WO2005040592A1 - 内燃機関の排気ガス還流装置 - Google Patents

内燃機関の排気ガス還流装置 Download PDF

Info

Publication number
WO2005040592A1
WO2005040592A1 PCT/JP2003/013529 JP0313529W WO2005040592A1 WO 2005040592 A1 WO2005040592 A1 WO 2005040592A1 JP 0313529 W JP0313529 W JP 0313529W WO 2005040592 A1 WO2005040592 A1 WO 2005040592A1
Authority
WO
WIPO (PCT)
Prior art keywords
recirculation
exhaust gas
control valve
flow rate
gas recirculation
Prior art date
Application number
PCT/JP2003/013529
Other languages
English (en)
French (fr)
Inventor
Teruhiko Minegishi
Yasuyuki Nakano
Original Assignee
Hitachi, Ltd.
Hitachi Car Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Car Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to AU2003284393A priority Critical patent/AU2003284393A1/en
Priority to US10/576,445 priority patent/US7290528B2/en
Priority to PCT/JP2003/013529 priority patent/WO2005040592A1/ja
Priority to CN2003801105091A priority patent/CN1839255B/zh
Priority to EP03775812A priority patent/EP1681455A1/en
Priority to JP2005509845A priority patent/JP4197336B2/ja
Publication of WO2005040592A1 publication Critical patent/WO2005040592A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • F02D2041/0075Estimating, calculating or determining the EGR rate, amount or flow by using flow sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas recirculation device for an internal combustion engine.
  • the exhaust gas recirculation control is important for purifying the exhaust gas, especially for reducing the emission of nitrogen oxides.
  • Conventional exhaust gas recirculation devices include, for example, Japanese Patent Application Laid-Open No. 2003-83304, Patent No. 3329771, and Japanese Patent Publication No.
  • the opening degree of the exhaust gas recirculation valve was controlled so as to obtain a predetermined exhaust gas recirculation rate. Disclosure of the invention
  • An object of the present invention is to provide an exhaust gas recirculation device with improved response speed and accuracy of exhaust gas recirculation flow rate control of an internal combustion engine.
  • the present invention includes a recirculation gas control valve for controlling a recirculation flow rate of an exhaust gas recirculation passage of an internal combustion engine, and an intake control valve for controlling a flow rate of an intake passage of the internal combustion engine.
  • An exhaust gas recirculation device for an internal combustion engine comprising: an intake air amount detector that detects a flow rate of the intake passage; a recirculation amount detector that detects an exhaust gas recirculation flow amount of the exhaust gas recirculation passage; and the intake flow amount detector.
  • Control means for feedback-controlling the intake control valve and / or the recirculation gas control valve is provided so that the exhaust gas recirculation rate obtained based on the output of the recirculation flow rate detector becomes a target recirculation rate. It is. With this configuration, the response speed and accuracy of the exhaust gas recirculation flow rate control of the internal combustion engine can be improved.
  • a plurality of three-dimensional maps defined by a combination of the recirculation gas control valve opening, the suction control valve opening, and the recirculation ratio are provided.
  • the control means selects the three-dimensional map according to the operation state of the internal combustion engine, and the exhaust gas recirculation rate obtained based on the outputs of the intake flow rate detector and the recirculation flow rate detector is a target recirculation rate.
  • the intake control valve and the Z or the return gas control valve are controlled by one so as to obtain a ratio.
  • the exhaust gas recirculation amount detector is a detector that detects an annular flow rate based on a pressure difference between at least two points in the exhaust gas recirculation passage, or the exhaust gas recirculation passage.
  • the intake air amount detector is configured to detect an intake air amount based on a pressure difference between at least two points in the intake passage, or to detect a mass flow amount of the intake passage. It was a container.
  • the intake control valve is an electronically-controlled throttle valve.
  • FIG. 1 illustrates a configuration of an engine system using an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a control system of the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 3 is a flowchart showing the control contents of the exhaust gas recirculation controller in the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 4 is a diagram in which in the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention, a model from the intake flow rate control valve on the intake side of the engine to the turbine of the Yuichi Pocharger on the exhaust side is modeled. .
  • FIG. 5 is a partial cross-sectional view showing a first configuration of a recirculation gas flow detector used in an exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view showing a second configuration of the recirculation gas flow detector used in the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing characteristics depending on the driving method of the intake flow control valve used in the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 8 is a diagram showing characteristics due to differences in the driving method of the intake flow control valve used in the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 9 is a block diagram of a control system of an exhaust gas recirculation device for an internal combustion engine according to another embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a map used for an exhaust gas recirculation device for an internal combustion engine according to another embodiment of the present invention.
  • FIG. 11 is a flowchart showing the control contents of an exhaust gas recirculation controller in an exhaust gas recirculation device for an internal combustion engine according to another embodiment of the present invention.
  • FIG. 1 illustrates a configuration of an engine system using an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention.
  • Dust in the intake air is removed by the air cleaner 1 from the air taken into the engine. Then, the intake flow rate detector 1 detects the intake flow rate G 1. The detected intake flow rate G1 signal is sent to the engine control unit (ECU) 21 and the exhaust Input to the gas / gas recirculation controller (EG RC0NT) 20.
  • the intake air is pressurized by a compressor 3 of an evening pot changer, passes through an intake pipe 4, and the flow rate or pressure is controlled by an intake flow rate control valve 5.
  • the intake air further flows into the intake manifold 6 and is distributed to each cylinder of the engine 7.
  • the opening of the intake flow control valve 5 is controlled by an intake flow control signal CTH output from the exhaust gas recirculation controller 20.
  • the intake flow control valve 5 is, for example, a butterfly valve, and detects an opening signal of a notch valve, and takes it into the exhaust gas recirculation controller 20 as an opening signal.
  • a fuel injection valve 19 provided in the engine 7, combustion fuel is supplied to a cylinder of the engine 7.
  • Fuel is supplied to the fuel injection valve 19 by a fuel pump 17 via a fuel pipe 18.
  • the injection amount of the fuel injection valve 19 is controlled by the ECU 21, and the ECU 21 supplies a fuel injection amount signal FINJ to the fuel injection valve 19.
  • Exhaust gas whose combustion power S has been terminated by the engine 7 is collected by the exhaust manifold 8, passes through the bin 9 of the pot jar, then is exhausted to the atmosphere through the catalyst 10 and the exhaust pipe 11. You.
  • the exhaust manifold 8 is provided with a branch portion 12, and a part of the exhaust gas from the engine 7 is branched.
  • the branched exhaust gas is led by a return pipe 13a as reflux gas.
  • the reflux pipe 13 a is provided with a reflux gas cooler 14.
  • the reflux gas cooled by the reflux gas cooler 14 passes through the reflux pipe 13 b and the reflux gas control valve 16, and returns to the intake manifold 6.
  • the opening degree of the recirculation gas control valve 16 is controlled by an opening degree control signal CEG of the recirculation gas control valve 16 output from the exhaust gas recirculation controller 20.
  • the recirculation gas control valve 16 is, for example, a valve of a seat valve type. The stroke amount of the seat valve is detected, and is taken into the exhaust gas recirculation controller 20 as a stroke signal STEG.
  • a butterfly valve is used as the recirculation gas control valve 16
  • an opening signal of the butterfly valve is taken into the exhaust gas recirculation controller 20.
  • the reflux pipe 13b is provided with a reflux gas flow detector 15 for measuring the flow rate G2 of the reflux gas flowing inside the reflux pipe. The measured reflux gas flow rate G 2 is input to the exhaust gas reflux controller 20.
  • the reflux gas cooler 14 is provided to lower the temperature of the reflux gas, it can be omitted.
  • the ECU 21 receives a rotation speed signal NE of the engine 7, an intake flow rate signal G1 from the intake flow rate detector 2, and other signals indicating the state of the engine and the vehicle (not shown). The ECU 21 performs calculations and the like based on these signals, and sends control commands to various devices to various devices.
  • the ECU 21 determines the operation state of the engine 7 based on signals such as the engine speed signal NE and the intake flow rate signal G1.
  • the ECU 21 outputs the recirculation gas recirculation rate command value RSET to the exhaust gas recirculation controller 20 according to the operation state.
  • the exhaust gas recirculation controller 20 obtains the recirculation rate R of the exhaust gas from the intake air flow rate G1 and the recirculation gas flow rate G2. Then, the exhaust gas recirculation controller 20 adjusts the opening degree of the intake flow control valves 5 and Z or the recirculation gas control valve 16 so that the obtained recirculation rate R matches the recirculation gas recirculation rate command value RSET. Perform feedback control. That is, the present embodiment is characterized in that not only the recirculation gas control valve 16 but also the intake flow rate control valve 5 is controlled so that the annular flow rate of the air gas becomes the target value.
  • FIG. 2 is a block diagram of a control system of the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 3 is a flowchart showing control contents of an exhaust gas recirculation controller in an exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • the exhaust gas recirculation controller 20 includes a recirculation gas recirculation rate command value RSET output by the ECU 21, an intake flow rate signal G 1 detected by the intake flow rate detector 2, and The reflux gas flow rate G2 detected by the reflux gas flow rate detector 15 is input.
  • the exhaust gas recirculation controller 20 outputs the opening control signal CEG to the recirculation gas control valve 16 and the intake flow control signal to the intake flow control valve 5 so that the exhaust gas recirculation rate R becomes the target value RSET. Outputs CTH and controls these valves 16 and 5.
  • the exhaust gas recirculation controller 20 calculates the recirculation rate R of the exhaust gas from the intake flow rate signal G1 and the return gas flow rate G2 as (G2Z (G1 + G2)).
  • the intake flow control valve 5 is faster than the response of the recirculation gas control valve 16.
  • the intake flow control valve 5 is, for example, Assuming that a butterfly valve having a pore diameter of 50 ⁇ is used and the recirculation gas control valve 16 is, for example, a seat valve having a seat diameter of 30 mm, the responsiveness of the intake flow rate control valve 5 is controlled by the recirculation gas control. This is faster than the response of valve 16.
  • control contents of the exhaust gas recirculation controller will be described with reference to FIG.
  • the following control contents W are all executed by the exhaust gas recirculation controller 20.
  • step s 1 ⁇ 0 in FIG. 3 the exhaust gas recirculation controller 20 calculates the recirculation rate R of the exhaust gas from the intake air flow rate signal G 1 and the recirculated gas flow rate G 2 by (G 2 Z (G 1 + G 2 )).
  • step s110 it is determined whether or not the change ⁇ RSET of the target value RSET of the exhaust gas recirculation rate R input from the ECU 21 is larger than a predetermined reference value ⁇ R0. judge. If the variation A RSET is larger than the reference value A RO, the process proceeds to step s120, otherwise to step s150. That is, in step s110, it is determined whether or not the target value RSET of the exhaust gas recirculation rate R has changed significantly. Judgment is made as to whether there is a transient change in operating conditions of the internal combustion engine and it is necessary to suddenly change the exhaust gas recirculation rate to reduce harmful substances in the exhaust gas.
  • step s120 If the change A RSET is larger than the reference value ARO, that is, if it is necessary to change the exhaust gas recirculation rate abruptly, in step s120, the exhaust gas recirculation calculated in step s110 It is determined whether or not the rate R is equal to the target value R SET of the exhaust gas recirculation rate R.
  • step s130 If the recirculation ratio R is larger than the target value RSET, in step s130, the opening control signal C TH output to the intake flow control valve 5 is reduced so that the opening of the intake flow control valve 5 is reduced. To control. Then, the process returns to step s 1 20, and is repeated until the reflux ratio R becomes equal to the target value RSET.
  • step s140 the opening control signal CTH output to the intake flow control valve 5 is increased, and the opening of the intake flow control valve 5 is reduced. Control to increase. Then, the process returns to step s 1 20, and is repeated until the reflux ratio R becomes equal to the target value RSET.
  • step s110 determines whether the change A RSET is equal to or less than the reference value A R0, that is, if the change in the exhaust gas recirculation rate is not so large.
  • step s150 it is determined whether the recirculation rate R of the exhaust gas calculated in step s110 is equal to the target value RSET of the recirculation rate R of the exhaust gas.
  • step s160 If the recirculation ratio R is larger than the target value RSET, in step s160, the opening control signal CEG output to the recirculation gas control valve 16 is decreased, and the opening of the recirculation gas control valve 16 is set to / J , So as to be reduced. Then, the process returns to step s150, and is repeated until the reflux ratio R becomes equal to the target value RSET.
  • step s170 the opening control signal CEG output to the reflux gas control valve 16 is increased, and the opening of the reflux gas control valve 16 is increased. Control to increase. Then, the process returns to step s150, and is repeated until the reflux ratio R becomes equal to the target value RSET.
  • the responsivity of the recirculation gas control valve 16 is slower than the responsivity of the intake flow rate control valve 5, which means that a more delicate opening control can be performed and the exhaust gas recirculation can be accurately performed.
  • the rate can be changed to a predetermined target value.
  • the responsiveness of the intake flow rate control valve 5 is faster than the responsiveness of the recirculation gas control valve 16. In some cases, it is faster than the response of the quantity control valve 5.
  • the intake flow control valve 5 is, for example, a butterfly valve having a pore diameter of 30 ⁇
  • the recirculation gas control valve 16 is, for example, a seat valve having a seat diameter of 50 ⁇
  • the responsivity of the recirculation gas control valve 16 is faster than the responsivity of the intake flow rate control valve 5.
  • the responsive recirculation gas control valve 16 is controlled. By controlling the flow control valve 5 Control accuracy is improved.
  • control accuracy can be improved by controlling the control valve having the slower response.
  • FIG. 4 shows an exhaust gas recirculation device for an internal combustion engine according to an embodiment of the present invention, in which the flow from the intake flow control valve 5 of the intake air ij of the engine 7 to the evening bin 9 of the exhaust-side discharger on the exhaust side is illustrated.
  • FIG. The same reference numerals as those in FIG. 1 indicate the same parts.
  • G2 f2 ( ⁇ 2, ⁇ 3, ⁇ ')... (3)
  • ne engine speed
  • V volumetric efficiency of the engine
  • V engine displacement
  • p 1 intake pressure
  • p 2 engine Back pressure
  • p 3 Turbocharger turbine back pressure
  • Loss coefficient of intake flow control valve
  • ⁇ ' Loss coefficient of recirculation gas control valve
  • f 1 Flow characteristic of intake flow control valve
  • f 2 Recirculation gas It is a control valve flow characteristic.
  • the flow rate G1 passing through the intake flow rate control valve 5 is It can be controlled by the loss coefficient ⁇ , that is, the opening of the five intake flow control valves.
  • the flow rate G 2 passing through the recirculation gas control valve 16 can be controlled by the loss coefficient ⁇ ′, that is, the opening degree of the recirculation gas control valve 16.
  • a feedback system is set up in the command system for the valve opening of the intake flow control valve 5 and the valve opening of the recirculation gas control valve 16, so that the recirculation gas recirculation rate R Can be controlled.
  • the control speed can be improved by grasping the flow characteristics of the intake flow control valve 5 and the recirculation gas control valve 14 in advance. That is, for example, the flow rate change per unit time when the intake flow rate control valve 5 is driven to change the intake flow rate, and the unit time when the recirculation gas control valve 14 is driven to change the intake flow rate.
  • the flow rate change per hit is grasped in advance.
  • the amount of flow change per unit time when the intake flow rate control valve 5 is driven to change the intake flow rate is the same as the unit time when the recirculation gas control valve 14 is driven to change the intake flow rate.
  • FIG. 5 is a partial cross-sectional view showing a first configuration of a recirculation gas flow detector used in an exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • FIG. 6 is a partial sectional view showing a second configuration of the recirculation gas flow detector used in the exhaust gas recirculation device for the internal combustion engine according to one embodiment of the present invention.
  • the reflux gas flow rate detector 15 shown in FIG. 5 measures the reflux gas flow rate based on the pressure inside the reflux pipe.
  • a narrowed portion 153 is formed on a part of the inner wall surface of the return pipe 13b.
  • the low-pressure side pressure detector 152 is provided in the throttle unit 153 so that the detection unit is open.
  • the high-pressure side pressure detector 15 1 is provided so that the detection unit is opened in the reflux pipe 13 b where the throttle unit 15 3 is not provided.
  • the pressure inside the recirculation pipe 13 b is determined by the low pressure side pressure detector 15 2 and the high pressure side pressure detector 15 1 Is measured.
  • the low-pressure side pressure detector 15 2 is provided in the throttle unit 15 3, so that the bench lily effect according to Bernoulli's theorem can be used.
  • the exhaust gas recirculation controller 20 can detect the recirculation gas flow rate G2 inside the recirculation pipe 13b from the pressure difference between the two pressure detectors 151, 152. Further, a temperature sensor 154 for detecting the temperature of the circulating gas flowing inside the circulating tube 13 b is provided. The exhaust gas recirculation controller 20 corrects the recirculation gas flow rate G2 obtained from the pressure difference between the pressure detectors 151 and 152 by using the recirculation gas temperature detected by the temperature sensor 154.
  • the reflux gas flow rate G 2 is obtained from the pressure difference between the pressure detectors 15 1 and 15 2, and further, the reflux gas temperature detected by the temperature sensor 15 A circuit element for correction may be provided, and the recirculation gas flow rate detector 15 may output a detection signal of the recirculation gas flow rate G2 to the exhaust gas recirculation controller 20.
  • the reflux gas flow detector 15 A shown in FIG. 6 measures the reflux gas flow using a hot wire detector.
  • the reflux gas flow detector 156 is provided on the wall of the reflux pipe 13b.
  • the reflux gas flow detector 156 is provided with a detection element 157 to measure the reflux gas flow inside the reflux pipe 13B.
  • a current flows through the detection element 157, and the element is heated to a constant temperature.
  • the amount of heat taken from the sensing element 157 changes according to the flow rate of the reflux gas.
  • This method uses a hot-wire detector, so it can directly measure mass flow, or G2.
  • the above is a description of the configuration of the recirculated gas flow rate detector 15.
  • the intake flow rate detector 2 may be of the type that detects pressure shown in FIG. 5 or the hot wire type that is shown in FIG. Can be used.
  • FIG. 7 and FIG. 8 are diagrams showing characteristics according to the difference in the driving method of the intake air flow control valve used in the exhaust gas recirculation device for an internal combustion engine according to one embodiment of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the opening of the intake air flow control valve.
  • Vertical axis The valve opening is shown as a percentage, with 100% at the maximum opening.
  • a solid line XI shows the characteristics of the valve opening when the electronically controlled throttle valve is used as the intake flow control valve 5.
  • the solid line X2 shows the characteristics of the valve opening when the negative pressure type throttle factory is used as the intake flow control valve 5.
  • the control can be performed in a stepless manner from the valve opening 0 to the fully open point B, and the feedback control can be easily realized. Therefore, as the intake flow rate control valve 5 used in the present embodiment, it is preferable to use an electronic control type throttle actuator.
  • FIG. 8 illustrates the difference in characteristics due to the difference in the drive system of the electronically controlled throttle factory.
  • the solid line Y1 shows the responsiveness of the system in which the throttle valve is driven by the DC motor in the throttle factory.
  • the solid line Y1 shows the responsiveness of the throttle valve driving system in which the throttle valve is driven by the step mode.
  • the step motor rotates in accordance with the drive pulse, so open-loop control is possible; ⁇ , the response speed is slower than that of the DC motor system, as indicated by the characteristic indicated by the solid line Y2 in the figure. It is. In general, it is difficult to increase the speed of a step motor due to restrictions such as avoiding step-out, and when a higher speed is required, the size of the step motor is increased, and the cost is increased.
  • DC motors are easily available as small, high-rotation type motors, and are suitable as small, high-speed, low-cost driving sources by performing position feedback control.
  • the drive step becomes the control resolution, which contradicts high speed.
  • the resolution is determined by the resolution of the position detection sensor used for feedback control. If a continuous output system such as a potentiometer is used, a high-resolution feedback system can be easily established. Therefore, a DC motor is suitable as a drive source for the electronically controlled throttle factory. In addition, even when a brushless motor is adopted, the same result as that of a DC motor can be obtained.
  • FIG. 9 is a block diagram of a control system of an exhaust gas recirculation device for an internal combustion engine according to another embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • FIG. 10 is a configuration diagram of a map used for an exhaust gas recirculation device for an internal combustion engine according to another embodiment of the present invention.
  • FIG. 11 is a flowchart showing the control contents of an exhaust gas recirculation controller in an exhaust gas recirculation device for an internal combustion engine according to another embodiment of the present invention.
  • the same reference numerals as those in FIG. 3 indicate the same parts.
  • the exhaust gas recirculation controller 2OA has a three-dimensional map 20B in the interior 15 thereof.
  • the recirculation gas recirculation rate command value RSET output by the ECU 21 the intake flow rate signal G 1 detected by the intake flow rate detector 2, and detected by the recirculation gas flow rate detector 15
  • the returned return gas flow rate G 2, the opening signal ⁇ TH from the intake flow rate control valve 5 and the stroke signal STEG from the recirculation gas control valve 16 are input.
  • the exhaust gas recirculation controller 2OA calculates the recirculation rate R of the exhaust gas from the intake flow rate signal G1 and the recirculated gas flow rate G2 as (G2Z (G1 + G2)).
  • the exhaust gas recirculation controller 2 OA first uses the map 20 B to apply the opening control signal CEG to the recirculation gas control valve 16 and the intake air flow control valve so that the exhaust gas recirculation rate R becomes the target value RSET.
  • 5 outputs the intake flow rate control signal CTH, and outputs the opening control signal CEG to the recirculation gas control valve 16 by feedback control, and sucks it into the intake flow rate control valve 5.
  • An air flow control signal CTH is output to control these valves 16 and 5.
  • Map 20B is a three-dimensional map of fresh air passage opening 0TH (%), recirculation passage opening STEG (%), and recirculation ratio R ().
  • the fresh air passage opening 0TH (%) indicates the opening signal 0TH as a percentage, with the maximum opening being 100% when the intake flow control valve 5 is a butterfly valve.
  • the recirculation passage opening STEG (%) is a percentage of the stroke signal STEG, where the maximum stroke amount of the seat valve is 100% when the recirculation gas control valve 16 is a seat valve type valve.
  • FIG. 10 shows the results of solving Equations (1), (2), and (3) described above when an engine is operating.
  • the indication range of the intake flow control valve 5 is from 5% to 25% of the opening
  • the indication range of the recirculation gas control valve 14 is from 0% to 60% of the opening.
  • the grid points on the three-dimensional map indicate the relationship between the opening degrees of the five intake flow control valves and the recirculation gas control valve that satisfy the recirculation gas recirculation rate.
  • the three-dimensional map 20B is provided with a plurality of three-dimensional maps corresponding to each operating state of the engine. Then, by using a map according to the operating state of the engine and selecting grid points on the map, the return gas recirculation rate can also be controlled by open loop control.
  • the responsiveness of the intake flow rate control valve 5 is faster than the responsiveness of the recirculation gas control valve 16, and even if the recirculation gas recirculation rate command value RSET suddenly changes in a pulsed manner, for example.
  • the intake flow control valve 5, which is an electronically controlled throttle valve is mainly operated, it is possible to cope with pulse-like fluctuations in the command value. That is, it is possible to cope with a transient change in the engine operation state.
  • control contents of the exhaust gas recirculation controller 20B will be described with reference to FIG. explain.
  • the following control contents are all executed by the exhaust gas recirculation controller 20B.
  • the same step numbers as those in FIG. 3 indicate the same processing contents.
  • steps s210 to s240 are added to the processing of FIG.
  • step s100 of FIG. 11 the exhaust gas recirculation controller 20B calculates the recirculation rate R of the exhaust gas as (G2Z (G1 + G2)) from the intake flow signal G1 and the recirculated gas flow G2. I do.
  • step s110 it is determined whether or not the change ⁇ RSET of the target value RSET of the recirculation ratio R of the exhaust gas input from the ECU 21 is larger than a preset reference value ⁇ R0. If the change amount ⁇ RSET is larger than the reference value ARO, the process proceeds to step s210; otherwise, the process proceeds to step s230. That is, in step s110, it is determined whether or not the target value RSET of the exhaust gas recirculation rate R has changed significantly. Judgment is made as to whether there is a transient change in operating conditions of the internal combustion engine and it is necessary to suddenly change the exhaust gas recirculation rate to reduce harmful substances in the exhaust gas.
  • step s210 If the variation ⁇ RSET is larger than the reference value ARO, that is, if it is necessary to rapidly change the exhaust gas recirculation rate, in step s210, a three-dimensional model corresponding to the engine operating state at that time is used. Using the map 20B, the target fresh air passage opening (%) is obtained from the circulation passage length corresponding to the recirculated gas reflux ratio command value RSET and the circulation passage opening STEG ().
  • step s220 an opening control signal CTH for achieving the target new air passage opening 0TH () is output to the intake flow control valve 5, and the opening of the intake flow control valve 5 is set to the target. It is controlled in an open loop so that the fresh air passage opening becomes 0TH (%). In this way, by controlling the opening of the intake flow control valve 5 so that the new air passage opening is 0TH (%) in the open loop, the target fresh air passage opening ⁇ TH () can be quickly obtained. Can be controlled.
  • step s120 it is determined whether or not the recirculation rate R of the exhaust gas calculated in step s110 is equal to the target value RSET of the recirculation rate R of the exhaust gas.
  • step s130 If the recirculation ratio R is larger than the target value RSET, in step s130, the opening degree control signal CTH output to the intake flow rate 1 control valve 5 is decreased, and the opening degree of the intake flow rate control valve 5 is reduced. Is controlled to be small. Then, the process returns to step s 120, and is repeated until the reflux ratio R becomes equal to the target value.
  • step s140 the opening control signal CTH output to the intake flow rate control valve 5 is increased, and the opening of the intake flow control valve 5 is reduced. Control to be big. Then, the process returns to step s 1 20, and is repeated until the reflux ratio R becomes equal to the target value R SET.
  • step s110 if it is determined in step s110 that the change ⁇ RSET is equal to or less than the reference value AR0, that is, if the change in the exhaust gas recirculation rate is not so large, step s230 Using the three-dimensional map 20 B corresponding to the operating state of the engine at that time, the recirculation rate R corresponding to the recirculated gas recirculation rate command value RSET and the fresh air passage opening 0 TH (%) Obtain the target recirculation passage opening STEG (%).
  • step s240 an opening control signal CEG for achieving the target recirculation passage opening STEG (%) is output to the recirculation gas control valve 16, and the recirculation gas control valve 16 is opened. Open loop control is performed so that the degree of recirculation passage opening is the target degree of opening STEG (%).
  • step s150 it is determined whether or not the recirculation rate R of the exhaust gas calculated in step s110 is equal to the target value RSET of the recirculation rate R of the exhaust gas.
  • step s160 If the recirculation ratio R is larger than the target value RSET, in step s160, the opening control signal CEG output to the reflux gas control valve 16 is reduced, and the opening of the reflux gas control valve 16 is reduced. Control. Then, the process returns to step s150, and is repeated until the reflux ratio R becomes equal to the target value RSET.
  • step s170 the opening control signal CEG output to the recirculation gas control valve 16 is increased, and the recirculation gas control valve 16 is opened. Control to increase the power S. Then, return to step s150, and The process is repeated until the rate R becomes equal to the target value RSET.
  • step s150, s160, and 170 feedback control is performed until the recirculation rate R becomes equal to the target value RSET.
  • the responsivity of the recirculation gas control valve 16 is slower than the responsivity of the intake flow rate control valve 5, which means that a more delicate opening control can be performed and the exhaust gas recirculation can be accurately performed.
  • the rate can be changed to a predetermined target value.
  • the responsiveness of the intake flow control valve 5 is assumed to be faster than the response of the recirculation gas control valve 16, but conversely, the responsiveness of the recirculation gas control valve 16 is In some cases, the response is faster than the response of the intake flow control valve 5. In such a case, when it is necessary to suddenly change the exhaust gas recirculation rate, the recirculation gas control valve 16 having a fast response is controlled in an open loop first, and then the feedback control is performed. If unnecessary, the response is controlled by controlling the intake flow rate control valve 5, which has a slower response.
  • the target valve is quickly opened by controlling the control valve having the quicker response in an open loop first.
  • the valve By moving the valve to the vicinity and then performing feedback control, it can respond to sudden changes by converging to the target opening, but if sudden changes are unnecessary, control with the slower response
  • control accuracy By controlling the valve, control accuracy can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本発明の目的は、内燃機関の排気ガス還流流量制御の応答速度及び精度の向上した排気ガス還流装置を提供することにある。還流ガス制御弁(16)は、内燃機関(7)の排気ガス還流通路(13a,13b)の還流流量を制御する。吸気制御弁(5)は、内燃機関(7)の吸気通路(4)の流量制御する。吸気量検知器(2)は、吸気通路(4)の流量を検出する。還流量検知器(15)は、排気ガス還流通路(13)の排気ガス還流流量を検出する。排気ガス環流コントローラ20は、吸気流量検知器(2)と還流流量検知器(15)の出力に基いて求められた排気ガス還流率が目標の環流率となるように、吸気制御弁(5)及び/または還流ガス制御弁(16)をフィードバック制御する。

Description

明 細 書 内燃機関の排気ガス還流装置 技術分野
本発明は、 内燃機関の排気ガス還流装置に関する。 背景技術
ディーゼルエンジンのような内燃機関においては、 排気ガス浄化, 特に、 窒素 酸化物の排出削減のためには、 該排気ガス還流制御が重要となる。 従来の排気ガ ス環流装置としては、 例えば、 特開 2 0 0 3— 8 3 0 3 4号公報, 特許第 3 3 2 9 7 1 1号公報, 特表' 2 0 0 3— 5 1 6 4 9 6号公報に記載されているように、 所定の排気ガス還流率となるように、 排気ガス環流弁の開度を制御していた。 発明の開示
しかしながら、 排気ガス環流弁の開度を制御する従来の方式では、 内燃機関の 運転領域全て, 特に、 過渡的な運転条件変化に対して、 排気ガス中の有害物質低 減のため、 排気ガス還流率 ¾急変する必要が生じた場合、 適正な制御を行うこと が困難であるという問題があつた。
本発明の目的は、 内燃機関の排気ガス還流流量制御の応答速度及び精度の向上 した排気ガス還流装置を提供することにある。
( 1 ) 上記目的を達成するために、 本発明は、 内燃機関の排気ガス還流通路の 還流流量を制御する還流ガス制御弁と、 内燃機関の吸気通路の流量制御する吸気 制御弁とを備えた内燃機関の排気ガス還流装置であって、 前記吸気通路の流量を 検出する吸気量検知器と、 前記排気ガス還流通路の排気ガス還流流量を検出する 還流量検知器と、 前記吸気流量検知器と前記還流流量検知器の出力に基いて求め られた排気ガス環流率が目標の環流率となるように、 前記吸気制御弁及び/また は前記還流ガス制御弁をフィードバック制御する制御手段を備えるようにしたも のである。 かかる構成により、 内燃機関の排気ガス還流流量制御の応答速度及び精度を向 上し得るものとなる。
( 2 ) 上記 (1 ) において、 好ましくは、 前記制御手段は、 前記環流率の目標 値が急激に変化した場合には、 前記吸気制御弁及び前記還流ガス制御弁の内、 応 答性の早い方の弁をフィ一ドバック制御するようにしたものである。
( 3 ) 上記 ( 1 ) において、 好ましくは、 前記還流ガス制御弁開度と、 前記吸 気制御弁開度と、 前記環流率との組合せ状態によつて定義される 3次元マップを 複数個備え、 前記制御手段は、 内燃機関の運転状態に応じた前記 3次元マップを 選択し、 前記吸気流量検知器と前記還流流量検知器の出力に基いて求められた排 気ガス環流率が目標の環流率となるように、 前記吸気制御弁及び Zまたは前記還 流ガス制御弁を 1御するようにしたものである。
( 4 ) 上記 (2 ) において、 好ましくは、 前記制御手段は、 前記環流率の目標 値が急激に変化した場合には、 前記吸気制御弁及び前記還流ガス制御弁の内、 応 答性の早い方の弁を制御するようにしたものである。
( 5 ) 上記 (1 ) において、 好ましくは、 前記排気ガス還流量検知器は、 前記 排気ガス還流通路の少なくとも 2地点以上の圧力差を基に環流量を検出する検知器 若しくは前記排気ガス還流通路の質量流量を検出する検知器であり、 前記吸気量 検知器は、 前記吸気通路の少なくとも 2地点以上の圧力差を基に吸気量を検出する 検知器若しくは前記吸気通路の質量流量を検出する検知器としたものである。
( 6 ) 上記 (1 ) において、 好ましくは、 前記吸気制御弁が、 電子制御方式の スロットルァクチユエ一夕としたものである。 図面の簡単な説明
図 1は、 本発明の一実施形態による内燃機関の排気ガス還流装置を用いたェン ジンシステムの構成について説明する。
図 2は、 本発明の一実施形態による内燃機関の排気ガス還流装置の制御系のブ ロック図である。
図 3は、 本発明の一実施形態による内燃機関の排気ガス還流装置における排気 ガス環流コントローラの制御内容を示すフローチャートである。 図 4は、 本発明の一実施开態による内燃機関の排気ガス還流装置において、 ェ ンジンの吸気側の吸気流量讳御弁から排気側の夕一ポチヤージャーのタービンま でをモデル化した図である。
図 5は、 本発明の一実施形態による内燃機関の排気ガス還流装置に用いる還流 ガス流量検出器の第 1の構成を示す部分断面図である。
図 6は、 本発明の一実施开態による内燃機関の排気ガス還流装置に用いる還流 ガス流量検出器の第 2の構成を示す部分断面図である。
図 7は、 本発明の一実施开態による内燃機関の排気ガス還流装置に用いる吸気 流量制御弁の駆動方式の違 による特性を示す図である。
図 8は、 本発明の一実施开態による内燃機関の排気ガス還流装置に用いる吸気 流量制御弁の駆動方式の違^による特性を示す図である。
図 9は、 本発明の他の実施形態による内燃機関の排気ガス還流装置の制御系の ブロック図である。
図 1 0は、 本発明の他の実施形態による内燃機関の排気ガス還流装置に用いる マップの構成図である。
図 1 1は、 本発明の他の実施形態による内燃機関の排気ガス還流装置における 排気ガス環流コントローラの制御内容を示すフローチヤ一トである。 発明を実施するための最良の形態
以下、 図 1〜図 8を用いて、 本発明の一実施形態による内燃機関の排気ガス還 流装置の構成及び動作につ て説明する。
最初に、 図 1を用いて、 本実施形態による内燃機関の排気ガス還流装置を用い たエンジンシステムの構成 こついて説明する。 ここでは、 ディーゼルエンジンの 構成を例として説明する。
図 1は、 本発明の一実施幵態による内燃機関の排気ガス還流装置を用いたェン ジンシステムの構成について説明する。
エンジンに吸入される空気は、 エアクリーナ 1において吸気中の塵を除去され る。 そして、 吸気流量検出器 2によって、 吸気流量 G 1が検出される。 検出され た吸気流量 G 1の信号は、 エンジンコント口一ルユニット (E C U) 2 1及び排 気ガス環流コントローラ (E G RC0NT) 2 0に入力する。 吸気は、 夕一ポチヤー ジャーのコンプレッサ 3にて加圧され、 吸気管 4を通過し、 吸気流量制御弁 5で 流量若しくは圧力が制御される。 吸気は、 さらに、 吸気マ二ホールド 6に流入し、 エンジン 7の各気筒に分配される。
吸気流量制御弁 5の開度は、 排気ガス環流コントローラ 2 0から出力される吸 気流量制御信号 CTHによって制御される。 吸気流量制御弁 5は、 例えば、 バタフ ライ式の弁であり、 ノ タフライ弁の開度信号が検出され、 開度信号 として、 排気ガス環流コントローラ 2 0に取り込まれる。
エンジン 7に設けられた燃料噴射弁 1 9からは、 エンジン 7のシリンダに燃焼 用燃料が供給される。 燃料噴射弁 1 9への燃料供給は、 燃料配管 1 8を介して燃 料ポンプ 1 7が行われる。 また、 燃料噴射弁 1 9の噴射量は、 E C U 2 1によつ て制御され、 E C U 2 1は、 燃料噴射量信号 F INJを燃料噴射弁 1 9に供給する。 エンジン 7で燃焼力 S終了した排気は、 排気マ二ホールド 8により集合され、 タ —ポチヤージャーの夕一ビン 9を通過した後、 触媒 1 0 , 排気管 1 1を通って大 気中に排気される。 排気マ二ホールド 8には分岐部 1 2が設けられており、 ェン ジン 7からの排気ガスの一部が分岐される。 分岐された排気ガスは、 還流ガスと して、 還流管 1 3 aで導かれる。 環流管 1 3 aには、 還流ガス冷却器 1 4が設け られている。 還流ガス冷却器 1 4によって冷却された還流ガスは、 還流管 1 3 b, 還流ガス制御弁 1 6を通過し、 吸気マ二ホールド 6に還流する。
還流ガス制御弁 1 6の開度は、 排気ガス環流コントローラ 2 0から出力される 環流ガス制御弁 1 6の開度制御信号 CEGによって制御される。 環流ガス制御弁 1 6は、 例えば、 シートバルブ式の弁であり、 シートバルブのストローク量が検出 され、 ストローク信号 S TEGとして、 排気ガス環流コントローラ 2 0に取り込ま れる。 環流ガス制御弁 1 6として、 例えば、 バタフライ式の弁を用いる場合には、 バタフライ弁の開度信号が、 排気ガス環流コントローラ 2 0に取り込まれる。 還流管 1 3 bには、 還流ガス流量検出器 1 5が設けられており還流管内部を流 れる還流ガス流量 G 2を測定する。 測定された環流ガス流量 G 2は、 排気ガス環 流コント口一ラ 2 0に入力する。 なお、 還流ガス冷却器 1 4は、 還流ガスの温度 を下げるため設けられているが、 省略することも可能である。 E C U 2 1には、 エンジン 7の回転数信号 NEや、 吸気流量検出器 2からの吸気 流量信号 G 1等のほか図示されないエンジンや車両の状態を示す信号が入力する。 E C U 2 1は、 これらの信号に基づいて演算等を行い、 各種デバイスへ制御指令 値として各種デバイスに送る。 E C U 2 1は、 エンジン 7の回転数信号 NEや吸気 流量信号 G 1等の信号に基づいてエンジン 7の運転状態を判定する。 E C U 2 1 は、 この運転状態に応じて、 還流ガス還流率指令値 RSETを排気ガス環流コント口 ーラ 2 0に出力する。
排気ガス環流コントローラ 2 0は、 吸気流量 G 1と環流ガス流量 G 2とからお 気ガスの環流率 Rを求める。 そして、 排気ガス環流コントローラ 2 0は、 求めら れた環流率 Rが還流ガス還流率指令値 R SETと一致するように、 吸気流量制御弁 5 および Zまたは還流ガス制御弁 1 6の開度をフィードバック制御する。 すなわち、 本実施形態では、 お気ガスの環流量が目標値となるように、 還流ガス制御弁 1 6 だけなく、 吸気流量制御弁 5をも制御する点に特徴がある。
次に、 図 2及び図 3を用いて、 本実施形態による内燃機関の排気ガス還流装置 における排気ガス環流コントローラの制御内容について説明する。
図 2は、 本発明の一実施形態による内燃機関の排気ガス還流装置の制御系のブ ロック図である。 図 3は、 本発明の一実施形態による内燃機関の排気ガス還流装 置における排気ガス環流コントローラの制御内容を示すフローチャートである。 なお、 図 1と同一符号は、 同一部分を示している。
図 2に示すように、 排気ガス環流コント口一ラ 2 0には、 E C U 2 1が出力す る還流ガス還流率指令値 RSET, 吸気流量検出器 2によって検出された吸気流量信 号 G 1及び還流ガス流量検出器 1 5によって検出された還流ガス流量 G 2が入力 する。 排気ガス環流コントローラ 2 0は、 排気ガスの環流率 Rが目標値 RSETとな るように、 還流ガス制御弁 1 6に開度制御信号 CEGを出力し、 吸気流量制御弁 5 に吸気流量制御信号 CTHを出力し、 これらの弁 1 6, 5を制御する。 なお、 排気 ガス環流コントローラ 2 0は、 排気ガスの環流率 Rを、 吸気流量信号 G 1及び還 流ガス流量 G 2から、 (G 2 Z (G 1 + G 2 ) ) として算出する。
なお、 以下の説明において、 吸気流量制御弁 5の応答性が、 還流ガス制御弁 1 6の応答性よりも早いものとする。 具体的には、 吸気流量制御弁 5は、 例えば、 ポア径が 5 0 φのバタフライ弁とし、 還流ガス制御弁 1 6が、 例えば、 シート径 が 3 0 ψのシート弁とすると、 このとき、 吸気流量制御弁 5の応答性が、 還流ガ ス制御弁 1 6の応答性よりも早いものとなる。
次に、 図 3を用いて、 排気ガス環流コントローラの制御内容について説明する。 なお、 以下の制御内容 W:、 全て排気ガス環流コントローラ 2 0によって実行され る。
図 3のステップ s 1 Ο 0において、 排気ガス環流コントローラ 2 0は、 吸気流 量信号 G 1及び還流ガス流量 G 2から、 排気ガスの環流率 Rを、 (G 2 Z ( G 1 + G 2 ) ) として算出する。
次に、 ステップ s 1 1 0において、 E C U 2 1から入力した排気ガスの環流率 Rの目標値 RSETの変化分△ R SETが、 予め設定されている基準値 Δ R0よりも大き いか否かを判定する。 変化分 A RSETが、 基準値 A R Oよりも大きい場合には、 ス テツプ s 1 2 0に進み、 そうでない場合にはステップ s 1 5 0に進む。 すなわち、 ステップ s 1 1 0では、 排気ガスの環流率 Rの目標値 R SETが大きく変化したか否 かを判定する。 内燃機関の過渡的な運転条件変化があり、 排気ガス中の有害物質 低減のため、 排気ガス還流率を急変する必要が生じたか否かを判定する。
変化分 A RSETが基準値 A R Oよりも大きい場合, すなわち、 排気ガス還流率を 急変する必要が生じた場合には、 ステップ s 1 2 0において、 ステップ s 1 1 0 で算出された排気ガスの環流率 Rが、 排気ガスの環流率 Rの目標値 R SETと等しい か否かを判定する。
環流率 Rが目標値 RSETより大きい場合には、 ステップ s 1 3 0において、 吸気 流量制御弁 5に出力する開度制御信号 C THを減少させ、 吸気流量制御弁 5の開度 が小さくなるように制御する。 そして、 ステップ s 1 2 0に戻り、 環流率 Rが目 標値 RSETに等しくなるまで繰り返される。
一方、 環流率 Rが目標値 R SETより小さい場合には、 ステップ s 1 4 0において、 吸気流量制御弁 5に出力する開度制御信号 C THを増加させ、 吸気流量制御弁 5の 開度が大きくなるように制御する。 そして、 ステップ s 1 2 0に戻り、 環流率 R が目標値 RSETに等しくなるまで繰り返される。
以上のように、 ステップ s 1 2 0, s 1 3 0 , 1 4 0の処理を繰り返すことに より、 環流率 Rが目標値 RSETに等しくなるまでフィードバック制御される。 この とき、 吸気流量制御弁 5の応答性が、 還流ガス制御弁 1 6の応答性よりも早いも のとしているので、 排気ガス還流率を急変する必要が生じた場合でも、 速やかに 排気ガス環流率を所定の目標値に変更することが可能となる。
一方、 ステップ s 1 1 0の判定で、 変化分 A RSETが基準値 A R0以下と判定さ れた場合, すなわち、 排気ガス還流率の変化がそれほど大きくない場合には、 ス テツプ s 1 5 0において、 ステップ s 1 1 0で算出された排気ガスの環流率 Rが、 排気ガスの環流率 Rの目標値 R SETと等しいか否かを判定する。
環流率 Rが目標値 RSETより大きい場合には、 ステップ s 1 6 0において、 還流 ガス制御弁 1 6に出力する開度制御信号 CEGを減少させ、 還流ガス制御弁 1 6の 開度が/ J、さくなるように制御する。 そして、 ステップ s 1 5 0に戻り、 環流率 R が目標値 R SETに等しくなるまで繰り返される。
一方、 環流率 Rが目標値 RSETより小さい場合には、 ステップ s 1 7 0において、 還流ガス制御弁 1 6に出力する開度制御信号 CEGを増加させ、 還流ガス制御弁 1 6の開度が大きくなるように制御する。 そして、 ステップ s 1 5 0に戻り、 環流 率 Rが目標値 RSETに等しくなるまで繰り返される。
以上のように、 ステップ s 1 5 0, s 1 6 0 , 1 7 0の処理を繰り返すことに より、 環流率 Rが目標値 RSETに等しくなるまでフィードバック制御される。 この とき、 還流ガス制御弁 1 6の応答性は、 吸気流量制御弁 5の応答性よりも遅いも のであるということは、 より微妙な開度制御が可能であり、 正確に、 排気ガス環 流率を所定の目標値に変更することが可能となる。
なお、 以上の説明では、 吸気流量制御弁 5の応答性が、 還流ガス制御弁 1 6の 応答性よりも早いものとしたが、 逆に、 還流ガス制御弁 1 6の応答性が、 吸気流 量制御弁 5の応答性よりも早い場合もある。 具体的には、 吸気流量制御弁 5は、 例えば、 ポア径が 3 0 φのバタフライ弁とし、 還流ガス制御弁 1 6が、 例えば、 シート径が 5 0 φのシート弁とすると、 このとき、 還流ガス制御弁 1 6の応答性 が、 吸気流量制御弁 5の応答性よりも早いものとなる。 このような場合には、 排 気ガス還流率を急変する必要が生じた場合には、 応答性の早い還流ガス制御弁 1 6を制御し、 急変が不要の場合には、 応答性の遅い吸気流量制御弁 5を制御して 制御精度が向上するようにする。
以上のようにして、 排気ガス還流率を急変する必要が生じた場合には、 応答性 の早い方の制御弁を制御することにより、 急激な変化にも対応でき、 一方、 急変 が不要な場合には、 応答性の遅い方の制御弁を制御することにより、 制御精度を 向上することができる。
次に、 図 4を用いて、 本実施形態による内燃機関の排気ガス還流装置における 排気ガス環流コントローラのフィ一ドバック制御方法について説明する。
図 4は、 本発明の一実施形態による内燃機関の排気ガス還流装置において、 ェ ンジン 7の吸気俱 ijの吸気流量制御弁 5から排気側の夕一ポチヤ一ジャーの夕一ビ ン 9までをモデノレ化した図である。 なお、 図 1と同一符号は、 同一部分を示して いる。
図 4において、 吸気流量制御弁 5を通過する流量と圧力をそれぞれ Gl, piとし、 タ一ポチヤ一ジャーのタービン 9を通過する流量と圧力をそれぞれ G3, p3とし、 還流ガス制御弁 1 6においてエンジン 7を基準にしてエンジン 7の排気側である 還流管 13 aを通過する流量と圧力をそれぞれ G 2, p2とすると、 この系の関係 は、 以下の式 (1) , 式 (2) , 式 (3) の連立方程式で表わすことができる。
Gl+G2=G3=f3(ne, τ?ν,ρ2) … (1)
Gl-fl ( 1 , p 2 , ζ) … (2)
G2=f2 (ρ 2 , ρ 3 , ζ ' ) … (3) ここで、 ne :エンジン回転数、 V :エンジンの体積効率、 V :エンジン排気量、 p 1 :吸気圧力、 p 2 :エンジンの背圧、 p 3 :ターポチヤージャーのタービン 背圧、 ζ :吸気流量制御弁損失係数、 ζ ' :還流ガス制御弁損失係数、 f 1 :吸 気流量制御弁流量特性、 f 2 :還流ガス制御弁流量特性である。
一方、 還流ガス還流率 Rは、 上述したように、 R = G2Z (G1 +G2) で与え られる。 つまり、 吸気流量制御弁 5を通過する流量 G 1と還流ガス制御弁を通過 する流量 G 2の値が求まれば一義的に確定する。
ここで、 式 (2) で示される通り、 吸気流量制御弁 5を通過する流量 G1は、 損失係数 ζ , つまり吸気流量制御弁 5弁の開度により制御可能である。 同様に、 式 (3 ) で示される通り、 還流ガス制御弁 1 6を通過する流量 G 2は、 損失係数 ζ ' , つまり還流ガス制御弁 1 6の弁開度により制御可能である。 つまり、 流量 G l , G 2の値を基に、 吸気流量制御弁 5の弁開度と還流ガス制御弁 1 6弁開度 との指令系にフィードバック系を組むことにより、 還流ガス還流率 Rを制御でき ることになる。
さらに、 この場合予め吸気流量制御弁 5および還流ガス制御弁 1 4の流量特性 を把握して置くことにより、 制御速度の向上が可能となる。 すなわち、 例えば、 吸気流量制御弁 5を駆動して吸気流量を変化させた場合の単位時間当たりの流量 変化分と、 還流ガス制御弁 1 4を駆動して吸気流量を変化させた場合の単位時間 当たりの流量変化分とを予め把握する。 そして、 吸気流量制御弁 5を駆動して吸 気流量を変化させた場合の単位時間当たりの流量変化分が、 還流ガス制御弁 1 4 を駆動して吸気流量を変化させた場合の単位時間当たりの流量変化分よりも早い 場合、 すなわち、 吸気流量制御弁 5の応答性が還流ガス制御弁 1 6の応答性より も早い場合には、 排気ガス還流率を急変する必要が生じた場合には、 吸気流量制 御弁 5を制御することにより、 速やかに排気ガス環流率を所定の目標値に変更す ることが可能となり、 制御速度が向上する。
次に、 図 5及び図 6を用いて、 本実施形態による内燃機関の排気ガス還流装置 に用いる還流ガス流量検出器 1 5の構成について説明する。
図 5は、 本発明の一実施形態による内燃機関の排気ガス還流装置に用いる還流 ガス流量検出器の第 1の構成を示す部分断面図である。 図 6は、 本発明の一実施 形態による内燃機関の排気ガス還流装置に用いる還流ガス流量検出器の第 2の構 成を示す咅 ^分断面図である。
図 5に示す還流ガス流量検出器 1 5は、 環流管内部の圧力により、 環流ガス流 量を測定するものである。 還流管 1 3 bの内壁面の一部には、 絞り部 1 5 3が形 成されている。 低圧側圧力検知器 1 5 2は、 絞り部 1 5 3に検知部が開口するよ うに設けられている。 高圧側圧力検知器 1 5 1は、 絞り部 1 5 3が設けられてい ない場所の環流管 1 3 bに検知部が開口するように設けられている。 低圧側圧力 検知器 1 5 2と、 高圧側圧力検知器 1 5 1とにより、 還流管 1 3 bの内部の圧力 を測定する。 低圧側圧力検知器 1 5 2は、 絞り部 1 5 3に設けられることにより、 ベルヌーィの定理によるベンチユリ効果を利用することができる。 排気ガス環流 コントローラ 2 0は、 2個の圧力検知器 1 5 1, 1 5 2の圧力差から、 還流管 1 3 bの内部の還流ガス流量 G 2を検知することができる。 さらに、 環流管 1 3 b の内部を流れる環流ガスの温度を検出する温度センサ 1 5 4を備えている。 排気 ガス環流コントローラ 2 0は、 圧力検知器 1 5 1, 1 5 2の圧力差から求められ た還流ガス流量 G 2を、 温度センサ 1 5 4によって検出された環流ガス温度によ つて補正する。 なお、 還流ガス流量検出器 1 5の内部に、 圧力検知器 1 5 1 , 1 5 2の圧力差から還流ガス流量 G 2を求め、 さらに、 温度センサ 1 5 4によって 検出された環流ガス温度によって補正するための回路素子を備え、 還流ガス流量 検出器 1 5が、 環流ガス流量 G 2の検出信号を排気ガス環流コントローラ 2 0に 出力するようにしてもよいものである。
図 6に示す還流ガス流量検出器 1 5 Aは、 熱線式検知器により、 環流ガス流量 を測定するものである。 還流ガス流量検出器 1 5 6は、 還流管 1 3 bの壁面に設 置されている。 また、 還流ガス流量検出器 1 5 6には、 検知エレメント 1 5 7が 設けられており、 還流管 1 3 Bの内部の還流ガス流量を測定している。 検知エレ メント 1 5 7には電流が流され、 一定温度となるように加熱されている。 環流ガ スの流量に じて、 検知エレメント 1 5 7から奪われる熱量が変化する。 このと き、 検知エレメント 1 5 7の温度が一定となるように制御することにより、 検知 エレメント 1 5 7を流れる電流が環流ガス流量を示す信号となる。 この方式では、 熱線式検知器を用いるので、 質量流量つまり G 2を直接測定することができる。 以上は、 還流ガス流量検出器 1 5の構成の説明であるが、 吸気流量検出器 2と しても、 図 5に示した圧力を検知する方式のものや、 図 6に示した熱線式のもの を用いることができる。
次に、 図 7及び図 8を用いて、 本実施形態による内燃機関の排気ガス還流装置 に用いる吸気流量制御弁 5の特性について説明する。
図 7, 図 8は、 本発明の一実施形態による内燃機関の排気ガス還流装置に用い る吸気流量制御弁の駆動方式の違いによる特性を示す図である。 図 7 , 図 8にお いて、 横軸は時間を示し、 縦軸は吸気流量制御弁の弁開度を示している。 縦軸の 弁開度は、 最大開度のときを 1 0 0 %として、 百分率で示している。 図 7において、 実線 X Iは、 吸気流量制御弁 5として、 電子制御方式のスロッ トルァクチユエ一夕を用いた場合の弁開度の特性を示している。 実線 X 2は、 吸 気流量制御弁 5として、 負圧式のスロットルァクチユエ一夕を用いた場合の弁開 度の特性を示している。
実線 X 2で示す負圧式ァクチユエ一夕では、 弁開度 Aと全開点である Bのみの
2開度しか制御できず還流ガス還流率を前述のフィードバック制御するのが困難 である。
一方、 実線 X Iで示すように、 電子制御方式のスロットルァクチユエ一夕を用 いた場合、 弁開度 0から全開点 Bまで無段階に制御可能であり、 フィードバック 制御を容易に実現できる。 よって、 本実施形態に用いる吸気流量制御弁 5として は、 電子制御方式のスロットルァクチユエ一タを用いるのが好適である。
次に、 図 8は、 電子制御方式のスロットルァクチユエ一夕の駆動方式の違いに よる特性の違いを説明している。 実線 Y 1は、 直流電動機によりスロットルバル ブを駆動する方式のスロットルァクチユエ一夕における応答性を示している。 実 線 Y 1は、 ステップモ一夕によりスロットルバルブを駆動する方式のスロットル ァクチユエ一夕における応答性を示している。
ステツプモータは、 駆動パルスに応じた回転をするためォープンル一プ制御が 可能である;^、 図中の実線 Y 2で示す特性のように、 直流電動機方式に比べて応 答速度が遅レ ものである。 一般にステップモー夕は脱調を回避する等の制約から 高速化が困難であり、 高速化を求める場合ステップモータの大型化ひいてはコス ト高を招くものである。
これに対して、 直流電動機は、 小型で高回転タイプの物が容易に入手でき、 さ らに、 位置のフィードバック制御を行うことで、 小型, 高速で低コストの駆動原 として好適である。
また、 制御分解能の観点で見た場合、 ステップモータでは駆動ステップが制御 分解能となり、 高速化と相反する。 一方、 直流電動機方式の場合、 フィードバッ ク制御に用いる位置検出センサの分解能により決まり、 ポテンショメータ等の連 続出力方式のものを使用すれば容易に高分解能なフィードバック系が成立する。 したがって、 電子制御方式のスロットルァクチユエ一夕の駆動源としては、 直 流電動機が好適である。 なお、 ブラシレスモータを採用した場合でも、 直流電動 機と同様な結果が得られる。
以上説明したように、 本実施形態によれば、 排気ガス還流率を急変する必要が 生じた場合でも、 応答性の早い方の制御弁を制御することにより、 急激な変化に も対応でき、 一方、 急変が不要な場合には、 応答性の遅い方の制御弁を制御する ことにより、 制御精度を向上することができる。
次に、 図 9〜図 1 1を用いて、 本発明の他の実施形態による内燃機関の排気ガ ス還流装置の構成及び動作について説明する。 なお、 本実施形態による内燃機関 の排気ガス還流装置を用いたエンジンシステムの構成は、 図 1に示したものと同 様である。
図 9は、 本発明の他の実施形態による内燃機関の排気ガス還流装置の制御系の ブロック図である。 なお、 図 1と同一符号は、 同一部分を示している。 図 1 0は、 本発明の他の実施形態による内燃機関の排気ガス還流装置に用いるマップの構成 図である。 図 1 1は、 本発明の他の実施形態による内燃機関の排気ガス還流装置 における排気ガス環流コントローラの制御内容を示すフローチヤ一トである。 な お、 図 3と同一符号は、 同一部分を示している。
図 9に示すように、 本実施形態では、 排気ガス環流コントローラ 2 O Aは、 そ の内き 15に 3次元マップ 2 0 Bを備えている。 排気ガス環流コントローラ 2 O Aに は、 E C U 2 1が出力する還流ガス還流率指令値 RSET, 吸気流量検出器 2によつ て検出された吸気流量信号 G 1 , 還流ガス流量検出器 1 5によって検出された還 流ガス流量 G 2 , 吸気流量制御弁 5からの開度信号 θ TH及び還流ガス制御弁 1 6 からのストローク信号 S TEGが入力する。
排気ガス環流コントローラ 2 O Aは、 排気ガスの環流率 Rを、 吸気流量信号 G 1及び還流ガス流量 G 2から、 (G 2 Z (G 1 + G 2 ) ) として算出する。 排気 ガス環流コントローラ 2 O Aは、 排気ガスの環流率 Rが目標値 RSETとなるように 最初にマップ 2 0 Bを用いて、 還流ガス制御弁 1 6に開度制御信号 CEGや、 吸気 流量制御弁 5に吸気流量制御信号 CTHを出力し、 さらに、 フィードバック制御に より、 還流ガス制御弁 1 6に開度制御信号 CEGを出力し、 吸気流量制御弁 5に吸 気流量制御信号 CTHを出力し、 これらの弁 16, 5を制御する。
次に、 図 10を用いて、 3次元マップ 20 Bの内容について説明する。 マップ 20Bは、 新気通路開度 0TH (%) と、 環流通路開度 STEG (%) と、 環流率 R ( ) との 3次元マップである。 新気通路開度 0TH (%) は、 吸気流量制御弁 5 がバタフライ式の弁の場合、 最大開度を 100%として、 開度信号 0THを百分率 で示したものである。 環流通路開度 STEG (%) は、 環流ガス制御弁 16がシ一 トバルブ式の弁の場合、 シートバルブの最大ストローク量を 100 %として、 ス トローク信号 STEGを百分率で示したものである。
図 10は、 あるエンジンの運転状態時において、 上述した式 (1) , 式 (2) , 式 (3) を解いた結果を示している。 ここでは、 図示の関係で、 吸気流量制御弁 5の指示範囲は開度 5%から 25 %まで、 同様に還流ガス制御弁 14の指示範囲 は開度 0 %から 60 %までとなつている。 3次元のマップ上の格子点は、 還流ガ ス還流率を満足する吸気流量制御弁 5弁および還流ガス制御弁の弁開度の関係を 示している。 3次元マップ 20 Bは、 エンジンの各運転状態に対応する複数の 3 次元マップを設けている。 そして、 エンジンの運転状態に応じたマップを使用し て、 そのマップ上の格子点を選ぶことにより、 オープンループ制御によっても還 流ガス還流率を制御することもできる。
ここで、 図 10に示した吸気流量制御弁 5と還流ガス制御弁 16の弁開度変化 に対するガス還流率の変化を見た場合、 吸気流量制御弁 5の開度変化に対するガ ス還流率の変化割合の方が、 吸気流量制御弁 5の開度変化に対するガス還流率の 変化割合よりも大きくなつている。 さらに、 電子制御方式のスロットルァクチュ エー夕では弁開度が 0 %から 100%まで動作するのに 100msec以下のものが 実用化されており、 図 10中の 5%から 25%の領域は 20 msec程度で動作可能 である。 従って、 図 10に示した例では、 吸気流量制御弁 5の応答性が、 還流ガ ス制御弁 16の応答性よりも早く、 還流ガス還流率指令値 RSETが、 例えばパルス 的に急変した場合でも、 電子制御方式のスロットルァクチユエ一夕である吸気流 量制御弁 5を主にして動作させれば、 パルス的な指令値の変動にも対応できる。 すなわち、 過渡的なエンジン運転状態の変化にも対応できる。
次に、 図 1 1を用いて、 排気ガス環流コントローラ 20 Bの制御内容について 説明する。 なお、 以下の制御内容は、 全て排気ガス環流コントローラ 20 Bによ つて実行される。 また、 図 3と同一ステップ番号は、 同一の処理内容を示してい る。 本実施形態では、 図 3の処理に対して、 ステップ s 210〜s 240の処理 が追加されている。
図 1 1のステップ s 100において、 排気ガス環流コントローラ 20 Bは、 吸 気流量信号 G 1及び還流ガス流量 G 2から、 排気ガスの環流率 Rを、 (G2Z (G 1 +G2) ) として算出する。
次に、 ステップ s 110において、 ECU 21から入力した排気ガスの環流率 Rの目標値 RSETの変化分 Δ RSETが、 予め設定されている基準値 Δ R0よりも大き いか否かを判定する。 変化分△ RSETが、 基準値 AROよりも大きい場合には、 ス テツプ s 210に進み、 そうでない場合にはステップ s 230に進む。 すなわち、 ステップ s 1 10では、 排気ガスの環流率 Rの目標値 RSETが大きく変化したか否 かを判定する。 内燃機関の過渡的な運転条件変化があり、 排気ガス中の有害物質 低減のため、 排気ガス還流率を急変する必要が生じたか否かを判定する。
変^^分 Δ RSETが基準値 AROよりも大きい場合, すなわち、 排気ガス還流率を 急変する必要が生じた場合には、 ステップ s 210において、 そのときのェンジ ンの運転状態に応じた 3次元マップ 20Bを用いて、 還流ガス還流率指令値 RSE Tに対応する環流率尺と、 環流通路開度 STEG ( ) とカ ら、 目標とする新気通路 開度 (%) を求める。
そして、 ステップ s 220において、 目標とする新気通路開度 0TH ( ) とな るための開度制御信号 CTHを吸気流量制御弁 5に出力して、 吸気流量制御弁 5の 開度が目標とする新気通路開度 0TH (%) となるように、 オープンループで制御 する。 このように、 オープンループで新気通路開度 0TH (%) となるように、 吸 気流量制御弁 5の開度を制御することで速やかに目標とする新気通路開度 θ TH ( ) 付近に制御することができる。
次に、 ステップ s 120において、 ステップ s 110で算出された排気ガスの 環流率 Rが、 排気ガスの環流率 Rの目標値 RSETと等しいか否かを判定する。
環流率 Rが目標値 RSETより大きい場合には、 ステップ s 130において、 吸気 流量 1御弁 5に出力する開度制御信号 CTHを減少させ、 吸気流量制御弁 5の開度 が小さくなるように制御する。 そして、 ステップ s 1 2 0に戻り、 環流率 Rが目 標値 こ等しくなるまで繰り返される。
一方、 環流率 Rが目標値 RSETより小さい場合には、 ステップ s 1 4 0において、 吸気流量^ ί御弁 5に出力する開度制御信号 CTHを増加させ、 吸気流量制御弁 5の 開度が大ぎくなるように制御する。 そして、 ステップ s 1 2 0に戻り、 環流率 R が目標値 R SETに等しくなるまで繰り返される。
以上のように、 ステップ s 1 2 0 , s 1 3 0 , 1 4 0の処理を繰り返すことに より、 環流率 Rが目標値 RSETに等しくなるまでフィードバック制御される。 以上 のように、 吸気流量制御弁 5の応答性が、 還流ガス制御弁 1 6の応答性よりも早 いので、 排気ガス還流率を急変する必要が生じた場合でも、 速やかに排気ガス環 流率を所定の目標値に変更することが可能となる。
一方、 ステップ s 1 1 0の判定で、 変化分 Δ RSETが基準値 A R0以下と判定さ れた場合, すなわち、 排気ガス還流率の変化がそれほど大きくない場合には、 ス テツプ s 2 3 0において、 そのときのエンジンの運転状態に応じた 3次元マップ 2 0 Bを用いて、 還流ガス還流率指令値 RSETに対応する環流率 Rと、 新気通路開 度 0 TH (% ) とから、 目標とする環流通路開度 S TEG (%) を求める。
そして、 ステップ s 2 4 0において、 目標とする環流通路開度 S TEG (%) と なるための開度制御信号 CEGを還流ガス制御弁 1 6に出力して、 還流ガス制御弁 1 6の開度が目標とする環流通路開度 S TEG (%) となるように、 オープンル一 プで制御する。
次に、 ステップ s 1 5 0において、 ステップ s 1 1 0で算出された排気ガスの 環流率 Rが、、 排気ガスの環流率 Rの目標値 RSETと等しいか否かを判定する。
環流率 Rが目標値 RSETより大きい場合には、 ステップ s 1 6 0において、 還流 ガス制御弁 1 6に出力する開度制御信号 CEGを減少させ、 還流ガス制御弁 1 6の 開度が小さくなるように制御する。 そして、 ステップ s 1 5 0に戻り、 環流率 R が目標値 R SETに等しくなるまで繰り返される。
一方、 蕖流率 Rが目標値 RSETより小さい場合には、 ステップ s 1 7 0において、 還流ガス糾御弁 1 6に出力する開度制御信号 CEGを増加させ、 還流ガス制御弁 1 6の開度力 S大きくなるように制御する。 そして、 ステップ s 1 5 0に戻り、 環流 率 Rが目標値 RSETに等しくなるまで繰り返される。
以上のように、 ステップ s 1 5 0 , s 1 6 0 , 1 7 0の処理を繰り返すことに より、 環流率 Rが目標値 RSETに等しくなるまでフィードバック制御される。 この とき、 還流ガス制御弁 1 6の応答性は、 吸気流量制御弁 5の応答性よりも遅いも のであるということは、 より微妙な開度制御が可能であり、 正確に、 排気ガス環 流率を所定の目標値に変更することが可能となる。
なお、 以上の説明では、 吸気流量制御弁 5の応答性が、 還流ガス制御弁 1 6の 応答' I生よりも早いものとしたが、 逆に、 還流ガス制御弁 1 6の応答性が、 吸気流 量制御弁 5の応答性よりも早い場合もある。 このような場合には、 排気ガス還流 率を急変する必要が生じた楊合には、 応答性の早い還流ガス制御弁 1 6を最初に オープンループで制御し、 次にフィードバック制御し、 急変が不要の場合には、 応答 '1生の遅い吸気流量制御弁 5を制御して制御精度が向上するようにする。
以上説明したように、 本実施形態によれば、 排気ガス還流率を急変する必要が 生じた場合でも、 応答性の早い方の制御弁を最初オープンループで制御すること により、 速やかに目標開度付近に弁を移動し、 次にフィードバック制御すること により、 目標開度に収束させることにより、 急激な変化にも対応でき、 一方、 急 変が不要な場合には、 応答性の遅い方の制御弁を制御することにより、 制御精度 を向上することができる。 産業上の利用可能性
本発明によれば、 内燃機関の排気ガス還流流量制御の応答速度及び精度を向上 することができる。

Claims

請求の範囲
1 . 内燃機関の排気ガス還流通路の還流流量を制御する還流ガス制御弁と、 内燃 機関の吸気通路の流量制御する吸気制御弁とを備えた内燃機関の排気ガス還流装 置であって、
前記吸気通路の流量を検出する吸気量検知器と、
前記排気ガス還流通路の排気ガス還流流量を検出する還流量検知器と、 前記吸気流量検知器と前記還流流量検知器の出力に基いて求められた排気ガス 環流率が目標の環流率となるように、 前記吸気制御弁及び Zまたは前記還流ガス 制御弁をフィードバック制御する制御手段を備えたことを特徴とする内燃機関の お気ガス還流装置。
2 . 請求項 1記載の内燃機関の排気ガス還流装置において、
前記制御手段は、 前記環流率の目標値が急激に変化した場合には、 前記吸気制 御弁及び前記還流ガス制御弁の内、 応答性の早い方の弁をフィードパック制御す ることを特徴とする内燃機関の排気ガス還流装置。
3 . 請求項 1記載の内燃機関の排気ガス還流装置において、 さらに、
前記還流ガス制御弁開度と、 前記吸気制御弁開度と、 前記環流率との組合せ状 ϋによつて定義される 3次元マップを複数個備え、
前記制御手段は、 内燃機関の運転状態に応じた前記 3次元マップを選択し、 前 記吸気流量検知器と前記還流流量検知器の出力に基いて求められた排気ガス環流 率が目標の環流率となるように、 前記吸気制御弁及び Ζまたは前記還流ガス制御 弁を制御することを特徴とする内燃機関の排気ガス還流装置。
4 . 請求項 2記載の内燃機関の排気ガス還流装置において、
前記制御手段は、 前記環流率の目標値が急激に変化した場合には、 前記吸気制 御弁及び前記還流ガス制御弁の内、 応答性の早い方の弁を制御することを特徴と する内燃機関の排気ガス還流装置。
5 . 請求項 1記載の内燃機関の排気ガス還流装置において、
前記排気ガス還流量検知器は、 前記排気ガス還流通路の少なくとも 2地点以上の 圧力差を基に環流量を検出する検知器若しくは前記排気ガス還流通路の質量流量 を検出する検知器であり、
前記吸気量検知器は、 前記吸気通路の少なくとも 2地点以上の圧力差を基に吸気 量を検出する検知器若しくは前記吸気通路の質量流量を検出する検知器であるこ とを特徴とする内燃機関の排気ガス還流装置。
6 . 請求項 1記載の内燃機関の排気ガス還流装置において、 ' 前記吸気制御弁が、 電子制御方式のスロットルァクチユエ一夕であることを特 徴とする排気ガス還流装置。
PCT/JP2003/013529 2003-10-23 2003-10-23 内燃機関の排気ガス還流装置 WO2005040592A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003284393A AU2003284393A1 (en) 2003-10-23 2003-10-23 Exhaust gas recirculation device for internal combustion engine
US10/576,445 US7290528B2 (en) 2003-10-23 2003-10-23 Exhaust gas recirculation device for internal combustion engine
PCT/JP2003/013529 WO2005040592A1 (ja) 2003-10-23 2003-10-23 内燃機関の排気ガス還流装置
CN2003801105091A CN1839255B (zh) 2003-10-23 2003-10-23 内燃机的排气环流装置
EP03775812A EP1681455A1 (en) 2003-10-23 2003-10-23 Exhaust gas recirculation device for internal combustion engine
JP2005509845A JP4197336B2 (ja) 2003-10-23 2003-10-23 内燃機関の排気ガス還流装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/013529 WO2005040592A1 (ja) 2003-10-23 2003-10-23 内燃機関の排気ガス還流装置

Publications (1)

Publication Number Publication Date
WO2005040592A1 true WO2005040592A1 (ja) 2005-05-06

Family

ID=34509565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013529 WO2005040592A1 (ja) 2003-10-23 2003-10-23 内燃機関の排気ガス還流装置

Country Status (6)

Country Link
US (1) US7290528B2 (ja)
EP (1) EP1681455A1 (ja)
JP (1) JP4197336B2 (ja)
CN (1) CN1839255B (ja)
AU (1) AU2003284393A1 (ja)
WO (1) WO2005040592A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770268A2 (en) * 2005-09-30 2007-04-04 HONDA MOTOR CO., Ltd. Exhaust gas recirculation fault detection system
EP1770265A2 (en) 2005-09-30 2007-04-04 Honda Motor Co., Ltd EGR control system for internal combustion engine
JP2009150379A (ja) * 2007-11-30 2009-07-09 Hitachi Ltd エンジンの制御装置および制御方法
WO2016021488A1 (ja) * 2014-08-08 2016-02-11 日野自動車 株式会社 異常判定装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275415B2 (en) * 2003-12-31 2007-10-02 Honeywell International Inc. Particulate-based flow sensor
JP4713437B2 (ja) * 2006-10-18 2011-06-29 日立オートモティブシステムズ株式会社 内燃機関の排気ガス再循環装置
US7946117B2 (en) 2006-12-15 2011-05-24 Caterpillar Inc. Onboard method of determining EGR flow rate
JP2009008463A (ja) * 2007-06-27 2009-01-15 Hitachi Ltd 排気ガス再循環ガス流量測定装置および測定方法
DE102009018525B4 (de) * 2009-04-24 2015-03-05 Pierburg Gmbh Abgasrückführsystem für einen Verbrennungsmotor
US20110232614A1 (en) 2009-09-25 2011-09-29 Cummins Intellectual Properties , Inc. System for measuring egr flow and method for reducing acoustic resonance in egr system
US8001779B2 (en) * 2010-03-24 2011-08-23 Ford Global Technologies, Llc Hybrid high-pressure low-pressure EGR system
FR2975134B1 (fr) * 2011-05-13 2015-08-07 Valeo Sys Controle Moteur Sas Estimation du taux de gaz egr dans un moteur thermique de vehicule
US8616186B2 (en) * 2011-07-05 2013-12-31 Ford Global Technologies, Llc Exhaust gas recirculation (EGR) system
US8938961B2 (en) 2011-12-30 2015-01-27 Caterpillar Inc. EGR flow sensor for an engine
US9567945B2 (en) * 2012-01-24 2017-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust circulation apparatus for internal combustion engine
DE102015219777B4 (de) * 2015-10-13 2020-01-23 Continental Automotive Gmbh Abgasbehandlung eines Verbrennungsmotors
GB2549286B (en) * 2016-04-11 2019-07-24 Perkins Engines Co Ltd EGR valve with integrated sensor
CN111486027B (zh) * 2020-04-26 2021-09-14 重庆工商大学 发动机废气再循环系统的流量自适应控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430319A (en) * 1977-08-10 1979-03-06 Nissan Motor Co Ltd Electronic control internal combustion engine
JPH0783086A (ja) * 1993-09-16 1995-03-28 Nippondenso Co Ltd 内燃機関のegr制御装置
JPH08277752A (ja) * 1995-04-04 1996-10-22 Unisia Jecs Corp 内燃機関の排気ガス還流制御装置
JPH10184408A (ja) * 1996-12-26 1998-07-14 Nissan Motor Co Ltd エンジンの吸気制御装置
JP2000008965A (ja) * 1998-06-29 2000-01-11 Nippon Soken Inc ディーゼルエンジンの制御装置
JP2001152916A (ja) * 1999-11-25 2001-06-05 Nissan Motor Co Ltd エンジンの制御装置
JP3303274B2 (ja) * 1996-04-25 2002-07-15 株式会社ユニシアジェックス 電制スロットル式内燃機関の制御装置
JP2003166445A (ja) * 2001-11-29 2003-06-13 Isuzu Motors Ltd 内燃機関のegr制御装置
JP2003222036A (ja) * 2002-01-30 2003-08-08 Mazda Motor Corp エンジンの制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041228B2 (ja) * 1977-08-30 1985-09-14 トヨタ自動車株式会社 エンジンの排気ガス再循環制御法及び装置
JP3680500B2 (ja) * 1997-07-02 2005-08-10 日産自動車株式会社 内燃機関の制御装置
JP3329711B2 (ja) 1997-11-26 2002-09-30 株式会社日本自動車部品総合研究所 内燃機関の排ガス還流制御装置
DE19959854A1 (de) 1999-12-10 2001-06-13 Heraeus Electro Nite Int Verfahren zur Abgasrückführung in einem Luftansaugbereich von Fahrzeug-Brennkraftmaschinen sowie Vorrichtung
JP2003083034A (ja) 2001-09-14 2003-03-19 Mitsubishi Motors Corp 排気浄化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430319A (en) * 1977-08-10 1979-03-06 Nissan Motor Co Ltd Electronic control internal combustion engine
JPH0783086A (ja) * 1993-09-16 1995-03-28 Nippondenso Co Ltd 内燃機関のegr制御装置
JPH08277752A (ja) * 1995-04-04 1996-10-22 Unisia Jecs Corp 内燃機関の排気ガス還流制御装置
JP3303274B2 (ja) * 1996-04-25 2002-07-15 株式会社ユニシアジェックス 電制スロットル式内燃機関の制御装置
JPH10184408A (ja) * 1996-12-26 1998-07-14 Nissan Motor Co Ltd エンジンの吸気制御装置
JP2000008965A (ja) * 1998-06-29 2000-01-11 Nippon Soken Inc ディーゼルエンジンの制御装置
JP2001152916A (ja) * 1999-11-25 2001-06-05 Nissan Motor Co Ltd エンジンの制御装置
JP2003166445A (ja) * 2001-11-29 2003-06-13 Isuzu Motors Ltd 内燃機関のegr制御装置
JP2003222036A (ja) * 2002-01-30 2003-08-08 Mazda Motor Corp エンジンの制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770268A2 (en) * 2005-09-30 2007-04-04 HONDA MOTOR CO., Ltd. Exhaust gas recirculation fault detection system
EP1770265A2 (en) 2005-09-30 2007-04-04 Honda Motor Co., Ltd EGR control system for internal combustion engine
JP2009150379A (ja) * 2007-11-30 2009-07-09 Hitachi Ltd エンジンの制御装置および制御方法
JP4719784B2 (ja) * 2007-11-30 2011-07-06 日立オートモティブシステムズ株式会社 エンジンの制御装置および制御方法
WO2016021488A1 (ja) * 2014-08-08 2016-02-11 日野自動車 株式会社 異常判定装置
JP2016037932A (ja) * 2014-08-08 2016-03-22 日野自動車株式会社 異常判定装置
CN106662047A (zh) * 2014-08-08 2017-05-10 日野自动车株式会社 异常判断装置
US10066584B2 (en) 2014-08-08 2018-09-04 Hino Motors, Ltd. Error determination unit
CN106662047B (zh) * 2014-08-08 2019-05-03 日野自动车株式会社 异常判断装置

Also Published As

Publication number Publication date
JPWO2005040592A1 (ja) 2007-03-22
US7290528B2 (en) 2007-11-06
JP4197336B2 (ja) 2008-12-17
EP1681455A1 (en) 2006-07-19
AU2003284393A1 (en) 2005-05-11
CN1839255B (zh) 2011-01-26
CN1839255A (zh) 2006-09-27
US20070119434A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
WO2005040592A1 (ja) 内燃機関の排気ガス還流装置
JP3605221B2 (ja) 内燃機関の制御装置
US8151764B2 (en) Engine control system
TWI476322B (zh) Air - fuel ratio control device for carburetor
EP1024272A1 (en) Control method for turbocharged diesel engines having exhaust gas recirculation
CN101082318A (zh) 涡轮增压器控制系统
KR920004491B1 (ko) 기관제어장치
JPH05215016A (ja) 空燃比の制御方法及び装置
JP2002525493A (ja) 内燃機関の排ガス圧に依存した制御方法
CN105003334B (zh) 响应于温度的电动执行器的电流控制
CN101187341B (zh) 内燃机的空气量运算装置及燃料控制装置
JP6497048B2 (ja) 内燃機関の空燃比学習制御装置
SE462400B (sv) Foerfarande samt anordning foer oekning av arbetstemperaturen hos dieselmotorer
JP2004132314A (ja) 内燃機関の制御装置
JP2007032340A (ja) 内燃機関の燃焼空燃比制御装置
GB2311561A (en) I.c. engine intake system with throttle bypass channel
KR101865693B1 (ko) 연속 가변 밸브 리프트 시스템의 압력 제어 장치 및 방법
JPH08270508A (ja) 内燃機関の排気還流装置
JP2002130029A (ja) 内燃機関の電子制御装置
JP2005188369A (ja) 空燃比制御システム
KR20210119119A (ko) 센서 튜브 구조
KR20050061121A (ko) 차량의 이지알 제어장치 및 그 방법
JPH07189815A (ja) 内燃機関の排気還流制御装置
JP2021067240A (ja) 内燃機関の制御装置
JP2007016621A (ja) パージ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200380110509.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CO CR CU DM DZ EC GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NI NO NZ OM PH PL RO SC SG SL TN TT UA US UZ VC VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005509845

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007119434

Country of ref document: US

Ref document number: 10576445

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003775812

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003775812

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10576445

Country of ref document: US