WO2005024916A1 - Soiウェーハの作製方法 - Google Patents

Soiウェーハの作製方法 Download PDF

Info

Publication number
WO2005024916A1
WO2005024916A1 PCT/JP2004/012728 JP2004012728W WO2005024916A1 WO 2005024916 A1 WO2005024916 A1 WO 2005024916A1 JP 2004012728 W JP2004012728 W JP 2004012728W WO 2005024916 A1 WO2005024916 A1 WO 2005024916A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
bonded
soi
layer
heat treatment
Prior art date
Application number
PCT/JP2004/012728
Other languages
English (en)
French (fr)
Inventor
Nobuyuki Morimoto
Hideki Nishihata
Original Assignee
Sumco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corporation filed Critical Sumco Corporation
Priority to JP2005513661A priority Critical patent/JPWO2005024916A1/ja
Priority to EP04772682.3A priority patent/EP1662550B1/en
Priority to US10/570,354 priority patent/US7510948B2/en
Publication of WO2005024916A1 publication Critical patent/WO2005024916A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to a method for manufacturing SOI wafers, and more particularly to a method for manufacturing SOI wafers in a hydrogen ion implantation separation method.
  • SOI wafers Compared to conventional silicon wafers, SOI wafers have superiority such as isolation between elements, reduction in parasitic capacitance between the element and the substrate, and the possibility of three-dimensional structures. Yes.
  • One of the methods for manufacturing SOI wafers is the smart cut method in which hydrogen ions are implanted into the silicon wafer surface and then bonded together, followed by delamination heat treatment and delamination at the ion implantation layer as a boundary.
  • this smart cut method an active layer wafer in which hydrogen ions are implanted on the surface of a silicon wafer and a supporting wafer are bonded together. As a result, a bonded wafer having an insulating film at the bonding interface is formed. Thereafter, the bonding wafer is subjected to a peeling heat treatment.
  • the set temperature of this peeling heat treatment is, for example, a patent document
  • Patent Document 1 Japanese Patent No. 3048201
  • the present invention provides an SOI wafer that makes the temperature on the surface of the bonded wafer substantially uniform during the heat treatment for peeling off the bonded wafer in the production of an SI wafer by the smart cut method. It is an object to provide a method for manufacturing a wafer.
  • the present invention can completely peel off the entire surface with the ion implantation layer as a boundary.
  • An object is to provide a method for manufacturing SOI wafers.
  • a rare gas element is ion-implanted into an active layer mask through an insulating film to form an ion-implanted layer in the active layer mask, and then the active layer mask is formed.
  • the wafer is bonded to the support wafer via an insulating film to form a bonded wafer, and then this bonded wafer is kept at a set temperature to perform heat treatment, thereby setting the ion implantation layer as a boundary.
  • This is a method for manufacturing an SOI wafer in which a part of the wafer for active layer is peeled off. In the above heat treatment, the temperature difference in the surface of the bonded wafer is controlled to 40 ° C or less and the ion implantation layer is used as a boundary. This is a method for producing an SOI wafer to be peeled off.
  • an ion implantation layer is formed on an active layer (for example, an oxide film is formed on a silicon wafer.
  • an active layer for example, an oxide film is formed on a silicon wafer.
  • this active layer is formed.
  • the layer wafer is bonded to the support (for example, silicon wafer) through the insulating film, and the active layer wafer and the support wafer are bonded together so that the insulating film is interposed at the bonding interface.
  • this bonding tool is heat-treated at a set temperature (for example, 400 1000 ° C), and the temperature difference in the surface of the bonding tool should be 40 ° C or less.
  • the temperature difference in the surface of the bonded wafer during the peeling heat treatment is controlled to 40 ° C or less.
  • the temperature at which peeling starts is 410 ° C or higher
  • peeling occurs in the region where the surface temperature of the bonded wafer is in the range of 410 ° C to 450 ° C.
  • the 400 ° C region it is forcibly peeled off from the bonding interface.
  • an SOI wafer that does not partially have an SOI structure is fabricated.
  • the temperature difference in the surface of the bonded wafer needs to be within 40 ° C.
  • the diameter of the target bonded wafer is, for example, 200 mm or 300 mm.
  • the heat treatment apparatus for performing the peeling heat treatment is preferably a single-wafer RTP (Rapid Thermal Processing) furnace. This is because, in a single-wafer type furnace, the laminated wafer can be heated at high speed and uniformly by performing lamp heating one by one. On the other hand, in a batch furnace, the heating speed of the bonded wafer varies depending on the charging temperature and charging speed, and it is difficult to control the temperature difference within the surface of the bonding wafer to 40 ° C or less. When using a batch furnace, for example, the heat treatment for stripping is performed by controlling the temperature rising rate to the stripping start temperature to 20 ° C / min or less.
  • the rate of temperature rise exceeds 20 ° CZ, some parts of the wafer surface cannot follow the temperature rise. As a result, temperature non-uniformity occurs in the plane of the screen. Therefore, if the rate of temperature rise is 20 ° CZ or less, the temperature difference can be easily and accurately controlled to 40 ° C or less over the entire surface of the bonding window.
  • a second invention is a method for producing a SO I wafer according to the first invention, wherein the set temperature is 400 ° C-1000 ° C.
  • the set temperature of the peeling heat treatment of the shell-occupying wafer is in the range of 400 ° C to 1000 ° C. If the set temperature is below 400 ° C, the peeling start temperature of the shell-dividing wafer will not be reached, and there will be a problem that peeling cannot be performed. When the temperature exceeds 1000 ° C, problems such as deformation of the reaction tube (quartz tube) of the heat treatment apparatus occur.
  • the bonded wafers are bonded by contacting each other at the peeled interface, and then it is difficult to peel again. In other words, the entire surface of the bonded wafer must be at least 400 ° C-1000 ° C, and the temperature difference in that plane must be 40 ° C.
  • a third invention is the first invention or the second invention, in which the bonded wafer is heat-treated while being held substantially vertical, and is peeled off with the ion-implanted layer as a boundary. This is a method for manufacturing wafers.
  • the heat source for heating the bonded wafer is placed close to the front and back surfaces while holding the shell-dividing wafer substantially vertically.
  • an infrared lamp is used as the heat source.
  • the shell fortune-telling 18 is perpendicular to the quartz support jig disposed in the reaction chamber in the RTP furnace. Retained. Then, the bonded wafer 18 is heated by an infrared lamp arranged on the sides of the front and back surfaces.
  • the reason why the bonded wafer is held vertically is to prevent the peeled wafers from recontacting each other after the peeling heat treatment. Then, by heating the entire surface of the bonded wafer uniformly and at high speed, the temperature in the surface of the bonded wafer becomes substantially uniform. Then, it can be completely peeled on the entire surface with the ion implantation layer as a boundary.
  • the bonding wafer is heat-treated at a set temperature of 400 1000 ° C.
  • the temperature difference in the surface of the bonded wafer is controlled to 40 ° C or less.
  • a bubble of a rare gas is formed in the ion implantation layer, and the clam occupancy mask 18 is separated from the ion implantation layer where the bubble is formed (the active layer mask 18-18).
  • the temperature inside the surface of the shell-dividing wafer is almost uniform. For this reason, the force S can be completely separated from the entire surface with the ion-implanted layer that does not cause an unseparated region as a boundary.
  • FIG. 1 is a front view showing a configuration of an apparatus for performing heat treatment for peeling off a bonded wafer according to an embodiment of the present invention.
  • FIG. 2 shows the configuration of an apparatus for heat-treating a bonded wafer according to an embodiment of the present invention.
  • FIG. 3 is a side view showing a configuration of a transfer device for transferring a bonded wafer to an apparatus for peeling and heat-treating the bonded wafer according to one embodiment of the present invention.
  • the method for producing SI I 18 11 by the smart cut method according to this example is performed by the following method.
  • One of these silicon wafers is an active layer wafer and the other is a support wafer.
  • an oxide film is formed on the surface of the silicon wafer serving as the active layer wafer.
  • the oxide film is formed by charging a silicon wafer in an oxidation furnace and heating it to a predetermined temperature for a predetermined time. At this time, the thickness of the formed oxide film is 150 nm.
  • the silicon wafer on which the oxide film is formed is set in the vacuum chamber of the ion implantation apparatus. Then, a predetermined dose of hydrogen ions is implanted through the oxide film from the surface of the active layer wafer. As a result, an ion implantation layer is formed at a predetermined depth position (a predetermined depth range in the silicon wafer) of the active layer wafer.
  • the active layer wafer into which hydrogen ions have been implanted is bonded to the supporting wafer at room temperature with the surface (oxide film surface) into which the hydrogen ions have been injected as the bonding surface.
  • a bonded wafer in which an insulating film (oxide film) is interposed at the bonding interface is formed.
  • the above process is the same as the manufacturing method of SOI 18 using the general smart cut method.
  • a single-wafer RTP furnace 25 is used for the peeling heat treatment apparatus.
  • the RTP furnace 25 can control the heating rate up to the second, compared to the batch furnace, and can heat the surface of the bonded wafer uniformly and at high speed.
  • the RTP furnace 25 is provided with a reaction chamber 20.
  • the reaction chamber 20 is provided with a quartz support jig 22 for holding the bonding wafer 11 vertically.
  • a plurality of infrared lamps 21 as heat sources for heat-treating the bonded wafer 11 are provided on the front and back sides of the bonded wafer 11 held vertically.
  • the infrared lamp has a long and thin shape, and a plurality of the infrared lamps are arranged vertically on the front and back sides of the bonding plate. As a result, it is possible to uniformly peel and heat-treat the entire surface of the bonding plate 11. Further, as shown in FIG. 3, a gas inlet 26 for introducing gas into the reaction chamber 20 is provided.
  • a bonded wafer 11 in which an ion implantation layer is formed on an active layer wafer is horizontally held in a wafer carrier 23.
  • the bonded wafer 1 1 is taken out from the wafer carrier 23 by using the wafer transfer robot 24. Further, the taken-out bonding wafer 11 is placed vertically and transferred to the reaction chamber 20 of the RTP furnace 25.
  • the bonded wafer 11 transferred into the reaction chamber 20 is vertically supported by the quartz support jig 22 in the reaction chamber 20. At this time, the temperature when the bonded wafer 11 is put into the reaction chamber 20 is room temperature.
  • the temperature in the reaction chamber 20 is increased from room temperature to a set temperature in the range of 400 ° C.-1000 ° C. (eg, 500 ° C.) at a temperature increase rate of 20 ° C./min or less and held for 10 minutes.
  • the rate of temperature rise exceeds 20 ° C / min, the temperature distribution in the wafer surface is deteriorated, and as a result, the film thickness distribution of the S0I layer (active layer) is deteriorated. Therefore, the heating rate is preferably 20 ° CZ or less (results in Table 3 below).
  • N gas is introduced from the gas introduction port 26 to create an N gas atmosphere.
  • the entire surface of the bonding wafer 11 held vertically is heated uniformly and at high speed by the infrared lamps 21 provided on the front and back sides of the bonding wafer 11.
  • the temperature in the surface of the bonded wafer becomes almost uniform.
  • it can be completely peeled on the entire surface with the ion implantation layer as a boundary.
  • the shell-sharing woofer 11 is held vertically and subjected to peeling heat treatment. Therefore, it is possible to prevent the wafers that have been peeled off and separated from each other from coming into contact again.
  • the haze level of the peeled surface (wafer side for the active layer) of the bonded wafer 11 was measured using a surface inspection machine (SFS6220). This is because the haze level changes depending on the thickness of the SOI layer and the BOX layer (carrying oxide film) in SIO wafers. As a result, the haze of 2000 ppm or more was not confirmed on the peeled surface of the shell-occupying wafer 11, and it was confirmed that the peeled surface was uniformly peeled.
  • the bonded wafer 11 after being peeled is finally produced as an SOI wafer by an SOI wafer producing method by a general smart cut method. That is, heat treatment is performed to firmly bond the active layer wafer portion and the supporting wafer. The heat treatment is performed in an oxidizing gas atmosphere at 1100 ° C or higher for approximately 2 hours.
  • the surface of the SOI layer is ground, and the ground surface is mirror-polished to reduce the thickness of the SOI layer, thereby completing the SOI wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

 活性層用ウェーハに酸化膜を介して水素ガスをイオン注入する。この酸化膜を貼り合わせ面として支持ウェーハに貼り合わせる。貼り合わせウェーハを400~1000°Cにて熱処理する。これにより、イオン注入層を境界として貼り合わせウェーハが剥離し、SOIウェーハが作製される。この剥離熱処理では、貼り合わせウェーハの表面内の温度差を40°C以下に制御する。その結果、未剥離領域が生じることなく、イオン注入層を境界として全面にて完全に剥離することができる。

Description

明 細 書
SOIゥヱーハの作製方法
技術分野
[0001] この発明は SOIゥヱ一八の作製方法、詳しくは水素イオン注入剥離法における S〇I ゥエーハの作製方法に関する。
背景技術
[0002] SOIゥヱーハは、従来のシリコンゥヱーハに比べ、素子間の分離、素子と基板間の 寄生容量の低減、 3次元構造が可能といった優越性があり、高速'低消費電力の LSI に使用されている。
SOIゥエーハの製造方法の 1つに、シリコンゥエーハ表面に水素イオンを注入した 後貼り合わせ、その後剥離熱処理によりイオン注入層を境界として剥離するスマート カット法がある。このスマートカット法においては、シリコンゥエーハの表面に水素ィォ ンが注入された活性層用ゥエーハと、支持ゥエーハとを貼り合わせる。この結果、貼り 合わせ界面に絶縁膜を有する貼り合わせゥヱーハが形成される。この後、この貼り合 わせゥエーハを剥離熱処理する。この剥離熱処理の設定温度は、例えば、特許文献
1に記載の通り、略 500°C以上で行う必要がある。
[0003] 特許文献 1 :日本国特許第 3048201号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、この方法においては、剥離熱処理の炉内の温度分布、特に、貝占り合 わせゥエーハの表面内の温度分布が不均一となると、この表面内で結晶の再配列お よび気泡の凝縮が非連続的になりやすレ、。また、 S〇I層の膜厚の均一性が悪くなつ てしまうおそれがあり、その後の薄膜化工程にも影響がおよんでしまう。また、イオン 注入層を境界として剥離されない領域が発生し、 SOIゥヱーハを作製することができ なくなってしまう。
[0005] この発明は、スマートカット法による S〇Iゥエーハの作製において、貼り合わせゥェ ーハの剥離熱処理時、貼り合わせゥヱーハの表面内の温度を略均一にする SOIゥヱ ーハの作製方法を提供することを目的とする。
また、この発明は、イオン注入層を境界として全面にて完全に剥離することができる
SOIゥヱーハの作製方法を提供することを目的とする。
課題を解決するための手段
[0006] 第 1の発明は、活性層用ゥ 八に絶縁膜を介して希ガス元素をイオン注入して、 この活性層用ゥ ハにイオン注入層を形成し、次いで、この活性層用ゥ ハを絶 縁膜を介して支持ゥ ハに貼り合わせて貼り合わせゥ ハを形成し、この後、こ の貼り合わせゥ ハを設定温度に保持して熱処理することにより、イオン注入層を 境界として活性層用ゥヱーハの一部を剥離する SOIゥヱーハの作製方法であって、 上記熱処理では、貼り合わせゥ ハの表面内の温度差を 40°C以下に制御して、ィ オン注入層を境界として剥離する SOIゥ ハの作製方法である。
[0007] 第 1の発明に係る SOIゥ ハの作製方法にあっては、まず活性層用ゥ (例 えばシリコンゥ ハに酸化膜を形成したゥ にイオン注入層を形成する。次 いで、この活性層用ゥ ハを、絶縁膜を介して支持ゥ (例えばシリコンゥ ハ)に貼り合わせる。活性層用ゥ ハと支持ゥ ハとが貼り合わされた結果、貼り 合わせ界面に絶縁膜が介在された貼り合わせゥ 八が形成される。この後、この貼 り合わせゥヱ を設定温度(例えば 400 1000°C)にて熱処理する。この際、貼り 合わせゥ 八の表面内の温度差は 40°C以下に制御してある。この結果、イオン注 入層におレ、ては希ガスのバブルが形成され、このバブルが形成されたイオン注入層 を境界として剥離する。この場合、貼り合わせゥ ハの表面内の温度がほぼ均一と なっているため、未剥離領域が生じることなぐイオン注入層を境界として貼り合わせ ゥヱーハが全面にて完全に剥離することができる。
[0008] このように第 1の発明にあっては、スマートカット法による SOIゥエーハ作製方法に おいて、剥離熱処理時の貼り合わせゥ ハの表面内の温度差を 40°C以下に制御 している。例えば、剥離が開始される温度を 410°C以上と仮定した場合、貼り合わせ ゥ ハの表面温度が 410°Cから 450°Cの範囲にある領域では剥離される。しかし、 400°Cの領域では、強制的に貼り合わせ界面から剥離されてしまう。その結果、部分 的に SOI構造を有しない SOIゥヱーハが作製される。すなわち、剥離が開始された直 後は、貼り合わせゥエーハの表面内の温度差を 40°C以内にする必要がある。
対象となる貼り合わせゥエーハの口径は、例えば 200mmまたは 300mmである。 剥離熱処理を行う熱処理装置は、枚葉式の RTP (Rapid Thermal Processing )炉が好ましい。なぜなら、枚葉式炉で:!枚ずつランプ加熱を行うことにより、貼り合わ せゥヱーハを高速にかつ均一に加熱することができるからである。一方、バッチ式の 炉では、投入温度、投入速度により貼り合わせゥエーハの加熱速度が様々であり、貼 り合わせゥヱ一八の表面内の温度差を 40°C以下に制御するのは難しい。バッチ炉を 使用する場合には、例えば剥離開始温度までの昇温速度を 20°C/分以下に制御し て剥離熱処理を行う。昇温速度が 20°CZ分を超えると、ゥエーハ面内の一部におい てその温度上昇に追随できなくなる箇所が生じる。これにより、ゥヱ一八の面内にお いて温度の不均一が生じてしまう。よって、昇温速度を 20°CZ分以下にすると、貼り 合わせゥヱ一八の全面において温度差を 40°C以下に容易にかつ正確に制御するこ とができる。
[0009] 第 2の発明は、第 1の発明にあって、上記設定温度は、 400°C— 1000°Cである SO Iゥエーハの作製方法である。
[0010] 第 2の発明に係る SOIゥエーハの作製方法にあっては、貝占り合わせゥエーハの剥離 熱処理の設定温度は、 400°C— 1000°Cの範囲である。設定温度が 400°C未満であ れば、貝占り合わせゥエーハの剥離開始温度に到達せず、剥離できない問題が生じる 。 1000°Cを超えると、熱処理装置の反応管(石英管)が変形する等の問題が生じる。 また、貼り合わせゥエーハがー度剥離した界面同士で接触するなどして結合してしま レ、、その後再び剥離することが困難となる。つまり、貼り合わせゥエーハの全面が少な くとも 400°C— 1000°Cにあり、かつ、その面内での温度差が 40°Cであることが必要 である。
バッチ炉を使用する場合には、投入時の炉内の温度は、 400°C以下に抑えること が必要であり、 SOIゥヱーハを作製する際のスループットを考慮すれば、投入時の炉 内の温度は 300— 400°Cであるのが好ましい。すなわち、投入温度を 400°C以下に することで、貼り合わせゥヱ一八の面内の温度差を小さくしてこのゥヱーハを加熱する こと力 Sできる。 [0011] 第 3の発明は、第 1の発明または第 2の発明にあって、上記貼り合わせゥエーハを 略垂直に保持して熱処理することにより、これをイオン注入層を境界として剥離する S OIゥエーハの作製方法である。
貝占り合わせゥエーハを略垂直に保持して、かつ、貼り合わせゥエーハを加熱するた めの熱源を、この表裏面に近接して配置する。この熱源は、例えば、赤外線ランプが 用いられる。
[0012] 第 3の発明に係る SOIゥヱ一八の作製方法にあっては、貝占り合わせゥヱ一八は、 RT P炉内の反応室に配置された石英製支持治具に垂直に保持される。そして、この貼り 合わせゥヱ一八を、その表裏面の側方に配置された赤外線ランプにより加熱処理を する。
この貼り合わせゥエーハを垂直に保持する理由は、剥離熱処理の後、剥離したゥェ ーハ同士が再接触することを防止するためである。そして、この貼り合わせゥヱーハ の全面を均一にかつ高速に加熱することにより、貼り合わせゥヱーハの表面内の温 度がほぼ均一となる。そして、イオン注入層を境界として全面にて完全に剥離するこ とができる。
発明の効果
[0013] この発明によれば、スマートカット法による SOIゥヱ一八の作製方法において、貼り 合わせゥヱーハを設定温度 400 1000°Cにて熱処理する。この際、貼り合わせゥヱ ーハの表面内の温度差は 40°C以下に制御する。この結果、イオン注入層において は希ガスのバブルが形成され、このバブルが形成されたイオン注入層を境界として、 貝占り合わせゥヱ一八が剥離する(活性層用ゥヱ一八の一部が残りの SOIゥヱーハから 分離する)。この場合、貝占り合わせゥエーハの表面内の温度がほぼ均一となっている 。このため、未剥離領域が生じることなぐイオン注入層を境界として全面にて完全に 录 IJ離すること力 Sできる。
図面の簡単な説明
[0014] [図 1]この発明の一実施例に係る貼り合わせゥエーハを剥離熱処理する装置の構成 を示す正面図である。
[図 2]この発明の一実施例に係る貼り合わせゥエーハを剥離熱処理する装置の構成 を示す側面図である。
[図 3]この発明の一実施例に係る貼り合わせゥエーハを剥離熱処理する装置へ貼り 合わせゥエーハを搬送する搬送装置の構成を示す側面図である。
符号の説明
[0015] 11 S〇Iゥヱーノヽ。
発明を実施するための最良の形態
[0016] 以下、この発明の実施例を図面を参照して説明する。
実施例 1
[0017] 以下、この発明の一実施例を、図 1一図 3を参照して説明する。
本実施例に係るスマートカット法による S〇Iゥヱ一八 11の作製方法は、以下の方法 で行われる。
まず、 CZ法により育成され、ボロンがドーパントとされた単結晶シリコンインゴットか らスライスしたシリコンゥエーハを 2枚準備する。これらのシリコンゥエーハを、一方を活 性層用ゥエーハとして、他方を支持用ゥエーハとする。そして、活性層用ゥエーハとな るシリコンゥエーハの表面に酸化膜を形成する。酸化膜の形成は、酸化炉内にシリコ ンゥエーハを装入し、これを所定時間、所定温度に加熱することにより行われる。この とき、形成される酸化膜の厚さは 150nmである。
[0018] 次に、酸化膜が形成されたシリコンゥエーハを、イオン注入装置の真空チャンバの 中にセットする。そして、活性層用ゥエーハの表面より酸化膜を介して所定のドーズ 量の水素イオンを注入する。この結果、活性層用ゥエーハの所定深さ位置(シリコンゥ エーハ中の所定深さ範囲)にイオン注入層が形成される。
次に、室温で、水素イオンが注入された活性層用ゥエーハを、その水素イオンが注 入された面 (酸化膜表面)を貼り合わせ面として、支持用ゥエーハに貼り合わせる。こ の結果、貼り合わせ界面に絶縁膜 (酸化膜)が介在された貼り合わせゥエーハが形成 される。
以上の工程は、一般的なスマートカット法による SOIゥヱ一八の作製方法と同じであ る。
[0019] 次に、貼り合わせゥエーハ 11を剥離熱処理する装置について説明する。 図 1一図 3に示すように、剥離熱処理装置には、枚葉式の RTP炉 25が用いられる。 この RTP炉 25は、バッチ炉に比べて、秒単位までの昇温速度の制御ができ、貼り合 わせゥエーハの表面を均一にかつ高速に加熱することができる。
この RTP炉 25には、反応室 20が設けられている。この反応室 20には、貼り合わせ ゥヱーハ 11を垂直に保持する石英製支持治具 22が設けられている。また、垂直に保 持した貼り合わせゥヱーハ 11の表裏面側方には、貼り合わせゥヱーハ 11を熱処理す る熱源である複数の赤外線ランプ 21が設けられている。赤外線ランプは、長くて細い 形状を有し、貼り合わせゥヱ一八 11の表裏面側方にこれを複数垂直に並べて配設 する。これにより、貼り合わせゥヱ一八 11の全面において均一に剥離熱処理すること 力 Sできる。さらに、図 3に示すように、反応室 20内にガスを導入するためのガス導入 口 26が設けられている。
次に、貼り合わせゥエーハ 11の剥離熱処理の方法について説明する。
図 3に示すように、ゥエーハキャリア 23内に、活性層用ゥエーハにイオン注入層が形 成された貼り合わせゥエーハ 11が水平に保持されている。この貼り合わせゥエーハ 1 1を、ゥエーハ搬送ロボット 24を用いて、ゥエーハキャリア 23内から取り出す。さらに、 取り出した貼り合わせゥヱーハ 11を垂直にして、 RTP炉 25の反応室 20に搬送する。 そして、反応室 20内に搬送された貼り合わせゥエーハ 11は、反応室 20の石英製支 持治具 22によって、垂直に支持される。このとき、反応室 20に貼り合わせゥヱーハ 1 1を投入するときの温度は室温である。
そして、反応室 20内を室温から 400°C— 1000°Cの範囲の設定温度(例えば 500 °C)まで昇温速度 20°C/分以下で昇温し、 10分間保持する。ただし、昇温速度が 2 0°C/分を超えると、ゥエーハ面内の温度分布を悪化させ、その結果 S〇I層(活性層 )の膜厚分布を悪化させる。よって、昇温速度は 20°CZ分以下が好ましい(下記の表 3の結果)。
反応室 20内は、ガス導入口 26から Nガスが導入され、 Nガス雰囲気になっている
2 2
。これにより、貝占り合わせゥエーハ 11にあっては、その活性層用ゥエーハに注入され た水素イオンのバブルが形成される。そして、このバブルが形成されたイオン注入層 を境界として、活性層用ゥヱーハの一部(貼り合わせゥヱーハ 11の一部)が全面にて 剥離する。
このとき、貼り合わせゥヱーハ 11の表裏側方に設けられた赤外線ランプ 21により、 垂直に保持した貼り合わせゥエーハ 11の全面を均一にかつ高速に加熱する。これに より、貼り合わせゥエーハの表面内の温度がほぼ均一となる。そして、イオン注入層を 境界として全面にて完全に剥離することができる。また、貝占り合わせゥヱーハ 11は、 垂直に保持されて剥離熱処理される。よって、この後、剥離して分離されたゥエーハ 同士が再接触することを防止することができる。
剥離熱処理後、面検機(SFS6220)を用いて貼り合わせゥエーハ 11の剥離面 (活 性層用ゥヱーハ側)のヘイズレベルを測定した。これは、 S〇Iゥヱーハでは、 SOI層 および BOX層(坦め込み酸化膜)の厚みによりヘイズレベルが変化するためである。 その結果、貝占り合わせゥエーハ 11の剥離面については 2000ppm以上のヘイズが確 認されず、剥離面が均一に剥離処理されてレ、ることが確認できた。
[0021] 剥離された後の貼り合わせゥエーハ 11は、一般的なスマートカット法による SOIゥヱ ーハの作製方法により、最終的に SOIゥエーハとして作製される。すなわち、活性層 用ゥエーハ部分と支持用ゥエーハとを強固に結合するための熱処理を行う。熱処理 の条件は、酸化性ガス雰囲気中で 1100°C以上、略 2時間の条件で行う。
最後に、 SOI層表面を研削し、さらにこの研削面を鏡面研磨して SOI層の薄膜化 処理を行い、 SOIゥヱーハを完成させる。
[0022] 次に、貼り合わせゥエーハ 11の剥離熱処理について、以下の条件での実験をそれ ぞれ行った。すなわち、
(1)剥離熱処理時の貼り合わせゥエーハ 11の表面内の温度差を変化させて、 SOI 層分布および未剥離領域の有無を確認する実験 (表 1)、
(2)バッチ炉を使用して、 300°C— 700°Cの条件にて貼り合わせゥヱーハ 11を投入 し、 700°Cまで昇温後、 30分間保持した後、貝占り合わせゥヱーハ 11を取り出し、 SOI 層分布および未剥離領域の有無を確認する実験 (表 2)、
(3)バッチ炉を使用して、 300°Cにて貼り合わせゥヱーハ 11を投入し、 500°Cまで の昇温速度を変化させて剥離熱処理を行い、 SOI層分布および未剥離領域の有無 を確認する実験 (表 3)につレ、て行った。 なお、これらの実験において、貝占り合わせゥエーハ 11の剥離面の評価(SOI層分布 )には、表面検査装置(SFS6220)を用いた。以上の結果を表 1一表 3に示す。
[0023] [表 1]
Figure imgf000010_0001
[0024] [表 2]
Figure imgf000010_0002
[0025] [表 3]
Figure imgf000010_0003
[0026] 以上の実験の結果、貼り合わせゥエーハ 11の表面内の温度差を 40°C以下に制御 すれば、未剥離領域が生じることなぐその貼り合わせゥエーハ 11が全面にて完全に 剥離することが確認された。また、バッチ炉を用いたとき、熱処理の炉内の設定温度 を 400°C— 1000°Cにして剥離熱処理を行うと、未剥離領域が生じることなぐ貼り合 わせゥヱ一八 11が全面にて完全に剥離することが確認された。さらに、バッチ炉を用 いたとき、昇温速度を 20°CZ分以下にして剥離熱処理を行うと、未剥離領域が生じ ることなく、貝占り合わせゥヱ一八 11が全面にて完全に剥離することが確認された。

Claims

請求の範囲
[1] 活性層用ゥエーハに絶縁膜を介して希ガス元素をイオン注入して、この活性層用ゥ エーハにイオン注入層を形成し、次いで、この活性層用ゥエーハを絶縁膜を介して支 持ゥヱーハに貼り合わせて貼り合わせゥヱーハを形成し、この後、この貼り合わせゥヱ ーハを設定温度に保持して熱処理することにより、イオン注入層を境界として活性層 用ゥヱーハの一部を剥離する SOIゥヱ一八の作製方法であって、
上記熱処理では、貼り合わせゥエーハの表面内の温度差を 40°C以下に制御して、 イオン注入層を境界として剥離する SOIゥヱーハの作製方法。
[2] 上記設定温度は、 400°C— 1000°Cである請求項 1に記載の SOIゥエーハの作製 方法。
[3] 上記貼り合わせゥエーハを略垂直に保持して熱処理することにより、これをイオン注 入層を境界として剥離する請求項 1または請求項 2に記載の SOIゥエーハの作製方 法。
PCT/JP2004/012728 2003-09-05 2004-09-02 Soiウェーハの作製方法 WO2005024916A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005513661A JPWO2005024916A1 (ja) 2003-09-05 2004-09-02 Soiウェーハの作製方法
EP04772682.3A EP1662550B1 (en) 2003-09-05 2004-09-02 Method for producing soi wafer
US10/570,354 US7510948B2 (en) 2003-09-05 2004-09-02 Method for producing SOI wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-314758 2003-09-05
JP2003314758 2003-09-05

Publications (1)

Publication Number Publication Date
WO2005024916A1 true WO2005024916A1 (ja) 2005-03-17

Family

ID=34269816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012728 WO2005024916A1 (ja) 2003-09-05 2004-09-02 Soiウェーハの作製方法

Country Status (4)

Country Link
US (1) US7510948B2 (ja)
EP (1) EP1662550B1 (ja)
JP (1) JPWO2005024916A1 (ja)
WO (1) WO2005024916A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044153A (ja) * 2007-08-08 2009-02-26 Soitec Silicon On Insulator Technologies 脆化面に沿って複合基板を破砕する方法および装置
WO2010064355A1 (ja) 2008-12-04 2010-06-10 信越半導体株式会社 貼り合わせウェーハの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082299B2 (ja) * 2006-05-25 2012-11-28 株式会社Sumco 半導体基板の製造方法
JP2008066500A (ja) * 2006-09-07 2008-03-21 Sumco Corp 貼り合わせウェーハおよびその製造方法
JP2011082443A (ja) * 2009-10-09 2011-04-21 Sumco Corp エピタキシャルウェーハおよびその製造方法
US8845859B2 (en) 2011-03-15 2014-09-30 Sunedison Semiconductor Limited (Uen201334164H) Systems and methods for cleaving a bonded wafer pair
KR102061359B1 (ko) 2011-10-31 2019-12-31 글로벌웨이퍼스 씨오., 엘티디. 본딩된 웨이퍼 구조물 절개를 위한 클램핑 장치 및 절개 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048201B2 (ja) 1991-09-18 2000-06-05 コミサリヤ・ア・レネルジ・アトミク 半導体材料薄膜の製造方法
US20030134489A1 (en) * 2002-01-16 2003-07-17 Walter Schwarzenbach Process for cleaving a wafer layer from a donor wafer
US20030216008A1 (en) * 2002-05-02 2003-11-20 Walter Schwarzenbach Process for dataching layers of material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US134489A (en) * 1872-12-31 Improvement in nut-fastenimgs
US216008A (en) * 1879-05-27 Improvement in line-holders
US5059770A (en) 1989-09-19 1991-10-22 Watkins-Johnson Company Multi-zone planar heater assembly and method of operation
JPH11307747A (ja) 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
KR100511656B1 (ko) * 2002-08-10 2005-09-07 주식회사 실트론 나노 에스오아이 웨이퍼의 제조방법 및 그에 따라 제조된나노 에스오아이 웨이퍼
US7052978B2 (en) * 2003-08-28 2006-05-30 Intel Corporation Arrangements incorporating laser-induced cleaving
US7544583B2 (en) 2003-09-08 2009-06-09 Sumco Corporation SOI wafer and its manufacturing method
JPWO2005027217A1 (ja) 2003-09-08 2007-11-08 株式会社Sumco Soiウェーハおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048201B2 (ja) 1991-09-18 2000-06-05 コミサリヤ・ア・レネルジ・アトミク 半導体材料薄膜の製造方法
US20030134489A1 (en) * 2002-01-16 2003-07-17 Walter Schwarzenbach Process for cleaving a wafer layer from a donor wafer
US20030216008A1 (en) * 2002-05-02 2003-11-20 Walter Schwarzenbach Process for dataching layers of material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044153A (ja) * 2007-08-08 2009-02-26 Soitec Silicon On Insulator Technologies 脆化面に沿って複合基板を破砕する方法および装置
WO2010064355A1 (ja) 2008-12-04 2010-06-10 信越半導体株式会社 貼り合わせウェーハの製造方法
US8697544B2 (en) 2008-12-04 2014-04-15 Shin-Etsu Handotai Co., Ltd. Method for manufacturing bonded wafer

Also Published As

Publication number Publication date
EP1662550B1 (en) 2019-12-04
JPWO2005024916A1 (ja) 2007-11-08
EP1662550A1 (en) 2006-05-31
EP1662550A4 (en) 2007-07-04
US20060266437A1 (en) 2006-11-30
US7510948B2 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
US7867877B2 (en) Method for manufacturing SOI wafer
EP1818971B1 (en) Method for producing direct bonded wafer
KR100750978B1 (ko) 휨과 구부러짐이 적은 층 구조의 반도체 웨이퍼 및 그 제조방법
JP4730581B2 (ja) 貼り合わせウェーハの製造方法
KR100949997B1 (ko) 접합 웨이퍼의 제조 방법
KR19980079501A (ko) 실리콘 웨이퍼의 제조 방법 및 실리콘 웨이퍼
CN104885190B (zh) Soi晶圆的制造方法
WO2005024925A1 (ja) Soiウェーハの作製方法
JPH11121310A (ja) 半導体基板の製造方法
JP4285244B2 (ja) Soiウェーハの作製方法
WO2005024916A1 (ja) Soiウェーハの作製方法
US10763127B2 (en) Heat treatment method for semiconductor wafer
JP5292810B2 (ja) Soi基板の製造方法
JP2006165061A (ja) Soiウェーハの製造方法
US7494899B2 (en) Method for manufacturing semiconductor substrate
JP5703853B2 (ja) 貼り合わせウェーハの製造方法
JP4427777B2 (ja) 半導体基板の製造方法
CN107154378B (zh) 绝缘层上顶层硅衬底及其制造方法
JP2007242972A (ja) Soiウェーハの製造方法
JP2008205061A (ja) 半導体基板の製造方法
JP2004214399A (ja) 半導体基板の製造方法およびウェーハ剥離熱処理装置
JP4539098B2 (ja) 貼り合わせ基板の製造方法
JPH11145074A (ja) 半導体基板の製造方法
JP2000114232A (ja) 半導体装置の製造方法
WO2007097179A1 (ja) Soi基板の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004772682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006266437

Country of ref document: US

Ref document number: 10570354

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004772682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570354

Country of ref document: US