WO2005032818A1 - 生分解性積層シ−ト - Google Patents

生分解性積層シ−ト Download PDF

Info

Publication number
WO2005032818A1
WO2005032818A1 PCT/JP2004/014241 JP2004014241W WO2005032818A1 WO 2005032818 A1 WO2005032818 A1 WO 2005032818A1 JP 2004014241 W JP2004014241 W JP 2004014241W WO 2005032818 A1 WO2005032818 A1 WO 2005032818A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
laminated sheet
layer
resin
mass
Prior art date
Application number
PCT/JP2004/014241
Other languages
English (en)
French (fr)
Inventor
Yosuke Egawa
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to EP20040788307 priority Critical patent/EP1671786B1/en
Priority to US10/595,261 priority patent/US7235287B2/en
Publication of WO2005032818A1 publication Critical patent/WO2005032818A1/ja
Priority to KR1020067006336A priority patent/KR101118326B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/62Boxes, cartons, cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a biodegradable laminated sheet, a molded product using the sheet, and a method for producing the same.
  • plastic products and the like are generally disposable, and there is a problem of disposal such as incineration or landfill when used and disposed.
  • resins such as polyethylene, polypropylene, and polystyrene generate a large amount of heat during combustion and may damage the incinerator during the combustion process. Occurs.
  • these plastic products have high chemical stability, are hardly decomposed in the natural environment, remain semi-permanently in the soil, and quickly saturate the capacity of the landfill site. .
  • it will damage the landscape and destroy the living environment such as marine life.
  • biodegradable materials have been actively performed.
  • One of the biodegradable materials that have attracted attention is polylactic acid-based resin. Since this polylactic acid-based resin is biodegradable, it hydrolyzes naturally in soil or water and becomes a harmless degradation product by microorganisms. Also, since the amount of heat of combustion is small, even if it is incinerated, the furnace will not be damaged. Furthermore, since the starting material is derived from plants, it also has features such as the ability to withdraw from dying petroleum resources.
  • polylactic acid-based resins have been unsuitable for use at high temperatures, such as containers for heating foods with low heat resistance and containers for pouring boiling water.
  • a storage, a truck being transported when storing or transporting a sheet made of polylactic acid-based resin or a molded article thereof, a storage, a truck being transported, However, the interior of the ship often reaches a high temperature during the period, causing problems such as deformation and fusion.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-193165
  • Patent document 2 JP 2003-147177 publicity
  • the molded polylactic acid is crystallized in the mold, so that the molded body must be held in the mold while the crystallization is completed.
  • the molding cycle is longer than the molding and the production cost is higher. Also, it is necessary to heat the mold
  • Heating equipment is also required.
  • the present invention provides excellent heat resistance and impact resistance that do not cause environmental problems, has sufficient strength when a load is applied at a high temperature, and has a shape called a "bridge". It is an object of the present invention to provide a biodegradable laminated sheet that does not have the above-mentioned problems and has good moldability of a deep drawn molded product or a blister having a complicated shape, and a molded article obtained from the biodegradable laminated sheet.
  • the present invention is a laminated sheet comprising at least two layers, wherein each layer constituting the laminated sheet has a polylactic acid-based resin of 75 to 25% by mass, a glass transition temperature of 0 ° C or less, Melting point before Polyester resin which is higher than the glass transition temperature of the polylactic acid resin and not higher than the melting point of the polylactic acid resin. Polyester resin 25-75% by mass.
  • the content of D-lactic acid in the polylactic acid-based resin contained in one layer constituting the laminated sheet is defined as Da (%)
  • the polylactic acid contained in the other layer constituting the laminated sheet is Da (%).
  • the laminated sheet according to the present invention is composed of a polylactic acid-based resin and a polyester-based resin, and thus does not cause environmental problems.
  • the laminated sheet of the present invention is composed of a layer containing 7% or less of D-lactic acid and a layer containing at least 3% more of D-lactic acid.
  • the layer with a lower D-lactic acid content will crystallize immediately and the layer with a higher D-lactic acid content will crystallize sooner.
  • the mold is set near the crystallization temperature of the polylactic acid-based resin (80 ° C). It is possible to mold with a normal temperature mold that does not require crystallization while maintaining the temperature at 130 ° C), a molded article having heat resistance can be obtained, and molding in a normal molding cycle is possible.
  • the laminated sheet also has a layer in which crystallization hardly occurs, it is possible to obtain a deep-drawn molded article or a molded article such as a blister having a complicated shape.
  • the obtained laminated sheet and its molded product have heat resistance, impact resistance and In addition, the moldability is excellent, and the strength when a load is applied at a high temperature is also sufficient, and a defect of a sheet-like material called a “bridge” also occurs.
  • Tg glass transition temperature
  • FIG. 1 is a graph showing an example of the relationship between dynamic viscoelasticity ( ⁇ ′) and temperature of a biodegradable laminated sheet according to the present invention.
  • the biodegradable laminated sheet according to the present invention is a laminated sheet including at least two layers.
  • Each layer constituting the laminated sheet is composed of a resin composition containing a polylactic acid-based resin and a predetermined polyester-based resin.
  • the polylactic acid-based resin is a polymer obtained by polycondensing a monomer containing lactic acid as a main component.
  • the lactic acid includes two types of optical isomers, L-lactic acid and D-lactic acid, and the crystallinity differs depending on the ratio of these two types of structural units. For example, in a random copolymer having a ratio of L-lactic acid to D-lactic acid of about 80: 20-20: 80, there is no crystallinity, and a transparent completely amorphous polymer that softens at a glass transition temperature of around 60 ° C. It becomes.
  • a random copolymer having a ratio of L-lactic acid to D-lactic acid of approximately 100: 0 to 80:20 or 20:80 to 0:10 has crystallinity.
  • the degree of crystallinity is determined by the ratio of L-lactic acid and D-lactic acid.
  • the glass transition temperature of this copolymer is about 60 ° C. as described above. After being melt-extruded, the polymer is rapidly cooled to become an amorphous material having excellent transparency, and is slowly cooled to become a crystalline material.
  • a homopolymer composed of only L-lactic acid or D-lactic acid is a semi-crystalline polymer having a melting point of 180 ° C. or higher.
  • the polylactic acid-based resin used in the present invention includes a homopolymer having a structural unit of L-lactic acid or D-lactic acid, that is, poly (L-lactic acid) or poly (D-lactic acid), a structural unit of L-lactic acid and It refers to a copolymer that is both D-lactic acid, that is, poly (DL-lactic acid) and a mixture thereof, and also a copolymer with another hydroxycarboxylic acid or diol Z-dicarboxylic acid as a copolymer component. You can. It may also contain small amounts of chain extender residues.
  • polymerization method known methods such as a condensation polymerization method and a ring-opening polymerization method can be employed.
  • a condensation polymerization method and a ring-opening polymerization method can be employed.
  • L-lactic acid or D-lactic acid or a mixture thereof can be directly dehydrated and polycondensed to obtain polylactic acid having an arbitrary composition.
  • lactide method lactide which is a cyclic dimer of lactic acid is converted to polylactic acid using a selected catalyst while using a polymerization regulator or the like as necessary. Obtainable.
  • the other hydroxycarboxylic acid units copolymerized with polylactic acid include lactic acid Isomers (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid), glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethyl
  • Examples include bifunctional aliphatic hydroxycarboxylic acids such as butyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyl lactic acid, and 2-hydroxycaproic acid, and ratatones such as kyprolatatatone, petit-mouth ratatotone, and ole-lactone.
  • Examples of the aliphatic diol copolymerized with the polylactic acid-based polymer include ethylene darcol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecane diacid.
  • a non-aliphatic dicarboxylic acid such as terephthalic acid and a non-aliphatic polyol such as an ethylene oxide adduct of Z or bisphenol A are used as a small amount of a copolymerization component. Is also good.
  • the weight average molecular weight of the polylactic acid-based polymer used in the present invention is preferably in the range of 61,700,000, more preferably 81,400,000, and particularly preferably 100,000. 300,000. If the molecular weight is too small, practical physical properties such as mechanical properties and heat resistance tend to be hardly exhibited, while if too large, the melt viscosity tends to be too high and molding processability tends to be poor.
  • the above-mentioned predetermined polyester resin refers to a polyester resin having a specific glass transition temperature (Tg) and a melting point.
  • the glass transition temperature (Tg) of the polyester resin is preferably 0 ° C or less, more preferably 20 ° C or less. If the glass transition temperature is higher than 0 ° C, the effect of improving the impact resistance tends to be insufficient.
  • the melting point of the polyester resin is preferably 80 ° C. or higher, preferably higher than the glass transition temperature (Tg) of the polylactic acid resin to be added. If the temperature is lower than this, the heat resistance of the molded body may be insufficient.
  • the upper limit of the melting point of the polyester resin is the melting point of the polylactic acid resin to be mixed. If the melting point of the polylactic acid-based resin to be added is higher than the melting point of the polylactic acid-based resin, there is no need to crystallize the polylactic acid-based resin contained in the laminated sheet before molding, which causes problems in rigidity and moldability.
  • the melting point of the polylactic acid-based resin varies depending on the mixing ratio of the structural units L-lactic acid and D-lactic acid, but is generally about 135 ° C to 180 ° C. [0030]
  • Tg specific glass transition temperature
  • polyester resin examples include a biodegradable aliphatic polyester other than the polylactic acid resin.
  • biodegradable aliphatic polyester examples include polyhydroxycarboxylic acid and polyhydroxycarboxylic acid.
  • polyhydroxycarboxylic acid 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-arsenide Dorokishi n-butyric acid, 2-hydroxy-3, 3-dimethyl butyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyl lactic acid, 2 — Homopolymers and copolymers of hydroxycarboxylic acids such as hydroxycaproic acid.
  • Examples of the aliphatic diol include ethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecandioic acid and the like.
  • examples of the aromatic dicarboxylic acid include terephthalic acid and isophthalic acid.
  • Aliphatic polyesters obtained by condensing these aliphatic diols with aliphatic dicarboxylic acids and aliphatic aromatic polyesters obtained by condensing aliphatic diols, aliphatic dicarboxylic acids and aromatic dicarboxylic acids can be obtained by subjecting one or more of the above-mentioned compounds to polycondensation, and, if necessary, jumping up with an isocyanate compound to obtain a desired polymer.
  • Examples of the aliphatic polyester include polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate carbonate, and the like. Further, as the aliphatic aromatic polyester, polybutylene adsorbent Examples include toterephthalate and polybutylene succinate adipate terephthalate.
  • Aliphatic diol, aliphatic dicarboxylic acid, and hydroxycarboxylic acid The aliphatic diol and aliphatic carboxylic acid used in the resulting aliphatic polyester copolymer are the same as those described above.
  • Examples of the aliphatic polyester copolymer include polybutylene succinate lactic acid, polybutylene succinate adipate lactic acid, and the like.
  • the aliphatic polyester obtained by ring-opening polymerization of the cyclic ratatatones is obtained by polymerizing one or more of cyclic monomers such as ⁇ -force prolatataton, ⁇ - valerolatatone, —methyl- ⁇ - valerolatatatone, and the like.
  • Examples of the synthetic aliphatic polyester include a cyclic acid anhydride and an oxysilane, for example, a copolymer of succinic anhydride and ethylene oxide, propylene oxide, or the like.
  • Examples of the aliphatic polyester biosynthesized in the cells include aliphatic polyesters biosynthesized by acetylcoenzyme (acetyl CoA) in cells such as alkaligenes eutrophus. .
  • Aliphatic polyester biosynthesized in this cell is copolymerized with hydroxyvaleric acid (HV) in order to improve the practical properties of power plastics, which are mainly poly-j8-hydroxybutyric acid (poly 3HB). It is industrially advantageous to use a poly (3HB—CO—3HV) copolymer (a copolymer of hydroxybutylate and hydroxyvalerate).
  • the HV copolymerization ratio is preferably from 0 to 40 mol%.
  • a long-chain hydroxyalkanoate such as 3-hydroxyhexanoate, 3-hydroxyoctanoate, or 3-hydroxyoctadecanoate may be copolymerized.
  • the mixing ratio of the polylactic acid-based resin and the polyester-based resin in the resin composition is good at a mass ratio of 75-25: 25-75, and 65: 35-35: 65. .
  • the resin composition is composed of only a polylactic acid resin and a polyester resin, and the total of the polylactic acid resin and the polyester resin is 100% by mass. It is necessary.
  • the biodegradable laminated sheet according to the present invention is manufactured using the resin composition.
  • the layer structure may be a two-layer structure, a three-layer structure, or a four-layer structure. If it has a multilayer structure having at least two layers, then.
  • the content ratio Da (%) of the polylactic acid-based resin contained in one layer (hereinafter, referred to as “first layer”) constituting the biodegradable laminated sheet according to the present invention is defined as Da (%).
  • D-lactic acid content ratio Db (%) of the polylactic acid-based resin contained in another layer (hereinafter, referred to as “second layer”) constituting the degradable laminated sheet is represented by the following formula ( It has the relationship of 1).
  • the ratio (Da) of D-lactic acid in the polylactic acid-based polymer constituting the first layer is preferably 7% or less, more preferably 5% or less. If it exceeds 7%, the stiffness may be poor when the load is high at a high temperature (eg, 60-80 ° C) where the crystallinity is low even after the crystallization treatment described later.
  • the polylactic acid-based resin contained in the first layer is preferably a material that promotes crystallization by a crystallization treatment described later.
  • the lower limit of Da is preferably 0.5%. If it is less than 0.5%, the resulting sheet may be brittle.
  • the ratio (Db) of D-lactic acid in the polylactic acid-based polymer constituting the second layer is preferably 3% higher than Da. When this difference is 3% or less, both the crystallinity and the melting point are close to the polylactic acid-based polymer constituting the first layer, and the meaning of the laminated structure is diminished.
  • the biodegradable laminated sheet according to the present invention has been crystallized.
  • This crystal The crystallization treatment can promote crystallization of a specific polylactic acid-based resin.
  • the crystallization treatment is not particularly limited as long as the crystallization of the polylactic acid-based resin can be promoted, and examples thereof include a heating method.
  • the heating method include a method in which the sheet is brought into contact with a heating roll at about 60 to 120 ° C. for several seconds and several minutes, a method in which the sheet is continuously heated with an infrared heater or hot air for a predetermined time, For example, there is a method of heating the formed sheet in a hot air oven at 60 to 120 ° C for about 0.5 to 72 hours.
  • the crystallinity of the polylactic acid-based resin contained in the first layer after crystallization is preferably from 20% to 100%, more preferably from 25% to 99%. If it is less than 20%, the rigidity may be poor when a load is applied at a high temperature (for example, 60 to 80 ° C).
  • the crystallinity of the polylactic acid-based resin in the first layer may be 100%.
  • the crystallinity of the polylactic acid-based resin contained in the second layer after crystallization is preferably from 0% to less than 20%, more preferably from 1% to less than 15%. If the content is 20% or more, the formability may be insufficient, or a defect of a bridge called a “bridge” may occur.
  • the crystallinity of the polylactic acid-based resin in the second layer may be 0%.
  • the polylactic acid-based resin contained in the first layer and the polylactic acid-based resin contained in the second layer are each a mixture of two or more different polylactic acid-based resins. It may be.
  • each of Da and Db is an average value calculated from the mixing ratio of D-lactic acid constituting two or more types of polylactic acid-based polymers.
  • the configuration of the biodegradable laminated sheet according to the present invention may be a two-layer configuration of the first layer Z the second layer, or a three-layer configuration of the first layer Z the second layer Z the first layer. Furthermore, the first layer Z second layer Z first layer ⁇ Z second layer, or a multilayer structure of first layer ⁇ second layer ⁇ first layer « first layer may be used. That is, it is more preferable that the first layer constitutes both outer layers and the second layer is at least one of the layers sandwiched between the outer layers.
  • the first layer By using the first layer as both outer layers, a layer with a high degree of crystallinity can be arranged as the outermost layer, and biodegradation with excellent heat resistance, impact resistance, and moldability in vacuum forming machines and pressure forming machines Laminated sheet. Note that a recycled resin layer or an intermediate layer between the first layer and the second layer may be laminated between the first layer and the second layer.
  • the total thickness of the first layer is preferably 3 to 300 ⁇ m, more preferably 10 to 200 ⁇ m. More preferably, 30-100 / zm is more preferable. If it is less than 3 / zm, the rigidity may be poor when a load is applied at high temperature (for example, 60-80 ° C), while if it is more than 300m, the formability may be insufficient.
  • a method for producing a biodegradable laminated sheet according to the present invention will be described.
  • a method for forming a sheet from the resin composition a general sheet forming method can be used.
  • the sheet can be produced by extrusion molding using a T-die casting method.
  • polylactic acid-based resin has high hygroscopicity and high hydrolyzability, it is necessary to control the moisture in the manufacturing process.
  • vacuum drying is required.
  • the film is formed after dehumidifying and drying with a vessel.
  • efficient film formation is possible because of a high dewatering effect.
  • the method for laminating the laminated sheet is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include the following four methods.
  • a co-extrusion method in which two or more extruders are used and laminated with a multi-hold or feed block type die and extruded as a molten sheet.
  • the biodegradable laminated sheet obtained by the above method is excellent in moldability, does not cause problems such as bridges, and is formed at a temperature that does not require heating of a mold and in a short cycle. can do.
  • the biodegradable laminated sheet according to the present invention can be formed into a molded body by using various molding methods such as vacuum molding, air pressure molding, vacuum / air pressure molding, and press molding.
  • the molding temperature of the biodegradable laminated sheet at this time is preferably not lower than the melting point of the polyester resin and lower than the melting point of the polylactic acid resin contained in the first layer.
  • the molding temperature is lower than the melting point of the polyester resin, heat resistance and molding processability may be insufficient.
  • the melting point is higher than the melting point of the polylactic acid resin contained in the first layer. In some cases, problems may occur in rigidity and moldability.
  • the mold can be made of polylactic acid. Even if the temperature is not maintained at a temperature near the crystallization of the resin (for example, 80 ° C to 130 ° C), a molded body can be formed at a temperature lower than the temperature and in a short molding cycle. Further, the obtained molded body is excellent in heat resistance and impact resistance. This is because at least a part of the polylactic acid-based resin contained in the first layer of the biodegradable laminated sheet according to the present invention is crystallized, and is a mixed system with another polyester-based resin, It is thought to have a unique viscoelasticity.
  • FIG. 1 shows an example of the relationship between the dynamic viscoelasticity ( ⁇ ′) and the temperature of the biodegradable laminated sheet according to the present invention.
  • ⁇ 1> indicates the glass transition temperature (Tg) of the polylactic acid-based resin
  • 2> indicates the melting point of the polyester-based resin
  • 3> indicates the melting point of the polyester resin. Shows the melting point of polylactic acid resin.
  • the biodegradable laminated sheet is preferably formed between a force ⁇ 2> and particularly a force 3> that can be formed at a temperature between ⁇ 1> and ⁇ 3>.
  • a force ⁇ 2> and particularly a force 3> that can be formed at a temperature between ⁇ 1> and ⁇ 3>.
  • the obtained molded article has excellent heat resistance.
  • Examples of molded articles formed using the biodegradable laminated sheet of the present invention include, for example, lunch boxes, trays and cups for foods such as fresh fish, meat, vegetables, tofu, side dishes, desserts, instant noodles, and the like. Toothbrushes include 'batteries', 'pharmaceuticals', packaging containers for cosmetics, hot-fill containers such as pudding 'jam' curry, ICs, trays for transporting electronic components such as transistors and diodes, and carrier tapes.
  • Secondary additives include, for example, stabilizers, antioxidants, UV absorbers, pigments, electrostatic agents, conductive agents, mold release agents, plasticizers, fragrances, antibacterial agents, nucleating agents, and other similar additives. Things are raised.
  • the molded product obtained using a convex molding die with a diameter of 75 mm, a depth of 50 mm and a drawing ratio of 0.67 is heat-treated at 80 ° C for 20 minutes in a hot-air circulation oven to reduce the volume reduction of the molded product.
  • Volume reduction rate% ⁇ 1-(Volume of molded body after heat treatment Z Volume of molded body before heat treatment) ⁇ X 100 Note that volume reduction rate of less than 3% is excellent. Yes, cannot be used if it exceeds 6%.
  • a molded product obtained from a convex molding die with a diameter of 75 mm, a depth of 50 mm, and a drawing ratio of 0.67 is filled with water, the opening is sealed, the molded products are stacked in four stages, and a hot-air circulation oven is used. At 65 ° C. for 60 minutes, and the presence or absence of deformation of the molded body was examined.
  • the molded body obtained from the biodegradable laminated sheet was filled with water, the opening was sealed, and the molded body was dropped on concrete from a height of lm, and the molded body was examined for damage.
  • the glass transition temperature of polyester was measured by differential scanning calorimetry (DSC) at a heating rate of 10 ° CZmin.
  • Resin 1 in Table 2 as polylactic acid and PBS (polystyrene) as biodegradable aliphatic polyester Butylene succinate, manufactured by Showa Polymer Co., Ltd .: Pionole 1001, melting point 111 ° C, glass transition point: -40 ° C) was converted to polylactic acid resin Z biodegradable aliphatic polyester 50Z50 (unit: mass) %), And 10% by mass of talc (Micro Ace L1 manufactured by Nippon Talc Co., Ltd.) as an inorganic filler is mixed with 100% by mass of this mixture, and a biaxial 25 mm ⁇ biaxial shaft is mixed. The mixture was extruded as a front and back layer at 220 ° C. from a multi-hold type die with an extruder.
  • PBS polystyrene
  • the resin 4 in Table 2 as polylactic acid, the aforementioned PBS as a biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 50Z50 (unit: mass%)
  • 10% by mass of the above-mentioned talc was mixed as an inorganic filler with respect to 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above die with a 40 mm ⁇ co-rotating twin screw extruder.
  • the resin 1 in Table 2 was used as polylactic acid, and the above-mentioned PBS was used as a biodegradable aliphatic polyester.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 5: 1.
  • This co-extruded sheet was brought into contact with a casting roll at about 110 ° C. to obtain a biodegradable laminated sheet having a thickness of 300 ⁇ m. Evaluation was performed by the above method using the obtained laminated sheet. So Table 3 shows the results.
  • 10% by mass of the talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as a front and back layer from a multi-hold type die at 220 ° C. with a 25 mm ⁇ co-axial twin screw extruder. .
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 100: 1.
  • This co-extruded sheet was brought into contact with a casting roll at about 110 ° C. to obtain a biodegradable laminated sheet having a thickness of 300 / zm. Evaluation was performed by the above method using the obtained laminated sheet. The results are shown in Table 3.
  • Example 3 In the same manner as in Example 1, except that PBAT (polybutylene adipate terephthalate, Ecoflex manufactured by BASF, melting point 109 ° C, glass transition point: 30 ° C) was used as the biodegradable aliphatic polyester, A biodegradable laminated sheet having a thickness of 300 m was obtained. The obtained laminated sheet was evaluated by the above method. The results are shown in Table 3.
  • PBAT polybutylene adipate terephthalate, Ecoflex manufactured by BASF, melting point 109 ° C, glass transition point: 30 ° C
  • PBSL polybutylene succinate lactic acid, manufactured by Mitsubishi Chemical Corporation: AZ81T, a copolymer of succinic acid: 94 mol% and lactic acid: 6 mol% as acid components, melting point: 110 ° C, (Glass transition point: 40 ° C.)
  • a biodegradable laminated sheet having a thickness of 300 m was obtained in the same manner as in Example 1 except that a glass transition point of 40 ° C.) was used.
  • the obtained laminated sheet was evaluated by the above method. The results are shown in Table 3.
  • Example 6 As biodegradable aliphatic polyester, PBSLA (polybutylene succinate adipate lactic acid, Mitsubishi Chemical Co., Ltd.: AD82W, succinic acid as an acid component: 74 mole 0/0, adipic acid: 2 0 mol%, lactic acid: 6 mol % Of a copolymer, melting point: 87 ° C, glass transition point: 40 ° C), except that a biodegradable laminated sheet having a thickness of 300 m was obtained in the same manner as in Example 1. The obtained laminated sheet was evaluated by the above method. The results are shown in Table 3.
  • PBSA polybutylene succinate adipate
  • Pionore 3001 succinic acid as an acid component: 85 mole 0/0
  • adipic acid 15 mol% of the copolymer
  • a biodegradable laminated sheet having a thickness of 300 m was obtained in the same manner as in Example 1 except that a melting point of 93 ° C and a glass transition point of 40 ° C) were used. The evaluation was performed by the above method using the obtained laminated sheet. The results are shown in Table 3.
  • the resin 1 in Table 2 was used as polylactic acid, and the above-mentioned PBS was used as a biodegradable aliphatic polyester.
  • the resin 2 in Table 2 as polylactic acid, the PBS as a biodegradable aliphatic polyester, Polylactic acid / fatty acid Z Biodegradable aliphatic polyester 50Z50 (unit: mass%), and then mixed with 100 mass% of this mixture, and 10 mass% of the above-mentioned talc as an inorganic filler.
  • the mixture was extruded at 220 ° C as a front and back layer at 220 ° C from a ⁇ -direction twin screw extruder.
  • resin 4 in Table 2 as polylactic acid, the above-mentioned PBS as biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 50Z50 (unit: mass%) Then, 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above die with a 40 mm ⁇ co-rotating twin screw extruder.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 5: 1.
  • the coextruded sheet was brought into contact with a casting roll at about 115 ° C to obtain a biodegradable laminated sheet having a thickness of 300 ⁇ m. Evaluation was performed by the above method using the obtained laminated sheet. The results are shown in Table 4.
  • the resin 1 in Table 2 was used as polylactic acid, and the above-mentioned PBS was used as a biodegradable aliphatic polyester.
  • the resin 1 in Table 2 was used as polylactic acid, and the above-mentioned PBS was used as a biodegradable aliphatic polyester.
  • the polylactic acid resin Z was mixed so that the biodegradable aliphatic polyester was 50Z50 (unit: mass%). 10% by mass of the above talc was mixed with 100% by mass of this mixture as an inorganic filler, and the mixture was fed from a two-layer multi-hold die at 220 ° C using a 25 mm ⁇ coaxial twin-screw extruder. Extruded as a surface layer.
  • resin 4 in Table 2 as polylactic acid, the above-mentioned PBS as biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 50Z50 (unit: mass%) Then, 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above die with a 40 mm ⁇ co-rotating twin screw extruder.
  • the resulting biodegradable laminated sheet has a two-layer structure, so the intermediate layer directly forms the back layer.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio between the surface layer and the back layer was 2: 5.
  • the coextruded sheet was brought into contact with a casting roll at about 110 ° C to obtain a 300 m-thick biodegradable laminated sheet. Evaluation was performed by the above method using the obtained laminated sheet. The results are shown in Table 4.
  • the resin 4 in Table 2 was used as polylactic acid, and the above PBS was used as a biodegradable aliphatic polyester.
  • the polylactic acid resin Z was mixed so that the biodegradable aliphatic polyester was 50Z50 (unit: mass%). 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as a front and back layer from a multi-hold type die at 220 ° C. with a 40 mm ⁇ coaxial twin screw extruder. .
  • the resin 1 in Table 2 as polylactic acid, the above-mentioned PBS as a biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 50Z50 (unit: mass%)
  • 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above-mentioned die with a 25 mm ⁇ co-rotating twin screw extruder.
  • the resin 1 in Table 2 was used as polylactic acid, and the above-mentioned PBS was used as a biodegradable aliphatic polyester.
  • the polylactic acid resin Z was mixed so that the biodegradable aliphatic polyester was 50Z50 (unit: mass%). 10% by mass of the talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as a front and back layer from a multi-hold type die at 220 ° C. with a 25 mm ⁇ co-axial twin screw extruder. .
  • the resin 4 in Table 2 as polylactic acid, the above-mentioned PBS as a biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 50Z50 (unit: mass%)
  • 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above die with a 40 mm ⁇ co-rotating twin screw extruder.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 5: 1.
  • This co-extruded sheet was brought into contact with a casting roll at about 40 ° C. to obtain a biodegradable laminated sheet having a thickness of 300 ⁇ m.
  • About 300 m of the obtained laminated sheet was wound into a roll and heat-treated in a hot-air oven at a temperature of 75 ° C for 24 hours.
  • the evaluation was performed by the above method using the obtained laminated sheet after the heat treatment. The results are shown in Table 4.
  • the resin 1 in Table 2 was used as polylactic acid, and the above-mentioned PBS was used as a biodegradable aliphatic polyester.
  • the resin 4 in Table 2 as polylactic acid, the aforementioned PBS as a biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 40Z60 (unit: mass%) Talc as an inorganic filler with respect to 100% by mass of the mixture.
  • the resin 4 in Table 2 as polylactic acid, the aforementioned PBS as a biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 40Z60 (unit: mass%)
  • Talc as an inorganic filler with respect to 100% by mass of the mixture.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 5: 1.
  • This co-extruded sheet was brought into contact with a casting roll at about 40 ° C. to obtain a biodegradable laminated sheet having a thickness of 300 ⁇ m.
  • About 300 m of the obtained laminated sheet was wound into a roll and heat-treated in a hot-air oven at a temperature of 75 ° C for 24 hours.
  • the evaluation was performed by the above method using the obtained laminated sheet after the heat treatment. The results are shown in Table 4.
  • 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded from a single-layer die at 220 ° C. by a 25 mm ⁇ coaxial twin screw extruder.
  • the extruded sheet was brought into contact with a casting roll at about 110 ° C to obtain a biodegradable sheet having a thickness of 300 m. Using the obtained sheet, evaluation was performed by the above method. Table 5 shows the results.
  • the resin 4 in Table 2 as polylactic acid, the above-mentioned PBS as a biodegradable aliphatic polyester, and polylactic acid resin Z biodegradable aliphatic polyester 80Z20 (unit: mass%) Then, 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above die with a 40 mm ⁇ co-rotating twin screw extruder.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 2: 1.
  • This co-extruded sheet was brought into contact with a casting roll at about 110 ° C. to obtain a biodegradable laminated sheet having a thickness of 300 ⁇ m. Evaluation was performed by the above method using the obtained laminated sheet. Table 5 shows the results.
  • 10% by mass of the above talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded from a single-layer die at 220 ° C. by a 25 mm ⁇ coaxial twin screw extruder.
  • the extruded sheet was brought into contact with a casting roll at about 110 ° C to obtain a biodegradable sheet having a thickness of 300 m. Using the obtained sheet, evaluation was performed by the above method. Table 5 shows the results.
  • the ⁇ 4 in Table 2 as the polylactic acid, the above PB S as a biodegradable aliphatic polyester, polylactic acid ⁇ Z biodegradable aliphatic polyester 60Z40 (unit: mass 0/0) Then, 10% by mass of the above-mentioned talc as an inorganic filler was mixed with 100% by mass of this mixture, and the mixture was extruded as an intermediate layer from the above die with a 40 mm ⁇ co-rotating twin screw extruder.
  • the discharge amount of the molten resin was adjusted so that the thickness ratio of the surface layer, the intermediate layer, and the back layer was 1: 5: 1.
  • This co-extruded sheet was brought into contact with a casting roll at about 110 ° C. to obtain a biodegradable laminated sheet having a thickness of 300 ⁇ m.
  • the obtained laminated sheet was evaluated using the above method. Table 5 shows the results.
  • Body layer arrangement > ⁇ 1/2/1 1/2 2/1/2 1/2/1 Thickness ratio 1/1/1 1/5/1 2/5 3/1/3 1/5/1 Raw
  • Examples 1-114 were excellent in all of heat resistance, impact resistance, and moldability, and it was a component that a good molded body could be obtained by a normal molding cycle.
  • Comparative Example 1 since no biodegradable aliphatic polyester was contained, there was a problem in the impact resistance and heat resistance, and the results were very poor in mold shapeability in vacuum forming. became.
  • Comparative Example 2 as in Comparative Example 1, there was a problem in heat resistance ⁇ impact resistance. In particular, in the evaluation of heat resistance 2, a phenomenon in which the container buckled was observed.
  • Comparative Example 3 was inferior in heat resistance due to a small proportion of the biodegradable aliphatic polyester, and the container was buckled and deformed in the evaluation of heat resistance 2 as in Comparative Example 2.
  • Comparative Example 4 resulted in a problem with heat resistance and moldability. Mold shaping was poor in molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 耐熱性、耐衝撃性に優れ、かつ高温で荷重がかかった際の強度も十分であり、また「ブリッジ」と呼ばれるシワ状物の不具合も無く、さらに深絞りの成形品や形状が複雑なブリスターの成形性も良好な生分解性積層シートを提供することを目的とする。  少なくとも2層からなる積層シートであり、この積層シートを構成する各々の層は、ポリ乳酸系樹脂75~25質量%と、ガラス転移温度が0°C以下、融点が前記ポリ乳酸系樹脂のガラス転移温度より高く、かつポリ乳酸系樹脂の融点以下であるポリエステル系樹脂25~75質量%とを合計で100質量%となるように配合した樹脂組成物からなり、前記積層シートを構成する1つの層に含まれるポリ乳酸系樹脂のD−乳酸の含有割合と、前記積層シートを構成する他の1つの層に含まれるポリ乳酸系樹脂のD−乳酸の含有割合とが所定の関係を有し、さらに前記積層シートは結晶化処理がされたものである生分解性積層シートを用いる。

Description

明 細 書
生分解性積層シート
技術分野
[0001] この発明は、生分解性積層シート、このシートを用いた成形体、及びその製造方法 に関する。
背景技術
[0002] 従来から、カップ、トレー等の食品容器や、ブリスターパック、ホットフィル用容器、電 子部品搬送用トレー、キャリアテープ等の材料として、ポリエチレン、ポリプロピレン、 ポリ塩ィ匕ビニル、ポリスチレン、ポリエチレンテレフタレート等のプラスチック製品が用 いられてきた。
[0003] これらのプラスチック製品等は、一般に使い捨てされるものであり、使用後、廃棄す る際に、焼却又は埋め立て等の処分が問題となっている。具体的には、ポリエチレン 、ポリプロピレン、ポリスチレン等の榭脂は、燃焼時の発熱量が多ぐ燃焼処理中に焼 却炉を傷める恐れがあり、また、ポリ塩ィ匕ビュルは焼却時に有害なガスを発生する。 一方、埋め立て処分においても、これらのプラスチック製品は化学的安定性が高い ので自然環境下でほとんど分解されず半永久的に土中に残留し、ゴミ処理用地の能 力を短期間で飽和させてしまう。さらに、自然環境中に投棄されると、景観を損なった り海洋生物等の生活環境を破壊したりする。
[0004] これに対し、近年にぉ ヽては、環境保護の観点から、生分解性を有する材料の研 究、開発が活発に行われている。その注目されている生分解性材料の 1つとして、ポ リ乳酸系樹脂がある。このポリ乳酸系榭脂は、生分解性であるので土中や水中で自 然に加水分解が進行し、微生物により無害な分解物となる。また、燃焼熱量が小さい ので焼却処分を行ったとしても炉を傷めない。さらに、出発原料が植物由来であるた め、枯渴する石油資源力も脱却できる等の特長も有している。
[0005] ところが、ポリ乳酸系榭脂は、耐熱性が低ぐ加熱食品を入れるような容器や熱湯を 注ぎ込むための容器等、高温での使用には適していな力つた。また、ポリ乳酸系榭 脂製のシートやその成形体を貯蔵や輸送する場合、貯蔵庫や輸送中のトラック、また 、船の内部は期等になると高温に達することも少なくないため、変形ゃ融着等の問題 が発生することがあった。
[0006] ポリ乳酸系榭脂に耐熱性を付与する技術として、成形工程において、金型をポリ乳 酸系榭脂の結晶化温度近傍 (80— 130°C)に保持し、金型内でポリ乳酸を高度に結 晶化させることにより耐熱性を付与する方法が知られている (特許文献 1参照)。
[0007] また、ポリ乳酸系榭脂とポリエステルとを配合した榭脂組成物カゝらなる単層シートを 予備結晶化させることにより、このシートから得られる成形体の耐熱性、耐衝撃性、及 び成形加工性等を向上させることが知られている(特許文献 2参照)。
[0008] 特許文献 1 :特開平 8— 193165号公報
特許文献 2 :特開 2003—147177号広報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、前者の方法では、成形したポリ乳酸を金型内で結晶化させるため、 結晶化が完了する間、成形体を金型内で保持しなければならず、通常の成形よりも 成形サイクルが長くなり、製造コストが高くなる。また、金型を加温する必要があるため
、加熱設備も必要となる。
[0010] また、後者のシートは、このシートで凸型の多数個取りの金型を用いて成形した場 合、形状によっては「ブリッジ」と呼ばれるシヮ状物の不具合が発生することがある。ま た、真空成形機で深絞りの成形品や形状が複雑なブリスター成形品になると型賦形 性が、若干悪くなることがある。
[0011] そこで、この発明は、環境問題を発生することなぐ耐熱性、耐衝撃性に優れ、かつ 高温で荷重がかかった際の強度も十分であり、また「ブリッジ」と呼ばれるシヮ状物の 不具合も無ぐさらに深絞りの成形品や形状が複雑なブリスターの成形性も良好な生 分解性積層シート、及びこの生分解性積層シートから得られる成形体を提供すること を目的とする。
課題を解決するための手段
[0012] この発明は、少なくとも 2層からなる積層シートであり、この積層シートを構成する各 々の層は、ポリ乳酸系榭脂 75— 25質量%と、ガラス転移温度が 0°C以下、融点が前 記ポリ乳酸系榭脂のガラス転移温度より高ぐかつポリ乳酸系榭脂の融点以下である ポリエステル系榭脂 25— 75質量%とを合計で 100質量%となるように配合した榭脂 組成物からなり、前記積層シートを構成する 1つの層に含まれるポリ乳酸系榭脂の D 乳酸の含有割合を Da (%)とし、前記積層シートを構成する他の 1つの層に含まれ るポリ乳酸系榭脂の D 乳酸の含有割合を Db (%)としたとき、下記式(1)の関係を有 し、さらに前記積層シートは結晶化されたものである、生分解性積層シートを提供す ることにより、前記課題を解決したのである。
Da≤7 かつ Db— Da> 3 (1)
発明の効果
[0013] この発明にかかる積層シートは、ポリ乳酸系榭脂とポリエステル系榭脂とから構成さ れるので、環境問題を発生することがない。
[0014] また、この発明に力かる積層シートは、 D 乳酸の含有割合が 7%以下の層と、 D— 乳酸の含有割合がそれより少なくとも 3%多い層とから構成されるので、この積層シー トを結晶化させると、 D 乳酸の含有割合の低いほうの層は結晶化が生じやすぐ D— 乳酸の含有割合の高いほうの層は結晶化が生じに《なる。このため、得られる積層 シートは、成形前力も結晶化した層を有すると共に、結晶化が生じにくい層をも有す るので、金型をポリ乳酸系榭脂の結晶化温度の近傍 (80— 130°C)に保持して結晶 化を促す必要はなぐ常温の金型でも成形可能で、耐熱性のある成形体を得ることが でき、通常の成形サイクルでの成形が可能である。
[0015] さらに、この積層シートは、結晶化が生じにくい層をも有するので、深絞りの成形品 や形状が複雑なブリスター等の成形体を得ることができる。
[0016] さらにまた、特定のガラス転移温度 (Tg)、及び融点を有するポリエステル系榭脂を 用いて積層シートを得ることにより、得られる積層シート、及びその成形体は、耐熱性 、耐衝撃性、及び成形加工性に優れ、かつ高温で荷重がかかった際の強度も十分 なものとなり、また、「ブリッジ」と呼ばれるシヮ状物の不具合も生じに《なる。
図面の簡単な説明
[0017] [図 1]この発明にかかる生分解性積層シートの動的粘弾性 (Ε' )と温度との関係の一 例を示すグラフ 発明を実施するための最良の形態
[0018] この発明にカゝかる生分解性積層シートは、少なくとも 2層からなる積層シートである。
この積層シートを構成する各々の層は、ポリ乳酸系榭脂と所定のポリエステル系榭 脂を含有する榭脂組成物からなる。
[0019] 前記ポリ乳酸系榭脂とは、乳酸を主成分とするモノマーを縮重合してなる重合体で ある。前記乳酸には、 2種類の光学異性体の L 乳酸および D 乳酸があり、これら 2 種の構造単位の割合で結晶性が異なる。例えば、 L 乳酸と D 乳酸の割合がおおよ そ 80: 20— 20: 80のランダム共重合体では結晶性が無ぐガラス転移温度 60°C付 近で軟ィ匕する透明完全非結晶性ポリマーとなる。
[0020] 一方、 L 乳酸と D 乳酸の割合がおおよそ 100: 0— 80: 20、又は 20: 80— 0: 10 0のランダム共重合体は、結晶性を有する。その結晶化度は、前記の L 乳酸と D 乳 酸の割合によつて定まる力 この共重合体のガラス転移温度は、前記と同様に 60°C 程度のポリマーである。このポリマーは、溶融押出した後、ただちに急冷することで透 明性の優れた非晶性の材料になり、ゆっくり冷却することにより、結晶性の材料となる 。例えば、 L 乳酸のみ、また、 D 乳酸のみからなる単独重合体は、 180°C以上の融 点を有する半結晶性ポリマーである。
[0021] この発明に用いられるポリ乳酸系榭脂としては、構造単位が L 乳酸又は D 乳酸 であるホモポリマー、すなわち、ポリ(L 乳酸)又はポリ(D 乳酸)、構造単位が L 乳 酸及び D 乳酸の両方である共重合体、すなわち、ポリ(DL 乳酸)や、これらの混合 体をいい、さらには共重合成分として他のヒドロキシカルボン酸、ジオール Zジカルボ ン酸との共重合体であってもよ 、。また少量の鎖延長剤残基を含んでもょ 、。
[0022] 重合法としては、縮重合法、開環重合法等公知の方法を採用することができる。例 えば、縮重合法では、 L 乳酸又は D 乳酸あるいはこれらの混合物を直接脱水縮重 合して、任意の組成を持ったポリ乳酸を得ることができる。
[0023] また、開環重合法 (ラクチド法)では、乳酸の環状 2量体であるラクチドを、必要に応 じて重合調節剤等を用いながら、選ばれた触媒を使用してポリ乳酸を得ることができ る。
[0024] ポリ乳酸に共重合される前記の他のヒドロキシカルボン酸単位としては、乳酸の光 学異性体 (L 乳酸に対しては D 乳酸、 D 乳酸に対しては L 乳酸)、グリコール酸 、 3—ヒドロキシ酪酸、 4—ヒドロキシ酪酸、 2—ヒドロキシー n 酪酸、 2—ヒドロキシー 3, 3— ジメチル酪酸、 2—ヒドロキシー 3 メチル酪酸、 2 メチル乳酸、 2—ヒドロキシカプロン酸 等の 2官能脂肪族ヒドロキシカルボン酸や力プロラタトン、プチ口ラタトン、ノ レ口ラクト ン等のラタトン類があげられる。
[0025] 前記ポリ乳酸系重合体に共重合される前記脂肪族ジオールとしては、エチレンダリ コール、 1, 4 ブタンジオール, 1, 4ーシクロへキサンジメタノール等があげられる。ま た、前記脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン 酸及びドデカン二酸等があげられる。
[0026] また、必要に応じ、少量共重合成分として、テレフタル酸のような非脂肪族ジカルボ ン酸及び Z又はビスフエノール Aのエチレンオキサイド付加物のような非脂肪族ジォ ールを用いてもよい。
[0027] この発明にお 、て使用されるポリ乳酸系重合体の重量平均分子量の好ま 、範囲 としては 6万一 70万であり、より好ましくは 8万一 40万、特に好ましくは 10万一 30万 である。分子量力 、さすぎると機械物性や耐熱性等の実用物性がほとんど発現され ない傾向があり、大きすぎると溶融粘度が高すぎ成形加工性に劣る傾向がある。
[0028] 前記の所定のポリエステル系榭脂とは、特定のガラス転移温度 (Tg)、及び融点を 有するポリエステル系榭脂をいう。このポリエステル系榭脂のガラス転移温度 (Tg)と しては、 0°C以下がよぐ 20°C以下が好ましい。ガラス転移温度が 0°Cより高いと、耐 衝撃性の改良効果が不十分となる傾向がある。
[0029] また、このポリエステル系榭脂の融点としては、配合する前記ポリ乳酸系榭脂のガラ ス転移温度 (Tg)より高いのがよぐ 80°C以上が好ましい。この温度より低いと、成形 体の耐熱性が不十分となる場合がある。また、このポリエステル系榭脂の融点の上限 は、配合する前記ポリ乳酸系榭脂の融点である。配合する前記ポリ乳酸系榭脂の融 点より高いと、前記積層シートに含まれるポリ乳酸系榭脂を成形前に結晶化させる意 味がなくなり、剛性や成形加工性の点で問題が生じる。なお、前記ポリ乳酸系榭脂の 融点は、構造単位である L 乳酸、 D 乳酸の混合割合によつて異なるが、一般的に は約 135°C— 180°Cである。 [0030] 前記した特定のガラス転移温度 (Tg)、及び融点を有するポリエステル系榭脂を用 いることにより、得られる積層シート、及びその成形体に耐熱性、耐衝撃性、及び成 形加工性を付与することができる。
[0031] このような前記ポリエステル系榭脂としては、ポリ乳酸系榭脂以外の生分解性脂肪 族ポリエステルがあげられ、この生分解性脂肪族系ポリエステルの例としては、ポリヒ ドロキシカルボン酸及び脂肪族ジオールと脂肪族ジカルボン酸を縮合して得られる 脂肪族ポリエステル、脂肪族ジオールと脂肪族ジカルボン酸及び芳香族ジカルボン 酸を縮合して得られる脂肪族芳香族ポリエステル、脂肪族ジオール、脂肪族ジカル ボン酸及びヒドロキシカルボン酸力 得られる脂肪族ポリエステル共重合体、環状ラ タトン類を開環重合した脂肪族ポリエステル、合成系脂肪族ポリエステル、菌体内で 生合成される脂肪族ポリエステル等があげられる。
[0032] 前記ポリヒドロキシカルボン酸としては、 3—ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 2—ヒ ドロキシー n 酪酸、 2—ヒドロキシー 3, 3—ジメチル酪酸、 2—ヒドロキシー 3 メチル酪酸 、 2—メチル乳酸、 2—ヒドロキシカプロン酸等のヒドロキシカルボン酸の単独重合体や 共重合体があげられる。
[0033] 前記の脂肪族ジオールとしては、エチレングリコール、 1, 4 ブタンジオール、 1, 4 ーシクロへキサンジメタノール等があげられる。また、前記脂肪族ジカルボン酸として は、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等があげられる。 さらに、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸等があげら れる。
[0034] これらの脂肪族ジオールと脂肪族ジカルボン酸とを縮合して得られる脂肪族ポリエ ステルや、脂肪族ジオール、脂肪族ジカルボン酸及び芳香族ジカルボン酸を縮合し て得られる脂肪族芳香族ポリエステルは、前記の各化合物の中カゝらそれぞれ 1種類 以上を選んで縮重合し、さらに、必要に応じてイソシァネートイ匕合物等でジャンプアツ プして所望のポリマーを得ることができる。
[0035] 前記脂肪族ポリエステルとしては、ポリエチレンサクシネート、ポリブチレンサクシネ ート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートカーボネート等 があげられる。また、前記脂肪族芳香族ポリエステルとしては、ポリブチレンアジべ一 トテレフタレート、ポリブチレンサクシネートアジペートテレフタレート等があげられる。
[0036] 脂肪族ジオールと脂肪族ジカルボン酸、及びヒドロキシカルボン酸力 得られる脂 肪族ポリエステル共重合体に用いられる脂肪族ジオール、脂肪族カルボン酸につ 、 ては、前記と同様なものがあげられる。また、ヒドロキシカルボン酸については、 L 乳 酸、 D乳酸、 DL乳酸、グリコール酸、 3—ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 2—ヒドロ キシー n 酪酸、 2—ヒドロキシ 3, 3—ジメチル酪酸、 2—ヒドロキシ 3 メチル酪酸、 2—メ チル乳酸、 2—ヒドロキシカプロン酸等があげられる。
[0037] この脂肪族ポリエステル共重合体の例としては、ポリブチレンサクシネート乳酸、ポリ ブチレンサクシネートアジペート乳酸等があげられる。ただし、この場合の組成比はあ くまでも脂肪族ジオールと脂肪族ジカルボン酸が主体であり、モル比としては、脂肪 族ジオール:脂肪族ジカルボン酸:ヒドロキシカルボン酸 = 35— 49. 99 : 35— 49. 9 9 : 30—0. 02力好まし!/ヽ。
[0038] 前記環状ラタトン類を開環重合した脂肪族ポリエステルは、環状モノマーとして、 ε 一力プロラタトン、 δ バレロラタトン、 —メチルー δ バレロラタトン等の 1種類又はそ れ以上を重合することによって得られる。
[0039] 前記合成系脂肪族ポリエステルとしては、環状酸無水物とォキシラン類、例えば、 無水コハク酸とエチレンオキサイド、プロピレンオキサイド等との共重合体があげられ る。
[0040] 前記菌体内で生合成される脂肪族ポリエステルとしては、アルカリゲネスユートロフ ァスをはじめとする菌体内でァセチルコェンチーム Α (ァセチル CoA)により生合成さ れる脂肪族ポリエステルがあげられる。この菌体内で生合成される脂肪族ポリエステ ルは、主にポリ—j8—ヒドロキシ酪酸 (ポリ 3HB)である力 プラスチックスとしての実用 特性向上のために、ヒドロキシ吉草酸 (HV)を共重合し、ポリ(3HB— CO— 3HV)の 共重合体 (ヒドロキシプチレートとヒドロキシバリレートとの共重合体)にすることが工業 的に有利である。 HV共重合比は、一般的に 0— 40mol%が好ましい。さらに、ヒドロ キシ吉草酸のかわりに、 3—ヒドロキシへキサノエート、 3—ヒドロキシォクタノエート、 3— ヒドロキシォクタデカノエート等の長鎖のヒドロキシアルカノエートを共重合してもよい 。 3HBに 3—ヒドロキシへキサノエ一トと共重合したものとして、ヒドロキシブチレートとヒ ドロキシへキサノエートとの共重合体があげられる。
[0041] 前記榭脂組成物中のポリ乳酸系榭脂とポリエステル系榭脂との混合比は、質量比 で 75— 25 : 25— 75力よく、 65 : 35— 35 : 65力 子ましい。ポリ? L酸系樹月旨の含有量 力 S75質量%を越えると、成形加工性が悪くなり、真空成形や圧空成形等の汎用成形 が困難となる。また、 25質量%以下では得られるシート、及び成形体の剛性が劣る結 果となる。
[0042] なお、前記榭脂組成物は、ポリ乳酸系榭脂とポリエステル系榭脂とのみカゝら構成さ れ、ポリ乳酸系榭脂とポリエステル系榭脂との合計が 100質量%になることが必要で ある。
[0043] 前記榭脂組成物を用いて、この発明にかかる生分解性積層シートが製造されるが、 層構造としては、 2層構造でもよぐ 3層構造でもよぐ 4層構造でもよぐ少なくとも 2層 を有する多層構造であればょ 、。
[0044] この発明にかかる生分解性積層シートを構成する 1つの層(以下、「第 1層」と称す る。)に含まれるポリ乳酸系榭脂の含有割合 Da (%)とし、この生分解性積層シートを 構成する他の 1つの層(以下、「第 2層」と称する。)に含まれるポリ乳酸系榭脂の D- 乳酸の含有割合 Db (%)としたとき、下記式 (1)の関係を有する。
Da≤7 かつ Db— Da> 3 (1)
[0045] すなわち、前記第 1層を構成するポリ乳酸系重合体中の D-乳酸の割合 (Da)は、 7 %以下がよぐ 5%以下が好ましい。 7%を上回ると、後述する結晶化処理しても結晶 化度が低ぐ高温 (例えば 60— 80°C)で荷重が力かった場合等の剛性に劣る場合が ある。これは、前記第 1層中に含まれるポリ乳酸系榭脂は、後述する結晶化処理によ り結晶化が促進されるような材料であることが好ましいからである。なお、 Daの下限は 、 0. 5%が好ましい。 0. 5%より小さいと、得られるシートが脆くなることがある。
[0046] 一方の前記第 2層を構成するポリ乳酸系重合体中の D—乳酸の割合 (Db)は、 Daよ りも 3%高いことが好ましい。この差が 3%以下となると、結晶化度及び融点とも上記 第 1層を構成するポリ乳酸系重合体と近接し、積層構成にしている意味が希薄となる
[0047] この発明にかかる生分解性積層シートは、結晶化処理されたものである。この結晶 化処理により、特定のポリ乳酸系榭脂の結晶化を促進させることができる。この結晶 化処理としては、ポリ乳酸系榭脂の結晶化を促進させることができる方法であれば特 に制限されないが、例えば、加熱による方法があげられる。この加熱の方法としては、 例えば、 60— 120°C程度の加熱ロールに数秒一数分間、シートを接触させる方法や 、赤外線ヒーターや熱風等で連続的に一定時間加熱する方法、また、ロール状にし たシートを 60— 120°Cの熱風オーブン内で 0. 5— 72時間程度加熱する方法等が挙 げられる。
[0048] 上記第 1層中に含まれるポリ乳酸系榭脂の結晶化後の結晶化度は、 20%以上 10 0%以下がよぐ 25%以上 99%以下が好ましい。 20%未満であると高温 (例えば 60 一 80°C)で荷重が力かった場合等の剛性に劣る場合がある。なお、第 1層中のポリ乳 酸系榭脂の結晶化度は、 100%であってもよ 、。
[0049] 上記第 2層中に含まれるポリ乳酸系榭脂の結晶化後の結晶化度は、 0%以上 20% 未満がよぐ 1%以上 15%未満が好ましい。 20%以上では成形性が不十分となった り、「ブリッジ」と呼ばれるシヮ状物の不具合が発生することがある。なお、第 2層中の ポリ乳酸系榭脂の結晶化度は、 0%であってもよ 、。
[0050] ところで、上記第 1層中に含まれるポリ乳酸系榭脂、及び上記第 2層中に含まれる ポリ乳酸系榭脂は、いずれも、異なる 2種類以上のポリ乳酸系榭脂の混合物であって もよい。この場合、 Da及び Dbはそれぞれ 2種類以上のポリ乳酸系重合体を構成する D-乳酸の配合割合カゝら算出される平均値となる。
[0051] この発明にかかる生分解性積層シートの構成は、第 1層 Z第 2層の 2層構成でもよ いし、第 1層 Z第 2層 Z第 1層の 3層構成でもよい。さらには第 1層 Z第 2層 Z第 1層 · ••Z第 2層や、第 1層 Ζ第 2層 Ζ第 1層… Ζ第 1層の多層構成でもよい。すなわち、 第 1層が両外層を構成し、第 2層が前記両外層に挟まれる層の少なくとも 1層である 場合がより好ましい。第 1層を両外層とすることにより、結晶化度の高い層を最外層に 配置することができ、耐熱性、耐衝撃性、並びに真空成形機や圧空成形機における 成形性に優れた生分解性積層シートとすることができる。なお、第 1層と第 2層との間 にリサイクル榭脂層や第 1層と第 2層との中間的な層が積層されてもよい。
[0052] また、前記第 1層のトータルの厚みは、 3— 300 μ mが好ましぐ 10— 200 μ mがよ り好ましぐ 30— 100 /z mがさらに好ましい。 3 /z m以下では高温(例えば 60— 80°C) で荷重が力かった場合等の剛性に劣る場合があり、一方、 300 m以上では成形性 が不十分となる場合がある。
[0053] 次に、この発明にかかる生分解性積層シートの製造方法について説明する。前記 榭脂組成物からシートを形成する方法は、一般的なシート形成方法を用いることがで き、例えば、 Tダイキャスト法による押出成形により製造することができる。ただし、ポリ 乳酸系榭脂は吸湿性が高ぐ加水分解性も高いため、製造工程に於ける水分管理 が必要であり、一般的な一軸押出機を用いて押出成形する場合には、真空乾燥器 等によって除湿乾燥した後に製膜する。また、ベント式二軸押出機を用いて押出成 形する場合には、脱水効果が高いので効率的な製膜が可能である。
[0054] また、積層シートの積層方法としては、この発明の目的を損なわなければ、特に限 定されないが、例えば、下記の 4つの方法等があげられる。
(1) 2または 3台以上の押出機を用い、マルチマ-ホールドまたはフィードブロック方 式の口金で積層化し、溶融シートとして押し出す共押出法。
(2)巻き出した一方の層の上にもう一方の榭脂をコーティングする方法。
(3)適温にある各層をロールやプレス機を使って熱圧着する方法。
(4)接着剤を使って貼合せる方法。
[0055] 前記の方法で得られた生分解性積層シートは、成形加工性に優れており、ブリッジ 等の不具合もなぐさらに金型の加温を必要としない温度で、かつ短いサイクルで成 形することができる。
[0056] 具体的には、この発明にかかる生分解性積層シートは、真空成形、圧空成形、真 空圧空成形、プレス成形等の種々の成形方法を用いて成形体を形成することができ る。このときの生分解性積層シートの成形温度は、前記ポリエステル系榭脂の融点以 上、かつ第 1層中に含まれるポリ乳酸系榭脂の融点未満が好ましい。前記成形温度 力 ポリエステル系榭脂の融点未満であると、耐熱性や成形加工性が不十分となる 場合があり、一方、第 1層中に含まれるポリ乳酸系榭脂の融点以上であると、剛性や 成形加工性に問題が生じる場合がある。
[0057] このように、この発明に力かる生分解性積層シートを用いれば、金型をポリ乳酸系 榭脂の結晶化近傍の温度 (例えば 80°C— 130°C)に保持しなくても、かかる温度より 低い温度で、かつ短い成形サイクルで成形体を形成することができる。また、得られ た成形体は耐熱性、及び耐衝撃性に優れたものである。これは、この発明にかかる 生分解性積層シートの第 1層中に含まれるポリ乳酸系榭脂の少なくとも一部が結晶 化されており、また他のポリエステル系榭脂との混合系であり、特異な粘弾性を有す るためと考えられる。
[0058] また、この発明にかかる生分解性積層シートの動的粘弾性 (Ε' )と温度との関係の 一例を図 1に示す。図 1において、 < 1 >は、ポリ乳酸系榭脂のガラス転移温度 (Tg) を示し、く 2>は、ポリエステル系榭脂の融点を示し、及びく 3 >は、第 1層に含まれ るポリ乳酸系榭脂の融点を示す。
[0059] 前記生分解性積層シートは、 < 1 >と < 3 >との間の温度で成形可能である力 < 2>とく 3 >との間で成形することが好ましい。また、結晶化処理により第 1層中に含 まれるポリ乳酸系榭脂の少なくとも一部が結晶化して 、るので、得られた成形体は良 好な耐熱性を有する。
[0060] この発明の生分解性積層シートを用いて形成された成形体としては、例えば、弁当 箱、鮮魚'精肉 '青果'豆腐 '惣菜'デザート 'インスタントラーメン等の食品用のトレー やカップ、歯ブラシ '電池 '医薬品'ィ匕粧品等の包装用容器、プリン 'ジャム'カレー等 のホットフィル容器、 IC 'トランジスター ·ダイオード等の電子部品搬送用トレー、キヤリ ァテープ等があげられる。
[0061] また、この発明においては生分解性積層シートの形成に用いられる榭脂組成物に 、副次的添加剤を加えて種々の改質を行うことが出来る。副次的添加剤としては、例 えば、安定剤、酸化防止剤、紫外線吸収剤、顔料、静電剤、導電剤、離型剤、可塑 剤、香料、抗菌剤、核形成剤等その他類似のものがあげられる。
実施例
[0062] 以下に、実施例及び比較例等を示して本発明を詳述するが、これらにより本発明は 何ら制限を受けるものではない。なお実施例及び比較例中の物性値は、以下の方法 により測定し、評価を行った。
[測定方法及び評価方法] (1)耐熱性 1の評価
φ 75mm,深さ 50mm、絞り比 0. 67の凸型成形金型を用いて得られた成形体を、 熱風循環式オーブンにて 80°Cで 20分間熱処理し、成形体の容積減容率を下記式 にて算出した。
容積減容率% = { 1 - (熱処理後の成形体容積 Z熱処理前の成形体容積) } X 100 なお、容積減容率が 3%未満は優れており、 6%以下では実用可能範囲であり、 6 %を越えると使用できな 、。
[0063] (2)耐熱性 2の評価
φ 75mm,深さ 50mm、絞り比 0. 67の凸型成形金型から得られた成形体に水を 充填し、開口部をシールして、その成形体を 4段重ねし、熱風循環式オーブンにて 6 5°Cで 60分間熱処理し、成形体の変形の有無を調べた。
[0064] (3)耐衝撃性 1の評価
東洋精機 (株)製ハイド口ショット衝撃試験機 (型式 HTM-1)を用い、温度 23°Cで、 直径が 1Z2インチの撃芯を 3mZsecの速度で生分解性積層シートに衝突させ、破 壊に要したエネルギーを算出した。
[0065] (4)耐衝撃性 2の評価
生分解性積層シートから得られた成形体に水を充填し、開口部をシールして、 lm の高さからコンクリート上に落下させ、成形体の破損の有無を調べた。
[0066] (5)ガラス転移点温度 (Tg)の測定
3-1^-7121に基づき、示差走査熱量測定法 (DSC)にて昇温速度が 10°CZmi nで、ポリエステルのガラス転移点温度を測定した。
[0067] (6)結晶化温度の測定
3-1^-7121に基づき、示差走査熱量測定法 (DSC)にて昇温速度が 10°CZmi nで、生分解性シート中のポリ乳酸系榭脂に起因する融解熱量(Δ Ηπι)、及び結晶 化熱量 A Hcを測定し、下記式によりポリ乳酸系榭脂の結晶化度を算出した。
結晶化度:%c% = ( A Hm— A Hc)Z(92. 8 Xシート中のポリ乳酸系榭脂の割合) X 100
[0068] (7)成形性の評価 φ 75mm,深さ 50mm、絞り比 0. 67の凸型成形金型(金型温度 25°C)を用いて真 空成形 (真空度: - 70cmHg)を行い、成形体の型賦形状態、及びブリッジ等の成形 不具合を観察し、下記の基準で 3段階で評価を行った。
評価基準は、
〇:良好な成形体が形成されて!ヽる。
△:実用可能なレベルの程度である。
X:不良形状の成形体が得られる。
で示した。
[0069] (8)総合評価
前記の耐熱性 1、耐熱性 2、耐衝撃性 1、耐衝撃性 2、及び成形性の評価が、全て 〇のサンプルを〇と表記し、 1つでも Xがあるサンプルについては Xと表記した。
[0070] (積層シート中のポリ乳酸樹脂の構成)
積層シートを構成するポリ乳酸榭脂としては表 1に示すカーギルダウ社製の Nature Worksを用い、表 2に示すように各グレード単独、又は混合物として使用した。混合体 の場合の D—乳酸割合は両者の質量分率からの平均値として算出した。
[0071] [表 1]
Figure imgf000015_0001
[0072] [表 2] 樹脂番号
1 2 3 4
Nature 4031 (質量^ 100 0 0
Works レー 4050 (質量 ¾) 0 100 70 0
ト" 4060 (質量 « 0 0 30 100 平均 D-乳酸量 (質量 ¾0 1. 2 0 7. 1 12
[0073] (実施例 1)
ポリ乳酸として表 2の榭脂 1を、及び生分解性脂肪族ポリエステルとして、 PBS (ポリ ブチレンサクシネート、昭和高分子 (株)製:ピオノーレ 1001、融点 111°C、ガラス転 移点: -40°C)を、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質 量%)になるように混合し、さらにこの混合物 100質量%に対して無機充填剤としてタ ルク(日本タルク(株)製:ミクロエース L1)を 10質量%混合して 25mm φの同方向二 軸押出機にて、 220°Cでマルチマ-ホールド式の口金より表裏層として押出した。
[0074] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =50Z50 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0075] 表層、中間層、裏層の厚み比が 1 : 5 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 3に示す。
[0076] (実施例 2)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 25Z75 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 20 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0077] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =25Z75 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 20質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0078] 表層、中間層、裏層の厚み比が 1 : 5 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 3に示す。
[0079] (実施例 3)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 75Z25 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0080] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =75Z25 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0081] 表層、中間層、裏層の厚み比が 1: 100 : 1になるよう溶融樹脂の吐出量を調整した 。この共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 /z mの 生分解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行つ た。その結果を表 3に示す。
[0082] (実施例 4)
生分解性脂肪族ポリエステルとして、 PBAT (ポリブチレンアジペートテレフタレート 、 BASF社製ェコフレックス、融点 109°C、ガラス転移点: 30°C)を用いた以外は実 施例 1と同様な方法で、厚み 300 mの生分解性積層シートを得た。得られた積層 シートを用いて上記の方法で評価を行った。その結果を表 3に示す。
[0083] (実施例 5)
生分解性脂肪族ポリエステルとして、 PBSL (ポリブチレンサクシネート乳酸、三菱 化学 (株)製: AZ81T、酸成分としてコハク酸: 94モル%、乳酸: 6モル%の共重合体 、融点 110°C、ガラス転移点: 40°C)を用いた以外は実施例 1と同様な方法で、厚 み 300 mの生分解性積層シートを得た。得られた積層シートを用いて上記の方法 で評価を行った。その結果を表 3に示す。
[0084] (実施例 6) 生分解性脂肪族ポリエステルとして、 PBSLA (ポリブチレンサクシネートアジペート 乳酸、三菱化学 (株)製: AD82W、酸成分としてコハク酸: 74モル0 /0、アジピン酸: 2 0モル%、乳酸: 6モル%の共重合体、融点 87°C、ガラス転移点: 40°C)を用いた以 外は実施例 1と同様な方法で、厚み 300 mの生分解性積層シートを得た。得られ た積層シートを用いて上記の方法で評価を行った。その結果を表 3に示す。
[0085] (実施例 7)
生分解性脂肪族ポリエステルとして、 PBSA (ポリブチレンサクシネートアジペート、 昭和高分子 (株)製:ピオノーレ 3001:酸成分としてコハク酸: 85モル0 /0、アジピン酸 : 15モル%の共重合体、融点 93°C、ガラス転移点: 40°C)を用いた以外は、実施例 1と同様な方法で、厚み 300 mの生分解性積層シートを得た。得られた積層シート を用いて上記の方法で評価を行った。その結果を表 3に示す。
[0086] (実施例 8)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 25Z75 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 20 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0087] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =25Z75 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 20質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0088] 表層、中間層、裏層の厚み比が 1: 1: 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 400 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 4に示す。
[0089] (実施例 9)
ポリ乳酸として表 2の榭脂 2を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0090] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =50Z50 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0091] 表層、中間層、裏層の厚み比が 1 : 5 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 115°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 4に示す。
[0092] (実施例 10)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを、 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0093] また、ポリ乳酸として表 2の榭脂 3 (Db = 7. 1)を、生分解性脂肪族ポリエステルとし て前記の PBSを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質 量%)になるように混合し、さらにこの混合物 100質量%に対して無機充填剤として 前記のタルクを 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より 中間層として押出した。
[0094] 表層、中間層、裏層の厚み比が 1 : 5 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 100°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 4に示す。 [0095] (実施例 11)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cで 2層のマルチマ-ホ 一ルド式の口金より表層として押出した。
[0096] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =50Z50 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0097] 得られる生分解性積層シートは 2層構造なので、中間層は、そのまま裏層を形成す る。表層、裏層の厚み比が 2 : 5になるよう溶融樹脂の吐出量を調整した。この共押出 シートを約 110°Cのキャスティングロールに接触させ、厚み 300 mの生分解性積層 シートを得た。得られた積層シートを用いて上記の方法で評価を行った。その結果を 表 4に示す。
[0098] (実施例 12)
ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 40mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0099] また、ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =50Z50 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 25mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0100] 表層、中間層、裏層の厚み比が 3 : 1 : 3になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 4に示す。
[0101] (実施例 13)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 50Z50 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0102] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =50Z50 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0103] 表層、中間層、裏層の厚み比が 1 : 5 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 40°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートの約 300mをロール状に巻き取り、温度 75°Cの熱風式オーブン中で 24時間、加熱処理を行った。得られた加熱処理後の積 層シートを用いて上記の方法で評価を行った。その結果を表 4に示す。
[0104] (実施例 14)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =40Z60 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0105] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =40Z60 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0106] 表層、中間層、裏層の厚み比が 1 : 5 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 40°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートの約 300mをロール状に巻き取り、温度 75°Cの熱風式オーブン中で 24時間、加熱処理を行った。得られた加熱処理後の積 層シートを用いて上記の方法で評価を行った。その結果を表 4に示す。
[0107] (比較例 1)
ポリ乳酸として表 2の榭脂 1を用い、ポリ乳酸榭脂 100質量%に対して無機充填剤 として前記のタルクを 10質量%混合して 25mm φの同方向二軸押出機にて、 220°C で単層の口金より押出した。この押出シートを約 110°Cのキャスティングロールに接 触させ、厚み 300 mの生分解性シートを得た。得られたシートを用いて上記の方法 で評価を行った。その結果を表 5に示す。
[0108] (比較例 2)
ポリ乳酸として表 2の榭脂 1を用い、ポリ乳酸榭脂 100質量%に対して無機充填剤 として前記のタルクを 10質量%混合して 25mm φの同方向二軸押出機にて、 220°C で単層の口金より押出した。この押出シートを約 40°Cのキャスティングロールに接触 させ急冷し、厚み 300 mの生分解性シートを得た。得られたシートを用いて上記の 方法で評価を行った。その結果を表 5に示す。
[0109] (比較例 3)
ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 80Z20 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cで単層の口金より押出 した。この押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 mの 生分解性シートを得た。得られたシートを用いて上記の方法で評価を行った。その結 果を表 5に示す。
[0110] (比較例 4) ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 80Z20 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ-ホールド 式の口金より表裏層として押出した。
[0111] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =80Z20 (単位:質量%)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0112] 表層、中間層、裏層の厚み比が 1 : 2 : 1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用いて上記の方法で評価を行った。そ の結果を表 5に示す。
[0113] (比較例 5)
ポリ乳酸として表 2の榭脂 1を、生分解性脂肪族ポリエステルとして前記の PBSを、 ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 60Z40 (単位:質量%)になるように 混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルクを 10 質量%混合して 25mm φの同方向二軸押出機にて、 220°Cで単層の口金より押出 した。この押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 mの 生分解性シートを得た。得られたシートを用いて上記の方法で評価を行った。その結 果を表 5に示す。
[0114] (比較例 6)
ポリ乳酸として表 2の榭脂 3 (Da= 7. 1)を、生分解性脂肪族ポリエステルとして前 記の PBSを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル = 60Z40 (単位:質量% )になるように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記の タルクを 10質量%混合して 25mm φの同方向二軸押出機にて、 220°Cでマルチマ 二ホールド式の口金より表裏層として押出した。 [0115] また、ポリ乳酸として表 2の榭脂 4を、生分解性脂肪族ポリエステルとして前記の PB Sを、ポリ乳酸榭脂 Z生分解性脂肪族ポリエステル =60Z40(単位:質量0 /0)になる ように混合し、さらにこの混合物 100質量%に対して無機充填剤として前記のタルク を 10質量%混合して 40mm φ同方向二軸押出機にて、上記口金より中間層として 押出した。
[0116] 表層、中間層、裏層の厚み比が 1:5:1になるよう溶融樹脂の吐出量を調整した。こ の共押出シートを約 110°Cのキャスティングロールに接触させ、厚み 300 μ mの生分 解性積層シートを得た。得られた積層シートを用レヽて上記の方法で評価を行った。そ の結果を表 5に示す。
[0117] [表 3]
Figure imgf000024_0001
* 1) 1 : 第 1層を表す。 2 :第 2層を表す。
* 2) 含有されるポリ乳酸系樹脂の結晶化度
[0118] [表 4] 実施例
8 9 10 11 12 13 14 シート厚み ( m) 300
層構成 3層 2層 3層 全
体 層の配置 1/2/1 1/2 2/1/2 1/2/1 厚み比率 1/1/1 1/5/1 2/5 3/1/3 1/5/1 生
Db-Da (質量 « 10.8 7 5.9 10.8 分
解 Da (質量 « 1.2 5 1.2
性 第 厚み 11丄 m) 267 86 43 86
1 Ϊ吉晶化度 (¾) 42 30 43 46 42 42 43 層 ホ'リエステル 種類 PBS
1 系樹脂 含有割合 (質量 %) 75 50 60 卜 D b % 12 7- 1 12
第 厚み 34 214 257 214
2 結晶化度 *2) (%) 1.8 2.4 9-2 1.1 3.4 ::]::::[1: β ホ。リエステル 種類 PBS
系樹脂 含有割合 (質量 » 75 50 60 耐熱性 1 (» 0.7 1 0.9 1.2 1.4 0.9 0.8 耐熱性 2 〇 〇 〇 O 〇 〇 〇 評 耐衝撃性 1 (Kgi -mm) 398 270 198 203 222 220 302 価 耐衝撃性 2 〇 〇 〇 〇 〇 〇 〇 成形性 〇 〇 〇 〇 〇 〇 〇 総合評価 〇 〇 〇 〇 〇 〇 〇
* 1) 1 :第1層を表す。 2 :第 2層を表す。
* 2) 含有されるポリ乳酸系樹脂の結晶化度 5]
比較例
1 2 3 4 5 6 シー ト厚み (/Ζ Ι ) 300
層構成 卓層 3層 単層 3層 全
層の配置 ) 1 1/2/1 1 1/2/1 体
厚み比率 ― 1/2/1 ― 1/5/1 生
Db-Da (質量 ― 10. 8 ― 4. 8 分
解 Da (質量 1. 2 ― 1. 2 7. 1 性 第 厚み ( i m) 300 一 150 300 86 -产 1 結晶化度 * 2 ) (¾) 46 Ί 5. 2 一 45 43 10. 1 層 ホ。リエステル 種類 無し PBS ン 系樹脂 含有割合 (質量 ¾) 0 0 40 1
Db % ― 12 ― 12 h
第 厚み (/x m) 300 150 ― 214
2 結晶化度 * 2 ) (¾) ― 3. 4 1. 1 ― 1. 2 層 ホ。リエステル 種類 無し P] IS 無し PBS 系樹脂 含有割合 (質量》 0 20 0 40 耐熱性 1 tt) 82. 3 84. 1 8. 1 6. 5 1. 1. 5 耐熱性 2 X X X 〇 〇 X 評 耐衝撃性 1 (Kgf '匪) 1 1 10 78 85 156 202 価 耐衝撃性 2 X X 〇 〇 〇 〇 成形性 X 〇 〇 X X 〇 総合評価 X X X X X X
* 1 ) 1 :第1層を表す。 2 :第 2層を表す。
* 2 ) 含有されるポリ乳酸系樹脂の結晶化度
[0120] [結果]
表 3—表 5から、実施例 1一 14は、耐熱性、耐衝撃性、成形性の全てにおいて優れ ており、良好な成形体が通常の成形サイクルで得られることが分力つた。
[0121] 一方、比較例 1では生分解性脂肪族ポリエステルが含まれていないため、耐衝撃 性や耐熱性に問題のある結果となり、かつ真空成形では型賦形性が非常に悪い結 果となった。比較例 2においては、比較例 1同様、耐熱性ゃ耐衝撃性に問題のある結 果となった。特に耐熱性 2の評価では容器が座屈変形する現象が見られた。
[0122] 比較例 3は生分解性脂肪族ポリエステルの割合が少ないため耐熱性に劣り、比較 例 2と同様に耐熱性 2の評価で容器が座屈変形した。比較例 4では耐熱性、及び成 形性に問題がある結果となった。成形では型賦形性が悪かった。
[0123] 比較例 5にお 、ては、成形性の評価にお!、てブリッジが発生した。比較例 6では、 耐熱性 2の評価にお 、て容器が座屈した。

Claims

請求の範囲
[1] 少なくとも 2層からなる積層シートであり、この積層シートを構成する各々の層は、ポ リ乳酸系榭脂 75— 25質量%と、ガラス転移温度が 0°C以下、融点が前記ポリ乳酸系 榭脂のガラス転移温度より高ぐかつポリ乳酸系榭脂の融点以下であるポリエステル 系榭脂 25— 75質量%とを合計で 100質量%となるように配合した榭脂組成物力もな り、
前記積層シートを構成する 1つの層に含まれるポリ乳酸系榭脂の D—乳酸の含有割 合を Da (%)とし、前記積層シートを構成する他の 1つの層に含まれるポリ乳酸系榭 脂の D—乳酸の含有割合を Db (%)としたとき、下記式(1)の関係を有し、さらに前記 積層シートは結晶化処理がされたものである生分解性積層シート。
Da≤7 かつ Db— Da> 3 (1)
[2] 少なくとも 2層からなる積層シートであり、この積層シートを構成する各々の層は、ポ リ乳酸系榭脂 75— 25質量%と、ガラス転移温度が 0°C以下、融点が 80°C以上で、ポ リ乳酸系樹脂の融点以下であるポリエステル系榭脂 25— 75質量%とを合計で 100 質量%となるように配合した榭脂組成物カゝらなり、
前記積層シートを構成する 1つの層に含まれるポリ乳酸系榭脂の D—乳酸の含有割 合を Da (%)とし、前記積層シートを構成する他の 1つの層に含まれるポリ乳酸系榭 脂の D—乳酸の含有割合 Db (%)としたとき、下記式(1)の関係を有し、さらに前記積 層シートは結晶化処理がされたものである生分解性積層シート。
Da≤7 かつ Db— Da> 3 (1)
[3] 少なくとも 2層からなる積層シートであり、この積層シートを構成する各々の層は、ポ リ乳酸系榭脂 75— 25質量%と、ガラス転移温度が 0°C以下、融点が前記ポリ乳酸系 榭脂のガラス転移温度より高ぐかつポリ乳酸系榭脂の融点以下であるポリエステル 系榭脂 25— 75質量%とを合計で 100質量%となるように配合した榭脂組成物力もな り、
前記積層シートを構成する 1つの層に含まれるポリ乳酸系榭脂の D—乳酸の含有割 合を Da (%)とし、前記積層シートを構成する他の 1つの層に含まれるポリ乳酸系榭 脂の D—乳酸の含有割合を Db (%)としたとき、下記式 (1)の関係を有し、 Da≤7 かつ Db— Da> 3 (1)
さらに、前記の 1つの層中に含まれるポリ乳酸系榭脂の結晶化度が 20%以上 100 %以下であり、かつ、前記の他の 1つの層中に含まれるポリ乳酸系榭脂の結晶化度 力 S0%以上 20%未満である生分解性積層シート。
[4] 少なくとも 2層からなる積層シートであり、この積層シートを構成する各々の層は、ポ リ乳酸系榭脂 75— 25質量%と、ガラス転移温度が 0°C以下、融点が 80°C以上で、ポ リ乳酸系樹脂の融点以下であるポリエステル系榭脂 25— 75質量%とを合計で 100 質量%となるように配合した榭脂組成物カゝらなり、
前記積層シートを構成する 1つの層に含まれるポリ乳酸系榭脂の D—乳酸の含有割 合を Da (%)とし、前記積層シートを構成する他の 1つの層に含まれるポリ乳酸系榭 脂の D—乳酸の含有割合 Db (%)としたとき、下記式 (1)の関係を有し、
Da≤7 かつ Db— Da> 3 (1)
さらに、前記の 1つの層中に含まれるポリ乳酸系榭脂の結晶化度が 20%以上 100 %以下であり、かつ、前記の他の 1つの層中に含まれるポリ乳酸系榭脂の結晶化度 力 S0%以上 20%未満である生分解性積層シート。
[5] 前記の 1つの層の厚みが 3— 300 μ mである請求項 1乃至 4のいずれかに記載の 生分解性積層シート。
[6] 前記の 1つの層が両外層を構成し、前記の他の 1つの層が前記両外層に挟まれる 層の少なくとも 1層である請求項 1乃至 5のいずれかに記載の生分解性積層シート。
[7] 請求項 1乃至 6のいずれか〖こ記載の生分解性積層シートを、ポリエステル系榭脂の 融点以上、かつ前記 1つの層中に含まれるポリ乳酸系榭脂の融点未満の温度で成 形して得られる生分解性積層シートの成形体。
[8] 請求項 1乃至 6のいずれか〖こ記載の生分解性積層シートを、ポリエステル系榭脂の 融点以上、かつ前記 1つの層中に含まれるポリ乳酸系榭脂の融点未満の温度で成 形する生分解性積層シートの成形体の製造方法。
PCT/JP2004/014241 2003-10-01 2004-09-29 生分解性積層シ−ト WO2005032818A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20040788307 EP1671786B1 (en) 2003-10-01 2004-09-29 Biodegradable layered sheet
US10/595,261 US7235287B2 (en) 2003-10-01 2004-09-29 Biodegradable laminated sheet
KR1020067006336A KR101118326B1 (ko) 2003-10-01 2006-03-31 생분해성 적층 시트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-343489 2003-10-01
JP2003343489 2003-10-01
JP2004-283100 2004-09-29
JP2004283100A JP4417216B2 (ja) 2003-10-01 2004-09-29 生分解性積層シート

Publications (1)

Publication Number Publication Date
WO2005032818A1 true WO2005032818A1 (ja) 2005-04-14

Family

ID=34425334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014241 WO2005032818A1 (ja) 2003-10-01 2004-09-29 生分解性積層シ−ト

Country Status (6)

Country Link
US (1) US7235287B2 (ja)
EP (1) EP1671786B1 (ja)
JP (1) JP4417216B2 (ja)
KR (1) KR101118326B1 (ja)
TW (1) TW200517440A (ja)
WO (1) WO2005032818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2810887C1 (ru) * 2021-12-16 2023-12-29 КейТи энд Джи КОРПОРЕЙШН Биоразлагаемая пленка для упаковки сигарет

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253009A (ja) * 2002-03-06 2003-09-10 Unitika Ltd ポリ乳酸系成形体およびその製造方法
JPWO2004007197A1 (ja) * 2002-07-11 2005-11-10 三菱樹脂株式会社 生分解性積層シート、及びこの生分解性積層シートを用いた成形体
JP4842745B2 (ja) * 2005-09-27 2011-12-21 株式会社ジェイエスピー ポリ乳酸樹脂発泡シート成形体およびその製造方法
KR100786005B1 (ko) * 2006-08-18 2007-12-14 에스케이씨 주식회사 다층 지방족 폴리에스터 필름
US20080105587A1 (en) * 2006-11-06 2008-05-08 Hawes David H Biodegradable blister package
KR100845629B1 (ko) * 2007-01-03 2008-07-10 에스케이씨 주식회사 다층 지방족 폴리에스터 필름
US20080188154A1 (en) * 2007-02-06 2008-08-07 Jen-Coat, Inc. Film laminate
KR101471220B1 (ko) 2007-03-16 2014-12-09 도레이 카부시키가이샤 지방족 폴리에스테르계 시트 및 그것으로 이루어지는 성형체
KR101235462B1 (ko) * 2007-03-29 2013-02-20 미쓰비시 쥬시 가부시끼가이샤 카드용 코어 시트
WO2009076541A1 (en) * 2007-12-11 2009-06-18 Toray Plastics (America), Inc. Process to produce biaxially oriented polylactic acid film at high transverse orientation rates
US8227658B2 (en) * 2007-12-14 2012-07-24 Kimberly-Clark Worldwide, Inc Film formed from a blend of biodegradable aliphatic-aromatic copolyesters
US7678444B2 (en) * 2007-12-17 2010-03-16 International Paper Company Thermoformed article made from renewable polymer and heat-resistant polymer
US20110123809A1 (en) * 2008-03-24 2011-05-26 Biovation, Llc Biolaminate composite assembly and related methods
AU2009229406A1 (en) 2008-03-24 2009-10-01 Biovation, Llc Biolaminate composite assembly and related methods
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
TW201000540A (en) * 2008-05-05 2010-01-01 Int Paper Co Thermoformed article made from bio-based biodegradable polymer composition
EP2289685B1 (en) * 2008-05-29 2017-08-02 Mitsubishi Gas Chemical Company, Inc. Composite molded article having two-layer structure and method for producing the same
CA2727517A1 (en) * 2008-06-13 2009-12-17 Toray Plastics (America), Inc. Matte biaxially oriented polylactic acid film
US9314999B2 (en) * 2008-08-15 2016-04-19 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with high barrier
KR20100070096A (ko) * 2008-12-17 2010-06-25 (주)엘지하우시스 생분해성 광고 소재 및 이의 제조방법
US9150004B2 (en) * 2009-06-19 2015-10-06 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved heat seal properties
US20100330382A1 (en) * 2009-06-26 2010-12-30 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved moisture barrier
US9221213B2 (en) 2009-09-25 2015-12-29 Toray Plastics (America), Inc. Multi-layer high moisture barrier polylactic acid film
EP2480710B1 (en) 2009-09-25 2018-01-24 Toray Plastics (America) , Inc. Multi-layer high moisture barrier polylactic acid film and its method of forming
CA2781963C (en) * 2009-12-08 2014-01-07 International Paper Company Thermoformed articles made from reactive extrusion products of biobased materials
WO2011115992A2 (en) * 2010-03-16 2011-09-22 Hunter Douglas Industries B.V. Laminate panels produced from biopolymers
US9186868B2 (en) 2010-03-16 2015-11-17 3Form, Llc Laminate panels produced from biopolymers
US9492962B2 (en) 2010-03-31 2016-11-15 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
EP2552689B1 (en) 2010-03-31 2017-10-25 Toray Plastics (America) , Inc. Biaxially oriented polyactic acid film with reduced noise level
US20120013037A1 (en) * 2010-07-14 2012-01-19 Riebel Michael J Viscoelastic Extrusion Processing Method and Compositions for Biopolymers
JP2014051570A (ja) * 2012-09-06 2014-03-20 Teijin Ltd 熱曲げ加工用樹脂組成物
JP2015536255A (ja) * 2012-11-01 2015-12-21 東レ株式会社 多層フィルム
CN103223746B (zh) * 2013-05-20 2015-04-08 湖南工业大学 一种环保型聚乳酸/聚己内酯复合阻隔板
CN105492207A (zh) * 2013-06-27 2016-04-13 富特罗股份有限公司 包括生物聚合物的多层膜
KR102417035B1 (ko) * 2014-10-27 2022-07-04 티파 코퍼레이션 리미티드 생분해성 시트
WO2017203378A1 (en) * 2016-05-23 2017-11-30 Creative Plastics A biodegradable and compostable multilayer film
JP7202294B2 (ja) * 2016-10-27 2023-01-11 メレディアン・インコーポレーテッド Pbsa可塑剤を含むポリマー組成物
US20230031043A1 (en) * 2017-08-01 2023-02-02 Creative Plastics Anti-counterfeit environment-friendly packaging material
IT202000018172A1 (it) * 2020-07-27 2022-01-27 Bio C Srl Foglio, in particolare per la copertura di superfici od oggetti di vario genere
EP4223515A4 (en) * 2021-12-16 2024-02-14 KT & G Corporation BIODEGRADABLE FILM FOR TOBACCO PACKAGING
JP2024502924A (ja) * 2021-12-16 2024-01-24 ケーティー アンド ジー コーポレイション タバコ包装用生分解性フィルム
CN115403902B (zh) * 2022-09-27 2024-02-13 金发科技股份有限公司 一种可生物降解材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141955A (ja) * 1998-06-03 2000-05-23 Mitsubishi Plastics Ind Ltd 生分解性カード
JP2001219522A (ja) * 2000-02-14 2001-08-14 Mitsubishi Plastics Ind Ltd ポリ乳酸系積層2軸延伸フィルム
JP2002127343A (ja) * 2000-10-30 2002-05-08 Mitsubishi Plastics Ind Ltd 生分解性熱成形用シート状物および容器
JP2003094585A (ja) * 2001-09-26 2003-04-03 Dainippon Ink & Chem Inc ヒートシールフィルム
JP2003170560A (ja) * 2001-12-06 2003-06-17 Unitika Ltd ヒートシール性を有するポリ乳酸系二軸延伸積層フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359764B2 (ja) 1993-12-24 2002-12-24 三井化学株式会社 耐熱性乳酸系ポリマー成形物
JPH10151715A (ja) * 1996-11-22 1998-06-09 Dainippon Ink & Chem Inc 熱融着可能な乳酸系ポリマー積層体
WO1999025758A1 (fr) * 1997-11-14 1999-05-27 Mitsubishi Plastics, Inc. Film biodegradable et procede de production dudit film
JP2001047583A (ja) * 1999-08-10 2001-02-20 Okura Ind Co Ltd 生分解性熱収縮積層フィルム
JP4660035B2 (ja) * 2000-09-28 2011-03-30 三井化学東セロ株式会社 脂肪族ポリエステル組成物、それからなるフィルム及びその積層体
US20030039775A1 (en) * 2001-08-17 2003-02-27 Dan-Cheng Kong Multilayer sleeve labels
JP2003147177A (ja) 2001-11-16 2003-05-21 Mitsubishi Plastics Ind Ltd 生分解性シート及びこのシートを用いた成形体とその成形方法
EP1553139A4 (en) * 2002-07-08 2010-03-03 Mitsubishi Plastics Inc BIODEGRADABLE SHEET, MOLDED OBJECT MANUFACTURED FROM SUCH SHEET, AND PROCESS FOR PRODUCTION OF SAID MOLDED OBJECT
JPWO2004007197A1 (ja) * 2002-07-11 2005-11-10 三菱樹脂株式会社 生分解性積層シート、及びこの生分解性積層シートを用いた成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141955A (ja) * 1998-06-03 2000-05-23 Mitsubishi Plastics Ind Ltd 生分解性カード
JP2001219522A (ja) * 2000-02-14 2001-08-14 Mitsubishi Plastics Ind Ltd ポリ乳酸系積層2軸延伸フィルム
JP2002127343A (ja) * 2000-10-30 2002-05-08 Mitsubishi Plastics Ind Ltd 生分解性熱成形用シート状物および容器
JP2003094585A (ja) * 2001-09-26 2003-04-03 Dainippon Ink & Chem Inc ヒートシールフィルム
JP2003170560A (ja) * 2001-12-06 2003-06-17 Unitika Ltd ヒートシール性を有するポリ乳酸系二軸延伸積層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1671786A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2810887C1 (ru) * 2021-12-16 2023-12-29 КейТи энд Джи КОРПОРЕЙШН Биоразлагаемая пленка для упаковки сигарет
RU2810935C1 (ru) * 2021-12-16 2024-01-09 КейТи энд Джи КОРПОРЕЙШН Биоразлагаемая пленка для упаковки сигарет

Also Published As

Publication number Publication date
JP4417216B2 (ja) 2010-02-17
KR20060081713A (ko) 2006-07-13
TW200517440A (en) 2005-06-01
JP2005125765A (ja) 2005-05-19
EP1671786A4 (en) 2011-04-13
TWI304426B (ja) 2008-12-21
US7235287B2 (en) 2007-06-26
EP1671786B1 (en) 2013-01-23
KR101118326B1 (ko) 2012-03-09
EP1671786A1 (en) 2006-06-21
US20060286373A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4417216B2 (ja) 生分解性積層シート
KR100981484B1 (ko) 열성형용 폴리락트산계 중합체 조성물, 열성형용폴리락트산계 중합체 시트, 및 이것을 사용한 열성형체
KR100789050B1 (ko) 생분해성 시이트 및 이 시이트를 이용한 성형체와 그성형체의 제조 방법
US7320773B2 (en) Biodegradable laminate sheet and molded item from biodegradable laminate sheet
JP4794187B2 (ja) フィルムカッターおよびフィルムカッター付収納箱
JP2004082512A (ja) 生分解性フィルムおよび該フィルムからなる生分解性袋体
JP4180606B2 (ja) 生分解性シート及びこのシートを用いた成形体とその成形方法
JP2004217289A (ja) 生分解性ブリスターパック
JP5620190B2 (ja) 生分解性樹脂積層体
JP3984492B2 (ja) 熱成形用ポリ乳酸系多層シートおよびその成形物
JP4452293B2 (ja) 熱成形用ポリ乳酸系多層シートおよびその成形物
JP3953773B2 (ja) 生分解性複合シート及びそれを用いた成形体
JP2004090608A (ja) 折り曲げ罫線入り積層シート、及びこの折り曲げ罫線入り積層シートを用いた成形加工品
JP4669890B2 (ja) 熱成形体の製造方法
JP3730504B2 (ja) 生分解性導電性複合シート、それを用いてなる成形体及びキャリアテープ
JP3472549B2 (ja) 生分解性導電性複合シート、それを用いてなる成形体及びキャリアテープ
JP2009179400A (ja) 生分解性ブリスターパック
JP2005219487A (ja) 積層フィルム
JP4206302B2 (ja) 熱折り曲げ成形用ポリ乳酸系積層シート
JP2004358845A (ja) ポリ乳酸系熱折り曲げ成形体及びその製造方法
JP2002052602A (ja) 生分解性導電性複合成形体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028109.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067006336

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004788307

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006286373

Country of ref document: US

Ref document number: 10595261

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004788307

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067006336

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10595261

Country of ref document: US