WO2005036733A2 - Differenzverstärkeranordnung - Google Patents

Differenzverstärkeranordnung Download PDF

Info

Publication number
WO2005036733A2
WO2005036733A2 PCT/EP2004/009457 EP2004009457W WO2005036733A2 WO 2005036733 A2 WO2005036733 A2 WO 2005036733A2 EP 2004009457 W EP2004009457 W EP 2004009457W WO 2005036733 A2 WO2005036733 A2 WO 2005036733A2
Authority
WO
WIPO (PCT)
Prior art keywords
differential amplifier
input
stage
programmable
amplifier
Prior art date
Application number
PCT/EP2004/009457
Other languages
English (en)
French (fr)
Other versions
WO2005036733A3 (de
Inventor
Paolo D'abramo
Riccardo Serventi
Original Assignee
Austriamicrosystems Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Austriamicrosystems Ag filed Critical Austriamicrosystems Ag
Priority to JP2006527290A priority Critical patent/JP2007534205A/ja
Priority to EP04764434A priority patent/EP1665521A2/de
Priority to US10/573,455 priority patent/US7327190B2/en
Publication of WO2005036733A2 publication Critical patent/WO2005036733A2/de
Publication of WO2005036733A3 publication Critical patent/WO2005036733A3/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • H03F3/45991Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction by using balancing means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45212Indexing scheme relating to differential amplifiers the differential amplifier being designed to have a reduced offset
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45538Indexing scheme relating to differential amplifiers the IC comprising balancing means, e.g. trimming means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45588Indexing scheme relating to differential amplifiers the IC comprising offset compensating means

Definitions

  • the present invention relates to a differential amplifier arrangement.
  • Differential amplifiers with adjustable amplification which offer high accuracy, are also referred to as instrument amplifiers.
  • Such differential amplifiers are usually subject to the requirement that a high modulation range is provided at the output of the amplifier.
  • Amplifiers whose modulation range covers practically the entire supply voltage interval with which the amplifier is fed are referred to as so-called rail-to-rail amplifiers.
  • the object of the present invention is to specify a differential amplifier arrangement in which a precise offset compensation is possible.
  • a differential amplifier arrangement comprising:
  • An input stage with a first differential amplifier with an ' offset compensation stage, which comprises at least one controllable current source and is connected to a bias input of the first differential amplifier and
  • the differential amplifier arrangement is constructed in several stages with an input stage and an output stage, each of which comprises a differential amplifier.
  • the differential amplifiers of the input and output stages are preferably connected to one another in such a way that a so-called instrumentation amplifier is formed.
  • the differential amplifier of the input stage is preferably designed as a so-called rail-to-rail amplifier.
  • the differential amplifier arrangement is preferably constructed symmetrically in such a way that differential signals can be processed.
  • the differential amplifier of the input stage preferably comprises a negative feedback, for which a feedback branch couples an output of the differential amplifier to an input.
  • the feedback branch preferably comprises a programmable resistance network.
  • the gain of the input stage may "be set in a highly accurate manner or programmed.
  • the programmable resistance network is preferably designed as a series connection of several resistors, in which taps are provided between the resistors.
  • This series connection of the plurality of resistors is preferably connected in the feedback branch of the differential amplifier of the input stage in such a way that depending on the desired amplification, the tap which offers the desired amplification is effectively switched into the feedback.
  • the output connection of the differential amplifier of the input stage is preferably fixed to the series circuit of the plurality Resistors connected, while an inverting input of this differential amplifier is switchably connected to a tap of the programmable resistor network.
  • a multiplexer is preferably provided as the switch.
  • the differential amplifier of the input stage preferably comprises two operational amplifiers.
  • the two operational amplifiers preferably each have a non-inverting input and each an inverting input.
  • the non-inverting inputs together form a symmetrical signal input of the entire differential amplifier arrangement for supplying a differential signal.
  • the inverting inputs are preferably connected in a feedback branch to the respective output of the operational amplifier.
  • the programmable resistance network is preferably provided twice and each of the two
  • the bias input of the first differential amplifier is both at the inverting input of the first operational amplifier and at the inverting input of the second. Operational amplifier formed.
  • At least one controllable current source is preferably connected to each inverting input of the two operational amplifiers.
  • the offset compensation stage preferably comprises a bridge circuit. Two series connections, each with two programmable current sources, are provided, between each of which a tap node is formed. The two tap nodes are each coupled to an inverting input of the two operational amplifiers.
  • the four programmable current sources are preferably programmable with respect to the amount of current supplied by them and, moreover, are preferably configured to be switched off.
  • a series connection of a switch and a programmable current source is preferably connected between the bias inputs of the two operational amplifiers and a respective supply or reference potential connection.
  • the differential amplifier of the output stage of the amplifier arrangement preferably also comprises means for programming its gain factor.
  • a negative feedback is preferably provided on the differential amplifier of the output stage, which comprises a programmable resistor.
  • the programmable resistor can preferably be set using a digital / analog converter which is arranged in the feedback branch of the differential amplifier of the output stage.
  • the output stage comprises means for setting a common mode signal.
  • the output stage may comprise a plurality of series-connected "amplifier stages which are coupled to one another in a common mode feedback loop.
  • a common mode level is preferably provided, which corresponds to half the supply voltage.
  • a rough gain control is preferably carried out in the input stage and a fine adjustment of the gain factor in the output gear stage effects.
  • the input stage comprises a circuit for offset correction.
  • the output stage further amplifies the already corrected offset of the input stage.
  • FIG. 1 shows a block diagram of an exemplary embodiment of a differential amplification arrangement according to the proposed principle
  • Figure 3 shows an embodiment of the output stage of a differential amplifier arrangement according to the proposed.
  • Figure 4 shows an embodiment of a block diagram of a universal analog front end, in which several differential amplifier arrangements are provided according to the proposed principle on analog signal inputs.
  • FIG. 1 shows a differential amplifier arrangement with an input stage 1 and an output stage 2.
  • the input stage 1 comprises a differential amplifier which has two operational amplifiers.
  • a first operational amplifier 3 and a second operational amplifier 4 are each designed as a so-called rail-to-rail amplifier.
  • the non-invert the inputs of the operational amplifiers 3, 4 form a symmetrical signal input IN +, IN- of the amplifier arrangement.
  • a feedback branch 5, 6 is provided at the input of the operational amplifiers 3, 4.
  • the feedback branches 5, 6 each comprise a switchable resistance network 7, 8 and are also coupled to one another via a transverse resistor 9.
  • an offset compensation stage 10 is provided, which is connected to the inverting inputs of the operational amplifiers 3, 4.
  • the .Offset compensation stage 10 comprises a plurality of controllable current sources 11, 12, 13, 14, which can be connected and disconnected to the bias inputs of the operational amplifiers 3, 4 and also each output a current at a programmable level. This means that any offsets can be set and corrected.
  • the resistance networks 7, 8 ' each comprise a series connection of a plurality of resistors 15, 16, 17, 18, 19, 20, 21, 22; 23, 24, 25, 26, 27, 28, 29, 30. Resistors 9 and 15 to 30 are connected to one another in a single resistor chain.
  • the resistances 15 to 22 of the first resistor network '7 have, at their connection nodes are tapped, which are tier- to a multiplexer 31, one of the taps switchably connected to the bias input, - that the inverting input of the operational amplifier 3 ,. combines.
  • the tap between the resistors 21, 22 of the resistor chain is firmly connected to the output of the operational amplifier 3.
  • the resistor network 8 is constructed and comprises a multiplexer 32, each of which is switchable one of the taps of the.
  • Resistor chain 23 to 30 connects to the inverting input of operational amplifier 4.
  • the output of the operational amplifier 4 is connected to the tap between the resistors 29, 30.
  • the Aüsgangscut 2 has' a differential amplifier 33, the differential a differential input u.nd a Has exit.
  • the differential output of the second differential amplifier 33 is coupled to a balanced signal output OUT +, OUT- of the entire differential amplifier arrangement.
  • a coupling unit 34 which is explained in more detail with reference to FIG. 3, is provided, which couples the outputs of the operational amplifiers 3, 4 of the input stage on the input side and the inputs of the differential amplifier 33 and its outputs on the output side in a programmable, negative feedback.
  • the resistance networks 7, 8 and the coupling unit 34 are designed to be programmable.
  • control inputs are provided, which put the multiplexers 31, 32 and the coupling unit 34 at outputs of a decoder 35.
  • the decoder 35 converts a target gain signal present on the input side and controls the multiplexers 31, 32 via a 3-bit wide data bus to provide a rough gain setting. The gain is fine-tuned via a further, 10-bit wide data bus that links an output of the decoder 35 to the coupling unit 34.
  • a range of 1 to 200 can be set with the 3-bit rough amplifier setting.
  • the gain is fine-tuned in a high-resolution setting range from 1 to 2047.
  • Another control bus 3.6 which has a width of 4 bits, serves to roughly set the input offset of the amplifier and can thus cover a range of +/- 400 mV / V based on the supply voltage.
  • a fine adjustment of the input offset of the amplifier is ensured with a further, 10-bit wide data bus 37, which also connects an output of the decoder 35 to the offset compensation stage 10.
  • a 4-bit wide control bus 38 is provided, which enables the offset compensation function to be set.
  • Decoder 35 has a 10 bit wide input for supplying gain and offset control signals.
  • a control not shown in FIG. input for activating the programming of the data bus.
  • the decoder 35 comprises internal memory registers for storing the current programming of all control and data buses described above.
  • the di-described ferenzverstarkeran inch 'combines the advantages of a large ⁇ ingangs Kunststoffs, a large dynamic range, fine resolution, a high linearity and a precise offset correction.
  • FIG. 2 shows an embodiment of the input stage 1 'of a differential amplifier arrangement according to the proposed principle.
  • the offset compensation stage 10 ' which is connected to the bias connections of the operational amplifiers 3, 4, is designed with a current bridge circuit.
  • the bridge circuit has a total of four programmable.
  • the switches 43 to 46 can be used to switch the current sources 39 to 42 on and off individually and independently of one another, and the respective level of the bias provided by the current sources 39 to 42 -Currents programmable independently of each other.
  • the tap nodes K1, K2 of the current mirror bridge of the offset compensation stage 10 ' are each connected to inverting inputs of the operational amplifiers 3, 4 of the input stage 1.
  • the feedback paths 5, 6 on the operational amplifiers 3, 4 including those in FIG. 2 are only schematic Drawn, programmable resistor networks 7, 8 and shunt resistor 9 correspond in structure and advantageous mode of operation to that of FIG. 1 and are therefore not described again here.
  • the current levels of the current sources 39 to 42 can be programmed, for example, by means of suitable digital / analog converters depending on the coarse and fine offset control signals supplied by the decoder 35.
  • Figure 3 shows an embodiment of the output stage 2 ', as it can be used for example instead of the output stage 2 of Figure 1.
  • a digital / analog converter 49, 50 is connected to outputs of the operational amplifiers 3, 4 of the input stage 1
  • Control bus is controlled, which controls the fine adjustment of the gain of the differential amplifier arrangement.
  • a fully differential-built differential amplifier 51 is connected with its inverting input to an output of the digital / analog converter 49 and with its non-inverting input to an output of the digital / analog converter 50.
  • the differential output of the second differential amplifier 51 is connected in a negative feedback to a further input of the digital / analog converter 49, 50.
  • a further differential amplifier 52 is connected, which is coupled together with the differential amplifier 51 in a common mode feedback loop. In this way, a so-called common mode signal is set in a controllable manner at the output of the differential amplifier arrangement.
  • FIG. 4 shows "an application example of an amplifier arrangement 53 according to the proposed principle based egg nes exemplary block diagram. A total of four analog signal inputs provided, on each of which an amplifier arrangement 53 is connected as shown in Figure 1. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Es ist eine Differenzverstärkeranordnung (53) mit einer Eingangsstufe (1) und einer Ausgangsstufe (2) angegeben. Die Eingangsstufe (1) umfaßt einen Differenzverstärker (3, 4), an den eine Offset-Kompensationsstufe (10) angeschlossen ist, die zumindest eine steuerbare Stromquelle (11) umfaßt und ein Bias-Signal des Differenzverstärkers (3, 4) steuert. Mit der beschriebenen Differenzverstärkeranordnung, welche bevorzugt als Instrumentenverstärker einsetzbar ist, können sehr präzise Kompensationen von Eingangs-Offsets durchgeführt werden.

Description

Beschreibung
Differenzverstarkeranordnung
Die vorliegende Erfindung betrifft eine Differenzverstarkeranordnung.
Differenzverstärker mit einstellbarer Verstärkung, die eine hohe Genauigkeit bieten, werden auch als Instrumenten- Verstärker oder Instrumentation Amplifier bezeichnet. Derartige Differenzverstärker unterliegen üblicherweise der Forderung, daß ein hoher Aussteuerbereich am Ausgang des Verstärkers vorgesehen ist. Verstärker, deren Aussteuerbereich praktisch das gesamte Versorgungsspannungsintervall umfaßt, mit dem der Verstärker gespeist wird, werden als sogenannte Rail- to-Rail-Verstärker bezeichnet.
Insbesondere bei derartigen, "hochpräzisen Differenzverstärkern können in nachteilhafter Weise Gleichtakt-Offsets am Eingang zu unerwünschten Verfälschungen des Signals führen.
Aufgabe der vorliegenden Erfindung ist es, eine Differenzverstarkeranordnung -anzugeben, bei der eine präzise Offset.- Kompensation möglich ist.
Erfindungsgemäß wird die Aufgabe gelöst durch eine Differenzverstarkeranordnung, aufweisend:
- eine Eingangsstufe mit einem ersten Differenzverstärker, mit einer' Offset-Kompensationsstufe, die zumindest eine steuerbare Stromquelle umfaßt und an einem Bias-Eingang des ersten Differenzverstärkers angeschlossen ist und
- eine Ausgangsstufe mit einem zweiten Differenzverstärker, die der Eingangsstufe nachgeschaltet ist .
Gemäß dem vorgeschlagenen Prinzip ist eine genaue Programmierung des Offsets des Verstärkers und damit auch eine präzise Korrektur eines am Eingang auftretenden Offsets möglich. Dabei ist die Differenzverstarkeranordnung mehrstufig aufgebaut mit einer Eingangsstufe und einer Ausgangsstufe, welche jeweils einen Differenzverstärker umfassen.
Die Differenzverstärker der Ein- un Ausgangsstufe sind bevorzugt derart miteinander verschaltet, daß ein sogenannter Instrumentation Amplifier gebildet ist.
Der Differenzverstärker der Eingangs stufe ist bevorzugt als sogenannter Rail-to-Rail-Amplifier ausgeführt.
Die Differenzverstarkeranordnung ist bevorzugt symmetrisch aufgebaut derart, daß differenzielle Signale verarbeitet wer- den können.
Der Differenzverstärker der Eingangs stufe umfaßt bevorzugt eine negative Rückkopplung, wofür ein Rückführungszweig einen Ausgang des Differenzverstärkers mit einem Eingang koppelt.
Der Rückführungszweig umfaßt bevorzugt ein programmierbares Widerstandsnetzwerk. Dadurch kann die Verstärkung der Eingangsstufe in hochgenauer Weise eingestellt oder programmiert" werden.
Das programmierbare Widerstandsnetzwerk ist bevorzugt als Serienschaltung mehrerer Widerstände ausgeführt, bei der zwischen den Widerständen jeweils Abgriffe vorgesehen sind. Diese Serienschaltung der mehreren Widerstände ist bevorzugt so in den Rückführungszweig des Differenzverstarkers der Eingangsstufe geschaltet, daß in Abhängigkeit von der gewünschten Verstärkung derjenige Abgriff wirksam in die Rückführung geschaltet wird, der gerade die gewünschte Verstärkung bietet.
Bevorzugt ist der Ausgangsanschluß des Differenzverstärkers der Eingangsstufe fest mit der Serienschaltung der mehreren Widerstände verbunden, während ein invertierender Eingang dieses Differenzverstärkers umschaltbar mit einem Abgriff des programmierbaren Widerstandsnetzwerks schaltbar verbunden ist.
Als Schalter ist bevorzugt ein Multiplexer vorgesehen.
Der Differenzverstärker der Eingangsstufe umfaßt bevorzugt zwei Operationsverstärker.
Die beiden Operationsverstärker haben bevorzugt je einen nicht-invertierenden Eingang und j e einen invertierenden Eingang. Die nicht-invertierenden Eingänge bilden gemeinsam einen symmetrischen Signaleingang der gesamten Differenzver- Stärkeranordnung zur Zuführung eines differenziellen Signals.
Die invertierenden Eingänge sind bevorzugt in je einem Rückführungszweig mit dem jeweiligen Ausgang des Operationsver- ■ stärkers verbunden. Das programmierbare Widerstandsnetzwerk ist dabei bevorzugt doppelt vorgesehen und jedem der beiden
Operationsverstärker im Rückführungszweig zugeordnet.
Gemäß- einer weiteren, bevorzugten Weiterbildung des vorgeschlagenen Prinzips ist der Bias-Eingang des ersten Diffe- renzverstärkers sowohl am invertierenden Eingang des ersten Operationsverstärkers, als auch am invertierenden Eingang des zweiten . Operationsverstärkers gebildet .
Dabei ist bevorzugt je zumindest eine steuerbare Stromquelle an jeden invertierenden Eingang der beiden Operationsverstärker angeschlossen.
Die Offset-Kompensationsstufe umfaßt bevorzugt eine Brückenschaltung. Dabei sind zwei Serienschaltungen mit je zwei pro- grammierbaren Stromquellen vorgesehen, zwischen denen jeweils ein Abgriffsknoten gebildet ist. Die beiden Abgriffsknoten sind mit je einem invertierenden Eingang der beiden Operationsverstärker gekoppelt.
Die vier programmierbaren Stromquellen sind bevorzugt bezüg- lieh der Höhe des von ihnen gelieferten Stroms programmierbar und zudem weiter bevorzugt abschaltbar ausgeführt. Hierfür ist bevorzugt je eine Serienschaltung eines Schalters und einer programmierbaren Stromquelle zwischen die Bias-Eingänge der beiden Operationsverstärker und einen jeweiligen Versor- • gungs- oder Bezugspotentialanschluß geschaltet.
Der Differenzverstärker der Ausgangsstufe der Verstärkeranordnung umfaßt bevorzugt ebenfalls Mittel zur Programmierung seines Verstärkungsfaktors .
Hierfür ist bevorzugt eine negative Rückführung am Differenzverstärker der Ausgangsstufe vorgesehen, die einen programmierbaren Widerstand umfaßt . Der programmierbare Widerstand ist bevorzugt mit einem Digital-/Analog-Wandler einstellbar, der im Rückführungszweig des Differenzverstärkers der Ausgangsstufe angeordnet ist .
Gemäß einer- bevorzugten Weiterbildung "des- vorgeschlagenen Prinzips umfaßt die Ausgangsstufe Mittel zum Einstellen eines Gleichtaktsignals, englisch: common-mode signal.
Zum Einstellen des Gleichtaktsignals kann die Ausgangsstufe mehrere, hintereinandergeschaltete" Verstärkerstufen umfassen, welche in einer Gleichtakt-Rückführungsschleife miteinander verkoppelt sind.
Bevorzugt wird ein Gleichtaktpegel bereitgestellt, welcher der halben VersorgungsSpannung entspricht . Gemäß dem vorgeschlagenen Prinzip wird eine grobe Verstärkungsregelung bevorzugt in der Eingangsstufe durchgeführt und eine Fein-Einstellung des Verstärkungsfaktors in der Aus- gangsstufe bewirkt . Zudem umfaßt die Eingangsstufe einen Schaltkreis zur Offset-Korrektur . Die Ausgangsstufe verstärkt das bereits Offset-korrigierte Signal der Eingangsstufe weiter.
Weitere Einzelheiten und vorteilhafte Ausgestaltungen des vorgeschlagenen Prinzips sind Gegenstand der Unteransprüche.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispie- len an mehreren Zeichnungen näher erläutert.
Es zeigen:
Figur 1 ein Blockschaltbild eines Ausführungsbeispiels ei- ner Differenzverstarke anordnung gemäß dem vorgeschlagenen Prinzip,
Figur 2 ein Ausführungsbeispiel der Eingangsstufe einer ' Differenzverstarkeranordnung gemäß dem vorgeschla- genen Prinzip,
Figur 3 ein Ausführungsbeispiel der Ausgangsstufe einer Dif-ferenzverstärkeranordnung gemäß dem vorgeschlagenen. Prinzip und
Figur 4 ein Ausführungsbeispiel eines Blockschaltbilds eines universellen Analog-Frontends, in dem mehrere Differenzverstärkeranordnungen gemäß vorgeschlagenem Prinzip an analogen Signaleingängen vorgesehen sind.
Figur.1 zeigt eine Differenzverstarkeranordnung mit einer Eingangsstufe 1 und einer Ausgangsstufe 2. Die Ξingangsstu- fe 1 umfaßt einen Differenzverstärker, der zwei Operations- Verstärker aufweist. Ein erster Operationsverstärker 3 und ein zweiter Operationsverstärker 4 sind jeweils als sogenannte Rail-to-Rail-Amplifier ausgeführt. Die nicht-invertieren- den Eingänge der Operationsverstärker 3, 4 bilden einen symmetrischen Signaleingang IN+, IN- der Verstärkeranordnung. Zwischen Ausgang und invertierendem. Eingang der Operationsverstärker 3, 4 ist je ein Rückführungszweig 5, 6 vorgesehen. Die Rückführungszweige 5, 6 umfassen je ein schaltbares Widerstandsnetzwerk 7, 8 und sind zudem über einen Querwiderstand 9 miteinander verkoppelt . Darüber hinaus ist eine Offset-Kompensationsstufe 10 vorgesehen, welche an die invertierenden Eingänge der • Operationsverstärker 3, 4 angeschlos- sen ist. Die .Offset-Kompensationsstufe 10 umfaßt mehrere steuerbare Stromquellen 11, 12, 13, 14, welche zu- und abschaltbar mit den Bias-Eingängen der Operationsverstärker 3, 4 verbunden sind und zudem jeweils einen Strom in programmierbarer Höhe abgeben. Somit können beliebig Offsets einge- stellt und korrigiert werden. Die Widerstandsnetzwerke 7, 8' umfassen je eine Serienschaltung einer Vielzahl von Widerständen 15, 16, 17, 18, 19, 20, 21, 22; 23, 24, 25, 26, 27, 28, 29, 30. Die Widerstände 9 und 15 bis 30. sind in einer einzigen Widerstandskette miteinander verbunden. Die Wider- stände 15 bis 22 des ersten Widerstandsnetzwerks' 7 weisen an ihren Verbindungsknoten jeweils Abgriffe auf, welche an einen Multiplexer 31 geführt- sind, der einen der Abgriffe schaltbar mit dem Bias-Eingang,- also dem invertierenden Eingang des Operationsverstärkers 3,. verbindet. Der Abgriff zwischen den Widerständen 21, 22 der Widerstandskette ist fest mit dem Ausgang des Operationsverstärkers 3 verbünden. In Analogie hierzu ist das Widerstandsnetzwerk 8 aufgebaut und umfaßt einen Multiplexer 32, der jeweils schaltbar einen der Abgriffe der. Widerstandskette 23 bis 30 mit dem invertierenden Eingang des Operationsverstärkers 4 verbindet. Der Ausgang des Operationsverstärkers 4 ist mit dem Abgriff zwischen den Widerständen 29, 30 verbunden. Der Widerstand 9, der als Querwiderstand ausgeführt ist, verbindet je einen Anschluß der Widerstände 15, 23 der Widerstandsne zwerke 7, 8 miteinander.
Die Aüsgangsstufe 2 weist' einen Differenzverstärker 33 auf, der einen differenziellen Eingang u.nd einen differenziellen Ausgang hat. Der differenzielle- Ausgang des zweiten Differenzverstärkers 33 ist mit einem symmetrischen Signalausgang OUT+, OUT- der gesamten Differenzverstarkeranordnung gekoppelt. Weiterhin ist eine anhand von Figur 3 im Detail näher erläuterte Koppeleinheit 34 vorgesehen, welche eingangsseitig die Ausgänge der Operationsverstärker 3, 4 der Eingangsstufe und ausgangsseitig die Eingänge des Differenzverstärkers 33 sowie dessen Ausgänge in einer programmierbaren, negativen Rückführung miteinander verkoppelt.
Die Widerstandsnetzwerke 7, 8 sowie die Koppeleinheit 34 sind programmierbar ausgeführt. Hierfür sind.jeweils Steuereingänge vorgesehen, welche die Multiplexer 31, 32 sowie die Koppeleinheit 34 an Ausgänge eines Decoders 35 legen. Der Decoder 35 wandelt ein eingangsseitig anliegendes Soll-Verstärkungssignal um und steuert über einen 3 Bit breiten Datenbus die Multiplexer 31, 32 an zur Bereitsteilung einer groben Verstärkungseinstellung. Die Feineinstellung der Verstärkung erfolgt über einen weiteren, 10 Bit breiten Datenbus, der einen Ausgang des Decoders 35 mit der Koppeleinheit 34 verknüpft.
Mit der 3-Bit Verstärker-Grobeinstellung kann ein Bereich von 1 bis 200 eingestellt werden. Die Feineinstellung der Verstärkung erfolgt in einem hoch auflösenden Einstellbereich' von 1 bis 2047.
Ein weiterer Steuerbus 3.6, der eine Breite von 4 Bit aufweist, dient zum Grobeinstellen des Eingangs-Offset des Verstärkers und kann damit einen Bereich von +/-400 mV/V bezogen auf Versorgungsspannung abdecken. Eine Feineinstellung des Eingangs-Offsets des Verstärkers wird mit einem weiteren, 10 Bit breiten Datenbus 37 gewährleistet, der ebenfalls einen Ausgang des Decoders 35 mit der Offset-Kompensationsstufe 10 verbindet. Weiterhin ist ein 4 Bit breiter Steuerbus 38 vorgesehen, der eine Einstellung der Offset-Kompensationsfunk- tion ermöglicht. Der Decoder 35 hat einen 10 Bit breiten Eingang zum Zuführen von Verstärkungs- und Offset-Steuersignalen. Außerdem ist ein in Figur 1 nicht eingezeichneter Steu- ereingang zur Aktivierung der Programmierung des Datenbusses vorgesehen. Der Decoder 35 umfaßt interne Speicherregister zum Ablegen der aktuellen Programmierung aller oben beschriebenen Steuer-, und Datenbusse.
Wenn die Grobeinstellung der Offset-Kompensation nicht benötigt wird, kann diese durch eine weitere Steuerleitung von 1 Bit Breite deaktiviert werden, wodurch eine deutliche Reduzierung der Stromaufnahme der gesamten Anordnung mδglicht ist.
Die beschriebene Di ferenzverstarkeranordnung verbindet' die Vorteile eines großen Ξingangsbereichs, eines großen Aussteuerbereichs, einer feinen Auflösung, einer hohen Linearität und einer präzisen Offset-Korrektur.
Figur 2 zeigt ein Ausführungsbeispiel der Eingangsstufe 1' einer Differenzverstarkeranordnung gemäß dem vorgeschlagenen Prinzip. Dabei ist die Offset-Kompensationsstufe 10', die an die Bias-Anschlüsse der Operationsverstärker 3, 4 angeschlossen ist, mit einer Strom-Brückenschaltung ausgeführt. Die Brückenschaltung um aßt insgesamt vier programmierbare. Stromquellen 39,-40-, 41, 42, welche jeweils in Serienschal-tung-mit" einem Schalter 43, 44, 45, 46 zwischen einem ersten Abgriffs- knoten Kl und Versorgungs- bzw. Bezugspotential 47, 48 sowie zwischen einem zweiten Abgriffsknoten K2 und Versorgungs- bzw. Bezugspotential 47, 48 angeordnet sind. Mit den Schaltern 43 bis 46 sind die Stromquellen 39 bis 42 einzeln und unabhängig voneinander zu- und abschaltbar. Zudem ist die je- weilige Höhe der von den Stromquellen 39 bis 42 bereitgestellten Bias-Ströme unabhängig voneinander programmierbar.
Die Abgriffsknoten Kl, K2 der Stromspiegelbrücke der Offset- Kompensationsstufe 10 ' sind jeweils mit invertierenden Ein- gangen der Operationsverstärker 3, 4 der Eingangsstufe 1 verbunden. Die Rückführungspfade 5, 6 an den Operationsverstärkern 3, 4 einschließlich der in Figur 2 lediglich schematisch gezeichneten, programmierbaren Widerstandsnetzwerke 7, 8 sowie Querwiderstand 9 entsprechen in Aufbau und vorteilhafter Wirkungsweise derjenigen von Figur 1 und werden deshalb an dieser Stelle nicht noch einmal beschrieben.
Die Programmierung der Stromhδhen der Stromquellen 39 bis 42 kann beispielsweise mittels geeigneter Digital-/Analog- Wandler in Abhängigkeit von vom Decoder 35 gelieferten Grob- und Fein-Offset-Steuersignalen erfolgen.
Figur 3 zeigt ein Ausführungsbeispiel der Ausgangsstufe 2 ' , wie sie beispielsweise anstelle der Ausgangsstufe 2 von Figur 1 einsetzbar ist. An Ausgänge der Operationsverstärker 3, 4 der Eingangsstufe 1 ist je ein Digital-/Analog-Wandler 49, 50 angeschlossen, der in Abhängigkeit von dem 10 Bit breiten
Steuerbus angesteuert wird, der die Feineinstellung der Verstärkung der Dif erenzverstarkeranordnung steuert. Ein voll differenziell -aufgebauter Differenzverstärker 51 ist mit seinem invertierenden Eingang mit einem Ausgang des Digital- /Analog-Wandlers 49 und mit seinem nicht-invertierenden Eingang an einen Ausgang des Digital -/Analog-Wandlers 50 angeschlossen. Der di fferenzielle Ausgang des zweiten Differenzverstarkers 51 ist- -in jeweils einer negativen Rückkopplung mit einem weiteren Eingang der Digital-/Analog-Wandler 49, 50 verbunden. An den Ausgang des Differenzverstärkers 51 ist ein weiterer Differenzverstärker 52 angeschlossen, der zusammen mit dem Dif ferenz rerstärker 51 in einer Gleichtakt-Rückkopplungsschleife verkoppelt ist. Hierdurch wird ein sogenanntes Common-Mode-Signal am Ausgang der Differenzverstärkeranord- nung steuerbar eingestellt. Bevorzugt entspricht die
Gleichtaktaussteuerung gerade der halbe VersorgungsSpannung.
Figur 4 zeigt "ein Anwendungsbeispiel für eine Verstärkeranordnung 53 gemäß dem vorgeschlagenen Prinzip anhand ei- nes beispielhaften Blockschaltbildes. Es sind insgesamt vier analoge Signaleingänge vorgesehen, an denen jeweils eine Verstärkeranordnung 53 wie in Figur 1 gezeigt angeschlossen ist. Bezugszeichenliste
1 Eingangsstufe
1 ' Eingangsstufe 2 Ausgangsstufe
2 ' Ausgangsstufe
3 Operationsverstärker
4 Operationsverstärker
5 Rückführungszweig 6 Rückführungszweig
7 Widerstandsnetzwerk
8 Widerstandsnetzwerk
9 Querwiderstand
10 Of f set -Kompensationsstufe 11 Stromquelle
12 Stromquelle
13 Stromquelle
14 Stromquelle
15 bis 22 Widerstand 23 bis 30 Widerstand
31 Multiplexer
32 Multiplexer
33 - Differenzverstärker-
34 Koppelstufe 35 Decoder
36 Steuerung Strombrücke
37 Feinsteuerung Offset
38 Grobsteuerung Offset
39 bis 42 programmierbare Stromquelle 43 bis 46 Schalter 7 Versorgungspotentialanschluß 8 Bezugspotentialanschluß 9 Digital -/Analog-Wandler 0 Digital -/Analog-Wandler 1 Dif erenzverstärker 2 Differenzverstärker 3 Verstärkeranordnung IN+ Signaleingang
IN- Signaleingang
OUT+ Signalausgang
OUT- Signalausgang

Claims

Patentansprüche
1. Differenzverstarkeranordnung (53), aufweisend
- eine Eingangsstufe (1) mit einem ersten Differenzverstär- ker (3, 4), mit einer Offset-Kompensationsstufe (10), die zumindest eine steuerbare Stromquelle (39) umfaßt und an einem Bias-Eingang des ersten Differenzverstärkers (3, 4) angeschlossen ist und
- eine Ausgangsstufe (2) mit einem zweiten Differenzverstär- ker (33), die der Eingangsstufe (1) nachgeschaltet ist.
2. Differenzverstarkeranordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß ein programmierbares Widerstandsnetzwerk (7) vorgesehen ist, das in einem Rückführungszweig (5) des ersten Differenzverstärkers (3, 4) angeordnet ist zur Steuerung der Verstärkung der Eingangsstufe (1) .
3." Differenzverstarkeranordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß das programmierbares Widerstandsnetzwerk (7) eine Serienschaltung mehrerer Widerstände (15, 16, 17, 18, 19, 20, 21, 22) aufweist, bei der jeweils Abgriffe zwischen den Widerständen (15, 16, 17, 18, 19, 20, 21, 22) vorgesehen sind, derart, daß in Abhängigkeit von der gewünschten Verstärkung ein programmierbarer Widerstandswert in den Rückführungs- zweig (5) des ersten Differenzverstärkers (3, 4) schaltbar ist.
4. Differenzverstarkeranordnung nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der erste Differenzverstärker einen ersten Operationsverstärker (3) und einen zweiten Operationsverstärker (4) umfaßt, bei denen jeweils nicht-invertierende Eingänge einen symmetrischen Signaleingang (IN+, IN-) der Differenzverstarkeranordnung (53) bilden und bei denen der Ausgang auf den jeweiligen invertierenden Eingang in je einem Rückführungszweig (5, 6) verbunden ist.
5. Differenzverstarkeranordnung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß daß der Bias-Eingang des ersten Differenzverstärkers jeweils am invertierenden Eingang des ersten Operationsverstärkers (3) und des zweiten Operationsverstärkers (4) gebildet ist.
6. Differenzverstarkeranordnung nach 5, d a d u r c h g e k e n n z e i c h n e t, daß die Offset-Kompensationsstufe (10') eine Brückenschaltung umfaßt mit insgesamt vier programmierbaren Stromquellen (39, 40, 41, 42) , bei der je ein Abgriffsknoten (Kl, K2) der
Brückenschaltung mit je einem Bias-Eingang des ersten Operationsverstärkers (3) und des zweiten Operationsverstärkers (4) gekoppelt ist.
7. Differenzverstarkeranordnung nach 6, d a d u r c h g e k e n n z e i c h n e t, daß die vier programmierbaren Stromquellen (39, 40, 41, 42) jeweils unabhängig - voneinander zu- und abschaltbar"mit 'den "Bias-Eingängen des ersten und zweiten Operationsverstärkers (3, 4) gekoppelt sind.
8. Differenzverstarkeranordnung nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß der zweite Differenzverstärker (51) eine negative Rückführung mit programmierbarem Widerstand (49, 50) umfaßt, derart, daß die Ausgangsstufe (2 ' ) eine programmierbare Verstärkung aufweist .
PCT/EP2004/009457 2003-09-26 2004-08-24 Differenzverstärkeranordnung WO2005036733A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006527290A JP2007534205A (ja) 2003-09-26 2004-08-24 差動増幅装置
EP04764434A EP1665521A2 (de) 2003-09-26 2004-08-24 Differenzverstärkeranordnung
US10/573,455 US7327190B2 (en) 2003-09-26 2004-08-24 Differential amplifier arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10345100A DE10345100B4 (de) 2003-09-26 2003-09-26 Differenzverstärkeranordnung
DE10345100.5 2003-09-26

Publications (2)

Publication Number Publication Date
WO2005036733A2 true WO2005036733A2 (de) 2005-04-21
WO2005036733A3 WO2005036733A3 (de) 2009-03-05

Family

ID=34399018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009457 WO2005036733A2 (de) 2003-09-26 2004-08-24 Differenzverstärkeranordnung

Country Status (5)

Country Link
US (1) US7327190B2 (de)
EP (1) EP1665521A2 (de)
JP (1) JP2007534205A (de)
DE (1) DE10345100B4 (de)
WO (1) WO2005036733A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086997A1 (de) * 2007-01-16 2008-07-24 Ic-Haus Gmbh Verstärker-schaltungsanordnung mit integrierter testschaltung

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711129B2 (en) * 2007-01-03 2014-04-29 Apple Inc. Minimizing mismatch during compensation
US8049732B2 (en) 2007-01-03 2011-11-01 Apple Inc. Front-end signal compensation
EP2075910A1 (de) * 2007-12-28 2009-07-01 Varian B.V. Instrumentenverstärkung mit Eingabe-Offset-Regulierung
KR101062744B1 (ko) 2009-05-15 2011-09-06 주식회사 하이닉스반도체 차동 증폭 장치
FR2964256B1 (fr) 2010-08-24 2012-09-28 Commissariat Energie Atomique Accumulateur electrochimique bipolaire a emballage ameliore
FR2974674B1 (fr) 2011-04-26 2013-06-28 Commissariat Energie Atomique Accumulateur electrochimique li-ion de type bipolaire a capacite augmentee
FR3013513B1 (fr) 2013-11-20 2016-01-15 Commissariat Energie Atomique Copolymere pour batterie bipolaire
US9431971B2 (en) 2014-06-13 2016-08-30 Analog Devices, Inc. Reduced-power dissipation for circuits handling differential pseudo-differential signals
US10312868B2 (en) 2017-04-20 2019-06-04 Aura Semiconductor Pvt. Ltd Correcting for non-linearity in an amplifier providing a differential output
US10559346B2 (en) 2018-01-19 2020-02-11 International Business Machines Corporation Bias-controlled bit-line sensing scheme for eDRAM
US10651797B2 (en) * 2018-04-09 2020-05-12 Infineon Technologies Austria Ag Amplifier offset and compensation
US11415472B2 (en) * 2020-06-10 2022-08-16 Harcosemco Llc Flexible bridge sensor electronic architecture and method for implementing same
US11626847B2 (en) * 2020-12-30 2023-04-11 Analog Devices, Inc. Amplifier input offset compensation
DE102022111281A1 (de) 2021-05-07 2022-11-10 Ifm Electronic Gmbh Messwandler mit einer Widerstandsmessbrücke und einem Instrumentenverstärker und Verfahren zum Betreiben solcher Messwandler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233309A (en) * 1992-01-09 1993-08-03 Analog Devices, Inc. Programmable gain amplifier
US6032109A (en) * 1996-10-21 2000-02-29 Telemonitor, Inc. Smart sensor module
US6104245A (en) * 1996-03-28 2000-08-15 Stichting Voor De Technische Wetenschappen Measuring amplifier
US20010048344A1 (en) * 2000-05-11 2001-12-06 Martin Isken Amplifier circuit with offset compensation, in particular for digital modulation devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459335B1 (en) * 2000-09-29 2002-10-01 Microchip Technology Incorporated Auto-calibration circuit to minimize input offset voltage in an integrated circuit analog input device
US6538507B2 (en) * 2001-02-28 2003-03-25 Intersil Americas, Inc. Automatic gain control circuit with high linearity and monotonically correlated offset voltage
DE10158709A1 (de) 2001-11-29 2003-07-03 Infineon Technologies Ag Voll differentieller Differenzverstärker mit hoher Eingangsimpedanz
US7088179B2 (en) * 2003-09-15 2006-08-08 Analog Devices, Inc. Single-ended input, differential output low noise amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233309A (en) * 1992-01-09 1993-08-03 Analog Devices, Inc. Programmable gain amplifier
US6104245A (en) * 1996-03-28 2000-08-15 Stichting Voor De Technische Wetenschappen Measuring amplifier
US6032109A (en) * 1996-10-21 2000-02-29 Telemonitor, Inc. Smart sensor module
US20010048344A1 (en) * 2000-05-11 2001-12-06 Martin Isken Amplifier circuit with offset compensation, in particular for digital modulation devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008086997A1 (de) * 2007-01-16 2008-07-24 Ic-Haus Gmbh Verstärker-schaltungsanordnung mit integrierter testschaltung

Also Published As

Publication number Publication date
US7327190B2 (en) 2008-02-05
DE10345100A1 (de) 2005-04-28
DE10345100B4 (de) 2012-03-29
US20070115047A1 (en) 2007-05-24
WO2005036733A3 (de) 2009-03-05
JP2007534205A (ja) 2007-11-22
EP1665521A2 (de) 2006-06-07

Similar Documents

Publication Publication Date Title
DE69636643T2 (de) Verstärker mit db-linearer verstärkungsregelung
EP1665521A2 (de) Differenzverstärkeranordnung
DE3136813C2 (de) Kalibrierschaltung
DE102012100144B4 (de) Kalibrierungsschaltung und Verfahren zum Kalibrieren einer kapazitiven Kompensation in Digital-Analog-Wandlern
DE102005007632A1 (de) Verstärkeranordnung und Verfahren zum Abgleichen eines Offsets
DE3611261C2 (de)
DE102014119481B4 (de) Verstärkungssystem und Digital/Analog-Umwandlungssystem
DE3432510C2 (de)
DE102020121780A1 (de) Verfahren zum filtern von referenzspannungsrauschen
DE3832448A1 (de) Messverstaerker mit programmierbarer verstaerkung
DE102006017239A1 (de) Differentieller Levelshifter mit automatischem Fehlerabgleich
DE10164382C1 (de) Integrierte Schaltungsanordnung mit einem Transkonduktanzverstärker
DE2852567C2 (de) Verstärker mit einem ersten und einem zweiten Verstärkerelement
DE3901314C2 (de)
DE69735325T2 (de) Eingangssignalverstärker
WO2003049282A1 (de) Voll differentieller differenzverstärker mit hoher eingangsimpedanz
DE60216410T2 (de) Mittelwertbildende Verstärkermatrix
DE10047396C1 (de) Schaltungsanordnung zur umschaltbaren Verstärkung von Analogsignalen
EP1610198B1 (de) Schaltungsanordnung zum wahlweisen Generieren eines analogen Stromausgangswertes oder eines analogen Spannungsausgangswertes
DE102022111281A1 (de) Messwandler mit einer Widerstandsmessbrücke und einem Instrumentenverstärker und Verfahren zum Betreiben solcher Messwandler
DE10236861B4 (de) Verstärker mit präzise digital stellbaren Parametern und Verwendung des Verstärkers
DE2824092C2 (de) Schaltung mit einer Vielzahl nebeneinander angeordneter Stromgeneratoren
EP3320619B1 (de) Spannungsverstärker für einen programmierbaren spannungsbereich
DE4039983C2 (de) Steuerbarer Verstärker
EP0813067A2 (de) Elektronische Messschaltung, insbesondere zum Messen von Strömen, mit einem integrierten Messwiderstand

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004764434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006527290

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004764434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007115047

Country of ref document: US

Ref document number: 10573455

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10573455

Country of ref document: US