WO2005024281A1 - 方向制御弁 - Google Patents

方向制御弁 Download PDF

Info

Publication number
WO2005024281A1
WO2005024281A1 PCT/JP2003/010864 JP0310864W WO2005024281A1 WO 2005024281 A1 WO2005024281 A1 WO 2005024281A1 JP 0310864 W JP0310864 W JP 0310864W WO 2005024281 A1 WO2005024281 A1 WO 2005024281A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
port
directional control
control valve
state
Prior art date
Application number
PCT/JP2003/010864
Other languages
English (en)
French (fr)
Inventor
Kazuya Okamoto
Original Assignee
Koganei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koganei Corporation filed Critical Koganei Corporation
Priority to DE60330279T priority Critical patent/DE60330279D1/de
Priority to EP20030818525 priority patent/EP1659319B1/en
Priority to PCT/JP2003/010864 priority patent/WO2005024281A1/ja
Priority to JP2005508733A priority patent/JP4275135B2/ja
Priority to TW93124934A priority patent/TWI292019B/zh
Publication of WO2005024281A1 publication Critical patent/WO2005024281A1/ja
Priority to US11/144,140 priority patent/US7380571B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/104Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/125Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement generally perpendicular to the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0712Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides comprising particular spool-valve sealing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S251/00Valves and valve actuation
    • Y10S251/90Valves with o-rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86582Pilot-actuated
    • Y10T137/86606Common to plural valve motor chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86582Pilot-actuated
    • Y10T137/86614Electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/86622Motor-operated
    • Y10T137/8663Fluid motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/8671With annular passage [e.g., spool]

Definitions

  • the present invention relates to a directional control valve suitable for use in a pneumatic circuit for supplying high-pressure compressed air from a pneumatic source to a pneumatic device.
  • a directional control valve is a valve that switches between a state in which a fluid flows and a state in which the flow is shut off, and a direction in which the fluid flows from one port to another port.
  • a pneumatic circuit for supplying compressed air from a pneumatic source to a pneumatic device includes a state in which compressed air from the pneumatic source is supplied to the pneumatic device, and a supply of compressed air to the pneumatic device.
  • a directional control valve is used to switch to a state in which the compressed air returned from the pneumatically operated equipment is stopped and discharged.
  • Such a directional control valve has a valve casing in which the valve shaft is accommodated so as to be able to reciprocate in the axial direction, and is connected to a valve accommodating hole in which the valve shaft is accommodated so as to be movable in the axial direction.
  • a port and a discharge port are formed in the pulp casing.
  • the supply port is connected to a pneumatic source, the output port is connected to a pneumatically operated device, and the exhaust port is open to the atmosphere, either directly or through an exhaust flow path.
  • a control valve is called a three-port valve, and a directional control valve that has two output ports and two exhaust ports in addition to one air supply port is called a 5-port valve.
  • valve shaft drive systems There are two types of valve shaft drive systems: a direct operation system in which the valve shaft is directly driven by an electromagnet, and an indirect operation system in which the valve shaft is operated by compressed air.
  • a driving method of the valve shaft there are a mechanical method in which the valve shaft is driven by a cam and a link mechanism, and a manual operation method in which the valve shaft is driven manually.
  • Indirectly actuated directional control valves are classified into a single solenoid type that drives the valve with one solenoid and a double solenoid type that drives the valve with two solenoids.
  • the double solenoid is a type in which the valve shaft keeps its position when the power is supplied to the solenoid even when the power to the solenoid that has been supplied with power is stopped.
  • the directional control valve has a valve shaft on which a plurality of rubber elastic valve elements each consisting of an O-ring are mounted, and when the communication between the ports is cut off, the inner peripheral surface of the valve receiving hole between the ports
  • a spool type in which an elastic valve element is brought into contact with each other is used, and each elastic valve element is attached to a valve shaft. It is mounted in the formed annular groove.
  • a directional control valve in which an elastic valve element is mounted on a valve shaft has a metal seal structure in which a metal valve element is brought into contact with a valve receiving hole at a small interval.
  • a directional control valve of a type in which an elastic valve body is mounted on a valve shaft is usually used in a pneumatic circuit for guiding compressed air having a pressure of about 0.7 to IMPa
  • a pneumatic circuit supplied with high-pressure compressed air it was found that the product life was shortened due to breakage or deformation of the elastic valve element.
  • the elastic valve which switches between a state in which the air supply port and the output port communicate with each other and a state in which the communication is cut off, is deformed or damaged even if the directional control valve is used for a long period of time. It has been found that, while no fluid is generated, the ⁇ -valve that switches between a state in which the output port communicates with the exhaust port and a state in which the communication is cut off deforms or breaks in a relatively short time.
  • An object of the present invention is to provide a directional control valve capable of preventing the occurrence of a suction phenomenon of a valve element for switching a port.
  • Another object of the present invention is to provide a small-sized directional control valve by preventing the bulge casing from being enlarged even if a mounting hole for mounting the bulge casing to another member is provided in the bulge casing. Disclosure of the invention
  • the directional control valve according to the present invention is a directional control valve for switching an output port between a state communicating with a supply port and a state communicating with a discharge port, wherein the directional control valve communicates with the valve accommodation hole and the supply port communicates with the supply port.
  • the pallet comprising: an annular elastic valve body that switches to a cutoff state in which contact is made to cut off communication; an annular reinforcing ring; and an elastic seal provided integrally with the reinforcing ring.
  • a composite valve element mounted on the casing to switch between a communication state in which the output port and the discharge port communicate with each other apart from the sealing surface of the valve shaft, and a blocking state in which the communication is interrupted by contacting the sealing surface. It is characterized by having.
  • the directional control valve of the present invention is characterized in that the elastic valve body moves to a position corresponding to the supply port in the communication state.
  • the directional control valve according to the present invention is characterized in that the composite valve element is provided between the output port and the exhaust port, and is in contact with an outer peripheral corner formed on the valve shaft in the shutoff state.
  • the directional control valve according to the present invention is characterized in that the composite valve element is provided between the output port and the exhaust port, and in the shut-off state, contacts the outer peripheral surface of the valve shaft.
  • first and second two output ports are formed on both sides of the supply port in the valve casing, and first and second discharge ports are formed adjacent to the respective output ports. It is a 5-port valve.
  • the directional control valve of the present invention is characterized in that an attachment hole for attaching the pulp casing to another member is formed between the supply port and the discharge port, and is formed in the pulp casing.
  • an elastic valve body for switching a supply port and an output port between a communication state and a cutoff state is mounted on a valve shaft, and the output port and the discharge port are provided with a reinforcing ring and an elastic seal. Since the compound valve that switches between the open and closed states is connected to the pulp casing, the composite valve will be subject to the suction phenomenon caused by the fluid flowing outward from the output port to the discharge port. Thus, the deformation and breakage of the composite valve element can be prevented, and the durability of the directional control valve can be improved. According to the present invention, when the elastic valve element brings the supply port into communication with the output port, the elastic valve element is located at a position corresponding to the supply port, but the fluid flows into the supply port from outside. Since pressure is applied to the elastic valve body in the direction of pressing against the valve shaft, no suction phenomenon occurs in the elastic valve body.
  • the composite valve element is formed on the valve shaft when the discharge port is shut off.
  • the composite valve body may be of a port valve type so as to contact the outer peripheral corner, or may be of a spool valve type that contacts the outer peripheral surface of the valve shaft in a closed state.
  • the directional control valve of the present invention can be applied to a 3-port valve / 5-port valve as long as a supply port, a discharge port, and an output port are formed in a valve casing.
  • a mounting hole for mounting the pulp casing to another member is formed between the supply port and the discharge port, so that the pulp casing can be reduced in size without increasing the width dimension. It may be a directional control valve.
  • FIG. 1 is a perspective view showing a directional control valve according to an embodiment of the present invention.
  • FIG. 2 is a partially cutaway plan view of FIG. 1 when the solenoid is not energized.
  • FIG. 3 is a sectional view taken along line AA in FIG.
  • FIG. 4 is an enlarged cross-sectional view showing a part of the directional control valve when the solenoid is energized.
  • FIG. 5 is an enlarged sectional view showing a part of FIG.
  • FIG. 6 is a cross-sectional view showing a portion similar to FIG. 5 in a directional control valve according to another embodiment of the present invention.
  • Figures 7 (A;) to (E) are cross-sectional views each showing a modified example of the composite valve element.
  • FIG. 8 is a cross-sectional view showing a part of the directional control valve of the comparative example.
  • the directional control valve has a main valve block 10 having a substantially rectangular parallelepiped shape as a whole.
  • a valve shaft 12 is mounted in the valve housing hole 11 formed in the longitudinal direction in the longitudinal direction so as to be reciprocally movable in the axial direction.
  • a power pipe lock 13 is fixed, and at the other end, a pipe block 14 is fixed. These main valve block 10 and power pipe lock 13 are fixed.
  • the parve casing 15 is formed by 14. This directional control valve is inserted into a mounting hole 16 formed in the main valve block 10 as shown in FIG. 1 and FIG.
  • the support block 18 is attached to the support block 18 by the screw member 17, and the directional control valve is attached to a predetermined use location by the support block 18.
  • a supply port or air supply port 20 communicating with the valve housing hole 11 is formed at the center of the main valve block 10 in the longitudinal direction, and both sides of the air supply port 20 are formed.
  • Two exhaust ports 21, 22 are formed shifted in the axial direction, and output ports 23, 24 are provided between the respective exhaust ports 21, 22 and the air supply port 20. Is formed.
  • Each port 20 to 24 is open at the bottom of the main valve block 10 facing the support block 18, and the air supply port 20 communicates with the air supply hole 20a formed in the support block 18.
  • the exhaust ports 21 and 22 communicate with the exhaust holes 21 a and 22 a formed in the support block 18. These holes 2a to 22a are respectively opened at one end face of the support block 18, and output holes 23a and 24a formed at the other end face are formed at the output port 2a, respectively. It is connected to 3, 24.
  • this directional control valve when this directional control valve is used in a pneumatic circuit for supplying compressed air from an air pressure source to an air cylinder 25 as a pneumatically operated device, the air supply hole 20a has An air pressure source 19 is connected by piping, one output hole 23a is connected by piping to one air pressure chamber 25a in the air cylinder 25, and the other is connected to the other air pressure chamber 25b by piping. Output port 24a is connected.
  • a pressurizing chamber 26 formed in the force-purb mouth 13 incorporates a small-diameter biston 27, and a pressurizing chamber formed in the pilot block 14 with a larger diameter than the pressurizing chamber 26.
  • the pressurizing chamber 26 communicates with the air supply port 20 through an air supply passage 31 formed in the valve casing 15 so as to communicate with the air supply port 20 and supply air through the air supply hole 20 a.
  • compressed air is supplied to the port 20
  • a thrust in the rightward direction is applied to the valve shaft 12 in FIGS.
  • a leftward thrust is applied to the valve shaft 12.
  • the pressurizing chamber 28 and the air supply passage 31 communicate with the pulp casing 15 to supply compressed air to the pressurizing chamber 28 and discharge the air in the pressurizing chamber 28 to the outside.
  • a pilot valve 32 is installed to switch to the state.
  • the solenoid part 33 of the pilot valve 32 has a bobbin 35 around which a coil 34 is wound, and a fixed iron core 36 is mounted inside the pobin 35.
  • a plunger, that is, a movable iron core 37 is mounted so as to be able to reciprocate in the axial direction.
  • the control case 30 attached to the solenoid part 33 is provided with a connector part 30a to which a not-shown energizing cable terminal is connected.
  • a rubber on-off valve 38 is attached to the tip of the movable iron core 37, and this on-off valve 38 is in contact with a first valve seat 39 formed on the pilot block 14. It comes to touch.
  • An opening of the air supply passage 31 is formed in the valve seat 39, and the opening is opened and closed by an on-off valve 38.
  • a compression coil spring 41 that applies a spring force to the on-off valve 38 toward the valve seat 39 is attached to the movable iron core 37. Therefore, when the coil 34 is energized, the movable iron core 37 moves toward the fixed iron core 36 with a spring force, and the opening of the air supply passage 31 is opened. Thus, the opening of the air supply passage 31 is closed.
  • a second valve seat 42 is formed in a direction opposite to the valve seat 39.
  • the valve seat 42 has an exhaust passage communicating with the outside of the pilot block 14.
  • An opening 43 is provided, and the exhaust passage 43 communicates with an exhaust hole 43 a formed in the support block 18.
  • a cylindrical valve holder 44 is attached to the pilot block 14 so as to cover the valve seat 42.
  • a flapper valve 45 is incorporated in the valve holder 44 so as to be openable and closable.
  • Valve 4 5 is the opening of exhaust passage 4 3 Open and close parts.
  • a plurality of interlocking pins 4 6 are arranged between the flapper valve 45 and the movable iron core 37, and the flapper valve 45 is opened and closed by the movable iron core 37 via the interlocking pin 46.
  • a through hole 47 is formed in the valve holder 44, and when the energization of the coil 34 is released, the movable iron core 37 is pressed toward the valve seat 39 by the spring force.
  • the flapper valve 45 comes into contact with the valve seat 39 and is separated from the valve seat 42.
  • the pressurizing chamber 28 communicates with the outside via the exhaust passage 43, and the air in the pressurizing chamber 28 is discharged to the outside.
  • the on-off valve 38 moves away from the valve seat 39, and the flapper valve 45 comes into contact with the valve seat 42, and the coil spring 48 incorporated in the valve holder 44 As a result, the flapper valve 45 is pressed against the valve seat 42.
  • the compressed air supplied from the air supply port 20 through the air supply passage 31 with the exhaust passage 43 closed is added through the gap between the interlocking pin 46 and the hole through which the interlock pin 46 passes. It flows into the pressure chamber 28.
  • the valve shaft 12 becomes the first position shown in FIG. 4, and when the compressed air in the pressurizing chamber 28 is discharged, the valve shaft 1 2 is the second position shown in FIG.
  • Annular elastic valve bodies 51 and 52 are mounted on the valve shaft 12 in annular grooves formed in the valve shaft 12 so as to be shifted from each other in the axial direction.
  • the elastic valve element 51 has an inner periphery formed by the inner surface of the valve accommodation hole 11 between the air supply port 20 and the output port 23. Contact the seal surface to cut off communication between ports 20 and 23.
  • the flexible valve element 51 is separated from the inner peripheral sealing surface to a position corresponding to the air supply port 20, and from the air supply port 20. The inflowing compressed air is communicated to the output port 23.
  • the other elastic valve element 52 When the valve shaft 12 is in the first position shown in FIG. 4, the other elastic valve element 52 has an inner periphery formed by the inner surface of the valve accommodation hole 11 between the air supply port 20 and the output port 24. Contact the seal surface to cut off communication between these ports 20 and 24. And this elastic valve body
  • valve shaft 12 When the valve shaft 12 reaches the second position shown in FIG. 3, the valve shaft 2 moves away from the inner peripheral seal surface to a position corresponding to the air supply port 20 and receives compressed air flowing from the air supply port 20. Connect to output port 24.
  • elastic valve elements 51 and 52 rubber O-rings having a somewhat elliptical cross section are used, and they contact the inner peripheral surface of the valve receiving hole 11 respectively.
  • the port has a spool valve structure that shuts off communication with the port.
  • the portions on both sides of the elastic valve bodies 51 and 52 of the valve shaft 12 are small-diameter portions 12a, and both ends of the valve shaft 12 are smaller than the small-diameter portions 12a.
  • the large-diameter large-diameter portions are 12b and 12c.
  • a large-diameter hole 53 is formed in the main valve block 10 corresponding to each of the large-diameter portions 12b and 12c, and spacers 54a and 54a are formed in the large-diameter holes 53.
  • 54b is fitted, and the space between the outer peripheral surfaces of the spacers 54a and 54b and the main valve block 10 is sealed by a sealing material 55.
  • the large-diameter portions 12b and 12c of the valve shaft 12 come into sliding contact with the inner peripheral surfaces of the spacers 54a and 54b during all axial movements of the valve shaft 12 so that the valve shaft 1
  • a sealing material 56 is provided to seal the gap between 2 and spacers 54a and 54b.
  • Annular grooves 57a, 57b are formed in the spacers 54a, 54b in correspondence with the exhaust ports 21, 22, respectively.
  • a plurality of radial communication holes 58a and 58b are formed in the spacers 54a and 54b, respectively, in order to connect b to the inner peripheral surfaces of the spacers 54a and 54b.
  • the formed main valve block 10 is provided with a composite valve element 61 located between the output port 23 and the exhaust port 21.
  • the composite valve element 61 has a main valve block 10 It is sandwiched between the stepped portion formed at the bottom and the spacer 54a.
  • the composite valve body 61 comes into contact with the sealing surface of the valve shaft 12 to establish communication between the output port 23 and the exhaust port 21. Cut off.
  • the composite valve element 61 communicates with the output port 23 and the exhaust port 21 apart from the sealing surface of the valve shaft 12. Let it.
  • the main valve block 10 is provided with a compound valve body 62 located between the output port 24 and the exhaust port 22.
  • the compound valve body 62 is formed in the main valve block 10. It is sandwiched between the step and the spacer 54b.
  • the composite valve body 62 separates from the sealing surface of the valve shaft 12 and communicates with the output port 24 and the exhaust port 22. State. Further, when the valve shaft 12 is at the second position shown in FIG. 3, the composite valve body 62 comes into contact with the sealing surface of the valve shaft 12 to establish communication between the output port 24 and the exhaust port 22. It becomes a cutoff state to cut off.
  • FIG. 5 is an enlarged sectional view showing the composite valve element 61.
  • the composite valve element 61 has a metal reinforcing ring 63 and an outer peripheral surface and an inner peripheral surface formed through one end surface of the metal reinforcing ring 63.
  • a rubber elastic seal 64 is provided integrally with the reinforcing ring 63 so as to be continuous, and the elastic seal 64 includes a radial portion 64a integrated with the end face of the reinforcing ring 63, and It has an outer peripheral portion 64b that covers a part of the outer periphery of the reinforcing ring 63, and an inner peripheral portion 64c that covers the inner peripheral portion of the reinforcing ring 63, and is added to the reinforcing ring 63. Bonded with sulfuric acid.
  • the other composite valve element 62 also includes a reinforcing ring 63 and an elastic seal 64, and has the same structure as the composite valve element 61.
  • the material of the reinforcing ring 63 is not limited to metal, and may be a hard resin as long as the material has a rigidity such that it does not elastically deform even when the pressure of the compressed air is applied.
  • the inner peripheral seal portion 6 4 c of the elastic seal 64 has a central axial surface 65 and tapered surfaces 66 on both sides of the central axial surface 65.
  • the arc-shaped outer peripheral corner 67 of the large-diameter portion provided on the valve shaft 12 is used as a sealing surface so as to contact the valve shaft 12. Therefore, when the composite valve element 61 comes into contact with the valve shaft 12, the composite valve element 61 is deformed in the axial direction, and the composite valve elements 61 and 62 shown in FIG. 5 are of a poppet valve type.
  • FIG. 6 is a cross-sectional view showing a part of a directional control valve according to another embodiment of the present invention, which is similar to FIG. 5, and the composite valve elements 61 and 62 of the directional control valve shown in FIG.
  • the structure is similar to that shown in FIG.
  • the composite valve elements 61 and 62 are configured such that the axial surface 65 of the inner peripheral seal portion 64c contacts the outer peripheral surface of the valve shaft 12. Therefore, the composite valve elements 61 and 62 are elastically deformed in the radial direction when the outer peripheral surface of the large-diameter portion of the valve shaft 12 comes into contact with the axial surface of the valve shaft 12 as the valve shaft 12 moves in the axial direction.
  • Valve stem 1 It comes into contact with 2 and is a spool valve type. As described above, the contact between the composite valve elements 61 and 62 and the sealing surface of the valve shaft 12 may be either a port valve type or a spool valve type.
  • FIG. 7 (A) to 7 (E) are cross-sectional views showing modified examples of the composite valve elements 61 and 62, respectively.
  • the elastic seals 64 of the composite valve elements 61 and 62 shown in FIG. Has an outer peripheral portion 6 4 b covering part of the outer periphery of the reinforcing ring 63 and an inner peripheral seal portion 64 c covering the inner peripheral portion, and does not have the radial portion 64 a shown in FIG. . Therefore, in the composite valve elements 61 and 62, the reinforcing ring 63 is sandwiched between the step portion of the pulp casing 15 and the spacers 54a and 54b.
  • the shape of the inner peripheral seal portion 64c is the same as that shown in FIG.
  • the cross-sectional shape of the inner peripheral sealing portion 64 a of the elastic seal 64 is different from that shown in FIG.
  • the width dimension of the axial surface 65 is larger than that shown in FIG.
  • the inner peripheral surface of the inner peripheral seal portion 64 a of the elastic seal 64 is entirely an axial surface 65.
  • the entire outer surface of the reinforcing ring 63 is covered with the elastic seal 64, and the outer peripheral portion 64b and the inner peripheral seal portion 64c. Both have arc-shaped surfaces.
  • An arc-shaped surface 68 formed on the inner peripheral seal portion 64 c is in sealing contact with the outer peripheral surface of the valve shaft 12.
  • the composite valve elements 61 and 62 shown in FIG. 7 (E) are modified examples of FIG. 7 (D), and the outer periphery of the elastic seal 64 is different from that shown in FIG. 7 (D).
  • the outer peripheral surface is flat.
  • FIGS. 7A to 7C even in a type having an axial surface 65 and a tapered surface 66, the entire reinforcing ring 63 may be covered with an elastic seal 64.
  • FIG. 8 is a cross-sectional view showing a conventional directional control valve as a comparative example.
  • members common to the above-described members are denoted by the same reference numerals.
  • elastic valves 71-71d consisting of O-rings are attached to the valve shaft 12 to switch the ports between the communication state and the communication cutoff state. Have been.
  • the directional control valve having the elastic shafts 71a to 71d mounted on the valve shaft 12 is, for example,
  • the elastic valve bodies 7 1 c and 71 d that switch the output ports 23 and 24 and the exhaust ports 21 and 22 between the communication state and the cutoff state are:
  • both ports are connected, they may be elastically deformed so as to spread radially outward away from the bottom of the groove.
  • a part of the flexible valve bodies 71 c and 71 d may be caught between the valve shaft 12 and the valve receiving hole by the movement of the valve shaft 12. This phenomenon was not observed in the elastic valves 71a and 71b that switch the air supply port 20 and the output ports 23 and 24 between the communication state and the cutoff state.
  • the elastic valve bodies 71a and 71b which switch the supply port 20 and the output ports 23 and 24 between the communication state and the cutoff state, receive the flow from the outside to the inside, and the elastic valve bodies 71a , 71b and the gap 74 between the valve shaft 12 and the valve housing hole 11 are smaller than the gap between the outer circumference of the valve housing hole 11 and the outer circumference of the elastic valve bodies 71a and 71b.
  • the flow velocity at is not maximum.
  • the output port A composite valve body 61, 62 for switching between 23, 24 and the exhaust ports 21, 22 between a communicating state and a shut-off state is formed by a reinforcing ring 63 and an elastic seal 64, and is attached to the pulp casing 15. Therefore, even when used in a pneumatic circuit with a high pressure of 2 MPa or more, there was no occurrence of the conventional suction phenomenon.
  • the composite valve elements 61 and 62 are attached to the pulp casing 15, these composite valve elements 61 and 62 are axially and radially outward when the exhaust ports 21 and 22 are opened.
  • the composite valve element 61, 6 Since the reinforcing ring 63 is incorporated inside 2, the elastic seal 64 is prevented from being deformed even when a force is applied outward in the axial and radial directions. Thereby, the durability of the directional control valve is improved, and the product life can be extended.
  • the width dimension D of the valve casing 15 is increased. This can be done in the same way as shown in FIG. As a result, the size of the directional control valve can be kept small.
  • the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist thereof.
  • the present invention can be applied to a three-port valve as long as it is a directional control valve having an air supply port, an output port, and an exhaust port.
  • the drive system of the valve shaft 12 is not limited to the indirect operation type using the pilot pressure controlled by the pilot valve 32, but may be a direct operation system in which the valve shaft 12 is directly driven by a solenoid, a cam, or the like.
  • the present invention can also be applied to a mechanical type in which a valve shaft is driven by a link mechanism or a manually operated type in which a valve shaft is driven manually.
  • the illustrated directional control valve is a single solenoid type, the present invention can be applied to a double solenoid type.
  • output holes 23a and 24a communicating with the output ports 23 and 24 of the directional control valve are formed in the support block 18, and the respective output holes 23a and 24 are formed.
  • a joint is attached to a to supply air to pneumatic actuators such as air cylinders 25, the upper port of the main valve block 10 is connected to the respective output ports 23 and 24 to connect May be attached.
  • one directional control valve is mounted on the support block 18, but common air supply and exhaust holes are formed respectively.
  • a plurality of directional control valves may be mounted on the manifold block, and the plurality of directional control valves may be supplied and exhausted through a common air supply and exhaust hole.
  • the directional control valve of the present invention can be applied not only for switching the flow direction of air but also for switching the flow direction of inert gas or liquid.
  • the directional control valve of the present invention can be used for switching a flow direction of a fluid such as air to a fluid pressure circuit for supplying a fluid from a fluid pressure source to a fluid pressure operated device.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)
  • Valve Housings (AREA)

Abstract

バルブケーシング(15)には弁収容孔(11)とこれに連通させて給気ポート(20)と排気ポート(21,22)と出力ポート(23,24)がそれぞれ形成されており、弁収容孔(11)には軸方向に往復動自在に弁軸(12)が装着されている。弁軸(12)には、弁収容孔(11)の内周シール面から離れて給気ポート(20)と出力ポート(23,24)とを連通させる連通状態、および内周シール面に接触して連通を遮断する遮断状態とに切り換える環状のゴム製の弾性弁体(51,52)が装着されている。バルブケーシング(15)には、環状の補強リング(63)とこれに一体に設けられるゴム製の弾性シール(64)とを備える複合弁体(61,62)が装着され、複合弁体(61,62)は弁軸出力ポート(23,24)と排気ポート(21,22)とを連通させる連通状態および連通を遮断する遮断状態とに切り換える。

Description

明 細 謇
方向制御弁 技術分野
流体の流れの方向を切換制御する方向制御弁に関し、 特に、 空気圧源から高圧 の圧縮空気を空気圧作動機器に供給するための空気圧回路に使用して好適な方向 制御弁に関する。 背景技術
方向制御弁は、 流体を流す状態と流れを遮断する状態に切り換えたり、 流体の 流れ方向をあるポートから他のポートに切り換えるための弁である。 たとえば、 空気圧源からの圧縮空気を空気圧作動機器に供給するための空気圧回路には、 空 気圧源からの圧縮空気を空気圧作動機器に供給する状態と、 空気圧作動機器に対 する圧縮空気の供給を停止して空気圧作動機器から戻される圧縮空気を排出させ る状態とに切り換えるために方向制御弁が使用される。
このような方向制御弁は、 弁軸が軸方向に往復動自在に収容されるパルブケー シングを有し、 弁軸が軸方向に移動自在に収容される弁収容孔に連通させて供給 ポートと出力ポートと排出ポートとがパルプケーシングに形成されている。 給気 ポートは空気圧源に接続され、 出力ポートは空気圧作動機器に接続され、 排気ポ ートは直接または排気流路を介して大気に解放されており、 これらのポートを 1 つずっ備えた方向制御弁は 3ポート弁と言われ、 1つの給気ポートに加えて出力 ポートと排気ポートを 2つずつ備えた方向制御弁は 5ポート弁と言われる。 弁軸の駆動方式には、 電磁石により弁軸を直接駆動するようにした直接作動方 式と、 弁軸を圧縮空気により作動するようにした間接作動式とがあり、 この間接 作動式には外部からパイ口ット弁に圧縮空気を供給するようにした外部パイ口ッ ト型と、 方向制御弁内部からパイ口ット弁に圧縮空気を供給するようにした内部 パイロット型とがある。 さらに弁軸の駆動方式には、 カムやリンク機構により弁 軸を駆動するようにした機械式や手動により弁軸を駆動するようにした手動操作 式がある。 間接作動型の方向制御弁には、 1つのソレノィドで弁を駆動するシングルソレ ノィド型と 2つのソレノィドで弁を駆動するダブルソレノィド型があり、 シング ルソレノィド型はソレノィドに対する通電を停止すると、 弁軸は元の位置に復帰 するタイプであり、 復帰力はばねあるいは空気の圧力により弁軸に加えられる。 一方、 ダブルソレノイドは通電されていたソレノイドに対する通電を停止しても 弁軸は通電したときの位置を保持するタイプである。
方向制御弁としては、 それぞれ Oリングからなるゴム製の複数の弾性弁体が装 着された弁軸を有し、 ポート相互の連通を遮断する際にはポート間の弁収容孔の 内周面にそれぞれ弾性弁体を接触させるようにしたスプールタイプのものが、 た とえば特許第 2 8 2 6 4 6 0号公報に示されるように使用されており、 それぞれ の弾性弁体は弁軸に形成された環状溝に装着されている。 この公報に記載される ように、 弾性弁体を弁軸に装着するようにしたタイプの方向制御弁は、 金属製の 弁体を弁収容孔に僅かな間隔をもって接触させるようにしたメタルシール構造に 比して低コストでシール性を高めることができるという利点がある反面、'流れの 切換制御を行うことができる圧縮空気の圧力には限度があった。
すなわち、 弁軸に弾性弁体を装着するようにしたタイプの方向制御弁は、 通常 、 圧力が 0 . 7〜 I MP a程度の圧縮空気を案内する空気圧回路に使用されるが 、 これよりも高い圧力の圧縮空気が供給される空気圧回路に使用されると、 弾性 弁体の破損や変形により製品寿命が短くなることが判明した。 その原因を追及し たところ、 給気ポートと出力ポートとを連通させる状態と連通を遮断する状態と に切り換える弾性弁体は長期間に渡って方向制御弁を使用しても変形や破損が発 生しないのに対して、 出力ポートと排気ポートとを連通させる状態と連通を遮断 する状態とに切り換える弹性弁体は比較的短期間に変形したり破損することが判 明した。
そこで、 2 MP a程度の高い圧力の空気圧回路に使用された方向制御弁におけ る流路の切り換え状態を観察したところ、 出力ポートと排気ポートとを連通状態 と遮断状態との切り換える弾性弁体は、 両方のポートを連通させたときに、 溝の 底面から離れて径方向外方に広がるように弾性変形していた。 この現象は給気ポ 一卜と出力ポートとを連通状態と遮断状態とに切り換える弾性弁体には見られな かった。 このような現象が発生するのは、 出力ポートと排気ポートとを連通状態 としたときに弾性弁体が排出ポートの位置となるので、 出力ポートから弁収容孔 内に流入した後に排気ポートに径方向外方に向けて流れる空気によつて弾性弁体 が吸い出されるからであると考えられる。 外部に向けて流れる空気によって連通 状態となった弹性弁体が吸出し現象により径が広がるように弾性変形し、 その状 態のまま弾性弁体が連通遮断状態に移動すると、 弾性弁体の外周部が弁孔の内周 エッジと弁軸との間に挟み込まれることがある。 吸出し現象が繰り返されると、 弾性弁体が破損するに至り、 方向制御弁の寿命が短くなり、 その耐久性を低下さ せることになる。 この吸出し現象の発生を防止するには、 弾性弁体のゴムの材質 を硬度の高いものに変更することも試みられたが、 硬度を高くすると、 弁軸への 弾性弁体の装着性が悪化する。
本発明の目的は、 ポートを切り換える弁体の吸出し現象の発生を防止し得る方 向制御弁を提供することにある。
本発明の他の目的は、 弁体の耐久性を向上して製品寿命の長い方向制御弁を提 供することにある。
本発明の他の目的は、 パルブケーシングにこれを他の部材に取り付けるための 取付孔を設けてもパルブケーシングを大型化を防止して小型の方向制御弁を提供 することにある。 発明の開示
本発明の方向制御弁は、 出力ポートを供給ポートに連通する状態と排出ポート に連通する状態とに切り換える方向制御弁であって、 弁収容孔とこの弁収容孔に 連通させて前記供給ポートと排出ポートとが軸方向にずれて形成されるとともに 前記供給ポートと前記排出ポートとの間に前記出力ポートが形成されたパルプケ 一シングと、 前記パルプケーシングの前記弁収容孔に軸方向に往復動自在に 着 される弁軸と、 前記弁軸に装着され、 前記弁収容孔の内周シール面から離れて前 記供給ポートと前記出力ポートとを連通させる連通状態、 および前記内周シール 面に接触して連通を遮断する遮断状態とに切り換える環状の弾性弁体と、 環状の 補強リングと当該補強リングに一体に設けられる弾性シールとを備えて前記パル ブケーシングに装着され、 前記弁軸のシール面から離れて前記出力ポートと前記 排出ポートとを連通させる連通状態、, およびシール面に接触して連通を遮断する 遮断状態とに切り換える複合弁体とを有することを特徴とする。
'本発明の方向制御弁は、 前記弾性弁体は前記連通状態では前記供給ポートに対 応する位置に移動することを特徴とする。
本発明の方向制御弁は、 前記複合弁体は前記出力ポートと前記排気ポートとの 間に設けられ、 前記遮断状態では前記弁軸に形成された外周角部に接触すること を特徴とする。
本発明の方向制御弁は、 前記複合弁体は前記出力ポートと前記排気ポートとの 間に設けられ、 前記遮断状態では前記弁軸の外周面に接触することを特徴とする 本発明の方向制御弁は、 前記パルブケーシングに前記供給ポートの両側に第 1 と第 2の 2つの出力ポートが形成されるとともに、 前記それぞれの出力ポートに 隣り合って第 1と第 2の排出ポートが形成された 5ポート弁であることを特徴と する。
本発明の方向制御弁は、 前記パルプケーシングを他の部材に取り付けるための 取付孔を、 前記供給ポートと前記排出ポートとの間に位置させて前記パルプケー シングに形成することを特徴とする。
本発明によれば、 供給ポートと出力ポートとを連通状態および遮断状態とに切 り換える弾性弁体を弁軸に装着する一方、 補強リングと弾性シールとを備えて出 力ポートと排出ポートとを連通状態および遮断状態とに切り換える複合弁体をパ ルプケ一シングに装着したので、 出力ポートから排出ポートに向けて外方に流れ る流体に起因した吸い出し現象が複合弁体には発生することなく、 複合弁体の変 形や破損の発生を防止して方向制御弁の耐久性を向上させることができる。 本発明によれば、 弾性弁体が供給ポー卜と出力ポートとを連通させる状態とな ると、 弾性弁体は供給ポートに対応する位置となるが、 供給ポートに外部から流 入する流体によって弾性弁体には弁軸に押し付ける方向の圧力が加わるので、 弾 性弁体には吸い出し現象が発生することがない。
本発明によれば、 複合弁体が排出ポートを遮断した状態では弁軸に形成された 外周角部に接触するように複合弁体をポぺット弁型とすることもでき、 遮断した 状態では弁軸の外周面に接触するスプール弁型とすることもできる。 また、 本発 明の方向制御弁は、 パルブケーシングに供給ポートと排出ポートと出力ポートが 形成される弁であれば、 3ポート弁ゃ 5ポート弁などに適用することができる。 本発明によれば、 パルプケーシングを他の部材に取り付けるための取付孔を、 供給ポートと排出ポートとの間に位置させて形成することにより、 パルプケーシ ングの幅寸法を大きくすることなく、 小型の方向制御弁とすることができる。 図面の簡単な説明
図 1は本発明の一実施の形態である方向制御弁を示す斜視図である。
図 2はソレノィドに通電していないときの図 1の一部切り欠き平面図である。 図 3は図 2における A— A線に沿う断面図である。
図 4はソレノィドに通電したときの方向制御弁の一部を拡大して示す断面図で あ 。
図 5は図 4の一部を拡大して示す断面図である。
図 6は本発明の他の実施の形態である方向制御弁における図 5と同様の部分を 示す断面図である。
' 図 7 (A;) 〜 (E) はそれぞれ複合弁体の変形例を示す断面図である。
図 8は比較例の方向制御弁の一部を示す断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。 この方向切換弁 は全体的にほぼ直方体形状となつた主弁プロック 1 0を有し、 この主弁ブロック
1 0内に長手方向に形成された弁収容孔 1 1には、 図 3および図 4に示すように 、 弁軸 1 2が軸方向に往復動自在に装着されている。 主弁ブロック 1 0の一端に は力パーブ口ック 1 3が固定され、 他端にはパイ口ットプロック 1 4が固定され ており、 これらの主弁プロック 1 0と力パーブ口ック 1 3とパイ口ットプロック
1 4とによりパルブケ一シング 1 5が形成されている。 この方向制御弁は、 図 1 および図 2に示すように主弁ブロック 1 0に形成された取付孔 1 6に挿入される ねじ部材 1 7により支持プロック 1 8に取り付けられぉり、 支持プロック 1 8に より方向制御弁は所定の使用個所に取り付けられるようになっている。
図 3および図 4に示すように、 主弁ブロック 1 0の長手方向中央部には弁収容 孔 1 1に連通する供給ポートつまり給気ポート 2 0が形成され、 この給気ポート 2 0の両側には軸方向にずらして 2つの排気ポート 2 1, 2 2が形成され、 それ ぞれの排気ポート 2 1, 2 2と給気ポート 2 0との間には出力ポート 2 3, 2 4 が形成されている。 それぞれのポート 2 0〜2 4は支持ブロック 1 8に対向する 主弁プロック 1 0の底面に開口しており、 給気ポート 2 0は支持ブロック 1 8に 形成された給気孔 2 0 aに連通し、 排気ポート 2 1 , 2 2は支持プロック 1 8に 形成された排気孔 2 1 a, 2 2 aに連通している。 これらの孔 2◦ a〜2 2 aは それぞれ支持プロック 1 8の一方の端面に開口しており、 他方の端面に開口して 形成された出力孔 2 3 a , 2 4 aがそれぞれ出力ポート 2 3, 2 4に連通してい る。
この方向制御弁を、 図 2に示すように、 空気圧源からの圧縮空気を空気圧作動 機器としてのエアシリンダ 2 5に供給するための空気圧回路に使用する際には、 給気孔 2 0 aには空気圧源 1 9が配管により接続され、 エアシリンダ 2 5内の一 方空気圧室 2 5 aには配管により一方の出力孔 2 3 aが接続され、 他方の空気圧 室 2 5 bには配管により他方の出力孔 2 4 aが接続される。
力パーブ口ック 1 3内に形成された加圧室 2 6には小径のビストン 2 7が組み 込まれ、 パイロットプロック 1 4に加圧室 2 6よりも大径に形成された加圧室 2
8にはビストン 2 7よりも大径のビストン 2 9が組み込まれている。 それぞれの ピス トン 2 7, 2 9は弁軸 1 2の両端に配置されており、 弁軸 1 2とそれぞれの ピストン 2 7, 2 9を一体としても良く、 ピストン 2 7 , 2 9を弁軸 1 2と別体 としても良い。 加圧室 2 6は給気ポート 2 0に連通させてパルブケーシング 1 5 に形成された給気通路 3 1により給気ポート 2 0に連通しており、 給気孔 2 0 a を介して給気ポート 2 0に圧縮空気が供給されると、 弁軸 1 2には図 2〜図 4に おいて右方向の推力が加えられる。 一方、 加圧室 2 8と給気通路 3 1とを連通さ せて圧縮空気を加圧室 2 8に供給すると、 弁軸 1 2には左方向の推力が加えられ る。 両方の加圧室 2 6, 2 8に圧縮空気が供給されると、 大径のピストン 2 9に より弁軸 1 2に加えられる推力の方が小径のビストン 2 7により逆方向に弁軸 1 2に加えられる推力よりも大きいので、 弁軸 1 2は図 4に示すように図において 左側に駆動されて弁軸 1 2は第 1の位置となる。 これに対して加圧室 2 8に対す る圧縮空気の供給を停止すると、 小径のピストン 2 7により弁軸 1 2に加えられ る推力により図 2および図 3に示すように弁軸 1 2は右側に駆動されて弁軸 1 2 は第 2の位置となる。
パルブケーシング 1 5には、 加圧室 2 8と給気通路 3 1とを連通させて圧縮空 気を加圧室 2 8に供給する状態と加圧室 2 8内の空気を外部に排出する状態とに 切り換えるためにパイロット弁 3 2が取り付けられている。 このパイロット弁 3 2のソレノイド部 3 3は、 図 3に示すように、 コイル 3 4が卷き付けられたボビ ン 3 5を有し、 ポビン 3 5内には固定鉄心 3 6が取り付けられるとともにプラン ジャつまり可動鉄心 3 7が軸方向に往復動自在に装着されている。 コイル 3 4に 電力を供給するために、 ソレノイド部 3 3に取り付けられたコントロールケース 3 0には図示しない通電ケーブル端子が接続されるコネクタ部 3 0 aが設けられ ている。
図 3に示すように、 可動鉄心 3 7の先端にはゴム製の開閉弁 3 8が取り付けら れ、 この開閉弁 3 8はパイロットブロック 1 4に形成された第 1の弁座 3 9に接 触するようになっている。 この弁座 3 9には給気通路 3 1の開口部が形成されて おり、 この開口部は開閉弁 3 8により開閉される。 可動鉄心 3 7には開閉弁 3 8 を弁座 3 9に向けてばね力を加える圧縮コイルばね 4 1が取り付けられている。 したがって、 コイル 3 4に通電すると、 可動鉄心 3 7が固定鉄心 3 6に向けてば ね力に杭して移動し、 給気通路 3 1の開口部は開かれ、 通電を解くとばね力によ り給気通路 3 1の開口部は閉じられる。
弁座 3 9の反対側には第 2の弁座 4 2が弁座 3 9に対して逆向きに形成されて おり、 この弁座 4 2にはパイロットブロック 1 4の外部に連通した排気通路 4 3 の開口部が設けられており、 排気通路 4 3は支持プロック 1 8に形成された排気 孔 4 3 aに連通している。 この弁座 4 2を覆うようにパイロットブロック 1 4に は円筒形状の弁ホルダー 4 4が取り付けられており、 弁ホルダー 4 4内にはフラ ッパ弁 4 5が開閉自在に組み込まれ、 このフラッパ弁 4 5は排気通路 4 3の開口 部を開閉する。 フラッパ弁 4 5と可動鉄心 3 7との間には複数本の連動ピン 4 6 が配置されており、 フラッパ弁 4 5は連動ピン 4 6を介して可動鉄心 3 7により 開閉作動する。
弁ホルダー 4 4には貫通孔 4 7が形成されており、 コイル 3 4に対する通電を 解くと、 可動鉄心 3 7がばね力により弁座 3 9に向けて押し付けられるので、 開 閉弁 3 8は弁座 3 9に接触し、 フラッパ弁 4 5が弁座 4 2から離れた状態となる 。 これにより、 加圧室 2 8は排気通路 4 3を介して外部に連通状態となり、 加圧 室 2 8内の空気は外部に排出される。 これに対して、 コイル 3 4に通電すると、 開閉弁 3 8が弁座 3 9から離れるとともにフラッパ弁 4 5が弁座 4 2に接触して 弁ホルダー 4 4内に組み込まれたコイルばね 4 8によりフラッパ弁 4 5は弁座 4 2に押し付けられる。 したがって、 排気通路 4 3が閉じられて給気通路 3 1を介 して給気ポート 2 0から供給される圧縮空気は、 連動ピン 4 6とこれが貫通する 孔との間の隙間を介して加圧室 2 8に流入する。 このように加圧室 2 8内に圧縮 空気が供給されると弁軸 1 2は図 4に示す第 1の位置となり、 加圧室 2 8内の圧 縮空気が排出されると弁軸 1 2は図 3に示す第 2の位置となる。
弁軸 1 2にはこれに形成された環状溝内にそれぞれ環状の弾性弁体 5 1, 5 2 が相互に軸方向にずれて装着されている。 一方の弾性弁体 5 1は弁軸 1 2が図 3 に示す第 2の位置になると給気ポート 2 0と出力ポート 2 3との間の弁収容孔 1 1の内面により形成される内周シール面に接触してこれらのポート 2 0, 2 3の 連通を遮断する。 そして、 この弹性弁体 5 1は弁軸 1 2が図 4に示す第 1の位置 となると、 内周シール面から離れて給気ポート 2 0に対応した位置となって給気 ポート 2 0から流入した圧縮空気を出力ポート 2 3に連通させる。
他方の弾性弁体 5 2は弁軸 1 2が図 4に示す第 1の位置となると給気ポート 2 0と出力ポート 2 4との間の弁収容孔 1 1の内面により形成される内周シール面 に接触してこれらのポート 2 0, 2 4の連通を遮断する。 そして、 この弾性弁体
5 2は弁軸 1 2が図 3に示す第 2の位置となると内周シール面から離れて給気ポ ート 2 0に対応した位置となって給気ポート 2 0から流入した圧縮空気を出力ポ ート 2 4に連通させる。 これらの弾性弁体 5 1, 5 2としては断面がやや長円形 のゴム製の Oリングが使用されており、 それぞれ弁収容孔 1 1の内周面に接触し てポートの連通を遮断するスプール弁構造となっている。
図 4に示すように、 ソレノィド部 3 3のコイル 3 4に通電して弁軸 1 2が第 1 の位置となったときには、 出力ポート 2 3から図 2に示すエアシリンダ 2 5の空 気圧室 2 5 aに圧縮空気が供給され、 空気圧室 2 5 b内の圧縮空気は出力ポート 2 4に流入した後に排気ポート 2 2から大気に放出される。 コイル 3 4に対する 通電を停止すると、 弁軸 1 2が第 2の位置に移動して図 2に示すエアシリンダ 2 5の空気圧室 2 5 bに出力ポート 2 4から圧縮空気が供給され、 空気圧室 2 5 a 内の圧縮空気は出力ポート 2 3内に流入した後に排気ポート 2 1から外部に排出 される。
図 4に示すように弁軸 1 2のうち弾性弁体 5 1, 5 2の両側の部分は小径部 1 2 aとなっており、 弁軸 1 2の両端部は小径部 1 2 aよりも大径の大径部 1 2 b , 1 2 cとなっている。 それぞれの大径部 1 2 b, 1 2 cに対応させて主弁ブロ ック 1 0には大径孔 5 3が形成され、 それぞれの大径孔 5 3にはスぺーサ 5 4 a , 5 4 bが嵌合され、 スぺーサ 5 4 a , 5 4 bの外周面と主弁ブロック 1 0の間 はシール材 5 5によりシールされている。 弁軸 1 2の大径部 1 2 b, 1 2 cには 弁軸 1 2の全軸方向移動においてスぺーサ 5 4 a , 5 4 bの内周面に摺動接触し て弁軸 1 2とスぺーサ 5 4 a, 5 4 bとの間をシールするためのシール材 5 6が 装着されている。 それぞれのスぺーサ 5 4 a, 5 4 bには排気ポート 2 1, 2 2 に対応させて環状溝 5 7 a , 5 7 bが形成されており、 それぞれの環状溝 5 7 a , 5 7 bとスぺーサ 5 4 a , 5 4 bの内周面とを連通させるために複数の径方向 の連通孔 5 8 a, 5 8 bがそれぞれのスぺーサ 5 4 a, 5 4 bに形成されている 主弁プロック 1 0には出力ポート 2 3と排気ポート 2 1との間に位置させて複 合弁体 6 1が装着されており、 この複合弁体 6 1は主弁ブロック 1 0に形成され た段部とスぺーサ 5 4 aとの間で挟み付けられている。 この複合弁体 6 1は、 弁 軸 1 2が図 4に示す第 1の位置になると、 弁軸 1 2のシール面に接触して出力ポ ート 2 3と排気ポート 2 1との連通を遮断する。 また、 この複合弁体 6 1は、 弁 軸 1 2が図 3に示す第 2の位置になると、 弁軸 1 2のシール面から離れて出力ポ ート 2 3と排気ポート 2 1とを連通させる。 主弁プロック 1 0には出力ポート 2 4と排気ポート 2 2との間に位置させて複 合弁体 6 2が装着されており、 この複合弁体 6 2は主弁ブロック 1 0に形成され た段部とスぺーサ 5 4 bとの間で挟み付けられている。 この複合弁体 6 2は、 弁 軸 1 2が図 4に示す第 1の位置になると、 弁軸 1 2のシール面から離れて出力ポ ート 2 4と排気ポート 2 2とを連通させる連通状態となる。 また、 この複合弁体 6 2は、 弁軸 1 2が図 3に示す第 2の位置になると、 弁軸 1 2のシール面に接触 して出力ポート 2 4と排気ポート 2 2との連通を遮断する遮断状態となる。 図 5は複合弁体 6 1を拡大して示す断面図であり、 複合弁体 6 1は金属製の補 強リング 6 3と、 これの一方の端面を介して外周面と内周面とに連なるように補 強リング 6 3に一体に設けられたゴム製の弾性シール 6 4とを備えており、 弾性 シール 6 4は補強リング 6 3の端面に一体となる径方向部 6 4 aと、 補強リング 6 3の外周の一部を覆う外周部 6 4 bと、 補強リング 6 3の内周部を覆う内周シ ール部 6 4 cとを有しており、 補強リング 6 3に加硫接着される。 他方の複合弁 体 6 2も同様に補強リング 6 3と弾性シール 6 4とを備えており、 複合弁体 6 1 と同一の構造となっている。 なお、 補強リング 6 3の材質としては、 圧縮空気の 圧力が作用しても弾性変形しない程度の剛性を有する材料であれば、 金属に限ら れず、 硬質の樹脂でも良い。
図 5に示すように、 弾性シール 6 4の内周シール部 6 4 cは中央の軸方向面 6 5とこれの両側のテーパ面 6 6とを有しており、 一方のテーパ面 6 6が弁軸 1 2 に設けられた大径部の円弧状の外周角部 6 7をシール面として弁軸 1 2に接触す るようになっている。 したがって、 複合弁体 6 1が弁軸 1 2に接触すると軸方向 に弹性変形することになるので、 図 5に示す複合弁体 6 1, 6 2はポペット弁型 となっている。
図 6は本発明の他の実施の形態である方向制御弁の図 5と同様の部分を示す断 面図であり、 図 6に示す方向制御弁における複合弁体 6 1, 6 2は図 5に示した 場合と同様の構造である。 この場合には、 複合弁体 6 1, 6 2はその内周シール 部 6 4 cの軸方向面 6 5が弁軸 1 2の外周面に接触するようになっている。 した がって、 複合弁体 6 1 , 6 2は弁軸 1 2の軸方向移動に伴って弁軸 1 2の大径部 の外周面をシー 面としてこれに接触するときには径方向に弾性変形して弁軸 1 2に接触することになり、 スプール弁型となっている。 このように、 複合弁体 6 1 , 6 2と弁軸 1 2のシール面との接触は、 ポぺット弁型でもスプール弁型でも いずれでも良い。
図 7 (A) 〜 (E ) はそれぞれ複合弁体 6 1, 6 2の変形例を示す断面図であ り、 図 7 (A) に示す複合弁体 6 1, 6 2の弾性シール 6 4は補強リング 6 3の 外周の一部を覆う外周部 6 4 bと内周部を覆う内周シール部 6 4 cを有し、 図 5 に示した径方向部 6 4 aが設けられていない。 したがって、 この複合弁体 6 1, 6 2はパルプケーシング 1 5の段部とスぺーサ 5 4 a , 5 4 bとの間に補強リン グ 6 3が挟み付けられることになる。 内周シール部 6 4 cの形状は図 5に示した 場合と同様となっている。
図 7 (B ) に示す複合弁体 6 1, 6 2は、 弾性シール 6 4の内周シール部 6 4 aの断面形状が図 5に示す場合と相違して、 テーパ面 6 6がー方側にのみ設けら れており、 軸方向面 6 5の幅寸法が図 5に示したものよりも大きくなつている。 図 7 ( C) に示す複合弁体 6 1, 6 2は、 弹性シール 6 4の内周シール部 6 4 aの内周面が全体的に軸方向面 6 5となっている。
図 7 (D) に示す複合弁体 6 1, 6 2は、 補強リング 6 3の外面全体が弾性シ ール 6 4により覆われており、 外周部 6 4 bと内周シール部 6 4 cの両方が円弧 状面となっている。 内周シール部 6 4 cに形成された円弧状面 6 8が弁軸 1 2の 外周面にシール接触するようになっている。
図 7 (E) に示す複合弁体 6 1, 6 2は、 図 7 (D) の変形例であり、 弾性シ ール 6 4の外周部は図 7 (D) に示すものと相違して外周面が平坦となっている 。 図 7 (A) 〜図 7 ( C) に示すように、 軸方向面 6 5、 テーパ面 6 6を有する タイプにおいても補強リング 6 3全体を弾性シール 6 4により覆うようにしても 良い。
図 8は比較例として従来の方向制御弁を示す断面図であり、 図 8においては前 述した部材と共通する部材には同一の符号が付されている。 図 8に方向制御弁に おいては、 それぞ のポート相互を連通状態と連通遮断状態とに切り換えるため に、 弁軸 1 2に Oリングからなる弾性弁体 7 1 a〜7 1 dが装着されている。 こ のように弁軸 1 2に弾性弁体 7 1 a〜 7 1 dが装着された方向制御弁を、 たとえ ば 2 MP a程度の高い圧力の空気圧回路に使用した場合には、 出力ポート 23, 24と排気ポート 21, 22とを連通状態と遮断状態との切り換える弾性弁体 7 1 c, 71 dは、 両方のポートを連通させたときに、 溝の底面から離れて径方向 外方に広がるように弾性変形することがある。 これにより、 弹性弁体 71 c, 7 1 dの一部が図 8において符号 72で示すように、 弁軸 12の移動によって弁軸 12と弁収容孔との間に挟み込まれることがある。 この現象は給気ポート 20と 出力ポート 23, 24とを連通状態と遮断状態とに切り換える弾性弁体 7 1 a, 71 bには見られなかった。
出力ポート 23, 24と排気ポート 21, 22とを連通状態としたときに弾性 弁体 71 c, 71 dに径が広がるような吸出し現象が発生するのは、 連通状態の もとでは弾性弁体 71 c, 71 dはそれぞれ排気ポート 21, 22の位置となる ので、 排気ポート 21, 22に向けて外部に向かう流れによって弾性弁体 7 1 c , 71 dが吸引されるからであり、 特に、 連通状態のもとでは弾性弁体 71 c, 71 dの外周面と弁収容孔 1 1との間の隙間 73が狭くなり、 その部分の流速が 最も早くなる。 これに対して、 給気ポート 20と出力ポート 23, 24とを連通 状態と遮断状態に切り換える弾性弁体 71 a, 71 bには外側から内部に向かう 流れが当たるとともに、 弾性弁体 7 1 a, 71 bの外周面と弁収容孔 1 1との間 の隙間よりも弁軸 12と弁収容孔 1 1との間の隙間 74の方が狭いので弾性弁体 71 a, 71 bの外周面における流速は最大とはならない。
このような理由から空気の圧力を高めると、 図 8に示す弾性弁体 71 c, 71 dには吸出し現象が発生することがあるが、 本発明の方向制御弁にあっては、 出 力ポート 23, 24と排気ポート 21, 22とを連通状態と遮断状態との切り換 える複合弁体 6 1, 62が補強リング 63と弾性シール 64とにより形成されて おり、 しかも、 パルプケーシング 15に装着されているので、 2MP a以上の高 い圧力の空気圧回路に使用しても従来のような吸出し現象の発生はなかった。 本 発明においては、 パルプケーシング 1 5に複合弁体 61, 62を装着すると、 こ れらの複合弁体 61, 62には排気ポート 21, 22が開かれたときには軸方向 および径方向外方に向かう空気の流れに起因した力が加わるので、 複合弁体 61
, 62には吸い出されるような力は加わることがない。 また、 複合弁体 61, 6 2の内部には補強リング 6 3が組み込まれているので、 軸方向および径方向外方 に向かう力が加わっても弾性シール 6 4は変形することが防止される。 これによ り、 方向制御弁の耐久性が向上し、 製品寿命を長くすることができる。
弾性弁体 5 1, 5 2にはポートを連通させたときに径方向外方から内方に向け て外力が加わるので、 弾性弁体 5 1, 5 2を弁軸 1 2に装着しても流れる空気に より弾性弁体 5 1, 5 2の吸出し現象の発生が防止されることになる。 しかも、 弾性弁体 5 1, 5 2を弁軸 1 2に装着することによって、 給気ポート 2 0とこれ に隣り合う出力ポート 2 3, 2 4に対応する弁収容孔 1 1の内径を図 8に示す場 合と同様に設定することができ、 弁収容孔 1 1の軸方向中央部の内径を両端部の 内径よりも小さくすることができる。 したがって、 図 1および図 2に示すように 、 取付孔 1 6を給気ポート 2 0と出力ポート 2 3, 2 4との間に形成することに よって、 パルブケーシング 1 5の幅寸法 Dを大きくすることなく、 図 8に示す場 合と同様に設定することができる。 これにより、 方向制御弁の小型化を維持する ことができる。
本発明は前記実施の形態に限定されることなく、 その要旨を逸脱しない範囲で 種々変更可能である。 たとえば、 給気ポートと出力ポートと排気ポートとを有す る方向制御弁であれば、 3ポート弁などについても本発明を適用することができ る。 弁軸 1 2の駆動方式はパイロット弁 3 2により制御されるパイ口ット圧を用 いた間接作動型に限られず、 ソレノィドにより直接弁軸 1 2を駆動するようにし た直接作動式やカムやリンク機構により弁軸を駆動するようにした機械式や手動 により弁軸を駆動するようにした手動操作式にも本発明を適用することができる 。 さらに、 図示する方向制御弁はシングルソレノィド型であるが、 ダブルソレノ ィド型にも本発明を適用することができる。
図 1に示す場合には、 方向制御弁の出力ポート 2 3, 2 4に連通する出力孔 2 3 a , 2 4 aを支持ブロック 1 8に形成し、 それぞれの出力孔 2 3 a, 2 4 aに 継手を取り付けてエアシリンダ 2 5などの空気圧作動機器に空気を供給するよう にしているが、 主弁プロック 1 0の上面にそれぞれの出力ポート 2 3,' 2 4に連 通させて継手を取り付けるようにしても良い。 また、 支持ブロック 1 8には 1つ の方向制御弁が搭載されているが、 それぞれ共通の給気孔と排気孔が形成された マ二ホールドブロックに複数の方向制御弁を搭載するようにし、 複数の方向制御 弁に対して共通の給気孔と排気孔を介して給排気するようにしても良い。
本発明の方向制御弁は空気の流れ方向を切り換えるために使用されるのみなら ず、 不活性ガスや液体の流れ方向を切り換えるためにも適用することができる。 産業上の利用可能性
本発明の方向制御弁は、 流体圧源からの流体を流体圧作動機器に供給するため の流体圧回路に、 空気などの流体の流れ方向を切り換えるために使用することが できる。

Claims

請求の範囲
1 . 出力ポートを供給ポートに連通する状態と排出ポートに連通する状態とに 切り換える方向制御弁であって、
弁収容孔とこの弁収容孔に連通させて前記供給ポートと排出ポートとが軸方向 にずれて形成されるとともに前記供給ポートと前記排出ポートとの間に前記出力 ポートが形成されたバルブケーシングと、
前記パルプケーシングの前記弁収容孔に軸方向に往復動自在に装着される弁軸 と、
前記弁軸に装着され、 前記弁収容孔の内周シール面から離れて前記供給ポート と前記出力ポー卜とを連通させる連通状態、 および前記内周シール面に接触して 連通を遮断する遮断状態とに切り換える環状の弾性弁体と、■
環状の補強リングと当該補強リングに一体に設けられる弾性シールとを備えて 前記パルプケーシングに装着され、 前記弁軸のシール面から離れて前記出力ポー トと前記排出ポートとを連通させる連通状態、 およびシール面に接触して連通を 遮断する遮断状態とに切り換える複合弁体とを有することを特徴とする方向制御 弁。
2 . 請求項 1記載の方向制御弁において、 前記弾性弁体は前記連通状態では前 記供給ポートに対応する位置に移動することを特徴とする方向制御弁。
3 . 請求項 1記載の方向制御弁において、 前記複合弁体は前記出力ポートと前 記排気ポートとの間に設けられ、 前記遮断状態では前記弁軸に形成された外周角 部に接触することを特徴とする方向制御弁。
4 . 請求項 1記載の方向制御弁において、 前記複合弁体は前記出力ポートと前 記排気ポートとの間に設けられ、 前記遮断状態では前記弁軸の外周面に接触する ことを特徴とする方向制御弁。
5 . 請求項 1記載の方向制御弁において、 前記バルブケーシングに前記供給ポ 一トの両側に第 1と第 2の 2つの出力ポートが形成されるとともに、 前記それぞ れの出力ポートに隣り合って第 1と第 2の排出ポートが形成された 5ポート弁で あることを特徴とする方向制御弁。
6 . 請求項 1記載の方向制御弁において、 前記パルプケーシングを他の部材に 取り付けるための取付孔を、 前記供給ポートと前記排出ポートとの間に位置させ て前記バルブケーシングに形成することを特徴とする方向制御弁。
PCT/JP2003/010864 2003-08-27 2003-08-27 方向制御弁 WO2005024281A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60330279T DE60330279D1 (de) 2003-08-27 2003-08-27 Wegesteuerventil
EP20030818525 EP1659319B1 (en) 2003-08-27 2003-08-27 Directional control valve
PCT/JP2003/010864 WO2005024281A1 (ja) 2003-08-27 2003-08-27 方向制御弁
JP2005508733A JP4275135B2 (ja) 2003-08-27 2003-08-27 方向制御弁
TW93124934A TWI292019B (en) 2003-08-27 2004-08-19 Direction-controlling valve
US11/144,140 US7380571B2 (en) 2003-08-27 2005-06-03 Directional control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/010864 WO2005024281A1 (ja) 2003-08-27 2003-08-27 方向制御弁

Publications (1)

Publication Number Publication Date
WO2005024281A1 true WO2005024281A1 (ja) 2005-03-17

Family

ID=34260070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010864 WO2005024281A1 (ja) 2003-08-27 2003-08-27 方向制御弁

Country Status (6)

Country Link
US (1) US7380571B2 (ja)
EP (1) EP1659319B1 (ja)
JP (1) JP4275135B2 (ja)
DE (1) DE60330279D1 (ja)
TW (1) TWI292019B (ja)
WO (1) WO2005024281A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110351A (ja) * 2020-01-08 2021-08-02 川崎重工業株式会社 水素ガス用のバルブブロック、及びその製造方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070224064A1 (en) * 2005-11-15 2007-09-27 Fipco Pump Apparatus And Methods For Using Same
US7959173B1 (en) * 2007-09-26 2011-06-14 Alkon Corporation Air distribution apparatus
DE102008032716B4 (de) * 2008-07-11 2011-03-31 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Ventil mit hoher mittlerer Betriebsdauer
DE102009006445B3 (de) * 2009-01-28 2010-07-15 Hydac Fluidtechnik Gmbh Proportional-Druckregelventil
DE102010045633A1 (de) * 2010-05-04 2012-03-22 Hermann-Josef Kellerhaus Zugbuseinrichtung für Güterwagen
CN102022612B (zh) * 2010-11-03 2013-04-03 张卫华 一种流体流向控制阀及阀组系统
WO2013007216A1 (en) * 2011-07-14 2013-01-17 Neo Mechanics Limited Spool type hydraulic control valve which spool is sealed with all metal seal ring
JP5970165B2 (ja) * 2011-08-05 2016-08-17 Ckd株式会社 パイロット形電磁弁
US20130319557A1 (en) * 2012-06-05 2013-12-05 Hunting Energy Services, Inc. Metal Reinforced Seal Plate for Pilot Actuated Spool Valve
DE102012110742A1 (de) 2012-11-09 2014-05-15 Pierburg Gmbh Strömungsgehäuse für ein Ölventil
US9470324B2 (en) * 2013-06-04 2016-10-18 Spx Flow, Inc. Directional valve and method of operation
KR102270597B1 (ko) * 2014-04-02 2021-06-29 배트 홀딩 아게 진공밸브
EP3158240B1 (en) 2014-06-20 2023-01-25 Asco, L.P. Zoned manifold assembly for solenoid valve control system
US9625053B2 (en) * 2014-10-14 2017-04-18 Woodward, Inc. Hydraulic actuator lockout
US10228072B1 (en) * 2014-11-03 2019-03-12 Humphrey Products Company Valve stem and assembly
US9909671B2 (en) * 2015-07-01 2018-03-06 Dunan Microstaq, Inc. Low leak pilot operated spool valve
US9909667B2 (en) * 2015-07-31 2018-03-06 GM Global Technology Operations LLC Seal for pressurized fluid and open interface gap
CN105840576A (zh) * 2016-05-18 2016-08-10 山东常林机械集团股份有限公司 一种电控换向阀
CN108087584B (zh) * 2018-02-02 2024-01-23 湖南沃飞科技有限公司 一种流体换向结构以及气液冲击机构
DE102018208893A1 (de) * 2018-06-06 2019-12-12 Robert Bosch Gmbh Direktgesteuertes hydraulisches Wegeventil
DE102018114849A1 (de) * 2018-06-20 2019-12-24 Johnson Electric Germany GmbH & Co. KG Dichtsystem für umschaltbare Wasserventile
DE102019117272A1 (de) * 2019-06-26 2020-12-31 Johnson Electric Germany GmbH & Co. KG Geräuscharmes Dichtsystem für umschaltbare Wasserventile
TWI777613B (zh) * 2021-06-11 2022-09-11 台灣氣立股份有限公司 高響應迷你電磁閥
DE102022117065A1 (de) * 2022-07-08 2024-01-11 Aerostack GmbH Statische Dichtung mit integrierter Stützfunktion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906492A (en) * 1951-06-01 1959-09-29 Baker Oil Tools Inc Valves
JPS5092526A (ja) 1973-12-24 1975-07-24
JPS5612174U (ja) * 1980-07-10 1981-02-02
JPH0352474U (ja) * 1989-09-28 1991-05-21
GB2247737A (en) * 1990-09-06 1992-03-11 Festo Kg A pneumatic valve
JPH06129555A (ja) * 1992-10-20 1994-05-10 Koganei Ltd スプール弁
US5338005A (en) 1992-08-26 1994-08-16 Festo Kg Sealing ring for multi-way valves

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199540A (en) * 1962-09-28 1965-08-10 Westinghouse Air Brake Co Valve device
US3202170A (en) * 1962-11-28 1965-08-24 Edward L Holbrook Valve assembly of interchangeable parts
CH393015A (de) * 1964-04-23 1965-05-31 Nostorag Ag Mehrweg-Steuerschieber
US3354911A (en) * 1965-10-14 1967-11-28 Ross Operating Valve Co Seal retainer and spacer
US3451430A (en) * 1966-11-16 1969-06-24 Lloyd D Cowdin Fluid control valve
US3565115A (en) * 1968-09-23 1971-02-23 Beckett Harcum Co Spool valve
US3603602A (en) * 1969-11-28 1971-09-07 Skinner Precision Ind Inc Reinforced seal
GB1324369A (en) * 1969-12-18 1973-07-25 Dowty Seals Ltd Fluid flow control valves and sealing devices therefor
US3968971A (en) * 1973-05-22 1976-07-13 Automatisation - Sogemo Fluid-tight packing
FR2234811A5 (en) * 1973-06-20 1975-01-17 Outillage Air Comprime Sealing ring with T-section metal core - has rubber coating with corner lobes and exposed metal faces
US3980336A (en) * 1974-06-26 1976-09-14 Ross Operating Valve Company Safety valve for tailgates or the like
DE2654452C2 (de) * 1976-12-01 1983-01-05 Kaco Gmbh + Co, 7100 Heilbronn Dichtung
JPS5612174A (en) 1979-07-11 1981-02-06 Matsushita Graphic Commun Syst Inc Facsimile transmitter
DE3002715C2 (de) * 1980-01-25 1983-09-08 Herion-Werke Kg, 7012 Fellbach Dichtungsanordnung
US4325402A (en) * 1980-04-01 1982-04-20 Baker Cac, Inc. Bimodal, non-venting pneumatic relay
DE3043871A1 (de) * 1980-11-21 1982-07-08 Wabco Steuerungstechnik GmbH & Co, 3000 Hannover Mehrwegeventil
AT390313B (de) * 1985-12-13 1990-04-25 Enfo Grundlagen Forschungs Ag Kolbenschieberventil
DE3842633A1 (de) * 1988-12-17 1990-06-28 Wabco Westinghouse Steuerung Vorgesteuertes mehrwegeventil
JPH0352474A (ja) 1989-07-20 1991-03-06 Sanyo Electric Co Ltd テレビジョン信号変換装置
DE4027520A1 (de) * 1990-08-31 1992-03-12 Festo Kg Ringfoermige dichtungsanordnung und damit ausgestattetes ventil
DE4228439A1 (de) * 1992-08-26 1994-03-03 Festo Kg Dichtungsring für Mehrwegeventile
JP2826460B2 (ja) 1994-01-06 1998-11-18 株式会社コガネイ 電磁弁
DE19719767A1 (de) * 1997-05-10 1998-11-19 Herion Werke Gmbh & Co Kg Mehrwegeventil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2906492A (en) * 1951-06-01 1959-09-29 Baker Oil Tools Inc Valves
JPS5092526A (ja) 1973-12-24 1975-07-24
JPS5612174U (ja) * 1980-07-10 1981-02-02
JPH0352474U (ja) * 1989-09-28 1991-05-21
GB2247737A (en) * 1990-09-06 1992-03-11 Festo Kg A pneumatic valve
US5338005A (en) 1992-08-26 1994-08-16 Festo Kg Sealing ring for multi-way valves
JPH06129555A (ja) * 1992-10-20 1994-05-10 Koganei Ltd スプール弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1659319A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110351A (ja) * 2020-01-08 2021-08-02 川崎重工業株式会社 水素ガス用のバルブブロック、及びその製造方法
JP7507562B2 (ja) 2020-01-08 2024-06-28 川崎重工業株式会社 水素ガス用のバルブブロック、及びその製造方法

Also Published As

Publication number Publication date
TWI292019B (en) 2008-01-01
JP4275135B2 (ja) 2009-06-10
EP1659319A4 (en) 2007-10-17
EP1659319A1 (en) 2006-05-24
EP1659319B1 (en) 2009-11-25
TW200510662A (en) 2005-03-16
US20050224119A1 (en) 2005-10-13
DE60330279D1 (de) 2010-01-07
US7380571B2 (en) 2008-06-03
JPWO2005024281A1 (ja) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2005024281A1 (ja) 方向制御弁
US5535783A (en) Balanced type direct-acting electromagnetic valve
JP2008039083A (ja) 閉鎖力増強機構付きダイヤフラム型電磁弁
WO2011021416A1 (ja) ダイヤフラム弁
JPH10252929A (ja) 封止形切換弁組立体
EP0838596A2 (en) Pilot 3-port transfer valve
US10024452B2 (en) Solenoid valve
JP6212463B2 (ja) 小型電磁弁
US9062778B2 (en) Valve having a diaphragm capable of displacement within a retaining member
US10024448B2 (en) Flat spring for solenoid valve and solenoid valve using the same
JP4392615B2 (ja) パイロット式2ポート弁
JP3925096B2 (ja) 流量制御弁
CN112334694A (zh) 先导式电磁阀
JP4547461B1 (ja) 電磁弁
US10024451B2 (en) Solenoid valve
US10119625B2 (en) Solenoid valve
KR20190007441A (ko) 전자 밸브
JP2000240836A (ja) 直動型切換弁およびその組立方法
CN218000485U (zh) 先导式电磁阀
JP3827833B2 (ja) 電磁弁
WO2003104695A1 (ja) 電磁弁
JP2008032087A (ja) 逆圧遮断機能付きダイヤフラム型電磁弁
TWI853555B (zh) 電磁閥歧管
JP2001280519A (ja) 3ポート電磁弁
JP5794947B2 (ja) 方向制御弁

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2005508733

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003818525

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003818525

Country of ref document: EP