WO2005027322A2 - Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung - Google Patents

Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung Download PDF

Info

Publication number
WO2005027322A2
WO2005027322A2 PCT/EP2004/010343 EP2004010343W WO2005027322A2 WO 2005027322 A2 WO2005027322 A2 WO 2005027322A2 EP 2004010343 W EP2004010343 W EP 2004010343W WO 2005027322 A2 WO2005027322 A2 WO 2005027322A2
Authority
WO
WIPO (PCT)
Prior art keywords
controller
parameter
machine
control
machine part
Prior art date
Application number
PCT/EP2004/010343
Other languages
English (en)
French (fr)
Other versions
WO2005027322A3 (de
Inventor
Thomas Hoppe
Tibor Seres
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10342562A external-priority patent/DE10342562A1/de
Priority claimed from DE102004043506A external-priority patent/DE102004043506A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2006525797A priority Critical patent/JP2007506397A/ja
Priority to US10/571,726 priority patent/US7405525B2/en
Publication of WO2005027322A2 publication Critical patent/WO2005027322A2/de
Publication of WO2005027322A3 publication Critical patent/WO2005027322A3/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path

Definitions

  • the invention relates to a method for regulating an electrical machine and a device for regulating it.
  • a control unit is used in a method for controlling an electrical machine.
  • the control unit can advantageously be parameterized.
  • the control unit has, for example, a current controller, a speed controller or a further additional controller. At least one of these controllers can be parameterized using at least one parameter.
  • controllers have different control elements. Control elements are, for example, P-elements (reinforcement elements), D-elements (differential elements), I-elements (integrating elements), etc.
  • Such control elements have parameters, such as, for example, gain factors P or also differential time constants T D or integrating time constant constants Ti Such timing elements, amplification factors and / or time constants are examples of parameters.
  • the electrical machine is provided, for example, for moving a machine part.
  • the machine part is, for example, part of a machine tool, a production machine or an automatic handling machine.
  • the machine part can also be part of the electrical machine itself, such as a rotor of a rotary electrical machine or also a primary part or a secondary part of a linear motor.
  • a linear motor either the primary part or the secondary part can be moved linearly.
  • the secondary part which has permanent magnets, is usually stationary and the primary part, which has at least one winding that can be energized, is linearly movable.
  • the electrical machine is therefore either a rotary electrical machine or a linear motor.
  • the moving machine part is, for example, directly driven by the electrical machine or also via a gear or via a means for power transmission, such as a toothed belt or the like.
  • a boundary condition is e.g. a coefficient of friction depending on the position of the machine part.
  • the permanent magnets it is also possible, for example, for the permanent magnets to have a different magnetization on the secondary part of the linear motor or on the rotor. Magnetization is therefore an example of another boundary condition. Depending on the magnetization, there is a different electromagnetic
  • the parameters of the regulation of a regulation unit of the electrical machine are to be set in such a way that they result in an optimal regulation setting for all positions of the electrical machine.
  • the consequence of this is that the electrical machine is optimally parameterized with regard to the control in no or only in a few positions of a moving machine part.
  • the object of the present invention is to enable improved parameterization of a regulation of an electrical machine.
  • the object is achieved by means of a method with the features according to claim 1 or by means of a device with the features according to claim 7.
  • the dependent claims 2 to 6 and 8 are advantageous inventive developments of the invention.
  • a control unit has a parameterizable speed controller and a parameterizable additional controller, and the electrical machine is provided for changing a position of a movable machine part, the position of the movable machine part being recorded, a parameter of the speed controller becomes and / or at least one parameter of the additional controller is changed as a function of a position of the movable machine part.
  • the movable machine part is, for example, part of a machine tool (e.g. a milling head) or a production machine (e.g. a screw conveyor of a plastic injection molding machine, which is a production machine) or an automatic handling device (e.g. a gripper).
  • the movable machine part is, for example, also a rotor of a rotary electric motor or a primary part of a linear motor.
  • the speed controller is the speed controller for a rotating motor.
  • the advantageous change of at least one parameter described above is also advantageous in the case of a position control loop.
  • the position control loop is used to control a position of a movable machine part.
  • a travel position of the movable machine part is measured, for example, by a position measuring system.
  • the measured travel position is used to track at least one control parameter.
  • the control parameter is preferably an optimal value for a specific local position of a travel movement. This eliminates the need to meet the different requirements for a controller or its control behavior over an entire travel path with a single parameter set.
  • the travel path is, for example, the path that the primary part of the linear motor covers in relation to the secondary part of the linear motor.
  • Another example of the travel path are the 360 degrees of a revolution of a rotor of a rotary electric motor, which is also a rotary electric machine.
  • the additional controller is at least one of the controller types listed below: a position controller, a tension controller, a torque controller and / or a pilot control.
  • the precontrol is a control loop that can be both closed and open.
  • the electrical machine is designed as a linear motor.
  • the linear motor has a primary part and a secondary part, with either the primary part or the secondary part being a movable part of the linear motor.
  • at least one parameter of the speed controller and / or at least one parameter of the additional controller is changed. If, for example, the linear motor has a secondary part with a cover and if this cover is not guided over the entire surface of the secondary part, the electromagnetic force EMF changes depending on whether or not the secondary part has a cover at a position of the primary part.
  • the change in the electromagnetic force EMK is position-dependent, so that at least one parameter of the speed control or the additional control of the linear motor can be set depending on whether the primary part is in an area in which the secondary part has a cover or also has no cover.
  • An example of the parameter is the parameter for the electromagnetic force EMF.
  • a function or a table is used to change the parameter of a regulation.
  • the function is a function over a position.
  • the position relates, for example, to a position of the primary part of a linear motor, or to the position of a rotor of a rotary electric machine, or also to the position of a machine part of a machine, the machine being, for example, a production machine, a machine tool or an automatic handling machine.
  • the position of the machine part is important, for example, because the machine part is exposed to different friction coefficients depending on the position, so that, for example, a gain parameter of the control system can compensate for higher friction in certain areas of a travel movement. If the change of a parameter or several parameters of a control (e.g. speed controller and / or additional controller) is carried out by means of a table, an assignment between a position and an associated parameter is established in the table.
  • a reference run for the electrical machine is carried out in order to determine the parameters dependent on the position.
  • the machine behavior can be determined by means of the reference run, which can be carried out in a reference time. During the reference run, for example, the magnetic field caused by the permanent magnets is measured.
  • a table and / or a function is generated during and / or after the reference run, in which information is stored about the position of the movable machine part at which a certain parameter value for regulation is to be set ,
  • the necessary parameter values are calculated beforehand.
  • the parameter is therefore a physical parameter, which is in particular a magnetic field parameter and is dependent on the position of the machine part.
  • the physical parameter is measured depending on the position of the machine part.
  • Parameter of one or more controllers is brought depending on the position of the machine part. This is done, for example, as described above using a function or a table.
  • the dependency relates to the dependency on the physical parameter, so that one or more parameters of one or more controllers are changed depending on the values of physical parameters.
  • a physical parameter a parameter which, for example, relates to the magnetic field which is generated by means of permanent magnets.
  • the permanent magnets are not always uniformly magnetized, so that without changing the controller parameters, machine behavior would be present, which is disadvantageous for many applications, since the electrical machine reacts differently, for example, to the same currents and frequencies depending on the position.
  • a different EMF also results, for example, from the fact that a secondary part of a linear motor has a cover over a certain traversing section and has no cover over another traversing section, which is used, for example, for a service or a tool change in a machine tool.
  • the cover is advantageously magnetic, so it automatically adheres to the secondary part.
  • the invention also relates to a device for regulating an electrical machine.
  • the control has a parameterizable speed controller and / or a parameterizable additional controller.
  • the additional controller is, for example, a position controller, a tension controller or a torque controller.
  • a pilot control is also to be understood as an additional controller.
  • the electrical machine is provided for changing a position of a movable machine part.
  • a movable machine part is, for example, part of the electrical machine, such as the primary part of a linear motor or the rotor of a rotary, permanently excited synchronous machine.
  • Another example of a machine part is a tool of a machine tool, which can be driven by the electrical machine, for example, by means of a gear.
  • the position of the machine part can be detected by means of a displacement sensor. At least one parameter of the speed controller and / or at least one parameter of the additional controller can be changed as a function of the position of the movable machine part. This results in the advantages already described above.
  • This control device can also be used to carry out the above-described method for controlling an electrical machine.
  • the device for regulating the electrical machine is, for example, an NC controller, a CNC controller, a PLC controller, a personal computer (PC) or the like.
  • the regulation is, for example also integrated in the control system of the converter.
  • FIG. 1 shows a schematic illustration of a linear motor with a control unit for carrying out the method according to the invention
  • FIG. 2 shows an example of a speed control which is combined with a position control as an additional controller.
  • the control unit. 1 can be integrated, for example, in a production machine, a machine tool or in an automatic handling machine. These machines or automatic machines are not shown in FIG. 1.
  • a converter circuit 3 can be controlled by means of the control unit 1.
  • the converter circuit 3 is provided for energizing a linear motor 5 as an example of an electrical machine.
  • the linear motor 5 has a primary part 7 and a secondary part 8 in a known manner.
  • the primary part 7 is movable in the directions of movement 23 and 24.
  • a linear scale 11 and a displacement sensor 13 are also shown schematically.
  • a sensor 15 for measuring the magnetic field of the secondary part 8, which has permanent magnets 9, is provided on or in a power transmission interface of the linear motor, ie in the region of an air gap between the primary part 7 and the secondary part 8.
  • the secondary part 8 also has a cover 10, which, however, does not extend over the entire area of the secondary part 8.
  • Further sensors, such as a sensor for recording the speed, as are common in electrical machines or linear motors, are not shown in FIG. 1 for better clarity.
  • the speed detection can also be derived, for example, directly from the time course of the magnetic field at the location of the sensor 15. This has the advantage that if one. such a sensor already on an e ⁇ electrical machine or in a primary motor, this Sensox can also be used as a displacement sensor.
  • the displacement sensor 13 and the sensor 15 are connected to the control unit 1 via a data cable 17.
  • the control unit 1 which is also to be provided in particular for the speed control, the position control and / or the current control, forms at least from the values of the sensor 15 a parameter for at least one of the above-mentioned controls.
  • a current signal is also necessary, for example, for regulating the linear motor 5.
  • the current signal is from a. Current transformer 19 delivered.
  • the current converter 19 is used to measure the current with which the primary part 7 is supplied with current via a power line 14 through the converter circuit 3.
  • the control unit 1 has a memory 21.
  • parameters are stored which relate in particular to the electromagnetic force EMF.
  • the primary part moves at least in one of the two directions of movement 23, 24.
  • the sensor 15 records measurement data.
  • the measurement data are processed to at least one parameter.
  • the parameter is saved and used to control the electrical machine - i.e. the linear motor.
  • the illustration according to FIG. 2 shows a control scheme for a winder 44.
  • a material strip 40 can be wound on the winder 44.
  • the winder 44 can be driven by means of an electrical machine 6.
  • the rotary movement of the electrical machine 6 is detected by means of a displacement sensor 13.
  • the control of the electrical machine 6 has a speed controller 26 and a current controller 27.
  • the current controller 27 supplies a current signal to a converter circuit 3.
  • the converter circuit 3 is a power unit for operating the electrical machine 6.
  • the control scheme according to FIG. 2 has a xage controller 28.
  • the position controller 28 has a difference between an actual position value 41 and a set position value 42. Both the position controller 28 and the rotary Number controller 26 have parameters.
  • a parameter 33 can be fed to the position controller 28 via a function 35.
  • a parameter value is plotted in the function 35 via a position.
  • the parameter 33 can thus be selected by supplying a position signal 29.
  • the parameter 31 is selected using a table 37.
  • a stored parameter value 31 can be selected from the table 37, the selected parameter value being made available to the speed controller. Both the signal from the displacement sensor and the output signal from the position controller 28 serve as the input signal of the speed controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Linear Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Linear Motors (AREA)

Abstract

Verfahren zur Regelung einer elektrischen Maschine (5), wobei eine Regelungseinheit (1) einen parametrierbaren Geschwindigkeitsregler (26) und einen parametrierbaren Zusatzregler (28) aufweist und die elektrische Maschine (5) zur Änderung einer Position eines bewegbaren Maschinenteils (7,8) vorgesehen ist, wobei die Position (29) des bewegbaren Maschinenteils (7,8) erfasst wird, wobei zumindest ein Parameter (31) des Geschwindigkeitsregler (26) und/oder zumindest ein Parameter (33) des Zusatzreglers (28) in Abhängigkeit von der Position (29) des bewegbaren Maschinenteils (7,8) verändert wird.

Description

Beschreibung
Verfahren zur Regelung einer elektrischen Maschine bzw. Vorrichtung zu deren Regelung
Die Erfindung betrifft ein Verfahren zur Regelung einer elektrischen Maschine bzw. eine Vorrichtung zu deren Regelung. Bei einem Verfahren zur Regelung einer elektrischen Maschine wird eine Regelungseinheit verwendet. Die Regelungs- einheit ist vorteilhafter Weise parametrierbar. Die Regelungseinheit weist beispielsweise einen Stromregler, einen Geschwindigkeitsregler oder einen weiteren Zusatzregler auf. Zumindest einer dieser Regler ist mittels zumindest eines Parameters parametrierbar. Regler weisen beispielsweise ver- schiedene Regelglieder auf. Regelglieder sind beispielsweise P-Glieder (Verstärkungs-Glieder) D-Glieder (differenzielle Glieder), I-Glieder (integrierende Glieder) usw. Derartige Regelglieder weisen Parameter auf, wie z.B. Verstärkungsfaktoren P oder auch di ferenzielle Zeitkonstanten TD oder auch integrierende Zeitkorxstanten Ti. Derartige Zeitglieder, Verstärkungsfaktoren und/oder Zeitkonstanten sind Beispiele für Parameter.
Die elektrische Masch-ine ist beispielsweise zur Bewegung ei- nes Maschinenteils vorgesehen. Das Maschinenteil ist beispielsweise ein Teil einer Werkzeugmaschine, einer Produktionsmaschine oder eines Handhabungsautomaten. Das Maschinenteil kann allerdings auch ein Teil der elektrischen Maschine selbst sein, wie beispielsweise ein Rotor einer rotatorischen elektrischen Maschine oder auch ein Primärteil oder ein Sekundärteil eines Linearmotors. Bei einem Linearmotor ist entweder das Primärteil oder auch das Sekundärteil linear bewegbar. Zumeist ist das Sekundärteil, welches Permanentmagnete aufweist, stationär und das Primärteil, welches zumindest ei- ne bestrombare Wicklung aufweist, linear bewegbar. Die elektrische Maschine ist also entweder eine rotatorische elektrische Maschine oder ein Linearmotor. Im Falle einer rotatorischen elektrischen Maschine ist das bewegte Maschinenteil beispielsweise direkt von der elektrischen Maschine aα- getrieben oder auch über ein Getriebe bzw. über ein Mittel zur Kraftübertragung wie dies z.B. ein Zahnriemen oder dergleichen ist.
Abhängig von der Position des Maschinenteils, welches beweg - bar ist, können sich verschiedene Randbedingungen für eine
Bewegung (linear oder rotatorisch) der elektrischen Maschine ergeben. Eine Randbedingung ist z.B. ein von der Position des Maschinenteils abhängiger Reibungskoeffizient. Bei einem Li— nearmotor aber auch bei einer rotatorischen permanent erreg— ten elektrischen Synchronmaschine ist es beispielsweise aucϊt möglich, dass die Permanentmagnete auf dem Sekundärteil des Linearmotors bzw. auf dem Rotor eine unterschiedliche Magnetisierung aufweisen. Die Magnetisierung ist also ein Beispiel für eine weitere Randbedingung. Abhängig von der Magnetisie— rung ergibt sich eine unterschiedliche elektromagnetische
Kraft EMK. Im Falle eines Linearmotors ergibt sich auch beispielsweise deswegen eine unterschiedliche elektromagnetiscjhe Kraft EMK, weil das Primärteil über einen Abschnitt des Sekundärteils fährt, welcher frei von einer dieses Sekundärte .1 schützenden Abdeckung ist.
Die Parameter der Regelung einer Regelungseinheit der elektrischen Maschine sind nach dem Stand der Technik so einzustellen, dass diese für alle Positionen der elektrischen Ma— schine gemittelt eine optimale Regelungseinstellung ergeben . Dies hat zur Folge, dass die elektrische Maschine in keiner oder nur in wenigen Positionen eines bewegten Maschinenteils bezüglich der Regelung optimal parametriert ist.
Aufgabe der vorliegenden Erfindung ist es, eine verbesserte Parametrierung einer Regelung einer elektrischen Maschine zu ermöglichen. Die Lösung der Aufgabe gelingt mittels eines Verfahrens mit den Merkmalen nach Anspruch 1 bzw. mittels einer Vorrichtung mit den Merkmalen nach Anspruch 7. Die abhängigen Ansprüche 2 bis 6 bzw. 8 sind vorteilhafte erfinderische Wei-terbildungen der Erfindung.
Bei einem Verfahren zur Regelung einer elektrischen Maschine, wobei eine Regelungseinheit einen parametrierbaren Geschwindigkeitsregler und einen parametrierbaren Zusatzxegler auf- weist und die elektrische Maschine zur Änderung einer Position eines bewegbaren Maschinenteils vorgesehen ist, wobei die Position des bewegbaren Maschinenteils erfasst wird, wird ein Parameter des Geschwindigkeitsreglers und/oder zumindest ein Parameter des Zusatzreglers in Abhängigkeit "von einer Po- sition des bewegbaren Maschinenteils verändert.
Das bewegbare Maschinenteil ist beispielsweise ein Teil einer Werkzeugmaschine (z.B. ein Fräskopf) oder einer Produktionsmaschine (z.B. eine Förderschnecke einer Kunststoffspritz- gießmaschine, welche eine Produktionsmaschine ist) oder eines Handhabungsautomaten (z.B. eine Greifzange). Das bewegbare Maschinenteil ist beispielsweise aber auch ein Rotor eines rotatorischen elektrischen Motors oder ein Primäx-teil eines Linearmotors .
Bedingt durch die Anforderungen an einen Antriebsprozess, also dem Antrieb eines Maschinenteils, wodurch dessen Position veränderbar ist, ist es vorteilhaft, den Geschwindigkeitsregler der elektrischen Maschine oder einen anderen Regler der elektrischen Maschine mit wechselnden einer Verfahrposition angepassten Parametern zu betreiben. Zumindest e±n Parameter eines Reglers weist also eine Positionsabhängigkeit auf. Der Geschwindigkeitsregler ist bei einem rotatorisch arbeitenden Motor der Drehzahlregler. Der obig beschriebene vorteilhafte Wechsel zumindest eines Parameters ist auch bei einem Lageregelkreis vorteilhaft. Der Lageregelkreis dient der Regelung einer Position eines bewegbaren Maschinenteils. Durch die Änderung zumindest eines Parameters abhängig von der Position des bewegbaren Maschinenteils ist es vermeidbar, dass ein gemittelter Parametersatz als gemeinsamer Kompromiss aller Anforderungen einer zu regelnden Strecke auszuwählen ist.
Von einem Wegmesssystem wird beispielsweise eine Verfahrposition des bewegbaren Maschinenteils gemessen. Die gemessene Verfahrposition wird zur Nachführung zumindest eines Regelparameters verwendet. Der Regelparameter ist vorzugsweise ein Optimalwert für eine bestimmte örtliche Position einer Verfahrbewegung. Dadurch entfällt der Zwang, die unterschiedlichen Anforderungen an einen Regler bzw. dessen Regelverhalten über einen gesamten Verfahrweg mit einem einzigen Parametersatz erfüllen zu müssen. Der Verfahrweg ist beispielsweise der Weg, den das Primärteil des Linearmotors in Bezug auf das Sekundärteil des Linearmotors zurücklegt. Ein weiteres Beispiel für den Verfahrweg sind die 360 Grad einer Umdrehung eines Rotors eines rotatorischen elektrischen Motors, welcher auch eine rotatorische elektrische Maschine ist.
In einer vorteilhaften Ausgestaltung ist der Zusatzregler zumindest einer der im folgenden aufgeführten Reglertypen: ein Lageregler, ein Zugregler, ein Momentenregler und/oder eine Vorsteuerung. Die Vorsteuerung ist dabei ein Regelkreis der sowohl geschlossen als auch offen ausgeführt sein kann.
In einer weiteren vorteilhaften Ausgestaltung ist die elektrische Maschine als ein Linearmotor ausgebildet. Der Linearmotor weist ein Primärteil und ein Sekundärteil auf, wobei entweder das Primärteil oder das Sekundärteil ein bewegliches Teil des Linearmotors ist. Abhängig von der Position des beweglichen Teils wird zumindest ein Parameter des Geschwindigkeitsreglers und/oder zumindest ein Parameter des Zusatzreglers verändert. Weist beispielsweise der Linearmotor ein Se- kundärteil mit einer Abdeckung auf und ist diese Abdeckung nicht über die gesamte Fläche des Sekundärteils geführt, so ändert sich die elektromagnetische Kraft EMK in Abhängigkeit davon, ob das Sekundärteil an einer Position des Primärteils eine Abdeckung aufweist oder nicht. Die Änderung der elektromagnetischen Kraft EMK ist positionsabhänςjig, so dass zumindest ein Parameter der Geschwindigkeitsregelung bzw. der Zusatzregelung des Linearmotors abhängig daton einstellbar sind, ob sich das Primärteil in einem Bereich befindet, in dem das Sekundärteil eine Abdeckung aufweist oder eben auch keine Abdeckung aufweist. Ein Beispiel fürr den Parameter ist der Parameter für die elektromagnetische Kraft EMK.
In einer weiteren vorteilhaften Ausgestaltung wird zur Veränderung des Parameters einer Regelung eine Funktion oder eine Tabelle verwendet. Die Funktion ist eine Funktion über eine Position. Die Position bezieht sich beispielsweise auf eine Position des Primärteils eines Linearmotor-s, oder auf die Position eines Rotors einer rotatorischen eLektrischen Maschine oder auch auf die Position eines Maschinenteils einer Maschine, wobei die Maschine beispielsweise eine Produktionsmaschine, eine Werkzeugmaschine oder ein Handhabungsautomat ist. Die Position des Maschinenteils ist beispielsweise deswegen von Bedeutung, weil das Maschinenteil abhängig von der Position unterschiedlichen Reibkoeffizienten ausgesetzt ist, so dass beispielsweise ein Verstärkungsparameter der Regelung eine höhere Reibung in bestimmten Bereichen einer Verfahrbe- wegung ausgleichen kann. Wird die Veränderung eines Parameters bzw. mehrere Parameter einer Regelung (z.B. Geschwindigkeitsregler und/oder Zusatzregler) mittels einer Tabelle durchgeführt, so ist in der Tabelle eine Zuordnung zwischen einer Position und einem dazugehörigen Parameter hergestellt.
Durch die Verwendung einer Funktion bzw. einer ausreichend detaillierten Tabelle ist es auch möglich ein Ruckverhalten, welches sich durch eine Umschaltung eines Parameters ergeben kann zu vermeiden. Mit Hilfe der Funktion xαnd/oder der Tabel- le sind gleichmäßige Veränderungen eines Parameters erzielbar. Dies dient dazu Sprünge in einem Ausgangssignal eines Reglers zu vermeiden. In einer vorteilhaften Ausgestaltung der Erfindung wird zur Ermittlung der von der Position abhängigen Parameter eine Referenzfahrt für die elektrische Maschine durchgeführt. Mittels der Referenzfahrt, welche in einer Referenzzeit durch- führbar ist, ist das Maschinenverhalten feststellbar. Während der Referenzfahrt wird beispielsweise das von den Permanentmagneten hervorgerufene magnetische Feld gemessen. Abhängig von der Stärke des während der Referenzfahrt gemessenen magnetischen Feldes wird während und/oder nach der Referenzfahrt eine Tabelle und/oder eine Funktion generiert, in welche eine Information darüber abgelegt ist, an welcher Position des bewegbaren Maschinenteils ein bestimmter Parameterwert für eine Regelung einzustellen ist. Die notwendigen Parameterwerte werden hierfür vorher berechnet.
In einer weiteren vorteilhaften Ausgestaltung ist der Parameter also ein physikalischer Parameter, welcher insbesondere ein Magnetfeldparameter ist und abhängig von der Position des Maschinenteils ist. Der physikalische Parameter wird abhängig von der Position des Maschinenteils gemessen. Der oder die
Parameter eines oder mehrere Regler wird in Abhängigkeit von der Position des Maschinenteils gebracht. Dies geschieht beispielsweise wie obig bereits beschrieben mittels einer Funktion oder einer Tabelle. Die Abhängigkeit betrifft dabei die Abhängigkeit vom physikalischen Parameter, so dass ein oder mehrere Parameter eines oder mehrerer Regler abhängig von den Werten physikalischer Parameter verändert werden. Ein physikalischer Parameter ist w e bereits beschrieben, ein Parameter welcher z.B. das Magnetfeld betrifft, welches mittels Permanentmagneten erzeugt wird. Die Permanentmagnete sind nicht immer gleichmäßig stark magnetisiert, so dass dadurch ohne Veränderung von Reglerparametern ein Maschinenverhalten vorhanden wäre, welches für viele Anwendungen unvorteilhaft ist, da die elektrische Maschine z.B. auch auf gleiche Strom- stärken und Frequenzen abhängig von der Position unterschiedlich reagiert. Eine unterschiedliche EMK ergibt sich aber z.B. auch daraus, dass ein Sekundärteil eines Linearmotors über einen bestimmten Verfahratoschnitt eine Abdeckung aufweist und über einen anderen Verfahrabschnitt, welcher beispielsweise für einen Servicedienst oder einen Werkzeugwechsel bei einer Werkzeugmaschine dient, keine Abdeckung auf- weist. Die Abdeckung ist vorteilhafter Weise magnetisch, haftet also automatisch auf dem Sekundärteil.
Die Erfindung betrifft neben einem Verfahren auch eine Vorrichtung zur Regelung einer elektrischen Maschine. Die Rege- lung weist einen parametrierbaren Geschwindigkeitsregler und/oder einen parametrierbaren Zusatzregler auf. Der Zusatzregler ist beispielsweise ein Lageregler, ein Zugregler oder ein Momentenregler. Als Zusatzregler ist weiterhin eine Vorsteuerung zu verstehen. Die elektrische Maschine ist zur Än- derung einer Position eines bewegbaren Maschinenteils vorgesehen. Ein bewegbares Maschinenteil ist beispielsweise ein Teil der elektrischen Maschine wie das Primärteil eines Linearmotors oder der Rotor einer rotatorischen permanent erregten Synchronmaschine. Ein weiteres Beispiel für ein Maschi- nenteil ist ein Werkzeug einer Werkzeugmaschine, welches beispielsweise mittels eines Getriebes von der elektrischen Maschine antreibbar ist. Die Position des Maschinenteils ist mittels eines Weggebers erfassbar. Zumindest ein Parameter des Geschwindigkeitsreglers und/oder zumindest ein Parameter des Zusatzreglers ist in Abhängigkeit von der Position des bewegbaren Maschinenteils veränderbar. Hieraus ergeben sich die bereits obig beschriebenen Vorteile. Diese Vorrichtung zur Regelung ist weiterhin zur Durchführung des obig beschriebenen Verfahrens zur Regelung einer elektrischen Ma- schine einsetzbar.
Die Vorrichtung zur Regelung der elektrischen Maschine ist beispielsweise eine NC-Steuerung, eine CNC-Steuerung, eine SPS-Steuerung, ein Personal-Computer (PC) oder dergleichen. Bei einem Antrieb, welcher eine elektrische Maschine und einen Stromrichter aufweist, ist die Regelung beispielsweise auch in die Steuerung bzw. Regelung des Stromrichters integriert.
Ausführungsbeispiele der Erfindung werden anhand der beigefügten Zeichnungen erläutert. Es zeigt:
FIG 1 eine schematische Darstellung eines Linearmotors mit einer Regelungseinheit zur Durchführung des erfindungsgemäßen Verfahrens, FIG 2 ein Beispiel für eine Drehzahlregelung, welche mit ei- ner Lageregeliαng als Zusatzregler kombiniert ist.
Die Darstellung gemäß FIG 1 zeigt eine Regelungseinheit 1. Die Regelungseinheil. 1 ist beispielsweise in einer Produktionsmaschine, einer Werkzeugmaschine oder in einem Handha- bungsautomaten integrierbar. Diese Maschinen bzw. Automaten sind in der FIG 1 nicht dargestellt. Mittels der Regelungs— einheit 1 ist eine Stromrichterschaltung 3 ansteuerbar. Die Stromrichterschaltung 3 ist zur Bestromung eines Linearmotors 5 als Beispiel für eine elektrische Maschine vorgesehen. Der Linearmotor 5 weist in bekannter Weise ein Primärteil 7 und ein Sekundärteil 8 auf. Das Primärteil 7 ist in den Bewegungsrichtungen 23 und 24 bewegbar. Schematisch ist weiterhin ein Linearmaßstab 11 und ein Weggeber 13 dargestellt. An oder in einer Kraftübertragungsschnittstelle des Linearmotors also im Bereich eines Luftspaltes zwischen dem Primärteil 7 und dem Sekundärteil 8 ist ein Sensor 15 zur Messung des Magnetfeldes des Sekundärteils 8, welches Permanentmagnete 9 aufweist, vorgesehen. Das Sekundärteil 8 weist weiterhin eine Abdeckung 10 auf, die sich jedoch nicht über den gesamten Be- reich des Sekundärteils 8 erstreckt. Weitere Sensoren wie z.B. ein Sensor zur Aufnahme der Geschwindigkeit, wie diese bei elektrischen Maschinen bzw. Linearmotoren üblich sind, sind in der FIG 1 zur besseren Übersichtlichkeit nicht dargestellt. Die Geschwindigkeitserfassung kann jedoch beispiels- weise auch direkt aus dem zeitlichen Verlauf des Magnetfeldes am Ort des Sensors 15 abgeleitet werden. Dies hat den Vorteil, dass falls ein. derartiger Sensor bereits an einer e~ lektrischen Maschine bzw. in einem Primärmotor vorhanden ist, dieser Sensox auch als Wegsensor einsetzbar ist. Der Weggeber 13 und der Sensor 15 sind über ein Datenkabel 17 mit der Regelungseinheit 1 verbunden. Die Regelungseinheit 1, welche insbesondere auch für die Geschwindigkeitsregelung, die Lageregelung und/oder die Stromregelung vorzusehen ist, bildet zumindest aus den Werten des Sensors 15 einen Parameter für zumindest eine der oben genannten Regelungen. Für die Regelung des Linearmotors 5 ist beispielsweise auch noch ein Stromsignal notwendig. Das Stromsignal wird von einem. Stromwandler 19 geliefert. Der Stromwandler 19 dient zur Messung des Stromes mit welchem das Primärteil 7 über eine Stromleitung 14 durch die Stromrichterschaltung 3 bestromt wird.
Die Regelungseinheit 1 weist einen Speicher 21 auf. ∑n diesem Speicher 21 -werden Parameter gespeichert, welche insbesondere die elektromagnetische Kraft EMK betreffen. Bei einer Referenzfahrt des Linearmotors 5 bewegt sich das Primärteil zumindest in eine der beiden Bewegungsrichtungen 23, 24. Bei der Referenzfahrt nimmt der Sensor 15 Messdaten auf. Die Messdaten werden zu zumindest einem Parameter verarbeitet. Der Parameter wird gespeichert und zur Regelung der elektrischen Maschine - also des Linearmotors - verwendet.
Die Darstellung gemäß FIG 2 zeigt ein Regelungsschema für einen Wickler 44. Auf dem Wickler 44 ist ein Materialband 40 aufwickelbar . Der Wickler 44 ist mittels einer elektrischen Maschine 6 antreibbar. Die Drehbewegung der elektrischen Maschine 6 ist mittels eines Weggebers 13 erfasst. Die Regelung der elektrischen Maschine 6 weist einen Drehzahlregler 26 und einen Stromregler 27 auf. Der Stromregler 27 liefert ein Stromsignal an eine Stromrichterschaltung 3. Die Stromrichterschaltung 3 ist ein Leistungsteil zum Betrieb der elektrischen Maschine 6. Weiterhin weist das Regelungsschema gemäß FIG 2 einen Xageregler 28 auf. Der Lageregler 28 hat als Eingangssignal eine Differenz aus einem Lageistwert 41 und einem Lagesollwert 42. Sowohl der Lageregler 28 als auch der Dreh- zahlregler 26 weisen Parameter auf. Dem. Lageregler 28 ist ein Parameter 33 über eine Funktion 35 zuführbar- In der Funktion 35 ist über eine Position ein Parameterwert aufgetragen. Durch Zuführung eines Positionssignals 29 ist somit der Para- meter 33 auswählbar. Beim Drehzahlregler 26 erfolgt eine Auswahl des Parameters 31 mit Hilfe einer Tabelle 37. Bei einem bekannten Positionssignal 29 ist aus der Tabelle 37 ein gespeicherter Parameterwert 31 auswählbar, wobei der ausgewählte Parameterwert dem Drehzahlregler zur Verf gung gestellt wird. Als Eingangssignal des Drehzahlreglers dient sowohl das Signal des Weggebers als auch das Ausgangssigjnals des Lagereglers 28.

Claims

Patentansprüche
1. Verfahren zur Regelung einer elektrischen Maschine (5), wobei eine Regelungseinheit (1) einen parametrierbaren Ge-
5 schwindigkeitsregler (26) und/oder einen parametrierbaren Zusatzregler (28) aufweist und die elektrische Maschine (5) zur Änderung einer Position eines bewegbaren Maschinenteils (7,8) vorgesehen ist, wobei die Position (29) des bewegbaren Maschinenteils (7,8) erfasst wird, d a d u r c h g e -0 k e n n z e i c h n e t , dass zumindest ein Parameter (31) des Geschwindigkeitsreglers (26) und/oder zumindest ein Parameter (33) des Zusatzreglers (28) in Abhängigkeit von der Position (29) des bewegbaren Maschinenteils (7,8) verändert wird.5 2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass als Zusatzregler (28) zumindest einer der folgenden Reglertypen verwendet wird: - Lageregler 0 - Zugregler - Momentenregler - VorSteuerung.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e -5 k e n n z e i c h n e t , dass als elektrische Maschine (5) ein Linearmotor (5) verwendet wird, wobei der Linearmotor (5) ein Primärteil (7) und ein Sekundärteil (8) aufweist, wobei entweder das Primärteil (7) oder das Sekundärteil (8) das bewegbare Maschinenteil des Linearmotors (5) ist und abhängigO von der Position des bewegbaren Maschinenteils zumindest ein Parameter (31) des Geschwindigkeitsreglers (26) und/oder zumindest ein Parameter (33) des Zusatzreglers (28) verändert wird. 5
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass zur Veränderung des Para- meters (31,33) ein Funktion (35) oder eine Tabelle (37) verwendet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass zur Ermittlung der von der Position des bewegbaren Maschinenteils abhängigen Parameter (31,33) eine Referenfahrt der elektrischen Maschine (5) durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass ein physikalischer Parameter, welcher insbesondere ein Iagnetfeldparameter ist, abhängig von der Position (29) des Maschinenteils (7,8) gemessen wird und der Parameter (31,33) eines Reglers in Abhängig- keit von der Position (29) des Maschinenteils (7,8) und in Abhängigkeit von dem physikalische Parameter verändert wird.
7. Vorrichtung zur Regelung einer elektrischen Maschine (5), wobei die Regelung einen parametrierbaren Geschwindigkeits- regier (26) und einen parametrierbaren Zusatzregler (28) aufweist und die elektrische Maschine (5) zur Änderung einer Position eines Maschinenteils (7,8) vorgesehen ist, wobei die Position des Maschinenteils (7,8) messbar ist, d a d u r c h g e k e n n z e i c h n e t , dass zumindest ein Parameter (31) des Geschwindigkeitsregler (26) und/oder zumindest ein
Parameter (33) des Zusatzreglers (28) in Abhängigkeit von der Position (29) des Maschinenteils (7,8) veränderbar ist.
8. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n - z e i c h n e t, dass diese zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6 vorgesehen ist.
PCT/EP2004/010343 2003-09-15 2004-09-15 Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung WO2005027322A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006525797A JP2007506397A (ja) 2003-09-15 2004-09-15 電動機の制御方法及び装置
US10/571,726 US7405525B2 (en) 2003-09-15 2004-09-15 Method for the control of an electric machine and/or device for the control thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10342562.4 2003-09-15
DE10342562A DE10342562A1 (de) 2003-09-15 2003-09-15 Regelungseinrichtung bzw. Regelung einer elektrischen Maschine
DE102004043506A DE102004043506A1 (de) 2004-09-08 2004-09-08 Verfahren zur Regelung einer elektrischen Maschine bzw. Vorrichtung zur deren Regelung
DE102004043506.5 2004-09-08

Publications (2)

Publication Number Publication Date
WO2005027322A2 true WO2005027322A2 (de) 2005-03-24
WO2005027322A3 WO2005027322A3 (de) 2005-09-15

Family

ID=34314990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010343 WO2005027322A2 (de) 2003-09-15 2004-09-15 Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung

Country Status (3)

Country Link
US (1) US7405525B2 (de)
JP (1) JP2007506397A (de)
WO (1) WO2005027322A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096019B2 (ja) * 2007-02-26 2012-12-12 オークマ株式会社 サーボモータ制御装置
EP2184859A1 (de) * 2007-08-28 2010-05-12 Panasonic Corporation A/d-wandler, differenzialschalter, integrierte halbleiterschaltung, videogerät und kommunikationsgerät
US8853988B2 (en) * 2009-03-18 2014-10-07 Nikon Corporation Control systems and methods for compensating for effects of a stage motor
JP6564433B2 (ja) * 2017-08-29 2019-08-21 ファナック株式会社 ロボットシステム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046924A1 (de) * 1996-06-05 1997-12-11 Krauss-Maffei Ag Regeleinrichtung und -verfahren für motoren

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3596070A (en) * 1969-12-08 1971-07-27 Us Navy Winch control system for constant load depth
CA1166682A (en) * 1980-03-07 1984-05-01 Takashige Saijo Control system for a linear synchronous motor
US4698576A (en) * 1986-06-20 1987-10-06 North American Philips Corporation Tri-state switching controller for reciprocating linear motors
JP2764723B2 (ja) * 1988-01-06 1998-06-11 株式会社日立製作所 電気車の制御装置
US5298841A (en) * 1990-04-18 1994-03-29 Hitachi, Ltd. Apparatus for controlling the speed of a moving object
US5623189A (en) * 1994-08-19 1997-04-22 Hemmer; Ferdinand J. Automatic control of torque or force at moving loads
US5783915A (en) * 1995-01-20 1998-07-21 Matsushita Electric Industrial Co., Ltd. Linear actuating apparatus
DE69623076T2 (de) * 1995-06-05 2003-04-17 Kollmorgen Corp System und Verfahren zur Steuerung von bürstenlosen Permanentmagnetmotoren
JPH11299291A (ja) * 1998-04-16 1999-10-29 Sanyo Denki Co Ltd 多軸モータ制御装置
US6215260B1 (en) * 1998-08-28 2001-04-10 Northern Magnetics, Inc. Controlling movement of linear induction motor
US6198246B1 (en) * 1999-08-19 2001-03-06 Siemens Energy & Automation, Inc. Method and apparatus for tuning control system parameters
JP3754862B2 (ja) * 2000-03-24 2006-03-15 東海旅客鉄道株式会社 模擬位相による出発制御装置
JP2001275375A (ja) * 2000-03-24 2001-10-05 Central Japan Railway Co 低速度における速度起電力位相制御装置
JP4654493B2 (ja) * 2000-08-08 2011-03-23 株式会社安川電機 電動機制御装置
US7323840B2 (en) * 2002-02-07 2008-01-29 Mitsubishi Denki Kabushiki Kaisha Magnetic-pole detecting system for synchronous AC motor and magnetic-pole detecting method therefor
JP4391218B2 (ja) * 2003-02-20 2009-12-24 三菱電機株式会社 サーボ制御装置
JP4209235B2 (ja) * 2003-03-28 2009-01-14 アルプス電気株式会社 力覚付与型入力装置
JP4367058B2 (ja) * 2003-09-04 2009-11-18 株式会社安川電機 モータ制御装置
DE10342562A1 (de) * 2003-09-15 2005-04-21 Siemens Ag Regelungseinrichtung bzw. Regelung einer elektrischen Maschine
JP4301913B2 (ja) * 2003-09-29 2009-07-22 オークマ株式会社 モータ制御装置
JP4093191B2 (ja) * 2004-02-26 2008-06-04 ブラザー工業株式会社 モータ制御装置およびプリンタ
JP4283214B2 (ja) * 2004-12-16 2009-06-24 ファナック株式会社 機械先端点の制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046924A1 (de) * 1996-06-05 1997-12-11 Krauss-Maffei Ag Regeleinrichtung und -verfahren für motoren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAA-JENG LIN ET AL: "On-line gain tuning using RFNN for linear synchronous motor" 32ND.ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE. PESC 2001. CONFERENCE PROCEEDINGS. VANCOUVER, CANADA, JUNE 17 - 21, 2001, ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, NEW YORK, NY : IEEE, US, Bd. VOL. 1 OF 4. CONF. 32, 17. Juni 2001 (2001-06-17), Seiten 766-771, XP010559322 ISBN: 0-7803-7067-8 *
HABIB M K ED - INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS: "Designing fuzzy logic controllers for DC servomotors supported by fuzzy logic control development environment" IECON'01. PROCEEDINGS OF THE 27TH. ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY. DENVER, CO, NOV. 29 - DEC. 2, 2001, ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, NEW YORK, NY : IEEE, US, Bd. VOL. 1 OF 3. CONF. 27, 29. November 2001 (2001-11-29), Seiten 2093-2098, XP010571740 ISBN: 0-7803-7108-9 *
SCHULZ S E ET AL: "High performance digital pi current regulator for ev switched reluctance motor drives" CONFERENCE RECORD OF THE 2002 IEEE INDUSTRY APPLICATIONS CONFERENCE. 37TH IAS ANNUAL MEETING . PITTSBURGH, PA, OCT. 13 - 18, 2002, CONFERENCE RECORD OF THE IEEE INDUSTRY APPLICATIONS CONFERENCE. IAS ANNUAL MEETING, NEW YORK, NY : IEEE, US, Bd. 1 OF 4. CONF. 37, 13. Oktober 2002 (2002-10-13), Seiten 1617-1624, XP010610096 ISBN: 0-7803-7420-7 *

Also Published As

Publication number Publication date
JP2007506397A (ja) 2007-03-15
WO2005027322A3 (de) 2005-09-15
US7405525B2 (en) 2008-07-29
US20070029960A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
EP0974479B1 (de) Verfahren zur Regelung motorisch angetriebener Verstelleinrichtungen in Kraftfahrzeugen
EP1499008B1 (de) Verfahren und Steuersystem zur elektronischen Kommutierung eines bürstenlosen Gleichstrommotors
DE10047508C1 (de) Verfahren zum Ermitteln der Drehzahl eines Wechselstrom-Motors sowie Motor-Steuersystem
EP2577026A1 (de) Verfahren und vorrichtung zum betreiben eines stellgebers mit einem bürstenlosen elektromotor
DE10225610B4 (de) Verfahren und Schaltungsanordnung zum Betreiben eines Schrittmotors
EP0965047B1 (de) Verfahren und vorrichtung zur identifikation der systemparameter statorwiderstand und rotorwiderstand einer geberlosen, feldorientiert betriebenen drehfeldmaschine
WO2005027322A2 (de) Verfahren und regelung einer elektrischen maschine bzw. vorrichtung zu deren regelung
EP3464862B1 (de) Verfahren und vorrichtung zur kalibrierung eines stellgebersystems
DE102004043506A1 (de) Verfahren zur Regelung einer elektrischen Maschine bzw. Vorrichtung zur deren Regelung
EP0676080B1 (de) Verfahren und vorrichtung zur regelung einer bandgeschwindigkeit
EP0340480B1 (de) Verfahren zur Ermittlung der Drehzahl einer Maschine
EP2360830B1 (de) Verfahren und Vorrichtung zur Simulation eines elektromechanischen Wandlers
DE102009029155A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Rotorlage einer Synchronmaschine
WO2007110328A1 (de) Spritzgiessmaschine
DE2259497A1 (de) Laufwerk fuer magnetbandgeraete, insbesondere kassettenmagnetbandgeraete
DE10220164A1 (de) Kunststoffverarbeitungsmaschine mit geberlosem Synchronmotor
DE3412538C2 (de)
DE19503658A1 (de) Verfahren zur Bestimmung einer Größe zum stoßfreien Zuschalten eines drehzahlgeberlos betriebenen Asynchronmotors zu einem Wechselrichter
EP0901979A1 (de) Spultrommelantrieb einer Kreuzspulen herstellenden Textilmaschine
DE102022209630A1 (de) Verfahren und Vorrichtung zum Bereitstellen eines Drehzahlsignals für bürstenkommutierte Elektromotoren
AT402773B (de) Verfahren zur zustandsidentifikation und aufmagnetisierung einer wechselrichtergespeisten, vorzugweise lagegeberlosen und drehzahlgeberlosen asynchronmachine mit unbekanntem magnetisierungszustand und schaltungsanordnung zur durchführung dieses verfahrens
EP0817366B1 (de) Einrichtung zum abwechselnden Betreiben von mehreren AC-Synchron-Servomotoren und Drahtrichtmaschine mit einer solchen Einrichtung
DE4420317A1 (de) Elektronisch kommutierter Motorantrieb ohne Drehmomentschwankungen
DE102022208438A1 (de) Verfahren und Steuergerät zum Identifizieren eines Motortyps eines Motors einer Maschine und Maschine mit einem Steuergerät
DE102020117796A1 (de) Verfahren und Vorrichtung zum Einstellen eines Haltestroms einer elektrischen Maschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026432.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006525797

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007029960

Country of ref document: US

Ref document number: 10571726

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10571726

Country of ref document: US