窒素原子および硫黄原 子力 選ばれた少なくとも 1種の原子を含む炭素数 0— 10の連結基により環構造に 連結されていてもよい。また、 A1と A2で形成される炭素数 1一 5のアルキリデン基、炭 素数 5— 20の置換もしくは非置換の脂環または芳香環、炭素数 2— 20の複素環であ つてもよい。さらに、 A1と A3で形成される炭素数 5— 20の置換もしくは非置換の脂環 または芳香環、炭素数 2— 20の複素環であってもよい。 mは 0または 1である。 ) このような本発明の環状ォレフィン系付加重合体の製造方法では、多成分系触媒 が、
a)パラジウム化合物、
b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムお よびルイス酸性のホウ素化合物から選ばれたィヒ合物、および
c)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力も選ばれた置 換基を有する、コーンアングル(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物またはそのホスフォニゥム塩
に力!]えて、
d)有機アルミニウム化合物
を含むことが好ましい。
[0016] また、このような本発明の環状ォレフィン系付加重合体の製造方法では、
前記一般式(1)で表される環状ォレフィン系化合物; 70— 98モル%と、 下記一般式(2)— 1および Zまたは一般式(2)— 2で表されるアルコキシシリル基を 有する環状ォレフィン系化合物; 2— 30モル%とを含む単量体を付加重合することが 好ましい。
[0017] [化 2]
Figure imgf000007_0001
[0018] [化 3]
\
2 、oノグ … ( 2 ) —2
[0019] (式(2)—1および式(2)—2中、
Figure imgf000008_0001
R2は炭素原子数 1一 10のアルキル基、シクロアル キル基またはァリール基およびハロゲン原子力ゝら選ばれた置換基であり、
Xは炭素数 1一 5のアルコキシ基であり、
Yは炭素数 2— 4の脂肪族ジオールの水酸基の残基であり、
kは 0— 2の整数、 nは 0または 1である。 )
また、本発明の環状ォレフィン付加重合体の製造方法では、前記 a)パラジウム化 合物が、ノ ラジウムの有機カルボン酸塩または j8—ジケトンィ匕合物であることが好まし い。
[0020] また、本発明の環状ォレフィン付加重合体の製造方法では、付加重合におけるェ チレンの使用量力 全単量体に対して、 0. 1-5. 0モル%であることが好ましい。
[0021] さらに、本発明の環状ォレフィン系付加重合体の製造方法では、全単量体中にビ シクロ [2. 2. 1]ヘプタ- 2 -ェンを 80モル%以上含む単量体を、脂肪族炭化水素溶 媒を少なくとも 50重量%含む重合溶媒の存在下に付加重合することが好ましい。 発明の効果
[0022] 本発明によれば、特定のパラジウム系触媒を用い、かつ分子量調節剤としてェチレ ンを用いて、環状ォレフィン系化合物を付加重合することにより、少ない量の分子量 調節剤量およびパラジウム系触媒で、光学材料用のシート、フィルムに好適な範囲の 分子量である環状ォレフィン系付加重合体を製造することができる。
[0023] 本発明の環状ォレフィン系付加重合体の製造方法では、特定の触媒系を用いるこ とにより、反応性の高いメトキシシリル基を有する環状ォレフィン系付加重合体に対し ても、係るメトキシシリル基に起因する副反応に伴う架橋やゲルィ匕を抑制することが可 能であり、重合中やその後の成形工程等において、所望しない溶解性の変化や分 子量の増加、硬化等を抑制することができる。
発明を実施するための最良の形態
[0024] 以下、本発明について具体的に説明する。
[0025] 本発明の環状ォレフィン系付加重合体の製造方法では、環状ォレフィン系化合物 の付加重合を、パラジウム化合物を含む特定の多成分系触媒を用い、分子量調節 剤としてエチレンを用いて行う。
<多成分系触媒 >
本発明で用いる多成分系触媒は、
a)パラジウム化合物、
b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムお よびルイス酸性のホウ素化合物から選ばれたィヒ合物
c)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力も選ばれた置 換基を有する、コーンアングル(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物またはそのホスフォ -ゥム塩、および
必要に応じて用いられる
d)有機アルミニウム化合物
から調製される。
[0026] 以下にこれらの触媒成分について説明する。
a)パラジウム化合物
ノ《ラジウム化合物 a)としては、ノ《ラジウムの有機カルボン酸塩、有機亜リン酸塩、有 機リン酸塩、有機スルフォン酸塩、 j8—ジケトン化合物、ハロゲンィ匕物などが挙げられ 、このうちパラジウムの有機カルボン酸塩または |8—ジケトンィ匕合物力 炭化水素溶 媒に溶解しやすぐ重合活性が高いため好ましい。
[0027] これら化合物の具体例としては、パラジウムの酢酸塩、プロピオン酸塩、マレイン酸 塩、フマル酸塩、酪酸塩、アジピン酸塩、 2—ェチルへキサン酸塩、ナフテン酸塩、ォ レイン酸塩、ドデカン酸塩、ネオデカン酸塩、 1, 2—シクロへキサンジカルボン酸塩、 5—ノルボルネンー 2—力ルボン酸塩、安息香酸塩、フタル酸塩、テレフタル酸塩、ナフ トェ酸塩などのパラジウムの有機カルボン酸塩、酢酸パラジウムのトリフエ-ルホスフ イン錯体、酢酸パラジウムのトリ(m-トリル)ホスフィン錯体、酢酸パラジウムのトリシク 口へキシルホスフィン錯体などのパラジウムの有機カルボン酸の錯体、パラジウムの ジブチル亜リン酸塩、ジブチルリン酸塩、ジォクチルリン酸塩、リン酸ジブチルエステ ル塩などの亜リン酸塩、リン酸塩、パラジウムのドデシルベンゼンスルホン酸塩、 p—ト ルエンスルホン酸塩などのパラジウムの有機スルフォン酸塩、ビス(ァセチルァセトナ ート)パラジウム、ビス(へキサフロロァセチルァセトナート)パラジウム、ビス(ェチルァ セトアセテート)パラジウム、ビス(フエ-ルァセトアセテート)パラジウムなどのパラジゥ ムの j8—ジケトン化合物、ジクロロビス(トリフエ-ルホスフィン)パラジウム、ジクロロビス [トリ(m—トリルホスフィン)]パラジウム、ジブロモビス [トリ(m—トリルホスフィン)]パラジ ゥム、ジクロロビス [トリ(m—キシリルホスフィン)]パラジウム、ジブロモビス [トリ(m—キ シリルホスフィン)]パラジウム、 [C H N ] [PdCl ]で表されるイミダゾール錯体、 [Ph
3 5 2 2 4
PCH C (0) CH ] [Pd CI ]
3 2 3 2 2 6
で表されるァセトニルトリフエ-ルホスフォ-ゥム錯体などのパラジウムのハロゲン化物 錯体等が挙げられる。さらに、ジベンジリデンアセトンパラジウム〔Pd (dba)〕ゃテトラ [
2 3 トリフエ-ルホスフィン]パラジウム〔Pd (P(Ph) )〕など、ァリールクロライド、ベンジルク
3 4
口ライド、ブロモベンゼン、クロ口ベンゼン、ブロモナフタレンなどのハロゲン化物との 組合わせで本発明の下記 C)で示すホスフィンィ匕合物の存在下でァリールまたはァリ ルパラジウムハライドを形成する 0価のパラジウム化合物も挙げられる。
b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムお よびルイス酸性のホウ素化合物カゝら撰ばれた化合物
イオン性ホウ素化合物としては、たとえば、トリフエ-ルカルベ-ゥムテトラキス (ペン タフルォロフエ-ル)ボレート、トリフエ-ルカルベ-ゥムテトラキス [3, 5—ビス(トリフル ォロメチル)フエ-ル]ボレート、トリフエ-ルカルベ-ゥムテトラキス(2, 4, 6—トリフル オロフェ -ル)ボレート、トリフエ-ルカルベ-ゥムテトラフエ-ルポレート、トリブチルァ ンモ-ゥムテトラキス(ペンタフルォロフエ-ル)ボレート、 N, N—ジメチルァユリ-ゥム テトラキス(ペンタフルォロフエ-ル)ボレート、 N, N—ジェチルァユリ-ゥムテトラキス( ペンタフルォロフエ-ル)ボレート、 N, N—ジフエ-ルァユリ-ゥムテトラキス(ペンタフ ルォロフエ-ル)ボレート、リチウムテトラキス(ペンタフルォロフエ-ル)ボレートなど挙 げられる。
[0028] イオン性アルミニウム化合物としては、例えば、トリフエ-ルカルベ-ゥムテトラキス( ペンタフルォロフエ-ル)アルミナート、トリフエ-ルカルベ-ゥムテトラキス [3, 5—ビス (トリフルォロメチル)フエ-ル]アルミナート、トリフエ-ルカルベ-ゥムテトラキス(2, 4 , 6—トリフルオロフェ -ル)アルミナート、トリフエ-ルカルベ-ゥムテトラフエ-ルアルミ ナートなどが挙げられる。
[0029] ルイス酸性のアルミニウム化合物としては、例えば、三フッ化アルミニウムエーテル 錯体、ェチルジフルォロアルミニウム、エトキシジフルォロアルミニウム、トリス(ペンタ フルオロフェ -ル)アルミニウム、トリス(3, 5—ジフルオロフェ -ル)アルミニウム、トリス (3, 5—ジトリフルォロメチルフエ-ル)アルミニウム、などが挙げられる。
[0030] ルイス酸性のホウ素化合物としては、例えば、トリス(ペンタフルォロフエ-ル)ホウ素 、トリス(3, 5—ジフルオロフェ -ル)ホウ素、トリス(3, 5—ジトリフルォロメチルフエ-ル )ホウ素、三フッ化ホウ素 ·エーテル錯体などが挙げられる。
これらのうち、イオン性ホウ素化合物が重合活性の点で最も好ましい。
c)ホスフィン化合物、ホスフォニゥム塩
本発明にお ヽて、多成分系触媒の触媒成分として用いることのできるホスフィン化 合物またはホスフォ-ゥム塩は、炭素数 3— 15のアルキル基、シクロアルキル基およ びァリール基力 選ばれた置換基を有する、コーンアングル (Cone
Angle ; Θ deg)が 170— 200のホスフィン化合物またはそのホスフォ -ゥム塩である。
[0031] 本発明にお 、ては、触媒成分としてこのような特定のホスフィンィ匕合物またはホスフ ォ-ゥム塩を用いることが重要な技術的要件である。他のホスフィン化合物またはホ スフォ-ゥム塩を用いたのでは生成する環状ォレフィン系付加重合体が著しく高分子 量化して、重合体溶液が固化膨潤状態となったり、重合体が沈殿したりすることがあり 、係る場合には、溶液流延法によるフィルム、シートおよび薄膜への成形は困難であ る。
[0032] 本発明で用いられるホスフィンィ匕合物は、アルキル基、シクロアルキル基またはァリ 一ル基を置換基とする三価の電子供与性のリン化合物 (第三級ホスフィン化合物)で ある。ここで、第三級ホスフィン化合物のコーンアングル(Cone
Angle ; Θ deg)は、 C. A. Tolman (Chem. Rev. Vol. 77, 313 (1977) )によって計 算されており、金属原子とリン原子の結合距離を 2. 28Aとして、金属とリン原子の三 つの置換基で形成されるモデルで測定される円錐角 Θである。
[0033] 本発明で用いられるコーンアングル: 0 degが 170— 200のホスフィン化合物として は、例えば、トリシクロへキシルホスフィン、ジ t ブチルフエ-ルホスフィン、トリネオべ ンチルホスフィン、トリ(tーブチル)ホスフィン、トリ(ペンタフルォロフエ-ル)ホスフィン 、トリ(o—トリル)ホスフィンなどが挙げられる。また、ジー tーブチルー 2—ビフエ-ルホス フィン、ジー tーブチルー 2'—ジメチルァミノ— 2—ビフエ-ルホスフィン、ジシクロへキシル 2—ビフエニルホスフィン、ジシクロへキシノレ 2,一 i プロピル 2—ビフエニルホスフィ ンなども挙げられる。
[0034] また、本発明で用いられるコーンアングル: Θ degが 170— 200のホスフォ -ゥム塩と しては、例えば、
トリシクロへキシルホスフォ-ゥムテトラ(ペンタフルォロフエ-ル)ボレート、 トリ t ブチルホスフォ-ゥムテトラ(ペンタフルォロフエ-ル)ボレート、
トリシクロへキシルホスフォ-ゥムテトラフルォロボレート、
トリシクロへキシルホスフォ-ゥムォクタノエート、
トリシクロへキシルホスフォ -ゥムアセテート、
トリシクロへキシルホスフォ -ゥムトリフロロメタンスルフオナート、
トリ t ブチルホスフォ -ゥムトリフロロメタンスルフオナート、
トリシクロへキシルホスフォ -ゥム p—トルエンスルフオナート、
トリシクロへキシルホスフォ -ゥムへキサフルォロアセチルァセトナート、
トリシクロへキシルホスフォ -ゥムへキサフルォロアンチモナート、
トリシクロへキシルホスフォ -ゥムへキサフルォロホスフオナート、
などのホスフォ -ゥム塩が挙げられる。
d)有機アルミニウム化合物
有機アルミニウム化合物 d)としては、メチルアルモキサン、ェチルアルモキサン、ブ チルアルモキサンなどのアルキルアルモキサン化合物、トリメチルアルミニウム、トリエ チルアルミニウム、トリイソブチルアルミニウム、ジイソブチルアルミニウムヒドリド、ジェ チルアルミニウムクロライド、ジェチルアルミニウムフルオライド、ェチルアルミニウムセ スキクロライド、ェチルアルミニウムジクロライドなどのアルキルアルミニウム化合物お よびハロゲン化アルキルアルミニウム化合物、または上記アルキルアルモキサン化合 物と上記アルキルアルミニウム化合物との混合物などが好適に使用される。 本発明では、多成分系触媒として、上記 a)、 b)、 c)および必要に応じて用いられる d)の各触媒成分を、以下の範囲の使用量で好ましく用いることができる。
[0035] a)のパラジウム化合物は、単量体 1モルに対して、 0. 001—0. 05ミリモル Pd原子 、好ましくは 0. 0015—0. 01ミリモル Pd原子の範囲で用いられる。特に、パラジウム 化合物として有機カルボン酸塩または j8—ジケトンィ匕合物を用いると、単量体 1モル 当たり、 0. 001—0. 01ミリモル Pd原子で付加重合することができる。
[0036] b)のイオン性ホウ素化合物等は、パラジウム化合物 a)の Pdl原子当たり、 0. 1一 2 0モルの範囲で用いられ、好ましくは 0. 5-3. 0モルの範囲で用いられる。
[0037] c)の特定のホスフィン化合物またはそのホスフォ-ゥム塩は、パラジウム化合物 a) の Pdl原子当たり、 0. 05— 5モルの範囲で用いられ、好ましくは 0. 1—2. 0モルの 範囲で用いられる。
[0038] d)の有機アルミニウム化合物は、必要に応じて用いられるもので有機アルミニウム 化合物を用いることにより、重合活性の向上や触媒系が酸素などの不純物に対して 耐性が増す。多成分系触媒が、有機アルミニウム化合物 d)を含む場合、有機アルミ -ゥム化合物 d)は、パラジウム化合物 a)の Pdl原子当たり、 0. 1一 100モルの範囲 で用いられ、好ましくは 1. 0— 10モルの範囲で用いられる。
[0039] 本発明にお 、ては、重合系内に上述の各成分を含む多成分系触媒が存在して!/、 ればよぐ各触媒の添加順等の調製法や使用法に特に制限はないが、たとえば、以 下の 1)一 3)の方法が挙げられる。
1)予め、触媒の各成分を 0— 80°Cで 1一 200分の範囲で混合、熟成して触媒を形成 したものを、重合溶媒、単量体の混合物に添加する方法、 2)重合溶媒、単量体の混合物に、 a)パラジウム化合物、 c)上記特定のホスフィンィ匕 合物またはそのホスフォ -ゥム塩、 b)イオン性ホウ素化合物その他力 選ばれたィ匕 合物、必要に応じて用いられる d)有機アルミニウム化合物の順に添加する方法、
3)重合溶媒、単量体の混合物に、 a)パラジウム化合物、 b)イオン性ホウ素化合物そ の他力 選ばれた化合物、 c)上記特定のホスフィン化合物またはそのホスフォ -ゥム 塩、必要に応じて用いられる d)有機アルミニウム化合物の順に添加する方法。
<分子量調節剤 >
本発明では、製造する環状ォレフィン系付加重合体の分子量の調節を、分子量調 節剤として重合系内にエチレンを添加することにより行う。生成する環状ォレフィン系 付加重合体の分子量は、添加するエチレンが多 、ほど低下する。
[0040] エチレンは、通常、 25°Cにおける圧力が 0. 1— 5MPaの範囲になる条件で重合系 内に添加することができる力 製造された環状ォレフィン系重合体をフィルムやシート などの成形体として用いる場合には、使用するエチレン量は、全単量体に対して、通 常は 0. 05— 15モノレ0 /0、好ましくは 0. 1-5. 0モノレ0 /0、さらに好ましくは 0. 5-2. 0 モノレ%である。
[0041] 本発明に係る環状ォレフィン系付加重合体の分子量の調節には、エチレンが特異 的に効果を有しており、他の α—ォレフインや水素では、分子量調節の効果が低いか またはほとんどない。なお、本発明の環状ォレフィン系付加重合体の製造方法にお V、ては、エチレンは付加重合の単量体としては作用しな 、。
<単量体>
本発明の環状ォレフィン系付加重合体の製造方法においては、下記一般式(1)で 表される環状ォレフィン系化合物を単量体 (以下、「特定単量体(1)」という。)として 用いる。 [0042] [化 4]
Figure imgf000015_0001
[0043] (式(1)中、 A1— A4はそれぞれ独立に水素原子、炭素数 1一 15のアルキル基、シク 口アルキル基、ァリール基、エステル基、アルコキシ基、トリアルキルシリル基、水酸基 であり、これらは炭素数 1一 20のアルキレン基、酸素原子、窒素原子および硫黄原 子力 選ばれた少なくとも 1種の原子を含む炭素数 0— 10の連結基により環構造に 連結されていてもよい。また、 A1と A2で形成される炭素数 1一 5のアルキリデン基、炭 素数 5— 20の置換もしくは非置換の脂環または芳香環、炭素数 2— 20の複素環であ つてもよい。さらに、 A1と A3で形成される炭素数 5— 20の置換もしくは非置換の脂環 または芳香環、炭素数 2— 20の複素環であってもよい。 mは 0または 1である。 ) o
[0044] 特定の単量体(1)の具体例としては、下記化合物が例示できる力 本発明はこれら の具体例に限定されるものではな 、。
ビシクロ [2. 2. 1]ヘプター 2—ェン、
5—メチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—ェチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—ブチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—へキシルビシクロ [2. 2. 1]ヘプター 2—ェン、
5—ォクチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—デシルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5、 6—ジメチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—メチルー 6—ェチルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—シクロへキシルビシクロ [2. 2. 1]ヘプター 2—ェン、
5—フエ-ルビシクロ [2. 2. 1]ヘプタ— 2—ェン、 5—ベンジルビシクロ [2. 2. 1]ヘプター 2 ェン、
5 インダニルビシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—ビュルビシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—ビ-リデンビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5— (1—ブテュル)ビシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—トリメチルシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—トリェチルシリルビシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—メトキシビシクロ [2. 2. 1]ヘプター 2—ェン、
5—エトキシビシクロ [2. 2. 1]ヘプター 2 ェン、
トリシクロ [5. 2. 1. 02'6]デカー 8 ェン、
3—メチルトリシクロ [5. 2. 1. 02'6]デカ— 8 ェン、
トリシクロ [5. 2. 1. 02'6]デカ— 3, 8—ジェン、
スピ P [フノレ才レン 9, 4,, 一トリシク P [5. 2. 1. 02''6 ]デカー 8, ェン、
5—メトキシカルボ-ルビシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—メチルー 5—メトキシカルボ-ルービシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—エトキシカルボ-ルビシクロ [2. 2. 1]ヘプタ— 2—ェン、
5 プロポキシカルボ-ルビシクロ [2. 2. 1]ヘプター 2 ェン、
5— n—ブトキシキシカルボ-ルビシクロ [2. 2. 1]ヘプタ— 2 ェン、
5 t ブトキシカルボ-ルビシクロ [2. 2. 1]ヘプタ— 2 ェン、
9ーメチルテトラシクロ [6. 2. 1. l32'7]ドデ力- 4-ェン、
9—ェチルテトラシクロ [6. 2. 1. 13'602'7]ドデ力- 4—ェン、
9, 10-ジメチルテトラシクロ [6. 2. 1. 13'602'7]ドデ力- 4—ェン、
9ーメトキシカルボ-ルテトラシクロ [6. 2. 1. l32'7]ドデカー 4 ェン、
9—エトキシカルボ-ルテトラシクロ [6. 2. 1. l32'7]ドデカー 4—ェン、
9 プロポキシカルボ-ルテトラシクロ [6. 2. 1. 13'602'7]ドデカー 4—ェン、 9 t-ブトキ シカルボ-ルテトラシクロ [6. 2. 1. l32'7]ドデ力- 4—ェン、
9—ベンジルォキシカルボ-ルテトラシクロ [6. 2. 1. 13'602'7]ドデカー 4—ェン、
9ーメチルー9ーメトキシカルボ-ルテトラシクロ [6. 2. 1. 13'602'7]ドデ力- 4ーェン、 9ーメチルー 9—エトキシカルボ-ルテトラシクロ [6. 2. 1. l32'7]ドデカー 4 ェン、
9ーメチルー 9 t-ブトキシカルボ-ルテトラシクロ [6. 2. 1. l32'7]ドデカー 4—ェン、
N—フエ-ルビシクロ [2. 2. 1]ヘプタ— 5—ェンー 2, 3—ジカルボンイミド、
N—シクロへキシルビシクロ [2. 2. 1]ヘプタ— 5 ェンー 2, 3—ジカルボンイミド、 ビシクロ [2. 2. 1]ヘプター 5—ェンー 2—スピロ一 3,一 exo—シクロへキシルスクシンイミド ビシクロ [2. 2. 1]ヘプター 5—ェンー 2—スピロ— 3,一 exo 無水コハク酸、などが挙げら れ、これらは 1種単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。
[0045] これらの特定単量体(1)のうち、ビシクロ [2. 2. 1]ヘプター 2—ェン(ノルボルネン) が好ましぐ全単量体中ノルボルネンを 20— 99モル0 /0、好ましくは 70— 97モル%用 いると、得られた重合体の機械的強度、伸びおよび靱性が優れたものとなるので好ま しい。また、本発明では、ビシクロ [2. 2. 1]ヘプター 2 ェンを 80モル%以上、好まし くは 80— 99モル%含む単量体を付加重合することが好まし 、。
[0046] 本発明においては、さらに、下記一般式(2)— 1および Zまたは式(2)— 2で表され る単量体 (以下、「特定単量体(2)」という。)を用いることにより、得られた環状ォレフ イン系付加重合体に架橋性を付与できるので好ましい。
[0047] すなわち、特定単量体(2)を用いることにより、環状ォレフィン系付加重合体の分子 中に加水分解性シリル基を導入することができ、係る加水分解性シリル基がシロキサ ン結合による架橋部位として作用する。また、係る加水分解性シリル基が、他の部材 との接着'密着するための部位としても作用するため、環状ォレフィン系付加重合体 の他の部材との接着'密着性の向上にも寄与することが期待できる。
[0048] [化 5]
Figure imgf000018_0001
[0049] [化 6]
バ\
R2 οン Ί … ( 2) —2
[0050] (式(2)—1および式(2)—2中、
Figure imgf000018_0002
R2は炭素原子数 1一 10のアルキル基、シクロアル キル基またはァリール基およびハロゲン原子力ゝら選ばれた置換基であり、
Xは炭素数 1一 5のアルコキシ基であり、
Yは炭素数 2— 4の脂肪族ジオールの水酸基の残基であり、
kは 0— 2の整数、 nは 0または 1である。 )
特定単量体 (2)の具体例としては、下記化合物が例示できるが、本発明はこれらの 具体例に限定されるものではな 、。
[0051] 一般式(2) -1で表される特定単量体(2)としては、たとえば以下の化合物が挙げら れる。
5—トリメトキシシリルービシクロ [2. 2. 1]ヘプタ一 2—ェン、
5—メチルジメトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—ジメチルメトキシシリルービシクロ [2. 2. 1]ヘプター 2—ェン、
5—ェチルジメトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—シクロへキシルジメトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン、 5—クロロジメトキシシリルービシクロ [2. 2. 1]ヘプター 2—ェン、
5—フエ-ルジメトキシシリルービシクロ [2. 2. 1]ヘプター 2 ェン、
5—トリエトキシシリルービシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—メチルジェトキシシリルービシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—ジメチルエトキシシリルービシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—ェチルジェトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン、
5—メチルジイソプロポキシシリルービシクロ [2. 2. 1]ヘプター 2 ェン、
5—クロロジイソプロポキシシリノレービシクロ [2. 2. 1]ヘプター 2—ェン、
9—トリメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9ーメチルジメトキシシリル-テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力- 4-ェン、
9—ェチルジメトキシシリル-テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力- 4-ェン、
9—シクロへキシルジメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9—フエ-ルジメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9—ジメチルメトキシシリル-テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力- 4-ェン、
9—トリェトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9ーメチルジェトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9—ェチルジェトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9—シクロへキシルジェトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4—ェン、
9—フエ-ルジェトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9—ジメチルエトキシシリル-テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力- 4-ェン。
また、前記一般式(2)— 2で表される特定単量体(2)としては、たとえば以下の化合 物が挙げられる。
5— [1,ーメチルー 2,, 5,ージォキサ— 1しシラシクロペンチル]ービシクロ [2. 2. 1]へ プター 2—ェン、
5— [ 1,ーメチルー 2,, 5,—ジォキサ— 3,, 4,—ジメチルー 1,—シラシクロペンチル]—ビ シクロ [2. 2. 1]ヘプター 2—ェン、
5— [1,一フエ-ルー 2,, 5,ージォキサ— 1,ーシラシクロペンチル]ービシクロ [2. 2. 1] ヘプタ— 2—ェン、 5— [ 1,ーメチルー 2,, 5,ージォキサ— 1,ーシラシクロペンチル]ービシ クロ [2. 2. 1]ヘプター 2—ェン、
5— [ 1,一フエ-ルー 2,, 6,ージォキサー 4,, 4,—ジメチノレー 1,—シラシクロへキシル] - ビシクロ [2. 2. 1]ヘプター 2—ェン
5— [1,—メチル—2,, 6しジォキサ一 4,, 4,一ジメチル- シラシクロへキシノレ]ービ シクロ [2. 2. 1]ヘプター 2—ェン、
5— [1,—メチル—2,, 6しジォキサ—3,, 4,—ジメチル- シラシクロへキシノレ]ービ シクロ [2. 2. 1]ヘプター 2—ェン、
5—[1,ーメチルー 2,, 7,ージォキサ 4,, 5,一ジメチル- シラシクロへプチル]—ビ シクロ [2. 2. 1]ヘプター 2—ェン
などが挙げられ、これらは 1種単独で用いてもよぐ 2種以上を組み合わせて用いても よい。
[0053] これらの特定単量体(2)の中で、
5—トリメトキシシリルービシクロ [2. 2. 1]ヘプタ一 2—ェン、
5—トリエトキシシリルービシクロ [2. 2. 1]ヘプタ— 2 ェン、
5—メチルジメトキシシリルービシクロ [2. 2. 1]ヘプタ— 2—ェン
9—トリメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
9-メチルジメトキシシリル-テトラシクロ [6. 2. 1. I3'6. 02'7]ドデ力- 4-ェン、
9—トリェトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4 ェン、
5— [ 1,ーメチノレー 2,, 6,ージォキサー 4,, 4,—ジメチノレー 1,—シラシクロへキシル]—ビ シクロ [2. 2. 1]ヘプター 2—ェン、
5— [ 1,ーメチノレー 2,, 6,ージォキサー 4,ーメチノレー 1,ーシラシクロへキシル]ービシクロ [ 2. 2. 1]ヘプター 2—ェン
が好ましい。
[0054] 特定単量体(2)を用いる場合には、全単量体中 2— 30モル%、好ましくは 5— 20モ ル%の範囲で用いられる。特定単量体(2)の割合が 30モル%を超える場合には、重 合活性の低下や生成付加重合体の吸水性増大の問題が生じることがある。また、特 定単量体 (2)の割合が 2モル%未満の場合には、架橋性や他の部材との接着'密着 性の向上の効果が得られないことがある。 [0055] <環状ォレフィン系付加重合体の製造 >
ィ寸カロ
本発明の製造方法においては、上記成分からなる多成分系触媒を用い、分子量調 節剤として作用するエチレンの存在下で上記単量体を付加重合する。
[0056] 本発明に係る付加重合は、通常重合溶媒中で行う。重合溶媒としては、シクロへキ サン、シクロペンタン、メチルシクロペンタンなどの脂環族炭化水素溶媒、へキサン、 ヘプタン、オクタンなどの脂肪族炭化水素溶媒、トルエン、ベンゼン、キシレン、メシ チレンなどの芳香族炭化水素溶媒、ジクロロメタン、 1, 2—ジクロ口エタン、 1, 1ージク ロロェタン、テトラクロロェタン、クロ口ベンゼン、ジクロロベンゼンなどのハロゲンィ匕炭 化水素溶媒など力 選ばれた溶媒もしくは混合溶媒を用いることができる。
[0057] 本発明では、このうち、脂環族炭化水素溶媒を少なくとも 50重量%含む重合溶媒 を用いることにより、本発明の環状ォレフィン系付加重合体中にビシクロ [2. 2. 1]へ プター 2—ェン由来の構造単位を全構造単位中に 90モル%以上を含んでも、均一に 溶解して重合を行うことができる。このため、本発明では、脂環族炭化水素溶媒を少 なくとも 50重量%、好ましくは 70重量%含む重合溶媒を用いる場合には、ビシクロ [2 . 2. 1]ヘプター 2—ェンを 50モル%以上、好ましくは 80モル%以上、より好ましくは 8 0— 99モル%含む単量体を好適に付加重合することができる。
[0058] また、本発明に係る付加重合は、通常— 20— 120°C、好ましくは 20— 100°Cの温 度範囲で行うのが望ましい。
[0059] また、本発明において、上記重合溶媒中の水分は少ない方が好ましいが、通常 40 Oppm以下であればほとんど問題は生じない。ちなみに、重合溶媒中の水分が 100 一 400ppmの範囲においては、重合活性がわずかに低下することがある力 生成す る環状ォレフィン系付加重合体の分子量分布がシャープなものとなり、所望の特性や 用途によっては、係る条件を敢えて選択することもある。ただし、水分力 OOppmを超 えると、重合活性が著しく低下するので好ましくない。
[0060] 本発明では、上述の特定単量体(1)を付加重合することにより、下記一般式 (3)で 表される構造単位が形成される。なお、一般式 (3)で表される構造単位は、付加重合 後、生成重合体をさらに後述のように水素化することによって形成されてもよい。 [0061] [ィ匕 7]
Figure imgf000022_0001
[0062] (式(3)中、 A1— A4および mは一般式(1)における定義と同じである。 )
また、単量体が上記特定単量体 (2)— 1および Zまたは(2)— 2を含む場合には、特 定単量体(1)と特定単量体 (2)とを付加重合することにより、一般式 (3)で表される構 造単位以外に、一般式 (4)— 1もしくは (4)—2で表される構造単位が形成される。
[0063] [化 8]
Figure imgf000022_0002
[0064] [化 9]
Figure imgf000023_0001
… (4 ) - 2
[0065] (式(4)— 1および式(4)— 2中、
Figure imgf000023_0002
X、 Y、 kおよび ηは、式(2)— 1および式(2)— 2における定義と同じである。 ) 付加重合において、側鎖置換基にォレフィン性不飽和結合を含む特定単量体(1)を 用いた場合は、得られた重合体にォレフィン性不飽和結合を含むため、熱や光に対 する安定性に乏しくゲルィ匕ゃ着色変色などの問題が生じることがある。そのため、該 重合体のォレフィン性不飽和結合の少なくとも 90%以上、好ましくは 95%以上、さら に好ましくは 99%以上を水素化することが好ましい。
[0066] 水素化方法は特には限定されず、ォレフィン性不飽和結合を効率よく水素化できる 方法であればよい。一般的には水素化触媒の存在下で不活性溶媒中、水素圧 0. 5 一 15MPa、反応温度 0— 200°Cで水素化が行われる。
[0067] 水素化で用いられる不活性溶媒としては、へキサン、ヘプタン、オクタン、ドデカン 等の炭素数 5— 14の脂肪族炭化水素、シクロへキサン、シクロヘプタン、シクロデカ ン、メチルシクロへキサン等の炭素数 5— 14の脂環族炭化水素、ベンゼン、トルエン 、キシレン、ェチルベンゼン等の炭素数 6— 14の芳香族炭化水素から選択され、重 合体を溶解できるものが望まし 、。
[0068] 水素化触媒としては、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウム等 の VIII族の金属またはその化合物をカーボン、アルミナ、シリカ、シリカアルミナ、珪藻 土等の多孔性担体に担持した固体触媒あるいは、コバルト、ニッケル、パラジウム等 IV族一 VIII族の有機カルボン酸塩、 βージケトンィ匕合物と有機アルミニウムまたは有 機リチウムの組み合わせやルテニウム、ロジウム、イリジウムなどの錯体等の均一触媒 が用いられる。
[0069] なお、重合体分子中に芳香族基が存在する場合、係る芳香族基は熱や光に対し て比較的安定であるので、必ずしも水素添加する必要はない。係る芳香族基は重合 体の光学特性に大きな影響を与えることがあり、所望の特性によっては係る芳香族基 が実質的に水素化されない条件を選択する必要がある。
脱鍾
本発明の製造方法において、重合反応に用いた触媒、および必要に応じて実施 する水素化反応に用いた触媒は、脱触工程において除去される。係る脱触工程に おいて適用される方法は特に限定されるものではなぐ用いた触媒の性状や形状に 応じて適宜選択される。
[0070] 例えば、担持触媒等不均一触媒の場合には、フィルターを用いて濾過する方法や 、ケイソゥ土、シリカ、アルミナ、活性炭などの吸着剤を用いて吸着濾過する方法など が挙げられる。また、有機金属化合物を用いた均一触媒の場合には、イオン交換榭 脂により除去する方法、ゼータ電位フィルターを用いて濾過する方法、触媒に含まれ る金属とキレートを形成する作用を有する有機物、例えば、カルボン酸ィ匕合物、アミ ン化合物、ァミノアルコール化合物、ホスフィン化合物などの水溶液を反応溶液に添 加して抽出'分離する方法、エタノール、プロパノールなどのアルコール類やアセトン 、メチルェチルケトンなどのケトン類等の重合体を析出させる溶媒 (貧溶媒)と反応溶 液を混合して凝固除去する方法などが挙げられる。もちろん、上記方法のうち 2種以 上の方法を組み合わせて適用してもよく、上記以外の方法を適用してもょ 、。
[0071] 本発明の製造方法においては、脱触工程を経ることにより、得られた環状ォレフィ ン系付加共重合体中に含まれる触媒由来の残留金属濃度を低減することができる。 係る残留金属濃度は、当然のことながら低ければ低いほど好ましいが、各金属種に ついて、通常、 lOppm以下、好ましくは 5ppm以下、さらに好ましくは lppm以下であ る。
[0072] 本発明の製造方法にお!、て、重合や脱触等の工程を経て製造された環状ォレフィ ン系付加重合体は、公知の方法、例えば、加熱や減圧等の手段を用いて該重合体 を含む溶液から直接溶媒を除去する方法、該重合体を含む溶液とアルコールゃケト ンなど該重合体の貧溶媒とを混合して該重合体を凝固'分離する方法などにより回 収できる。また、当該溶液をそのまま原料として用い、溶液流延法 (キャスト法)により フィルムやシートに成形して回収することもできる。
<環状ォレフィン系付加重合体 >
本発明の方法で得られた環状ォレフィン系付加重合体のガラス転移温度は、動的 粘弾性で測定される Tan δの温度分散のピーク温度で求められ (貯蔵弾性率: Ε,、 損失弾性率: E"、 Tan δ =Ε"ΖΕ,)、通常は 200— 450°C、好ましくは 250— 400 。C、さらに好ましくは 300— 380°Cである。
[0073] ガラス転移温度が 200°C未満の場合には耐熱性が劣り、また、 450°Cを超えると重 合体が剛直になり、線膨張係数は低減するが割れやすくなることがある。
[0074] 本発明の方法により製造された環状ォレフィン系付加重合体は、用いる単量体の 種類にもよるが、トルエン、ベンゼン、キシレン、ェチルベンゼン、トリメチルベンゼン などの芳香族炭化水素化合物、シクロペンタン、メチルシクロペンタン、シクロへキサ ン、メチルシクロへキサン、ジメチルシクロへキサン、ェチルシクロへキサン、シクロへ ブタン、テトラリン、デカリンなどの脂環族炭化水素化合物、へキサン、ヘプタン、オタ タン、デカン、ドデカンなどの脂肪族炭化水素化合物、塩化メチレン、 1 , 2—ジクロロ エチレン、テトラクロロエチレン、クロ口ベンゼン、ジクロロベンゼンなどのハロゲンィ匕炭 化水素化合物など力も選ばれた溶媒もしくは混合溶媒に溶解することができる。さら に必要に応じて、テトラヒドロフラン、メチルテトラヒドロフラン、メトキシテトラヒドロフラン 、ァニソール、メチル t-ブチルエーテル、ジフエニルエーテル、ジブチルエーテル、ジ ェチルエーテルなどのエーテル類、酢酸ェチル、酢酸ブチル、安息香酸ブチル、安 息香酸シクロへキシル、フタル酸ジシクロへキシルなどのエステル類なども併用して 用!/、ることができる。
[0075] 本発明の製造方法により製造された環状ォレフィン系重合体は、これらの溶媒を用 いて、溶液流延法 (キャスト法)によりフィルム、シートおよび薄膜などに成形すること ができる。
[0076] 本発明の方法により製造された環状ォレフィン系付加共重合体の分子量は、所望 の特性や用途により規定され一義的に規定されるものではないが、 o—ジクロ口べンゼ ンを溶媒として 120°C、ゲル'パーミエーシヨンクロマトグラフィー法で測定されるポリス チレン換算の数平均分子量(Mn)力 通常 10, 000— 200, 000、好ましくは 30, 0 00— 150, 000であり、重量平均分子量(Mw)力 通常 30, 000— 500, 000、好ま し <は 100, 000— 300, 000である。
[0077] 数平均分子量(Mn)が 10, 000未満であり、重量平均分子量(Mw)が 30, 000未 満の場合、フィルムまたはシートとした際割れやすいものとなる。また、数平均分子量 (Mn)が 200, 000を超え、重量平均分子量(Mw)が 500, 000を超えると溶液流延 法 (キャスト法)でフィルムまたはシートを作製する際に重合体の溶液粘度が高くなり すぎて取り扱 、が困難となることがある。
本発明の製造方法により得られた上記構造単位 (4) 1または (4) 2を有する環状 ォレフィン系付加重合体 (以下、「シリル基含有重合体」という。)は、側鎖置換基とし て加水分解性のシリル基を有するため、酸の存在下で加水分解および縮合すること により、シロキサン結合で架橋された架橋体とすることができる。係る架橋体は、フィ ルムまたはシートとした時、線膨張係数が大幅に低減され、耐溶剤'薬品性ゃ耐液晶 性にも優れる。
[0078] 本発明にお 、ては、光もしくは熱の作用により酸を発生させることができる化合物( 酸発生剤)をシリル基含有重合体の溶液に配合し、溶液流延法 (キャスト法)により、 フィルムまたはシートとした後、光照射もしくは加熱処理することにより酸を発生させて 架橋を進行させて上記架橋体を得ることができる。
[0079] 本発明において用いられる酸発生剤としては、下記 1)、 2)および 3)の群力も選ば れた化合物が挙げられ、これらの中から選択された少なくとも 1種をシリル基含有重 合体 100重量部当たり、 0. 001— 5重量の範囲で用いることが好ましい。
1)未置換、あるいはアルキル基、ァリール基もしくはヘテロ環状基を有するジァゾ二 ゥム塩、アンモニゥム塩、ョードニゥム塩、スルフォニゥム塩、スルフォニゥム塩もしくは ホスフォ -ゥム塩であり、対ァ-オンがスルフォン酸、ホウ素酸、リン酸、アンチモン酸 もしくはカルボン酸であるォ-ゥム塩類、ハロゲン含有ォキサジァゾール、ハロゲン含 有トリァジン化合物、ハロゲン含有ァセトフエノン化合物、ハロゲン含有べンゾフエノン 化合物などのハロゲン化有機化合物、 1, 2—べンゾキノンジアジドー 4ースルフォン酸 エステル、 1, 2—ナフトキノンジアジドー 4ースルフォン酸エステルなどのキノンジアジド 化合物、 α、 α,一ビス(スルフォ -ル)ジァゾメタン、 α—カルボ-ルー α,ースルフォ- ルジァゾメタンなどのジァゾメタンィ匕合物等、光照射することにより酸を発生する化合 物。
2)対ァ-オンが BF , PF , AsF , SbF , B (C F )などから選ばれた芳香族スルフ
4 6 6 6 6 5 4
ォ -ゥム塩、芳香族アンモ-ゥム塩、芳香族ピリジ -ゥム塩、芳香族ホスフォ-ゥム塩
、芳香族ョードニゥム塩、ヒドラジ-ゥム塩もしくはメタ口センの鉄塩等、 50°C以上に加 熱することで酸を発生する化合物。
3)トリアルキル亜リン酸エステル、トリアリール亜リン酸エステル、ジアルキル亜リン酸 エステル、物アルキル亜リン酸エステル、次亜リン酸エステル、有機カルボン酸の第 2 級または第 3級アルコールのエステル、有機カルボン酸のへミアセタールエステル、 有機カルボン酸のトリアルキルシリルエステルもしくは有機スルフォン酸と第 2級また は第 3級アルコールのエステル化合物等、水の存在下または水の存在がな 、状態で 50°C以上に加熱することで酸を発生する化合物が挙げられる。
[0080] これらの中で、 3)の化合物がシリル基含有重合体と相溶性がよぐまた、シリル基含 有重合体を含む溶液に配合した際の保存安定性に優れるため好ましい。
[0081] 本発明の製造方法により得られた環状ォレフィン系付加重合体、および架橋体を 得るためのシリル基含有重合体溶液組成物には、耐酸化劣化ゃ耐着色劣化性をさ らに向上させるために、フエノール系酸ィ匕防止剤、ラタトン系酸化防止剤、リン系酸化 防止剤、チォエーテル系酸ィ匕防止剤力 選ばれた少なくとも 1種を重合体 100重量 部当たり、 0. 001— 5重量部を配合することができる。
[0082] 本発明の製造方法により得られた環状ォレフィン系付加重合体は、所望の特性に 応じて、他の環状ォレフィン系付加重合体、水素化された環状ォレフィン系開環重合 体、 α—ォレフィンと環状ォレフィンとの付カ卩共重合体、結晶性の α—才レフイン重合 体、ゴム状のエチレンと炭素数が 3以上の α—才レフイン系共重合体、水素化された ブタジエン系重合体、水素化されたブタジエン 'スチレンブロック共重合体、水素化さ れたイソプレン系重合体などに対して、適宜配合することができる。
[0083] 本発明の製造方法により得られた環状ォレフィン系重合体は、シート、フィルムまた は薄膜の形態に成形され、あるいは他の樹脂と配合して成形され、さらに必要に応じ て架橋されて、光学材料部品をはじめ、電子 ·電気部品、医療用器材、電気絶縁材 料あるいは包装材料などに使用することができる。
[0084] 例えば、光学材料としては、導光板、保護フィルム、偏向フィルム、位相差フィルム、 タツチパネル、透明電極基板、 CD、 MD、 DVDなどの光学記録基板、 TFT用基板、 カラーフィルター基板などや光学レンズ類、封止材などに用いることができる。電子' 電気部品としては、容器、トレイ、キャリアテープ、セパレーシヨン'フィルム、洗浄容器 、パイプ、チューブなどに用いることができる。医療用器材としては、薬品容器、アン プル、シリンジ、輸液用バック、サンプル容器、試験管、採血管、滅菌容器、パイプ、 チューブなどに用いることができる。電気絶縁材料としては、電線'ケーブルの被覆 材料、コンピューター、プリンター、複写機などの OA機器の絶縁材料、プリント基板 の絶縁材料などに用いることができる。包装材料としては、食品や医薬品等のパッケ ージフィルムなどに用いることができる。
[0085] ¾細1
以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施 例によって何ら制限を受けるものではない。
[0086] なお、分子量、全光線透過率、ガラス転移温度、引っ張り強度'伸び、は下記の方 法で測定した。
(1)分子量
ウォーターズ (WATERS)社製 150C型ゲルパーミエシヨンクロマトグラフィー(GPC) 装置で東ソー (株)製 Hタイプカラムを用い, o—ジクロ口ベンゼンを溶媒として 120°C で測定した。得られた分子量は標準ポリスチレン換算値である。
(2)全光線透過率
ASTM— D1003〖こ準拠し、厚さ 150 μ mのフィルムについて全光線透過率を測定 した。
(3)ガラス転移温度 ガラス転移温度は動的粘弾性で測定される Tan δ (貯蔵弾性率 E'と損失弾性率 Ε "との比 Tan S =Ε"ΖΕ' )の温度分散のピーク温度で測定した。動的粘弾性の測 定はレオノくイブロン DDV— 01FP (オリエンテック製)を用い、測定周波数が 10Ηζ、 昇温速度が 4°CZ分、加振モードが単一波形、加振振幅が 2. 5 mのものを用いて Tan δのピーク温度を測定した。
(4)線膨張係数
TMA (Thermal Mechanical Analysis) SS6100 (セイコーインスッノレメント社製)を用い 、試験形状として 膜厚約 150 μ m、縦 10mm、横 10mmにしたフィルム片を直立、 固定し、プローブにより、 lg重の荷重をかける。フィルムの熱履歴を除去するため、室 温から 200°Cまで 5°CZmin.でー且昇温した後、再度、室温から 5°CZmin.で昇温 し、 50°C— 150°C間のフィルム片の伸びの傾き力も線膨張率を求めた。
( 5)引っ張り強度'伸び (脆さ'割れの代替測定)
JIS K7113に準じて、試験片を引っ張り速度 3mmZminで測定した。
(6)本発明の環状ォレフィン系付加重合体中のアルコキシシリル基およびエステル 基は 270MHzの1 H— NMR (プロトン核磁気共鳴)(溶媒 D )装置で測定して、
6 6
生成共重合体中の含量を求めた。
[0087] メトキシ基は 3. 5ppmの吸収(SiOCHの CH )、エトキシ基は 3. 9ppmの吸収(Si
3 3
OCH CHの CH )を使用した。
2 3 2
[0088] メチルエステル基は 3. 5ppmの吸収(一 C (O) OCH )、ェチルエステル基は
3
3. 9ppmの吸収 (一 C (0) OCH CHの CH )を使用した。
2 3 2
[0089] NMRの特性吸収が重なる場合は、重合体溶液の残留モノマーをガスグロマト グラムにより分析して共重合体へ導入された量を求めた。
実施例 1
[0090] 100mlのガラス製而圧ビンに水分 lOppmのトルエン 6. 8g、水分 7ppmのシクロへ キサン 60. 8g、 9—トリメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4ーェン (以下、単量体 Aとする) 10ミリモノレ(2. 80g)、ビシクロ [2. 2. 1]ヘプター 2—ェン 90ミリモル(8. 47g)、を仕込み、
仕込み口をゴム製パッキン付きの穴あき王冠で封止した。 [0091] さらに、耐圧ビンのゴム製パッキンを通じて、分子量調節剤であるガス状の 25°C、 0 . IMPaのエチレン 25ml (全単量体に対して 1. 0モル0 /0)を仕込んだ。溶媒、単量 体を含む耐圧ビンを 75°Cに加温して、触媒成分 オクタン酸パラジウム (Pd原子とし て
0. 0010ミリグラム原子)、トリシクロへキシルホスフィン 0. 0010ミリモル、トリフエ-ル カルべ-ゥムペンタフルォロフエ-ルポレート 0. 0012ミリモル、トリェチルアルミ- ゥム 0. 0050ミリモルの順に添加して重合を開始した。
[0092] 重合反応を 75°Cで 3時間行い、重合体溶液の固形分測定により重合体への転ィ匕 率を求めた。続いて、前記重合体溶液を 1リットルの 2—プロパノールに投入して得ら れた固体を、減圧下、 80°Cで 17時間乾燥することにより重合体を得た。
[0093] 前記の転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均 分子量 (Mn)、ならびに重量平均分子量 (Mw)の結果を、使用したホスフィン化合物 のコーンアングノレとともに表 1に示す。
実施例 2
[0094] 実施例 1において、ホスフィン化合物として、トリシクロへキシルホスフィンを用いる代 わりに、トリ- 0-トリルホスフィンを用いたこと以外は、実施例 1と同様にして重合を行つ た。
[0095] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用したホスフィン化合物のコー ンアングノレとともに表 1に示す。
実施例 3
[0096] 実施例 1において、トリェチルアルミニウムを用いないこと以外は、実施例 1と同様に して重合を行った。
[0097] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用したホスフィン化合物のコー ンアングノレとともに表 1に示す。
実施例 4
[0098] 実施例 1において、ホスフィン化合物として、トリシクロへキシルホスフィンを用いる代 わりに、トリス(ペンタフルォロフエ-ル)ホスフィンを用い、重合時間を 5時間としたこと 以外は、実施例 1と同様にして重合を行った。
[0099] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用したホスフィン化合物のコー ンアングノレとともに表 1に示す。
列 1
実施例 1において、ホスフィン化合物として、トリシクロへキシルホスフィンを用いる代 わりに、トリフエ-ルホスフィンを用いたこと以外は、実施例 1と同様にして重合を行つ た。
[0100] 3時間後の重合体への転ィ匕率は 90%であった力 重合系は高分子量化して、固化 した。得られた重合体は 50°Cの重水素化ベンゼン、 120°Cの 0—ジクロ口ベンゼンに も不溶であり、得られた重合体中の単量体 A由来の構造単位の含有率、重合体の分 子量は測定できな力つた。
12
実施例 1において、ホスフィン化合物として、トリシクロへキシルホスフィンを用いる代 わりに、トリー n—ブチルホスフィンを用いたこと以外は、実施例 1と同様にして重合を行 つた o
[0101] 3時間後の重合体への転ィ匕率は 95%であった力 重合系は高分子量化して、固化 した。得られた重合体は 50°Cの重水素化ベンゼン、 120°Cの 0—ジクロ口ベンゼンに も不溶であり、得られた重合体中の単量体 A由来の構造単位の含有率、重合体の分 子量は測定できな力つた。
列 3
実施例 1において、ホスフィン化合物として、トリシクロへキシルホスフィンを用いる代 わりに、トリー n—ブチルホスフィンを用い、分子量調節剤であるエチレンの量を 25°C、 0. IMPa換算で 2500ml (全単量体に対して 100モル%)を用いたこと以外は、実施 例 1と同様にして重合を行った。
[0102] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用したホスフィン化合物のコー ンアングノレとともに表 1に示す。 実施例 1において、ホスフィン化合物として、トリシクロへキシルホスフィンを用いる代 わりに、トリス (2,4,6-トリメチルフエニル)ホスフィンを用いたこと以外は、実施例 1と同 様にして重合を行った。
[0103] 3時間後の重合体への転ィ匕率を測定したが、重合反応は全く進行しておらず、重 合体を得ることはできな力つた。
[0104] [表 1]
Figure imgf000032_0001
* ) 「測^ ^TJ :重^力 解しなかったため測定できなかった。 実施例 5
[0105] 100mlのガラス製而圧ビンに、水分 lOppmのトルエン 54. lg、 9—トリメトキシシリル ーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4—ェン(単量体 A) 8ミリモル(2. 24g)、ビ シクロ [2. 2. 1]ヘプター 2—ェン
72ミリモル (6. 78g)を仕込み、仕込み口をゴム製パッキン付きの穴あき王冠で封止 した。
[0106] さらに、耐圧ビンのゴム製パッキンを通じて、分子量調節剤であるガス状の 25°Cで 0 . IMPaのエチレン 20ml(0. 8ミリモル、全単量体に対し 1. 0モル0 /0に相当)を仕込 ん 7こ。
[0107] 溶媒、単量体を含む耐圧ビンを 75°Cに加温して、触媒成分として、酢酸パラジウム (Pd原子として 0. 0002ミリグラム原子)、トリシクロへキシルホスフィン 0. 0002ミリモ ル、トリフエ-ルカルベ-ゥムペンタフルォロフエ-ルポレート 0. 00024ミリモル、トリ ェチルアルミニウム 0. 0010ミリモルを順に添加して重合を開始した。
[0108] 重合反応を 75°Cで 2時間行い、重合体溶液の固形分測定により重合体への転ィ匕 率を求めた。続いて、前記重合体溶液を 0. 8リットルの 2—プロノ V—ルに投入して得 られた固体を、減圧下、 80°Cで 17時間乾燥することにより重合体を得た。
[0109] 前記の転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均 分子量 (Mn)、ならびに重量平均分子量 (Mw)の結果を、使用した分子量調節剤の 添加量 (全単量体に対する分子量調節剤のモル%)とともに表 2に示す。
実施例 6
[0110] 実施例 5において、分子量調節剤であるガス状のエチレンの使用量を 25°C、 0. 1 MPaで 40ml (l. 6ミリモル、全単量体に対して 2. 0モル%に相当)に変更したこと以 外は、実施例 5と同様にして重合を行った。
[0111] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用した分子量調節剤の添加量( 全単量体に対する分子量調節剤のモル%)とともに表 2に示す。
実施例 7
[0112] 実施例 5において、分子量調節剤であるガス状のエチレンの使用量を 25°C、 0. 1 MPaで 100ml (4. 0ミリモル、全単量体に対して 5. 0モル%に相当)とし、重合時間 を 3. 5時間に変更したこと以外は、実施例 5と同様にして重合を行った。
[0113] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用した分子量調節剤の添加量( 全単量体に対する分子量調節剤のモル%)とともに表 2に示す。
実施例 8
[0114] 実施例 5において、分子量調節剤であるガス状のエチレンの使用量を 25°C、 0. 1 MPaで 200ml (8. 0ミリモル、全単量体に対して 10モル%に相当)とし、重合時間を 3. 5時間に変更したこと以外は、実施例 5と同様にして重合を行った。
[0115] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用した分子量調節剤の添加量 ( 全単量体に対する分子量調節剤のモル%)とともに表 2に示す。
5
実施例 5において、分子量調節剤として、エチレンの代わりにガス状のプロピレンを 25oC、0. IMPaで 20ml(0. 8ミジモノレ、全単量体に対して 1. 0モノレ0 /0にネ目当)使用 し、重合時間を 3. 0時間に変更したこと以外は、実施例 5と同様にして重合を行った
[0116] 3時間後の重合体への転ィ匕率は 99%であった力 重合系は固化した。得られた重 合体は 50°Cの重水素化ベンゼン、 120°Cの 0—ジクロ口ベンゼンにも不溶であり、得 られた重合体中の単量体 A由来の構造単位の含有率、重合体の数平均分子量 (M n)ならびに重量平均分子量 (Mw)は測定できなかった。
16
実施例 5において、分子量調節剤として、エチレンの代わりにガス状のプロピレンを 25°C、 0. lMPaで200ml(8ミリモル、全単量体に対して 10モル%に相当)使用し、 重合時間を 3. 0時間に変更したこと以外は、実施例 5と同様にして重合を行った。
[0117] 3時間後の重合体への転ィ匕率は 95%であった力 重合系は固化した。得られた重 合体は 50°Cの重水素化ベンゼン、 120°Cの 0—ジクロ口ベンゼンにも不溶であり、得 られた重合体中の単量体 A由来の構造単位の含有率、重合体の数平均分子量 (M n)ならびに重量平均分子量 (Mw)は測定できなかった。
列 7
実施例 5において、分子量調節剤として、エチレンの代わりに 1-へキセン 0. 07g ( 0. 8ミリモル、全単量体に対して 1. 0モル%に相当)を使用し、水分 lOppmのトルェ ンの使用量を 54. Ogとし、重合時間を 3. 0時間に変更したこと以外は、実施例 5と同 様にして重合を行った。
[0118] 3時間後の重合体への転ィ匕率は 99%であった力 重合系は固化した。得られた重 合体は 50°Cの重水素化ベンゼン、 120°Cの 0—ジクロ口ベンゼンにも不溶であり、得 られた重合体中の単量体 A由来の構造単位の含有率、重合体の数平均分子量 (M n)ならびに重量平均分子量 (Mw)は測定できなかった。 8
実施例 5において、分子量調節剤として、エチレンの代わりに 1一へキセン 6. 73g (8 0ミリモル、全単量体に対して 100モル%に相当)を使用し、水分 lOppmのトルエン の使用量を 47. 7gとし、重合時間を 3. 0時間に変更したこと以外は、実施例 5と同様 にして重合を行った。
[0119] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用した分子量調節剤の添加量( 全単量体に対する分子量調節剤のモル%)とともに表 2に示す。
9
実施例 5において、分子量調節剤として、エチレンの代わりに 1-へキセン 13. 47g (160ミリモル、全単量体に対して 200モル%に相当)を使用し、水分 lOppmのトル ェンの使用量を 40. 6gとし、重合時間を 3. 0時間に変更したこと以外は、実施例 5と 同様にして重合を行った。
[0120] 転化率、得られた重合体中の単量体 A由来の構造単位の含有率、数平均分子量( Mn)、ならびに重量平均分子量 (Mw)の結果を、使用した分子量調節剤の添加量( 全単量体に対する分子量調節剤のモル%)とともに表 2に示す。
[0121] [表 2]
Figure imgf000035_0001
* ) 「測定;!^ rj:重^ Λ 解しなかったため 定できなかった。
* 1 ) 全単量体に対する割合 実施例 9 [0122] (重合)
100mlのガラス製而圧ビンに水分 lOppmのトルエン 60. 8g、水分 7ppmのシクロ へキサン 6. 8g、 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン
4ミリモル、ビシクロ [2. 2. 1]ヘプタ— 2—ェン 90ミリモル(8. 47g)、を仕込み、仕込 み口をゴム製パッキン付きの穴あき王冠で封止した。
[0123] さらに、耐圧ビンのゴム製パッキンを通じて、分子量調節剤であるガス状の 25°C、 0 . IMPaのエチレン 25ml (全単量体に対して 1. 0モル0 /0)を仕込んだ。溶媒、単量 体を含む耐圧ビンを 75°Cに加温して、触媒成分 オクタン酸パラジウム (Pd原子とし て
0. 0010ミリグラム原子)、トリシクロへキシルホスフィン 0. 0010ミリモル、トリフエ-ル カルべ-ゥムペンタフルォロフエ-ルポレート 0. 0012ミリモル、トリェチルアルミ- ゥム 0. 0050ミリモルの順に添加して重合を開始した。
[0124] 重合反応は 75°Cで行い、重合開始から 15分毎に、 5—トリメトキシシリルビシクロ [2 . 2. 1]ヘプター 2—ェン 0. 75ミリモルを、重合系に 8回逐次添加した。重合反応にお ける 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェンの使用量は総量で 10ミリモ ルであった。全ての 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェンの添カロ終 了後、さらに 2. 5時間重合反応を行い、重合体溶液の固形分測定により重合体への 転ィ匕率を求めたところ、転ィ匕率は 97%であった。
[0125] 続いて、前記重合体溶液を 1リットルの 2—プロノ V—ルに投入して得られた固体を 、減圧下、 80°Cで 17時間乾燥することにより重合体を得た。得られた重合体中の 5— トリメトキシシリルビシクロ [2. 2. 1]ヘプター 2—ェン由来の構造単位の割合は 9. 8モ ル%であった。また、得られた重合体の数平均分子量 (Mn)は 59, 000、重量平均 分子量(Mw)は 187, 000で、ガラス転移温度 (Tg)は 375°Cであった。
(フィルムの製造)
得られた重合体 10gを、メチルシクロへキサン 10mlとキシレン 40mlの混合溶媒に 溶解して、酸ィ匕防止剤としてペンタエリスリチルーテトラキス [3— (3, 5—ジー t ブチル 4ーヒドロキシフエ-ル)プロピオネート]およびトリス(2, 4—ジー t ブチルフエ-ル)ホ スフアイトをそれぞれ、重合体 100重量部に対して 0. 6重量部、架橋剤として、 p—ト ルエンスルフォン酸シクロへキシルエステルを重合体 100重量部に対して、 0. 07重 量部を添加した。
[0126] この重合体溶液を孔径 1 μ mのメンブランフィルターで濾過し、異物を除去した後、 ポリエステルフィルム上に 25°Cでキャストし、徐々に雰囲気の温度を 50°Cまで上げ、 混合溶媒を蒸発し、フィルム化を行った。
[0127] フィルム中の残留溶媒が 5— 10%になった後、 1気圧下の 180°Cの過熱スチーム に 1時間曝してフィルムを架橋体とした。そのフィルムを 25°Cで 30分間、塩化メチレ ン蒸気雰囲気下に曝し、残留溶媒を除去した。
[0128] その後、 80°Cで 30分間、真空乾燥して塩化メチレンを除去して、厚さ 150 mの架 橋されたフィルムを作製した。評価結果を表 3に示す。
[0129] このフィルムは架橋されているため、トルエン、キシレン、シクロへキサン、クロ口ベン ゼン、 0-ジクロロベンゼン、などの炭化水素溶媒、ハロゲンィ匕炭化水素溶媒、ゃジメ チルスルフォキシド、液晶(メルク社 ZIL— 4792)などに不溶であった。
[0130] [表 3]
Figure imgf000037_0001
実施例 10
[0131] 実施例 5において、トリシクロへキシルホスフィンの代わりにトリシクロへキシルホスホ -ゥム 2—ェチルへキサノエート 0. 0005ミリモルを用い、トリェチルアルミニウムの使 用量を
0. 0025ミリモルとしたこと以外、実施例 5と同様にして重合を行った。
[0132] 3時間での重合終了まで、重合系は白濁することなぐ重合体への転ィ匕率は 98% であった。
[0133] 重合体の数平均分子量(Mn)は 65, 000、重量平均分子量(Mw)は 178, 000で 、ガラス転移温度 (Tg)は 370°Cであった。また、 270MHzの1 H— NMR分析から、共 重合体中の 9—トリメトキシシリルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカー 4ーェン由来 の構造単位の割合は 9. 8モル%であった。
実施例 11
[0134] 100mlの而圧ビンへ、溶媒としてトルエン 58g、ビシクロ [2. 2. 1]ヘプタ— 2—ェン 90ミリモル、 9ーメチルー 9ーメトキシカルボ-ルーテトラシクロ [6. 2. 1. I3'6. 02'7]ドデカ —4—ェン
10ミリモルを仕込み、ゴム製パッキン付きの穴あき王冠で封止した。
[0135] 25°Cで 0. IMPaのエチレンガス 30ml (全単量体に対して 1. 34モル0 /0)をゴム製 ノ ッキンを通じて仕込み、その後、耐圧ビンを 75°Cにして、ビス(ァセチルァセトナー ト)パラジウムを Pd原子として 0. 0002ミリグラム原子、トリシクロへキシルホスフィン 0. 00016ミリモル、トリフエ-ルカルベ-ゥムペンタフルォロフエ-ルポレート 0. 000 25ミリモル、ジイソブチルアルミニウムヒドリド 0. 0020ミリモルを仕込み、重合を行つ た。
[0136] 3時間での重合終了まで重合系は白濁することなぐ重合体への転ィ匕率は 89%で あった。また、その時の生成重合体中の 9ーメチルー 9ーメトキシカルボ-ルーテトラシク 口 [6. 2. 1. I3'6. 02'7]ドデカー 4ーェン由来の構造単位の割合は 9. 0モル0 /0であった 。重合体の数平均分子量は 52, 000、重量平均分子量は 153, 000であった。また 、この重合体のガラス転移温度 (Tg)は 375°Cであった。
[0137] 実施例 1と同様にして回収された重合体に残存する金属を原子吸光分析で測定し た結^:、 Pd力 SO. 5ppm、 A1力 SO. 8ppmであった。
実施例 12
[0138] 実施例 9において、 5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2 ェンの代わり に 5—[1 'ーメチルー 2' , 6'—ジォキサー 4' , 4' ジメチルー 1 'ーシラシクロへキシル] ビシクロ [2. 2. 1]ヘプタ— 2—ェン(初期導入量: 4ミリモル、逐次添加量: 0. 75ミリモ ル X 8回、総量: 10ミリモル)を用い、全ての 5— [1,ーメチルー 2,, 6,ージォキサー 4,, 4,一ジメチルー 1,ーシラシクロへキシル]—ビシクロ [2. 2. 1]ヘプター 2 ェンの添カロ終 了後の重合時間を 3. 0時間としたことの他は、実施例 9と同様にして重合を行った。
[0139] 3. 0時間後の単量体の重合体への転化率は 99%で、 5— [1 'ーメチルー 2' , 6'—ジ ォキサ 4,, 4,一ジメチルー 1しシラシクロへキシル]—ビシクロ [2. 2. 1]ヘプター 2— ェン由来の構造単位の割合は 9. 8モル%であった。
[0140] このようにして得られた重合体の数平均分子量(Mn)は 51, 000、重量平均分子 量(Mw)は 182, 000で、ガラス転移温度 (Tg)は 375°Cであった。
実施例 13
[0141] 100mlのガラス製而圧ビンに水分 lOppmのトルエン 6. 8g、水分 7ppmのシクロへ キサン 60. 8g、ビシクロ [2. 2. 1]ヘプタ— 2—ェン 97ミリモル、
5—トリメトキシシリルビシクロ [2. 2. 1]ヘプタ— 2—ェン 1ミリモルを仕込み、仕込み口 をゴム製パッキン付きの穴あき王冠で封止した。
[0142] さらに、耐圧ビンのゴム製パッキンを通じて、分子量調節剤であるガス状の 25°C、 0 . IMPaのエチレン 25ml (全単量体に対して 1. 0 モル0 /0)を仕込んだ。
[0143] 溶媒、単量体を含む耐圧ビンを 75°Cに加温して、触媒成分として酢酸パラジウム( Pd原子として 0. 00033ミリグラム原子)、トリシクロへキシルホスフィン 0. 00015ミリ モノレ、トリフエ-ノレ力ノレべ-ゥムペンタフノレオロフェ-ノレボレート
0. 00035 Uモノレ、 卜!;ェチノレアノレミニゥム 0. モノレを j噴に添カロして重合を開 始した。重合開始後、 30分、および 60分後にそれぞれ 5—トリメトキシシリルビシクロ [ 2. 2. 1]ヘプタ— 2—ェン 1ミリモルを添カ卩して、重合反応を 75°Cで 3時間行った。重 合体溶液は、均一に溶解していた。重合体溶液の固形分測定により重合体への転 化率を求めた。単量体の重合体への転ィ匕率は 97%であった。重合体溶液を 2Lのィ ソプロノ V—ルに入れ、凝固し、さらに 90°C、 7時間乾燥して、重合体を得た。生成重 合体の数平均分子量(Mn)は 58, 000、重量平均分子量(Mw)は 193, 000であり 、この重合体のガラス転移温度 (Tg)は 380°Cであった。重合体中の 5—トリメトキシシ リルビシクロ [2. 2. 1]ヘプター 2—ェン由来の構造単位の割合は 3. 0モル0 /。であった 実施例 1と同様にして回収された重合体中の残存 Pdおよび A1は原子吸光分析の結 果、それぞれ、 0. 3ppmおよび 0. 5ppmであった。
実施例 14
[0144] 実施例 13において、溶媒として、トルエン 6. 8gおよびシクロへキサン 60. 8gを用 いる代わりに、トルエン 67. 6gを用いたこと以外、実施例 13と同様に行った。 [0145] 重合開始後、 0. 5時間で重合体が析出し、 1時間後には重合体溶液は白濁し、 3 時間後は完全に固化し、重合を停止した。重合体への転ィ匕率は 92%であった。
[0146] この重合体は、 50°Cのシクロへキサン、 120°Cの o—ジクロ口ベンゼンに可溶で、あ り、数平均分子量はは 67, 000、重量平均分子量は 200, 400であった。
比 例 10
実施例 1において、分子量調節剤として、エチレンの代わりに、 25°Cで 0. IMPaの 水素ガス 1. 0ミリモル相当を仕込む以外、実施例 1と同様に行った。 3時間重合後、 重合体溶液は高分子量ィ匕して固化した。単量体の重合体への転化率は 98%であつ た。
[0147] この重合体は、 50°Cのシクロへキサン、 120°Cの o—ジクロ口ベンゼンに不溶であり 分子量は測定できな力つた。
実施例 15
[0148] 100mlの而圧ビンで溶媒として、シクロへキサン 50g、トルエン 10gを用い、単量体 として立体異性体の endo体 Zexo体比が 80Z20の 5— n キシルービシクロ [2. 2. 1]ヘプター 2—ェンを 100ミリモルを用い、エチレンを 1ミリモル(全単量体に対して 1. 0モル%に相当)用い、最後に、オクタン酸パラジウム (Pd原子として
0. 0010ミリグラム原子)、トリシクロへキシルホスフィン 0. 0010ミリモル、トリス(ペン タフルォロフエ-ル)ホウ素 0. 0032ミリモル、トリイソブチルアルミニウム
0. 0050ミリモルを予め 25°Cで 10分間熟成した触媒を添カ卩して重合を 60°Cで 2時 間行った。
[0149] 重合体への転ィ匕率は 78%であった。生成重合体はシクロへキサンに溶解し、その 数平均分子量(Mn)は 41, 000、重量平均分子量(Mw)は 145, 000で、またこの 重合体のガラス転移温度 (Tg)は 265°Cであった。メチルシクロへキサンを溶媒とする キャスト法でフィルムに成形すると、透明なフィルムが得られた。

Claims

請求の範囲
a)パラジウム化合物、
b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムお よびルイス酸性のホウ素化合物から選ばれたィヒ合物、および
c)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力も選ばれた置 換基を有する、コーンアングル(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物またはそのホスフォ -ゥム塩、
を含む多成分系触媒と、
エチレンとの存在下に、
下記一般式(1)で表される環状ォレフィン系化合物を含む単量体を付加重合する ことを特徴とする環状ォレフィン系付加重合体の製造方法;
[化 1]
Figure imgf000041_0001
(式(1)中、 A1— A4はそれぞれ独立に水素原子、炭素数 1一 15のアルキル基、シク 口アルキル基、ァリール基、エステル基、アルコキシ基、トリアルキルシリル基、水酸基 であり、これらは炭素数 1一 20のアルキレン基、酸素原子、窒素原子および硫黄原 子力 選ばれた少なくとも 1種の原子を含む炭素数 0— 10の連結基により環構造に 連結されていてもよい。また、 A1と A2で形成される炭素数 1一 5のアルキリデン基、炭 素数 5— 20の置換もしくは非置換の脂環または芳香環、炭素数 2— 20の複素環であ つてもよい。さらに、 A1と A3で形成される炭素数 5— 20の置換もしくは非置換の脂環 または芳香環、炭素数 2— 20の複素環であってもよい。 mは 0または 1である。 ) o 多成分系触媒が、
a)パラジウム化合物、 b)イオン性ホウ素化合物、イオン性アルミニウム化合物、ルイス酸性のアルミニウムお よびルイス酸性のホウ素化合物から選ばれたィヒ合物、および
c)炭素数 3— 15のアルキル基、シクロアルキル基およびァリール基力も選ばれた置 換基を有する、コーンアングル(Cone Angle ; Θ deg)が 170— 200のホスフィン化合 物またはそのホスフォニゥム塩
に力!]えて、
d)有機アルミニウム化合物
を含むことを特徴とする請求項 1に記載の環状ォレフィン系付加重合体の製造方法。 前記一般式(1)で表される環状ォレフィン系化合物; 70— 98モル%と、 下記一般式(2)— 1および Zまたは一般式(2)— 2で表されるアルコキシシリル基を 有する環状ォレフィン系化合物; 2— 30モル%とを含む単量体を付加重合することを 特徴とする請求項 1または 2に記載の環状ォレフィン系付加重合体の製造方法;
[化 2]
Figure imgf000042_0001
(式(2)—1および式(2)—2中、 R2は炭素原子数 1一 10のアルキル基、シクロアル キル基またはァリール基およびハロゲン原子力ゝら選ばれた置換基であり、 Xは炭素数 1一 5のアルコキシ基であり、
Yは炭素数 2— 4の脂肪族ジオールの水酸基の残基であり、
kは 0— 2の整数、 nは 0または 1である。 ) o
[4] 前記 a)パラジウム化合物力 ノ《ラジウムの有機カルボン酸塩または /3ージケトンィ匕 合物であることを特徴とする請求項 1一 3のいずれかに記載の環状ォレフィン付加重 合体の製造方法。
[5] 付加重合におけるエチレンの使用量力 全単量体に対して、 0. 1-5. 0モル%で あることを特徴とする請求項 1一 4のいずれかに記載の環状ォレフィン系付加重合体 の製造方法。
[6] 全単量体中にビシクロ [2. 2. 1]ヘプター 2—ェンを 80モル%以上含む単量体を、 脂環族炭化水素溶媒を少なくとも 50重量%含む重合溶媒の存在下に付加重合する ことを特徴とする請求項 1一 5のいずれかに記載の環状ォレフィン系付加重合体の製 造方法。
PCT/JP2004/017813 2003-12-05 2004-11-30 環状オレフィン系付加重合体の製造方法 WO2005054312A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/581,525 US20070155922A1 (en) 2003-12-05 2004-11-30 Process for producing cycloolefin addition polymer
EP04819839A EP1712572A4 (en) 2003-12-05 2004-11-30 PROCESS FOR PRODUCING A CYCLOOLEFINIC ADDITION POLYMER
KR1020067013445A KR101157275B1 (ko) 2003-12-05 2004-11-30 환상 올레핀계 부가 중합체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003407558A JP4075789B2 (ja) 2003-12-05 2003-12-05 環状オレフィン系付加重合体の製造方法
JP2003-407558 2003-12-05

Publications (1)

Publication Number Publication Date
WO2005054312A1 true WO2005054312A1 (ja) 2005-06-16

Family

ID=34650313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017813 WO2005054312A1 (ja) 2003-12-05 2004-11-30 環状オレフィン系付加重合体の製造方法

Country Status (7)

Country Link
US (1) US20070155922A1 (ja)
EP (1) EP1712572A4 (ja)
JP (1) JP4075789B2 (ja)
KR (1) KR101157275B1 (ja)
CN (1) CN100455608C (ja)
TW (1) TW200535149A (ja)
WO (1) WO2005054312A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121058A1 (en) * 2005-05-06 2006-11-16 Fujifilm Corporation Organometallic compound, catalyst for polymerization of polar group-containing norbornene and process for producing norbornene polymer
WO2007013759A1 (en) * 2005-07-26 2007-02-01 Lg Chem, Ltd. Method of preparing phosphonium compound for cyclic olefin polymerization
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
CN115819461A (zh) * 2022-11-02 2023-03-21 黄河三角洲京博化工研究院有限公司 一种新双齿膦配体及其制备方法
CN115819461B (zh) * 2022-11-02 2024-06-07 黄河三角洲京博化工研究院有限公司 一种双齿膦配体及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733923B1 (ko) * 2004-07-07 2007-07-02 주식회사 엘지화학 극성 작용기를 갖는 고리형 올레핀 중합체 제조용 촉매시스템, 이를 이용한 중합체 제조방법과 이 방법에 의해제조된 올레핀 중합체 및 상기 중합체를 포함하는 광학이방성 필름
EP1794197A4 (en) * 2004-09-16 2009-07-01 Lg Chemical Ltd CATALYST SYSTEM FOR POLYMERIZATION OF CYCLIC OLEFIN HAVING POLAR FUNCTIONAL GROUP, POLYMERIZATION METHOD USING THE CATALYST SYSTEM, OLEFIN POLYMER PRODUCED THEREBY, AND OPTICAL ANISOTROPIC FILM COMPRISING THE OLEFIN POLYMER
JP2007009044A (ja) * 2005-06-30 2007-01-18 Jsr Corp 環状オレフィン付加重合体の製造方法および環状オレフィン付加重合体
JP5167581B2 (ja) * 2005-08-30 2013-03-21 Jsr株式会社 光学基板およびその製造方法
JP2007084764A (ja) * 2005-09-26 2007-04-05 Jsr Corp コーティング材およびその製造方法
JP4956956B2 (ja) * 2005-10-12 2012-06-20 Jsr株式会社 水素化触媒および水素化重合体の製造方法
JP4826242B2 (ja) 2005-12-12 2011-11-30 Jsr株式会社 環状オレフィン系付加重合体の製造方法
WO2008004573A1 (fr) 2006-07-07 2008-01-10 Jsr Corporation Copolymère d'addition à base d'oléfines cycliques, procédé pour le produire et film retardant formé à partir dudit copolymère
JP2008045069A (ja) * 2006-08-18 2008-02-28 Jsr Corp 環状オレフィン系付加共重合体およびその製造方法ならびに用途
JP2008081655A (ja) * 2006-09-28 2008-04-10 Fujifilm Corp ノルボルネン系重合体、フィルム、偏光板および液晶表示装置
US7759439B2 (en) 2007-03-30 2010-07-20 Promerus Llc Use of a combination chain transfer and activating agent to control molecular weight and optical density of Pd catalyzed norbornene polymers
US8350996B2 (en) * 2007-07-06 2013-01-08 Fujifilm Corporation Optical compensation sheet, polarizing plate and TN-mode liquid crystal display device
EP2019107A1 (en) * 2007-07-26 2009-01-28 Dynamit Nobel GmbH Explosivstoff- und Systemtechnik Use of phosphonium salts in coupling reactions and process for their manufacture
JP2011084681A (ja) * 2009-10-19 2011-04-28 Shin-Etsu Chemical Co Ltd 高気体透過性環状オレフィン付加重合体及びその製造方法
JP5212659B2 (ja) 2010-07-30 2013-06-19 信越化学工業株式会社 高気体透過性環状オレフィン付加重合体の製造方法
JP6620483B2 (ja) * 2015-09-18 2019-12-18 コニカミノルタ株式会社 シクロオレフィン系フィルム
TW202200663A (zh) * 2020-06-24 2022-01-01 美商普羅梅勒斯有限公司 作為光學材料之受阻胺穩定型uv活性有機鈀催化聚環烯烴組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508649A (ja) * 1993-11-16 1997-09-02 ザ ビー.エフ.グッドリッチ カンパニー ノルボルネン官能性モノマーから誘導される付加ポリマーおよびそのためのプロセス
WO2000020472A1 (en) * 1998-10-05 2000-04-13 The B.F. Goodrich Company Catalyst and methods for polymerizing cycloolefins
JP2003160620A (ja) * 2001-09-13 2003-06-03 Jsr Corp 環状オレフィン系付加共重合体、その架橋用組成物、その架橋体、光学透明材料、および環状オレフィン系付加共重合体の製造方法
WO2004076495A2 (en) * 2003-02-21 2004-09-10 Promerus Llc Vinyl addition polycyclic olefin polymers prepared with non-olefinic chain transfer agents and uses thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330815A (en) * 1964-03-24 1967-07-11 Union Carbide Corp Novel polynorbornenes, process for production thereof, and products produced therefrom
US5912313A (en) * 1995-11-22 1999-06-15 The B. F. Goodrich Company Addition polymers of polycycloolefins containing silyl functional groups
KR100816931B1 (ko) * 2000-10-04 2008-03-25 제이에스알 가부시끼가이샤 시클릭 올레핀 부가 공중합체 조성물 및 가교-결합된 물질
US6911507B2 (en) * 2001-01-24 2005-06-28 Jsr Corporation Processes for producing cycloolefin addition polymer
DE60224963T2 (de) * 2001-09-13 2009-03-05 Jsr Corp. Cyclisches Olefin-Additionscopolymer und Verfahren zu seiner Herstellung, vernetzbare Zusammensetzung, vernetztes Produkt und Verfahren zu seiner Herstellung und optisch transparentes Material und seine Anwendung
WO2003099887A1 (fr) * 2002-05-29 2003-12-04 Jsr Corporation Copolymere d'addition de cycloolefine et materiau optique transparent
US6790914B2 (en) * 2002-11-29 2004-09-14 Jsr Corporation Resin film and applications thereof
US7241847B2 (en) * 2003-08-20 2007-07-10 Jsr Corporation Process for producing cycloolefin addition polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508649A (ja) * 1993-11-16 1997-09-02 ザ ビー.エフ.グッドリッチ カンパニー ノルボルネン官能性モノマーから誘導される付加ポリマーおよびそのためのプロセス
WO2000020472A1 (en) * 1998-10-05 2000-04-13 The B.F. Goodrich Company Catalyst and methods for polymerizing cycloolefins
JP2003160620A (ja) * 2001-09-13 2003-06-03 Jsr Corp 環状オレフィン系付加共重合体、その架橋用組成物、その架橋体、光学透明材料、および環状オレフィン系付加共重合体の製造方法
WO2004076495A2 (en) * 2003-02-21 2004-09-10 Promerus Llc Vinyl addition polycyclic olefin polymers prepared with non-olefinic chain transfer agents and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIPIAN J. ET AL: "Addition Polymerization of Norbornene-Type Monomers. High Activity Cationic Allyl Palladium Catalysts", MACROMOLECULES, vol. 35, no. 24, 2002, pages 8969 - 8977, XP002983779 *
See also references of EP1712572A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121058A1 (en) * 2005-05-06 2006-11-16 Fujifilm Corporation Organometallic compound, catalyst for polymerization of polar group-containing norbornene and process for producing norbornene polymer
US7902109B2 (en) 2005-05-06 2011-03-08 Fujifilm Corporation Organometallic compound, catalyst for polymerization of polar group-containing norbornene and process for producing norbornene polymer
WO2007013759A1 (en) * 2005-07-26 2007-02-01 Lg Chem, Ltd. Method of preparing phosphonium compound for cyclic olefin polymerization
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
CN115819461A (zh) * 2022-11-02 2023-03-21 黄河三角洲京博化工研究院有限公司 一种新双齿膦配体及其制备方法
CN115819461B (zh) * 2022-11-02 2024-06-07 黄河三角洲京博化工研究院有限公司 一种双齿膦配体及其制备方法

Also Published As

Publication number Publication date
CN100455608C (zh) 2009-01-28
KR101157275B1 (ko) 2012-06-15
TWI365197B (ja) 2012-06-01
US20070155922A1 (en) 2007-07-05
EP1712572A1 (en) 2006-10-18
JP4075789B2 (ja) 2008-04-16
CN1890273A (zh) 2007-01-03
KR20070007037A (ko) 2007-01-12
EP1712572A4 (en) 2007-08-01
TW200535149A (en) 2005-11-01
JP2005162990A (ja) 2005-06-23

Similar Documents

Publication Publication Date Title
WO2005054312A1 (ja) 環状オレフィン系付加重合体の製造方法
US7268196B2 (en) Process for producing cycloolefin addition polymer
KR20070097527A (ko) 환상 올레핀계 부가 공중합체의 제조 방법, 환상 올레핀계부가 공중합체 및 그의 용도
JP4186213B2 (ja) 環状オレフィン系共重合体、その製造方法、その架橋性組成物および架橋体
JP4203739B2 (ja) 環状オレフィン系付加重合体の製造方法
JP3969115B2 (ja) 環状オレフィン系(共)重合体、その組成物、およびそれらの架橋体
TWI411620B (zh) Production method of cyclic olefin-based addition polymer
WO2003099887A1 (fr) Copolymere d&#39;addition de cycloolefine et materiau optique transparent
JP4752211B2 (ja) 環状オレフィン系付加共重合体の製造方法、環状オレフィン系付加共重合体およびその用途
JP4487532B2 (ja) 環状オレフィン系付加共重合体、該共重合体の架橋物、該共重合体の製造方法、架橋用組成物および用途
JP4400232B2 (ja) 環状オレフィン系付加重合体の製造方法
JP5017793B2 (ja) 環状オレフィン系付加重合体の製造方法
JP4735484B2 (ja) 積層フィルム
JP4678367B2 (ja) 環状オレフィン系(共)重合体からなるフィルム、環状オレフィン系(共)重合体組成物からなるフィルム、および環状オレフィン系(共)重合体の架橋体フィルム
JP2005330376A (ja) 環状オレフィン系重合体のフィルムまたはシートの製造方法
JP2004051949A (ja) 環状オレフィン系付加共重合体および光学透明材料
JP5240139B2 (ja) 環状オレフィン系付加共重合体、該共重合体の架橋物、架橋用組成物および用途
JP2006321912A (ja) 環状オレフィン系付加重合体の製造方法
JP2007009044A (ja) 環状オレフィン付加重合体の製造方法および環状オレフィン付加重合体
JP2007002082A (ja) 環状オレフィン系付加重合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035755.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10581525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004819839

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067013445

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819839

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067013445

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10581525

Country of ref document: US