WO2005033475A1 - トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム - Google Patents

トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム Download PDF

Info

Publication number
WO2005033475A1
WO2005033475A1 PCT/JP2003/012571 JP0312571W WO2005033475A1 WO 2005033475 A1 WO2005033475 A1 WO 2005033475A1 JP 0312571 W JP0312571 W JP 0312571W WO 2005033475 A1 WO2005033475 A1 WO 2005033475A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
tunnel
network
current value
Prior art date
Application number
PCT/JP2003/012571
Other languages
English (en)
French (fr)
Inventor
Atsushi Shirasawa
Hikaru Fukuda
Kei Suzuki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2005509304A priority Critical patent/JPWO2005033475A1/ja
Priority to PCT/JP2003/012571 priority patent/WO2005033475A1/ja
Publication of WO2005033475A1 publication Critical patent/WO2005033475A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • E21F17/185Rock-pressure control devices with or without alarm devices; Alarm devices in case of roof subsidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • G01N27/205Investigating the presence of flaws in insulating materials

Definitions

  • the present invention relates to a tunnel fallboard monitoring system, a tunnel fallboard monitoring method, and a civil structure damage monitoring system for monitoring the occurrence of a crack and estimating the location where the crack has occurred.
  • the conductive coating layer is provided with a conductive detection pattern at predetermined intervals so that the presence or absence of conductivity can be checked at regular intervals. Since the conductivity detection pattern is set so that the presence or absence of conductivity between the two patterns can be inspected, it is considered to be efficient in consideration of the number and the inspection range of cracks. Is difficult.
  • each conductive detection pattern is connected to the central monitoring room directly or via a relay point. In the centralized monitoring room, the presence or absence of conductivity between each conductivity detection pattern is detected and observed.
  • each conductive detection pattern and the centralized viewing room or the relay point are connected by wires such as wires or another conductive coating layer, the connection increases as the distance of the tunnel increases. It is considered that the burden of work increases.
  • the present invention provides a tunnel fall monitoring means that can be easily installed inside a tunnel and that can efficiently inspect cracks over a wide range.
  • the task is to provide damage monitoring means. Disclosure of the invention
  • the plurality of conductive lines are, for example, installed in a vertical and horizontal lattice on the inner wall surface of the tunnel.
  • the sensor network terminals installed for each of the conductors apply a predetermined voltage to the conductor ⁇ , thereby measuring the current condition, which is the magnitude of the current flowing through the conductor, and performing the measurement.
  • a current value or a calculated value obtained by performing a predetermined calculation on the current value is wirelessly transmitted to the base station terminal as sensor data.
  • the base station terminal transmits the sensor data received from the sensor network terminal to road management facilities via a network.
  • the remote monitoring device accumulates sensor data received from the base station terminal.
  • a crack is formed at the intersection of the conductive line where the sensor data is measured. It is estimated as the place where it occurred. Then, for example, the estimated crack location is displayed on a display screen or the like.
  • the administrator of the tunnel can know the estimated occurrence of cracks and the locations of cracks by looking at the display screen of the remote monitoring device. Also, when actually inspecting the inner wall surface of the tunnel, it is possible to focus on the estimated cracks by carrying a print of the display data. The same applies to civil engineering structures.
  • first control means “second control means”, and “third control means” in the claims are the best for implementing the invention. This is equivalent to “LSI” in the f state. Further, “sensor data” and “sensor data storage means” in the claims correspond to “current value data” and “current value data storage means” in the best mode for carrying out the invention.
  • FIG. 1 is a diagram showing an image of a tunnel according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a network configuration of the tunnel fall monitoring system according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a conductive coating pattern according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a conductive coating pattern according to the embodiment of the present invention.
  • FIG. 5 (a) is a diagram showing a block configuration of a sensor network terminal according to an embodiment of the present invention
  • FIG. 5 (b) is a diagram showing an image of the sensor network terminal.
  • FIG. 6 (a) is a diagram showing a block configuration of the root base station terminal according to the embodiment of the present invention, and (b) is a diagram showing a ⁇ I image of the root base station terminal.
  • FIG. 7 is a diagram showing a functional block configuration of the remote monitoring device according to the embodiment of the present invention.
  • FIG. 8 (a) is a perspective view of an O-shaped connection sensor net terminal according to an embodiment of the present invention
  • FIG. 8 (b) is a plan view of a ⁇ -shaped connection sensor net terminal.
  • FIG. 9 is a diagram showing an O-shaped connection according to the embodiment of the present invention.
  • FIG. 10 (a) is a perspective view of the figure-eight connection sensor net terminal according to the embodiment of the present invention
  • FIG. 10 (b) is a plan view of the figure-eight connection sensor net terminal.
  • FIG. 11 is a diagram showing eight connections according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a bonding portion of the sensor network terminal according to the embodiment of the present invention.
  • FIG. 13 is a flowchart showing an operation at the time of crack detection according to the embodiment of the present invention.
  • FIG. 1 is an image diagram of a tunnel according to an embodiment of the present invention, showing a state in which some of the components of the tunnel fall monitoring system are installed on the inner wall surface 2, which is the inside of the tunnel 1. .
  • the conductive coating patterns 4 are arranged on the inner wall surface 2 in a vertical and horizontal lattice so as to cover the inner wall surface 2 from the inside.
  • Each conductive coating pattern 4 has an elongated shape, and is provided directly or indirectly on the inner wall surface 2 via a predetermined film material.
  • the sensor net terminal 5 is provided at one end of each conductive coating pattern 4.
  • existing facilities 6 such as lighting and ventilation fans are installed at predetermined intervals.
  • a relay base station terminal 7 is installed outside or inside the existing facility 6. A description of the functions of each component will be given later.
  • the tunnel 1 in FIG. 2 shows an image when the inner wall 2 is viewed from the inside of the tunnel 1 in FIG. tunnel
  • the monitoring system consists of a network 3, a plurality of conductive coating patterns 4, a plurality of sensor terminals 5, a plurality of medium and relay base station terminals 7, a route base station terminal 8, and a remote monitoring device 9 installed in an existing facility 6.
  • Consists of The network 3 is a communication network that connects the route base station terminal 8 and the remote monitoring device 9, and is specifically realized by the Internet, a public line, a mobile phone network, and the like.
  • the conductive coating pattern 4 is applied to the inner wall surface 2, and a predetermined voltage is applied between both ends by the sensor network terminal 5. As a result, a current flows in the conductive coating pattern 4. However, when a crack occurs on a part of the inner wall surface 2 and at least a part of the conductive coating pattern 4 applied to the crack is cut, the resistance value increases and the current value decreases.
  • the sensor network terminal 5 has a function of inputting predetermined data with a sensor and transmitting the data to the base station terminal by wireless communication.
  • a predetermined time for example, several hours
  • the sensor network terminal 5 is normally in the power saving mode (sleep state), and measures and transmits current value data by shifting to the operation mode at predetermined time intervals.
  • the details of the connection of the conductive coating pattern 4 and the sensor network terminal 5 will be described later.
  • the relay base station terminal 7 is installed outside or inside the existing facility 6 such as a lighting lamp and a ventilation fan. This is because the power line that is used by the existing facility 6 is shared as a power source that is always supplied with power, and because it can be installed relatively easily as a safe place for installation. As a result, the installation cost of the relay base station terminal 7 can be reduced.
  • the relay base station terminal 7 receives the current value data from the sensor network terminal 5 or another relay base station terminal 7 and transmits the received current value data to another relay base station terminal 7 or the route base station terminal 8. Send. Since the reach of radio waves output from the sensor terminal 5 is several tens of meters, the relay base station terminals 7 are installed at intervals of several tens of meters along the longitudinal direction of the tunnel 1. Further, in FIG. 2, relay base station terminal 7 is shown to have two antennas, but may have one antenna.
  • the route base station terminal 8 is installed at a place away from the tunnel 1, the tunnel 1 collapses, and the safety of T is secured.
  • the root base station terminal 8 receives the current value data from the relay base station terminal 7 installed in the existing facility 6 in the tunnel 1 and transmits the received current value data to the remote monitoring device 9 via the network 3.
  • the remote monitoring device 9 is installed in a management facility provided in a predetermined area or a road management area. The remote monitoring device 9 monitors the tunnel. In this case, in particular, the remote monitoring device 9 receives the current value data from the root base station terminal 8 via the network 3 and accumulates the received current value data. From the accumulated current data, the occurrence of cracks in tunnel 1 and the locations of cracks are estimated. Specifically, it is realized by a PC (Personal Computer) server or the like.
  • PC Personal Computer
  • FIG. 3 the inner wall surface 2 of the tunnel 1 (see FIG. 1) has a longitudinal direction of the tunnel 1 (hereinafter referred to as X direction) and a direction perpendicular thereto (hereinafter referred to as Y direction).
  • the set S which is a combination of the conductive coating pattern 4 and the sensor network terminal 5, is set up in an orderly manner. That is, set SX1, set SX2, ⁇ , set SX14 are arranged in the X direction, and set SY1, set SY2, ⁇ , set SY8 are arranged in the Y direction. ing.
  • each conductive coating pattern 4 is, for example, a numerical value such that the width of the pattern (conductive line) is several cm, the width of the entire pattern is several tens of cm, and the length of the entire pattern is several m.
  • the material of the conductive coating pattern 4 include carbon and metal, and those which are nonflammable and have low resistance are desirable.
  • the procedure for actually applying the conductive coating pattern 4 to the inner wall surface 2 of the tunnel 1 is as follows.
  • the coating layer has a five-layer structure of an insulating layer, a Y-direction conductive layer, an insulating layer, an X-direction conductive layer, and an insulating layer from the inner wall surface 2 side.
  • the reason for applying the insulating paint is to prevent a short circuit from occurring between the inner wall surface 2 and the conductive coating pattern 4 and to surely detect cracks.
  • Insulating coating materials include phenolic resin and silicone resin.
  • the current values measured by the sensor net terminals 5 of the sets SX5 and SX6 in the X direction and the sets SY3, SY4, SY5 and SY6 in the Y direction are equal to or less than a predetermined threshold. If so, it is considered that at least a part of the conductive coating pattern 4 of each set has been cut. At this time, it is considered that R, which is a portion where the sets SX5 and SX6 in the X direction and the sets SY3, SY4, SY5 and S ⁇ 6 in the Y direction intersect, is the range of possible cracks. For example, a crack pattern as shown in Fig. 7 is assumed.
  • FIG. 5 is a diagram showing a block configuration and an appearance image of the sensor network terminal according to the embodiment of the present invention.
  • the sensor network terminal 5 is an LSI (Large Scale Integrated Circuit) 51 that realizes its central function, a relay base station terminal 7 (see Fig. 2 etc.) It comprises an antenna 60 for transmitting and receiving data to and from, a sensor 61 for measuring current arbitration data, and a power supply 62.
  • the source 62 is a primary battery, a rechargeable secondary battery, a power generation element (such as a solar power generation element, a vibration power generation element, or a microwave power generation element), or a combination thereof.
  • the LSI 51 is connected to an antenna 60 and controls a wireless transmission / reception circuit 52 for controlling data transmission / reception with the relay base station terminal 7, a controller circuit 53 which is a CPU (Central Processing Unit) for controlling the entire LSI 51, Sensor 61 measures A / D conversion that converts the current value data measured by the current value data recording circuit 54 and sensor 61 into AZD (Analog / Digital), which is a non-volatile memory (e.g., flash memory) that records the current value data Circuit 55, Program memory 56 that is a ROM (Read Only Memory) for recording the program, Work memory 57 that is a RAM (Random Access Memory) for work when executing the program, signals at regular intervals ( Clock signal) and a power supply that regulates the power supplied from the power supply 62 to a constant value and turns off the power supply when power is not required, and controls the power consumption. It comprises a control circuit
  • the appearance of the sensor network terminal 5 is divided into an antenna 60, a sensor network terminal 5 body and a sensor 61, and the LSI 51 and the power supply are mounted on the sensor network terminal 5 body. 6 and 2 are provided. Since this sensor network terminal 5 is installed on the inner wall 2 of the tunnel 1, it is desirable to take waterproof measures. For example, it is conceivable to prevent the freezing in winter by coating the antenna 60 with luster. In addition, it is conceivable that a simple power bar is provided on the entire sensor network terminal 5 to avoid adhesion of moisture. Furthermore, even if the radio wave is attenuated when the antenna 60 is wet with water, the arrangement based on the distance interval may be performed so that no problem occurs in the wireless communication! /.
  • FIG. 6 is a diagram showing a block configuration and an appearance image of the root base station terminal according to the embodiment of the present invention.
  • the root base station terminal 8 is composed of an antenna 71 for transmitting / receiving data to / from the LSI 71 and the relay base station terminal 7, a network connection concealer 81 connected to the network 3, And a power source 82.
  • the LSI 71 is connected to the antenna 80 and records the current value data measured and transmitted by the wireless transmission / reception circuit 72, the controller circuit 73, and the sensor network terminal 5 that control the transmission and reception of data with the relay base station terminal 7.
  • Current data recording circuit 74 which is a non-volatile memory (for example, flash memory), a network interface control circuit 75, which controls transmission and reception of data to and from the network 3 according to a network protocol, program memory ⁇ ⁇ ⁇ ⁇ ⁇ 6, and a work memory Memory 77, Timer circuit 78, and Tortoise source control It is composed of a control circuit 79.
  • the appearance of the root base station terminal 8 is divided into antennas 80, root base station terminals 8 and network connection equipment 81, and the root base station terminal 8
  • An LSI 71 and a power supply 82 are provided on the main body of the office terminal 8.
  • the relay base station terminal 7 has a configuration obtained by removing the network interface control circuit 75 and the network connection ⁇ 81 from the configuration of the root base station terminal 8 in FIG.
  • the remote monitoring device 9 includes a network connection means 91, a current value data storage means 92, a crack location estimation means 93 and a crack location display means 94.
  • the network connection means 91 is a network connection ⁇ for connecting to the network 3, and has a function of receiving stream value data from the root base station terminal 8 via the network 3.
  • the current value data storage means 92 stores and stores the current value data received by the network connection means 91, and is realized by a nonvolatile hard disk device or a flash memory.
  • the crack location estimating means 93 inputs and refers to the current value data stored in the current value data storage means 92, and estimates the crack location by comparing the current value data with a predetermined threshold value. It is realized by a CPU (Central Processing Unit) or a RAM (Random Access Memory).
  • the crack location display means 94 displays the crack location estimated by the crack location estimation means 93, and is realized by a display screen or the like.
  • the sensor network terminal 5 is provided with an antenna 60 and four terminals, namely, a terminal Tl, a terminal ⁇ 2, a terminal ⁇ 3, and a terminal ⁇ 4.
  • Terminals T1 and ⁇ 2 are terminals for checking conductivity, each of which has conductive coating Connected to both ends of pattern 4.
  • the sensor network terminal 5 allows a current to flow through the conductive coating pattern 4 by applying a predetermined voltage between the terminal T1 and the terminal T2. Then, the value of the current flowing through the conductive coating pattern 4 is measured.
  • Terminal T3 is for ground and terminal T4 is for power. That is, the terminal T3 and the terminal T4 are terminals for supplying power to the sensor network terminal 5.
  • FIG. Fig. 9 shows the conductive coating pattern 4 (41, 42, 43) and the sensor network terminal 5 installed on the inner wall 2 of tunnel 1 (see Fig. 1 etc.).
  • the conductive green coating pattern 41 for checking the conductivity has a horizontally long U-shape or O-shape, and terminals T 1 and T 2 of the sensor net terminal 5 are connected to both ends located on the right side, respectively.
  • the conductive coating pattern 42 for the ground is formed to be long in the vertical direction, and has a portion protruding to the right so that it can be connected to the terminal T3 of the sensor terminal 5.
  • the conductive coating pattern 43 for the power supply is formed to be long in the vertical direction, and has a portion protruding to the left so that it can be connected to the terminal T 4 of the sensor network terminal 5.
  • the conductive coating pattern 42 for the ground and the conductive coating pattern 43 for the power supply are used for the power line used by the existing facility 6 (see Fig. 1 etc.) of the tunnel 1 on the upper or lower side. Connected to existing power facilities.
  • the sensor terminal 5 handles one O-shaped conductive coating pattern 41, such a sensor network terminal 5 is referred to as an O-shaped terminal.
  • the sensor network terminal 5 shown in FIG. 10 includes an antenna 60 and six terminals, namely, a terminal Tl, a terminal ⁇ 2, a terminal ⁇ 3, a terminal ⁇ 4, a terminal ⁇ 5, and a terminal ⁇ 5.
  • Terminal ⁇ 6 is attached.
  • Terminal T1 and terminal ⁇ 2, and terminal ⁇ 3 and terminal ⁇ 4 are each a pair of two terminals for conductivity check.
  • Terminal 5 is used for ground
  • terminal 6 is used for power supply
  • a pair of terminals is used for power supply.
  • Fig. 11 shows the conductive coating pattern 4 (41 1, 41 1, 45, 46) and the sensor net terminal 5 installed on the inner wall 2 of the tunnel 1 (see Fig. 1 etc.) It shows the place.
  • the conductive coating pattern 4 1 ⁇ for conductive check ⁇ ⁇ ⁇ ⁇ has a horizontally long U-shape or O-shape, and the terminals T 1 and T 2 of the sensor net terminal 5 are connected to both ends located on the right side, respectively. ing.
  • For conductivity check B conductivity
  • the conductive coating pattern 4 IB also has a horizontally long U-shape or O-shape, which is connected to the terminals T 3 and T 4 of the sensor network terminal 5 at both ends located on the left side, respectively.
  • the conductive coating pattern 45 for the ground is formed to be long in the vertical direction, and the terminal T5 of the sensor net terminal 5 is directly connected.
  • the conductive coating pattern 46 for the power supply is also formed to be long vertically, and the terminal T6 of the sensor network terminal 5 is directly connected to this.
  • On the right side of the conductive coating pattern 41 B an adjacent conductive coating pattern A for conductivity checking is provided.
  • the conductive coating pattern 45 for the ground and the conductive coating pattern 46 for the power supply are the power lines used by the existing facilities 6 of the tunnel 1 on the upper or lower side (see Fig. 1 etc.). Connected to existing facilities.
  • the sensor terminal 5 handles two O-shaped conductive coating patterns 41 A and 41 B, such a sensor terminal is referred to as a figure-eight terminal.
  • FIG. 12 is a cross-sectional view of a bonding portion of the sensor network terminal according to the embodiment of the present invention.
  • concrete 21 is first shown as the inner wall 2 of the tunnel 1 (see Fig. 1 etc.).
  • a conductive coating pattern 4 is applied thereon.
  • a conductive adhesive 10 is applied thereon.
  • the conductive adhesive 10 for example, a paste-like conductive resin in which carbon or metal is blended based on a resin is used.
  • a terminal T of the sensor network terminal 5 is provided thereon. That is, the conductive coating pattern 4 and the terminal T are bonded by the conductive adhesive 10.
  • a predetermined film material may be provided between the concrete 21 and the conductive coating pattern 4.
  • steps S201 to S203 indicate the operation of each terminal
  • steps S204 to S208 indicate the operation of the remote monitoring device 9.
  • the sensor network terminal 5 measures the value of the current flowing through the conductive coating pattern 4 to which the sensor network terminal 5 itself is connected, and transmits the current value data to the relay base station terminal 7 (scan Step S201).
  • the sensor network terminal 5 is normally in the power saving mode (sleep state), but is switched to the operation mode every predetermined time (for example, several hours) by a trigger of the timer circuit 58 to measure and transmit the current value. I do.
  • a predetermined JJ £ is applied between both ends of the conductive coating pattern 4 to which the sensor network terminal 5 itself is connected via a conductive check terminal attached to the sensor network terminal 5 itself.
  • a current value which is a magnitude of a current flowing through the conductive coating pattern 4 is measured by the applied voltage.
  • the measured current value is wirelessly transmitted to the nearest relay base station terminal 7 as current value data.
  • the current value data includes identification information or position information of the sensor net terminal 5 itself, which is recorded in a memory or the like in advance.
  • the relay base station terminal 7 performs reception and transmission of current value data (step S202).
  • the reception of the current value data is mainly performed from the sensor network terminal 5 that measures and transmits the current value data.
  • the intensity of the radio wave output from the other relay base station terminal 7 may not be sufficient, and the radio wave may not reach the route base station terminal 8 outside the tunnel 1;
  • the current value data is received from the relay base station terminal 7 of FIG.
  • the transmission of the current value data is basically performed to the root base station terminal 8.
  • the intensity of the radio wave output from the relay base station terminal 7 is not sufficient and the radio wave cannot reach the route base station terminal 8 outside the tunnel 1;
  • the current value data is transmitted to the relay base station terminal 7.
  • the relay base station terminal 7 has a function of receiving or relaying the current value data transmitted by the sensor network terminal 5 and wirelessly transmitting it to the root base station terminal 8. Subsequently, the root base station terminal 8 receives the current value data from the relay base station terminal 7, and transmits the received current value data to the remote monitoring device 9 via the network 3 (step S203). .
  • the root base station terminal 8 is installed at a location away from the tunnel 1, so that safety is ensured even if the tunnel 1 collapses, and the function of monitoring the tunnel 1 can be continued. Therefore, other functions may be provided in addition to the function of collecting and relaying the current value data. For example, if the current value data cannot be received from the relay base station terminal 7 installed inside the tunnel 1 even after the predetermined monitoring time has elapsed, it is recognized that some problem has occurred in the tunnel 1, Warning on remote monitoring device 9 Notification information may be transmitted.
  • the network connection means 91 receives the current value data transmitted from the root base station terminal 8 via the network 3, and stores the received current value data in the current value data storage means 9 2 Then, the current value data stored in the current value data storing means 92 is checked by the crack location estimating means 93. Specifically, it is performed by comparing a current value measured recently for each group of the sensor network terminals 5 connected to the conductive coating pattern 4 forming one grid with a predetermined threshold value (step S2). 0 5). When a crack occurs on the inner wall surface 2 and at least a part of the conductive coating pattern 4 is cut, the electric resistance value increases, and conversely, the current value decreases. Therefore, it is checked whether or not there is a force having current value data equal to or less than the predetermined threshold value (step S206). The checked current value data may be deleted, or may be recorded as it is in order to separately adjust the tendency of temporal change.
  • Step S207 Specifically, from the current value data of the sensor net terminal 5 connected to the conductive coating pattern 4 forming one grid, the identification information of the sensor net terminal 5 that has measured a current value that is equal to or less than a predetermined threshold value or less, or It extracts location information (hereinafter referred to as specific information). The extracted specific information is classified into an X direction and a Y direction.
  • a portion where the conductive coating pattern 4 specified by one of the specific information in the X direction and the conductive coating pattern 4 specified by one of the specific information in the Y direction intersect is a crack. Location.
  • the current value data of the sets SX5 and SX6 is below the threshold value in the X direction
  • the current value data of the sets SY3 to SY6 is below the threshold value in the Y direction.
  • the portion R where the conductive coating pattern 4 of the sets SX 5 and SX 6 intersects with the conductive coating pattern 4 of the sets SY 3 to SY 6 is estimated as the range in which a crack may have occurred. can do.
  • Step S208 the crack location estimated by the crack location estimation means 93 is displayed on the crack location display means 94.
  • data as shown in FIG. 4 is displayed on the crack location display means 94.
  • an alarm may be sounded to prompt a tunnel manager or the like to look at the crack location display means 94.
  • the tunnel manager can know the occurrence of a crack and the estimated crack location by looking at the remote monitoring device 9 (the crack location display means 94.
  • the remote monitoring device 9 the crack location display means 94.
  • step S206 If there is no current value data that is equal to or less than the predetermined threshold value in step S206 (No in step S206), damage is caused at that time! ], And the remote monitoring device 9 ends the processing.
  • the program executed by each terminal and device shown in FIG. 2 is recorded on a recording medium that can be read by a computer, and the program recorded on this recording medium is recorded. Konhi. It is assumed that the tunnel dropping monitoring system according to the embodiment of the present invention is realized by reading the program into the user system and executing the program.
  • the computer system referred to here is OS (OS)
  • the conductive coating pattern 4 formed by applying a conductive paint to the inner wall surface 2 of the tunnel 1 has been described.
  • a conductive sheet may be used.
  • the data transmitted by the sensor network terminal 5 is described as the current value data.
  • the data may be an electric resistance value, or may be a predetermined value such as a haze current value or an electric resistance value.
  • the result of comparison with the threshold (OK / NG) may be used. Further, it may be a calculated value obtained by performing a predetermined calculation on the current value or the electric resistance value.
  • the current It may be data for notifying that the value or the electric resistance value has suddenly changed.
  • the tunnel monitoring system is described.
  • the system may be applied to a so-called civil structure damage monitoring system for monitoring cracks on the wall of a civil structure.
  • civil structure damage monitoring system for monitoring cracks on the wall of a civil structure.
  • it can be applied to bridges and plant buildings.
  • a solar cell panel including a storage battery can be used as a power source of the sensor network terminal 5.
  • the present invention for example, since a plurality of conductive lines are installed in a vertical and horizontal lattice on the inner wall surface of a tunnel or the like, when a crack occurs, the vertical conductive line and the horizontal At least a part of the conductive line in the direction is cut off, for example, the current value data of those conductive lines becomes smaller. Therefore, it is possible to narrow the estimated range of the crack location, and it is possible to focus on the inspection work of the inner wall surface efficiently and efficiently. In addition, by installing conductive wires over a wide area on the inner wall surface, it is possible to know the occurrence of cracks and estimated crack locations over a wide area.
  • data is transmitted and received between the sensor network terminal, the relay base station terminal, and the base station terminal by wireless communication.
  • the middle base station terminals are installed in existing facilities such as ventilation fans and lighting in tunnels, and power is supplied to the relay base station terminals by existing power sources such as power lines. Therefore, work such as a wired connection between terminals and installation of a new power supply is unnecessary, and the burden of installation work can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Geology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

トンネル落盤監視システムや土木構造物破損監視システムは、ネットワーク3、複数の導電性塗布パターン4、複数のセンサネット端末5、既存施設6に設置される複数の中継基地局端末7、ルート基地局端末8及び遠隔監視装置9から構成される。導電性塗布パターン4は、内壁面2に塗布され、センサネット端末5によって所定の電圧を印加される。それによって、導電性塗布パターン4内を電流が流れる。そのとき、内壁面2の一部にひび割れが発生し、塗布された導電性塗布パターン4の少なくとも一部が切断されると、抵抗値が高くなって電流値が低くなる。その電流値データは、センサネット端末5によって測定され、センサネット端末5から中継基地局端末7、ルート基地局端末8及びネットワーク3を介して遠隔監視装置9に送信される。そして、遠隔監視装置9は、その電流値データからひび割れの発生箇所を推定し、表示する。

Description

明細書 トンネル落盤監視システム、 トンネル落盤監視方法及び土木構造物破損監視シス テム 技術分野 '
本発明は、 ひび割れの発生を監視し、 そのひび割れが発生した箇所を推定する トンネル落盤監視システム、 トンネル落盤監視方法及ぴ土木構造物破損監視シス テムに関する。 背景技術
トンネルの や剥落などの事故が発生したことを契機にして、 トンネルに対 するひび割れ監視のニーズが高まつている。 ただし、 トンネルのひび割れ監視の 実施には次のような問題点がある。
( 1 ) トンネルは、 高速道路だけで約 1 0 0 0箇所あり、 最も防災基準が高いク ラスである A A級でさえ 3 0数箇所に及ぶ。 まして、 一般国道や県道を含めると 、 对象数が膨大である。
( 2 ) ひぴ割れ監視を行うシステムを構築するにあたっては、 振動センサなどに よる測定データを収集するためにネットワークを利用する必要があり、 そこで、 例えば、 専用回線を使用するとなれば、 配管や配線などを敷設する作業に多額の 費用がかかる。 また、 一般回線を利用するにしても、 多額の通信費がかかる。
( 3 ) ひぴ割れ監視を行うシステムを構築するにあたって大規模な工事を行った 場合は、 長期間に亘る車線規制が必要になり、 費用も然ることながら一般利用者 への影響も大きい。
これらの問題点に対応するために、 比較的簡単にトンネルなどの構造物のひぴ 割れを検出する技術が提案されている (例えば、 特開平 1 0— 3 1 0 0 2号公報 参照) 。 この技術は、 トンネルなどの構造物本体の露出面にひぴ割れを検出する 導電性部材を付着し、 その導電性部材の電気的変ィ匕を検出することによって、 構 造物本体のひび割れを検出するものである。 しかしながら、 前記の技術においては、 導電性部材を付着させる部分、 すなわ ち、 導電性塗布層をトンネルの天井にのみ設けている。 そのため、 トンネルの天 井付近に生じたひぴ割れしカ検出することができな ヽ。 また、 導電性塗布層には、 一定間隔ごとの導電性の有無が確認できるようにするために、 所定間隔をおいて 導電性検出用パターンが設けられている。 この導電性檢出用パターンは、 2個 1 組でその間の導電性の有無を検査できるように設置さ るので、 その個数及ぴひ ぴ割れの検査範囲の関係から考慮すると効率的であるとは言レ、難い。 更に、 各導 電性検出用パターンは、 直接又は中継地を介して集中監視室に接続されている。 その集中監視室において、 各導電性検出用パターン間 導電性の有無が検查、 視される。 ここで、 各導電性検出用パターンと、 集中 視室又は中継地とは、 電 線や別の導電性塗布層などの有線によつて接続されてレヽるため、 トンネルの距離 が長くなるほどその接続作業の負担が大きくなること力と考えられる。
そこで、 本発明は、 前記問題に鑑み、 トンネル内部に簡単に設置することがで き、 ひび割れの検査を広範囲に対して効率よく行うことができるようなトンネル 落盤監視手段、 更には、 土木構造物破損監視手段を提 することを課題とする。 発明の開示
前記課題を解決する本発明は、 前記トンネルの内壁面に密着するように設置さ れる複数の導通線と、 その導通線の両端に接続するように設置されるセンサネッ ト端末と、 前記トンネルの外部に設置され、 ネットワークを介して相互接続され る基地局端末及び遠隔監視装置とから構成されるトンネル落盤監視システム、 そ のトンネル落盤監視システムにおけるトンネル落盤監 方法、 及ぴ、 それらを一 般の土木構造物に適用した土木構造物破損監視システムである。 複数の導通線は、 例えば、 トンネルの内壁面に縦横の格子状に設置される。 そして、 それぞれの導 通線ごとに設置されたセンサネット端末は、 その導通緣に所定の電圧を印可し、 それによつて導通線に流れる電流の大きさである電流條を測定し、 その測定した 電流値又はその電流値に所定の計算を施すことによって得られる計算値をセンサ データとして基地局端末に無線送信する。 基地局端末は、 センサネット端末から 受信したセンサデータを、 更にネットワークを介して道路管理施設などに設置さ れた遠隔監視装置に送信する。 遠隔監視装置は、 基地局端末から受信したセンサ データを蓄積する。 そして、 その蓄積したセンサデータと所定の閾値とを比較す ることによってその一部が切断されたと推定される導電線があるとき、 そのセン サデータが測定された導電線が交差する部分をひび割れが発生した箇所として推 定する。 そして、 例えば、 その推定したひび割れ箇所をディスプレイ画面などに 表示する。
これによれば、 例えば、 トンネルの管理者は、 遠隔監視装置のディスプレイ画 面を見ることによって、 推定されるひび割れの発生及ぴひぴ割れ箇所を知ること ができる。 また、 実際にトンネルの内壁面を点検するとき、 その表示データの印 刷物を携帯することによって、 推定されるひび割れ箇所を重点的に点検すること ができる。 また、 土木構造物についても同様である。
なお、 請求の範囲における 「第 1の制御手段」 、 「第 2の制御手段」 、 「第 3 の制御手段」 は、 発明を実施するための最良の? f 態における 「L S I」 .に相当す る。 また、 請求の範囲における 「センサデータ」 、 「センサデータ蓄積手段」 は、 発明を実施するための最良の形態における 「電流値データ」 、 「電流値データ蓄 積手段」 に相当する。 図面の簡単な説明
第 1図は、 本発明の実施の形態に係るトンネルのィメージを示す図である。
第 2図は、 本発明の実施の形態に係るトンネル落盤監視システムのネットワーク 構成を示す図である。
第 3図は、 本発明の実施の形態に係る導電性塗布パターンを示す図である。
第 4図は、 本発明の実施の形態に係る導電性塗布パターンを示す図である。
第 5図 (a ) は本発明の実施の形態に係るセンサネット端末のブロック構成を示 す図であり、 (b ) はセンサネット端末の^イメージを示す図である。
第 6図 (a ) は本発明の実施の形態に係るルート基地局端末のブロック構成を示 す図であり、 (b ) はルート基地局端末の^ Iイメージを示す図である。
第 7図は、 本発明の実施の形態に係る遠隔監視装置の機能プロック構成を示す図 である。 第 8図 (a ) は本発明の実施の形態に係る O字型接続用センサネット端末の斜視 図であり、 (b ) は〇字型接続用センサネット端末の平面図である。
第 9図は、 本発明の実施の形態に係る O字型接続を示す図である。
第 1 0図 (a ) は本発明の実施の形態に係る 8字型接続用センサネット端末の斜 視図であり、 (b ) は 8字型接続用センサネット端末の平面図である。
第 1 1図は、 本発明の実施の形態に係る 8 接続を示す図である。
第 1 2図は、 本発明の実施の形態に係るセンサネット端末の接着箇所の断面図で ある。
第 1 3図は、 本発明の実施の形態に係るひび割れ検出時の動作を示すフローチヤ ートである。 発明を実施するための最良の形態
以下、 本努明の実施の形態について図面を参照して詳細に説明する。 し力 しな がら、 本発明はこれらの実施の形態に限定されるもので fまない。
《システムの構成と概要》
まず、 トンネル落盤監視システムの構成と概要について説明する。
第 1図は、 本発明の実施の形態に係るトンネルのィメージ図であり、 トンネル 落盤監視システムの構成要素の一部がトンネル 1の内側 こあたる内壁面 2に設置 されている様子を示している。 導電性塗布パターン 4は、 内壁面 2に縦横の格子 状に設置されていて、 内壁面 2を内側から覆うようになっている。 個々の導電性 塗布パターン4は、 細長い形状になっていて、 直接又は所定の膜材を介して間接 的に内壁面 2に設置されている。 センサネット端末 5は、 その個々の導電性塗布 パターン 4の一端に設けられている。 トンネル 1の天井には、 所定の間隔をおい て、 照明灯や換気扇などの既存施設 6が取り付けられてレヽる。 その既存施設 6の 外部又は内部に中継基地局端末 7が設置されている。 なお、 各構成要素の機能な どの説明は後記する。
次に、 第 2図を参照して、 本発明の実施の形態に係るトンネル落盤監視システ ムのネットワーク構成について説明する。 第 2図のトンネノレ 1は、 第 1図におけ るトンネル 1の内側から内壁面 2を見たときのイメージを示している。 トンネル 監視システムは、 ネットワーク 3、 複数の導電性塗布パターン 4、 複数のセ ンサネット端末 5、 既存施設 6に設置される複数の中,継基地局端末 7、 ルート基 地局端末 8及び遠隔監視装置 9から構成される。 ネットワーク 3は、 ルート基地 局端末 8と遠隔監視装置 9とを接続する通信網であり、 具体的には、 インターネ ット、 公衆回線、 携帯電話網などによって実現される。 導電性塗布パターン 4は 、 内壁面 2に塗布され、 センサネット端末 5によってその両端間に所定の電圧が 印加される。 それによつて、 導電性塗布パターン 4内を電流が流れる。 ところが 、 内壁面 2の一部にひび割れが発生し、 そのひび割れの箇所に塗布された導電性 塗布パターン 4の少なくとも一部が切断されると、 抵抗値が高くなつて電流値が 低くなる。 センサネット端末 5は、 所定のデータをセンサで入力し、 無線通信に よりそのデータを基地局端末に送信する機能を持つ。 ここでは、 特に、 所定の時 間 (例えば、 数時間) が経過するごとに、 導電性塗布パターン 4に流れる電流値 のデータ (以下、 「電流値データ」 という) を中継基地局端末 7に送信するもの とする。 従って、 センサネット端末 5は、 通常は省電力モード (スリープ状態) になっており、 所定の時間ごとに稼動モードに移行することによって電流値デー タの測定及び送信を行う。 なお、 導電性塗布パターン 4及ぴセンサネット端末 5 の接続の詳細は後記する。 中継基地局端末 7は、 照明灯や換気扇などの既存施設 6の外部又は内部に設置される。 これは、 電力が常時供給される電源として既存 施設 6が使用している電灯線などを共用するためであり、 また、 設置場所として 安全カゝっ比較的容易に設置可能なためである。 これによつて、 中継基地局端末 7 の設置コストを節減することができる。 この中継基地局端末 7は、 センサネット 端末 5や別の中継基地局端末 7から電流値データを受信し、 その受信した電流値 データを更に別の中継基地局端末 7やルート基地局端末 8に送信する。 なお、 セ ンサネット端末 5が出力する電波の到達距離は数十 mなので、 トンネル 1の長手 方向に沿って数十 mの距離ごとに中継基地局端末 7を設置するものとする。 また 、 第 2図において、 中継基地局端末 7は 2つのアンテナを備えるように示されて いるが、 1つのアンテナであってもよい。
ルート基地局端末 8は、 トンネル 1から離れた場所に設置され、 トンネル 1が 崩壌し Tもその安全が確保されるものとする。 例えば、 耐震構造を備えたビルな どに設置される。 このルート基地局端末 8は、 トンネル 1内の既存施設 6に設置 された中継基地局端末 7から電流値データを受信し、 その受信した電流値データ をネットワーク 3経由で遠隔監視装置 9に送信する。 遠隔監視装置 9は、 所定の ±也域や道路の管理区域ごとに設けられてレヽる管理施設内に設置される。 遠隔監視 装置 9は、 トンネルの監視を行うものであり、 ここでは、 特に、 ルート基地局端 末 8からネットワーク 3経由で電流値データを受信し、 その受信した電流値デー タを蓄積すると共に、 その蓄積した電流値データからトンネル 1のひぴ割れの発 生及びひぴ割れ箇所を推定する。 具体的には、 P C (Personal Computer) ゃサ ーバなどによって実現される。
《導電性塗布パターン》
続いて、 第 3図及び第 4図を参照して、 本発明の実施の形態に係る導電性塗布 パターンについて説明する。 第 3図に示すように、 トンネル 1の内壁面 2 (第 1 図参照) には、 トンネル 1の長手方向 (以下、 X方向という) 及びそれに直交す る方向 (以下、 Y方向という) に、 導電性塗布パターン 4とセンサネット端末 5 との組み合わせであるセット Sが整然と設置されている。 すなわち、 X方向には 、 セット S X 1、 セット S X 2、 · · ·、 セット S X 1 4が配置され、 Y方向に は、 セット S Y 1、 セット S Y 2、 · · ·、 セット S Y 8が配置されている。 個 々の導電性塗布パターン 4の大きさとしては、 例えは、、 パターン (導通線) の幅 が数 c m、 パターン全体の幅が数十 c m、 パターン全体の長さが数 mという数値 があげられる。 導電性塗布パターン 4の材質としては、 カーボンや金属があげら れ、 不燃性で抵抗値が低いものが望ましい。
実際に、 トンネル 1の内壁面 2に導電性塗布パターン 4を塗布する手順は、 以 下のようになる。
( 1 ) Y方向に配置するセット S ( S Y 1など) の範囲に絶縁性塗料を塗布する 。
( 2 ) Y方向に配置するセット S ( S Y 1など) の導電性塗布パターン 4を塗布 する。 ' '
( 3 ) X方向に配置するセット S ( S X 1など) の範囲に絶縁性塗料を塗布する (4) X方向に配置するセット S (SX1など) の導電性塗布パターン 4を塗布 する。
( 5 ) 導電性塗布パターン 4を覆うように絶縁性塗料を塗布する。
これによれば、 塗布層としては、 内壁面 2側から絶縁層、 Y方向導電層、 絶縁 層、 X方向導電層及び絶縁層の 5層構造になる。 絶縁性塗料を塗布するのは、 内 壁面 2や導電性塗布パターン 4の間で短絡が発生するのを防止し、 ひぴ割れの検 出を確実に行うためである。 なお、 絶縁性塗料の材質と しては、 フエノール樹脂 ゃシリコーン樹脂などがある。
第 4図に示すように、 例えば、 X方向のセット SX5及ぴ SX6、 並びに、 Y 方向のセット SY3、 SY4、 SY 5及び SY 6のセンサネット端末 5が測定し た電流値が所定の閾値以下であるとすれば、 各セットの導電性塗布パターン 4の 少なくとも一部が切断されたことが考えられる。 このとき、 X方向のセット SX 5及ぴ SX6と、 Y方向のセット SY3、 SY4、 S Y 5及ぴ S Υ 6とが交差す る部分である Rがひび割れ可能性範囲であると考えられる。 例えば、 Ρに示すよ うなひび割れパターンが想定される。
《端末の構成と概要》
次に、 第 5図及び第 6図を参照して、 センサネット端末及ぴルート基地局端末 (中継基地局端末を含む) の構成と概要を説明する。
第 5図は、 本発明の実施の形態に係るセンサネット端末のブロック構成及ぴ外 観イメージを示す図である。 第 5図 (a) に示すように、 センサネット端末 5は、 その中枢機能を実現する LS I (Large Scale Integrated Circuit, 大規模集積 回路) 51、 中継基地局端末 7 (第 2図など参照) とのデータの送受信を行うァ ンテナ 60、 電流傲データを測定するセンサ 61、 及ぴ、 電源 62から構成され る。 源62は、 1次電池、 充電可能な 2次電池、 発電素子 (太陽光発電素子、 振動発電素子、 マイクロ波発電素子など) 又はこれらの組み合わせである。 なお、 センサネット端末 5自身は電源を持たず、 他から電力の供給を受けるようにして よい。 LS I 51は、 アンテナ 60に接続され、 中継基地局端末 7とのデータの 送受信を制御する無線送受信回路 52、 LS I 51の全体制御を行う CPU ( Central Processing Unit) であるコントローラ回路 5 3、 センサ 61が測定し た電流値データを記録する不揮発性メモリ (例え Ϊま、 フラッシュメモリ) である 電流値データ記録回路 5 4、 センサ 6 1が測定した電流値データを AZD ( Analog / Digital) 変換する A/D変換回路 5 5、 プログラムを記録する R OM (Read Only Memory) であるプログラムメモリ 5 6、 プログラムを実行するとき のワーク用 R AM (Random Access Memory) である作業用メモリ 5 7、 一定間隔 の信号 (クロック信号) を発生させるタイマ回路 5 8、 及ぴ、 電源 6 2から供給 される電力を 定の に調整すると共に、 電力不要のときに電源を切断し、 消 費電力を抑制する制御を行う電源制御回路 5 9から構成される。 L S I 5 1は、 1チップに限定されるものではなく、 複数チップを搭載し fこボード又は MC P ( Multi Chip Package) であってもよい。
第 5図 (b ) に示すように、 センサネット端末 5の外観は、 アンテナ 6 0、 セ ンサネット端末 5本体及ぴセンサ 6 1に分かれており、 センサネット端末 5本体 上に L S I 5 1と電源 6 2とが設けられている。 このセンサネット端末 5は、 ト ンネル 1の内壁面 2などに設置されるので、 防水対策を施しておくことが望まし い。 例えば、 アンテナ 6 0を榭月旨でコーティングすることによって、 冬季におけ る凍結を防止することが考えられる。 また、 センサネット端末 5全体に簡易な力 バーを設けることによって、 水分の付着を避けることが考えられる。 更に、 アン テナ 6 0が水に濡れた場合に電波が減衰しても、 無線通信に問題が発生しないよ うな距離間隔に基づく配置を行うようにしてもよ!/、。
第 6図は、 本発明の実施の形態に係るルート基地局端末のプロック構成及び外 観ィメージを示す図である。 第 6図 ( a ) に示すように、 ルート基地局端末 8は、 L S I 7 1、 中継基地局端末 7とのデータの送受信を行うァンテナ 8 0、 ネット ワーク 3に接続するネットワーク接続匿 8 1、 及び、 電源 8 2から構成される。 L S I 7 1は、 アンテナ 8 0に接続され、 中継基地局端末 7とのデータの送受信 を制御する無線送受信回路 7 2、 コントローラ回路 7 3、 センサネット端末 5が 測定、 送信した電流値データを記録する不揮発メモリ (例えば、 フラッシュメモ リ) である電流値データ記録回路 7 4、 ネットワークプロトコルに則ってネット ワーク 3とのデータの送受信を制御するネットワークインタフェース制御回路 7 5、 プログラムメモリ Ί 6、 作業用メモリ 7 7、 タイマ回路 7 8、 及び、 鼈源制 御回路 7 9から構成される。
第 6図 (b ) に示すように、 ルート基地局端末 8の外観は、 アンテナ 8 0、 ル 一ト基地局端末 8本体及ぴネットワーク接続機器 8 1に分力、れており、 ルート基 地局端末 8本体上に L S I 7 1と電源 8 2とが設けられている。
なお、 以上の説明においては、 センサネット端末 5と共通する部分 (同一の名 称) の詳細説明を割愛した。 また、 中継基地局端末 7は、 第 6図のルート基地局 端末 8の構成からネットワークインタフェース制御回路 7 5及ぴネットワーク接 続 β 8 1を除いた構成を備える。
《遠隔監視装置の構成と概要》
第 7図を参照して、 遠隔監視装置の構成と概要を説明する。 第 7図に示すよう に、 遠隔監視装置 9は、 ネットワーク接続手段 9 1、 電流値データ蓄積手段 9 2 、 ひび割れ箇所推定手段 9 3及ぴひび割れ箇所表示手段 9 4から構成される。 ネ ットワーク接続手段 9 1は、 ネットワーク 3に接続するネットワーク接続 βで あり、 ネットワーク 3を介してルート基地局端末 8から鼋流値データを受信する 機能を持つ。 電流値データ蓄積手段 9 2は、 ネットワーク接続手段 9 1が受信し た電流値データを記憶、 蓄積するものであり、 不揮発性のハードディスク装置や フラッシュメモリによつて実現される。 ひび割れ箇所推定手段 9 3は、 電流値デ ータ蓄積手段 9 2に蓄積された電流値データを入力、 参照し、 その電流値データ と所定の閾値とを比較することによって、 ひび割れ箇所を推定するものであり、 C P U (Central Processing Unit) や R AM (Random Access Memory) などに よつて実現される。 ひび割れ箇所表示手段 9 4は、 ひび割れ箇所推定手段 9 3が 推定したひび割れ箇所を表示するものであり、 ディスプレイ画面などによって実 現される。
«センサネット端末と導電性塗布パターンの接続》
続いて、 第 8図乃至第 1 2図を参照して、 トンネルの內壁面におけるセンサネ ット端末と導電性塗布パターンとの接続について説明する。
第 8図に示すように、 センサネット端末 5には、 アンテナ 6 0と、 4つの端子 、 すなわち、 端子 T l、 端子 Τ 2、 端子 Τ 3及び端子 Τ 4とが付設されている。 端子 T 1及び端子 Τ 2は、 導電チェック用の端子であり、 それぞれが導電性塗布 パターン 4の両端に接続される。 センサネット端末 5は、 この端子 T 1及ぴ端子 T 2の間に所定の電圧を印加することによづて、 導電性塗布パターン 4に電流を 流す。 そして、 導電性塗布パターン 4に流れる電流値を測定する。 端子 T 3はグ ランド用であり、 端子 T 4は電源用である。 すなわち、 端子 T 3及ぴ端子 T 4は 、 センサネット端末 5に電力を供給するための端子である。 これらの端子と、 導 電性塗布パターン 4との接続について第 9図に示す。 第 9図は、 導電性塗布パタ ーン 4 (4 1、 4 2、 4 3 ) とセンサネット端末 5とがトンネル 1の内壁面 2 ( 第 1図など参照) に設置されたところを示している。 導電チェック用の導電†生塗 布パターン 4 1は、 横長の U字形又は O字形になっていて、 右側に位置するその 両端にセンサネット端末 5の端子 T 1と端子 T 2とがそれぞれ接続されている。 一方、 グランド用の導電性塗布パターン 4 2は、 上下方向に長く形成され、 セン サネット端末 5の端子 T 3に接続できるように右側に突出した部分を持つ。 また 、 電源用の導電性塗布パターン 4 3も、 上下方向に長く形成されるが、 これは、 センサネット端末 5の端子 T 4に接続できるように左側に突出した部分を持つ。 なお、 グランド用の導電性塗布パターン 4 2及ぴ電源用の導電性塗布パターン 4 3は、 上側又は下側においてトンネル 1の既存施設 6 (第 1図など参照) が使用 している電灯線などの既存の電源設備に接続される。 第 9図に示した例では、 セ ンサネット端末 5が O字形の 1つの導電性塗布パターン 4 1を取り扱うので、 こ のようなセンサネット端末 5を O字形用という。
別の例として、 第 1 0図に示すセンサネット端末 5には、 アンテナ 6 0と、 6 つの端子、 すなわち、 端子 T l、 端子 Τ 2、 端子 Τ 3、 端子 Τ 4、 端子 Τ 5及ぴ 端子 Τ 6とが付設されている。 端子 T 1及び端子 Τ 2、 並びに、 端子 Τ 3及ぴ端 子 Τ 4がそれぞれ 2つ 1組で導電チェック用の端子になっている。 また、 端子 5 はグランド用であり、 端子 6は電源用であり、 2つ 1組で電力供給用の端子にな つている。 第 1 1図は、 導電性塗布パターン 4 (4 1 Α、 4 1 Β、 4 5、 4 6 ) とセンサネット端末 5とがトンネル 1の内壁面 2 (第 1図など参照) に設置され たところを示している。 導電チェック用 Αの導電性塗布パターン 4 1 Αは、 横長 の U字形又は O字形になっていて、 右側に位置するその両端にセンサネット端末 5の端子 T 1と端子 T 2とがそれぞれ接続されている。 導電チェック用 Bの導電 性塗布パターン 4 I Bも、 横長の U字形又は O字形になっているが、 これは、 左 側に位置するその両端にセンサネット端末 5の端子 T 3と端子 T 4とがそれぞれ 接続されている。 一方、 グランド用の導電性塗布パターン 4 5は、 上下方向に長 く形成され、 センサネット端末 5の端子 T 5がそのまま接続されている。 電源用 の導電性塗布パターン 4 6も、 上下に長く形成されるが、 これには、 センサネッ ト端末 5の端子 T 6がそのまま接続されている。 導電性塗布パターン 4 1 Bの右 側には、 隣接する導電チェック用 Aの導電性塗布パターンが設置されている。 な お、 グランド用の導電性塗布パターン 4 5及び電源用の導電性塗布パターン 4 6 は、 上側又は下側においてトンネル 1の既存施設 6 (第 1図など参照) が使用し ている電灯線などの既存の 原設備に接続される。 第 1 1図に示した例では、 セ ンサネット端末 5が O字形の 2つの導電性塗布パターン 4 1 A及ぴ 4 1 Bを取り 扱うので、 このようなセンサネット端末を 8字形用という。
第 1 2図は、 本発明の実施の形態に係るセンサネット端末の接着箇所の断面図 である。 第 1 2図には、 まず、 トンネル 1の内壁面 2 (第 1図など参照) として コンクリート 2 1が示されている。 その上に導電性塗布パターン 4が塗布される
。 この導電性塗布パターン 4の材質としては、 カーボンや金属があげられる。 次 に、 その上に導電性接着剤 1 0が塗布される。 この導電性接着剤 1 0には、 例え ば、 樹脂をベースにカーボンや金属を配合したペースト状の導電性樹脂が使用さ れる。 更に、 その上にセンサネット端末 5の端子 Tが設置される。 すなわち、 導 電性接着剤 1 0によって、 導電性塗布パターン 4と端子 Tとが接着される。 なお
、 コンクリート 2 1と導電性塗布パターン 4との間に所定の膜材を設けるように してもよい。
《システムの動作》
第 1 3図のフローチャートに沿って、 本発明の実施の形態に係るトンネル 監視システムの動作について説明する (適宜第 2図、 第 5図乃至第 7図参照) 。 ここで、 ステップ S 2 0 1乃至 S 2 0 3は、 各端末の動作を示し、 ステップ S 2 0 4乃至 S 2 0 8は、 遠隔監視装置 9の動作を示す。
まず、 センサネット端末 5は、 それ自身が接続している導電性塗布パターン 4 に流れる電流値を測定し、 その電流値データを中継基地局端末 7に送信する (ス テツプ S 2 0 1 ) 。 センサネット端末 5は、 通常省電力モード (スリープ状態) になっているが、 タイマ回路 5 8のトリガによって所定の時間 (例えば、 数時間 ) ごとに稼動モードに移行し、 電流値の測定、 送信を行う。 最初に、 センサネッ ト端末 5自身に付設されている導電チェック用の端子を介して、 それ自身が接続 している導電性塗布パターン 4の両端間に所定の «J£を印加する。 次に、 その印 加した電圧によって導電性塗布パターン 4に流れる電流の大きさである電流値を 測定する。 そして、 その測定した電流値を電流値データとして最寄りの中継基地 局端末 7に無線送信する。 そのとき、 予めメモリなどに言己録されているセンサネ ット端末 5自身の識別情報又は位置情報を電流値データに含めるものとする。 電 流値データの送信が完了すると、 再 電力モードに戻る。
次に、 中継基地局端末 7は、 電流値データの受信及ぴ送信を行う (ステップ S 2 0 2 ) 。 電流値データの受信は、 主として、 その電流値データを測定、 送信す るセンサネット端末 5から行う。 ただし、 他の中継基地局端末 7が出力する電波 の強度が十分でなく、 その電波がトンネル 1の外部のルート基地局端末 8まで到 達できない場合があり、 その場合には中継のために他の中継基地局端末 7から電 流値データを受信する。 電流値データの送信は、 基本的には、 ルート基地局端末 8に対して行う。 ただし、 中継基地局端末 7が出力する電波の強度が十分でなく 、 その電波がトンネル 1の外部のルート基地局端末 8まで到達できなレヽ場合があ り、 その場合には中継のために他の中継基地局端末 7に電流値データを送信する 。 いずれにしても、 中継基地局端末 7は、 センサネット端末 5が送信した電流値 データを受信又は中継してルート基地局端末 8に無線送信する機能を持つ。 続いて、 ルート基地局端末 8は、 中継基地局端末 7から電流値データを受信し 、 その受信した電流値データをネットワーク 3を介して遠隔監視装置 9に送信す る (ステップ S 2 0 3 ) 。 ルート基地局端末 8は、 トンネル 1から離れた場所に 設置され、 トンネル 1が崩壊しても安全が確保され、 トンネル 1を監視する機能 を継続できるものとする。 従って、 電流値データを収集、 中継する機能だけでな く、 他の機能を持たせてもよレ、。 例えば、 所定の監視時間が経過しても、 トンネ ル 1の内部に設置された中継基地局端末 7から電流値データを受信できないとき には、 トンネル 1に何らかの問題が発生したものと認識し、 遠隔監視装置 9に警 報情報を送信するようにしてもよい。
遠隔監視装置 9においては、 ネットワーク接続手段 9 1がルート基地局端末 8 力 ら送信された電流値データをネットワーク 3を介して受信し、 その受信した電 流値データを電流値データ蓄積手段 9 2が記録、 蓄積する (ステップ S 2 0 4 ) 次に、 ひび割れ箇所推定手段 9 3によって、 電流値データ蓄積手段 9 2に蓄積 された電流値データのチェック処理が行われる。 具体的には、 1つの格子を形成 する導電性塗布パターン 4に接続されたセンサネット端末 5のグループごとに最 近測定された電流値と、 所定の閾値との比較によって行われる (ステップ S 2 0 5 ) 。 内壁面 2にひび割れが発生し、 導電性塗布パターン 4の少なくとも一部が 切断されたときには、 その電気抵抗値が大きくなるので、 その電流値は逆に小さ くなる。 従って、 所定の閾値以下又は未満の電流値データがある力否かをチエツ クする (ステップ S 2 0 6 ) 。 なお、 ー且チェックされた電流値データは、 消去 してもよいし、 別途時間的変ィ匕の傾向などを調查するためにそのまま記録してお いてもよい。
所定の閾値以下又は未満の電流値データがあれば (ステップ S 2 0 6の Y e s ) 、 内壁面 2にひび割れが発生していると推定し、 内壁面 2におけるひぴ割れ箇 所の推定を行う (ステップ S 2 0 7 ) 。 具体的には、 1つの格子を形成する導電 性塗布パターン 4に接続されたセンサネット端末 5の電流値データから、 所定の 閾値以下又は未満の電流値を測定したセンサネット端末 5の識別情報又は位置情 報 (以下、 特定情報という) を抽出する。 その抽出した特定情報を X方向と、 Y 方向とに分類する。 その X方向の特定情報の 1つによって特定される導電性塗布 パターン 4と、 その Y方向の特定情報の 1つによって特定される導電性塗布パタ ーン 4とが交差する部分が、 ひぴ割れ箇所であると推定することができる。 例え ば、 第 4図において、 X方向では、 セット S X 5及び S X 6の電流値データが閾 値以下であり、 Y方向では、 セット S Y 3乃至 S Y 6の電流値データが閾値以下 であるとすれば、 セット S X 5及び S X 6の導電†生塗布パターン 4と、 セット S Y 3乃至 S Y 6の導電性塗布パターン 4とが交差する部分 Rを、 ひぴ割れが発生 した可能性のある範囲として推定することができる。 そして、 ひび割れ箇所推定 手段 9 3が推定したひび割れ箇所を、 ひび割れ箇所表示手段 9 4に表示する (ス テツプ S 2 0 8 ) 。 例えば、 第 4図のようなデータがひび割れ箇所表示手段 9 4 に表示される。 このとき、 アラームを鳴らすことによって、 トンネルの管理者な どに対してひび割れ箇所表示手段 9 4を見るように促してもよい。
これによつて、 トンネルの管理者は、 遠隔監視装置 9 ( ひぴ割れ箇所表示手段 9 4を見ることによって、 ひび割れの発生及び推定されるひび割れ箇所を知るこ とができる。 また、 実際にトンネル 1の内壁面 2を点検、 保守するとき、 その表 示データの印刷物を携帯することによって、 推定される ぴ割れ箇所を重点的に 点検することができる。
なお、—ステップ S 2 0 6において所定の閾値以下又は 満の電流値データがな ければ (ステップ S 2 0 6の N o ) 、 その時点ではひぴ害!]れ箇所はないものと認 識し、 遠隔監視装置 9は処理を終了する。
以上本発明の実施の形態について説明したが、 第 2図に示す各端末及び装置の それぞれで実行されるプログラムをコンピュータによる崈み取り可能な記録媒体 に記録し、 この記録媒体に記録されたプログラムをコンヒ。ユータシステムに読み 込ませ、 実行することにより、 本発明の実施の形態に係る トンネル落盤監視シス テムが実現されるものとする。 ここでいうコンピュータシステムとは、 O S (
Operating System) などのソフトウェアや周辺機器など ハードウエアを含むも のである。
《その他の実施の形態 >
以上本発明について好適な実施の形態について一例を示したが、 本発明は前記 実施の形態に限定されず、 本発明の趣旨を逸脱しない範困で適宜変更が可能であ る。 例えば、 以下のような実施の形態が考えられる。
( 1 ) 前記実施の形態では、 トンネル 1の内壁面 2に導電性塗料を塗布すること によって形成される導電性塗布パターン 4を記載したが、 導電性シートを使用し てもよい。
( 2 ) 前記実施の形態では、 センサネット端末 5が送信するデータを、 電流値デ ータとして記載したが、 電気抵抗値であってもよいし、 霞流値や電気抵抗値と所 定の閾値との比較結果 (O K/N G) であってもよい。 また、 電流値や電気抵抗 値に所定の計算を施すことによって得られる計算値であってもよい。 更に、 電流 値や電気抵抗値が急に変化したことを通知するデータであってもよい。
( 3 ) 前記実施の形態では、 センサネット端末 5に電力を供給する方法として、 グランド用及び電源用の導電性塗布パターンによる方法を記載したが、 センサネ ット端末 5自身に電源を持たせてもよレ、。 例えば、 円筒形ボタン電池ケースや、 蓄電池を含む振動発電素子などを備えさせることが考えられる。
( 4) 前記実施の形態では、 トンネル謹監視システムについて記載したが、 そ のシステムをいわゆる土木構造物の壁面のひぴ割れを監視する土木構造物破損監 視システムに適用してもよい。 例えば、 橋梁やプラント建造物に適用することが 考えられる。 この場合、 日照条件がよい壁面などにセンサネット端末 5を設置す るときには、 センサネット端末 5の電源として蓄電池を含む太陽電池パネルを使 用することができる。 産業上の利用可能性
本発明によると、 例えば、 トンネルの内壁面などに複数の導通線が縦横の格子 状に設置されるので、 ひび割れが発生したときに、 その発生箇所を通過している 縦方向の導通線及び横方向の導通線の少なくとも一部が切断され、 例えば、 それ らの導通線の電流値データが小さくなる。 従って、 ひび割れ箇所の推定範囲を狭 めることができ、 内壁面の点検作業を効率的力つ重点的に行うことが可能になる。 また、 内壁面の広い範囲に導通線を設置することによって、 広い範囲におけるひ ぴ割れの発生及ぴ推定されるひび割れ箇所を知ることができる。
更に、 本発明によると、 センサネット端末と、 中継基地局端末と、 基地局端末 との間は、 無線通信によってデータの送受信を行う。 また、 中 基地局端末は、 例えば、 トンネルの換気扇や照明灯などの既存施設に設置され、 その中継基地局 端末に対する電力供給は電灯線などの既存電源によって行われる。 従って、 端末 間の有線接続や新たなる電源の設置などの作業が不要であり、 設置作業の負担を 節減することができる。

Claims

請求の範囲
1 . トンネルの内壁面におけるひび割れの発生を監視し、 そのひび割れが発生し た箇所を推定するトンネル 監視システムであって、
前記トンネル落盤監視システムは、 前記トンネルの内壁面に密着するように設 置される複数の導通線と、 その導通線の両端に接続するように設置されるセンサ ネット端末と、 前記トンネルの外部に設置され、 ネ トワークを介して相互接続 される基地局端末及び遠隔監視装置とから構成され、
前記複数の導通線は、 前記導通線が所定の方向へ平行に並ぶように複数配置さ れた第 1の導通線群と、 その第 1の導通線群に交差するように、 前記導通線が前 記所定の方向と異なる方向へ に並ぶように複数配置された第 2の導通線群と から構成され、
前記センサネット端末は、 前記導通線の両端に接続される少なくとも 2つ 1糸且 の端子と、 前記基地局端末と無線通信を行う第 1のアンテナと、 前記端子を介し て前記導通線の両端間に所定の電圧を印加し、 その印加した電圧によつて前記導 通線に流れる電流の大きさを示す電流値を測定し、 その浪【J定した電流値又はその 電流値に所定の計算を施すことによって得られる計算値をセンサデータとして前 記基地局端末に前記第 1のアンテナを介して送信する第 1の制御手段とから構成 され、
.前記基地局端末は、 前記センサネット端末と無線通信を行う第 2のアンテナと 、 前記ネットワークと接続する第 1のネットワーク接続手段と、 前記第 2のアン テナを介して前記センサネット端末から前記センサデータを受信し、 その受信し たセンサデータを前記第 1のネットワーク接続手段及び前記ネットワークを介し て前記遠隔監視装置に送信する第 2の制御手段とから構成され、
前記遠隔監視装置は、 前記ネットワークと接続する第 2のネットワーク接続手 段と、 前記ネットワーク及ぴ前記第 2のネットワーク接続手段を介して前記基地 局端末からセンサデータを受信し、 その受信したセンサデータを蓄積するセンサ データ蓄積手段と、 その蓄積したセンサデータを入力し、 その入力したセンサデ ータと所定の閾値とを比較することによってその一部が切断されたと推定される 少なくとも 2つの前記導電線が交差する部分をひび割れが発生している箇所とし て推定するひび割れ箇所推定手段とから構成される
ことを特徴とするトンネル ¾監視システム。
2 . トンネルの内壁面におけるひび割れの発生を監視し、 そのひぴ割れが発生し た箇所を推定するトンネル落盤監視システムであって、
前記トンネル落盤監視システムは、 U字形を成して前記トンネルの内壁面に密 着するように設置される複数の導通線と、 その導通線の両端に接続するように設 置されるセンサネット端末と、 前記トンネルの外部に設置され、 ネットワークを 介して相互接続される基地局端末及び遠隔監視装置と ら構成され、
前記複数の導通線は、 前記導通線が所定の方向へ術に並ぶように複数配置さ れた第 1の導通,暫と、 その第 1の導通線群に交差するように、 前記導通線が前 記所定の方向と異なる方向へ 亍に並ぶように複数配置された第 2の導通線群と から構成され、
前記センサネット端末は、 前記導通線の両端に接続される少なくとも 2つ 1組 の端子と、 前記基地局端末と無線通信を行う第 1のアンテナと、 前記端子を介し て前記導通線の両端間に所定の電圧を印加し、 その印 ί7口した電圧によつて前記導 通線に流れる電流の'大きさを示す電流値データを測定し、 その測定した電流値デ ータを前記基地局端末に前記第 1のアンテナを介して送信する第 1の制御手段と から構成され、
前記基地局端末は、 前記センサネット端末と無線通信を行う第 2のアンテナと 、 前記ネットワークと接続する第 1のネットワーク接続手段と、 前記第 2のアン テナを介して前記センサネット端末から前記電流値データを受信し、 その受信し た電流値データを前記第 1のネットワーク接続手段及び前記ネットワークを介し て前記遠隔監視装置に送信する第 2の制御手段とから構成され、
前記遠隔監視装置は、 前記ネットワークと接続する第 2のネットワーク接続手 段と、 前記ネットワーク及び前記第 2のネットワーク接続手段を介して前記基地 局端末から電流値データを受信し、 その受信した電流値データを蓄積する電流値 データ蓄積手段と、 その蓄積した電流値データを入力、 参照し、 所定の閾値以下 又は未満の電流値データが測定された少なくとも 2つの前記導電線が交差する部 分をひぴ割れが発生している箇所として推定するひび割れ箇所推定手段と、 その 推定したひび割れ箇所を表示するひび割れ箇所表示手段とから構成される ことを特徴とするトンネル落盤監視システム。
3 . 前記トンネル落盤監視システムは、 更に、 前記トンネルの内部に設置される 中継基地局端末を備え、
前記センサネット端末の前記第 1の制御手段は、 前記測定した電流値データを 前記中継基地局端末に送信し、
前記中継基地局端末は、 前記センサネット端末及び他の中継基地局端末と無線 通信を行う第 3のアンテナと、 前記第 3のアンテナを介して、 前記センサネット 端末及び他の中継基地局端末から前記電流値データを受信し、 その受信した電流 値データを更に他の中継基地局端末又は前記基地局端末に送信する第 3の制御手 段とから構成される
ことを特徴とする請求の範囲第 2項に記載のトンネノレ ¾監視システム。
4. 前記導通線は、 導電性塗料の塗布又は導電性シートの貼付によつて形成され ることを特徴とする請求の範囲第 2項又は第 3項に記載のトンネル落盤監視シス テム。
5 . 前記第 1の導通線群と、 前記第 2の導通線群とは、 相互に直交するように配 置されるこ-とを特徴とする請求の範囲第 2項又は第 3項に記載のトンネル落盤監 視システム。
6 . 前記トンネル落盤監視システムは、 ひぴ割れ箇所を推定するために測定する データとして、 前記導通線の電流値データの代わりに、 前記導通線の電気抵抗値 データを使用することを特徴とする請求の範囲第 2項又は第 3項に記載のトンネ ル落盤監視システム。
7. 前記トンネル落盤監視システムは、 更に、 前記トンネルの内壁面に密着する ように設置される電力供給用導通線を備え、
前記電力供給用導通線は、 グランド用導通線と、 電源用導通線と、 そのグラン ド用導通線と電源用導通線との間に所定の電圧を印加する電源装置とから構成さ れ、
前記センサネット端末は、 更に、 前記グランド用導通線及び電源用導通線に接 続される 2つ 1組の端子を備える
ことを特徴とする請求の範囲第 2項又は第 3項に記載の トンネル落盤監視シス テム。
8. 前記センサネット端末は、 更に、 電源として、 電池及び振動発電素子の少な くとも 1つを備えることを特徴とする請求の範囲第 2項又は第 3項に記載のトン ネル落盤監視システム。
9. トンネルの內壁面に密着するように設置され、 相互に交差する複数の導通線 と、 その導通線の両端に接続するように設置されるセンサネット端末と、 前記ト ンネルの内部に設置される中継基地局端末と、 前記トンネノレの外部に設置され、 ネットワークを介して相互接続される基地局端末及び遠隔監視装置とから構成さ れるトンネル落盤監視システムにおけるトンネル落盤監視方法であって、 前記センサネット端末が、
前記導通線の両端間に所定の電圧を印加し、 その印加した flffiによつて前記導 通線に流れる電流の大きさを示す電流値を測定するステップと、
その測定した電流値又はその電流値に所定の計算を施すことによつて得られる 計算値をセンサデータとして前記基地局端末に直接又は前言己中継基地局端末を介 して送信するステップと、
前記基地局端末が、
前記センサネット端末から直'接又は前記中継基地局端末を介して前記センサデ ータを受信するステップと、
その受信したセンサデ一タを前記ネットワークを介して前記遠隔監視装置に送 信するステップと、
前記遠隔監視装置が、
前記基地局端末から前記ネットワークを介してセンサデータを受信し、 その受 信したセンサデータを蓄積するステップと、
その蓄積したセンサデータを入力し、 その入力したセンサデータと所定の閾値 とを比較することによってその一部が切断されたと推定される少なくとも 2つの 前記導 ®^が交差する部分をひび割れが発生している箇所として推定するステツ プと、 を含むことを特徴とするトンネル落盤監視システムにおけるトンネル 監視 方法。
1 0 . U字形を成してトンネルの内壁面に密着するように設置され、 相互に交差 する複数の導通線と、 その導通線の両端に接続するように設置されるセンサネッ ト端末と、 前記トンネルの內部に設置される中継基地局端末と、 前記トンネルの 外部に設置され、 ネットワークを介して相互接続される基地局端末及び遠隔監視 装置とから構成されるトンネル落盤監視システムに'おけるトンネル落盤監視方法 であって、'
前記センサネット端末が、
前記導通線の両端間に所定の電圧を印加し、 その印カロした電圧によって前記導 通線に流れる電流の大きさを示す電流値データを測定するステップと、
その測定した電流値データを前記基地局端末に直接又は前記中継基地局端末を 介して送信するステップと、
前記基地局端末が、
前記センサネット端末から直接又は前記中継墓地局端末を介して前記電流値デ ータを受信するステップと、
その受信した電流値データを前記ネットワークを介して前記遠隔監視装置に送 信するステップと、
前記遠隔監視装置が、
前記基地局端末から前記ネットワークを介して電流値データを受信し、 その受 信した電流値データを蓄積するステップと、 '
その蓄積した電流値データを入力、 参照し、 所定の閾値以下又は未満の電流値 データが測定された少なくとも 2つの前記導電線が交差する部分をひび割れが発 生している箇所として推定するステップと、
その推定したひび割れ箇所を表示するステツプと、
を含むことを特徴とするトンネル落盤監視システムにおけるトンネル ¾監視 方法。
1 1 . 土木構造物の壁面におけるひぴ割れの発生を監視し、 そのひび割れが発生 した箇所を推定する土木構造物破損監視システムであって、 前記土木構造物破損監視システムは、 前曾己土木構造物の壁面に密着するように 設置される複数の導通線と、 その導通線の两端に接続するように設置されるセン サネット端末と、 前記土木構造物の外部に設置され、 ネットワーク.を介して相互 接続される基地局端末及び遠隔監視装置とカ ら構成され、
前記複数の導通線は、 前記導通線が所定 方向へ ffに並ぶように複数配置さ れた第 1の導通線群と、 その第 1の導通線群に交差するように、 前記導通線が前 記所定の方向と異なる方向へ ffiに並ぶように複数配置された第 2の導通線群と から構成され、
前記センサネット端末は、 前記導通線の两端に接続される少なくとも 2つ 1組 の端子と、 前記基地局端末と無線通信を行う第 1のアンテナと、 前記端子を介し て前記導通線の両端間に所定の電圧を印加し、 その印加した電圧によつて前記導 通線に流れる電流の大きさを示す電流値を測定し、 ぞの測定した電流値又はその 電流値に所定の計算を施すことによって得られる計算値をセンサデータとして前 記基地局端末に前記第 1のアンテナを介して送信する第 1の制御手段とから構成 され、
前記基地局端末は、 前記センサネット端 と無線通信を行う第 2のアンテナと 、 前記ネットワークと接続する第 1のネットワーク接続手段と、 前記第 2のアン テナを介して前記センサネット端末から前己センサデータを受信し、 その受信し たセンサデ一タを前記第 1のネットワーク換続手段及ぴ前記ネットワークを介し て前記遠隔監視装置に送信する第 2の制御 段とから構成され、
前記遠隔監視装置は、 前記ネットワークと接続する第 2のネットワーク接続手 段と、 前記ネットワーク及び前記第 2のネゾトワーク接続手段を介して前記基地 局端末からセンサデータを受信し、 その受信したセンサデータを蓄積するセンサ データ蓄積手段と、 その蓄積したセンサデータを入力し、 その入力したセンサデ —タと所定の閾値とを比較することによってその一部が切断されたと推定される 少なくとも 2つの前記導電線が交差する部分をひび割れが発生している箇所とし て推定するひび割れ箇所推定手段とから構成される
ことを特徴とする土木構造物破損監視システム。
1 2 . 土木構造物の壁面におけるひび割れの努生を監視し、 そのひぴ割れが発生 した箇所を推定する土木構造物破損監視システムであって、
前記土木構造物破損監視システムは、 U字形を成して前記土木構造物の壁面に 密着するように設置される複数の導通線と、 その導通線の両端に接続するように 設置されるセンサネット端末と、 前記土木構造物の外部に設置され、 ネットヮー クを介して相互接続される基地局端末及び遠隔監視装置とから構成され、 前記複数の導通線は、 前記導通線が所定の方向へ TOに並ぶように複数配置さ れた第 1の導通 »と、 その第 1の導通線群に交差するように、 前記導通錄が前 記所定の方向と異なる方向へ TOに並ぶように複数配置された第 2の導通, と から構成され、
前記センサネット端末は、 前記導通線の両端に接続される少なくとも 2つ 1組 の端子と、 前記基地局端末と無線通信を行う第 1のアンテナと、 前記端子を介し て前記導通線の両端間に所定の電圧を印加し、 その印加した電圧によつて前記導 通線に流れる電流の大きさを示す電流値データを測定し、 その測定した電流値デ →を前記基地局端末に前記第 1のァンテナを介して送信する第 1の制御手段と 力 ら構成され、
前記基地局端末は、 前記センサネット端末と無線通信を行う第 2のアンテナと 、 前記ネットワークと接続する第 1のネットワーク接続手段と、 前記第 2のアン テナを介して前記センサネット端末から前記電流値データを受信し、 その受信し た電流値データを前記第 1のネットワーク接続手段及び前記ネットワークを介し て前記遠隔監視装置に送信する第 2の制御手段とから構成され、
前記遠隔監視装置は、 前記ネットワークと接続する第 2のネットワーク接続手 段と、 前記ネットワーク及び前記第 2のネッ トワーク接続手段を介して前記基地 局端末から電流値データを受信し、 その受信した電流値データを蓄積する電流値 データ蓄積手段と、 その蓄積した電流値データを入力、 参照し、 所定の閾値以下 又は未満の電流値データが測定された少なくとも 2つの前記導電線が交差する部 分をひび割れが発生している箇所として推定するひび割れ箇所推定手段と、 その 推定したひび割れ箇所を表示するひび割れ箇所表示手段とから構成される ことを特徴とする土木構造物破損監視システム。
1 3 . 前記土木構造物は、 橋梁であることを特徴とする請求の範囲第 1 1項又は 第 1 2項に記載の土木構造物破損監視システム。
1 4. 前記土木構造物は、 プラント建造物であることを特徴とする請求の範囲第 1 1項又は第 1 2項に記載の土木構造物破損監視システム。
PCT/JP2003/012571 2003-10-01 2003-10-01 トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム WO2005033475A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005509304A JPWO2005033475A1 (ja) 2003-10-01 2003-10-01 トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム
PCT/JP2003/012571 WO2005033475A1 (ja) 2003-10-01 2003-10-01 トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012571 WO2005033475A1 (ja) 2003-10-01 2003-10-01 トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム

Publications (1)

Publication Number Publication Date
WO2005033475A1 true WO2005033475A1 (ja) 2005-04-14

Family

ID=34401444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012571 WO2005033475A1 (ja) 2003-10-01 2003-10-01 トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム

Country Status (2)

Country Link
JP (1) JPWO2005033475A1 (ja)
WO (1) WO2005033475A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191169A (ja) * 2008-05-12 2008-08-21 Railway Technical Res Inst 亀裂監視材及び亀裂監視システム
JP2009031189A (ja) * 2007-07-30 2009-02-12 Railway Technical Res Inst トンネルのひび割れ位置検知システム
JP2009063532A (ja) * 2007-09-10 2009-03-26 Ihi Corp 亀裂検出装置
JP2009204564A (ja) * 2008-02-29 2009-09-10 Atlus:Kk 鋼製橋の損傷発生・進展のモニタリング方法
JP2013078235A (ja) * 2011-09-30 2013-04-25 Asahi Kasei Corp リチウムイオンキャパシタを用いた電源装置、及び無線通信機器
CN105765374A (zh) * 2014-07-25 2016-07-13 西日本高速道路工程四国株式会社 隧道衬砌面调査系统以及用于隧道衬砌面调査系统的车辆
JP2017111119A (ja) * 2015-11-09 2017-06-22 ザ・ボーイング・カンパニーThe Boeing Company 接合コンポーネントの構造健全性を監視するシステム及び方法
CN107905845A (zh) * 2017-10-19 2018-04-13 秦士杰 具有定位报警功能的隧道支撑结构
CN110017152A (zh) * 2019-03-23 2019-07-16 新汶矿业集团有限责任公司孙村煤矿 一种地下工程极破碎围岩分步注浆加固方法
JP2019124528A (ja) * 2018-01-15 2019-07-25 大日本印刷株式会社 検知センサ
CN110671128A (zh) * 2019-09-19 2020-01-10 中铁第四勘察设计院集团有限公司 一种矿山法隧道二次衬砌力学状态的评估方法
CN111024778A (zh) * 2018-10-10 2020-04-17 中铁一局集团有限公司 一种隧道二衬预防空洞检测系统及其运行控制方法
CN114858079A (zh) * 2022-05-23 2022-08-05 青岛益群地下城开发有限公司 基于分布式多点应变与位移转换网络的隧道变形监测方法
CN116828577A (zh) * 2023-08-31 2023-09-29 北京博瑞翔伦科技发展有限公司 一种电力隧道传感器网络单元数据处理方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644743B2 (ja) * 1985-09-30 1994-06-08 日本電気株式会社 マルチチヤネルアクセスシステムの監視制御方式
JPH0815208A (ja) * 1994-06-30 1996-01-19 Mitsubishi Heavy Ind Ltd 複合材料損傷検知システム
JP2001174429A (ja) * 1999-12-14 2001-06-29 Shunnosuke Shimano 構造物劣化検知システム
JP2001201477A (ja) * 1999-11-09 2001-07-27 Horyo Sangyo Kk 構造物保全支援システム
JP2001306670A (ja) * 2000-04-26 2001-11-02 B M C:Kk 構造物の維持経営システム、維持経営方法、およびそのコンテンツファイル記憶装置
JP2002038723A (ja) * 2000-07-26 2002-02-06 Suzuko Oshita 鉄骨・鉄筋コンクリート造建築物のリアルタイムライフサイクルメンテナンス手法
JP2002217814A (ja) * 2001-01-15 2002-08-02 Toshiba Eng Co Ltd 無線通信システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644743B2 (ja) * 1985-09-30 1994-06-08 日本電気株式会社 マルチチヤネルアクセスシステムの監視制御方式
JPH0815208A (ja) * 1994-06-30 1996-01-19 Mitsubishi Heavy Ind Ltd 複合材料損傷検知システム
JP2001201477A (ja) * 1999-11-09 2001-07-27 Horyo Sangyo Kk 構造物保全支援システム
JP2001174429A (ja) * 1999-12-14 2001-06-29 Shunnosuke Shimano 構造物劣化検知システム
JP2001306670A (ja) * 2000-04-26 2001-11-02 B M C:Kk 構造物の維持経営システム、維持経営方法、およびそのコンテンツファイル記憶装置
JP2002038723A (ja) * 2000-07-26 2002-02-06 Suzuko Oshita 鉄骨・鉄筋コンクリート造建築物のリアルタイムライフサイクルメンテナンス手法
JP2002217814A (ja) * 2001-01-15 2002-08-02 Toshiba Eng Co Ltd 無線通信システム

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031189A (ja) * 2007-07-30 2009-02-12 Railway Technical Res Inst トンネルのひび割れ位置検知システム
JP2009063532A (ja) * 2007-09-10 2009-03-26 Ihi Corp 亀裂検出装置
JP2009204564A (ja) * 2008-02-29 2009-09-10 Atlus:Kk 鋼製橋の損傷発生・進展のモニタリング方法
JP2008191169A (ja) * 2008-05-12 2008-08-21 Railway Technical Res Inst 亀裂監視材及び亀裂監視システム
JP2013078235A (ja) * 2011-09-30 2013-04-25 Asahi Kasei Corp リチウムイオンキャパシタを用いた電源装置、及び無線通信機器
CN105765374B (zh) * 2014-07-25 2020-04-10 西日本高速道路工程四国株式会社 隧道衬砌面调査系统以及用于隧道衬砌面调査系统的车辆
CN105765374A (zh) * 2014-07-25 2016-07-13 西日本高速道路工程四国株式会社 隧道衬砌面调査系统以及用于隧道衬砌面调査系统的车辆
JP2017111119A (ja) * 2015-11-09 2017-06-22 ザ・ボーイング・カンパニーThe Boeing Company 接合コンポーネントの構造健全性を監視するシステム及び方法
CN107905845A (zh) * 2017-10-19 2018-04-13 秦士杰 具有定位报警功能的隧道支撑结构
JP2019124528A (ja) * 2018-01-15 2019-07-25 大日本印刷株式会社 検知センサ
CN111024778A (zh) * 2018-10-10 2020-04-17 中铁一局集团有限公司 一种隧道二衬预防空洞检测系统及其运行控制方法
CN110017152A (zh) * 2019-03-23 2019-07-16 新汶矿业集团有限责任公司孙村煤矿 一种地下工程极破碎围岩分步注浆加固方法
CN110671128A (zh) * 2019-09-19 2020-01-10 中铁第四勘察设计院集团有限公司 一种矿山法隧道二次衬砌力学状态的评估方法
CN110671128B (zh) * 2019-09-19 2020-12-29 中铁第四勘察设计院集团有限公司 一种矿山法隧道二次衬砌力学状态的评估方法
CN114858079A (zh) * 2022-05-23 2022-08-05 青岛益群地下城开发有限公司 基于分布式多点应变与位移转换网络的隧道变形监测方法
CN116828577A (zh) * 2023-08-31 2023-09-29 北京博瑞翔伦科技发展有限公司 一种电力隧道传感器网络单元数据处理方法和系统
CN116828577B (zh) * 2023-08-31 2023-11-10 北京博瑞翔伦科技发展有限公司 一种电力隧道传感器网络单元数据处理方法和系统

Also Published As

Publication number Publication date
JPWO2005033475A1 (ja) 2006-12-14

Similar Documents

Publication Publication Date Title
WO2005033475A1 (ja) トンネル落盤監視システム、トンネル落盤監視方法及び土木構造物破損監視システム
US8618934B2 (en) Autonomous sensing module, a system and a method of long-term condition monitoring of structures
US9829396B2 (en) Surface-mounted monitoring system
CA2596212C (en) A moisture monitoring system for buildings
JP2008233031A (ja) 漏水検知システム
US10505831B2 (en) Sensor network system and operational method of the same
KR101190994B1 (ko) 지능형 전력 기기 기반 유비쿼터스 빌딩 에너지 관리 시스템
WO2019244164A1 (en) Waterproofing membrane with leak detection system and method thereof
WO2016135688A1 (en) Structural integrity monitoring device and method based on wireless sensor network
JP2013072749A (ja) 太陽電池パネルを用いた環境情報収集装置
JP2010054440A (ja) 等電位接続と基礎杭アース板への現場サージ電流放電実験検査方法及び放電試験装置並びに放電監視方法
CN109564799B (zh) 布线片材、片材状系统、以及构造物运用支援系统
JP7126114B2 (ja) 表示システム、表示方法
WO2005106150A1 (ja) ノイズ侵入防止ビルディング構造
JP2003050620A (ja) 機器監視システム
JP5704968B2 (ja) 太陽光発電システムおよびその点検方法
JP2015176524A (ja) 建築足場用侵入検知システム
US20190227112A1 (en) Device, system and method for indicating and predicting a status of an outdoor object
CN114384352B (zh) 基于地线电磁信号的架空线路覆冰监测方法及装置
JP2017003371A (ja) ひずみセンサ、および監視システム
JP4442808B2 (ja) 建物屋上防水層の劣化診断方法
JP2016045136A (ja) 金属線でなるセンサーの製造方法、結露監視システム、結露監視方法、及び、結露監視プログラム
JP2008177062A (ja) 塩害監視システム
JP2021092897A (ja) 災害警告システム
JP2021173693A (ja) 埋め込み型漏水検知通報装置、断熱材、防水構造物および漏水を検知する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005509304

Country of ref document: JP