WO2005043924A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2005043924A1
WO2005043924A1 PCT/JP2003/014036 JP0314036W WO2005043924A1 WO 2005043924 A1 WO2005043924 A1 WO 2005043924A1 JP 0314036 W JP0314036 W JP 0314036W WO 2005043924 A1 WO2005043924 A1 WO 2005043924A1
Authority
WO
WIPO (PCT)
Prior art keywords
average value
image
calculated
pixel values
gain
Prior art date
Application number
PCT/JP2003/014036
Other languages
English (en)
French (fr)
Inventor
Masumi Dakemoto
Narihiro Matoba
Takeo Fujita
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2003/014036 priority Critical patent/WO2005043924A1/ja
Priority to CNB2003801105937A priority patent/CN100559884C/zh
Priority to JP2005510147A priority patent/JP4364867B2/ja
Priority to US10/567,251 priority patent/US7683941B2/en
Priority to EP03770112A priority patent/EP1679906B1/en
Publication of WO2005043924A1 publication Critical patent/WO2005043924A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals

Definitions

  • the present invention relates to digital still cameras and digital video cameras.
  • the present invention relates to an imaging device that obtains a good image by suppressing force.
  • 50 Hz and 60 Hz are applied to the power frequency worldwide, and therefore, there are countries and regions with different power frequencies. In particular, Japan is divided into two regions. If a fluorescent lamp without an inverting light function is used for the luminaire, the fluorescent lamp will be emitted 100 times per second in an area with a power frequency of 50 Hz, and in an area with a power frequency of 60 Hz. Lighting is repeated at an interval of 120 times a second.
  • the image reading timing of the solid-state image sensor (shirt evening speed) and the fluorescent light
  • the amount of charge accumulated in the solid-state imaging device may be different at each image reading timing. If the amount of charge stored in the solid-state imaging device varies, the brightness of the image changes, and a flickering phenomenon occurs such that the video screen blinks.
  • CCD For the output one-field input video signal, the image is divided into multiple blocks in the horizontal direction, and the average luminance value is calculated for each block. Next, a maximum value and a minimum value are detected from the calculated average value of the luminance, and a correction coefficient for correcting the gradation for each field from the maximum value and the minimum value of the luminance is detected. Is calculated. Luminance change in input video signal
  • the gradation (luminance value) of the input video signal is corrected using the correction coefficient obtained one cycle before, based on the cycle of the fritting force.
  • the power line frequency may have a small error and may not show an accurate value of 50 Hz or 60 Hz. Therefore, in the case where the power supply frequency contains a small error, the method disclosed in the above-mentioned document, in which the correction is performed using the data one cycle before the fritting force when the power supply frequency includes a small error, does not necessarily mean that the pixel signal one cycle before is always Since the pixel signal does not become the same as the period, the flicker force cannot be suppressed accurately.
  • the present invention has been made to solve the above-mentioned problems, and has been made to solve the above-mentioned problems.
  • An object of the present invention is to obtain an image pickup apparatus that can always suppress a flicker accurately by applying to an apparatus. Disclosure of the invention
  • An imaging apparatus includes: a solid-state imaging device that obtains an image signal by photoelectrically converting an imaged optical image; and an image signal obtained from the solid-state imaging device, based on a gain of each color component provided.
  • Signal amplifying means for amplifying all the pixels of the color components of the image, and average value calculating means for calculating the average value of the pixel values for each color component constituting the image for each frame generated by the signal amplifier. With respect to the number of frames for one cycle of free power generation, the maximum value is calculated from the average value of the pixel values of each color component of the image calculated by the average value calculation means, and these maximum values are calculated.
  • Gain calculating means for calculating the gain for adjusting the average value of the pixel values of each color component constituting another image to the maximum width based on the gain, and outputting the gain as the gain of each color component to be given to the signal amplifying means. Things.
  • the digital gain is integrated using the average value of the pixel values of each color component that composes the image, and the error is corrected by the effect of the fluorescent lamp at the power supply frequency that includes a small error, thereby suppressing the flicker.
  • FIG. 1 is a block circuit diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block circuit diagram showing a configuration of an imaging device according to Embodiment 2 of the present invention.
  • FIG. 3 is an explanatory diagram showing a change in an average value of pixel values photographed under fluorescent lamp illumination at a power supply frequency of 50.00 Hz.
  • FIG. 4 is an explanatory diagram showing a change in an average value of pixel values taken under fluorescent lamp illumination at a power supply frequency of 50.04 Hz.
  • FIG. 5 is an explanatory diagram showing a method for estimating a small error in the power supply frequency according to Embodiment 3 of the present invention.
  • FIG. 6 is an explanatory diagram showing an example of a change in an average value of pixel values taken under fluorescent lamp illumination at a power and source frequency with an error.
  • FIG. 5 is a block circuit diagram showing a configuration of an image reconstructing device according to Embodiment 4 of the present invention.
  • FIG. 8 is an explanatory diagram illustrating a method for creating a sine wave data table according to Embodiment 4 of the present invention.
  • FIG. 9 is an explanatory diagram showing how to determine the maximum value and the minimum value of the waveform of the deviation of the average value of the pixel values for each frame according to Embodiment 4 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of an imaging apparatus according to Embodiment 6 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of an imaging apparatus according to Embodiment 7 of the present invention.
  • FIG. 1 is a block circuit diagram showing a configuration of an imaging device according to Embodiment 1 of the present invention.
  • a solid-state imaging device 12 is a means for photoelectrically converting an optical image formed on a light receiving surface by an imaging lens 11 to obtain an image signal.
  • the solid-state imaging device 12 is composed of a CCD, a CMOS sensor, and the like, and has a red (R) , Green (G), and blue (B) are arranged in a matrix of several hundred thousand hundreds of thousands of pixels that are sensitive to light, respectively, and the light received for each pixel is converted to electric charge and stored. And outputs the accumulated charge as an analog signal. Therefore, the solid-state imaging device 12 has an electronic shutdown function for controlling the accumulation time of signal charges.
  • the analog signal processing unit 13 includes a circuit such as a CDS-(correlated double sampling circuit) and an AGC, and includes a circuit for the image signal converted by the solid-state imaging device 12. This is a means to remove noise and perform gain control.
  • the signal amplifier 14 is means for amplifying the image signal input from the analog signal processing unit 13 for all the pixels of the RGB color components of the image based on the gain of each of the provided RGB color components.
  • the average value calculator 15 is means for calculating the average value of the pixel values for each of the RGB color components constituting the image for each frame generated by the signal amplifier 14.
  • the gain calculator 16 is means for calculating an optimum gain from the calculated average value of the pixel values of the RGB color components for each frame, as described later.
  • the imaging lens 11 forms an optical image incident from the subject side on the light receiving surface of the solid-state imaging device 12.
  • the solid-state imaging device 12 obtains an image signal by photoelectrically converting the formed optical image.
  • the image signal converted by the solid-state imaging device 12 is input to the analog signal processor 13.
  • the analog signal processing unit 13 removes noise included in the image signal and performs gain control.
  • the image signal output from the analog signal processing unit 13 is amplified by the signal amplifier 14 and supplied to the average calculator 15. In this case, the gain of each of the RGB color components is given to the signal amplifier 14 from the gain calculator 16, and the amplification process is performed on all the pixels of the RGB color components of the image based on these gains.
  • the image for each frame generated by the signal amplifier 14 is The average value of the pixel values for each of the RGB color components is calculated and given to the gain calculator 16.
  • the gain calculator 16 calculates the number of frames for one cycle of the generation of the fritting force for each frame.
  • the maximum value is calculated from the average value of the pixel values of each color component of the image. Then, based on this maximum value, a gain for adjusting the average value of the pixel values of each color component constituting another image to the maximum width is calculated.
  • the signal amplifier 14 uses the gain calculated by the gain calculator 16 to amplify all the pixels of the RGB color component. It is possible to reduce the difference in brightness between frames caused by the difference in charge amount. That is, free power is suppressed.
  • the calculated average value of the pixel values of the R, G, and B color components corresponding to the number of frames in one cycle of the blinker is stored in the memory of the gain calculator 16. It should be noted that the number of frames F CaBera / T Flicker in one cycle of the blinker is obtained in advance and is calculated using the equation (2).
  • the average value of the stored pixel values of the RGB color components for one cycle of the frit force is compared, and the maximum value is calculated.
  • the gain G m (R; GiB) (i) is obtained by adjusting the average value of the other pixel values to the calculated maximum value.
  • the formula (3) obtained in gain G (a, G, B) (i) is that it compares o G [z] (R) G> B) the minimum value of (i) G [2 ] (B , G , B) where (MinNumber) is the average of the pixel values of each RGB color component that has not been subjected to MinNumber th signal amplification ) / G [ ( R , G , B) (MinNumber)] is the maximum value.
  • P Next (a , G , B ) (j, k) is the pixel value of each color component of the R GB at the coordinates (j, k) of the captured image in the next cycle after the signal amplification processing
  • P Next (Il , G) , B ) (j, k) represent the pixel value of each RGB color component at the coordinates (j, k) of the captured image in the next cycle without signal amplification. That is, the average value of one flicker period calculated by the average value calculator 15 based on P Next (n, G , B ) (j, k) amplified by the signal amplifier 14 is:
  • the optimal gain is calculated using the average value of the pixel values of the R, G, and B color components of the image, so that flicker can be accurately suppressed.
  • FIG. 2 y a block circuit diagram showing a configuration of an imaging device according to Embodiment 2 of the present invention. In the figure, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted in principle.
  • the imaging device consists of an imaging lens 11, solid-state image sensor 12, analog signal processor 13, AD converter 24, digital signal generator 25, average calculator 26, and digital gain calculator It has 27.
  • the image signal output from the word processing unit 13 is A / D-converted by the AD converter 24 to become a digital image signal.
  • the digital signal amplifier 25 uses the digital gain of each of the RGB color components calculated by the digital gain calculator 27 to amplify all the pixels of each of the RGB color components of the digital image.
  • the average value calculator 26 calculates the average value of the pixel values for the R, G, and B color components of the image generated by the digital signal amplifier 25 by the same function as the average value calculator 15 in FIG. You.
  • the digital gain calculator 27 calculates an optimal digital gain from the average value of the pixel values of the RGB color components calculated by the average value calculator 26.
  • the digital gain calculator 27 has a function equivalent to that of the gain calculator 16 in FIG. 1 with the addition of a digital gain conversion function.
  • DG [3] , G , B) is the optimal gain G [3] (RB) (i) obtained by Eq. (4) converted to digital gain
  • k DG (a , G , (B) shows the gain G m (a , G , B) (i)
  • the conversion coefficient k DG ( R , G , B ) is determined in advance by calculating the rate of change of the pixel value with respect to the change of the digital gain DG [3] (R , G , B ) from the measured value. It is.
  • the digital gain DG [3] (R (G) B) (i) calculated by the digital gain calculator 27 is temporarily stored in the digital signal amplifier 25.
  • the digital signal amplifier 25 uses this data to amplify all pixels of each RGB component of the captured image according to the following equation (7).
  • the optimal digital gain is calculated by using the average value of the pixel values of the R, G, and B color components of the image, so that the flit power can be accurately suppressed.
  • Embodiment 3 Has the effect of Embodiment 3.
  • Embodiment 2 is based on the assumption that the average value of the pixel values of the RGB components of the current cycle and the average value of the pixel values of the RGB color components of the next cycle assume substantially the same value. This is to perform a suppression process.
  • the power supply frequency has been stabilized, it is not always accurate to 60 Uz or 50 Hz, and may include small errors. You.
  • the power frequency error appears as an error in the fluctuation pattern of the fritting force.
  • FIG. 3 shows the case where the image was taken at a frame rate of 24 fps under fluorescent light illumination with the power supply frequency fixed at 50.0 Hz. It shows the fluctuation of the average value of the pixel values.
  • Fig. 4 shows the case where the image was taken at a frame rate of 24 fps under fluorescent lighting with the power supply frequency fixed at 50.04 Hz. 3 shows the fluctuation of the average value of the pixel values in the image. In each case
  • the vertical axis indicates the average value of the pixel values
  • the horizontal axis indicates the number of frames.
  • the average pixel value shifts as the number of frames increases. Therefore, assuming that the power supply frequency is exactly 60 Hz or 50 Hz, it is assumed that the average value of the pixel value in the current cycle and the average value of the pixel value in the next cycle take almost the same value. If the digital gain is determined in this way, there may be cases where flicker cannot be suppressed reliably.
  • the configuration of the imaging apparatus according to the third embodiment is roughly the same as that in FIG. 2, but the processing performed in the digital gain calculator 27 is different as described below.
  • FIG. 5 is an explanatory diagram showing a method of estimating an error in the case of a power supply frequency including a minute error according to the third embodiment.
  • the vertical axis represents the average of the pixel values
  • the horizontal axis represents the number of frames.
  • the solid line is the average value of the pixel values for each frame
  • the black circle is the ideal value of the next cycle estimated from the average of the pixel values of the previous cycle
  • the white circle is the minute error of the power supply frequency. It represents the average (actual value) of the actual pixel values that have shifted.
  • the digital gain calculator 27 first generates a flicker due to an error in the power supply frequency from the average value of the pixel values of each color component constituting the image for each frame calculated by the average value calculator 15.
  • a cycle shift is calculated. Specifically, the average of the average value of the pixel values is calculated by calculating the error between the ideal value and the actual value in the past several cycles. Assuming that the average value of the pixel values changes regularly, a small error in the power supply frequency will have the same error between the ideal value and the actual value in the next cycle as in the past several cycles. Therefore, this error is calculated.
  • the deviation of the frits force generation cycle is corrected. This takes into account the errors found in the past several cycles, and uses the following equation (8) to obtain the ideal value of the next cycle closer to the actual value of the next cycle / T Next (fl , (;, B ) (i It is to calculate).
  • the average value of the pixel values corrected for the deviation of the calculated flicker occurrence cycle that is, the ideal value of the next cycle ⁇ ′ Next ( K , G , jo (i))
  • the digital gain is calculated using the same method as described in 2, and the calculated digital gain is supplied to the digital signal amplifier 25 to suppress the flip force.
  • the deviation of the fritting force generation period due to the power supply frequency error is estimated as the error of the average value of the pixel values, and the ideal of the next period closer to the actual value is estimated.
  • the average value of the pixel values as the values was calculated, and the digital gain was adjusted from the ideal value using the method of the second embodiment. This has the effect of making it possible to accurately suppress the flickering force that occurs in the system.
  • the average value of the pixel value in the next cycle is estimated from the average of the error between the ideal value and the actual value in the past several cycles. This is almost equivalent to estimating the error with a straight line.
  • FIG. 9 is an explanatory diagram showing an example of a change in an average value of pixel values captured under fluorescent light illumination at a wave number.
  • the vertical axis is the average pixel value
  • the horizontal axis is the number of frames.
  • the line extending vertically It represents the average value of pixel values for each frame. From this figure, it can be confirmed that the deviation of the average value of the pixel values in each cycle follows a constant waveform.
  • FIG. 7 is a block circuit diagram showing a configuration of an imaging device according to Embodiment 4 of the present invention.
  • parts corresponding to those in FIG. 2 are denoted by the same reference numerals.
  • a sine wave data calculator 28 is newly added to the digital gain calculator 27, and the processing contents of the digital gain calculator 27 are different from those of the second embodiment. Is different.
  • the sine wave data calculator 28 uses the sine wave data table prepared in advance to fit the sine wave data table based on the sine wave data table number input from the digital gain calculator 27. This is a means for predicting the deviation of the next cycle of force generation.
  • the table is stored in the sine wave data calculator 28.
  • sine wave data calculator 28 returns output SinBuffer [i] for input i.
  • the digital gain calculator 27 calculates, based on the average value of the pixel values of each color component constituting the image of one cycle of the flicker calculated by the average value calculator 26, a flicker caused by an error in the power supply frequency. : Calculate the deviation of the so-force generation cycle and estimate the sine wave data table number based on the calculated deviation. Next, the sine wave data of the next cycle is obtained from the sine wave data calculator 28 based on the estimated sine wave data table number, and the next cycle of the generation of the flicker force is obtained based on the sine wave data of the next cycle. The average value of the pixel values corrected for the deviation is calculated, and the average of the pixel values corrected for the deviation of each color component of the image for each frame is calculated for the number of frames for one cycle of flicker generation. Calculate the maximum value for each value. Further, based on these maximum values, a digital gain for adjusting the average value of the pixel values of each color component constituting another image to the maximum width is calculated.
  • the detailed processing of the digital gain calculator 27 is as follows.
  • ⁇ (! I, G , B bar i) is the average value of the i-th pixel value of one cycle of the fringe force calculated by the average value calculator 26
  • DG m ( i) indicates the digital gain used for // ( a , G , B ) (i).
  • the average value of the pixel values that have not undergone the i-th digital signal amplification process in one cycle of the fritting force ⁇ ⁇ , ⁇ )) is reduced to the size of the maximum value 2 and the minimum value 0. Normalize.
  • Gain (Il, G, B) (i) what has been turned into normalized to the maximum value 2, the size of the minimum value 0, Min ( ⁇ N.
  • Gain (R, G, B) (i)) is the pixel value for each frame the minimum value of the average value of not Re waveform, Max (z N. Gain ( a, G, B) (i)) denotes the maximum value of deviation of the waveform of the average value of the pixel values of each frame.
  • the vertical axis represents the average pixel value
  • the horizontal axis represents the number of frames.
  • the circles indicate the maximum value of the waveform before the maximum frame number is replaced, and the squares indicate the minimum value of the waveform before the minimum frame number is replaced. Since the deviation of the average pixel value for each frame follows the waveform, The frame number that takes the maximum value and the frame number that takes the minimum value are replaced periodically. Therefore, the maximum and minimum values of the waveform until the maximum frame number or the minimum frame number are exchanged are detected, and when the frame numbers are exchanged, the Min Gain (I (, hi, B) (i) ) And Max ( ⁇ N. Update Gain (R , G , B) (i))
  • the optimum sine wave data table number is compared with the output of the sine wave data calculator 28 whose input is given from 0 to (2n-1). Is calculated. Several cycles of the sine wave data table number calculated here are stored in the digital gain calculator 27, and the average change number of the sine wave data table number for the several cycles is calculated. When the average number changes calculated in here and AveMove (i), the sine Namide Isseki table number that is expected in the next period is expected to N (R. G, B) TableNumber (i) + AveMove (i) You. With this expected sine wave data table number as input, output from sine wave data calculator 28 Can be obtained. Also,
  • N Nextu . G , io (i) is used to calculate back the equation (12) to calculate the average pixel value estimated in the next cycle.
  • the optimal digital gain DG 15 ] (i) for the next cycle estimated using the sine wave table is calculated by the following equation (13).
  • the fourth embodiment when the power supply frequency includes a small error, the deviation of the average value of the pixel values in each cycle of flicker generation follows a constant waveform.
  • the sine wave table using a sine wave table Therefore, compared to estimating the waveform deviation with a straight line as in the third embodiment, it is possible to estimate with higher accuracy in estimating near the maximum value and the minimum value, and to obtain a more effective fringe force. Enables suppression.
  • the state assumed in Embodiments 2 to 4 above is a state in which the screen of a digital video camera or digital still camera is almost constant, that is, stationary.
  • a moving subject such as a person is photographed. Therefore, the fluctuation of the pixel value due to the movement of the subject (external factor) is added to the fluctuation of the pixel value due to the fritting force.
  • the fluctuation of the pixel value due to this external factor does not affect the flit force. Therefore, when pixel value fluctuation due to flicker and pixel value fluctuation due to external factors are mixed, the digital gain is determined by considering only the pixel value fluctuation due to flicker. There must be.
  • the digital gain calculator 27 extracts the amount of variation in the calculated average pixel value from the average pixel value calculated by the average calculator 26. If the amount of change exceeds a predetermined value (set based on the amount of change in the average value of pixel values due to the fritting force), it is determined that an external factor has been added. Then, stop updating the digital gain using the average value of the pixel values of the RGB color components, and use the digital gain until the average value of the pixel values changes rapidly.
  • the digital gain given to the digital signal amplifier 25 is updated when the fluctuation of the pixel value due to an external factor is small, while it is not updated when the fluctuation of the pixel value due to an external factor is large. Will be processed.
  • FIG. 13 is a block diagram showing a configuration of an imaging apparatus according to a sixth embodiment, in which an exposure time calculator 29 is added to the configuration of FIG. 2.
  • the exposure time calculator 29 is a means for calculating the optimum exposure time of the solid-state imaging device 12 based on the average value of the pixel values obtained by the average value calculator 26.
  • the method of determining the optimal exposure time of the solid-state imaging device 12 in the exposure time calculator 29 is substantially the same as the method of calculating the digital gain described in the first to third embodiments.
  • a data table is created in advance that shows the relationship between the change in the exposure time and the change rate of the average value of the pixel values of each RGB color component. It also converts the digital gain to the exposure time of the solid-state By determining a conversion coefficient k CCD U , G , B ) to perform the conversion in the same manner as in equation (6), the exposure time can be treated in the same manner as the digital gain.
  • the exposure time calculator 29 calculates the number of frames for one cycle of the free-light generation, and calculates the pixel of the specific color component of the image for each frame calculated by the average value calculator 26.
  • the maximum value is calculated from the average value.
  • the average value of the pixel values of the specific color component is adjusted to the maximum width, and the solid-state image sensor 12 is adjusted so that the amount of charge accumulated in the solid-state image sensor 12 is constant. Adjust the exposure time. Therefore, the exposure time of the solid-state imaging device 12 in the next cycle may be determined in the same manner as the method of calculating the digital gain.
  • a method for calculating the digital gain and a method for calculating the exposure time of the solid-state imaging device are made independent, and differences between the two are considered.
  • the former applies digital gain to the entire pixel
  • the latter can be said to be excellent in image quality because the S / N ratio can be kept constant. Also, the latter is different from the former,
  • the exposure time of the solid-state image sensor is set to suppress flicker for the G color component
  • the same exposure time is set for the RB color component. There is a problem that cannot be performed.
  • the exposure time calculator 29 first adjusts the exposure time for one color component as described above to suppress the flit power. Next, with respect to an error generated for the remaining color components not used in the exposure time calculator 29, the flicker force is suppressed by using a method of adjusting a digital gain. That is, the digital gain calculator 27 calculates the average value of the number of frames for one cycle of flicker generation. Exposure time calculator from the average of the pixel values of each color component of the image calculated in
  • R red
  • G green
  • B blue
  • Y yellow
  • M magenta
  • C cyan
  • K black
  • the method of adjusting the exposure time of the solid-state imaging device and the method of adjusting the digital gain are used together.
  • the frequency of using the digital gain can be reduced, which has the effect of enabling more accurate suppression of the flip force.
  • the image signal from the solid-state image sensor is an analog signal, and this signal is converted into a digital image signal by A / D conversion, and image processing is performed digitally.o
  • the gain applied to the analog signal is called analog gain. I will do it.
  • a method for suppressing free power using both digital gain and analog gain will be described.
  • FIG. 11 is a block diagram showing a configuration of an image pickup apparatus according to Embodiment 7 of the present invention.
  • a difference between the average value calculator 26 and the analog signal processing unit 13 is different from the configuration of FIG.
  • An analog gain calculator 210 is added.
  • the analog gain calculator 210 is means for calculating an optimum analog gain from the average value of the pixel values obtained from the average value calculator 26.
  • the analog signal processing unit 13 provided before the AD converter 24 performs solid-state imaging based on the analog gain of each color component provided from the analog gain calculator 210. It functions as analog signal amplification means for amplifying the analog image signal obtained from the element.
  • the analog gain calculator 210 calculates the maximum value among the average values of the pixel values of the specific color component of the image calculated by the average value calculator 26 with respect to the number of frames for one cycle of the generation of the free force. A value is calculated, and an analog gain that adjusts an average value of pixel values of a specific color component to a maximum width is calculated based on the maximum value. In this case, the same conversion as in equation (6) is performed, but instead of the conversion coefficient k DG , G , B ), the conversion coefficient k AG (R , G , B ) for converting the gain to analog gain is used. ) Is used. The conversion coefficient k A (5 (!
  • ⁇ , ⁇ is determined in advance by calculating the rate of change of the pixel value with respect to the change of the analog gain from the actual measurement data.
  • the calculated analog gain is given to the analog signal processing unit 13, which adjusts the gain of all the pixels of the color components of the image in the analog image signal to suppress the flicker.
  • the analog gain is adjusted by the analog gain calculator 210 as described above with the target of one specified color component of the RG component, thereby suppressing the flit force.
  • the digital gain calculator 27 adjusts the digital gain as described in Embodiment 2 to suppress the flit force. That is, the digital gain calculator 27 calculates the average value of the pixel values of the respective color components of the image calculated by the average value calculator 26 with respect to the number of frames for one cycle of the free-force generation. From there, calculate the maximum value of each of the other color components not used by the analog gain calculator 210.
  • a digital gain for adjusting the average value of the pixel values of the other color components to the maximum width is calculated, and this digital gain is output to the digital signal amplifier 25.
  • the digital signal amplifier 25 performs gain adjustment on the pixels of the two color components corresponding to the digital image signal, thereby suppressing the flipping force.
  • the method of adjusting the analog gain and the method of adjusting the digital gain are used in combination to suppress the flit force.
  • the frequency of using the digital gain can be reduced, and the effect of enabling more accurate suppression of the flicker force can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Picture Signal Circuits (AREA)

Abstract

固体撮像素子の画像信号について、フレーム毎の画像を構成する各色成分に対して画素値の平均値を平均値算出手段で算出し、ゲイン算出手段において、フリッカ発生の1周期分のフレーム数について、平均値算出手段で算出された画像の各色成分の画素値の平均値の中からそれぞれの最大値を算出し、これらの最大値に基づいて他の画像を構成する各色成分の画素値の平均値を最大幅に調整するゲインを算出して信号増幅手段に与える各色成分のゲインとして出力し、信号増幅手段は、この与えられた各色成分のゲインに基づいて画像の色成分の全画素の増幅を行う。

Description

技術分野
この発明は、 デジタルスチルカメラやデジタルビデオカメラなどのデ 明
ジ夕ルカラ一撮像機器に関し、 特に蛍光灯照明下において発生するフ リ 細
ッ力を抑圧して良好な画像を得る撮像装置に関するものである。
背景技術
世界的に電源周波数には 5 0 H zと 6 0 H zが適用されており、 した がって電源周波数の異なる国や地域が存在している。 特に、 日本国にお いては、 2つの地域に分けられている。 照明器具にイ ンバー夕機能の無 い蛍光灯を使用した場合、 蛍光灯は、 電源周波数 5 0 H zの地域では 1 秒間に 1 0 0回の間隔、 また電源周波数 6 0 H zの地域では 1秒間に 1 2 0回の間隔で明喑を繰り返している。
上記蛍光灯の照明下で C C Dや CMO Sセンサなどの固体撮像素子を 搭載したデジタルビデオカメラやデジタルスチルカメラを使用する場合 、 固体撮像素子の画像読み出しのタイ ミ ング (シャツ夕速度) と蛍光灯 の点滅周期の関係によ り固体撮像素子を常に同等の露光時間に設定した 場合、 固体撮像素子に蓄積される電荷量が画像読み出しのタイ ミ ング毎 に異なる場合がある。 固体撮像素子に蓄積される電荷量に異なりが生じ ると、 画像の明るさが変化し、 映像画面が点滅するようなフ リ ツ力現象 が起こる。
このようなフ リ ツ力を抑圧する方法として、 例えば特開平 1 0— 2 5 7 3 8 1号公報に示された技術がある。 この従来技術では、 C C Dから 出力された 1フィールドの入力映像信号に対して、 画像を水平方向に複 数のブロックに分割し、 ブロック毎に輝度の平均値を算出する。 次に、 これら算出された輝度の平均値から最大値および最小値となる平均値が 検出され、 その輝度の最大値および最小値から、 フ ィ ール ド毎の諧調を 補正するための補正係数が算出される。 入力映像信号に生じた輝度変化
、 すなわちフリ ツ力の周期に基づき、 1周期前に得られた補正係数を用 いて入力映像信号の諧調 (輝度値) が補正される。
上記文献に示された従来の技術では、 輝度の平均値を算出する方法を 用いているが、 これは輝度のみを算出対象としたデジタルゲイン積算方 法である。 しかし、 画像を構成する各色成分に対してフ リ ツ力が原因で 変化する画素値幅はそれぞれ異なっており、 そのため、 上記方法ではフ リ ッ力の抑圧を正確に行う ことはできない。
実際のところ、 電源周波数は微小な誤差を含み、 5 0 H zまたは 6 0 H zの正確な値を示さない場合がある。 したがって、 電源周波数に微小 な誤差が含まれる場合にぽ、 フリ ツ力の 1周期前のデ一夕を用いて補正 する上記文献に示された方法では、 必ずしも 1周期前の画素信号が次の 周期と同じ画素信号にはならないから、' フ リ ッ力の抑圧を正確に行うこ とができない。
また、 撮像対象の変動などの外的要因により画素値が変動した場合、 その画素値を基にデジ夕ノレゲイ ンを積算すると、 フリ ツ力が増幅してし まうという問題がある。
さらに、 デジタルゲインを用いたフリ ツ力除去では、 画素全体にデジ タルゲインをかけることから、 S / N比が低下し、 画質が劣化するとい う問題がある。
この発明は、 上記のよう な課題を解決するためになされたもので、 デ ジ夕ルビデオカメラやデジ夕ルスチルカメラ.などのデジタルカラ一撮像 機器に適用して、 常にフ リ ッカを正確に抑圧可能とする撮像装置を得る ことを目的とする。 発明の開示
この発明に係る撮像装置は、 結像された光画像を光電変換して画像信 号を得る固体撮像素子と、 この固体撮像素子から得られる画像信号につ いて、 与えられる各色成分のゲインに基づいて画像の色成分の全画素の 増幅を行う信号増幅手段と、 この信号増幅器で生成されるフレーム毎の 画像を構成する各色成分に対して画素値の平均値を算出する平均値算出 手段と、 フ リ ヅ力発生の 1周期分のフレーム数について、 前記平均値算 出手段で算出された画像の各色成分の画素値の平均値の中からそれそれ の最大値を算出し、 これらの最大値に基づいて他の画像を構成する各色 成分の画素値の平均値を最大幅に調整するゲインを算出して前記信号増 幅手段に与える各色成分のゲイ ンとして出力するゲイン算出手段とを備 えたものである。
このことによって、 画像を構成する各色成分の画素値の平均値を用い てデジタルゲインを積算し、 微小な誤差を含む電源周波数での蛍光灯の 影響による誤差修正を行ってフ リ ッカを抑圧する効果がある。 図面の簡単な説明
第 1図はこの発明の実施の形態 1による撮像装置の構成を示すプロ ッ ク回路図である。
第 2図はこの発明の実施の形態 2による撮像装置の構成を示すプロ ッ ク回路図である。
第 3図は電源周波数 5 0 . 0 0 H zの蛍光灯照明下で撮影した画素値 の平均値の変動を示した説明図である。 第 4図は電源周波数 5 0 . 0 4 H zの蛍光灯照明下で撮影した画素値 の平均値の変動を示した説明図である。
第 5図はこの発明の実施の形態 3に係る電源周波数の微小な誤差を推 測する方法を示す説明図である。
第 6図は誤差のある電、源周波数の蛍光灯照明下で撮影した画素値の平 均値の変動例を示した説明図である。
第 Ί図はこの発明の実施の形態 4による ί最像装置の構成を示すプロヅ ク回路図である。
第 8図はこの発明の実施の形態 4に係る正弦波データテーブルの作成 方法について例示する説明図である。
第 9図はこの発明の実施の形態 4に係るフレーム毎の画素値の平均値 のずれの波形の最大値と最小値の求め方を示す説明図である。
第 1 0図はこの発明の実施の形態 6による撮像装置の構成を示すプロ ック回路図である。
第 1 1図はこの発明の実施の形態 7による撮像装置の構成を示すプロ ック回路図である。 発明を実施するための最良の形態
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従って説明する。
実施の形態 1 .
第 1図はこの発明の実施の形態 1による撮像装置の構成を示すプロ ッ ク回路図である。
図において、 固体撮像素子 1 2は、 撮像レンズ 1 1 により受光面に結 像された光画像を光電変換して画像信号を得る手段である。 この固体撮 像素子 1 2は、 C C D、 C M O Sセンサ等で構成されており、 赤 ( R ) 、 緑 ( G ) 、 青 (B ) の光にそれそれ感応する 3種の画素を交互にマ ト リクス状に数十万配列して成り、 画素毎に受けた光を電荷に変換して蓄 積し、 蓄積電荷をアナログ信号として出力する。 そのため、 固体撮像素 子 1 2は信号電荷の蓄積時間を制御する電子シャッ夕機能を有している 。 アナログ信号処理部 1 3は、 C D S - ( Correlated doubl e Sampl ing circuit: 相関 2重サンプリ ング回路) および A G C等の回路を有し、 固体撮像素子 1 2で変換された画像信号に対して、 含まれるノイズを除 去し、 ゲイ ン制御を行う手段である。 信号増幅器 1 4は、 アナログ信号 処理部 1 3から入力された画像信号について、 与えられる R G B各色成 分のゲインに基づいて画像の R G B色成分の全画素に対する増幅処理を 行う手段である。 平均値算出器 1 5は、 信号増幅器 1 4で生成されるフ レーム毎の画像を構成する R G B各色成分に対して画素値の平均値を算 出する手段である。 ゲイン算出器 1 6は、 算出されたフレーム毎の R G B各色成分の画素値の平均値から、 後述するように最適なゲインを算出 する手段である。
次に、 動作について説明する。
撮像レンズ 1 1は、 被写体側から入射される光画像を固体撮像素子 1 2の受光面に結像させる。 固体撮像素子 1 2は、 結像された光画像を光 電変換して画像信号を得る。 固体撮像素子 1 2で変換された画像信号は アナ口グ信号処理部 1 3に入力される。 アナログ信号処理部 1 3は、 画 像信号に含まれるノイズを除去し、 ゲイン制御を行う。 アナログ信号処 理部 1 3から出力された画像信号は信号増幅器 1 4で増幅され、 平均値 算出器 1 5 に与えられる。 この場合、 信号増幅器 1 4には、 ゲイン算出 器 1 6から R G B各色成分のゲインが与えられており、 これらのゲイン に基づいて画像の R G B色成分の全画素に対する増幅処理が行われる。 平均値算出器 1 5では、 信号増幅器 1 4で生成されるフレーム毎の画像 の RGB各色成分に対して画素値の平均値が算出され、 ゲイン算出器 1 6に与えられる、 ゲイン算出器 1 6では、 フ リ ツ力発生の 1周期分のフ レーム数について、 フレーム毎の画像の各色成分の画素値の平均値から 最大値が算出される。 そして、 この最大値に基づいて、 他の画像を構成 する各色成分の画素値の平均値を最大幅に調整するゲイ ンが算出される
ここで、 信号増幅器 1 4はゲイン算出器 1 6で算出されたゲインを用 いて R GB色成分の全画素の増幅を行うようにしているが、 このことに よって、 固体撮像素子 1 2に蓄積される電荷量の違いに因って起きるフ レーム毎の明るさの違いを減少させることができる。 すなわち、 フ リ ヅ 力が抑圧される。
次に、 平均値算出器 1 5において行われる画素値の平均値の算出方法 について詳細に説明する。
R GB各色成分の画素値の平均値/ Ζ
Figure imgf000007_0001
は、 信号増幅器 1 4で生成 された画像の R G Β各色成分に対して、 式 ( 1 ) を用いて算出される。
… (1)
Figure imgf000007_0002
ここで、 ?(1^,8)(;!,] は信号増幅器 1 4により増幅処理を施して平均値算 出器 1 5に格納された画像の座標 ( j, k) の R GB各色成分の画素値 、 PHは水平方向の最大画素数、 Pvは垂直方向の最大画素数を表す。
フリ ヅカ 1周期のフレーム数に対応する算出された R GB各色成分の 画素値の平均値は、 ゲイン算出器 1 6のメモリに格納される。 なお、 フ リ ヅカ 1周期のフレーム数 FCaBera/TFlickerは、 予め求めておく もので、 式 ( 2 ) を用いて算出される。 F
P IT Camera ... フ、
1 Camera 1 X Flic ker 一 ハ (n, r ^ \ ^ )
GCD (2X , — J ここで、 FCamera は撮像装置のフレ.一ムレ一 ト、 FElee は電源周波数、 G C D (A, B ) は Aと Bの最大公約数を表している。
次に、 ゲイ ン算出器 1 6によるゲイ ン算出方法について詳細に説明す る。
格納されたフリ ツ力 1周期分の R G B各色成分の画素値の平均値それ それが比較され、 その中から最大値が算出される。 式 ( 3 ) を用いて、 算出した最大値に他の画素値の平均値を調整したゲイ ン Gm (R;GiB) (i) が求められる。
r m _ Γ
Figure imgf000008_0001
( 「 ΤΛ , 、
[2】 ( リ― V—丄, ,ir Camera / Flicker V · · · Jノ ここで、 〃(B,G,B)(MaxNumber)は格納された 1周期の画素値の平均値の最 大値、 (a,GB)(i)は格納された 1周期の i番目の画素値の平均値、 Gm ( R(G)B) (i)は R G B各色成分の画素値の平均値〃(R,GB)(i)に使用されたゲ インを表す。
また、 式 ( 3 ) で得られたゲイ ン G (aGB) (i)をそれそれ比較する o G[z] (R)G>B) (i)の最小値を G[2] (BG,B) (MinNumber)とすると、 MinNumber 番目の信号増幅処理が施されていない R G B各色成分の画素値の平均値
Figure imgf000008_0002
)/G[ ( R, G,B) (MinNumber) ]は最大値となる。
式 ( 3 ) で求め た ゲイ ン G[2] ( BG,B ) (i)の 最小値 G[2] ( R)G>B ) (MinNumber)が 1 . 0倍になる よう に次式 ( 4 ) を用いて他のゲイ ン
G[2] (R, G,B) )を調整する。 υ[3]( ,(? (0 = S f. Ar Γ~ =丄,…,レ Camera ^Flicker D " ' (^)
' ^[2](R,G,B) (MinNumber) 式 ( 4 ) で算出したゲイ ン G[3]GB) (i)よ り、 1周期すベての画素 値の平均値を、 信号増幅処理を施していない画素値の平均値の最大値 [ /(R)G)B)(MinNumber)/Gn] , G,B) (MinNumber) ]に調整することができる。 ゲイ ン算出器 1 6で算出されたゲイ ン G[3] (R)G(B) (i)を信号増幅器 1 4に格納し、 次式 ( 5 ) を用いて画像の RGB各色成分の全画素に対し て信号増幅処理を行う。
Next(R,G,B) (ム ) = [3](/?,£?, ). iVert ( , 、ゾ ,··(5)
Figure imgf000009_0001
ここで、 PNext(a,G,B)(j,k)は信号増幅処理後の次周期の撮像画像の座標 ( j , k ) における R GB各色成分の画素値、 PNext(Il,GB)(j,k)は信号増 幅処理を施していない次周期の撮像画像の座標 ( j, k) における R G B各色成分の画素値を表す。 つま り、 信号増幅器 1 4で増幅された PNext(n,GB)(j,k)を基に平均値算出器 1 5で算出されたフリ ッカ 1周期の 平均値が、
- Next(R,G,B) Next(R(G,B) (2) = = PL Next(E,G,B)( [F Camera/''- F 1 i eker ] ) となればフ リ ッカは抑圧されたことになる。
以上のように、 この実施の形態 1によれば、 画像の R GB各色成分の 画素値の平均値を用いて最適なゲインを算出するようにしているので、 フリ ッカを正確に抑圧可能にする効果がある。 実施の形態 2 .
固体撮像素子から得られる画像信号はアナ口グ信号であるが、 各種画 像処理に用いるためデジタル信号に変換される。 このとき A / D変換さ れた信号 (デジタル画像信号) に対してかけるゲインをデジタルゲイ ン という。 ここでは、 デジタルゲインを用いた場合において、 上記実施の 形態 1 と同様な方法でフ リ ツ力を抑圧することを提案する。 第 2図 y:この発明の実施の形態 2による撮像装置の構成を示すプロッ ク回路図である。 図において、 第 1図に相当する部分には同一符号を付 し、 その説明は原則として省略する。 撮像装置は、 撮像レンズ 1 1、 固 体撮像素子 1 2、 アナ口グ信号処理部 1 3、 ADコンバータ 24、 デジ タル信号 ί曽幅器 2 5、 平均値算出器 2 6およびデジタルゲイン算出器 2 7を備えている。
次に、 動作について説明する。
'アナ口ク 言号処理部 1 3から出力される画像信号は、 ADコンバ一夕 24により A/D変換され、 デジタル画像信号となる。 デジタル信号増 幅器 2 5では、 デジタルゲイ ン算出器 2 7で算出した RGB各色成分の デジタルゲイ ンを用いて、 デジタル画像の RGB各色成分の全画素に対 して増幅処理が行われる。 平均値算出器 2 6では、 第 1図の平均値算出 器 1 5と同様な機能により、 デジタル信号増幅器 2 5で生成された画像 の R GB各色成分に対して画素値の平均値が算出される。 デジタルゲイ ン算出器 2 7では、 平均値算出器 2 6で算出された RGB各色成分の画 素値の平均値から最適なデジタルゲインが算出される。 なお、 デジタル ゲイン算出器 2 7は、 第 1図のゲイ ン算出器 1 6とほぼ同等な機能にデ ジ夕ルゲイ ン変換機能が追加されたものである。
次に、 デジタルゲイ ンを用いたフリ ッ力抑圧方法について説明する。 デジタクレゲイ ン算出器 2 7は、 実施の形態 1 と同様の手順の処理を行 い、.式 ( 4 ) から最適なデジタルゲインを得る。 算出された最適なゲイ ンに対し、 次式 ( 6 ) を用いてデジタルゲイン変換処理を行う。 (凡(?, ) ) = ^DG^Rfi- B) ' U[3](i?,G^) CO i^-X" ·, ί CamerJ ¾<ker]) · .
ここで、 DG[3] , G,B)は式 ( 4 ) で求めた最適なゲイ ン G[3] (R B) (i)をデ ジタルゲイ ンに変換したもの、 kDG(a,G,B)はゲイ ン Gm (a,G,B) (i)をデジ夕 ルゲイ ンに変換するための変換係数である。 なお、 こ の変換係数 kDG(RG,B)は、 実測値からデジタルゲイン DG[3](R,G,B)の変化に対する画素値 の変化率を算出して予め決定されるものである。
デジタルゲイ ン算出器 2 7で算出されたデジタルゲイ ン DG[3] (R(G)B) (i)はデジタル信号増幅器 2 5に一旦格納される。 デジタル信号増幅器 2 5は、 このデ一夕を用いて次式 ( 7 ) により撮像画像の R G B各色成 分の全画素に対して増幅処理を行う。
·'·(7)
Figure imgf000011_0001
以上のように、 この実施の形態 2よれば、 画像の R GB各色成分の画 素値の平均値を用いて最適なデジタルゲインを算出するようにしたので 、 フ リ ツ力を正確に抑圧可能にする効果がある。 実施の形態 3.
上記実施の形態 2は、 現周期の R G B各色成分の画素値の平均値と次 周期の R G B各色成分の画素値の平均値がほぼ同じ値をとることを前提 とした場合にフ リ ツ力の抑圧の処理を行うようにしたものである。 とこ ろで、 電源周波数は、 安定化が図られてはいるが、 実際には 6 0 U zま たは 5 0 H zの正確な値になるとは限らず、 微小の誤差を含む場合があ る。 電源周波数の誤差はフリ ツ力の変動パターンの誤差となって現れる 第 3図は電源周波数を 5 0. 0 0 H zに固定した蛍光灯照明下で、 フ レームレート 24 f p sで撮影した場合における画素値の平均値の変動 を示したものである。 また、 第 4図は電源周波数を 5 0. 04 H zに固 定した蛍光灯照明下で、 フ レームレート 2 4 f p sで撮影した場合にお ける画素値の平均値の変動を示したものである。 いずれの図の場合にも
、 縦軸は画素値の平均値、 横軸はフレーム数を示す。 第 4図から明らか なように、 画素値の平均値はフレーム数が増加すると共にずれが生じて いる。 したがって、 電源周波数が正確に 6 0 H zまたは 5 0 H zである と仮定し、 現周期の画素値の平均値と次周期の画素値の平均値がほぼ同 じ値をとるものと想定してデジタルゲインを決定すると、 フリ ッカを確 実に抑圧することができなくなるケースが起こる。
そこで、 電源周波数が微小な誤差を含む場合の上述した問題を解決す るために、 その誤差を推測し、 最適なデジタルゲインを決定することに ついて説明する。 この実施の形態 3における撮像装置の構成は、 概略的 には第 2図と同様であるが、 以下に述べるように、 デジタルゲイン算出 器 2 7内で行われる処理が異なっている。
第 5図はこの実施の形態 3に係り、 微小な誤差を含む電源周波数の場 合において誤差を推測する方法を示した説明図である。 図において、 縦 軸は画素値の平均値、 横軸はフレーム数を表す。 また、 グラフ上で実線 はフレーム毎の画素値の平均値、 黒丸印は過去周期の画素値の平均値か ら推測される次周期の理想値、 白丸印は電源周波教の微小な誤差によつ てずれを生じた実際の画素値の平均値 (実際値) を表している。
デジタルゲイン算出器 2 7では、 まず、 平均値算出器 1 5で算出され たフレーム毎の画像を構成する各色成分の画素値の平均値から、 電源周 波数の誤差に起因するフ リ ッカ発生周期のずれが算出される。 具体的に は、 画素値の平均値について、 過去数周期の理想値と実際値の誤差を計 算した値の平均が求められる。 画素値の平均値を規則的に変化させると 仮定すると、 電源周波数の微小な誤差は、 次周期では過去数周期とほぼ 同じ理想値と実際値の誤差を持つことになる。 したがって、 この誤差を 算出する。 次に、 フ リ ツ力発生周期のずれを補正する。 これは、 過去数周期で求 めた誤差を考慮して、 次式 ( 8 ) を用いて、 次周期の実際値により近い 次周期の理想値/ TNext(fl,(; ,B)(i)を算出することである。 。 (? (リ
(0 = ½ (i = 0,-,[FCamera/TFUck 〜(8) ここで、 〃Next(R,GB)(i)は次周期の理想値、 〃^ )は過去数周期 の実際値、
Figure imgf000013_0001
は過去数周期の理想値、 Ave(X)は X の平均値 を表す。
このあと、 算出されたフリ ッカ発生周期のずれを補正した画素値の平 均値、 すなわち上記次周期の理想値〃' Next(K,G,jo(i)に対して、 実施の形 態 2で述べたと同様な方法を用いてデジタルゲインを算出し、 デジタル 信号増幅器 2 5へ与えてフ リ ッ力の抑圧を行う。
以上のように、 この実施の形態 3によれば、 電源周波数の誤差に起因 するフ リ ツ力発生周期のずれを、 画素値の平均値の誤差として推測し、 実際値により近い次周期の理想値としての画素値の平均値を算出し、 そ の理想値から上記実施の形態 2の方法を用いてデジタルゲインを調整す るようにしたので、 微小な誤差を含む電源周波数の蛍光灯照明下におい て発生するフ リ ッ力の抑圧を正確に行うことを可能にする効果がある。 実施の形態 4.
上記実施の形態 3では、 過去数周期の理想値と実際値の誤差の平均か ら次周期の画素値の平均値を推測していた。 これは直線で誤差を推測す ることとほぼ同等である。
ところで、 電源周波数が微小の誤差を含む場合、 周^毎の画素値の平 均値のずれは一定の波形に従うことになる。 第 6図は誤差のある電源周 波数の蛍光灯照明下で撮影した画素値の平均値の変動例を示した説明図 である。 縦軸は画素値の平均値、 横軸はフレーム数である。 この例は、 フレーム数を 2 5 0、 電源周波数を 5 0 . 0 4 H zに固定した蛍光灯照 明下で、 フレームレート 2 4 f p sで撮影した状況で、 垂直方向に伸び る線は、 フレーム毎の画素値の平均値を表したものである。 この図よ り 、 周期毎の画素値の平均値のずれが一定の波形に従っていることが確認 できる。
上述したように、 周期毎の画素値の平均値のずれが一定の波形に従つ ている場合、 画素値の平均値のずれ幅が微小であれば実施の形態 3のよ うに直線で推測しても問題ない。 しかし、 ずれ幅が大きい場合、 波形の 最大値付近と最小値付近の誤差を直線で推測すると、 必然的に理想値と 実際値の誤差が大きくなる。 そこで、 この実施の形態 4では、 直線で誤 差を推測する替りに、 正弦波テーブルを用いて誤差を推測する方法につ いて説明する。
第 7図はこの発明の実施の形態 4による撮像装置の構成を示すプロッ ク回路図である。 図において、 第 2図に相当する部分には同一符号を付 す。 この実施の形態 4では、 デジタルゲイン算出器 2 7に対して新たに 正弦波データ算出器 2 8が追加されており、 また、 デジタルゲイン算出 器 2 7の処理内容が実施の形態 2の場合と異なっている。
正弦波デ一夕算出器 2 8は、 予め準備した正弦波デ一夕テーブルを使 用して、 デジタルゲイン算出器 2 7から入力される正弦波デ一夕テープ ル番号に基づいてフ リ ツ力発生の次周期のずれを予測する手段である。 その処理で使用する正弦波デ一夕テーブルの作成方法については第 8図 に例示する。 横軸を X、 縦軸を S i n ( X ) として、 X = 0から X = Z 2 までの範囲を n分割する こ とによ り、 正弦波デ一夕テーブル SinQuaterBuffer [ i ]を次式 ( 9 ) に従い作成する。 ー(9>
Figure imgf000015_0001
ブルは正弦波データ算出器 2 8 に格納される。 正弦波デ一夕-算出器 2 8において、 正弦波デ一夕テープ ル SinQuaterBuffer[i]を次式 ( 1 0 ) の場合わけによ り、 最大値 2、 最小値 0で、 Χ = 7Γから x = 2 7Tまでの半周期の拡張版正弦波デ一夕テ 一ブル SinBuffer[i]を擬似的に作成する。 なお、 iは正弦波デ一夕テ 一ブル番号を示す。 c. Ό Γ.Ί ί SinQuaterBufer[n-i] if(o≤i≤n-l)
SinBujferh] = J / 、 - - - (1U)
II + Sin QuaterB ujfer [(i - n)] ifyn≤i≤2n-l) したがっ て、 正弦波データ算出器 2 8 は、 入力 i に対して 出力 SinBuffer[i]を返すことになる。
デジタルゲイ ン算出器 2 7では、 平均値算出器 2 6で算出されたフ リ ッカ 1周期の画像を構成する各色成分の画素値の平均値から、 電源周波 数の誤差に起因するフ リ :ソ力発生周期のずれを算出し、 算出されたずれ に基づいて正弦波データテーブル番号を推定する。 次に、 推定した正弦 波データテーブル番号に基づいて正弦波デ一夕算出器 2 8から次周期の 正弦波データを入手し、 当該次周期の正弦波データに基づいてフリ ッ力 発生の次周期のずれを補正した画素値の平均値をそれそれ算出し、 フ リ ッカ発生の 1周期分のフ レーム数について、 フ レーム毎の画像の各色成 分の前記ずれを補正した画素値の平均値の中からそれそれの最大値を算 出する。 さらに、 これらの最大値に基づいて他の画像を構成する各色成 分め画素値の平均値を最大幅に調整するデジタルゲインを算出する。
このデジタルゲイン算出器 2 7の処理の詳細な次のようになる。
平均値算出器 2 6で算出されたフ リ ツ力 1周期の R G B各色成分の画 素値の平均値から、 フ リ ツ力 1周期の i番目のデジタル信号増幅処理が 行われていない画素値の平均値〃 NGain ,G,B)(i)を、 次式 ( 1 1 ) を用い て算出する。 NoGain R,G,B) (i)
Figure imgf000016_0001
·'·(11) ここで、 〃(! i,G,Bバ i)は平均値算出器 2 6で計算されたフ リ ツ力 1周期の i番目の画素値の平均値、 DGm(i)は/ /(a,G,B)(i)に使用されたデジタルゲ インを示す。
次式 ( 1 2 ) を用いてフリ ツ力 1周期の i番目のデジタル信号増幅処 理が行われていない画素値の平均値 ^ υ,Β) )を最大値 2、 最小値 0のサイズに正規化する。
Figure imgf000016_0002
ここで、 は〃 NGain(Il,G,B)(i)を最大値 2、 最小値 0のサイズに正規 化したもの、 Min(〃NGain(R,G,B)(i))はフレーム毎の画素値の平均値のず れの波形の最小値、 Max( zNGain(a,G,B)(i))はフ レーム毎の画素値の平均 値のずれの波形の最大値を示す。
フ レ ーム毎の画素値の平均値のずれの波形の最大値 Max( μ.
Figure imgf000016_0003
) )と最小値 Min(NGain(a,G,B)(i))の求め方を第 9図により説明 する。 .
縦軸は画素値の平均値、 横軸はフレーム数を表す。 丸印は最大値のフ レーム番号が入れ替わるまでの波形の最大値を示し、 四角印は最小値の フレーム番号が入れ替わるまでの波形の最小値を示している。 フレーム 毎の画素値の平均値のずれは波形に従うことから、 フリ ツ力 1周期の中 で最大値をとるフレーム番号、 最小値をとるフレーム番号が周期的に入 れ代わる。 そこで、 最大値のフレーム番号もしくは最小値のフレーム番 号が入れ替わるまでの波形の最大値と最小値を検出して、 フレーム番号 が替わったときに Min Gain(I (,ひ ,B)(i))と Max(〃NGain(R,G,B)(i))を更新する
得られた N . GB)(i)に対し、 入力を 0から ( 2 n— 1 ) まで与えた正 弦波データ算出器 2 8の出力と比較して最適な正弦波データテーブル番 号
Figure imgf000017_0001
を算出する。 ここで算出された正弦波データ テーブル番号の数周期分をデジタルゲイン算出器 2 7に格納しておき、 その数周期分の正弦波データテーブル番号の平均変化数を計算する。 こ こで計算した平均変化数を AveMove(i)とすると、 次周期で予想される 正弦波デ一夕テーブル番号は N(R.G,B)TableNumber(i)+AveMove(i)と予想 される。 この予想された正弦波データテーブル番号を入力として、 正弦 波デ一夕算出器 2 8から出力
Figure imgf000017_0002
を得ることができる。 また、
NNextu.G,io(i)から式 ( 1 2 ) を逆算して次周期に推測される画素値の平 均値を算出する。
以上よ り、 次式 ( 1 3 ) により、 正弦波テーブルを用いて推測された 次周期に最適なデジタルゲイ ン D G 15 ] ( i )を算出する。
DG[5] () = ~~亇 .■ · (13) ここで、 〃Next(n,G,B)(i)は NNext(u,B)(i)から式 ( 1 2 ) を逆算して次周期 に推測される画素値の平均値を算出した値を示す。
以上のように、 この実施の形態 4によれば、 電源周波数が微小の誤差 を含む場合にフ リ ッカ発生の周期毎の画素値の平均値のずれは一定の波 形に従うが、 その波形のずれを正弦波テーブルを用いて推測するように したので、 実施の形態 3のように波形のずれを直線で推測するよ り も、 最大値、 最小値付近の推測においてよ り精度の高い推測ができ、 よ り効 果的なフ リ ツ力の抑圧を可能にする。 実施の形態 5 .
上記実施の形態 2から実施の形態 4で想定されてきた状態は、 デジ夕 ルビデオカメラあるいはデジ夕ルスチルカメラの画面がほぼ一定、 つま り静止している状態である。 しかし、 特にデジタルビデオカメラを実際 に使用する状態を考えると、 人物などの動きのある被写体を撮影する場 合がほとんどである。 そのため、 被写体の動き (外的要因) による画素 値の変動が、 フ リ ツ力による画素値の変動に加わることになる。 この外 的要因による画素値の変動は、 フ リ ツ力には影響を及ぼしてはいない。 したがって、 フ リ ッカによる画素値の変動と外的要因による画素値の変 動が混合している場合には、 フ リ ヅ力による画素値の変動のみを考慮し てデジタルゲイ ンを決定しなければならない。
外的要因が加わると、 R G B各色成分の画素値の平均値は急激に変化 する喾であり、 この急激な変化を外的要因が加わったものとすることが できる。 そこで、 第 2図の構成において、 平均値算出器 2 6 によ り算出 された画素値の平均値から、 デジタルゲイ ン算出器 2 7が、 算出した画 素値の平均値の変動量を抽出し、 その変動量が所定の値 (フ リ ツ力によ る画素値の平均値の変動量に基づいて設定される。 ) を超えた場合には 、 外的要因が加わったものと判断して、 R G B色成分の画素値の平均値 を使用したデジタルゲイ ンの更新をやめ、 替りに画素値の平均値が急激 に変化するまでのデジタルゲイ ンを使用する。 さらに、 誤差修正をして いたものに関しては、 画素値の平均値の急激な変化までに行っていたと 同様の誤差修正を行う。 したがって、 デジタル信号増幅器 2 5に対して与えるデジタルゲイ ン は、 外的要因による画素値の変動が小さい場合には更新され、 一方、 外 的要因による画素値の変動が大きい場合には更新されないように処理さ れる。
以上のように、 この実施の形態 5によれば、 外的要因による画素値の 変動が起った場合に対して、 上記処理を施すことにより、 外的要因によ る誤動作が少ない効果的なフリ ッ力の抑圧を可能にする。 実施の形態 6 .
フ リ ツ力は、 固体撮像素子に蓄積される電荷量が画像読み出しのタイ ミング毎に異なり、 画像の明るさが異なるために起きる現象である。 し たがって、 フ リ ツ力を抑圧するためには画像読み出しのタイ ミ ング毎に 発生する明るさの違いをなくせばよいことになる。 そこで、 この実施の 形態 6では、.画像読み出しのタイ ミング毎に固体撮像素子の露光時間を 制御して明るさの違いを軽減させるフリ ヅ力の抑圧方法について述べる 第 1 0図はこの発明の実施の形態 6による撮像装置の構成を示すプロ ック回路図で、 第 2図の構成に対して、 露光時間算出器 2 9を追加した ものである。 露光時間算出器 2 9は、 平均値算出器 2 6で得られる画素 値の平均値に基づいて固体撮像素子 1 2の最適な露光時間を算出する手 段である。
露光時間算出器 2 9における固体撮像素子 1 2の最適な露光時間の決 定方法は、 上記実施の形態 1から実施の形態 3で述べたデジタルゲイ ン を算出する方法とほぼ同様である。 つまり、 予め露光時間の変化と R G B各色成分の画素値の平均値の変化率の関係のデータテーブルを作成し ておく。 また、 デジタルゲインを固体撮像素子 1 2の露光時間に変換す るための変換係数 kCCD U, G, B )を決定しておき、 式 ( 6 ) と同様 変換を行 うことで、 露光時間をデジタルゲインと同様に扱うことができる。
すなわち、 露光時間算出器 2 9では、 フ リ ヅ力発生の 1周期分のフ レ ーム数について、 平均値算出器 2 6で算出されたフ レーム毎の画像の特 定の色成分の画素値の平均値の中からそれそれの最大値を算出する。 次 に、 この最大値に基づいて特定の色成分の画素値の平均値を最大幅に調 整して固体撮像素子 1 2に蓄積される電荷量を一定とするように固体撮 像素子 1 2の露光時間の調整を.行う。 したがって、 デジタルゲインを算 出する方法と同様にして、 次周期の固体撮像素子 1 2の露光時間を決定 すればよい。
ここで、 フ リ ツ力を抑圧する方法として、 デジタルゲインを算出する 方法と固体撮像素子の露光時間を算出する方法を独立させ、 両者の相違 点について考えてみる。 前者は画素全体にデジタルゲインをかけるため
S / N比が低下するおそれがあるが、 後者は S / N比を一定に保てるた め画質面においては優れていると言える。 また、 後者は前者と異なり、
1 . 0倍以下の補正を行っても画素値の飽和レベルが低下することがな く、 補正の自由度が高いという利点もある。 しかし、 後者では、 例えば
G 色成分に対してフ リ ッカを抑圧すべく固体撮像素子の露光時間を設定 した場合、 R B色成分に対しても同様な露光時間が設定されるため、 R G B各色成分に対し独立した処理を施せないという問題がある。
そこで、 この実施の形態 6では、 上記のように露光時間算出器 2 9 に より、 まず 1つの色成分に対しての露光時間を調整してフリ ツ力を抑圧 する。 次に、 露光時間算出器 2 9で使用しない残りの色成分に対して発 生する誤差についてはデジタルゲインを調整する方法を用いてフ リ ツ力 の抑圧を行うようにし.ている。 すなわち、 デジタルゲイン算出器 2 7で は、 フ リ ッカ発生の 1周期分のフレーム数について、 平均値算出器 2 6 で算出された画像の各色成分の画素値の平均値の中から露光時間算出器
2 9で使用しない他の色成分についてそれぞれの最大値を算出する。 そ して、 これらの最大値に基づいて他の色成分の画素値の平均値を最大幅 に調整するデジタルゲイ ンを算出し、 このデジタルゲイ ンをデジタル信 号増幅器 2 5 に出力する。 デジタル信号増幅器 2 5では、 デジタル画像 信号の対応する他の色成分の画素についてのゲイ ン調整を行ってフ リ ッ 力の抑圧を行う。
ここでは、 光の 3原色の R (赤) 、 G (緑) 、 B (青) を 3色成分の 例として述べてきたが、 他に Y (黄色) 、 M (マゼン夕) 、 C (シアン ) 、 K (黒) の 4色成分の構成あり、 これに対しても同様に適用できる ものである。
以上のように、 この実施の形態 6では、 固体撮像素子の露光時間を調 整する方法とデジタルゲイ ンを調整する方法を併用するようにしたので 、 デジタルゲイ ンのみの調整を行う フ リ ツ力抑圧方法よ り も、 デジタル ゲイ ンを使用する頻度を減少させることができ、 よ り精度の高いフ リ ッ 力の抑圧が可能とする効果がある。 実施の形態 Ί .
固体撮像素子からの画像信号はアナログ信号であり、 この信号は A / D変換されてデジタル画像信号となり、 デジタルで画像処理が行われる o この場合、 アナログ信号にかけられるゲイ ンをアナログゲイ ンと称す ることにする。 この実施の形態 7では、 デジタルゲイ ンとアナログゲイ ンを併用したフ リ ヅ力の抑圧方法について説明する。
第 1 1図はこの発明の実施の形態 7による撮像装置の構成を示すプロ ック回路図で、 第 2図の構成に対し、 平均値算出器 2 6 とアナログ信号 処理部 1 3の間にアナログゲイ ン算出器 2 1 0を追加したものである。 アナログゲイ ン算出器 2 1 0は、 平均値算出器 2 6から得られた画素値 の平均値から最適なアナログゲイ ンを算出する手段である。 またこの実 施の形態 7では、 A Dコンバータ 2 4の前段に設けられたアナログ信号 処理部 1 3は、 アナログゲイ ン算出器 2 1 0から与えられる各色成分の アナログゲイ ンに基づいて、 固体撮像素子よ り得られたアナログ画像信 号を増幅するアナログ信号増幅手段として機能する。
アナログゲイ ン算出器 2 1 0は、 フ リ ヅ力発生の 1周期分のフレーム 数について、 平均値算出器 2 6で算出された画像の特定の色成分の画素 値の平均値の中から最大値を算出し、 この最大値に基づいて特定の色成 分の画素値の平均値を最大幅に調整するアナログゲイ ンを算出する。 こ の場合、 式 ( 6 ) と同様な変換を行うが、 変換係数 kDG , G, B)の替りに、 ゲイ ンをアナログゲイ ンに変換するための変換係数 kAG(R,G,B)を用いる。 この変換係数 kA(5 (! ^, Β )は、 実測デ一夕からアナログゲイ ンの変化に対す る画素値の変化率を算出することで予め決定される。 アナログゲイ ン算 出器 2 1 0で、 算出されたアナログゲイ ンはアナログ信号処理部 1 3 に 与えられ、 アナ口グ画像信号について画像の色成分の全画素のゲイ ンを 調整し、 フ リ ッ力を抑圧する。
ここで、 アナログゲイ ンを算出してフ リ ツ力を抑圧する方法の利点に ついて考えると、 A / D変換を行う前の情報が劣化していない状態でゲ イ ンをかける方がノイズが防げるという点にある。 しかし、 固体撮像素 子から出力する画像信号はアナログ信号であるため、 出力信号を R G Β 各色成分で区別して画像全体の R G Β成分に対し、 個別にアナ口グゲィ ンをかけることは困難である。
そこで、 まず R G Β成分のうち特定した 1つの色成分を目標にして上 記のようにアナログゲイ ン算出器 2 1 0によ りアナログゲイ ンを調整し てフ リ ツ力を抑圧する。 次に、 残りの他の 2色成分に対して発生する誤 差については、 デジタルゲイ ン算出器 2 7 により、 実施の形態 ·2で述べ たようにデジタルゲイ ンを調整してフ リ ツ力を抑圧するようにする。 す なわち、 デジタルゲイ ン算出器 2 7では、 フ リ ヅ力発生の 1周期分のフ レーム数について、 平均値算出器 2 6で算出された画像の各色成分の画 素値の平均値の中からアナログゲイ ン算出器 2 1 0で使用しない他の色 成分についてそれそれの最大値を算出する。 そして、 これらの最大値に 基づいて他の色成分の画素値の平均値を最大幅に調整するデジタルゲイ ンを算出し、 このデジタルゲイ ンをデジタル信号増幅器 2 5 に出力する 。 デジタル信号増幅器 2 5では、 デジタル画像信号の対応する 2色成分 の画素についてのゲイ ン調整を行ってフ リ ッ力の抑圧を行う。
以上のように、 この実施の形態 7 によれば、 アナログゲイ ンを調整す る方法とデジタルゲイ ンを調整する方法を併用することによ り フ リ ツ力 の抑圧を行っているので、 デジタルゲイ ンのみので調整を行うフ リ ッカ 抑圧方法に比べ、 デジタルゲイ ンを使用する頻度を減少させることがで き、 よ り精度の高いフ リ ツ力の抑圧を可能にする効果がある。 産業上の利用可能性
今日、 デジ夕ルスチルカメラやデジタルビデオカメラの普及は著しい 。 これらのカメラを持ったユーザが電源周波数の異なる国や地域間を移 動することは頻繁になると考えられる。 これらのカメラに、 この発明を 適用することで、 ユーザはフ リ ツ力を意識せずに対応でき、 常に良好な 画像を取得できるようになる。

Claims

請 求 の 範 囲 1 . 結像された光画像を光電変換して画像信号を得る固体撮像素子と、 この固体撮像素子から得られる画像信号について、 与えられる各色成 分のゲインに基づいて画像の色成分の全画素の増幅を行う信号増幅手段 と、
この信号増幅器で生成されるフレーム毎の画像を構成する各色成分に 対して画素値の平均値を算出する平均値算出手段と、
フリ ツ力発生の 1周期分のフレーム数について、 前記平均値算出手段 で算出された画像の各色成分の画素値の平均値の中からそれぞれの最大 値を算出し、 これらの最大値に基づいて他の画像を構成する各色成分の 画素値の平均値を最大幅に調整するゲイ ンを算出して前記信号増幅手段 に与える各色成分のゲインとして出力するゲイン算出手段とを備えた撮 像装置。
2 . 結像された光画像を光電変換して画像信号を得る固体撮像素子と、 この固体撮像素子から得られる画像信号をデジタル信号に変換する A Dコンバータと、
A Dコンバータから得られるデジタル画像信号について、 与えられる 各色成分のデジタルゲインに基づいて画像の色成分の全画素の増幅を行 うデジタル信号増幅手段と、
このデジタル信号増幅手段で生成されるフレーム毎の画像を構成する 各色成分に対して画素値の平均値を算出する平均値算出手段と、
フ リ ツ力発生の 1周期分のフレーム数について、 前記平均値算出手段 で算出されたフレーム毎の画像の各色成分の画素値の平均値の中からそ れそれの最大値を算出し、 これらの最大値に基づいて他の画像を構成す る各色成分の画素値の平均値を最大幅に調整するデジタルゲインを算出 して前記デジタル信号増幅手段に与える各色成分のデジタルゲインとし て出力するデジタルゲイン算出手段とを備えた撮像装置。
3 . デジタルゲイン算出手段は、 平均値算出手段で算出されたフ レー ム毎の画像を構成する各色成分の画素値の平均値から、 電源周波数の誤 差に起因するフ リ ッカ発生周期のずれを算出し、 算出されたフリ ツ力発 生周期のずれを補正した画素値の平均値を算出し、 フ リ ツ力発生の 1周 期分のフ レーム数について、 フ レーム毎の画像の各色成分の前記ずれを 補正した画素値の平均値の中からそれそれの最大値を算出し、 これらの 最大値に基づいて他の画像を構成する各色成分の画素値の平均値を最大 幅に調整.するデジタルゲインを算出することを特徴とする請求の範囲第 2項記載の撮像装置。
4 . 予め準備した正弦波デ一夕テーブルを使用して、 入力される正弦波 データテーブル番号に基づいてフリ ッ力発生の次周期のずれを予測する 正弦波データを算出する正弦波データ算出手段を備え、
デジタルゲイン算出手段は、 平均値算出手段で算出されたフリ ツ力 1 周期の画像を構成する各色成分の画素値の平均値から、 電源周波数の誤 差に起因するフ リ ッカ発生周期のずれを算出し、 算出されたずれに基づ いて正弦波デ一夕テーブル番号を推定し、 推定した正弦波デ一夕テープ ル番号に基づいて前記正弦波デ一夕算出手段から次周期の正弦波データ を入手し、 当該次周期の正弦波デ一夕に基づいてフ リ ッカ発生の次周期 のずれを補正した画素値の平均値をそれそれ算出し、 フリ ツ力発生の 1 周期分のフ レーム数について、 フ レーム毎の画像の各色成分の前記ずれ を補正した画素値の平均値の中からそれそれの最大値を算出し、 これら の最大値に基づいて他の画像を構成する各色成分の画素値の平均値を最 大幅に調整するデジタルゲイ ンを算出することを特徴とする請求の範囲 第 2項記載の撮像装置。
5 . デジタルゲイン算出手段は、 平均値算出手段で算出されたフ レーム 毎の画像を構成する各色成分の画素値の平均値の変動量が所定の値を超 えた場合には、 デジ夕ル信号増幅手段に与えるデジタルゲインの更新を やめ、 替りに前記所定の値を超える以前の画素値の平均値に基づくデジ タルゲインを使用することを特徴とする請求の範囲第 2項記載の撮像装
6 . フリ ツ力発生の 1周期分のフ レーム数について、 平均値算出手段で 算出されたフ レーム毎の画像の特定の色成分の画素値の平均値の中から 最大値を算出し、 この最大値に基づいて前記特定の色成分の画素値の平 均値を最大幅に調整して前記固体撮像素子に蓄積される電荷量を一定と するように前記固体撮像素子の露光時間を調整する露光時間算出手段を 備え、
デジタルゲイン算出手段は、 フリ ッカ発生の 1周期分のフレーム数に ついて、 前記平均値算出手段で算出された画像の各色成分の画素値の平 均値の中から前記露光時間算出手段で使用しない他の色成分についてそ れそれの最大値を算出し、 これらの最大値に基づいて前記他の色成分の 画素値の平均値を最大幅に調整するデジタルゲインを算出してデジタル 信号増幅手段に出力することを特徴とする請求の範囲第 2項記載の撮像
7 . A Dコンパ'一夕の前段に設けられ、 与えられる各色成分のアナログ ゲインに基づいて、 固体撮像素子より得られたアナログ画像信号を増幅 するアナログ信号増幅手段と、
フリ ツ力発生の 1周期分のフ レーム数について、 平均値算出手段で算 出されたフ レーム毎の画像の特定の色成分の画素値の平均値の中から最 大値を算出し、 この最大値に基づいて前記特定の色成分の画素値の平均 値を最大幅に調整するアナログゲインを算出して前記アナログ信号増幅 手段に与える各色成分のアナ口グゲイ ンとして出力するアナログゲイン 算出手段とを備え、
デジタルゲイン算出器は、 フリ ッカ発生の 1周期分のフレーム数につ いて、 前記平均値算出手段で算出された画像の各色成分の画素値の平均 値の中から前記アナ口グゲイン算出手段で使用しない他の色成分につい てそれそれの最大値を算出し、 これらの最大値に基づいて前記他の色成 分の画素値の平均値を最大幅に調整するデジタルゲインを算出してデジ タル信号増幅手段に出力することを特徴とする請求の範囲第 2項記載の
PCT/JP2003/014036 2003-10-31 2003-10-31 撮像装置 WO2005043924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2003/014036 WO2005043924A1 (ja) 2003-10-31 2003-10-31 撮像装置
CNB2003801105937A CN100559884C (zh) 2003-10-31 2003-10-31 摄像装置
JP2005510147A JP4364867B2 (ja) 2003-10-31 2003-10-31 撮像装置
US10/567,251 US7683941B2 (en) 2003-10-31 2003-10-31 Image pickup apparatus
EP03770112A EP1679906B1 (en) 2003-10-31 2003-10-31 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014036 WO2005043924A1 (ja) 2003-10-31 2003-10-31 撮像装置

Publications (1)

Publication Number Publication Date
WO2005043924A1 true WO2005043924A1 (ja) 2005-05-12

Family

ID=34532065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014036 WO2005043924A1 (ja) 2003-10-31 2003-10-31 撮像装置

Country Status (5)

Country Link
US (1) US7683941B2 (ja)
EP (1) EP1679906B1 (ja)
JP (1) JP4364867B2 (ja)
CN (1) CN100559884C (ja)
WO (1) WO2005043924A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722553A3 (en) * 2005-05-13 2010-04-28 Sony Corporation Flicker correction method and device, and imaging device
JP2014160919A (ja) * 2013-02-19 2014-09-04 Nec Corp 撮像システム及び撮像方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144214B2 (en) 2007-04-18 2012-03-27 Panasonic Corporation Imaging apparatus, imaging method, integrated circuit, and storage medium
JP5111100B2 (ja) * 2007-12-28 2012-12-26 キヤノン株式会社 画像処理装置、画像処理方法、プログラム及び記憶媒体
US8339474B2 (en) * 2008-08-20 2012-12-25 Freescale Semiconductor, Inc. Gain controlled threshold in denoising filter for image signal processing
US10645358B2 (en) 2018-02-20 2020-05-05 Gopro, Inc. Saturation management for luminance gains in image processing
JP2020060531A (ja) * 2018-10-12 2020-04-16 株式会社デンソーテン 異常検出装置、異常検出システム、および、異常検出方法
CN110248092B (zh) * 2019-06-18 2020-11-03 无锡英斯特微电子有限公司 一种光电导航设备的图像调节方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274183A (ja) * 1994-03-28 1995-10-20 Sanyo Electric Co Ltd ビデオカメラ
JPH10257381A (ja) * 1997-03-12 1998-09-25 Matsushita Electric Ind Co Ltd フリッカ補正装置
JP2001045502A (ja) * 1999-08-04 2001-02-16 Sanyo Electric Co Ltd カメラ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132487A (ja) * 1983-12-21 1985-07-15 Toshiba Corp 固体撮像装置
JP2995887B2 (ja) * 1991-03-27 1999-12-27 松下電器産業株式会社 フリッカー補正回路
JPH08294045A (ja) 1995-04-24 1996-11-05 Sony Corp 撮像装置
JPH1132254A (ja) 1997-07-10 1999-02-02 Hitachi Ltd 撮像装置におけるフリッカ除去方法
JP3583618B2 (ja) * 1998-06-15 2004-11-04 富士通株式会社 画像処理装置、画像処理方法およびその方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体
US6710818B1 (en) * 1999-10-08 2004-03-23 Matsushita Electric Industrial Co., Ltd. Illumination flicker detection apparatus, an illumination flicker compensation apparatus, and an ac line frequency detection apparatus, methods of detecting illumination flicker, compensating illumination flicker, and measuring ac line frequency
JP3370979B2 (ja) * 2000-09-08 2003-01-27 三菱電機株式会社 撮像装置および自動レベル調整方法
US6771311B1 (en) * 2000-12-11 2004-08-03 Eastman Kodak Company Automatic color saturation enhancement
JP3928424B2 (ja) * 2001-12-26 2007-06-13 コニカミノルタビジネステクノロジーズ株式会社 動画におけるフリッカ補正
JP2003198932A (ja) * 2001-12-27 2003-07-11 Sharp Corp フリッカ補正装置およびフリッカ補正方法、並びにフリッカ補正プログラムを記録した記録媒体
KR100460755B1 (ko) * 2002-10-10 2004-12-14 매그나칩 반도체 유한회사 이미지센서의 화소배열부 및 그를 포함하는 이미지센서 및이미지센서의 플리커 잡음 제거방법
US7049987B2 (en) * 2003-08-12 2006-05-23 Siemens Building Technologies Ag Arrangement for generating a clock signal for a sigma-delta analog-to-digital converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274183A (ja) * 1994-03-28 1995-10-20 Sanyo Electric Co Ltd ビデオカメラ
JPH10257381A (ja) * 1997-03-12 1998-09-25 Matsushita Electric Ind Co Ltd フリッカ補正装置
JP2001045502A (ja) * 1999-08-04 2001-02-16 Sanyo Electric Co Ltd カメラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1679906A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722553A3 (en) * 2005-05-13 2010-04-28 Sony Corporation Flicker correction method and device, and imaging device
US7764312B2 (en) 2005-05-13 2010-07-27 Sony Corporation Flicker correction method and device, and imaging device
KR101180618B1 (ko) * 2005-05-13 2012-09-06 소니 주식회사 플리커 보정 방법, 플리커 보정 장치 및 촬상 장치
JP2014160919A (ja) * 2013-02-19 2014-09-04 Nec Corp 撮像システム及び撮像方法

Also Published As

Publication number Publication date
US7683941B2 (en) 2010-03-23
CN100559884C (zh) 2009-11-11
JP4364867B2 (ja) 2009-11-18
CN1860797A (zh) 2006-11-08
EP1679906A4 (en) 2009-09-02
US20080225147A1 (en) 2008-09-18
EP1679906B1 (en) 2011-07-27
JPWO2005043924A1 (ja) 2007-05-17
EP1679906A1 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US10547794B2 (en) Solid-state imaging apparatus and method of operating solid-state imaging apparatus to set a pluratlity of charge accumulation periods in accordance with a flicker period
JP4106554B2 (ja) 撮影環境判定方法および撮像装置
JP4371108B2 (ja) 撮像装置および方法、記録媒体、並びにプログラム
US20050179789A1 (en) Color image processing method, and color imaging apparatus
JP2005347939A (ja) 撮像装置および信号処理方法
JP2007074555A (ja) フリッカ低減方法、フリッカ低減回路及び撮像装置
JP2004222228A (ja) フリッカ低減方法、撮像装置およびフリッカ低減回路
KR20120025415A (ko) 화상처리장치 및 화상처리방법
WO2019225071A1 (ja) 信号処理装置及び信号処理方法、並びに撮像装置
WO2005043924A1 (ja) 撮像装置
US8144210B2 (en) White balance adjustment device and white balance adjustment method
JP2008278404A (ja) 画像処理装置および画像処理方法
JP2009219719A (ja) 内視鏡装置
JP3748031B2 (ja) 映像信号処理装置及び映像信号処理方法
JP2007194971A (ja) 画像処理装置および画像処理方法
JP2006135381A (ja) キャリブレーション方法およびキャリブレーション装置
JP2000354250A (ja) 撮像装置
JP4632918B2 (ja) 撮像装置
JPWO2019053764A1 (ja) 撮像装置
JP2007082023A (ja) 撮像装置、及び撮像方法
JP4048104B2 (ja) 撮像装置及び撮像方法
JPH10257381A (ja) フリッカ補正装置
JP2004007160A (ja) シェーディング補正装置
JPH1175112A (ja) 自動利得制御回路
JPH04307873A (ja) ビデオ信号のフレア補正回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200380110593.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10567251

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003770112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005510147

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003770112

Country of ref document: EP