WO2005033505A1 - 風力発電用風車 - Google Patents

風力発電用風車 Download PDF

Info

Publication number
WO2005033505A1
WO2005033505A1 PCT/JP2004/014157 JP2004014157W WO2005033505A1 WO 2005033505 A1 WO2005033505 A1 WO 2005033505A1 JP 2004014157 W JP2004014157 W JP 2004014157W WO 2005033505 A1 WO2005033505 A1 WO 2005033505A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
wind turbine
power generation
gearbox
wind power
Prior art date
Application number
PCT/JP2004/014157
Other languages
English (en)
French (fr)
Inventor
Masaaki Shibata
Hisao Miyake
Tomohiro Numajiri
Yasuyoshi Tozaki
Katsuhiko Shoda
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to ES04788224T priority Critical patent/ES2378876T3/es
Priority to DK04788224.6T priority patent/DK1677005T3/da
Priority to CA002536058A priority patent/CA2536058C/en
Priority to CN2004800256436A priority patent/CN1846057B/zh
Priority to EP04788224A priority patent/EP1677005B1/en
Priority to AT04788224T priority patent/ATE538308T1/de
Priority to AU2004278612A priority patent/AU2004278612B2/en
Priority to US10/568,627 priority patent/US7282808B2/en
Publication of WO2005033505A1 publication Critical patent/WO2005033505A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2881Toothed gearings for conveying rotary motion with gears having orbital motion comprising two axially spaced central gears, i.e. ring or sun gear, engaged by at least one common orbital gear wherein one of the central gears is forming the output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine for wind power generation.
  • a wind turbine for wind power generation includes a wind turbine rotor, a gearbox in which wind force received by the wind turbine rotor is input via a main shaft or the like to a nacelle installed on a support, and a gearbox. And a generator driven by the output of the motor.
  • Such wind turbines for wind power generation are described in Patent Documents 1, 2, and 3 described below.
  • Patent Document 1 describes a wind turbine for wind power generation having a structure in which a rotor provided with a wind turbine rotor is directly mounted on a planetary carrier of a gearbox and supported by the gearbox. I have.
  • Patent Document 2 discloses a wind turbine for wind power generation having a structure in which a rotor hub is directly mounted on a planetary holder of a gearbox and supported by the gearbox.
  • Patent Document 3 describes a wind turbine for wind power generation having a structure in which a rotor is incorporated in a gearbox and supported by the gearbox. Further, the annular gear carrier and the annular gear of the gearbox are directly attached to this rotor, and the rotor itself constitutes a part of the gearbox.
  • Patent Document 1 European Patent Application Publication No. 0811764 (Column 3, Figure 1)
  • Patent Document 2 WO 02Z079644 pamphlet (column 4, and FIG. 2)
  • Patent Document 3 US Patent Application Publication No. 2002Z0049108 (Abstract and Drawings) Disclosure of the Invention
  • the wind turbine for wind power generation of the conventional configuration requires a high manufacturing cost and also makes it difficult to transport and install components such as the gearbox, the nacelle, and the support.
  • the present invention has been made in view of such circumstances, and provides a wind turbine for wind power generation in which members installed on a nacelle can be reduced in size and weight and maintenance is easy. With the goal.
  • a wind turbine for wind power generation of the present invention employs the following means.
  • a wind turbine for wind power generation includes a main shaft on which a wind turbine rotor is attached to a nacelle installed on a support, a speed increasing device for increasing the speed of rotation of the main shaft, and outputting the same.
  • a wind turbine for wind power generation provided with a generator driven by the output of the machine, wherein the main shaft is connected to an input shaft end of the speed increaser, and a single-row double-row tapered roller bearing is provided. Characterized by being supported by the nacelle via
  • the main shaft is supported by one double-row tapered roller bearing provided in the nacelle.
  • Double row tapered roller bearings are supported alone It can receive radial load, thrust load and bending load applied to the shaft. That is, the radial load, thrust load, and bending load applied to the main shaft are all received by the single double row tapered roller bearing.
  • the support structure of the main shaft becomes compact.
  • the required strength of the gearbox is small. It also depends on the required strength, not just the gear ratio.
  • the gearbox is smaller and lighter than the gearbox used for the conventional wind turbine for wind power generation. Can be used.
  • the main shaft is connected to the input shaft of the gearbox, and the main shaft and the gearbox can be separated from each other. Can be separated from the main shaft to maintain only the gearbox. Similarly, when performing maintenance on the spindle, the spindle can be separated from the gearbox, and only the spindle can be maintained.
  • a wind turbine for wind power generation provided with a generator driven by the output of a gearbox, wherein the main shaft is connected to an input shaft end of the gearbox, and a row of rollers that receive a radial load and a thruster are provided. It is supported by the nacelle via a single three-row roller bearing having a pair of rollers that receive a load.
  • the main shaft is supported by one triple-row roller bearing having a row of rollers that receive a radial load and a pair of rollers that receive a thrust load. Therefore, the support structure of the main shaft becomes compact.
  • the strength required for the gearbox and the gearbox support can be reduced.
  • the size of the gearbox depends on the required strength, not just its gear ratio. In the wind turbine for wind power generation according to the present invention, since the strength required for the gearbox is small as described above, the gearbox is smaller and lighter than the gearbox used for the conventional wind turbine for wind power generation. Can be used.
  • the main shaft is connected to the input shaft of the gearbox, and the main shaft and the gearbox can be separated from each other. Can be separated from the main shaft to maintain only the gearbox. Similarly, when performing maintenance on the spindle, the spindle can be separated from the gearbox, and only the spindle can be maintained.
  • the invention according to claim 3 is the wind turbine for wind power generation according to claim 1 or 2, wherein the main shaft has an annular or disk-like shape having an outer diameter larger than an axial length. It is characterized by the following.
  • the wind turbine for wind power generation configured as described above has an outer diameter set to be larger than an axial length (a ratio between the outer diameter and the axial length is set to be larger). That is, the length in the axial direction is shorter than that of the conventional spindle. However, a space for installing a double-row tapered roller bearing is secured on the main shaft.
  • the axial length of the main shaft is suppressed, and the weight of the main shaft is suppressed. Further, since the bending moment applied to the main shaft when the wind turbine rotor blade receives wind is reduced, the strength required for the main shaft and the support structure of the main shaft can be reduced.
  • the invention according to claim 4 is the wind turbine for wind power generation according to claim 1 or 2, wherein the main shaft and the input shaft of the speed increaser are connected via a coupling.
  • the invention according to claim 5 is the wind turbine for wind power generation according to claim 3, wherein the main shaft and the input shaft of the speed increaser are connected via a coupling. It is characterized by
  • any coupling other than a gear coupling, a disk coupling, a connection structure using a bush, a connection structure using a pin, and the like can be used as the coupling.
  • the members installed on the nacelle such as the main shaft support structure and the gearbox, can be reduced in size and weight, so that the nacelle can be reduced in size and weight. Can be.
  • the nacelle and the members installed on the nacelle can be reduced in size and weight as described above, the transport and installation of the nacelle and each member are facilitated.
  • the load applied to the column supporting these members is reduced, and the structure of the column can be simplified.
  • main shaft and the speed increaser are structurally separated, they can be independently maintained, thereby improving maintainability.
  • a wind turbine 1 for wind power generation includes a support 2 erected on a foundation B, a nacelle 3 installed at an upper end of the support 2, and a rotation about a substantially horizontal axis. And a rotor head 4 provided in the nacelle 3 as possible.
  • a plurality of wind turbine rotors 5 are attached to the rotor head 4 radially around its rotation axis. As a result, the force of the rotor head 4 in the direction of the rotation axis and the force of the wind hitting the wind turbine rotor 5 are converted into power for rotating the rotor head 4 about the rotation axis.
  • the support 2 has a configuration in which, for example, a plurality of units are vertically connected.
  • the nacelle 3 is installed on the unit provided at the top of the units constituting the column 2.
  • the nacelle 3 has a nacelle base plate 6 (see FIG. 2) attached to the upper end of the column 2 and a cover 7 (see FIG. 1) that covers the nacelle base plate 6 with an upward force.
  • the nacelle base plate 6 is provided so as to be rotatable on a horizontal plane with respect to the support column 2, and the nacelle 3 is driven by driving the nacelle base plate 6 by a driving device (not shown). And can change the direction on the horizontal plane!
  • the nacelle base plate 6 has a floor portion 6a that is attached to the upper end of the column 2 substantially horizontally, and a shell 6b that covers the floor portion 6a from above.
  • the shell 6b has a wall portion W1 that rises upward from a connection portion with the floor portion 6a, and a dome portion W2 that connects the wall portion W1 and the periphery of the floor portion 6a.
  • a first opening HI is formed in the wall portion W1
  • a second opening H2 is provided at a position of the dome portion W2 facing the first opening HI.
  • the members provided inside and outside the nacelle base plate 6 are connected to each other through the first and second openings HI and H2.
  • the nacelle base plate 6 includes a main shaft 11, a speed increasing device 12 for increasing the speed of rotation of the main shaft 11 and outputting the same, and a power generator driven by the output of the speed increasing device 12.
  • Machine 13 is provided.
  • the speed-increasing gear 12 is installed in the nacelle base plate 6, and the generator 13 is arranged outside the nacelle base plate 6 at a position facing the second opening H2 of the dome portion W2.
  • the gear box 12 and the generator 13 are fixed to the nacelle base plate 6 by means of an unillustrated stay or the like.
  • the input shaft 12a is connected to the input shaft 12a through the first opening HI so as to regulate the relative rotation around the axis with respect to the main shaft 11.
  • the speed increaser 12 increases the rotation speed suitable for the power generation of the generator 13 and outputs the rotation to the output shaft 12b.
  • the speed increaser 12 according to the present embodiment performs one or more stages of speed increase. For example, between the input shaft 12a and the output shaft 12b, a planetary stage using a planetary gear unit and a parallel stage using a spur gear are provided in one or more stages in series.
  • the rotation input to the input shaft 12a is increased by the planetary stage and the parallel stage, respectively, and is finally output to the output shaft 12b as an appropriate rotation speed.
  • the generator shaft (not shown) of the generator 13 is connected to the output shaft 12b of the gearbox 12 by regulating the relative rotation of the generator shaft 13 around the axis through the second opening H2.
  • the rotation of 12b drives the generator 13 to generate power.
  • the generator 13 includes an induction type, a winding type, a secondary resistance control winding induction type (hereinafter, RCC, rotor current control type), and a secondary excitation control winding induction type (hereinafter, DF, static cellobius type).
  • RCC secondary resistance control winding induction type
  • DF secondary excitation control winding induction type
  • Any type of generator 13 such as a synchronous type, a permanent magnet type, and an induction multi-pole type can be used.
  • the main shaft 11 is arranged outside the nacelle base plate 6 at a position facing the first opening HI of the wall W1.
  • the spindle 11 has one end in the axial direction facing the first opening HI, and a double row tapered roller bearing 16 is interposed between the spindle 11 and the wall W1.
  • the main shaft 11 is connected to the tip of the input shaft 12a of the gearbox 12 via a double-row tapered roller bearing 16.
  • the rotor head 4 is provided so as to restrict relative rotation around the rotation axis with respect to the main shaft 11. As a result, the rotor head 4 and the main shaft 11 rotate integrally about the axis!
  • the double-row tapered roller bearing 16 is provided coaxially with the main shaft 11 between one end of the main shaft 11 in the axial direction and the wall portion W1, and enables the main shaft 11 to rotate around the axis. I support it. That is, the main shaft 11 is supported by the wall portion W1 via the double-row tapered roller bearing 16.
  • a coupling 17 is provided between the double row tapered roller bearing 16 and the input shaft 12a of the gearbox 12 (see FIG. 3). That is, the main shaft 11 is connected to the input shaft 12a via the double-row tapered roller bearing 16 and the coupling 17.
  • a gear coupling is used as the coupling 17.
  • the main shaft 11 is a short axis, and more specifically, has a substantially annular shape in which the outer diameter D1 is large with respect to the axial length L1. Good).
  • the rotor head 4 is attached at the axial end of the spindle 11, one end to which the rotor head 4 is attached is provided with a first flange. A dit 11a is provided.
  • the rotor head 4 is mounted on the first flange 11a by bolting or the like.
  • a second flange lib is provided at the other end of the main shaft 11 in the axial direction.
  • a double-row tapered roller bearing 16 is connected to the second flange lib by bolting or the like.
  • the double row tapered roller bearing 16 is provided coaxially with an outer ring 16a connected to the wall portion W1 by bolting or the like, and radially inward of the outer ring 16a.
  • the main shaft 11 has an inner ring 16b connected by bolting or the like.
  • a plurality of rolling elements are provided between the outer ring 16a and the inner ring 16b along the circumferential direction.
  • a tapered roller (conical roller) R is used as the rolling element.
  • the tapered rollers arranged in the circumferential direction at the same position in the axial direction are collectively referred to as a row of tapered rollers.
  • the rows of the tapered rollers R are arranged in a plurality of rows along the axial direction (this embodiment shows an example in which two rows of the tapered rollers R are provided).
  • an outer ring inclined surface C1 that is inclined with respect to the axis is provided on the entire inner peripheral surface of the outer ring 16a.
  • Two outer ring slopes C1 are provided along the axial direction, and the respective outer ring slopes C1 have opposite inclination directions with respect to the axis.
  • the outer ring inclined surface C1 on the main shaft 11 side is an inclined surface whose main shaft 11 side is located radially outward and whose gearbox 12 side is located radially inner side.
  • the outer ring inclined surface C1 on the gearbox 12 side is an inclined surface with the main shaft 11 side located radially inward and the gearbox 12 side located radially outward. That is, the inner peripheral surface of the outer ring 16a has a mountain shape in cross section.
  • an inner ring inclined surface C2 is provided at a position facing each outer ring inclined surface C1.
  • the inclination direction of each inner ring inclined surface C2 is the same as the inclination direction of the opposed outer ring inclined surface C1, and the inclination angle of each inner ring inclined surface C2 with respect to the axis is equal to that of the opposed outer ring inclined surface C1. Is also set slightly loose.
  • the inner ring inclined surface C2 on the main shaft 11 side is such that the main shaft 11 side is located radially outward.
  • the gearbox 12 side is an inclined surface located radially inward.
  • the inner ring inclined surface C2 on the gearbox 12 side is an inclined surface with the main shaft 11 side located radially inward and the gearbox 12 side located radially outward. That is, the outer peripheral surface of the inner ring 16b has a valley shape in cross section.
  • a plurality of tapered rollers R are provided along each circumferential direction between each pair of the outer ring inclined surface C1 and the inner ring inclined surface C2, and a row of these tapered rollers R is provided on the main shaft 11 side. And a row provided on the gearbox 12 side in total.
  • the tapered rollers R in each row are provided so that their axes are inclined in the same direction as the outer ring inclined surface Cl and the inner ring inclined surface C2 facing the axis of the double-row tapered roller bearing 16. Specifically, the tapered rollers R in each row are provided such that the smaller diameter side is located radially inward and the larger diameter side is located radially outward.
  • the tapered rollers R are installed with the large-diameter side directed toward the main shaft 11 and the small-diameter side directed toward the gearbox 12 side.
  • the tapered rollers R are installed with the large diameter side facing the gearbox 12 side and the small diameter side facing the main shaft 11 side.
  • the coupling 17 includes an inner ring 16b of the double-row tapered roller bearing 16, and an input shaft 12a substantially provided between the double-row tapered roller bearing 16 and the input shaft 12a. It is constituted by a substantially cylindrical inner cylinder 18 which is interposed coaxially and an input shaft 12a.
  • the distal end of the input shaft 12a is formed in a cylindrical shape, and one end of the inner cylinder 18 in the axial direction is inserted into the inside thereof. Then, by moving the gearbox 12 to the generator 13 side, the inner cylinder 18 can be pulled out from the input shaft 12a and the engagement between the input shaft 12a and the inner cylinder 18 can be released. I have.
  • a first internal gear 21 is provided on the inner peripheral surface of the inner ring 16b, and in a region of the inner cylinder 18 facing the inner peripheral surface of the inner ring 16b, the first internal gear 21 is provided.
  • a mating first external gear 22 is provided.
  • a second external gear 23 is provided in a region of the inner cylinder 18 that is inserted into the input shaft 12a, and a second internal gear 24 meshing with the second external gear 23 is provided on the inner surface of the distal end portion of the input shaft 12a. Is set up.
  • the second internal gear 24 has a smaller diameter than the first internal gear 21, so that torque is transmitted between the inner ring 16b and the input shaft 12a.
  • the force in the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.
  • the rotation of the rotor head 4 is transmitted to the main shaft 11, and transmitted from the main shaft 11 to the input shaft 12 a of the gearbox 12 through the inner ring 16 b of the double row tapered roller bearing 16 and the inner cylinder 18 of the coupling 17. . Then, the rotation is increased in speed by the speed increaser 12 and input to the generator 13 through the output shaft 12b, whereby the generator 13 generates electric power.
  • the nacelle 3 is appropriately rotated on a horizontal plane so that the wind force can effectively act on the wind turbine rotor 4, and the rotor head 4 is moved upwind. Turn.
  • the load applied to the main shaft 11 is received by the double-row tapered roller bearing 16 that supports the main shaft 11, and is applied to the input shaft 12a of the gearbox 12. , Almost no load other than rotational torque is transmitted!
  • a row of tapered rollers R is provided radially outside the inner ring 16b.
  • An outer ring 16a is provided further radially outward of the row of the tapered rollers R, and the outer ring 16a is supported by a wall portion W1 of the nacelle base plate 6. That is, since the inner ring 16b is supported in the radial direction by the wall portion W1, the radial displacement of the main shaft 11 can be minimized even when a radial load is applied to the main shaft 11. As described above, even if a radial load is applied to the main shaft 11, the radial load is received by the double row tapered roller bearings 16, so that the radial load is hardly transmitted to the input shaft 12a of the gearbox 12.
  • the double row tapered roller bearing 16 two rows of tapered rollers R are provided along the axial direction. That is, since the inner ring 16b is supported at two points in the axial direction, even when a bending load is applied to the main shaft 11, the inclination of the main shaft 11 is minimized. As described above, even when a bending load is applied to the main shaft 11, the bending load is received by the double row tapered roller bearings 16, so that the bending load is hardly transmitted to the input shaft 12a of the speed increaser 12.
  • two outer ring inclined surfaces C1 that are inclined with respect to the axis are provided on the inner peripheral surface of the outer ring 16a along the axial direction.
  • An inner ring inclined surface C2 is provided to face each outer ring inclined surface C1.
  • the pair of the outer ring slope C1 and the inner ring slope C2 has their respective inclination directions with respect to the axis opposite to each other.
  • any one of the pair of the outer ring inclined surface C1 and the inner ring inclined surface C2 is used. In either pair, the inner ring slope C2 is received by the outer ring slope C1 over the tapered roller R.
  • the inner race 16b is also supported from the axial direction by the outer race 16a and the tapered rollers R. Even if a thrust load is applied to the main shaft 11, the thrust load is received by the double-row tapered roller bearing 16, so that the inner race 16b increases. The thrust load is hardly transmitted to the input shaft 12a of the transmission 12.
  • the support structure of the main shaft 11 is compact.
  • the radial load, thrust load, and bending load applied to the main shaft 11 are received by the double row tapered roller bearings 16, so that the strength required for the gearbox 12 and the gearbox support is small.
  • the main shaft 11 has an annular shape having an outer diameter D1 larger than the axial length L1. That is, the length L (dimension in the axial direction) of the main shaft 11 is set shorter than that of the conventional main shaft.
  • the main shaft 11 and the support structure for the main shaft 11 can be further downsized.
  • the members installed on the nacelle 3 such as the support structure of the main shaft 11, the gearbox 12, and the support of the gearbox are small and lightweight. Therefore, the nacelle 3 can be made smaller and lighter. Further, since the nacelle 3 and the members installed on the nacelle 3 can be reduced in size and weight as described above, the nacelle 3 and each member can be easily transported and installed. In addition, the load applied to the column 2 supporting these members is reduced, and the structure of the column 2 can be simplified.
  • the main shaft 11 and the gearbox 12 are structurally separated. For this reason, it is possible to maintain the spindle 11 and the gearbox 12 independently of each other, so that maintenance is easy.
  • the gearbox 12 when performing maintenance on the gearbox 12, the gearbox 12 can be separated from the main shaft 11, and only the gearbox 12 without removing the main shaft 11 from the nacelle 3 can be maintained.
  • the spindle 11 when performing maintenance on the spindle 11, the spindle 11 can be separated from the gearbox 12, and only the spindle 11 can be maintained.
  • the coupling 17 also prevents transmission of the radial load, thrust load, and bending load from the main shaft 11 to the gearbox 12, and is required for the gearbox 12 and the gearbox support. The strength can be further reduced.
  • the main shaft 11 and the gearbox 12 are provided with a cup, which is a gear coupling. Connected via ring 17. Then, by pulling out the gearbox 12 in a direction away from the main shaft 11, the coupling 17 can be separated, and the main shaft 11 and the gearbox 12 can be easily separated. As described above, in the wind turbine 1 for wind power generation according to the present embodiment, the main shaft 11 and the speed increaser 12 can be easily separated from each other, so that the maintainability is high.
  • a wind turbine 31 for wind power generation according to the present embodiment is obtained by partially changing the configuration of the wind turbine 1 for wind power generation shown in the first embodiment.
  • the wind turbine 31 for wind power generation according to the present embodiment is mainly characterized by changing the shape of the main shaft, the support structure of the main shaft, and the configuration of the speed increaser in the wind turbine 1 for wind power generation. .
  • a short main shaft 32 specifically, a substantially annular main shaft 32 having an outer diameter D2 larger than the axial length L2 is used. ( ⁇ ⁇ (It may be almost disk-shaped.)
  • the rotor head 4 and the main shaft 32 are connected by an arbitrary connection structure such as a bolt.
  • the outer periphery of the main shaft 32 is received by the inner ring 16 b of the double-row tapered bearing 16, and is supported by the nacelle base plate 6 via the double-row taper bearing 16.
  • An input shaft 34 a of a speed-increasing gear 34 is connected to a radially inner side of the main shaft 32 via a coupling 33.
  • the input shaft 34a is connected to the main shaft 32 so as to be coaxial with the main shaft 32 while restricting relative rotation about the axis with respect to the main shaft 32.
  • the coupling 33 for example, an internal gear provided on the inner peripheral surface of the main shaft 32 and an input shaft A gear coupling, which is provided on the outer peripheral surface of 34a and includes an external gear that meshes with the internal gear, is used.
  • the coupling 33 is not limited to a gear coupling, but may be a disc coupling, a connection structure using a bush, a connection structure using pins, or any other coupling.
  • the speed increaser 34 increases the rotation input from the main shaft 32 to the input shaft 34a to an appropriate rotation speed and outputs the rotation to the output shaft 34b. Is accommodated in the case 34c.
  • a planetary stage 36 using a planetary gear unit and a parallel stage 37 using a spur gear connected in series with the planetary stage 36 are installed.
  • the speed increaser 34 has one planetary stage 36 and two parallel stages 37, and increases the rotation input from the input shaft 34a to an appropriate rotation speed by three stages of acceleration. I'm getting faster.
  • the planetary stage 36 is provided between the input shaft 34a and the parallel stage 37, and is a so-called planetary system. Specifically, a sun gear 41 provided on the input shaft 37a of the parallel stage 37, a ring-shaped internal gear 42 provided coaxially with the sun gear 41 and having the same axial position, a sun gear 41 and the internal gear And a pair of planetary gears 43 and 44 that are provided between the planetary gears.
  • the internal gear 42 is fixedly provided on the case 34c by a stay (not shown) or the like, and its relative rotation about the axis with respect to the case 34c is restricted.
  • the pair of planetary gears 43 and 44 are provided on opposite sides of the sun gear 42, and the support shafts 43a and 44ai of the respective planetary gears 43 and 44, respectively, and the human-powered shaft 34a are respectively supported by this! .
  • the input shaft 34a is provided coaxially with the main shaft 32, and is provided with a disk portion 46 (which may be an annular portion) inserted radially inside the main shaft 32, and a planetary gear from the disk portion 46. It has a bearing portion 47 protruding toward the 43, 44 side and supporting the support shafts 43a, 44a of the planetary gears 43, 44 while allowing rotation about the axis.
  • the input shaft 34a of the gearbox 34 connected to the main shaft 32 by the coupling 33 is also provided. , And is rotated about the axis integrally with the main shaft 32. Then, the planetary gears 43, 44 held by the bearing 47 of the input shaft 34a rotate (revolve) around the axis of the input shaft 34a.
  • the planetary gears 43 and 44 are meshed with the fixedly provided internal gear 42, and are driven to rotate around the axis of the input shaft 34a to rotate around the support shafts 43a and 44a, respectively (rotate). ).
  • the planetary stage 36 transmits the rotation of the main shaft 32 to the parallel stage 37 at one speed increase.
  • the parallel stage 37 further increases the speed of the rotation input to the input shaft 37a by two stages and outputs the rotation to the output shaft 34b. Then, the rotation of the output shaft 34b is input to the generator 13, and is used for power generation by the generator 13.
  • the speed increasing device 51 (first example) shown in FIG. 5 uses a so-called star type planetary speed stage 52 instead of the planetary speed stage 36 in the speed increasing device 34 shown in FIG. Specifically, instead of supporting the planetary gears 52 and the planetary gears 36 and the support shafts 43a and 44a of the planetary gears 43 and 44 by the human power shaft 34a, the case 34c (Fig. (Not shown).
  • the support shafts 43a and 44a are supported by restricting rotation (revolution) around the sun gear 41, and the planetary gears 43 and 44 are supported so as to be able to rotate respectively.
  • an input shaft 51a is used instead of providing the input shaft 34a and the internal gear 42.
  • the input shaft 51a has a cylindrical portion 56 (which may be a cylindrical portion) coaxially inserted radially inward of the main shaft 32, and planetary gears 43, 44 provided on the sun gear 41 side of the cylindrical portion 56. And ⁇ with the internal gear 57 that meshes!
  • the cylindrical portion 56 is also connected to the main shaft 32 via the coupling 33.
  • the gearbox 51 configured as described above, when the main shaft 32 is driven to rotate around the axis by wind force, the input shaft 51a of the gearbox 51 connected to the main shaft 32 by the coupling 33 also becomes the main shaft. It rotates around the axis together with the shaft 32.
  • the speed increaser 61 (second example) shown in FIG. 6 uses a so-called compound planetary type planetary stage 62 instead of the planetary stage 36 in the speed increaser 34 shown in FIG. Specifically, in the planetary stage 62, the sun gear 41 meshing with the internal gear 42 in the planetary stage 36 is provided to be shifted toward the parallel stage 37 from the internal gear 42. Then, instead of the planetary gears 43 and 44, first planetary gears 63 and 64 that engage with the sun gear 41, and an internal gear 42 that is arranged on the input shaft 34a side of these first planetary gears 63 and 64, respectively. Interlocking second planetary gears 66 and 67 are provided.
  • the first planetary gear 63 and the second planetary gear 66 are coaxially supported by a support shaft 68 supported by the input shaft 34a and restricting relative rotation about the axis.
  • the first planetary gear 64 and the second planetary gear 67 are supported coaxially by a support shaft 69 supported by the input shaft 34a, while restricting relative rotation about the axis.
  • first planetary gear 63 and the second planetary gear 66 can rotate around the axis together with the support shaft 68.
  • first planetary gear 64 and the second planetary gear 67 are rotatable around the axis together with the support shaft 69.
  • the second planetary gears 66, 67 held on the input shaft 34a revolve. Since the second planetary gears 66 and 67 mesh with the internal gear 42, the second planetary gears revolve with the support shafts 68 and 69 by revolving in this manner.
  • the sun gear 41 and the first planetary gears 63 and 64 are located closer to the parallel stage 37 than the internal gear 42. There is no need to fit within the inside diameter of the gear 42.
  • the diameter of the first planetary gears 63, 64 can be made larger than the diameter of the second planetary gears 66, 67, and between these first and second planetary gears, One speed increase can be performed.
  • the speed increase ratio can be further increased as compared with the speed increaser 34 shown in FIG.
  • a speed increaser 71 (third example) shown in FIG. 7 uses a so-called compound planetary type planetary stage 72 instead of the planetary stage 52 in the speed increaser 51 shown in FIG. Specifically, in the planetary stage 72, the sun gear 41, which has meshed with the internal gear 42 in the planetary stage 52, is provided to be shifted toward the parallel stage 37 from the internal gear 42. Then, instead of the planetary gears 43 and 44, first planetary gears 73 and 74 that mesh with the sun gear 41, and an internal gear 42 that is arranged on the input shaft 34a side of the first planetary gears 73 and 74, respectively. Interlocking second planetary gears 76 and 77 are provided.
  • the first planetary gear 73 and the second planetary gear 76 are provided on a support shaft 78 supported by a case (not shown) via a stay 80, and the first planetary gear 73, the second planetary gear 76, Are supported coaxially by a support shaft 78 while restricting relative rotation about the axis.
  • the first planetary gear 74 and the second planetary gear 77 are provided on a support shaft 79 supported by the case via a stay 80, and the first planetary gear 74 and the second planetary gear 77 are It is supported coaxially by a support shaft 79 while regulating relative rotation about the axis.
  • the first planetary gear 73 and the second planetary gear 76 are rotatable around the axis together with the support shaft 78.
  • the first planetary gear 74 and the second planetary gear 77 are rotatable around the axis together with the support shaft 79.
  • the second planetary gears 76 and 77 meshing with the internal gear 57 of the input shaft 51a rotate on their own.
  • the first planetary gears 73, 74 connected to them via the support shafts 78, 79 also rotate.
  • the sun gear 41 meshing with the first planetary gears 73 and 74 is driven to rotate, and the rotation is input to the subsequent parallel stage 37.
  • the diameter of the first planetary gears 73, 74 can be made larger than the diameter of the second planetary gears 76, 77, and a one-step speed increase is performed between the first and second planetary gears. Can be.
  • the speed increase ratio can be further increased as compared with the speed increaser 51 shown in FIG.
  • the configuration of the gearboxes 51, 61, and 71 may be applied to the gearbox 12 of the wind turbine 1 for wind power generation shown in the first embodiment.
  • a multi-pole generator may be used as generator 13.
  • the multi-pole generator can generate sufficient electric power even if the rotation speed of the generator shaft of the generator 13 is low. That is, since the speed increasing ratio of the speed increasing device can be small, a speed increasing device that increases the speed only by one stage can be used as the speed increasing device.
  • a gearbox 81 having only the planetary stage 36 as a gearbox is used as a gearbox, or as shown in FIG. Can be used.
  • a generator having eight poles or more is preferably used since the lower limit of the rotation speed of the generator shaft capable of stably generating power can be reduced as the number of poles increases.
  • FIGS 8 and 9 are schematic diagrams in which the gearbox carrier and the stator of the generator are directly mounted on the nacelle base plate 6.
  • the casings of the gearboxes 81 and 82 ⁇ The casing of the generator 13 It can also be incorporated in the nacelle base plate 6.
  • the gearbox that increases the speed in only one stage requires a very small size and light weight as compared with the conventional gearbox that increases the speed in multiple stages.
  • a gearbox uses a small number of gears, it is highly reliable and can greatly reduce maintenance work. Also, the noise generated by the gearbox , So it will not adversely affect the surrounding environment!
  • the force in which the main shaft and the rotor head are formed as separate members is not limited to this.
  • the main shaft 11 and the rotor head 4 are connected to each other.
  • the combined body 86 may be integrated.
  • Such a combined body 86 is manufactured by a structure, for example.
  • the force using gear coupling as the connection structure between the main shaft and the input shaft of the speed increaser is not limited to this.
  • the connection shown in FIG. A continuation structure may be used.
  • connection structure shown in FIG. 11 eliminates the second external gear 23 provided on the inner cylinder 18 and the second internal gear 24 provided on the input shaft 12 in the first embodiment.
  • a wind turbine 91 for wind power generation is a modification of the wind turbine 1 for wind power generation shown in the first embodiment.
  • the wind turbine 91 for wind power generation according to the present embodiment is mainly characterized in that the support structure of the main shaft is changed in the wind turbine 1 for wind power generation described above.
  • a row of rollers receiving a radial load and a row of a pair of rollers receiving a thrust load are used.
  • a structure is adopted in which the nacelle 3 is supported via a single three-row roller bearing 92 having the following.
  • the three-row roller bearing 92 is provided between one end of the main shaft 11 in the axial direction and the wall portion W1 so as to have the same axis as the main shaft 11, and can rotate the main shaft 11 around the axis. And support it. That is, the main shaft 11 is supported by the wall portion W1 via the three-row roller bearing 92.
  • the three-row roller bearing 92 is provided with an outer ring 92a connected to the wall portion W1 by bolting or the like, and has the same axis radially inside the outer ring 92a. And an inner ring 92b fixed by the like.
  • a plurality of rolling elements are provided between the outer ring 92a and the inner ring 92b along the circumferential direction.
  • Cylindrical rollers Rc are used as rolling elements.
  • the cylindrical rollers arranged in the circumferential direction at the same position in the axial direction are collectively referred to as a row of rollers.
  • the rows at this time are arranged in three rows along the axial direction.
  • a first groove 93 that extends in the radial direction and has a rectangular shape in cross section is formed on the inner peripheral surface of the outer ring 92a over the entire circumference.
  • a second groove 94 which is narrower than the first groove 93 and extends in the radial direction and has a rectangular cross section, is formed over the entire circumference.
  • the side wall 93a of the first groove 93 is a plane coaxial with the axis of the outer ring 92a and substantially perpendicular to the axis. It has been.
  • the bottom surface 94a of the second groove 94 is a cylindrical surface coaxial with the axis of the outer ring 92a.
  • a protruding portion 95 having a rectangular shape in cross section extending in the circumferential direction is formed over the entire circumference.
  • the protrusion 95 is located in a first groove 93a formed in the outer ring 92a.
  • the side wall 95a of the projection 95 is a plane substantially perpendicular to the axis, and the outer peripheral surface 95b is a cylindrical surface coaxial with the axis.
  • the side wall 93a of the first groove 93 and the side wall 95a of the protrusion 95 are planes parallel to each other, and the bottom surface 94a of the second groove 94 and the outer peripheral surface 95b of the protrusion 95 are They are cylindrical surfaces that are parallel to each other.
  • a plurality of cylindrical rollers Rc are provided with their axes radially centered on the axis of the three-row roller bearing 92.
  • the row of rollers formed by these cylindrical rollers Rc is referred to as row R1 of the first rollers.
  • a plurality of cylindrical roller Rc force axes are provided substantially in parallel with the axis of the three-row roller bearing 92.
  • the row of these cylindrical rollers Rc is referred to as row R2 of the second roller.
  • the protrusion 95 of the inner ring 92b to which the main shaft 11 is attached is received on the outer ring 92a via the first row R1 on both sides in the axial direction. Therefore, when a thrust load is applied to the main shaft 11, the outer ring 92a receives the thrust load while the relative rotation of the inner ring 92b with respect to the outer ring 92a is allowed.
  • the rows R1 of the first rollers are provided on both sides of the projecting portion 95, and the projecting portion 95 is also supported by the outer ring 92a in both axial directions, so that a bending load is applied to the main shaft 11. Even if it is applied, a bending load is received by the outer ring 92a while allowing the relative rotation of the inner ring 92b with respect to the outer ring 92a.
  • a second row of rollers R2 is provided between the outer peripheral surface 95b of the protrusion 95 provided on the inner ring 92b and the bottom surface 94a of the second groove 94 provided on the outer ring 92a.
  • the inner ring 92b is received by the outer ring 92a from the outer periphery via the second roller row R2! /. Therefore, when a radial load is applied to the main shaft 11, the radial load is received by the outer ring 92a while the relative rotation of the inner ring 92b with respect to the outer ring 92a is allowed.
  • the outer ring 92a is attached to the wall portion W1 of the nacelle 3, and the thrust load, bending load, and radial load transmitted from the main shaft 11 to the inner ring 92b are transferred to the wall portion via the three-row roller bearing 92. Received by W1.
  • the main shaft 11 is supported by the single three-row roller bearing 92, so that the support structure of the main shaft 11 is compact.
  • the speed-up gear 12 can be smaller and lighter than those used for the conventional wind turbine for wind power generation. .
  • the configuration of the wind turbine for wind power generation according to the second embodiment, and the variation of the wind turbine for wind power generation according to the first and second embodiments may be applied.
  • FIG. 1 is a side sectional view showing a wind turbine for wind power generation according to a first embodiment of the present invention.
  • FIG. 2 is a side sectional view showing a configuration inside a nacelle of a wind turbine for wind power generation according to the first embodiment of the present invention.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 4 is a side sectional view showing a configuration of a wind turbine for wind power generation according to a second embodiment of the present invention.
  • FIG. 5 is a side sectional view showing another configuration example of a wind turbine for wind power generation according to the second embodiment.
  • FIG. 6 is a side sectional view showing another configuration example of the wind turbine for wind power generation according to the second embodiment.
  • FIG. 7 is a side sectional view showing another configuration example of the wind turbine for wind power generation according to the second embodiment.
  • FIG. 8 is a side sectional view showing a modification of the wind turbine for wind power generation according to the present invention.
  • FIG. 9 is a side sectional view showing a modification of the wind turbine for wind power generation according to the present invention.
  • FIG. 10 is a side sectional view showing a modification of the wind turbine for wind power generation according to the present invention.
  • FIG. 11 is a side sectional view showing a modification of the wind turbine for wind power generation according to the present invention.
  • FIG. 12 is a side sectional view showing a wind turbine for wind power generation according to a third embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】 ナセル上に設置される部材の小型、軽量化が可能でかつメンテナンスが容易な風力発電用風車を提供することを目的とする。 【解決手段】 ナセル3を構成するナセル台板6に、主軸11と、主軸11の回転を増速して出力する増速機12と、増速機12の出力によって駆動される発電機13とを設ける。主軸11を、増速機12の入力軸12aの先端に対して、複列テーパーころ軸受16を介して接続された構成とする。主軸11を、ナセル台板6の壁部W1に対して、間に複列テーパーころ軸受16を介装した状態で取り付けて、主軸11が、複列テーパーころ軸受16を介して壁部W1に支持される構成とする。主軸11を、軸線方向長さL1に対して外径D1が大きい略円環状に形成する。

Description

明 細 書
風力発電用風車
技術分野
[0001] 本発明は、風力発電用風車に関するものである。
背景技術
[0002] 風力発電用風車は、支柱上に設置されたナセルに、風車回転翼と、この風車回転 翼が受けた風の力が主軸等を介して入力される増速機と、増速機の出力によって駆 動される発電機とを設けたものである。このような風力発電用風車としては、後記の特 許文献 1, 2, 3に記載のものがある。
[0003] 例えば、特許文献 1には、風車回転翼が設けられるローターが、増速機のブラネタ リーキャリアに直接装着されて、増速機によって支持された構造の風力発電用風車 が記載されている。
また、特許文献 2には、ローターのハブが、増速機のプラネタリーホルダーに直接 装着されて、増速機によって支持された構造の風力発電用風車が記載されている。 そして、特許文献 3には、ローターが増速機に組み込まれて、増速機によって支持 された構造の風力発電用風車が記載されている。また、このローターには、増速機の 環状ギアキャリア及び環状ギアが直接取り付けられており、ローター自体が増速機の 一部を構成している。
[0004] 特許文献 1 :欧州特許出願公開第 0811764号明細書 (第 3欄,及び図 1)
特許文献 2:国際公開第 02Z079644号パンフレット (第 4欄、及び図 2)
特許文献 3 :米国特許出願公開第 2002Z0049108号明細書 (要約,及び図面) 発明の開示
発明が解決しょうとする課題
[0005] しかし、これら従来の風力発電用風車には、以下のような問題があった。すなわち、 風車回転翼及びローターが増速機に支持される構造であるため、増速機及び増速 機を支持する増速機支持体には、ローターに加わる荷重、例えばラジアル荷重、スラ スト荷重、曲げ荷重を受け止められるだけの強度が要求される。 増速機の大きさは、その増速比だけでなぐ要求される強度によっても左右されるも のである。すなわち、同じ増速比であっても、強度の高い増速機は、その分だけ大き くなる。このため、特許文献 1, 2, 3に記載の風力発電用風車では、大型の増速機を 用いる必要がある。
[0006] そして、このように大型の増速機は、重量も重!、ので、増速機単体、ナセル、及び ナセルを支持する支柱に加わる荷重も大きくなる。このため、これらの部材にもより高 い強度を持たせる必要がある力 この場合にはこれらの部材が大型化し、重量も増加 してしまう。
このような理由から、従来の構成の風力発電用風車は、製造コストがかかる上、増 速機やナセル、支柱等の各構成部材の運搬、据付作業も困難になってしまう。
さらに、このように大型の増速機を用いることで、ナセル内のスペースが狭くなるた め、ナセルの構造の自由度、及びナセル内に設置される部品の配置の自由度が低く なり、設計に手間がかかってしまう。
[0007] また、このようにローターが増速機に支持されて 、る構成では、メンテナンスのため に増速機を分解する場合には、一旦ローターを増速機力 取り外して地上に降ろす 必要があるので、メンテナンス作業が煩雑になってしまう。
[0008] 本発明は、このような事情に鑑みてなされたものであって、ナセル上に設置される 部材の小型、軽量化が可能でかつメンテナンスが容易な風力発電用風車を提供す ることを目的とする。
課題を解決するための手段
[0009] 上記課題を解決するために、本発明の風力発電用風車は以下の手段を採用する。
すなわち、本発明にかかる風力発電用風車は、支柱上に設置されたナセルに、風 車回転翼が取り付けられる主軸と、該主軸の回転を増速して出力する増速機と、該 増速機の出力によって駆動される発電機とが設けられた風力発電用風車であって、 前記主軸は、前記増速機の入力軸端に接続されており、一基の複列テーパーころ軸 受を介して前記ナセルに支持されていることを特徴とする。
[0010] 本発明にかかる風力発電用風車では、ナセルに設けられる一基の複列テーパーこ ろ軸受によって、主軸を支持している。複列テーパーころ軸受は、単体で、支持する 軸に加わるラジアル荷重、スラスト荷重、及び曲げ荷重を受けることができるものであ る。すなわち、主軸に加わるラジアル荷重、スラスト荷重、及び曲げ荷重は、すべてこ の一基の複列テーパーころ軸受によって受けられる。
このように、本発明にかかる風力発電用風車では、一基の複列テーパーころ軸受 によって主軸を支持して 、るので、主軸の支持構造がコンパクトになる。
また、このように主軸に加わるラジアル荷重、スラスト荷重、及び曲げ荷重は、複列 テーパーころ軸受によって受けられるので、増速機に要求される強度が小さくて済む 増速機の大きさは、その増速比だけでなぐ要求される強度によっても左右されるも のである。本発明にかかる風力発電用風車では、このように増速機に要求される強 度が小さくて済むので、増速機として、従来の風力発電用風車に用いていたものより も小型、軽量のものを用いることができる。
[0011] また、主軸は増速機の入力軸に接続されるものであって、主軸と増速機とが分離可 能であるので、増速機のメンテナンスを行う場合には、増速機を主軸と分離して、増 速機のみをメンテナンスすることができる。同様に、主軸のメンテナンスを行う場合に は、主軸を増速機と分離して、主軸のみをメンテナンスすることができる。
[0012] 本発明にかかる風力発電用風車では、支柱上に設置されたナセルに、風車回転翼 が取り付けられる主軸と、該主軸の回転を増速して出力する増速機と、該増速機の 出力によって駆動される発電機とが設けられた風力発電用風車であって、前記主軸 は、前記増速機の入力軸端に接続されており、ラジアル荷重を受けるころの列とスラ スト荷重を受ける一対のころの列とを有する一基の三列ころ軸受を介して前記ナセル に支持されて 、ることを特徴とする。
[0013] このように、本発明にかかる風力発電用風車では、ラジアル荷重を受けるころの列と スラスト荷重を受ける一対のころの列とを有する一基の三列ころ軸受によって主軸を 支持しているので、主軸の支持構造がコンパクトになる。
また、このように主軸に加わるラジアル荷重、スラスト荷重、及び曲げ荷重は、各ころ 軸受の列によって受けられるので、増速機及び増速機支持体に要求される強度が小 さくて済む。 増速機の大きさは、その増速比だけでなぐ要求される強度によっても左右されるも のである。本発明にかかる風力発電用風車では、このように増速機に要求される強 度が小さくて済むので、増速機として、従来の風力発電用風車に用いていたものより も小型、軽量のものを用いることができる。
[0014] また、主軸は増速機の入力軸に接続されるものであって、主軸と増速機とが分離可 能であるので、増速機のメンテナンスを行う場合には、増速機を主軸と分離して、増 速機のみをメンテナンスすることができる。同様に、主軸のメンテナンスを行う場合に は、主軸を増速機と分離して、主軸のみをメンテナンスすることができる。
[0015] また、請求項 3に記載の発明は、請求項 1または 2に記載の風力発電用風車であつ て、前記主軸は、軸線方向長さに対して外径が大きい円環状または円盤状をなして いることを特徴とする。
[0016] このように構成される風力発電用風車は、軸線方向長さに対して外径が大きく設定 されている(外径と軸線方向長さとの比が大きく設定されている)。すなわち、従来の 主軸に対して、その軸線方向長さが短縮されているのである。但し、主軸には、複列 テーパーころ軸受を設置するスペースが確保されて 、る。
これにより、主軸の軸線方向長さが抑えられて、主軸の重量が抑えられる。 また、風車回転翼が風を受けた際に主軸に加わる曲げモーメントが小さくなるので 、主軸及び主軸の支持構造に要求される強度が小さくて済む。
そして、このように主軸及び主軸の支持構造に要求される強度が小さくなるので、 主軸及び主軸の支持構造をより小型化することができる。
[0017] また、請求項 4に記載の発明は、請求項 1または 2に記載の風力発電用風車であつ て、前記主軸と前記増速機の入力軸とは、カップリングを介して接続されていることを 特徴とし、請求項 5に記載の発明は、請求項 3に記載の風力発電用風車であって、 前記主軸と前記増速機の入力軸とは、カップリングを介して接続されて ヽることを特 徴とする。
[0018] このように構成される風力発電用風車では、主軸と増速機の入力軸とが、カップリン グを介して接続されて ヽるので、主軸と入力軸とのァライメント調整等の熟練を要する 調整作業が不要となり、組み立てやメンテナンスが容易となる。 また、カップリングによっても、主軸から増速機へのラジアル荷重、スラスト荷重、及 び曲げ荷重の伝達が防止されるので、増速機に要求される強度がさらに小さくて済 む。
ここで、本発明では、カップリングとして、ギアカップリング、ディスクカップリング、ブ ッシュによる接続構造、ピンによる接続構造の他、任意のカップリングを用いることが できる。
発明の効果
[0019] 本発明にかかる風力発電用風車では、主軸の支持構造、増速機、といったナセル 上に設置される部材を小型、軽量にすることができるので、ナセルを小型、軽量にす ることができる。また、このようにナセル及びナセル上に設置される部材を小型、軽量 にすることができるので、ナセル及び各部材の搬送、据付が容易となる。また、これら 部材を支持する支柱に加わる負担も少なくなり、支柱の構造も簡略ィ匕することができ る。
また、主軸と増速機とが構造的に分離されているので、これらを独立してメンテナン スすることが可能となり、メンテナンス性が向上する。
発明を実施するための最良の形態
[0020] 以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第一実施形態]
以下、本発明の第一実施形態について、図 1から図 3を用いて説明する。 本実施形態にかかる風力発電用風車 1は、図 1に示すように、基礎 B上に立設され る支柱 2と、支柱 2の上端に設置されるナセル 3と、略水平な軸線周りに回転可能にし てナセル 3に設けられるローターヘッド 4とを有している。
ローターヘッド 4には、その回転軸線周りに放射状にして複数枚の風車回転翼 5が 取り付けられている。これにより、ローターヘッド 4の回転軸線方向力も風車回転翼 5 に当たった風の力が、ローターヘッド 4を回転軸線周りに回転させる動力に変換され るようになっている。
[0021] 支柱 2は、例えば複数のユニットを上下に連結した構成とされている。ナセル 3は、 支柱 2を構成するユニットのうち、最上部に設けられるユニット上に設置されている。 ナセル 3は、支柱 2の上端に取り付けられるナセル台板 6 (図 2参照)と、このナセル 台板 6を上方力 覆うカバー 7 (図 1参照)とを有して 、る。
ここで、ナセル台板 6は、支柱 2に対して水平面上での回転を可能にして設けられ ており、ナセル 3は、図示せぬ駆動装置によってナセル台板 6を駆動されることによつ て、水平面上での向きを変えることができるようになって!/、る。
[0022] ナセル台板 6は、図 2に示すように、支柱 2の上端に略水平にして取り付けられる床 部 6aと、床部 6aを上方から覆う殻体 6bとを有して 、る。
殻体 6bは、床部 6aとの接続部から上方に立ち上げられる壁部 W1と、この壁部 W1 と床部 6aの周縁部同士を接続するドーム部 W2とを有している。
また、壁部 W1には、第一開口部 HIが形成されており、ドーム部 W2において第一 開口部 HIに対向する位置には、第二開口部 H2が設けられている。そして、これら 第一、第二開口部 HI, H2を通じて、ナセル台板 6の内外に設けられる部材同士が 接続されるようになっている。
[0023] ナセル台板 6には、図 2に示すように、主軸 11と、主軸 11の回転を増速して出力す る増速機 12と、増速機 12の出力によって駆動される発電機 13とが設けられている。 増速機 12は、ナセル台板 6内に設置されており、発電機 13は、ナセル台板 6外の、 ドーム部 W2の第二開口部 H2と対向する位置に配置されている。これら増速機 12及 び発電機 13は、それぞれ図示せぬステ一等によってナセル台板 6に固定されている
[0024] 増速機 12は、入力軸 12aが、第一開口部 HIを通じて、主軸 11に対する軸線周り の相対回転を規制して接続されており、主軸 11から入力軸 12aに入力された回転を 、発電機 13の発電に適した回転速度に増速して、出力軸 12bに出力するものである 本実施形態に力かる増速機 12は、一段もしくは複数段の増速を行うものであって、 例えば、入力軸 12aと出力軸 12bとの間には、遊星歯車装置を用いた遊星段と、平 歯車を用いた平行段とがそれぞれ一段もしくは複数段直列にして設けられている。そ して、これら遊星段、平行段によって、入力軸 12aに入力された回転がそれぞれ増速 されて、最終的に適切な回転速度として出力軸 12bに出力されるようになっている。 [0025] また、発電機 13の発電機軸(図示せず)は、第二開口部 H2を通じて、増速機 12の 出力軸 12bに対する軸線周りの相対回転を規制して接続されており、出力軸 12bが 回転することで、発電機 13が駆動されて、発電が行われるようになつている。
ここで、発電機 13としては、誘導型、卷線型、 2次抵抗制御卷線誘導型 (以下 RCC 、ローターカレントコントロール型)、 2次励磁制御卷線誘導型(以下 D.F、静止セルビ ウス式)、同期型、永久磁石方式、誘導多極式等、任意の方式の発電機 13を用いる ことができる。
[0026] 主軸 11は、ナセル台板 6外の、壁部 W1の第一開口部 HIと対向する位置に配置さ れている。主軸 11は、その軸線方向の一端を第一開口部 HIに向けて設けられてお り、主軸 11と壁部 W1との間には、複列テーパーころ軸受 16が介装されている。主軸 11は、増速機 12の入力軸 12aの先端に対して、複列テーパーころ軸受 16を介して 接続されている。
また、主軸 11の軸線方向の他端には、ローターヘッド 4が、主軸 11に対する回転 軸線周りの相対的な回転を規制して設けられている。これにより、ローターヘッド 4と 主軸 11とは、一体的に軸線周りに回転するようになって!/、る。
[0027] 複列テーパーころ軸受 16は、主軸 11の軸線方向の一端と壁部 W1との間に、主軸 11と同軸にして設けられており、主軸 11をその軸線周りの回転を可能にして支持し ている。すなわち、主軸 11は、複列テーパーころ軸受 16を介して壁部 W1に支持さ れている。
また、複列テーパーころ軸受 16と増速機 12の入力軸 12aとの間には、カップリング 17が設けられている(図 3参照)。すなわち、主軸 11は、入力軸 12aに対して、複列 テーパーころ軸受 16及びカップリング 17を介して接続されている。ここで、本実施の 形態では、カップリング 17として、ギアカップリングを用いている。
[0028] 以下、主軸 11の構造、主軸 11の支持構造、及び主軸 11と増速機 12との接続構造 について、図 2及び図 3を用いて詳細に説明する。
図 2に示すように、主軸 11は、短軸とされており、具体的には軸線方向長さ L1に対 して外径 D1が大きい略円環状をなしている(略円盤状であってもよい)。また、主軸 1 1の軸線方向の端部において、ローターヘッド 4が装着される一端には、第一フラン ジ 11aが設けられている。この第一フランジ 11aには、ローターヘッド 4がボルト止め 等によって装着されている。
また、主軸 11の軸線方向の他端には、第二フランジ l ibが設けられている。この第 二フランジ l ibには、複列テーパーころ軸受 16がボルト止め等によって接続されて いる。
[0029] 図 2及び図 3に示すように、複列テーパーころ軸受 16は、壁部 W1に対してボルト止 め等によって接続される外輪 16aと、外輪 16aの径方向内側に同軸にして設けられ て主軸 11がボルト止め等によって接続される内輪 16bとを有して 、る。
図 3に示すように、これら外輪 16a、内輪 16bとの間には、周方向に沿って複数の転 動体が設けられている。転動体としては、テーパーころ (円錐ころ) Rが用いられている 。以下、複列テーパーころ軸受 16において、軸線方向の同一位置で周方向に配置 されるテーパーころを、まとめてテーパーころの列と呼ぶ。このテーパーころ Rの列は 、軸線方向に沿って複数列配置されて 、る (本実施形態ではテーパーころ Rの列を 二列設けた例を示して 、る)。
[0030] さらに具体的な構成について説明すると、外輪 16aの内周面には、軸線に対して傾 斜する外輪傾斜面 C1が、全周にわたって設けられている。この外輪傾斜面 C1は、 軸線方向に沿って二つ設けられており、各外輪傾斜面 C1は、それぞれ軸線に対す る傾斜方向が反対向きとされている。
本実施形態では、主軸 11側の外輪傾斜面 C1は、主軸 11側が径方向外側に位置 し、増速機 12側が径方向内側に位置する傾斜面とされている。また、増速機 12側の 外輪傾斜面 C1は、主軸 11側が径方向内側に位置し、増速機 12側が径方向外側に 位置する傾斜面とされている。すなわち、外輪 16aの内周面は、断面視山形をなして いる。
[0031] また、内輪 16bの外周面において、各外輪傾斜面 C1に対向する位置には、それぞ れ内輪傾斜面 C2が設けられている。各内輪傾斜面 C2の傾斜方向は、対向する外 輪傾斜面 C1の傾斜方向と同一の向きとされており、各内輪傾斜面 C2の軸線に対す る傾斜角度は、対向する外輪傾斜面 C1よりもわずかに緩く設定されている。
本実施形態では、主軸 11側の内輪傾斜面 C2は、主軸 11側が径方向外側に位置 し、増速機 12側が径方向内側に位置する傾斜面とされている。また、増速機 12側の 内輪傾斜面 C2は、主軸 11側が径方向内側に位置し、増速機 12側が径方向外側に 位置する傾斜面とされている。すなわち、内輪 16bの外周面は、断面視谷形をなして いる。
[0032] テーパーころ Rは、これら外輪傾斜面 C1と内輪傾斜面 C2の各対の間に、それぞれ 周方向に沿って複数設けられており、これらテーパーころ Rの列は、主軸 11側に設 けられる列と、増速機 12側に設けられる列との計二列配置されている。
各列のテーパーころ Rは、複列テーパーころ軸受 16の軸線に対して、対向する外 輪傾斜面 Cl、内輪傾斜面 C2と同一方向に軸線を傾斜させて設けられている。 具体的には、各列のテーパーころ Rは、それぞれ小径側が径方向内側に位置し、 大径側が径方向外側に位置するようにして設けられている。そして、主軸 11側のテ 一パーころ Rの列では、テーパーころ Rは、大径側を主軸 11側に向けられ、小径側を 増速機 12側に向けられて設置されている。また、増速機 12側のテーパーころ Rの列 では、テーパーころ Rは、大径側を増速機 12側に向けられ、小径側を主軸 11側に向 けられて設置されている。
[0033] 前記カップリング 17は、図 2及び図 3に示すように、複列テーパーころ軸受 16の内 輪 16bと、複列テーパーころ軸受 16と入力軸 12aとの間に入力軸 12aと略同軸にし て介装される略円筒形状の内筒 18と、入力軸 12aとによって構成されている。ここで 、入力軸 12aの先端部は円筒状に形成されており、この内部に内筒 18の軸線方向 の一端が挿入されている。そして、増速機 12を発電機 13側に移動させることで、入 力軸 12aから内筒 18を引き出して、入力軸 12aと内筒 18との係合を解除することが できるようになつている。
図 3に示すように、内輪 16bの内周面には、第一内歯車 21が設けられており、内筒 18において内輪 16bの内周面に対向する領域には、第一内歯車 21に嚙み合う第一 外歯車 22が設けられている。
内筒 18において入力軸 12aに挿入される領域には、第二外歯車 23が設けられて おり、入力軸 12aの先端部内面には、第二外歯車 23と嚙み合う第二内歯車 24が設 けられている。 第二内歯車 24は、第一内歯車 21よりも小径とされており、これによつて、内輪 16b と入力軸 12aとの間でトルク伝達が行われるようになつている。
[0034] 以下、このように構成される風力発電用風車 1の動作にっ 、て説明する。
風力発電用風車 1においては、ローターヘッド 4の回転軸線方向力 風車回転翼 5 に当たった風の力が、ローターヘッド 4を回転軸線周りに回転させる動力に変換され る。
このローターヘッド 4の回転は、主軸 11に伝達されて、主軸 11から、複列テーパー ころ軸受 16の内輪 16b、カップリング 17の内筒 18を通じて、増速機 12の入力軸 12a に伝達される。そして、この回転は、増速機 12によって増速されて、出力軸 12bを通 じて発電機 13に入力され、発電機 13による発電が行われる。
ここで、少なくとも発電を行っている間は、風の力を風車回転翼 4に効果的に作用さ せることができるよう、適宜ナセル 3を水平面上で回転させて、ローターヘッド 4を風上 に向ける。
[0035] このように風車回転翼 5に風が当たると、主軸 11には、回転トルク以外にも、ラジア ル荷重、スラスト荷重、及び曲げ荷重が加わる。
しかし、本実施形態にかかる風力発電用風車 1では、このように主軸 11に加わった 荷重は、主軸 11を支持する複列テーパーころ軸受 16によって受けられ、増速機 12 の入力軸 12aには、回転トルク以外の荷重がほとんど伝達されな 、ようになって!/、る
[0036] 以下、複列テーパーころ軸受 16の作用について具体的に説明する。
複列テーパーころ軸受 16において、内輪 16bの径方向外側には、テーパーころ R の列が設けられている。このテーパーころ Rの列の、さらに径方向外側には、外輪 16 aが設けられており、この外輪 16aは、ナセル台板 6の壁部 W1に支持されている。 すなわち、内輪 16bは、壁部 W1によって径方向の支持が行われているので、主軸 11にラジアル荷重が加わっても、主軸 11の径方向への変位が最小限に抑えられる。 このように、主軸 11にラジアル荷重が加わっても、このラジアル荷重が複列テーパー ころ軸受 16によって受けられるので、増速機 12の入力軸 12aには、ラジアル荷重は ほとんど伝達されない。 [0037] そして、複列テーパーころ軸受 16では、テーパーころ Rの列が、軸線方向に沿って 二列設けられている。すなわち、内輪 16bは、軸線方向の二箇所で支持されている ので、主軸 11に曲げ荷重が加わっても、主軸 11の傾きが最小限に抑えられる。この ように、主軸 11に曲げ荷重が加わっても、この曲げ荷重が複列テーパーころ軸受 16 によって受けられるので、増速機 12の入力軸 12aには、ほとんど曲げ荷重が伝達さ れない。
[0038] 一方、複列テーパーころ軸受 16において、外輪 16aの内周面には、軸線に対して 傾斜する外輪傾斜面 C1が、軸線方向に沿って二つ設けられており、内輪 16bには、 各外輪傾斜面 C1に対向させて、内輪傾斜面 C2が設けられている。
そして、これら外輪傾斜面 C1と内輪傾斜面 C2の対は、それぞれ軸線に対する傾 斜方向が反対向きとされている。
このため、主軸 11にスラスト荷重が加わった場合には、スラスト荷重の加わる向きが 軸線方向の 、ずれの向きであつても、これら外輪傾斜面 C 1と内輪傾斜面 C2の対の うち、いずれか一方の対で、内輪傾斜面 C2が、テーパーころ R越しに外輪傾斜面 C1 に受けられる。
すなわち、内輪 16bは、外輪 16a及びテーパーころ Rによって、軸線方向からも支 持されていて、主軸 11にスラスト荷重が加わっても、このスラスト荷重が複列テーパー ころ軸受 16によって受けられるので、増速機 12の入力軸 12aには、スラスト荷重はほ とんど伝達されない。
[0039] このように、本実施形態にかかる風力発電用風車 1では、一基の複列テーパーころ 軸受 16によって主軸 11を支持して 、るので、主軸 11の支持構造がコンパクトになる また、このように主軸 11に加わるラジアル荷重、スラスト荷重、及び曲げ荷重は、複 列テーパーころ軸受 16によって受けられるので、増速機 12及び増速機支持体に要 求される強度が小さくて済む。
そして、このように増速機 12に要求される強度が小さくて済むので、増速機 12とし て、従来の風力発電用風車に用いていたものよりも小型、軽量のものを用いることが できる。 [0040] また、主軸 11は、軸線方向長さ L1に対して外径 D1が大きい円環状をなしている。 すなわち、主軸 11の長さ L (軸線方向の寸法)が従来の主軸よりも短く設定されて 、 る。
これにより、主軸 11の重量が抑えられ、また風車回転翼 5が風を受けた際に主軸 1 1に加わる曲げモーメントが小さくなるので、主軸 11及び主軸 11の支持構造に要求 される強度が小さくて済む。
そして、このように主軸 11及び主軸 11の支持構造に要求される強度が小さくなるの で、主軸 11及び主軸 11の支持構造をより小型化することができる。
[0041] このように、本実施形態にかかる風力発電用風車 1では、主軸 11の支持構造、増 速機 12、増速機の支持体、といったナセル 3上に設置される部材を小型、軽量にす ることができるので、ナセル 3を小型、軽量にすることができる。また、このようにナセル 3及びナセル 3上に設置される部材を小型、軽量にすることができるので、ナセル 3及 び各部材の搬送、据付が容易となる。また、これら部材を支持する支柱 2に加わる負 担も少なくなり、支柱 2の構造も簡略ィ匕することができる。
[0042] さらに、風力発電用風車 1は、主軸 11と増速機 12とが構造的に分離されている。こ のため、主軸 11と増速機 12とをそれぞれ独立してメンテナンスすることが可能であり 、メンテナンス性が高い。
例えば、増速機 12のメンテナンスを行う場合には、増速機 12を主軸 11と分離して、 主軸 11をナセル 3から取り外すことなぐ増速機 12のみをメンテナンスすることができ る。また、主軸 11のメンテナンスを行う場合には、主軸 11を増速機 12と分離して、主 軸 11のみをメンテナンスすることができる。
[0043] また、主軸 11と増速機 12の入力軸 12aと力 カップリング 17を介して接続されてい るので、主軸 11と入力軸 12aとのァライメント調整等の熟練を要する調整作業が不要 となり、組み立てやメンテナンスが容易となる。
そして、カップリング 17によっても、主軸 11から増速機 12へのラジアル荷重、スラス ト荷重、及び曲げ荷重の伝達が防止されるので、増速機 12及び増速機支持体に要 求される強度がさらに小さくて済む。
さらに、本実施の形態では、主軸 11と増速機 12とは、ギアカップリングであるカップ リング 17を介して接続されている。そして、増速機 12を主軸 11から離間する向きに 引き出すことで、カップリング 17を分離させて、主軸 11と増速機 12とを容易に分離す ることが可能である。このように、本実施形態に力かる風力発電用風車 1では、主軸 1 1と増速機 12とが容易に分離可能であるので、メンテナンス性が高い。
[0044] ここで、本実施形態では、カップリングとして、ギアカップリングを用いた例を示した 力 これに限られることなぐディスクカップリング、ブッシュによる接続構造、ピンによ る接続構造の他、任意のカップリングを用いることができる。
[0045] [第二実施形態]
次に、本発明の第二実施形態について、図 4を用いて説明する。
本実施の形態に力かる風力発電用風車 31は、図 4に示すように、第一実施形態に 示した風力発電用風車 1にお 、て、一部構成を変更したものである。
以下、風力発電用風車 31において、風力発電用風車 1と同一または同様の構成に ついては同じ符号を用いて示し、すでに説明した構成については、詳細な説明を省 略する。
[0046] 本実施形態にかかる風力発電用風車 31は、風力発電用風車 1において、主軸の 形状、主軸の支持構造、及び増速機の構成を変更したことを主たる特徴とするもので める。
風力発電用風車 31では、ローターヘッド 4が接続される主軸として、短軸の主軸 32 、具体的には、軸線方向長さ L2に対して外径 D2が大きい略円環状の主軸 32を用 Vヽて 、る(略円盤状であってもよ 、)。
なお、ローターヘッド 4と主軸 32とは、例えばボルト止め等の任意の接続構造によ つて接続される。
[0047] 主軸 32は、その外周を複列テーパー軸受 16の内輪 16bに受けられており、複列テ 一パー軸受 16を介して、ナセル台板 6に支持されている。
また、主軸 32の径方向内側には、カップリング 33を介して増速機 34の入力軸 34a が接続されている。入力軸 34aは、主軸 32に対して、同軸かつ主軸 32に対する軸線 周りの相対回転を規制して接続されている。
[0048] カップリング 33としては、例えば、主軸 32の内周面に設けられる内歯車と、入力軸 34aの外周面に設けられて内歯車と嚙み合う外歯車とからなる、ギアカップリングが 用いられる。ここで、カップリング 33は、ギアカップリングに限定されるものではなぐ ディスクカップリング、ブッシュによる接続構造、ピンによる接続構造の他、任意のカツ プリングを用いることができる。
[0049] 増速機 34は、主軸 32から入力軸 34aに入力された回転を、適切な回転速度に増 速して出力軸 34bに出力するものであって、入力軸端及び出力軸端以外の部分は、 ケース 34c内に収容されている。
入力軸 34aと出力軸 34bとの間には、遊星歯車装置を用いた遊星段 36と、遊星段 36と直列に接続された平歯車を用いた平行段 37とが設置されており、各段で増速を 行うようになっている。本実施形態では、増速機 34は、遊星段 36を一段、平行段 37 を二段有しており、入力軸 34aから入力された回転を、三段階の増速で適切な回転 速度まで増速するようになって 、る。
[0050] 遊星段 36は、入力軸 34aと平行段 37との間に設けられるものであって、いわゆるプ ラネタリ方式のものである。具体的には、平行段 37の入力軸 37aに設けられる太陽 歯車 41と、太陽歯車 41と同軸かつ軸線方向の位置を同一にして設けられるリング状 の内歯車 42と、太陽歯車 41と内歯車 42との間に設けられて、これらと嚙み合う一対 の遊星歯車 43, 44とを有している。
[0051] 内歯車 42は、図示せぬステ一等によってケース 34cに固定的に設けられていて、 ケース 34cに対する軸線周りの相対回転を規制されている。
一対の遊星歯車 43, 44は、太陽歯車 42を挟んで反対側に設けられており、各遊 星歯車 43, 44の支持軸 43a, 44aiま、それぞれ人力軸 34a【こ支持されて!ヽる。 入力軸 34aは、主軸 32と同軸にして設けられるものであって、主軸 32の径方向内 側に挿入される円盤部 46 (円環部であってもよい)と、円盤部 46から遊星歯車 43, 4 4側に突出して設けられて、遊星歯車 43, 44の支持軸 43a, 44aを、軸線周りの回転 を許容しつつ支持する軸受部 47とを有して ヽる。
[0052] このように構成される風力発電用風車 31では、主軸 32が風力によって軸線周りに 回駆動されると、カップリング 33によって主軸 32と接続される増速機 34の入力軸 34 aも、主軸 32と一体となって軸線周りに回転される。 すると、入力軸 34aの軸受部 47に保持される遊星歯車 43, 44力 入力軸 34aの軸 線周りに回転する(公転する)。
遊星歯車 43, 44は、固定的に設けられる内歯車 42と嚙み合っており、入力軸 34a の軸線周りに回転駆動されることで、それぞれ支持軸 43a, 44a周りに回転する(自 転する)。
このように遊星歯車 43, 44がそれぞれ自転することで、遊星歯車 43, 44に嚙み合 う太陽歯車 41が、平行段 37の入力軸 37aとともに軸線周りに回転駆動される。
このようにして、遊星段 36は、主軸 32の回転を一段増速して平行段 37に伝達する 。平行段 37は、入力軸 37aに入力された回転を、さらに二段増速して、出力軸 34b に出力する。そして、出力軸 34bの回転は、発電機 13に入力されて、発電機 13によ る発電に供される。
[0053] このように構成される風力発電用風車 31において、増速機 34とは構成が異なる他 の増速機を採用してもよい。
以下に、本実施形態に力かる風力発電用風車の増速機の他の構成例について、 図 5から図 7を用いて説明する。
図 5に示す増速機 51(第一例)は、図 4に示す増速機 34において、遊星段 36の代 わりに、いわゆるスター方式の遊星段 52を用いたものである。具体的には、遊星段 5 2ίま、遊星段 36【こお!ヽて、遊星歯車 43, 44の支持軸 43a, 44aを人力軸 34a【こ支持 させる代わりに、ケース 34c (図 5では図示せず)に接続されるステー 53によって支持 した構成とされている。
ここで、支持軸 43a, 44aは、太陽歯車 41回りの回転 (公転)を規制して支持されて おり、遊星歯車 43, 44は、それぞれ自転可能にして支持されている。
[0054] また、遊星段 52では、入力軸 34aと内歯車 42とを設ける代わりに、入力軸 51aを用 いている。入力軸 51aは、主軸 32の径方向内側に同軸にして挿入される円柱部 56 ( 円筒部であってもよい)と、円柱部 56の太陽歯車 41側に設けられて遊星歯車 43, 4 4と ί歯み合う内歯車 57とを有して!/ヽる。
ここで、円柱部 56もまた、主軸 32に対して、カップリング 33を介して接続されている [0055] このように構成される増速機 51では、主軸 32が風力によって軸線周りに回転駆動 されると、カップリング 33によって主軸 32と接続される増速機 51の入力軸 51aも、主 軸 32と一体となって軸線周りに回転する。
すると、入力軸 51aの内歯車 57に嚙み合う遊星歯車 43, 44が、それぞれ自転する このように遊星歯車 43, 44がそれぞれ自転することで、遊星歯車 43, 44に嚙み合 う太陽歯車 41が、平行段 37の入力軸 37aとともに軸線周りに回転駆動される。
このようにして、遊星段 52では、主軸 32の回転を一段増速して平行段 37に伝達す る。
[0056] 図 6に示す増速機 61(第二例)は、図 4に示す増速機 34において、遊星段 36の代 わりに、いわゆる複合遊星方式の遊星段 62を用いたものである。具体的には、遊星 段 62では、遊星段 36において内歯車 42と嚙み合っていた太陽歯車 41を、内歯車 4 2よりも平行段 37側にずらして設けている。そして、遊星歯車 43, 44の代わりに、太 陽歯車 41に嚙み合う第一遊星歯車 63, 64と、これら第一遊星歯車 63, 64の入力軸 34a側に配置されてそれぞれ内歯車 42と嚙み合う第二遊星歯車 66, 67とが設けら れている。
第一遊星歯車 63と第二遊星歯車 66とは、入力軸 34aに支持される支持軸 68によ つて同軸にしてかつ軸線周りの相対回転を規制して支持されている。同様に、第一 遊星歯車 64と第二遊星歯車 67とは、入力軸 34aに支持される支持軸 69によって同 軸にしてかつ軸線周りの相対回転を規制して支持されている。
ここで、第一遊星歯車 63と第二遊星歯車 66とは、支持軸 68とともに軸線周りに回 転可能とされている。同様に、第一遊星歯車 64と第二遊星歯車 67とは、支持軸 69と ともに軸線周りに回転可能とされて 、る。
[0057] この増速機 61では、入力軸 34aが回転すると、入力軸 34aに保持される第二遊星 歯車 66, 67が公転する。第二遊星歯車 66, 67は、内歯車 42に嚙み合っているので 、このように公転することで、支持軸 68, 69とともに自転する。
このように第二遊星歯車 66, 67が自転すると、これら第二遊星歯車 66, 67と支持 軸 68, 69を介して接続される第一遊星歯車 63, 64も自転することとなる。これにより 、これら第一遊星歯車 63, 64に嚙み合う太陽歯車 41が回転駆動され、後段の平行 段 37に回転が入力される。
[0058] この増速機 61では、太陽歯車 41及び第一遊星歯車 63, 64が、内歯車 42よりも平 行段 37側に位置しているので、これらの歯車の組の寸法を、内歯車 42の内径以内 に収める必要がなくなる。
すなわち、この増速機 61では、第一遊星歯車 63, 64の径を、第二遊星歯車 66, 6 7よりも大径とすることができ、これら第一、第二遊星歯車の間で、一段の増速を行う ことができる。
これにより、この増速機 61では、図 4に示す増速機 34に比べて、より増速比を高め ることがでさる。
[0059] 図 7に示す増速機 71(第三例)は、図 5に示す増速機 51において、遊星段 52の代 わりに、いわゆる複合遊星方式の遊星段 72を用いたものである。具体的には、遊星 段 72では、遊星段 52において内歯車 42と嚙み合っていた太陽歯車 41を、内歯車 4 2よりも平行段 37側にずらして設けている。そして、遊星歯車 43, 44の代わりに、太 陽歯車 41に嚙み合う第一遊星歯車 73, 74と、これら第一遊星歯車 73, 74の入力軸 34a側に配置されてそれぞれ内歯車 42と嚙み合う第二遊星歯車 76, 77とが設けら れている。
第一遊星歯車 73と第二遊星歯車 76とは、ステー 80を介して図示せぬケースに支 持される支持軸 78に設けられており、これら第一遊星歯車 73と第二遊星歯車 76とは 、支持軸 78によって同軸にしてかつ軸線周りの相対回転を規制して支持されている 。同様に、第一遊星歯車 74と第二遊星歯車 77とは、ステー 80を介してケースに支持 される支持軸 79に設けられており、これら第一遊星歯車 74と第二遊星歯車 77とは、 支持軸 79によって同軸にしてかつ軸線周りの相対回転を規制して支持されている。 ここで、第一遊星歯車 73と第二遊星歯車 76とは、支持軸 78とともに軸線周りに回 転可能とされている。同様に、第一遊星歯車 74と第二遊星歯車 77とは、支持軸 79と ともに軸線周りに回転可能とされて 、る。
[0060] この増速機 71では、入力軸 51aが回転すると、入力軸 51aの内歯車 57に嚙み合う 第二遊星歯車 76, 77が、それぞれ自転する。 このように第二遊星歯車 76, 77が自転すると、これらと支持軸 78, 79を介して接続 される第一遊星歯車 73, 74も自転することとなる。これにより、第一遊星歯車 73, 74 に嚙み合う太陽歯車 41が回転駆動され、後段の平行段 37に回転が入力される。
[0061] この増速機 71においても、太陽歯車 41及び第一遊星歯車 73, 74力 内歯車 42よ りも平行段 37側に位置しているので、これらの歯車の組の寸法を、内歯車 42の内径 以内に収める必要がなくなる。
このため、第一遊星歯車 73, 74の径を、第二遊星歯車 76, 77よりも大径とすること ができ、これら第一、第二遊星歯車の間で、一段の増速を行うことができる。
これにより、この増速機 71では、図 5に示す増速機 51に比べて、より増速比を高め ることがでさる。
[0062] なお、上記の増速機 51、 61, 71の構成は、第一実施形態で示した風力発電用風 車 1の増速機 12に適用してもよい。
[0063] ここで、上記各実施の形態において、発電機 13として、多極の発電機を用いてもよ い。
多極の発電機は、発電機 13の発電機軸の回転速度が低くても、十分な電力を発 生させることができるものである。すなわち、増速機による増速比が小さくても済むの で、増速機として一段のみの増速を行う増速機を用いることができる。
例えば、図 8に示すように、増速機として前記遊星段 36のみ力もなる増速機 81を用 いたり、図 9に示すように、増速機として前記遊星段 52のみ力もなる増速機 82を用い ることがでさる。
なお、発電機は、極数が多ければ安定して発電可能な発電機軸の回転速度の下 限を下げることができるので、 8極以上のものを用いることが好ましい。
図 8と図 9は増速機キャリア及び発電機の固定子がナセル台板 6に直接組みつけら れた模式図となっている力 増速機 81, 82のケーシングゃ発電機 13のケーシングが ナセル台板 6に組み込まれることもできる。
[0064] このように一段のみの増速を行う増速機は、従来の多段の増速を行う増速機に比 ベて、非常に小型、軽量で済む。また、このような増速機は、歯車の使用数が少ない ので、信頼性が高ぐメンテナンスの手間が大幅に省ける。また、増速機が発する騒
Figure imgf000021_0001
、ので、周囲の環境に悪影響を与えにく!、。
[0065] ここで、同期型の発電機は、発電した電力をすベて電力変換装置に入力して適正 な出力に調整する必要があるため、ナセル 3上に比較的大型の電力変換装置を設 置する必要がある。これに対して、誘導型の発電機 (例えば doubly-fed式、または口 一ターカレントコントロール式)は、二次側の出力のみをインバーターに入力して変換 するので、ナセル 3上には、小型のインバーターを設けるだけでよい。このため、誘導 型の発電機を用いることで、同期型の発電機を用いた場合に比べて、ナセル 3上の スペースを有効利用することができる。
[0066] また、上記各実施の形態において、主軸とローターヘッドとを別部材とした例を示し た力 これに限られることなぐ例えば、図 10に示すように、主軸 11とローターヘッド 4 とを一体ィ匕した結合体 86としてもよい。このような結合体 86は、例えば铸造によって 製造される。
この構成では、ローターヘッドと主軸との糸且付作業が不要になるため、風力発電用 風車の組み立て工数を低減することができる。また、主軸に取り付けのためのフラン ジを設ける必要がなくなるので、主軸とローターとを別部材とした場合に比べて、軽量 ィ匕を図ることができる。
[0067] また、上記各実施の形態において、主軸と増速機の入力軸との接続構造として、ギ ァカップリングを用いた例を示した力 これに限られることなぐ例えば図 11に示す接 続構造を用いてもよい。
図 11に示す接続構造は、第一の実施形態において、内筒 18に設けられていた第 二外歯車 23及び入力軸 12に設けられていた第二内歯車 24をなくし、その代わり〖こ 、第二外歯車 23が設けられていた領域の外周面に、入力軸 12a側に向力うにつれて 外径が縮径される断面視クサビ形状をなすテーパー状リング 87をボルトまたは油圧 にて軸方向に挿入したものである。
この接続構造では、内筒 18の外周面に設けられるテーパー状リング 87が、入力軸 12aの内面に強力に挿入され、面圧によってテーパー状リング 87と入力軸 12aとの 間に大きな摩擦力が生じる。そして、この摩擦力によって、主軸 11から内筒 18に伝 達された回転力 テーパー状リング 87を介して入力軸 12aに伝達される。 [0068] [第三実施形態]
次に、本発明の第三実施形態について、図 12を用いて説明する。
本実施の形態に力かる風力発電用風車 91は、図 12に示すように、第一実施形態 に示した風力発電用風車 1の一部を変更したものである。
以下、風力発電用風車 91において、風力発電用風車 1と同一または同様の構成に ついては同じ符号を用いて示し、すでに説明した構成については、詳細な説明を省 略する。
[0069] 本実施形態にかかる風力発電用風車 91は、前述した風力発電用風車 1において、 主軸の支持構造を変更したことを主たる特徴とするものである。
具体的には、風力発電用風車 91では、主軸 11を支持する支持構造として、複列テ 一パーころ軸受 16の代わりに、ラジアル荷重を受けるころの列とスラスト荷重を受ける 一対のころの列とを有する一基の三列ころ軸受 92を介してナセル 3に支持する構造 を採用している。
[0070] 三列ころ軸受 92は、主軸 11の軸線方向の一端と壁部 W1との間に、主軸 11と同一 軸線を有して設けられており、主軸 11をその軸線周りの回転を可能にして支持して いる。すなわち、主軸 11は、三列ころ軸受 92を介して壁部 W1に支持されている。
[0071] 三列ころ軸受 92は、壁部 W1に対してボルト止め等によって接続される外輪 92aと 、外輪 92aの径方向内側に同一軸線を有して設けられて主軸 11に対してボルト止め 等によって固定される内輪 92bとを有している。
これら外輪 92a、内輪 92bとの間には、周方向に沿って複数の転動体が設けられて いる。転動体としては、円筒ころ Rcが用いられている。以下、三列ころ軸受 92におい て、軸線方向の同一位置で周方向に配置される円筒ころを、まとめてころの列と呼ぶ 。このころの列は、軸線方向に沿って三列配置されている。
[0072] さらに具体的な構成について説明すると、外輪 92aの内周面には、径方向に延び る断面視矩形をなす第一の溝 93が、全周にわたって形成されている。また、第一の 溝 93の底面には、第一の溝 93よりも幅の狭い、径方向に延びる断面視矩形をなす 第二の溝 94が、全周にわたって形成されている。
第一の溝 93の側壁 93aは、外輪 92aの軸線と同軸でかつ軸線に略直交する平面 とされている。また、第二の溝 94の底面 94aは、外輪 92aの軸線と同軸の円筒面とさ れている。
[0073] また、内輪 92bの外周面において、第一の溝 93aに対向する領域には、周方向に 延びる断面視矩形の突状部 95が、全周にわたって形成されている。この突状部 95 は、外輪 92aに形成される第一の溝 93a内に位置している。
この突状部 95の側壁 95aは、軸線に略直交する平面とされており、外周面 95bは、 軸線と同軸の円筒面とされている。
すなわち、第一の溝 93の側壁 93aと突状部 95の側壁 95aとは、互いに平行な平面 とされており、第二の溝 94の底面 94aと突状部 95の外周面 95bとは、互いに平行な 円筒面とされている。
[0074] これら側壁 93aと側壁 95aとの間には、複数の円筒ころ Rcが、軸線を三列ころ軸受 92の軸線を中心とする放射状にして設けられている。これら円筒ころ Rcの形成する ころの列を、第一のころの列 R1とする。
また、底面 94aと外周面 95bとの間には、複数の円筒ころ Rc力 軸線を三列ころ軸 受 92の軸線と略平行にして設けられている。これら円筒ころ Rcの列を、第二のころの 列 R2とする。
[0075] この構成を採用した風力発電用風車 91においては、主軸 11にカ卩わった荷重は、 主軸 11を支持する三列ころ軸受 92を介して壁部 W1に受けられ、増速機 12の入力 軸 12aには、回転トルク以外の荷重がほとんど伝達されな 、ようになって!/、る。
[0076] 以下、三列ころ軸受 92の作用について具体的に説明する。
主軸 11が取り付けられる内輪 92bの突状部 95軸線方向における両側は、第一のこ ろの列 R1を介して外輪 92aに受けられている。このため、主軸 11にスラスト荷重が加 わると、外輪 92aに対する内輪 92bの相対回転が許容された状態のまま、外輪 92a によってスラスト荷重が受けられる。
また、この第一のころの列 R1は突状部 95の両側にそれぞれ設けられていて、突状 部 95は、軸線方向の両側力も外輪 92aに支持されているので、主軸 11に曲げ荷重 が加わっても、外輪 92aに対する内輪 92bの相対回転を許容しながら、曲げ荷重が 外輪 92aによって受けられる。 [0077] また、内輪 92bに設けられる突状部 95の外周面 95bと外輪 92aに設けられる第二 の溝 94の底面 94aとの間には、第二のころの列 R2が設けられている。
内輪 92bは、この第二のころの列 R2を介して外周から外輪 92aに受けられて!/、る。 このため、主軸 11にラジアル荷重が加わると、外輪 92aに対する内輪 92bの相対回 転が許容された状態のまま、外輪 92aによってラジアル荷重が受けられる。
[0078] 外輪 92aは、ナセル 3の壁部 W1に取り付けられており、主軸 11から内輪 92bに伝 えられたスラスト荷重、曲げ荷重、及びラジアル荷重は、三列ころ軸受 92を介して壁 部 W1によって受けられる。
[0079] このように、本実施形態にかかる風力発電用風車 91では、一基の三列ころ軸受 92 によって主軸 11を支持して 、るので、主軸 11の支持構造がコンパクトになる。
また、このように主軸 11に加わるラジアル荷重、スラスト荷重、及び曲げ荷重は、三 列ころ軸受 92によって受けられるので、増速機 12及び増速機支持体に要求される 強度が小さくて済む。
そして、このように増速機 12に要求される強度が小さくて済むので、増速機 12とし て、従来の風力発電用風車に用いていたものよりも小型、軽量のものを用いることが できる。
[0080] なお、本実施の形態に力かる風力発電用風車 91について、第二実施形態にかか る風力発電用風車の構成、及び第一、第二実施形態にかかる風力発電用風車の変 形例の構成を適用してもよ 、。
図面の簡単な説明
[0081] [図 1]本発明の第一実施形態に力かる風力発電用風車を示す側断面図である。
[図 2]本発明の第一実施形態にカゝかる風力発電用風車のナセル内の構成を示す側 断面図である。
[図 3]図 2の一部拡大図である。
[図 4]本発明の第二実施形態に力かる風力発電用風車の構成を示す側断面図であ る。
[図 5]第二の実施の形態に力かる風力発電用風車の他の構成例を示す側断面図で める。 [図 6]第二の実施の形態に力かる風力発電用風車の他の構成例を示す側断面図で ある。
[図 7]第二の実施の形態に力かる風力発電用風車の他の構成例を示す側断面図で ある。
[図 8]本発明にかかる風力発電用風車の一変形例を示す側断面図である。
[図 9]本発明にかかる風力発電用風車の一変形例を示す側断面図である。
[図 10]本発明にかかる風力発電用風車の一変形例を示す側断面図である。
[図 11]本発明にかかる風力発電用風車の一変形例を示す側断面図である。
[図 12]本発明の第三実施形態に力かる風力発電用風車を示す側断面図である。

Claims

請求の範囲
[1] 支柱上に設置されたナセルに、風車回転翼が取り付けられる主軸と、該主軸の回 転を増速して出力する増速機と、該増速機の出力によって駆動される発電機とが設 けられた風力発電用風車であって、
前記主軸は、前記増速機の入力軸端に接続されており、一基の複列テーパーころ 軸受を介して前記ナセルに支持されていることを特徴とする風力発電用風車。
[2] 支柱上に設置されたナセルに、風車回転翼が取り付けられる主軸と、該主軸の回 転を増速して出力する増速機と、該増速機の出力によって駆動される発電機とが設 けられた風力発電用風車であって、
前記主軸は、前記増速機の入力軸端に接続されており、ラジアル荷重を受けるころ の列とスラスト荷重を受ける一対のころの列とを有する一基の三列ころ軸受を介して 前記ナセルに支持されていることを特徴とする風力発電用風車。
[3] 前記主軸は、軸線方向長さに対して外径が大きい円環状または円盤状をなしてい ることを特徴とする請求項 1または 2に記載の風力発電用風車。
[4] 前記主軸と前記増速機の前記入力軸とは、カップリングを介して接続されていること を特徴とする請求項 1または 2に記載の風力発電用風車。
[5] 前記主軸と前記増速機の前記入力軸とは、カップリングを介して接続されていること を特徴とする請求項 3に記載の風力発電用風車。
PCT/JP2004/014157 2003-09-30 2004-09-28 風力発電用風車 WO2005033505A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES04788224T ES2378876T3 (es) 2003-09-30 2004-09-28 Turbina eólica de generación de energía con un cojinete de rodillos troncocónicos de doble fila
DK04788224.6T DK1677005T3 (da) 2003-09-30 2004-09-28 Energigenererende vindmølle med et dobbeltradet, konisk rulleleje
CA002536058A CA2536058C (en) 2003-09-30 2004-09-28 Power generating wind turbine
CN2004800256436A CN1846057B (zh) 2003-09-30 2004-09-28 风力发电用风车
EP04788224A EP1677005B1 (en) 2003-09-30 2004-09-28 Power generating wind turbine with a double-row tapered roller bearing
AT04788224T ATE538308T1 (de) 2003-09-30 2004-09-28 Energie erzeugende windkraftanlage mit einem konischen doppel-walzenlager
AU2004278612A AU2004278612B2 (en) 2003-09-30 2004-09-28 Power generating wind turbine
US10/568,627 US7282808B2 (en) 2003-09-30 2004-09-28 Power generating wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-339304 2003-09-30
JP2003339304A JP4031747B2 (ja) 2003-09-30 2003-09-30 風力発電用風車

Publications (1)

Publication Number Publication Date
WO2005033505A1 true WO2005033505A1 (ja) 2005-04-14

Family

ID=34419152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014157 WO2005033505A1 (ja) 2003-09-30 2004-09-28 風力発電用風車

Country Status (12)

Country Link
US (1) US7282808B2 (ja)
EP (1) EP1677005B1 (ja)
JP (1) JP4031747B2 (ja)
KR (1) KR100823772B1 (ja)
CN (1) CN1846057B (ja)
AT (1) ATE538308T1 (ja)
AU (1) AU2004278612B2 (ja)
CA (1) CA2536058C (ja)
DK (1) DK1677005T3 (ja)
ES (1) ES2378876T3 (ja)
TW (1) TW200513591A (ja)
WO (1) WO2005033505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012408A1 (de) 2007-03-15 2008-09-18 Aerodyn Engineering Gmbh Windenergieanlagen mit lastübertragenden Bauteilen

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391128B2 (en) * 2004-12-30 2008-06-24 Rozlev Corp., Llc Wind generator system using attractive magnetic forces to reduce the load on the bearings
US20080118344A1 (en) * 2005-01-25 2008-05-22 Naoki Matsumori Helical Gear Supporting Structure, Speed Increaser for Wind Power Generator, and Vertical Shaft Supporting Structure
DE102005063678B3 (de) 2005-06-06 2020-01-23 Imo Momentenlager Gmbh Verfahren zum Betrieb einer Windkraftanlage mit einer Lagereinheit für ein langgestrecktes Rotorblatt
DE102005026141B4 (de) 2005-06-06 2019-07-25 Imo Momentenlager Gmbh Windkraftanlage mit einer Lagereinheit für ein langgestrecktes Rotorblatt
JP4699827B2 (ja) * 2005-07-21 2011-06-15 Ntn株式会社 円錐ころ軸受および風力発電機の主軸支持構造
KR100752510B1 (ko) * 2006-04-14 2007-08-29 유니슨 주식회사 단일 메인베어링을 갖는 풍력 발전기
DE102006037890B4 (de) * 2006-08-11 2010-04-08 Ab Skf Lagerung einer Welle
DK2511544T4 (da) 2006-09-08 2021-11-15 Ntn Toyo Bearing Co Ltd Holdedel til et rulleleje, som kan bære en hovedaksel i et vindkraftværk
DE102006057055B3 (de) * 2006-12-04 2008-06-19 Lohmann & Stolterfoht Gmbh Leistungsverzweigtes Windkraftgetriebe
US7608939B2 (en) * 2007-01-04 2009-10-27 General Electric Company Methods and apparatus for assembling and operating monocoque rotary machines
US7857599B2 (en) * 2007-01-10 2010-12-28 General Electric Company Method and apparatus for forming wind turbine machines
CN100439702C (zh) * 2007-01-26 2008-12-03 沈阳工业大学 双馈式变速恒频风力发电机组
US7675211B2 (en) * 2007-03-06 2010-03-09 General Electric Company Method of assembling a rotor shaft assembly
WO2009025765A2 (en) * 2007-08-17 2009-02-26 Alex Koleoglou Bearing tooth gears for wind turbine applications
JPWO2009054152A1 (ja) * 2007-10-23 2011-03-03 三菱重工業株式会社 風力発電装置
EP2284395A4 (en) * 2008-06-10 2013-11-20 Mitsubishi Heavy Ind Ltd WIND-DRIVEN GENERATOR
US8298115B2 (en) * 2008-07-10 2012-10-30 General Electric Company Wind turbine transmission assembly
EE200800049A (et) * 2008-07-24 2010-04-15 S?najalg Andres Tuulegeneraator
JP5152858B2 (ja) 2008-08-22 2013-02-27 シャープ株式会社 太陽電池モジュールおよびその製造方法
DK2166223T3 (da) * 2008-09-17 2012-01-16 Siemens Ag Fremgangsmåde til opretning af en komponent i en vindretning og sensor til bestemmelse af fejlagtig opretning af komponenten i forhold til en vindretning
US7946819B2 (en) * 2008-11-26 2011-05-24 General Electric Company Wind turbine drive shaft connection arrangement
DE102008063875A1 (de) * 2008-12-19 2010-07-01 Robert Bosch Gmbh Generatoranordnung für eine Windenergieanlage
DE102009008340A1 (de) * 2008-12-19 2010-06-24 Robert Bosch Gmbh Strömungskraftanlage
KR101074694B1 (ko) * 2008-12-31 2011-10-18 두산중공업 주식회사 회전 하우징을 갖는 풍력발전기용 기어박스
JP5148517B2 (ja) * 2009-01-07 2013-02-20 三菱重工業株式会社 風力発電装置
KR101092240B1 (ko) * 2009-05-27 2011-12-12 김헌규 풍력발전기
KR20090071526A (ko) * 2009-06-04 2009-07-01 유니슨 주식회사 타워 상부 고정형 발전기를 갖는 풍력발전기
KR101123345B1 (ko) * 2009-06-04 2012-03-23 유니슨 주식회사 전방 배치형 발전기를 갖는 풍력발전기
WO2011027427A1 (ja) * 2009-09-02 2011-03-10 三菱重工業株式会社 風力発電装置
CN101666605B (zh) * 2009-09-28 2011-12-28 洛阳Lyc轴承有限公司 风电用双排同径四点接触球转盘轴承沟心距检测仪
US20110121576A1 (en) * 2009-11-16 2011-05-26 Bayko John W Multistage electric power generating and ventilating device
WO2011070984A1 (ja) * 2009-12-07 2011-06-16 三菱重工業株式会社 機械装置のシール構造、及び、風力発電装置
TWI404860B (zh) * 2010-01-29 2013-08-11 Mitsubishi Heavy Ind Ltd 風力發電裝置及其保養方法
EP2372151B1 (en) 2010-03-29 2016-01-13 ALSTOM Renewable Technologies Wind turbine
DK2561601T3 (da) * 2010-04-19 2021-01-18 Synervisie B V Højintegreret energikonversionssystem til vind-, undervands- eller hydroturbiner
US8033951B2 (en) * 2010-04-30 2011-10-11 General Electric Company Gearbox for a wind turbine
KR101247318B1 (ko) * 2010-05-07 2013-03-25 신중호 직선왕복 트래버스 유닛 및 이를 구비한 풍력발전장치
DE202010018260U1 (de) 2010-09-27 2015-02-25 Siemens Aktiengesellschaft Dreireihiges Rollerlager insbesondere für eine Windturbine
DK2434150T4 (en) 2010-09-27 2016-12-05 Siemens Ag Three row roller bearing, especially for a wind turbine
DE102010052117A1 (de) 2010-11-17 2012-05-24 Imo Holding Gmbh Baugruppe als Lageranordnung zur drehenden Lagerung von Maschinen- und Anlagenteilen
US20110143880A1 (en) * 2010-12-01 2011-06-16 General Electric Company Drivetrain for generator in wind turbine
DE102010063687A1 (de) 2010-12-21 2012-06-21 Aktiebolaget Skf Windkraftanlage
DE102011008958A1 (de) * 2011-01-19 2012-07-19 Imo Holding Gmbh Rotorlager für eine Windkraftanlage
FR2973087B1 (fr) * 2011-03-25 2014-04-18 Defontaine Palier a trois rangees et plus de corps roulants
EP2530300B1 (en) * 2011-06-01 2017-11-22 ZF Wind Power Antwerpen NV Nacelle main frame structure and drive train assembly for a wind turbine
CN102269135B (zh) * 2011-06-30 2013-01-09 国电联合动力技术有限公司 一种兆瓦级风电增速箱自适应支撑装置
CN103703246A (zh) * 2011-07-15 2014-04-02 Zf风力发电安特卫普股份有限公司 用于风力涡轮机的机舱主框架结构和传动系组件
US20120141200A1 (en) * 2011-09-29 2012-06-07 General Electric Company One-piece coupling for a wind turbine drive shaft
CN102536685A (zh) * 2011-12-27 2012-07-04 国电联合动力技术(连云港)有限公司 一种紧凑型的风力发电机组传动链装置
CN102418673B (zh) * 2011-12-28 2013-06-19 董勋 发电机组安装于陆地的风力发电机系统
WO2013109611A1 (en) * 2012-01-17 2013-07-25 United Technologies Corporation Generator with stator supported on rotor
EP2863076B1 (en) 2012-06-19 2021-02-24 Fuji Electric Co., Ltd. Composite sliding bearing and wind-powered electricity generation device using this bearing
JP5894890B2 (ja) * 2012-09-06 2016-03-30 株式会社日立製作所 風力発電システム、風力発電システムの組み立て方法、または風力発電システムの点検方法
EP2740933B1 (de) 2012-12-06 2015-07-29 Nordex Energy GmbH Windenergieanlage
ES2550964T3 (es) 2012-12-06 2015-11-13 Nordex Energy Gmbh Aerogenerador
EP2740932B1 (de) 2012-12-06 2016-05-11 Nordex Energy GmbH Windenergieanlage
GB201222971D0 (en) * 2012-12-19 2013-01-30 Romax Technology Ltd Flexible driving shaft
EP2896825B1 (en) * 2012-12-19 2018-10-31 Mitsubishi Heavy Industries, Ltd. Renewable energy power generation device
DE102013200347A1 (de) * 2013-01-11 2014-07-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Getriebeeinrichtung
EP2808545B1 (en) * 2013-05-28 2016-06-29 Siemens Aktiengesellschaft Wind turbine flange connection
WO2015099204A1 (ko) * 2013-11-28 2015-07-02 삼원테크 주식회사 수평축 풍력 발전 장치
CN103670952B (zh) * 2013-12-13 2017-05-31 三一集团有限公司 风力发电机传动装置及风力发电机
DE102013226527A1 (de) * 2013-12-18 2015-06-18 Zf Friedrichshafen Ag Kombinierte Wälz- und Gleitlagerung einer Getriebewelle
JP6345093B2 (ja) * 2014-11-28 2018-06-20 株式会社日立製作所 風力発電設備
CN107429671B (zh) * 2015-03-16 2020-04-14 维斯塔斯风力系统有限公司 包括行星齿轮系统的风轮机
EP3141743A1 (en) * 2015-09-09 2017-03-15 Siemens Aktiengesellschaft Wind turbine hub arrangement
DE102015218628A1 (de) 2015-09-28 2017-03-30 Aktiebolaget Skf Lagerungs- und Dichtungsmodul für eine Unterwasserströmungsturbine eines Gezeiten-/Meeres-/Flussströmungskraftwerks
WO2018141523A1 (en) * 2017-02-03 2018-08-09 Siemens Wind Power A/S Wind turbine with a tubular support structure and a bearing assembly
US10385830B2 (en) * 2017-07-14 2019-08-20 General Electric Company Compound main bearing arrangement for a wind turbine
KR102133538B1 (ko) 2018-06-29 2020-07-13 김종필 소형 풍력발전 장치
KR102133522B1 (ko) 2018-06-29 2020-07-13 김종필 소형 풍력발전 장치
US11015576B2 (en) 2018-08-13 2021-05-25 Inventus Holdings, Llc Wind turbine control system including an artificial intelligence ensemble engine
US12031524B2 (en) 2018-08-13 2024-07-09 Inventus Holdings, LLC. Wind turbine control system including an artificial intelligence ensemble engine
CN109268222B (zh) * 2018-09-26 2020-05-26 三一重能有限公司 风力发电机组及其轴承组件
GR20200100357A (el) * 2020-06-23 2022-01-13 Παναγιωτης Βασιλειου Ζαραφωνιτης Μηχανισμος μεταδοσεως ατερμονης περιστροφης μεταξυ ακινητου πλαισιου και περιστρεφομενου φορεα αναξαρτητως της ατερμονης περιστροφης του φορεα
JP7217785B1 (ja) 2021-08-12 2023-02-03 三菱重工業株式会社 風力発電設備における主軸軸受交換方法
CN118499454A (zh) * 2023-05-12 2024-08-16 铨吉成能源技术(重庆)有限公司 一种三排滚柱轴承与齿轮箱集成结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113579A (ja) * 1987-09-29 1989-05-02 Man Technol Gmbh 風力装置の回転羽根用のジヤーナル支承装置
WO2001098655A1 (fr) * 2000-06-19 2001-12-27 Jeumont S.A. Dispositif de production de courant electrique a partir d'energie eolienne
WO2002014690A1 (en) * 2000-08-15 2002-02-21 Hansen Transmissions International Nv Drive assembly for wind turbines
JP2002129217A (ja) * 2000-10-30 2002-05-09 Nippon Steel Corp 炉頂旋回駆動装置の損傷度測定方法および保持器
WO2002057624A1 (de) * 2001-01-19 2002-07-25 Aloys Wobben Windenergieanlage mit einer hohlwelle für rotornabe und generator
JP2003194071A (ja) * 2001-10-10 2003-07-09 Skf Ab 軸 受

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1254409A (en) * 1969-11-28 1971-11-24 Hoesch Ag Improvements in or relating to rotary roller bearings
US4085984A (en) * 1977-06-30 1978-04-25 The Timken Company Double row bearing assembly with tapered roller bearings
US4427897A (en) * 1982-01-18 1984-01-24 John Midyette, III Fixed pitch wind turbine system utilizing aerodynamic stall
US4613763A (en) * 1984-12-24 1986-09-23 Swansen Theodore L Wind driven electric power generating system
DE3942847A1 (de) * 1989-03-23 1991-06-27 Hoesch Ag Mittenfreie rollendrehverbindung
JP3669715B2 (ja) 1993-01-18 2005-07-13 日本精工株式会社 回転支持部
DE59509888D1 (de) 1994-10-07 2002-01-10 Windtec Anlagen Und Consulting Planetengetriebe für windturbine
DE29609794U1 (de) 1996-06-03 1996-08-22 aerodyn GmbH, 24768 Rendsburg Getriebe-Generator-Kombination
US5975762A (en) * 1997-10-14 1999-11-02 The Timken Company Tapered roller bearing with true rolling contacts
DE19916453A1 (de) 1999-04-12 2000-10-19 Flender A F & Co Windkraftanlage
DE19917605B4 (de) * 1999-04-19 2005-10-27 Renk Ag Getriebe für Windgeneratoren
NL1013129C2 (nl) 1999-09-24 2001-03-27 Lagerwey Windturbine B V Windmolen.
GB0002122D0 (en) 2000-01-31 2000-03-22 Hansen Transmissions Int Gear unit
DE10010295A1 (de) * 2000-03-02 2001-09-06 Schaeffler Waelzlager Ohg Radial-Axial-Wälzlager
US6293704B1 (en) * 2000-03-21 2001-09-25 The Timken Company Shaft mounting with enhanced stability
DE10043593B4 (de) * 2000-09-01 2014-01-09 Renk Ag Getriebe für Windgeneratoren
DE10043564A1 (de) 2000-09-01 2002-03-14 Flender A F & Co Planetenträger für ein Planetengetriebe
DE10114609A1 (de) 2001-03-23 2002-09-26 Enron Wind Gmbh Drehmomentübertragungsvorrichtung für eine Windkraftanlage
DK174085B1 (da) 2001-04-02 2002-06-03 Vestas Wind Sys As Vindmølle med planetgear
GB0118997D0 (en) 2001-08-03 2001-09-26 Hansen Transmissions Int Planet carrier assembly for wind turbine assembly
GB0118996D0 (en) 2001-08-03 2001-09-26 Hansen Transmissions Int Drive Assembly
ITBZ20010043A1 (it) * 2001-09-13 2003-03-13 High Technology Invest Bv Generatore elettrico azionato da energia eolica.
GB2381047B (en) 2001-10-05 2005-05-25 Hansen Transmissions Int Modular Wind Turbine Drive Arrangement
US7154193B2 (en) * 2004-09-27 2006-12-26 General Electric Company Electrical machine with double-sided stator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113579A (ja) * 1987-09-29 1989-05-02 Man Technol Gmbh 風力装置の回転羽根用のジヤーナル支承装置
WO2001098655A1 (fr) * 2000-06-19 2001-12-27 Jeumont S.A. Dispositif de production de courant electrique a partir d'energie eolienne
WO2002014690A1 (en) * 2000-08-15 2002-02-21 Hansen Transmissions International Nv Drive assembly for wind turbines
JP2002129217A (ja) * 2000-10-30 2002-05-09 Nippon Steel Corp 炉頂旋回駆動装置の損傷度測定方法および保持器
WO2002057624A1 (de) * 2001-01-19 2002-07-25 Aloys Wobben Windenergieanlage mit einer hohlwelle für rotornabe und generator
JP2003194071A (ja) * 2001-10-10 2003-07-09 Skf Ab 軸 受

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012408A1 (de) 2007-03-15 2008-09-18 Aerodyn Engineering Gmbh Windenergieanlagen mit lastübertragenden Bauteilen
US8405243B2 (en) 2007-03-15 2013-03-26 Aerodyn Engineering Gmbh Wind turbine with load-transmitting components

Also Published As

Publication number Publication date
TW200513591A (en) 2005-04-16
EP1677005B1 (en) 2011-12-21
CN1846057B (zh) 2010-05-12
CA2536058A1 (en) 2005-04-14
TWI296302B (ja) 2008-05-01
US7282808B2 (en) 2007-10-16
AU2004278612A1 (en) 2005-04-14
US20060220389A1 (en) 2006-10-05
EP1677005A4 (en) 2009-03-04
KR20060060046A (ko) 2006-06-02
AU2004278612B2 (en) 2009-02-19
ATE538308T1 (de) 2012-01-15
EP1677005A1 (en) 2006-07-05
CN1846057A (zh) 2006-10-11
JP4031747B2 (ja) 2008-01-09
ES2378876T3 (es) 2012-04-18
DK1677005T3 (da) 2012-02-13
JP2005105917A (ja) 2005-04-21
KR100823772B1 (ko) 2008-04-21
CA2536058C (en) 2009-07-07

Similar Documents

Publication Publication Date Title
WO2005033505A1 (ja) 風力発電用風車
US8961362B2 (en) Modular assembly for an integrated flex pin drive with generator
AU2005246966B2 (en) Wind turbine generator
US8008798B2 (en) Wind turbine drivetrain system
US7621843B2 (en) Apparatus for restraining axial movement of a ring gear in a gearbox for a wind turbine
US8033951B2 (en) Gearbox for a wind turbine
US20100219642A1 (en) Wind turbine with single main bearing
EP2461030A2 (en) Drivetrain for generator in wind turbine
WO2011027427A1 (ja) 風力発電装置
US9028361B2 (en) Modular gear unit for a wind turbine
JP5148346B2 (ja) 風力発電装置
JP5287631B2 (ja) 風力発電装置
US11466669B2 (en) Drive train arrangement
JP2006249982A (ja) 風力発電装置
JP2006144598A (ja) ウインドタービン装置増速装置
JP2003065210A (ja) 風力発電機用変速機
CN115289194A (zh) 传动链、风力发电机组及其发电方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025643.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006220389

Country of ref document: US

Ref document number: 2536058

Country of ref document: CA

Ref document number: 10568627

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004278612

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12006500653

Country of ref document: PH

Ref document number: 1020067006155

Country of ref document: KR

Ref document number: 2004788224

Country of ref document: EP

Ref document number: 1065/CHENP/2006

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2004278612

Country of ref document: AU

Date of ref document: 20040928

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020067006155

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004788224

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10568627

Country of ref document: US