WO2005019302A1 - 芳香族ポリカーボネートの製造方法 - Google Patents

芳香族ポリカーボネートの製造方法 Download PDF

Info

Publication number
WO2005019302A1
WO2005019302A1 PCT/JP2004/012041 JP2004012041W WO2005019302A1 WO 2005019302 A1 WO2005019302 A1 WO 2005019302A1 JP 2004012041 W JP2004012041 W JP 2004012041W WO 2005019302 A1 WO2005019302 A1 WO 2005019302A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
bisphenol
distillation
dpc
aromatic polycarbonate
Prior art date
Application number
PCT/JP2004/012041
Other languages
English (en)
French (fr)
Inventor
Narutoshi Hyoudou
Tatsuo Tanaka
Kouichi Hayashi
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34222676&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005019302(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2003297719A external-priority patent/JP4295042B2/ja
Priority claimed from JP2003297832A external-priority patent/JP4333276B2/ja
Priority claimed from JP2003382646A external-priority patent/JP4706172B2/ja
Priority claimed from JP2003382773A external-priority patent/JP4802446B2/ja
Priority claimed from JP2003382667A external-priority patent/JP4691881B2/ja
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP04772002.4A priority Critical patent/EP1657272B2/en
Priority to BRPI0413650A priority patent/BRPI0413650A8/pt
Publication of WO2005019302A1 publication Critical patent/WO2005019302A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing an aromatic polycarbonate. Background technology>
  • PC Aromatic carbonate
  • DPC diphenyl carbonate
  • BP A bisphenol A
  • phenol hereinafter abbreviated as “PL”) is by-produced.
  • This by-product PL contains, as impurities, DPC, BPA, oligomers in which one or several molecules of DPC and BPA have reacted. It is known that this by-product PL is returned to the BPA manufacturing process and the DPC manufacturing process.
  • Patent Literature 1 describes a method of purifying the above-mentioned by-product PL as it is or to low purity and returning it to a BPA production process.
  • the degree of purification of the obtained by-product PL may be lowered because DPC and the oligomer are hydrolyzed to PL and BPA, and there is no problem even if they are mixed in the BPA production process.
  • Patent Literature 2 Patent Literature 3 and the like describe a method of purifying the above-mentioned by-product PL to high purity and returning it to the DPC production process. It is necessary to increase the degree of purification of the obtained by-product PL in order to prevent BPA and the like from being mixed in the DPC production process and clogging.
  • BPA is usually cooled and solidified after cooling from the refined molten state, but BPA manufacturing equipment is installed close to PC manufacturing equipment. In the above case, the above melted state or the mixing of a certain composition of BPA and PL If the combined solution is supplied to the above-mentioned PC manufacturing facility for polymerization, it is not necessary to heat or purify again, and the thermal efficiency is improved.
  • the above-mentioned DPC and BPA are used as raw materials, and in the main process of producing PC through the polymerization process, the evaporated components in the above-mentioned polymerization process are liquefied and subjected to a distillation process.
  • the distillation residue after recovering the PL is drained.
  • the distillation residue contains P L, D P C, B P A, D P C, and oligomers in which D P A and B P A are bound by several molecules, and their recovery greatly affects the yield of P C.
  • Patent Document 1 discloses a method of using the fuel.
  • Patent Document 5 discloses a method of distilling the distillation residue again to recover DPC and returning it to the reaction solution after the completion of the reaction step.
  • PL and acetone are used as raw materials in a main process of producing BPA through a synthesis reaction process, a crystallization process, and a solid-liquid separation process.
  • the mother liquor separated from the solid-liquid separation step contains a large amount of PL and BPA, as well as by-products such as 2,4-isomers, trisphenols, and chroman compounds. Contains coloring impurities.
  • this mother liquor contains PL and BPA, which are the reaction raw materials of BPA, it is circulated and reused in all processes, but when circulated in its entirety without treatment, the by-products, colored impurities and Due to the accumulation of coloring impurities, their by-products Pure matter must be removed.
  • DPC is distilled and purified while refluxing
  • PL is removed while being separated from DPC by distillation.
  • Patent Document 2 Japanese Patent Application Laid-Open No. H10-60106
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-322130
  • the above-mentioned impurities are contained in the by-product phenol generated in the above-mentioned PC polymerization step.
  • These by-products include impurities that can be sent to the DPC manufacturing process, but are problematic when sent to the BPA manufacturing process, and vice versa.
  • a process for removing water is required from the distillate component mainly composed of phenol distilled out in the PC polymerization step.
  • D PC manufacturing In the case where the BPA manufacturing process and the PC manufacturing process are integrated in one place, the BPA manufacturing process also has a process for removing moisture, and therefore, the same process is duplicated.
  • the distillation residue in the above-mentioned PC production process since PL is contained in the distillation residue in the above-mentioned PC production process, if all of the residue is returned to the polymerization step, PL will be present from the beginning of the polymerization, which will affect the initial polymerization rate. Furthermore, the distillation residue in the process of producing PC is generally colored, and if recycled as it is, the PC of the product will be colored. In addition, even if the distillation residue is distilled again, the recovered distillation residue also contains a small amount of each of the above-mentioned components, so that disposal as it is affects the production efficiency and poses a problem of environmental burden. .
  • distillation residue from the above-mentioned DPC manufacturing process is directly discarded.
  • This distillation residue still contains DPC, and disposal as it is affects production efficiency and may cause environmental load problems.
  • the distillate components such as PL and DPC are pulled by the vacuum equipment, and a liquid pool is formed in the piping connected to the vacuum equipment, or the accumulated distillate components are removed. In some cases, it may not be able to maintain the vacuum state due to solidification.
  • Ma when distilling out the distilled components such as PL and DPC using a pump, there was a possibility that the distilling components might be clogged due to solidification in the reflux piping.
  • the present invention provides a method for coping with by-product phenol by limiting the water content of by-product PL generated in the PC manufacturing process to within a predetermined range, thereby enabling the production in the BPA manufacturing process and the DPC manufacturing process to be sent.
  • the goal is to maintain efficiency and, as a whole, maintain PC manufacturing efficiency.
  • the objective is to reduce the labor required for purification of the by-product phenol by sending it to the phenylcarbonate production process or bisphenol A production process in accordance with the impurities contained in the by-product phenol generated in the aromatic polycarbonate polymerization process.
  • the problem of the integration of the three production processes is that the process used to produce the existing diphenyl carbonate and bisphenol A is mainly used to reduce the phenol generated in the aromatic polycarbonate polymerization process. Another object is to save labor for purification of distillate components.
  • the object is to provide a coordination method between the manufacturing processes that can provide a method of manufacturing a PC having sufficient quality.
  • the distillation efficiency in the DPC manufacturing process and the distillation residue in the PC manufacturing process are returned to specific positions in each PC manufacturing process, thereby improving overall efficiency and reducing environmental impact.
  • the purpose is to reduce it.
  • Still another object of the distillation step is to make it difficult for liquid accumulation or solidification to occur in the piping in an apparatus for distilling PL and DPC.
  • the present invention provides a diphenyl carbonate (DPC) production process for producing diphenyl carbonate (DPC) using phenol (PL) and a carbonyl compound as raw materials, and / or a method for coping with phenol (PL). ) And bisphenol A (BPA) to produce bisphenol A (BP A) using acetone as a raw material, and diphenyl carbonate (DPC) and bisphenol A (B PA) as raw materials.
  • DPC diphenyl carbonate
  • B PA bisphenol A
  • Aromatic polycarbonate (PC) is produced through a polymerization process, and aromatic polycarbonate (PC) is recovered from by-product phenol.
  • PC comprising the manufacturing process, the process for producing an aromatic polycarbonate (PC), the amount of water contained in the by-product phenol recovered in the aromatic polycarbonate (PC) production step, 0.2 wt 0/0 or less It is characterized in that it is used as a part of the raw material in the above-mentioned diphenyl carbonate (DPC) production process and / or bisphenol A (BPA) production process.
  • DPC diphenyl carbonate
  • BPA bisphenol A
  • phenol (PL) containing cresol and Z or xylenol in an amount of 20 to 1000 weight parts per million (pm) is used, and the bisphenol A (BPA) is used.
  • phenol (PL) generated in the polymerization process of the above aromatic polycarbonate (PC) production process can be used.
  • / 0 is used as at least part of the phenol used in the diphenyl carbonate production step, and the feature to use a 50 to 5 weight 0/0 as at least a part of the material of the bisphenol A production step I do.
  • a BPA storage step for storing a mixture of bisphenol A and phenol is provided between the PC polymerization step and the storage tank used for each storage step, if necessary. It is characterized by defining as follows.
  • Vc indicates the capacity (m 3 ) of the PC storage tank
  • F c indicates the supply rate of liquefied PC by-product or by-product phenol (ni 3 / hr). .
  • Vd represents the capacity (m 3 ) of the DPC storage tank
  • F d represents the feed rate of diphenyl carbonate (m 3 Zhr).
  • Vb represents the capacity (m 3 ) of the BP A storage tank
  • F b represents the supply amount (m 3 / hr) of bisphenol A supplied to the PC polymerization step.
  • the PL distillation residue is sent to the DPC distillation step and the Z or DPC recovery distillation step, and the PL distillation residue and the Z or DPC distillation residue and the Z or DPC recovery distillation residue are subjected to the above-mentioned method.
  • the feature is that it is sent to -Furthermore, for the distillation step, a condenser for condensing the distilling substance in the distillation tower of the DPC distillation step or the PL distillation step, a vacuum equipment for reducing the pressure in the system, and the condenser and the vacuum equipment
  • the vacuum pipe has a downward inclination from the condenser side to the vacuum equipment side, and also goes from the condenser side to the vacuum installation side. The sum of the heights of the parts that rise upward is less than lm.
  • FIG. 1 is a process diagram illustrating an example of a flow of a DPC manufacturing process according to the present invention
  • FIG. 2 is a process diagram illustrating an example of a flow of a BPA manufacturing process according to the present invention
  • FIG. FIG. 4 is a process diagram showing an example of a flow of a water separation step (step (b-2)) of the BPA production step according to the present invention
  • FIG. 4 is a process diagram showing an example of a flow of a mother liquor treatment step (step (g)) of the BPA production step according to the present invention.
  • FIG. 5 is a process diagram showing an example of a flow of the PC manufacturing process according to the present invention.
  • FIG. 6 is a process diagram showing another example of a flow of the PC manufacturing process according to the present invention.
  • FIG. 7 is a process diagram showing an example of a flow when a DPC storage step, a BPA storage step, and / or a PC storage step are provided in the DPC production step, the BPA production step, and the PC production step according to the present invention.
  • FIG. 8 shows the PL distillation residue (X2), the DPC distillation residue (X1), and / or the DPC recovered distillation residue (X1) in the DPC production process, the BPA production process, and the PC production process according to the present invention.
  • 1) is a process diagram showing an example of a flow showing that a predetermined process is sent.
  • FIG. 9 is an explanatory diagram of a reflux device according to the present invention.
  • 1 is a DPC reactor
  • 2 is a dehydrochlorination tower
  • 3 is a mixing tank
  • 4 is an alkali neutralization tank
  • 5 is a washing tank
  • 6 is a first DPC distillation tower
  • 7 is a 2D PC distillation column
  • 8 is DPC recovery distillation column
  • 11 is BPA recovery PL tank
  • 12 is PL separation tower
  • 13 is phenol evaporator
  • 14 residue reactor
  • 15 is regeneration reactor
  • 2 1 is a mixing tank
  • 22 is a 1st polymerization tank
  • 23 is a 2nd polymerization tank
  • 24 is a 3rd polymerization tank
  • 25 is a 4th polymerization vessel
  • 26 is a heat exchanger
  • 27 is a heat exchanger
  • 28 is a condenser
  • 29 is the recovery PL tank for PC
  • 29a is the recovery PL tank for the first PC
  • 29b is the recovery PL tank for the second PC
  • 30 is the first PL
  • Piping, 48 is a mist catcher, 49 is a drain port, 50 is a supply port, 51 is a valve, 52 Is a valve, 53 is a drain port, 54 is a drain port, 55 is a supply port, 56 is a valve, 57 is an outlet, A is acetone, BPA is bisphenol A, C 1 is an alkaline catalyst, and C 2 is Basic catalyst, CDC is phosgene, D1 is hydrochloric acid gas, D2 is neutralized wastewater, D3 is wastewater, D4 is BP A low-boiling distillate, D5 is exhaust gas, D6 is low-boiling PC Min, D7 is waste liquid, AW is a mixture of water and acetate, DPC is diphenyl carbonate, E1 is an alkaline aqueous solution, F is a mixed gas, I is an acid, J is an additive, p is a PC evaporation component, and pi is I PC evaporating component, p 2 is 2nd PC
  • the method for producing an aromatic polycarbonate (PC) according to the present invention is a method for producing by polymerizing diphenyl carbonate (DPC) and bisphenol A (BPA).
  • DPC is produced using P L and a carbonyl compound as raw materials.
  • This compound is used without limitation as long as it can form the compound of DPC.
  • Examples of such carbonyl compounds include phosgene (hereinafter abbreviated as “CDCJ”), carbon monoxide, dialkyl carbonate, etc.
  • CDC phosgene
  • CDC is used as a carbonyl compound, and DPC washing is performed after the reaction. The process of producing DPC through the process and the DPC distillation process will be described.
  • the above DPC manufacturing process is composed of the process shown in FIG. That is, a DPC reaction step is performed in which PL and CDC are used as raw materials and this and an alkaline catalyst (C1) such as pyridine are introduced into the DPC reactor 1.
  • the reaction conditions at this time are not particularly limited, but it is preferable that the PL is in a molten state at 50 to 180 ° C and normal pressure.
  • the mixing ratio (molar ratio) of and to ⁇ 0 ⁇ is preferably from 0.40 to 0.49 mol with respect to 1 mol of PL from the viewpoint of complete consumption of CDC.
  • the DPC-containing reaction liquid a produced in the above-mentioned DPC reaction step is sent to the dehydrochlorination tower 2, where the dehydrochlorination step is performed.
  • Hydrochloric acid gas (D1) generated in the DPC reactor 1 and the dehydrochlorination tower 2 is recovered and sent to a hydrochloric acid treatment step (not shown).
  • This DPC washing step is composed of the following neutralization step and water washing step. That is, the desalted acid treatment liquid b is sent to the mixing tank 3 and then sent to the alkali neutralization tank 4, and the hydrochloric acid that cannot be completely removed by the dehydrochlorination tower with the alkaline aqueous solution (E 1). Neutralize The process is performed.
  • the neutralized wastewater (D2) discharged here is sent to a wastewater treatment process (not shown), and after recovering the effective organic components contained, it is subjected to activated sludge treatment.
  • the obtained neutralization solution e is sent to the washing tank 5, and a DPC washing step of washing with water (W) is performed.
  • the wastewater (D3) discharged in the DPC washing step can be reused as an alkali diluent when preparing the alkaline aqueous solution (E1) in the neutralization step.
  • the rinsing solution f obtained in the DPC rinsing step is sent to a distillation column, where the DPC distillation step is performed.
  • a distillation column In FIG. 1, three distillation columns are used, but the present invention is not limited to this.
  • water, P L, and a mixed gas (F) containing an alkaline catalyst are recovered in the IDPC distillation column 6. This mixed gas (F) can separate each component and reuse it for the reaction system.
  • the first distillation residue g of the first DPC distillation column 6 is redistilled in the second DPC distillation column 7, and the purified DPC as a product is recovered as a distillate.
  • the distillation conditions in the IDPC distillation column 6 are not particularly limited as long as the water, the alkaline catalyst, and the PL are distilled and DPC remains, and the distillation conditions are 1.3 to 13 kP. a is preferred.
  • the temperature is the boiling point under that pressure.
  • the distillation conditions in the second DPC distillation column 7 are not particularly limited as long as DPC is distilled and impurities having a higher boiling point than DPC remain. At 5 kPa, 150-220 ° C is preferred.
  • the DPC distillation residue X1 in the 2D PC distillation column 7 has a methyl-substituted product of DPC reacted with methylphenol, which is a phenol-containing impurity, and a bromine substitution of DPC reacted with residual bromine in CDC. Contains impurities mainly in the body, but also contains DPC itself. Therefore, the DPC distillation residue X1 may be distilled again to recover diphenyl carbonate (DPC). In this case, as shown in FIG. 1, the DPC distillation residue XI is subjected to a recovery distillation step using a DPC recovery distillation column 8. Thus, the DPC-containing recovery liquid d can be recovered by distillation.
  • DPC diphenyl carbonate
  • the DPC-recovered distillation residue (X 1 ′) enriched with the methyl-substituted or bromine-substituted DPC is recovered from the distillation vessel remaining side.
  • the distillation in the DPC recovery distillation column 8 is not particularly limited as long as DPC is distilled and impurities having a higher boiling point than DPC remain, and 1.3 to 6. 5 kPa, 150-220 ° C is preferred.
  • the DPC-containing recovery liquid d which is a distillate from the DPC recovery distillation column, is a component containing a large amount of DPC, it is sent to the mixing tank 3 to perform the washing-distillation step. It can be re-input, and the recovery efficiency of diphenyl carbonate (DPC) can be further improved.
  • the manufacturing process of BPA consists of the process shown in FIG. That is, using PL and acetone (A) as raw materials, BPA reaction step (step (a)), BPA low boiling removal step (step (b)), BPA crystallization and separation step (step (c)), BPA is produced through a heat melting step (step (d)), a PL removal step (step (e)), and a granulation step (step (f)).
  • the above step (a) is a step of subjecting PL and acetone (A) to a condensation reaction in the presence of an acidic catalyst to produce BPA.
  • the raw material PL and acetone (A) used here are reacted under conditions where PL is more than the stoichiometric amount.
  • the molar ratio of PL to acetone (A) is in the range of 3 to 30, preferably 5 to 20, as the ratio of PLZ acetone (A).
  • the reaction temperature is usually from 30 to 100 ° C, preferably from 50 to 90 ° C, and the reaction pressure is generally from normal pressure to 5 kg / cm 2 ⁇ G.
  • an inorganic acid such as hydrochloric acid, an organic acid, an ion exchange resin, or the like can be used.
  • an ion exchange resin is used as the acidic catalyst, a sulfonic acid type cation exchange resin having a gel type and a degree of crosslinking of 1 to 8%, preferably 2 to 6% is suitable, but is not particularly limited.
  • hydrochloric acid may be used as the acid catalyst.
  • the above sulfonic acid cation exchange resin can be used as it is, but if necessary, a modified sulfonic acid cation exchange resin can be used. Examples of the compound required for the modification include a compound having a mercapto group.
  • Examples of the above-mentioned compound having a mercapto group include 2-aminoethanethiol and the like.
  • ⁇ -pyridylalkanethiols such as minoalkanethiol and 2- (4-pyridyl) ethanethiol
  • thiazolidines such as 2,2-dimethylthiazolidine, which easily expresses a mercapto group by hydrolysis, etc. Any known one that can be used can be used.
  • the reaction mixture formed in the above step (a) generally contains by-products such as unreacted PL, unreacted acetone (A), catalyst, reaction water (W), and colored substances, in addition to BPA. .
  • the step (b) is a step of removing BPA low-boiling components and a catalyst such as hydrochloric acid from the reaction mixture obtained in the step (a).
  • the BPA low-boiling components mentioned here are water produced by the reaction (W), unreacted acetone (A), and those having boiling points close to these.
  • these low-boiling components are removed from the reaction mixture by, for example, distillation under reduced pressure, and solid components such as a catalyst are removed by filtration or the like.
  • the vacuum distillation preferably uses a pressure in the range of 50 to 30 Om mHg and a temperature of 70 to 130 ° C. In some cases, unreacted PL azeotropically removes a part of the PL out of the system.
  • the BPA low-boiling distillate (D4) distilled off in the above step (b) contains water and small amounts of acetone (A) and phenol (PL).
  • the BPA low-boiling distillate (D4) is sent to the PL separation tower 12 as shown in Fig. 3 and, if necessary, using an extractant to recover PL from the bottom of the water separation step (step (B-2)).
  • the recovered liquid obtained in this water separation step is recovered in a recovery PL tank 11 for BPA.
  • the aqueous acetone mixture AW recovered from the top of the PL separation tower 12 is separately treated.
  • the above step (c) is a step of cooling the mixed solution obtained in the above step (b) to precipitate and separate a mixture of BPA and PL.
  • the concentration of BPA in the mixture obtained in the above step (b) is reduced to 10 to 50 weight parts by removing or adding PL. /. It is preferable to adjust the content to preferably 20 to 40% by weight in order to increase the yield of the above-mentioned adduct and to adjust the apparent viscosity of the slurry-like mixture to improve the workability.
  • the mixture of BPA and PL described above includes a crystal of an adduct of BPA and PL and a simple crystal of BPA and PL. Mixtures.
  • the cooling in the above step (c) is generally performed to a temperature of 45 to 60 ° C., whereby an adduct crystal or each crystal of BPA and 'PL is precipitated, and the system becomes a slurry.
  • This cooling is performed by heat removal by latent heat of vaporization of water added to a heat exchanger and a crystallizer provided outside.
  • the slurry-like liquid is separated into a crystal and a mother liquor containing a reaction by-product by filtration, centrifugation or the like, and the crystal is subjected to the next step.
  • Part or all of the separated mother liquor is recycled to the step (a) via the BPA mother liquor treatment step (g) described below, and is used as part or all of the PL used as a raw material, and further reacted.
  • Improve yield is provided to a temperature of 45 to 60 ° C.
  • the step (d) is a step of heating and melting the crystal obtained in the step (c).
  • the composition of this adduct crystal is 45-70% by weight of BPA,? In general, the thickness is in the range of 55 to 30 ° / 0 .
  • the crystals are melted by heating to 100 to 160 ° C and used for the next step.
  • the step (e) is a step of removing PL from the melt obtained in the step (d) to obtain a molten BPA.
  • PL is removed by a method such as distillation under reduced pressure to dissociate the adduct, and high-purity BPA can be recovered.
  • This vacuum distillation is carried out at a pressure of 10 to: L 0 OmmHg, a temperature of 150 to 220 ° C, and at least the melting point of the mixture of bisphenol A (BPA) and phenol (PL) present in the system. It is preferably performed at a temperature higher by 10 ° C.
  • a method has also been proposed in which steam stripping is performed in addition to vacuum distillation to remove residual PL. '
  • the above step (f) is a step of cooling and solidifying the melted BPA obtained in the above step (e) and granulating to obtain a granular product.
  • BPA in the molten state is formed into droplets by a granulating device such as a spray drier, and is cooled and solidified into a product. These droplets are prepared by spraying, dripping, spraying, etc., and cooling is usually performed with nitrogen or air.
  • BPA by-products such as 2,4′-bisfunol A
  • BPA by-products 2,4′-bisfunol A
  • the BPA by-product is mainly contained in the mother liquor in the step (c) and circulates in the BPA production step. For this reason, the above-mentioned BPA by-product tends to accumulate in this circulatory system, and if accumulation occurs to a certain extent, the separation in the above step (c) becomes insufficient and accompanies the BPA side, and As a product, the quality of BPA tends to decrease.
  • step (g) by subjecting part or all of the mother liquor from the above step (c) to a BPA mother liquor treatment step (step (g)), the BPA by-products in the above mother liquor are separated and removed to reduce the amount.
  • the quality of the product BPA can be maintained.
  • the PL is recovered by distillation, or the mother liquor is heated in the presence of a basic substance to decompose the BPA by-product in the mother liquor to produce PL and a PL derivative, Next, this is reacted using an acid catalyst or an alkali catalyst to produce BPA and recover it.
  • a part or the whole of the mother liquor is introduced into the PL evaporator 13, and at the same time, a basic substance such as sodium hydroxide and a hydroxylating power is introduced. Then, the PL is heated to the boiling point or higher to evaporate the PL, and the PL is extracted from the upper part of the PL evaporator 13.
  • the above-mentioned BPA and BPA by-products are sent to the residue reactor 14, and the above-mentioned BPA and BPA by heating are heated to 180 ° C. ⁇ Decomposition reaction of BPA by-products to obtain decomposed products such as isoprobeurphenol, which is a reaction intermediate of BPA, which is distilled off from the top of the tower.
  • the residue of the kettle generated in the residue reactor 14 is sent to a wastewater treatment step (not shown) such as an incineration treatment as a wastewater containing a large amount of organic components.
  • PL and PL derivatives which are decomposition products of the BPA by-product, are distilled off from the upper part of the residue reactor 14 and sent to the regeneration reactor 15. Mix with PL extracted from the top of evaporator 13. As a result, it is possible to prevent the concentration of the PL derivative from being diluted and to cause an undesirable side reaction.
  • step (a) PLA and a PL derivative, which are decomposition products of the BPA by-product, are reacted again using an acid catalyst, thereby producing BPA and the like. Let This is mixed with the unreacted PL into the PL used as the raw material and sent to step (a). The above BPA is recovered as it is through the step (c), and PL is used as a raw material, so that the production efficiency of B.PA can be improved.
  • the manufacturing process of the PC consists of the process shown in FIG. That is, DPC and BPA produced by the above method are used as raw materials, and these and a basic catalyst (C 2) such as an aqueous alkali solution are introduced into the mixing tank 21 and mixed, and then sent to the polymerization tank. Next, a PC polymerization step is performed.
  • the polymerization tank is not particularly limited as long as polycondensation can be performed while distilling off phenol by-produced in the polymerization, and may be any of a vertical tank, a horizontal tank, and a column tank. May be.
  • the number of the above-mentioned polymerization tanks is not particularly limited, but since the polymerization reaction is polycondensation while removing phenol, a plurality of polymerization tanks are required in order to make it possible to change the polymerization conditions in accordance with the degree of polymerization. Preferably, it is used.
  • Fig. 5 three vertical polymerization tanks (first polymerization tank 22, second polymerization tank 23, third polymerization tank 24) and one horizontal polymerization tank (fourth polymerization tank 25) are connected in series.
  • the polymerization tank group thus obtained is shown.
  • the polymerization conditions include, for example, 50 to 200 Torr at 200 to 250 ° C.
  • the temperature can be 0.2 to 5 Torr at 250 to 300 ° C
  • the temperature in the fourth polymerization vessel 25, the temperature can be 0.05 to 2 Torr at 260 to 320 ° C.
  • s-PL by-product phenol
  • the PC vaporized component p mainly composed of s-PL produced in the above-mentioned PC polymerization step is liquefied by the heat exchangers 26 and 27 and the condenser 28 and sent to the PC recovery PL tank 29. Then, the remaining exhaust gas (D5) is sucked into the vacuum equipment and sent to a processing step (not shown).
  • the PC produced in the PC polymerization step is sent to an extruder 32.
  • the volatile matter contained is removed as exhaust gas (D5), and acid I and various additives J are added.
  • the catalyst is neutralized.
  • processing such as pelletization (not shown) is performed, and PC as a product is obtained.
  • the PC evaporation component p is liquefied and sent to the PC recovery PL tank 29 as described above.
  • This PC evaporation component p is mainly composed of s-PL, but it is an oligomer in which one to several molecules of the raw materials DPC, BPA, DPC and BPA are polycondensed. Contains water, etc. Therefore, this PC evaporation component! ) Is subjected to a PL distillation step to recover s-PL.
  • a method using a two-stage distillation column as shown in FIG. 5 can be given as an example.
  • the first PL distillation column 30 water and the like having a boiling point lower than that of the PL are evaporated and distilled, and a PC low-boiling distillate (D6) containing water as a main component and containing PL is collected and removed.
  • the first-stage distillation residue q of the first PL distillation column 30 is sent to the second PL distillation column 31 to cut off high-boiling components to distill and recover s-PL, and the PL having a high boiling point is removed. Collect the distillation residue (X2).
  • the water content in the s-PL distilled and recovered in the PL distillation step is preferably 0.2% by weight or less, preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and 0.01% by weight. % Is more preferable. If the content is more than 0.2% by weight, as described later, when sent to the above-mentioned DPC production process or BPA production process, the catalyst activity is reduced in the DPC production process and the BPA production process. In the production process, hydrolysis and the like are likely to occur. For this reason, the manufacturing efficiency in the DPC manufacturing process and the BPA manufacturing process is likely to decrease. On the other hand, the lower the water content is, the better it is, so the lower limit of the water content is 0% by weight.
  • the first PL distillation column 30 if water is to be distilled off from the PC evaporating component p, PL is accompanied by a considerable amount under ordinary distillation conditions, resulting in loss. This is because water and PL have an azeotropic property. In order to prevent this loss, there are methods such as extractive distillation, azeotropic removal under reduced pressure conditions, and increasing the number of theoretical plates and reflux ratio, but in any case, complete separation is performed. This is not economically favorable. For this reason, in the first PL distillation column 30, water is partially converted to PL under ordinary distillation conditions. The PC low-boiling distillate (D 6) distilled off together is sent to the DPC washing step of the above-mentioned DPC production step and the water separation step ((b-2) step) of the Z or BPA production step. Can be done.
  • D 6 low-boiling distillate
  • the pressure is reduced from atmospheric pressure to several tens of Torr, the column top temperature is higher than the boiling point of water at that pressure, and lower than the boiling point of phenol.
  • the top gas of the first P L distillation column 30 is a mixed gas of water and P L, and the top temperature is preferably adjusted to the boiling point in the composition of the target mixed gas. If the above-mentioned tower top temperature is lower than the boiling point of water, the amount of water in the first-stage residue q increases, and the amount of water in the s-PL obtained in the second PL distillation column 31 increases outside the above range.
  • the PL content in the top gas of the first PL distillation column 30 is a PL concentration of 50% by weight. / 0 or more, preferably 70% by weight or more, more preferably 99.8% by weight or less.
  • the s-PL obtained in this way is used as a part of raw materials in the DPC production process and the BPA production process.
  • s-PL is used in the above-mentioned DPC reaction step.
  • s_PL is used in the above BPA reaction process (process (a)).
  • process (a) When used in the above BPA reaction step, it can be used as part or all of the raw material PL.
  • the contained water is within the above range, the influence on the synthesis reaction step is small, and the production efficiency of BPA can be maintained.
  • the low-boiling distillate (D 6) distilled in the first PL distillation column 30 is, as described above,
  • the PL in the PC low-boiling distillate (D 6) should be recovered by returning to the DPC washing step in the DPC manufacturing step and the water separation step ((b-2) step) in the BPA manufacturing step. Can be.
  • the PL contained in the PC low-boiling distillate (D6) becomes Then, it is extracted into the organic phase (reaction liquid), recovered as a mixed gas (F) in the first DPC distillation column 6 in the next step, and finally used as a raw material for DPC.
  • the water separation step ((b-2) step) of the above BPA production step more specifically, for example, when returning to the PL separation tower 12, low PC boiling PL contained in the distillate (D 6) is recovered from the bottom of the tower as a PL recovery liquid k, and is finally used as a raw material for BPA.
  • impurities other than the by-product phenol component contained in the evaporated components of the first polymerization tank 22 to the third polymerization tank 25 are different from each other.
  • the vaporized components coming out of the polymerization stage in the initial stage include impurities having a boiling point lower than that of PL, a small amount of carbonyl compounds, diphenyl carbonate, etc., in addition to by-product phenol. . Since these impurities are raw materials and products in the above-mentioned DPC production process and do not contain a high melting point material such as BPA, the evaporating components containing these impurities are not purified or have low purity. Can be used as part of the PL used in the DPC production process.
  • impurities such as DPC, BPA, and the boiling point from the PL such as oligomers obtained from DPC and BPA are included in the vaporized components coming out of the polymerization process in the latter stage of the PC polymerization process.
  • These impurities are hydrolyzed during the BPA production process. Almost no alcohols, etc., which become raw materials and products in this production process and cause a decrease in catalytic activity in the BPA production process, are contained. Therefore, the evaporated component containing these impurities can be used as a part of PL used in the BPA production process without purification or by low-purity purification.
  • the evaporation component in the PC polymerization step can be recovered in two parts. That is, the first PC containing the by-product phenol component recovered from the first polymerization tank 22, or the first polymerization tank 22 and the second polymerization tank 23, that is, the evaporation component in the polymerization step in the first stage.
  • the evaporating component p 1 is sent to the first PC recovery PL tank 29 a, and the evaporating component in the polymerization process in the latter stage, that is, the polymerization tank of the second polymerization tank 23 or later, or the third polymerization tank
  • the second PC evaporating component p2 containing one by-product phenol collected from the polymerization tank after 24 can be sent to the second PC recovery PL tank 29b.
  • -The IPC evaporating component recovered in this way! 1 can be used as a part of the PL used as a raw material in the DPC production process without going through the PL distillation process shown in FIG.
  • the second PC evaporation component p2 can be used as a part of PL used as a raw material in the BPA production process without going through the PL distillation process shown in FIG.
  • the above-mentioned polymerization tank in which the first PC vaporized component p1 containing by-product phenol used in the DPC production process is obtained that is, the first polymerization tank 22 or the first polymerization tank 22 and the second polymerization tank
  • the tank 23 is preferably provided with reflux devices 33a and 33b for partially liquefying and refluxing the evaporated components.
  • the reflux devices 33a and 33b of the components distilled out of the first polymerization tank 22 or the first polymerization tank 22 and the second polymerization tank 23, the components having a higher boiling point than PL are provided. Can be returned to each polymerization tank, and components having a higher boiling point than PL contained in the obtained first PC evaporation component 1 can be further reduced.
  • the evaporated component recovered from the second polymerization tank 23 is either in the first PC recovery PL tank 29a or the second PC recovery PL tank 29b. Sent.
  • the selection of this collection tank may be limited to either one, and pipes may be provided. However, valves 34a and 34b may be provided in each of the pipes, and the valves may be switched as appropriate. This is because impurities other than the by-product phenol contained in the evaporating component recovered from the second polymerization tank 23 are relatively small, and can be used as the first PC evaporating component p1. This is because it can be used as the 2PC evaporation component p2.
  • the amount sent to the first PC recovery PL tank 29a or the amount sent to the second PC recovery PL tank 29b from the above-mentioned second polymerization tank 23 depends on the amount of evaporating components distilled from the second polymerization tank 23. It is adjusted by the amount of the evaporating component, particularly by-product phenol contained in the evaporating component, and the impurity content contained in the evaporating component.
  • the amount sent to the DPC manufacturing process and used as part of the PL of the raw material is the total amount of by-product phenol contained in the evaporated components in the PC polymerization step, that is, the total amount of by-product phenol contained in the first PC evaporated component p1 and the second PC evaporated component p2
  • the amount is preferably 50 to 95% by weight / 0 , preferably 50 to 70% by weight.
  • the amount of by-product phenol contained in the second PC evaporating component p2 is preferably 50 to 5% by weight based on the total amount of by-product phenol contained in the evaporating component of the PC polymerization step. 50 to 30% by weight is preferred.
  • the evaporation component used in the above-mentioned DPC production process that is, the above-mentioned IPC evaporation component!
  • the content of high-boiling compounds having a higher boiling point than DPC, such as BPA and oligomers obtained from the above-mentioned DPC and BPA, contained in 1 is preferably 1.0% by weight or less, and 0.1% by weight or less. weight 0/0 or less is more preferable. If the content is more than 1.0% by weight, there is a possibility that the pipe may be clogged during the production of DPC.
  • evaporating components used in the BPA production process that is, low-boiling compounds having a lower boiling point than DPC contained in the second PC evaporating component P2, specifically, carbonyl compounds, by-products from carbonyl compounds
  • the content of the alcohol and the like is preferably 100 weight ppm or less, more preferably 50 weight: pm or less.
  • PL used as a raw material in the above BPA production process is, in addition to the regenerated phenol contained in the above-mentioned IPC evaporating component pi and the above-mentioned second PC evaporating component p2, commercially available phenol as a shortage.
  • it includes PL that circulates through the BPA manufacturing process.
  • the content of the low-boiling compound in the PL used as the raw material is lower than the content of the low-boiling compound in the by-product phenol, and is usually 20% by weight 1) 111 or less, preferably 5 weight: less than pm. If the weight is more than 20 ppm by weight, the catalyst activity during the production of BPA may be reduced, and the productivity may be reduced.
  • the alcohol produced as a by-product from the carbonyl compound is an alkyl alcohol obtained from dialkyl carbonate and / or alkylaryl carbonate.
  • the PL distillation process can be omitted in the PC manufacturing process. Improve efficiency Can contribute.
  • the amount of s-PL generated in the PC manufacturing process shown in Fig. 5 is theoretically considered as a raw material in the DPC manufacturing process and the BPA manufacturing process. It is about half of the total amount used, and the amount used as a raw material in the DPC manufacturing process and the amount used as the raw material in the BPA manufacturing process are theoretically the same.
  • commercial PL commercially available PL
  • sales PL includes Cresol and Z or xylenol, hydroxya It contains a certain amount of impurities such as seton, while the PC-evaporated component p, which is a component before distillation and recovery of S -PL, has a low content of impurities such as tarezol, Z or xylenol, and hydroxyacetone. . Therefore, the method of using s-PL can be determined based on the difference in the content of impurities such as tarezol, Z or xylenol, and hydroxyacetone.
  • the PL used as a raw material in the DPC manufacturing process is a phenol containing cresol and / or xylenol at 20 to 100 ppm by weight (hereinafter referred to as “PL containing cresol etc.”). ), And a phenol containing cresol and / or xylenol less than 20 wt.pm (hereinafter, referred to as “PL containing no talesol”) is used as a PL used as a raw material in the BPA production process. Is good.
  • PL may be used as the PL containing cresol or the like. And, in addition to the above-mentioned cresol xylenol, the commercial PL contains several tens weight Ppm of coloring cause impurities such as hydroxyacetone.
  • the PL containing cresol or the like can be used as it is in the DPC reaction step as described above.
  • the amount of impurities such as cresol, xylenol, and hydroxyacetone, which are impurities in the PL containing cresol and the like, which are coloring, is in an acceptable range in the above DPC reaction step. Then, it is evaporated and distilled off as a part of the mixed gas F or removed as a distillation residue by an IDPC distillation column 6 described later. For this reason, even if the DPC produced using the cresol-containing PL is used in the above-mentioned PC production process, the quality of the obtained PC is not affected.
  • cresol-free PL examples include a PC evaporation component p which is a component before distilling and recovering s-PL.
  • the content of impurities causing catalyst poison such as hydroxyacetone contained in the PC evaporation component p is preferably less than 10 ppm, more preferably less than 5 ppm, and particularly preferably less than 1 ppm. If it exceeds 10 ppm, the life of the catalyst is significantly reduced as a result.
  • the above-mentioned cresol and xylene In addition to catalyst poisoning substances such as phenol and hydroxyacetone, and coloring substances, DPC, BPA, DPC and oligomers obtained by reacting one or several molecules of BPA are included.
  • the content of cresol, Z or xylenol contained in the above-mentioned PC evaporation component p is preferably not more than 20 wt p, more preferably not more than 10 wt ppm. When the weight is more than 20 weight parts per million, an alkyl-substituted product of BPA is generated, which may cause a decrease in the purity of BPA.
  • the PC evaporation component p contains water.
  • the presence of water causes a decrease in the activity of the catalyst in the BPA production process, leading to a decrease in the rate of BPA production. For this reason, a process for removing water is required.
  • the PC evaporation component p in the step (a) of the BPA production step after passing through the step of removing water.
  • the water separation step step (b-2)) can be used as it is. That is, in FIG. 3, the PC evaporation component p as a raw material is sent to the PL separation tower 12 to perform a water removal step. At this time, the water-acetone mixture AW to be distilled off is separately treated.
  • the distillation residue of the PL separation tower 12 is sent to a high-boiling removal tower, where a high-boiling-point removal step for separating components having a higher boiling point than the PL is performed. High-boiling components are separated and removed as distillation stills, and PL is recovered as distillation components.
  • the recovered PL may be directly used as a raw material PL in the BPA reaction step (step (a)) of the BPA production step, and may be recovered in the BPA recovery PL tank 11. This may be subjected to the above-mentioned BPA reaction step (step (a)) via the step (c) shown in FIG. 2 and, if necessary, the mother liquor treatment step (step (g)). Les ,.
  • the BPA crystallization is provided to the separation step (step (c)) because it is preferable to use clean PL for use as a washing solution for the synthesized BPA, and the BPA crystallization is used.
  • the impurities contaminated in this step are the 2,4 'monoisomer of BPA generated in the above BPA reaction step, etc. (hereinafter, "BPA by-product"). This does not affect the above synthesis reaction step.
  • the high-boiling component discharged from the high-boiling-point removal step is sent to the above-mentioned mother liquor treatment step (g), and the active ingredient can be recovered.
  • a PC storage process (? ⁇ first storage process or PC second storage process) for storing s-PL can be provided.
  • s-PL is stored and can be continuously supplied as raw material PL for the next step, PL distillation step, DPC reaction step or BPA reaction step, and the next step is continuously operated It is possible to do.
  • the capacity of the PC storage tank used in the above-mentioned PC storage step may be determined in consideration of the operation time and the stop time of the above-mentioned PC polymerization step, and specifically, a capacity satisfying the condition of the following formula (1). Is preferred.
  • Vc represents the capacity (m 3 ) of the PC storage tank
  • F c represents the supply rate (m 3 / hr) of the liquefied PC by-product or by-product phenol.
  • Vc / Fc is less than 10
  • This PC storage tank is used for one of the PC first storage process and the PC second storage process. It may be provided only on both or on both. Also, one PC storage tank may be provided in one PC storage step, or a plurality of PC storage tanks may be provided in series or in parallel. In the case where a plurality of tanks are provided, Vc in the above equation (1) means the total amount of the capacities of the plurality of tanks.
  • a DPC storage process for storing the DPC obtained in the DPC distillation process can be provided.
  • DPC storage process even if the DPC manufacturing process is temporarily stopped or intermittent, DPC is stored in this DPC storage process, and this is the next process, PC It can be continuously supplied as the raw material DPC in the manufacturing process, making it possible to produce PCs continuously.
  • the capacity of the DPC storage tank used in the storage process may be determined in consideration of the operation time and stop time of the DPC manufacturing process. Specifically, the condition of the following formula (2) is used. It is preferable that the capacity satisfy the following.
  • Vd represents the capacity (m 3 ) of the DPC storage tank
  • F d represents the feed rate (mhr) of diphenyl carbonate.
  • VdZFd is less than 10
  • One DPC storage tank may be provided, or a plurality of DPC storage tanks may be provided in series or in parallel.
  • Vd in the above equation (2) means the total amount of the capacity of the plurality of tanks.
  • the above-mentioned BPA crystallization-separation step (step (c)) tends to cause solids to adhere to the liquid-contacting parts of the crystallization equipment such as crystallization tanks and heat exchangers. Once you need to stop this process and clean it. For this reason, the steps from the above BPA reaction step (step (a)) to the BPA crystallization / separation step (step (c)) tend to be intermittent. Therefore, after the PL removal step (step (e)), or although not shown, between the BPA crystallization 'separation step (step (c)) and the PL removal step (step (e)), the above BPA is removed. By providing a storage step, even if the steps from the BPA reaction step (step (a)) to the BPA crystallization / separation step (step (c)) become intermittent, the PC manufacturing step can be continuously performed. It can be carried out.
  • Examples of the form of the mixture stored in the BPA storage step include an adduct crystal of BPA and PL, a slurry containing an adduct crystal of BPA and PL, and a mixed liquid of BPA and PL.
  • composition of the mixture of BPA and PL described above is generally such that BPA is in the range of 45 to 70% by weight / 0 and PL is in the range of 55 to 30%. Therefore, when the temperature during storage is 0 to 95 ° C, the adduct is in a crystalline state. In addition, when the phenol content in the above mixture is high, if the storage temperature is 40 ° C or higher, the BPA and the PL not added are in a molten state, so that a slurry or a solution is obtained. Further, when the storage temperature exceeds 95 ° C, the above-mentioned adduct is melted and becomes a molten state.
  • the storage temperature is preferably 45 to 150 ° C., and the mixture of BPA and PL is desirably in a slurry state or a solution state.
  • the temperature In order to prevent the decomposition and coloration of BPA, it is preferable to maintain the temperature as low as possible. Under the above conditions, the formation of 4-isopropenyl phenol, which is considered to be a coloring substance generated by the decomposition of BPA, Can be suppressed. It is also important to keep the storage tank in an inert gas atmosphere such as nitrogen gas to prevent air from being mixed.
  • an inert gas atmosphere such as nitrogen gas to prevent air from being mixed.
  • As the material of the storage tank general austenitic stainless steel or ferritic stainless steel can be used, but a material with less elution of Fe which causes a decrease in color tone is preferably used.
  • a steel material having a Cr content of 16% or more and a carbon content of 0.03% or more for example, SUS304 is preferable to SUS316, SUS316L, SUS304 SUS316 and SUS304 are preferably used rather than L.
  • S US 309 S and SUS 310 S having a higher Cr content are more preferable directions.
  • the capacity of the tank for storing the mixture of BPA and PL may be determined in consideration of the operation time and the stop time of the BPA production process, and specifically, the condition of the following equation (3) is satisfied. preferable.
  • Vb represents the capacity (m 3 ) of the BP A storage tank
  • F b represents the supply amount (m 3 / hr) of bisphenol A supplied to the PC polymerization step.
  • VbZFb When VbZFb is smaller than 10, it may be difficult to continuously perform the PC polymerization step. On the other hand, it may be larger than 1 000, but if it is too large, it is not necessary to store it so much from the viewpoint of production efficiency, which is wasteful, and it is not preferable to keep it for a long time in terms of quality.
  • the number of storage tanks may be one, or a plurality of storage tanks may be provided in series or in parallel.
  • Vb in the above equation (3) means the total capacity of the plurality of tanks.
  • a BPA neutralization step may be provided in the BPA storage tank that exists between the BPA crystallization / separation step (step (c)) and the PC polymerization step, or in a step before that. Preferred (not shown).
  • the acid component or the base component in the mixture can be neutralized, and the decomposition of BPA in the mixture can be suppressed. it can.
  • the above-mentioned PL distillation residue (X2) contains PL, DPC, BPA, an oligomer in which one to several molecules of DPC and BPA are polycondensed, and among them, PL, BPA and Contains a lot of DPC. Therefore, in order to make effective use of these active ingredients, as shown in FIG. 8, the PL distillation residue (X2) is subjected to the above-mentioned distillation step or recovery distillation step of the above-mentioned DPC production step, or the above-mentioned BPA production step. Send to the above mother liquor treatment process (process (g)).
  • the above-mentioned PL distillation residue (X2) is sent to the above-mentioned distillation step of the above-mentioned DPC production step without the above-mentioned recovery distillation step in the above-mentioned DPC production step, specifically, as shown in FIG.
  • the PL distillation residue (X.2) is sent to the first DPC distillation column 6.
  • the PL distillation residue (X2) is distilled in the first DPC distillation column 6 and the second DPC distillation column 7 to recover PL and DPC.
  • PL is recovered as a component of the mixed gas (F) in the first DPC distillation column 6, and DPC is recovered in the second DPC distillation column 7.
  • the above-mentioned PL distillation residue (X2) having the above-mentioned recovery distillation process is sent to the above-mentioned recovery distillation process in the above-mentioned DPC production process, specifically, as shown in FIG.
  • the PL distillation residue X 2 is sent to the DPC recovery distillation column 8.
  • the PL distillation residue (X 2) is distilled in the DPC recovery distillation column 8 to recover PL and DPC and sent to the mixing tank 3.
  • PL is recovered as a component of the mixed gas (F) in the first DPC distillation column 6, and DPC is recovered in the second DPC distillation column 7.
  • the distillation residue (Xl) when the above-mentioned recovery distillation step is not provided, or the recovery distillation residue () ⁇ ') when the above-mentioned recovery distillation step is included include DPC and DPC.
  • DPC impurities such as methyl-substituted PC and bromine-substituted DPC are included, and when the above PL distillation residue (X2) is introduced into the above distillation step or recovery distillation step, B It contains oligomers in which one to several molecules of PA, DPC and BPA are polycondensed, among which BPA and DPC are abundant. Therefore, in order to effectively utilize these active ingredients, the distillation residue (XI) or the recovered distillation residue (Xl,) is sent to the mother liquor treatment step (step (g)) in the BPA production step.
  • the distillation residue (XI) or the recovered distillation residue ( ⁇ ′ ′) is sent to the residue reactor 14.
  • each component is decomposed, and the — part is converted again into ⁇ ⁇ ⁇ in the regeneration reactor 15 and the obtained BPA and phenol are sent to a BPA reactor (not shown) in the BPA production process. .
  • the above-mentioned methods can be mentioned.
  • the PL distillation residue (X 2) It is sent to the DPC distillation step and the DPC recovery distillation step, and then the DPC distillation residue (XI) and the DPC recovery distillation residue (X1 ') generated in the DPC distillation step are converted to the BPA mother liquor treatment step (step (G)).
  • the effluent from the DPC manufacturing process, the BPA manufacturing process, and the PC manufacturing process is discharged from the mother liquor treatment process (process (g)) in the bisphenol A (BPA) manufacturing process. (D 7).
  • the wastewater containing a large amount of organic matter, which was generated in each of the three processes, can be combined into one, and the amount of wastewater discharged as a whole can be suppressed.
  • the processing steps (not shown) become efficient and the load can be reduced.
  • the above-mentioned distillation equipment such as the distillation tower in the DPC distillation process, PC polymerization process, and PL distillation process, and the polymerization equipment include a condenser for condensing distillate components, vacuum equipment for depressurizing the system, and the above condenser and vacuum equipment.
  • a distillation apparatus will be described as an example.
  • the distillation apparatus 41 includes a condenser 42 for condensing distilling substances such as DPC and PL, a vacuum facility 43 for depressurizing the system, and the condenser 42 described above.
  • a vacuum pipe 44 connecting the vacuum equipment 43 with the vacuum equipment 43 is provided.
  • a reflux section is often formed.
  • the reflux section is formed by a condenser 42, which condenses the substance to be distilled, a condensate tank 45, which stores a part of the condensed liquid, and a distillation apparatus, which condenses the condensate in the condensate tank 45.
  • a liquid feeding pump 46 returned to 41 and a reflux pipe 47 connecting the liquid feeding pump 46 and the distillation device 41 are included.
  • this reflux section is referred to as a “reflux apparatus”.
  • the above-mentioned vacuum facility 43 is a facility for sucking and discharging the gas in the distillation apparatus 41 and the reflux apparatus to put the distillation apparatus 41 in a reduced pressure state.
  • An example of such a vacuum facility 43 is a vacuum pump or the like.
  • the vacuum pipe 44 connected to the vacuum facility 43 has a downward slope from the condenser 42 side to the vacuum facility 43 side. It is desirable that the inclination extends over as long a section of the horizontal portion of the vacuum pipe 44 as possible.
  • the above inclination may be greater than 0 ° downward from the horizontal direction and 90 ° or less, but when traveling 2 m horizontally toward the vacuum equipment, proceed downward at least lc ni. It is more preferable that it proceeds in a downward direction from 5 cm to lni.
  • the inclined horizontal portion does not have a completely horizontal portion and a rising portion, and it is more preferable that the inclination is constant from one end of the vacuum pipe 44 to the other.
  • the horizontal portion refers to a horizontal state and a part in a state slightly inclined from the horizontal state. Further, the above-mentioned completely horizontal portion refers to a portion perpendicular to the vertical direction.
  • the above-mentioned inclination may have the above-mentioned completely horizontal portion or the rising portion in the middle, the total height of the rising portion is preferably lm or less, more preferably 50 cm or less, and more preferably 10 cm or less. It is more preferable if it is the following, and it is most preferable that there is no such portion. If the sum of the heights of the rising parts exceeds lm, If the distillate accumulates in the rising portion, the pressure loss that occurs is too large, and there is a possibility that suction under reduced pressure may not be possible.
  • the above-mentioned rising portion means a portion having a slope upward from the condenser 42 toward the vacuum equipment 43, contrary to the above-described slope.
  • the above-mentioned distillate does not exist because the distillate easily accumulates as a liquid or a solid, and if it accumulates, a pressure loss occurs, and if it accumulates too much, the pipe itself may be blocked. Therefore, it is more desirable that the above-mentioned inclination is only downward from the condenser 42 side to the vacuum equipment 43 side.
  • the condenser 42 condenses PL, DPC, and the like. The condensed distillate is drawn out of the system or sent to the condensate tank 45 of the reflux unit for reflux to the distillation unit 41.
  • the pressure in the distillation column 41 is preferably reduced pressure, more preferably 1 to 200 Torr, and particularly preferably 5 to 100 Torr. At that time, the reduced pressure of the vacuum in the vacuum pipe 44 for drawing the gas in the distillation column 41 is preferably close to or lower than the pressure in the distillation column 41, and 1 to 100 Torr Is more desirable.
  • the piping structure from the top of the distillation column 41 to the condenser 42 preferably satisfies the following conditions. It is desirable that the inner diameter of the pipe be in a range where the actua1 gas linear velocity is 0.01 to 2 OmZsec. The shorter the length of the pipe from the top of the distillation column 41 to the condenser 42, the better, preferably 1 Om or less, and most preferably Om. Furthermore, it is better that the number of bends in the pipe is smaller, and it is desirable that the number of bends is 5 or less.
  • the condenser 4 2 and most preferably when provided as an overhead condenser at the top of the distillation column 4 1. When these conditions are satisfied, the reduced pressure state of the distillation column 41 by the vacuum equipment 43 becomes more stable.
  • the distilled PL and DPC gas be supplied so as to flow from the top to the bottom of the condenser 42. It is desirable that the inside of the condenser 42 and the outlet have a large diameter so that the gas linear velocity becomes small. If the gas linear velocity is high, it may cause a pressure loss, and may not be able to maintain the vacuum reduced pressure of the distillation apparatus 41. It is preferable that a mist catcher 48 for catching mist is provided between the condenser 42 and the vacuum pipe 44. This is to prevent mist-like PL or DPC from being mixed into the vacuum piping 44 and accumulating or solidifying as much as possible. .
  • the above-mentioned vacuum pipe 44 has a facility for heating and keeping the inside of the distillate above the melting point of the distillate.
  • the vacuum pipe 44 may have a double pipe structure or a trace structure using steam or electricity.
  • the distillate be higher than the melting point of the substance having the highest melting point among them.
  • the inside of the vacuum pipe 44 is in a reduced pressure state.
  • the melting point is a melting point in a reduced pressure state. If the inside of the vacuum pipe 44 is higher than the melting point of the above distillate, the PL or DPC mixed into the vacuum pipe 44 without being condensed by the condenser 42 remains solid or liquid without solidification.
  • the melting point of the DPC is 80 ° C. or higher and the temperature of the column at the top of the distillation apparatus 41 is lower than the temperature.
  • the vacuum pipe 44 be provided with at least one liquid outlet 49 facing downward. This is because it is necessary to extract the distillate that has been liquefied or dewed in the vacuum pipe 44 without remaining in the vacuum pipe 44. It is preferable that at least one of the liquid drain ports 49 is close to a portion of the vacuum pipe 44 connected to the vacuum equipment 43. This is because the vacuum pipe 44 has a slope, and if the vacuum pipe 44 is not taken out from a place as close as possible to the bottom of the slope, the distillate may accumulate earlier. Such liquid removal may be performed while the entire apparatus is stopped, instead of being performed during vacuum depressurization by the vacuum equipment 43.
  • the length of the vacuum pipe 44 exceeds 3 m, it is more preferable to provide a liquid draining port 49 in the middle of the vacuum pipe 44, since it becomes easier to avoid liquid pool.
  • a supply port 50 capable of supplying a heating fluid to the vacuum pipe 44 on the condenser 42 side.
  • the position where the supply port 50 is provided is preferably as close to the condenser 42 as possible, but between the vacuum pipe 44 and the condenser 42, If a catcher 48 is present, it should be as close as possible to where the vacuum line 44 is connected to the mist catcher 48, not between the mist catcher 48 and the condenser 42. desirable.
  • the above-mentioned heating fluid can be poured in from here, extracted from the liquid drain port 49, and the vacuum pipe 44 can be cleaned. Therefore, it is desirable that the portion between the supply port 50 and the liquid drain port 49 occupies as long a region of the vacuum pipe 44 as possible. In addition, because of the slope, it is more efficient to supply from the higher potential energy. For this reason, it is desirable that the supply port 50 be open toward the upper side of the vacuum pipe 44.
  • the heating fluid is a fluid that is a fluid at the temperature in the vacuum pipe 44, and may be a liquid or a gas.
  • the heating fluid include steam, PL, and nitrogen, and more preferably steam or PL vapor.
  • the use of PL vapor is more preferable because DPC can be dissolved when solidified in the vacuum pipe 44. Only one of them may be a mixture of a plurality of them. However, it is desirable that the heating fluid hardly reacts with the material or DPC of the vacuum pipe 44 under the temperature and pressure conditions in the vacuum pipe 44, and that it does not react at all. More desirable.
  • valves 51 and 52 are provided in the above-mentioned vacuum pipe 44 at a portion connected to the condenser 42, the vacuum equipment 43, the mist catcher 48 and the like. This is because, when the cleaning is performed by the heating fluid, if the heating fluid is blocked by the valve, the heating fluid can be prevented from leaking out of the vacuum pipe 44.
  • a freeze condenser (not shown) is provided in the vacuum pipe 44. It is more desirable that two or more freeze capacitors are installed in parallel and that each can be switched. If the above-mentioned freeze condenser is installed, the distillate components that could not be captured by the condenser 42 can be forcibly solidified and collected, and the vacuum pipes 44 after that will cause clogging or pressure loss. It is desirable because the rise can be suppressed.
  • each condenser 42 is adjusted to 80 to 150 ° C to actively condense high boiling components such as DPC, and the liquefied condensate is circulated to the distillation unit 41 .
  • the uncondensed gas that has not been liquefied in the first condenser 42 is adjusted to 0 to 80 ° C.
  • the freezing point of DPC is 80 ° C, which is higher than the freezing point of PL (40 ° C)
  • a large amount of DPC is generated under the temperature conditions of the condenser 42 that condenses only low-boiling compounds such as ordinary PL. If present, DPC may be solidified in the condenser 2. Therefore, installing two or more condensers 42 to forcibly condense and remove high-melting point DPC and then condensing uncondensed gas prevents solidification and stabilizes the degree of vacuum in the distillation unit 41. Can be done.
  • the condenser 42 having a plurality of stages.
  • the horizontal portion of the reflux pipe 47 for returning the condensate in the condensate tank to the distillation device 41 by the liquid sending pump 46 is directed downward from the distillation device 41 side to the liquid sending pump 46 side. It is preferable to have a slope. It is preferable that there is no completely horizontal portion or a rising portion in the middle of the inclined horizontal portion, and it is more preferable that the inclination is constant. At this time, it is desirable that the above-mentioned inclination is such that when traveling 2 m in the horizontal direction toward the liquid sending pump 46, the inclination should proceed downward by 1 cm or more, and 5 ⁇ : 111 to 11 downward. More desirable.
  • the difference in altitude due to the inclination is greater than the sum of the differences in height in the rising part It is desirable that the total height of the rising portions is not more than ⁇ ⁇ , more preferably not more than 10 cm.
  • the above-mentioned rising portion means a portion which is inclined upward from the distillation apparatus 41 side toward the liquid sending pump 46 side, contrary to the above-mentioned inclination.
  • a vertical or nearly vertical position is provided between the horizontal portion of the reflux pipe 47 having the above-mentioned inclination and the liquid feed pump 46.
  • a vertical or nearly vertical position is provided between the horizontal portion of the reflux pipe 47 having the above-mentioned inclination and the liquid feed pump 46.
  • the above-mentioned pipes near the suction port and near the discharge port of the liquid feed pump 46 are provided with liquid drain ports 53 and 54. You may.
  • the above-mentioned reflux pipe 47 has a device for heating and keeping the inside of the distillate above the melting point of the above-mentioned distillate!].
  • the distillate can be heated and kept at a temperature higher than the melting point of the substance having the highest melting point among them. If the reflux pipe has a temperature equal to or higher than the melting point of the distillate, the distillate does not solidify and remains in a liquid or gas state, so that the possibility of clogging inside can be further reduced.
  • Equipment that heats and keeps heat in this way includes those that have a double pipe structure and a trace structure that uses steam and electricity.
  • a supply port 55 be provided at a position near the distillation column 41 of the reflux pipe 47.
  • the reflux pipe 47 can be washed by flowing the heating fluid through the supply port 55 and extracting the heated fluid through the liquid drain port 54.
  • a valve 56 is desirably provided between the return pipe 47 and the distillation device 41 so that the heating fluid does not flow into the distillation device 41.
  • the distillation apparatus for distilling PL and DPC as described above is used in a DPC distillation step of removing impurities such as PL from DPC to recover purified DPC, or by reacting DPC and BPA under vacuum and reduced pressure. It can be used to recover PL and DPC in the PC polymerization process and the PL distillation process in the PC manufacturing process in which PC is polymerized while recovering PL (s-PL) as a by-product. Further, it can be used in any process for distilling PL and DPC.
  • the reflux device for refluxing PL and DPC as described above is provided by the exemplified distillation.
  • PL and DPC distilled from the device 41 are returned to the distillation device 41 to suppress the evaporation of high-boiling components contained in the supplied PL and DPC, and to increase the efficiency of distillation separation, as well as reflux. Any process that needs to be performed can be used.
  • the high boiling point component can be separately extracted from the lower part of the distillation device 41.
  • the cleaning method for supplying the heating fluid from the supply ports 50 and 55 provided in each of the above-described devices can easily perform even when the inside of the pipe is closed.
  • the blockage can be released.
  • BPA manufactured by Mitsubishi Chemical Corporation, obtained in Reference Example 2 described below
  • DPC manufactured by Mitsubishi Chemical Corporation
  • the polymerization conditions for each reaction tank were as follows: the first polymerization tank (2 10 ° C, lOOT orr), the second polymerization tank (240 ° C, 15 Torr), and the third polymerization tank (260 ° C, 0.5 Torr) and the fourth polymerization tank (270 ° C, 0.5 Torr). The operation was performed for 400 hours at a polycarbonate production speed of 38.3 kg / hr.
  • V s ⁇ / C [ ⁇ ] (1 + 0. 28 7 5 s)
  • This s-PL was continuously purified by the following two distillation columns.
  • the contained water was partially distilled off together with the PL at a pressure of 200 Torr and a reflux ratio of 2, and the bottoms were supplied to the second PL distillation column.
  • the phenol concentration in the PC low-boiling distillate distilled from the first PL distillation column was about 90% by weight.
  • purified s-PL was obtained at about 27 kgZhr from the top at 50 Torr and a reflux ratio of 0.5.
  • the contained PL mixture was continuously extracted at about 2.2 kg / hr.
  • the s_PL after dehydration distilled off in the second PL distillation column in FIG. 5 is used as the DPC raw material, and the PC distilled out during the dehydration of the s-PL in the first PL distillation column 30
  • the method for producing DPC while recycling the low-boiling distillate (D6) in the DPC washing process will be specifically described.
  • the DPC manufacturing process was performed according to the flow shown in FIG.
  • the DPC reactor 1 was used by connecting two reactors in series.
  • the DPC second reactor was also adjusted to 150 ° C under a sufficient stirring condition, and the reaction solution was supplied to the dehydrochlorination tower 2, where the intermediate phenyl chloroformate was used. Countercurrent contact with nitrogen gas was carried out at 160 ° C to complete the push-off reaction between PL and PL. From the bottom of the dehydrochlorination tower 2, DPC is about 89% by weight Was continuously extracted. Almost 100% of the supplied phosgene was converted to DPC.
  • the exhaust gas from the DPC synthesis (Dl, the reaction exhaust gas from the DPC second reactor and the nitrogen-containing exhaust gas from the dehydrochlorination tower 2, etc.) is mixed and then cooled to 10 ° C. Returned to the second reactor, the uncondensed gas, hydrogen chloride, was neutralized with an aqueous solution of alcohol and discharged. ,
  • the obtained dehydrochlorination solution b and the DPC-containing recovery solution d recovered from the DPC recovery distillation column 8 described below were sent to the mixing tank 3, and then to the alkali neutralization tank 4 made of Teflon lining. Then, about 5% by weight of sodium hydroxide aqueous solution (25% by weight of sodium hydroxide aqueous solution and the aqueous phase separated after washing in the next step, and the PC low-boiling fraction obtained in the s-PL purification step) was supplied to the neutralization tank 4 and mixed at 80 ° C. for about 10 minutes, and then adjusted to PH 8.5. The organic phase separated by standing was transferred to the washing tank 5.
  • the separated aqueous phase (containing PL and salt) was brought into contact with steam to recover almost all of the contained PL as a low-boiling distillate, which was supplied to the washing tank 5 in the next step.
  • the organic phase is washed with warm water equivalent to about 30% by weight, and the aqueous phase (recycled in the above-mentioned neutralization mixing tank) is separated and crude DPC (water, catalytic pyridine, PL was obtained.
  • the above-mentioned washing treatment solution f was continuously supplied to the middle stage of the first DPC distillation column 6 at about 42 kg / hr and a 0.1 N aqueous solution of sodium hydroxide at 7 OmL / hr.
  • the first DPC distillation column 6 has an inner diameter of 15 Omm and a height of 4. Om.
  • a continuous distillation column with 8 theoretical plates was used.
  • the first distillation residue g was continuously supplied to the second DPC distillation column 7.
  • the 2D PC distillation column 7 has an inner diameter of 20 Omm and a height of 4. Om.
  • a packed continuous distillation column with 8 theoretical plates was used. Distillation was conducted under the conditions of a vacuum of 20 torr, a heating medium oil temperature of about 240 ° C, a top temperature of about 180 ° C, a reflux ratio of 0.5, and a distillation rate of about 90%.
  • Purified DPC was a high-purity product containing 80 ppm of PL.
  • the DPC distillation residue (XI) purged from the bottom of the high-boiling distillation column is simultaneously supplied to the DPC recovery distillation column 8 and continuously distilled under the following conditions, and at about 3.5 kg / hr from the top.
  • the recovered DPC-containing recovery liquid d was recycled to the mixing tank 3 described above, and the bottoms of the DPC recovery distillation column 8 were continuously purged with about 0.2 kgZhr.
  • the conditions for the recovery and distillation of DPC are 100 mm in inner diameter and 3.
  • DPC was produced in the same manner as in Experimental Example 1 except that a commercially available PL (manufactured by Mitsubishi Chemical Corporation) was used instead of the above purified s-PL.
  • DPC was produced in the same manner as in Experimental Example 1 except that s-PL (water content: 0.3% by weight / 0 ) obtained by bypassing the first PL distillation column was used. Manufactured. As a result, the concentration of DPC in the dehydrochlorination solution b was reduced to 86% by weight due to hydrolysis in the DPC reaction step, and a significant decrease in production efficiency was observed.
  • BPA was manufactured according to the flow shown in FIGS. That is, in a flow-through BPA reactor having a temperature controller, a sulfonic acid type acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation) obtained by neutralizing 15% of sulfonic acid groups with 4-pyridineethanethiol. 60 L of Diaion SK-104) was filled. A mixed solution having a PL: acetone molar ratio of 10: 1 was charged into the BPA reactor at a temperature of 80 ° C. at a flow rate of 68.2 kg // hr, and reacted. The conversion of acetone was 80%.
  • the reaction mixture was subjected to removal of low-boiling substances (unreacted acetone, water, and part of PL) at a flow rate of 5.1 kgZh, and then cooled to 50 ° C. to precipitate adduct crystals. This was filtered to separate the crystals of the adduct and the mother liquor.
  • the flow rates were 16.5 kg / h and 46.5 kg Zh, respectively. 10% by weight of this mother liquor was fed to the mother liquor treatment step, and the other mother liquor was circulated as part of the raw materials charged to the BPA reactor.
  • the adduct crystals obtained here were again dissolved in PL at a flow rate of 27.2 kg / h, cooled to 50 ° C to precipitate crystals, and filtered to remove the adduct crystals (1. 3 kg / h) and mother liquor (32.5 kg / h).
  • the separated crystals were heated to 180 ° C. under a reduced pressure of 0.3 mmHg to remove P L, and BPA having a purity of 99.95% or more was obtained at a flow rate of 7.7 kgZh.
  • Low-boiling substances unreacted acetone, water, and a part of PL obtained by separating from the reaction mixture are charged into the PL recovery tower at a flow rate of 5.1 kgZh, and at the same time, ethylbenzene (azeotropic breaker) Was supplied from the top of the tower. Then, a mixture of acetone, water and ethylbenzene was extracted at a flow rate of 2.4 kg / h from the top of the PL recovery tower, and PL was extracted at a flow rate of 3.5 kg / h from the bottom of the tower.
  • the effluent (acetone, water, and ethylbenzene) from the top of the PL recovery tower is charged into the acetone recovery tower, and acetone is flown from the top of the tower at a flow rate of 0.7 kgZh, and water and ethylbenzene are flown from the bottom of the tower. At a flow rate of 1.6 kgZh.
  • the P L obtained from the bottom of the P L recovery tower and Acetone obtained from the top of the Acetone recovery tower were circulated as a part of the raw materials to be charged into the above-mentioned synthesis reactor.
  • the Aseton amount corresponding to the amount of the system was amount and give purge outside BPA 2.
  • BPA The reaction was performed continuously, and BPA was continuously produced as the whole system.
  • the BPA obtained here was charged into the above-described PC polymerization step to produce a PC.
  • the purified PL used in a commercial industrial PL water content 0. l W t ° /., Impurity concentration 0.
  • the low boiling point product (unreacted acetone, water, and a part of PL) (5.1 kg / h) obtained from the reaction mixture was added to the aforementioned s-
  • the low-boiling distillate obtained from the top of the first distillation column in the PL purification process was mixed and charged into the PL recovery column, and at the same time, ethylbenzene (azeotropic play car) was supplied from the top of the column.
  • the amount of acetone that had been purged out of the system and the amount of acetone that corresponded to the amount of BPA obtained were added to the BPA reactor at a rate of 2.9 kgZh, and PL was used as the PL in the aforementioned PL distillation step.
  • 2 Purified S -PL obtained from the top of the PL distillation column was replenished at 14.5 kg / h, the synthesis reaction was continuously performed, and BPA was continuously produced as the whole system described above. Further, the BPA obtained here was charged into the above-mentioned polymerization step to produce PC.
  • BPA was produced in the same manner as in Reference Example 2, except that commercial industrial PL was used instead of purified PL. As a result, the yield of BPA gradually decreased, and a decrease in the activity of the catalyst due to the contained hydroxyacetone was confirmed.
  • the phosgene gas was continuously supplied under mixing at 150 ° C. while the molten commercial PL and the pyridine catalyst were continuously supplied to the reactor.
  • the hydrogen chloride gas by-produced by the phosgenation reaction was cooled to 10 ° C, the condensate was returned to the reactor, and the uncondensed gas was discharged after neutralization with an alkaline aqueous solution.
  • a reaction solution containing about 91% by weight of DPC was continuously extracted from the reactor.
  • the reaction rate of phosgene in the reaction process is almost 100 ° /. It was.
  • the above reaction solution and an aqueous solution of about 5% by weight of sodium hydroxide were respectively supplied to a neutralization mixing tank made of Teflon lining, and mixed at 80 ° C. for about 10 minutes to adjust the pH to 8.5.
  • the organic phase after neutralization was separated by standing, and then transferred to a washing and mixing tank. In the water washing and mixing tank, the organic phase is washed with warm water corresponding to about 30% by weight / 0 , the aqueous phase is separated, and crude DP C (1% water 0 /., Pyridine 2% 0 /., PL 8 Weight 0 /., Containing 0-89% by weight).
  • the low-boiling distillation column has an inner diameter of 15 Omm and a height of 4.0 m. It has a reflux unit at the top, a raw material supply unit at the center, and Sulza packing in the concentration unit and recovery unit (Sumitomo Heavy Industries, Ltd. ) Was used, and a continuous distillation column with 8 theoretical plates was used.
  • the DPC bottom of the low-boiling distillation column
  • the high-boiling distillation column has an inner diameter of 200 mm and a height of 4. Om. It has a reflux unit at the top, a raw material supply unit at the center, and is filled with Sulza packing (manufactured by Sumitomo Heavy Industries, Ltd.) in the concentration unit and the recovery unit.
  • Sulza packing manufactured by Sumitomo Heavy Industries, Ltd.
  • Distillation was carried out under the conditions of a vacuum of 20 torr, a heating medium oil temperature of about 240 ° C, a top temperature of about 180 ° C, and a reflux ratio of 0.5, and purified DPC was obtained from the top at about 23.5 k.gZhr.
  • a high-boiling substance (DPC containing about 350 weight p 13111 and about 40 weight p of DPC alkyl-substituted product and bromide-substituted product, respectively) was purged from the column bottom at about 2.5 kgZhr.
  • the purified DPC was a high-purity product containing PL at 8 ppm by weight.
  • the 50th tray-type distillation column (1st reactive distillation column) with an inner diameter of 50mm and a height of 5m is sold in the 10th column from the top.
  • PL dimethyl carbonate
  • 600 g of a raw material liquid containing tetraphenyloxytitanium as a catalyst
  • the feed was performed at a flow rate of / hr (dimethyl carbonate 3 90 gZ hr PL 200 g / hr, tetraphenoxytitanium 0.5 g / hr).
  • the bottom of the column was heated with a mantle heater to perform reactive distillation, and a dimethyl carbonate solution containing methanol was withdrawn from the top of the column while distilling it off at a distilling ratio of 12.
  • the bottom liquid containing the formed methylphenyl carbonate and a small amount of DPC is withdrawn from the bottom of the column and placed on a tray-type distillation column (second reactive distillation column) with an inner diameter of 80 mm and a height of 4 m with 50 actual plates. From the 10th stage.
  • a liquid containing DPC and methylphenyl carbonate generated by the further reaction flows into the bottom of the column.
  • a solution of dimethyl carbonate containing methanol distilled from the first reactive distillation column was fed into the middle stage of a 30-column distillation column (azeotropic distillation column) with an inner diameter of 32 mm and a height of 2.5 m. Then, distillation was performed at a distillation ratio of 5.
  • a mixed solution of methanol and methyl carbonate having a nearly azeotropic composition was withdrawn from the top of the column, and then fed to the extractive distillation column.
  • methanol and dimethyl carbonate were separated, methanol was purged out of the system, and dimethyl carbonate was recycled to the first reactive distillation column.
  • the bottom liquid of the azeotropic distillation column was dimethyl carbonate containing a small amount of PL, which was circulated to the first reactive distillation column.
  • the high-boiling reaction mixture containing the catalyst and DPC continuously withdrawn from the bottom of the second reactive distillation column was introduced into an evaporator, where the evaporated condensate containing the catalyst was purged.
  • the evaporate containing a large amount of DPC formed in the evaporator was supplied to the diphenyl carbonate purification tower.
  • the pressure at the top of the purification tower was controlled at 2 OT orr N, and the bottom temperature was controlled at 190 ° C.
  • a low-boiling mixture containing phenol and methylphenyl carbonate was distilled from the top of the tower, and a part was refluxed. The remainder was recycled to the second reactive distillation column.
  • high boiling impurities were purged from the bottom of the diphenyl carbonate purification column, and DPC was obtained from the middle stage of the column.
  • a sulfonic acid type acidic cation exchange resin (trade name: Diaion SK-104, manufactured by Mitsubishi Chemical Corporation) in which 15% of the sulfonic acid groups were neutralized.
  • a mixed solution having a PL: acetone molar ratio of 10: 1 was charged into the synthesis reactor at a temperature of 80 ° C. at a flow rate of 68.2 kg / hr, and reacted. The conversion of acetone was 80%.
  • the reaction mixture was prepared by purging low-boiling substances (unreacted acetone, water, and part of PL) at a flow rate of 5.
  • the adduct crystals obtained here were again dissolved in PL at a flow rate of 27.2 kg / h, cooled to 50 ° C to precipitate crystals, and filtered to remove the adduct crystals (1. 3 kg / h) and mother liquor (32.5 kg / h).
  • the separated crystals were heated to 180 ° C. under a reduced pressure of 0.3 mmHg to remove P L, and BPA having a purity of 99.95% or more was obtained at a flow rate of 7.7 kgZh.
  • the effluent from the top of the cracking distillation column and the above-mentioned PL were mixed, and 4 L of sulfonic acid type acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion SK-104) was filled.
  • the reactor was charged at a flow rate of 4.2 kg / h into a flow-type reactor and reacted at 80 ° C.
  • the obtained reaction solution was circulated to the first synthesis reactor.
  • the above-mentioned synthesis reactor was charged with commercial PL (18.5 kg / h) and acetone (3.6 kg) in an amount corresponding to the amount of purged outside the system and the amount of bisphenol A obtained. / h), and the synthesis reaction was carried out continuously to produce BPA continuously as the whole system.
  • the above DPC and BPA were melted and mixed in a mixing tank 21 in a nitrogen gas atmosphere at a weight ratio of 0.977, and the first vertical stirring polymerization tank 22 was controlled at 210 ° C and 100 T or IT in a nitrogen atmosphere.
  • the liquid level was kept constant while controlling the opening of the valve provided on the polymer discharge line at the bottom of the tank so that the average residence time was 60 minutes.
  • cesium carbonate with an aqueous solution as a catalyst to BPA 1 mole it was continuously fed with 0. 5 X 10- 6 moles of flow.
  • the polymerization liquid discharged from the bottom of the tank was successively and continuously supplied to the second and third vertical polymerization tanks 23 and 24 and the fourth horizontal polymerization tank 25.
  • the liquid level was controlled so that the average residence time in each tank was 60 minutes, and at the same time, PL by-produced was distilled off.
  • the gas evaporating from the first and second polymerization tanks 22 and 23 is condensed and liquefied in the reflux devices 33a and 33b and the multi-stage condensers 26 and 27, respectively, and a part of the gas is returned to each polymerization tank and the remainder is returned 1st PC collection Collected in PL tank 29a.
  • the gas evaporating from the third polymerization tank 24 is solidified by one of the two freeze condensers in parallel, and by switching operation with the other freeze condenser, the solidified portion is melted and the second PC recovery PL tank 29 Collected in b.
  • all the PC vaporized components distilled from the first and second polymerization tanks 22 and 23 are collected in the first PC recovery PL tank 29a, and the PC vaporized components distilled from the third polymerization tank 24 are collected in the second polymerization tank 24. 2 PC recovery Stored in PL tank 29b.
  • each polymerization tank was as follows: the first polymerization tank 22 (210 ° C, 10 OT orr), the second polymerization tank 23 (240 ° C, 15 Torr), and the third polymerization tank 24 (260 ° C , 0.5 Torr) and the fourth polymerization reactor 25 (280 ° C., 0.5 Torr).
  • the pellet was formed while continuously adding butyl p-toluenesulfonate.
  • the Mv of the PC thus obtained was 21,000, and the initial ⁇ I was 1.7.
  • the method of measuring molecular weight (Mv) and initial hue (YI) As described above.
  • the amount of phenol in the recovered first PC evaporation component p1 was about 60 ° / to the total amount of PL distilled in the PC polymerization process. Met. Other than PL, DPC weighs 1.1. / 0 was detected, and BPA and oligomer components were not detected.
  • the amount of phenol in the recovered second PC evaporating component p2 was about 40% of the total amount of PL distilled out in the polymerization step, and 6.0 weight ° / 0 of DPC was detected in addition to PL.
  • BPA and oligomer components each 1.2 weight. /. , 0.3 weight. /. was detected
  • the amount of phenol in the recovered first PC evaporation component p1 was about 60% based on the total PL distilled in the PC polymerization step.
  • DPC was detected at 1.1% by weight / 0
  • methanol was detected at 95% by weight
  • BPA and polyolomer components were not detected. Met.
  • Recovered second PC evaporating component The amount of phenol in p2 is about 40% of the total amount of PL distilled in the polymerization process, and 6.0 parts by weight of DPC in addition to PL. / 0 is detected, BPA and oligomer components is 1.2 wt%, 0.3 wt% respectively detected. Methanol was not detected (5 weight 1) 111 or less.
  • DPC and BPA were produced using the PC vaporized component containing by-product phenol obtained in the above PC production example (1).
  • DPC was manufactured by performing the same operation as in the above-described DPC manufacturing example (1). As a result, the phosgene reaction rate in the reaction step and the quality of the obtained DPC remained unchanged without any problems.
  • DPC and BPA were produced using the PC evaporation component containing by-product phenol obtained in the above PC production example (2).
  • DPC was manufactured using the second PC evaporation component p2 recovered in the above PC manufacturing example (1).
  • Example (1) Except for changing all the commercial PL used in the above-mentioned DPC production example (1) to the second PC evaporation component p2 recovered in the above-mentioned PC production example (1), the above-mentioned DPC production The same operation as in Example (1) was performed to manufacture DPC. As a result, a blockage occurred in the piping for transferring the reaction solution to the washing process, and the operation could not be continued.
  • BPA was produced using the first PC evaporation component p1 recovered in the above PC production example (2).
  • / 0 sodium hydroxide aqueous solution was supplied to a neutralization mixing tank made of Teflon lining, respectively, and mixed at 80 ° C for about 10 minutes to adjust the pH to 8.5.
  • the organic phase after neutralization was separated by standing, and then transferred to a washing and mixing tank. Approximately 30 weight of the organic phase in the washing and mixing tank. / 0 was washed with warm water equivalent to / 0 , the aqueous phase was separated and crude DP C (water 1 wt. 0 /., Pyridine 2 wt. 0 /., PL 8 wt. 0 /., DPC 89 wt. 0 /. ) Was obtained.
  • the low-boiling distillation column has an inner diameter of 150 mm and a height of 4. Om. It has a reflux unit at the top, a raw material supply unit at the center, and is packed with Sulza packing (manufactured by Sumitomo Heavy Industries, Ltd.) for the concentration unit and the recovery unit.
  • a continuous distillation column having eight theoretical plates was used. Distilled under the conditions of a vacuum of 20 torr, a heating medium oil temperature of about 220 ° C, a top temperature of 80 to 100 ° C, a tower middle temperature of 160 ° C, and a reflux ratio of 1.
  • the DPC bottom of the low-boiling distillation column
  • the high-boiling distillation column has an inner diameter of 20 Omm and a height of 4. Om. It has a reflux device at the top, a raw material supply section at the center, and a sulza packing (Sumitomo Heavy Industries, Ltd.) packed in the concentration section and the recovery section.
  • An eight-stage continuous distillation column was used. Distilled under the conditions of a vacuum of 20 torr, a heating medium oil temperature of about 240 ° C, a top temperature of about 180 ° C, and a reflux ratio of 0.5. From the top, purified DPC (containing PL 80 weight ppm) was about 23. . Obtained at 5 kg / hr. (Reference example 1)
  • the contained water was partially distilled off together with PL at 200 T rr and a reflux ratio of 2, and the bottoms were continuously supplied to the second distillation column.
  • the purified by-product phenol was obtained from the top at 50 Torr and a reflux ratio of 0.5
  • PLC containing the high boiling components DPC, BPA, and oligomers was obtained from the bottom. The mixture was continuously purged.
  • reaction rate (%) ⁇ (Acetone supply amount-Unreacted acetone amount) Z Supply acetone amount ⁇ X
  • Activity retention rate (%) (acetone conversion rate after 100 hours) Z (acetone conversion rate after 120 hours) X 100
  • the BPA storage step is different from Fig. 7 and is provided between the heating and melting step (step (d)) and the P L removal step (step (e)).
  • a sulfonic acid type acidic cation exchange resin manufactured by Mitsubishi Kasei Co., Ltd., with 15% of sulfonate groups neutralized with 4-pyridineethanethiol 60 L of ion SK-104 was charged.
  • a mixed solution having a molar ratio of P L: acetone (A) of 10: 1 was added to this synthesis reactor at a temperature of 80 ° C and a temperature of 68.
  • the reactor was charged at a flow rate of 2 kgZhr and reacted.
  • the conversion of seton (A) was 80%.
  • the reaction mixture was purged with low-boiling substances (unreacted acetone, water, and part of PL) at a flow rate of 5.1 kgZh, and then cooled to 50 ° C to precipitate adduct crystals. This was filtered to separate the crystals of the adduct and the mother liquor.
  • the flow rates were 16.5 k ⁇ and 46.5 k gZh, respectively. 10 wt% of this mother liquor was supplied to the mother liquor treatment step, and the other mother liquor was circulated as a part of the raw materials charged to the synthesis reactor.
  • adduct crystals were again dissolved in phenol at a flow rate of 27.2 kg / h, cooled to 50 ° C to precipitate crystals, filtered, and filtered to form adduct crystals ( 1 1.
  • the inside of the system is sealed with nitrogen, and the BPA and PL are sealed.
  • the internal temperature of the mixture was adjusted to 120 ° C.
  • an aqueous solution of caustic soda in an amount equivalent to neutralization was added for neutralization, and then supplied to the storage tank.
  • the liquid level in the storage tank has gradually risen slightly since the start of operation.
  • the mixture of BPA and PL in the BPA storage tank is continuously transferred to the PL removal process at 12. kg / hr, and heated to 180 ° C under a reduced pressure of 0.3 mniHg. Was removed, and BPA having a purity of 99.5% or more was obtained at a flow rate of 7.2 kg / hr (6.8 L / hr).
  • the obtained BPA was continuously supplied as it was to an aromatic polycarbonate production process described below.
  • the effluent from the top of the residue reactor 14 and the above-mentioned PL were mixed, and a sulfonic acid-type acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation: trade name Diaion SK-104) was added to the mixture.
  • the flow-type regeneration reactor 15 charged with L was charged at a flow rate of 4.2 kg / h, and reacted at 80 ° C. The resulting reaction was circulated to the first BPA reactor.
  • the above-mentioned BPA reactor was charged with commercially available PL (18.5 kg / h) and acetone (3.6 kg / h) in amounts corresponding to the amount of BPA purged and the amount of BPA obtained.
  • the BPA was continuously produced as the above system as a whole by supplying and synthesizing the reaction continuously. [Manufacture of PC]
  • the above-mentioned continuously supplied BPA and DPC are melted and mixed in a mixing tank 21 in a nitrogen gas atmosphere at a mixing ratio of 1.024 by weight, and the first vertical stirring controlled at 210 ° C and lOOT orr under a nitrogen atmosphere
  • the liquid was continuously supplied into the polymerization tank 22, and the liquid level was kept constant while controlling the valve opening provided in the polymer discharge line at the bottom of the tank so that the average residence time was 60 minutes.
  • the cesium carbonate was water solution as a catalyst to BPA 1 mole, was continuous fed at 0. 5 X 10- 6 moles of flow.
  • the polymerization solution discharged from the bottom of the tank was continuously and continuously supplied to the second and third vertical polymerization tanks 23 and 24 and the fourth horizontal polymerization tank 25. Average of each tank during the reaction The liquid level was controlled so that the residence time was 60 minutes, and at the same time PL by-products were distilled off.
  • the PC evaporating components which evaporate from the first and second polymerization tanks, were condensed and liquefied in the multi-stage condensers, a part of which was returned to each polymerization tank, and the rest was collected in the PC PL tank 29.
  • the gas evaporating from the third and fourth polymerization tanks 24 and 25 is solidified by one of the two freeze capacitors in parallel, and the solidified component is melted by switching operation with the other freeze capacitor, and the PC PL Collected in tank 29 (not shown).
  • the polymerization conditions in each reaction tank were as follows: the first polymerization tank (210 ° C, 10 Torr), the second polymerization tank (240 ° C, 15 Torr), the third polymerization tank (260 ° C, 0.5 Torr). Torr) and the fourth polymerization tank (280 ° C, 0.5 Torr).
  • the obtained polymer was pelletized while continuously adding butyl p-toluenesulfonate equivalent to 5 wt.
  • the Mv of the polycarbonate thus obtained was 21,000, and the initial ⁇ I was 1.8.
  • Comparative Example 1 the production speed after the storage tank was slightly increased so that the liquid level in the storage tank was constant, and BPA was continuously produced at 7.7 kgZhr.
  • the initial YI of the obtained PC was 1.8, but as the operation continued, the hue began to clearly deteriorate, and the quality deteriorated significantly when BPA was melted and held alone.
  • the second reactor was also adjusted to 150 ° C under + minute stirring, and the reaction solution was supplied to the degassing tower, where the intermediates, phenolic foam formate and phenol, were used as intermediates.
  • the reaction solution was supplied to the degassing tower, where the intermediates, phenolic foam formate and phenol, were used as intermediates.
  • countercurrent contact with nitrogen gas was performed at 160 ° C.
  • a reaction solution containing about 89% by weight of diphenyl carbonate was continuously withdrawn. Almost 100% of the supplied phosgene was converted to diphenyl carbonate.
  • the exhaust gas from the synthesis of diphenyl carbonate (the reaction exhaust gas from the second reactor and the nitrogen-containing exhaust gas from the degassing tower) is mixed and cooled to 10 ° C, and the condensate flows to the second reactor. It was returned and the uncondensed gas, hydrogen chloride, was neutralized with an aqueous alkaline solution and discharged.
  • reaction solution and diphenyl carbonate recovered from a recovery distillation column described later were about 5 weight by weight. /.
  • Sodium hydroxide aqueous solution (mixture of a 25% by weight aqueous solution of sodium hydroxide and an aqueous phase separated after washing in the next step) was supplied to a neutralization mixing tank made of Teflon Reichung, respectively, to obtain 80%.
  • the mixture was mixed at about ° C for about 10 minutes and adjusted to pH 8.5.
  • the organic phase after neutralization was separated by standing, and then transferred to a washing and mixing tank.
  • the separated aqueous phase (containing phenol and salt) was brought into contact with steam to recover almost all the phenol contained as phenol-containing water, which was then supplied to the next-step washing and mixing tank. Approximately 30 weight of the organic phase in the water mixing tank. / 0 , and the aqueous phase (recycled to the neutralization and mixing tank described above) is separated to obtain crude diphenyl carbonate (containing water, catalytic pyridine and phenol). Was.
  • the low-boiling distillation tower has an inner diameter of 100 mm and a height of 4.0 m. It has a reflux unit at the top, a raw material supply unit at the center, and a sulza packing (manufactured by Sumitomo Heavy Industries) in the concentration unit and the recovery unit.
  • a continuous distillation column with eight theoretical plates was used.
  • the diphenyl carbonate bottom of the low-boiling distillation column
  • the high-boiling distillation column has an inner diameter of 10 Omm and a height of 4. Om. It has a reflux unit at the top, a raw material supply unit at the center, and a sulza packing (Sumitomo Heavy Industries, Ltd.) packed in the concentration unit and recovery unit.
  • a sulza packing Suditomo Heavy Industries, Ltd.
  • An eight-stage continuous distillation column was used. Distilled under the conditions of a vacuum of 20 torr, a heating medium oil temperature of about 240 ° C, a top temperature of about 180 ° C, a reflux ratio of 0.5, and a distillation rate of about 90%.
  • the bottoms purged from the bottom of the high-boiling distillation column are simultaneously supplied to the recovery distillation column and continuously distilled under the following conditions, and diphenyl carbonate recovered from the top at about 0.7 kg ghr Was recycled to the neutralization mixing tank described above, and the bottoms were continuously purged at about 0.04 kg / hr.
  • the conditions for the recovery and distillation of diphenyl carbonate are 50 mm in inner diameter and 3.0 m in height, with a reflux unit in the upper part, a raw material supply part in the center, and Sulza packing in the concentration part and the recovery part (Sumitomo Heavy Industries, Ltd.) was carried out using a continuous distillation column with 8 theoretical plates and a vacuum of 20 torr, a heating medium oil temperature of about 240 ° (top temperature of 180 ° C, and a reflux ratio of 0.5.
  • the polymerization liquid discharged from the bottom of the tank was successively and continuously supplied to the second, third and fourth vertical polymerization tanks and the fifth horizontal polymerization tank. During the reaction, the liquid level was controlled so that the average residence time in each tank was 60 minutes. At the same time, phenol, a by-product, was distilled off.
  • the gases evaporating from the first to third polymerization tanks were each condensed and liquefied in a multistage condenser, part of which was refluxed to each polymerization tank, and the rest was collected in a by-product phenol tank.
  • the gas evaporating from the 4th to 5th polymerization tanks is solidified by one of two freeze capacitors in parallel, and the solidified component is melted by switching operation with the other freeze condenser, and the above-mentioned by-product fuel Collected in tank.
  • the polymerization conditions in each reaction tank were as follows: 2nd polymerization tank (210 ° C, 10 Torr), 3rd polymerization tank (240 ° C, 15 Torr), 4th polymerization tank (260 ° C, 0.1 Torr). 5 Torr) and the fifth polymerization tank (270 ° (: 0.5 Torr)), and the polycarbonate was operated at a production rate of 8.0 kg / hr.
  • the dehydrochloric acid treatment solution b was sent to the mixing tank 3 and then sent to the Teflon-lined neutralizing tank 4. Further, an aqueous solution of about 5% by weight of sodium hydroxide was supplied to an alkaline neutralization tank 4 and mixed at 80 ° C. for about 10 minutes to adjust the pH to 8.5. After the neutralization, the organic phase was allowed to stand and separated, and then transferred to the washing tank 5. Rinse tank 5 weighs about 30% of the organic phase. / 0 is washed with the corresponding hot water, the aqueous phase was separated, are crude DP C (water 1 by weight. / 0, pyridine 2 wt%, PL 8 wt%, DPC 8 9 wt ./.-Containing) A washing treatment liquid f was obtained.
  • the first PL distillation column 6 has an inner diameter of 150 mm and a height of 4.0 m, and has a reflux device at the top, a raw material supply unit at the center, and Sulza packing in the concentration unit and the recovery unit.
  • the first distillation residue g was continuously supplied to the second PL distillation column 7.
  • the second PL distillation column 7 has an inner diameter of 20 Omm and a height of 4. Om. It has a reflux unit at the top, a raw material supply unit at the center, and a Sulza packing (manufactured by Sumitomo Heavy Industries, Ltd.) at the concentration unit and the recovery unit. A packed continuous distillation column with 8 theoretical plates was used. Distillation was carried out under the conditions of a vacuum of 20 torr, a heating medium oil temperature of about 240 ° C, a top temperature of about 180 ° C, and a reflux ratio of 0.5, and the purified DPC from the top was about 23.5 kg / hr.
  • DPC distillation residue (XI) containing 0 to 0 DPC distillation residue (XI) containing about 350 weight ppm and about 40 weight p111 of an alkyl-substituted product and a bromide-substituted product, respectively.
  • Purified DPC was a high-purity product containing 80% by weight of PL.
  • the gas evaporating from the fourth polymerization vessel is solidified by one of the two freezing condensers in parallel, and by switching operation with the other freeze condenser, the solidified part is melted and collected in the PC recovery PL tank 29. (Not shown).
  • the polymerization conditions for each reaction tank were as follows: the first polymerization tank (210 ° C, 100 Torr), the second polymerization tank (240 ° C, 15 Torr), the third polymerization tank (260 ° C, 0.5 Torr). Torr) and the fourth polymerization vessel (270 ° C., 0.5 Torr).
  • the DPC was 5.0 weight / 0 . 8.8% is 0.5% by weight, Oligomer is 0.3% by weight, and moisture is 0.2% by weight. was detected.
  • This PC evaporation component p was continuously purified in the following two distillation columns (first PL distillation column 30, second PL distillation column 31).
  • the first PL distillation column 30 distills the contained water together with PL as a low-boiling fraction (D6) of PC at 200 Torr and a reflux ratio of 2 to obtain the first-stage residue q was continuously supplied to the second PL distillation column 31.
  • purified PL was obtained from the top at 50: 0: 1: 1, reflux ratio 0.5, and DPC, BPA, and oligomer were obtained from the bottom, respectively.
  • weight 0 /., 7 weight 0/0, and 4 wt. / 0 PL distillation residue containing (X 2) was continuously purged.
  • the DPC distillation residue (XI) purged from the high-boiling distillation step of the DPC manufacturing process in Experimental Example 1 was supplied to the DPC recovery distillation column 8 and continuously distilled under the following conditions. Distilled and collected. The collected distillate was recycled to the washing process of the DPC manufacturing process, improving yield.
  • DPC recovery distillation residue which is a high-boiling substance (DPC containing about 7000 weight ppm and about 800 weight ppm of alkyl- and bromide-substituted DPCs, respectively) (X 1 ') was continuously purged.
  • the conditions for recovery and distillation of DPC are as follows: internal diameter 100 mm, height 3. Om, reflux equipment at the top, raw material supply section at the center, and Sulza packing in the concentration section and recovery section (manufactured by Sumitomo Heavy Industries, Ltd. ') ) was packed in a continuous distillation column with 8 theoretical plates, with a vacuum of 20 torr, a heating medium oil temperature of about 240 ° C, a top temperature of 180 ° C, and a reflux ratio of 0.5.
  • a sulfonic acid type acidic cation exchange resin manufactured by Mitsubishi Chemical Corporation
  • a flow-through BPA reactor having a temperature controller, in which 15% of sulfonic acid groups are neutralized with 4-pyridineethanethiol.
  • 60 L of Diaion SK-104 was filled.
  • a mixed solution having a PL: acetone molar ratio of 10: 1 was charged into this BPA reactor at a temperature of 80 ° C. and a flow rate of 68.2 kg / hr, and reacted.
  • the conversion of acetone was 80%.
  • the reaction mixture was purged of low-boiling substances (unreacted acetone, water, and a part of PL) at a flow rate of 5.1 kgZh, and then cooled to 50 ° C to precipitate adduct crystals. This was filtered to separate the crystals of the adduct and the mother liquor. Flow rate were respectively 1 6. 51 ⁇ 11 and 46. 5 k gZh. 10 wt% of this mother liquor was supplied to the mother liquor treatment step, and the other mother liquor was circulated as a part of the raw materials charged to the synthesis reactor.
  • the adduct crystals obtained here were again dissolved in phenol at a flow rate of 27.2 kgZh, then cooled to '50 ° C to precipitate crystals, filtered and filtered to obtain adduct crystals ( (11.3 kg / h) and mother liquor (32.5 kg / h).
  • the separated crystals were heated at 180 ° C under a reduced pressure of 0.3 mmHg to remove PL, and BPA having a purity of 99.95 ° / 0 or more was obtained at a flow rate of 7.7 kgZh.
  • the effluent from the top of the residue reactor 14 and the above-mentioned PL were mixed, and a sulfonic acid-type acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation: trade name: Diaion SK-104) was added.
  • the flow-type regeneration reactor 15 filled with L was charged at a flow rate of 4.2 kg / h, and reacted at a temperature of 80 ° C. The resulting reaction was circulated to the first BPA reactor.
  • the amount of acetone (3.6 kg / h) and PL (18.5 kg / h) corresponding to the amount purged out of the system and the amount of BPA obtained were supplied to the BPA reactor described above. Replenishment and continuous synthesis reaction were performed, and BPA was continuously manufactured as the whole system.
  • the liquid level at the bottom of the residue reactor 14 was operated under constant conditions (residence time: 1 hr), and the bottom liquid was 0.6 kgZh and was purged out of the system. Almost 100% of PL and decomposition products of BPA are recovered from the top of the residue reactor 14 in the mother liquor treatment process.Effective components are efficiently recovered simply by recycling each of the above distillation residues to the existing predetermined process did it.
  • DPC recovered distillation residue from the above DPC manufacturing process (X 1 ', alkyl-substituted DPC: about 7000 wt ppm, brom-substituted DPC about 800 wt ppm, the remainder is DP C) at a flow rate of 0.1 kg / h, by-products of the PC manufacturing process: PL distillation residue purged from the PL purification process (X2, PL 22% by weight, 0% ⁇ 67% 0 /., BPA 7%) 0/0, the sediment Goma 4 wt% content) at a flow rate of 0. 1 5 kg / h, was supplied to the BP a manufacturing process mother liquor treatment step ((g) step). At this time, the liquid level at the bottom of the residue reactor 14 was operated under constant conditions (residence time: 1 hr), and the bottom liquid was purged out of the system at 0.6 kgZh.
  • the active ingredient supplied to the recovery distillation column 8 and distilled out of the DPC recovery distillation column 8 is recycled to the washing step of the above-mentioned DPC production process, and the DPC recovered from the DPC recovery distillation column 8
  • the recovered distillation residue (XI ') was supplied to the mother liquor treatment step (step (g)) of the above BPA production step, and the active ingredient recovered in this step was used as a raw material for synthesis in the BPA production step.
  • the water content of the by-product phenol is limited to a predetermined range. Therefore, even if this by-product phenol is used as a part of the raw material in the diphenyl carbonate production process or the bisphenol A production process, the production efficiency can be improved. Decrease is small and almost maintained.
  • the impurities contained in the by-product phenol recovered in the early stage of the polymerization in the aromatic polycarbonate production process are the raw materials and products in the diphenyl carbonate production process, so the by-product phenol containing these impurities is It can be used as at least a part of the phenol used in the diphenyl carbonate production step without purification.
  • a PC storage step is provided to store the liquefied product of the PC evaporation component and / or the by-product phenol collected in the PL distillation step
  • the diphenyl obtained in the DPC distillation step is added after the DPC distillation step.
  • a DPC storage step for storing carbonate is provided, and / or a BPA storage step for storing a mixture of bisphenol A and phenol is provided between the BPA crystallization separation step and the PC polymerization step.
  • the quality of the compound obtained in each step can be kept within a certain range, and the subsequent step can be continuously performed regardless of the convenience of the previous step.
  • the active ingredients contained therein can be fully utilized, thereby improving the overall efficiency. And reduce environmental impact.
  • the total height of the part of the vacuum pipe connecting the condenser and the vacuum equipment that rises upside down from the slope is 1 m or less, the liquid and solid components that accumulate in the rising part are minimized. It is possible to prevent the pipe from being completely blocked or the pressure loss from becoming too large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の課題は、副生フェノールの対処法として、PC製造工程において生じる副生PLの含水率を所定範囲内に限定することにより、送られるBPA製造工程及びDPC製造工程での製造効率を保持し、全体として、PCの製造効率を保持することに係わる。本発明は、ジフェニルカーボネート製造工程、ビスフェノールA製造工程、芳香族ポリカーボネート製造工程を含む、芳香族ポリカーボネートの製造方法において、上記芳香族ポリカーボネート製造工程で回収される副生フェノール中に含まれる水分量を、0.2重量%以下として、上記ジフェニルカーボネート製造工程、及び/又はビスフェノールA製造工程の原料として用いることを特徴とする。

Description

明 細 書 芳香族ポリカーボネートの製造方法 <技術分野〉
この発明は、 芳香族ポリカーボネートの製造方法に関する。 ぐ背景技術 >
芳香族カーボネート (以下、 「PC」 と略する。) は、 一般的に、 ジフエュルカ ーボネート (以下、 「DPC」 と略する。)、 及ぴビスフエノール A (以下、 「BP A」 と略する。) を重合反応して製造される。
[副生フエノールの処理] .
上記重合反応において、 フエノール (以下、 「P L」 と略する。) が副生する。 この副生 PLには、 不純物として、 DPC、 B PA、 D PC及び B P Aが 1〜数 分子反応したオリ ゴマー等が含まれる。 この副生 P Lは、 BPA製造工程や DP C製造工程に戻される方法が知られている。
すなわち、 上記副生 P Lを、 そのまま又は低純度に精製して B P A製造工程に 戻す方法が特許文献 1.に記載されている。 得られる副生 PLの精製度を低くして もいいのは、 D P Cや上記オリゴマーが加水分解されて、 P Lや B P Aとなり、 B P A製造工程に混入しても問題ないからである。
さらに、 上記副生 PLを、 高純度に精製して DP C製造工程に戻す方法が、 特 許文献 2、 特許文献 3等に記載されている。 得られる副生 P Lの精製度を高くす る必要があるのは、 B P A等が DP C製造工程に混入し、 閉塞するのを防止する ためである。
[製造工程間の連携]
また、 通常、 B PAは、 精製された後の溶融状態のものを冷却し、 固形状とし たものを使用しているが、 B P Aの製造設備が、 PCの製造設備と近接して設け られている場合、 上記溶融状態のまま、 あるいは、 B PAと P Lの一定組成の混 合溶液のまま、 上記 P Cの製造設備に供して重合を行うと、 あらためて加熱した り、 精製したりする必要がなくなり、 熱効率が向上する。
夜処理]
さらに、 上記の D P C及び B P Aの製造工程、 及ぴ P Cの製造工程においては 、 それぞれ有機物を大量に含む排液が生じる。
すなわち、 まず、 上記 P Cの製造工程においては、 上記 D P C及び B P Aを原 料とし、 重合工程を経て P Cを製造する主工程において、 上記重合工程での蒸発 成分を液化して蒸留工程にかけることによって P Lを回収した後の蒸留残渣が排 液となる。 この蒸留残渣には、 P L、 D P C、 B P A、 D P C及び B P Aが数分 子結合したオリゴマー等が含有しており、 これらの回収は、 P Cの収率に大きく 影響する。
これに対し、 上記蒸留残渣を上記重合工程に戻す方法が、 特許文献 3や特許文 献 4に開示され、 また、 上記蒸留残渣を再ぴ蒸留して上記各成分を回収し、 回収 蒸留残渣を燃料として使用する方法が特許文献 1に開示されている。
また、 上記 D P Cの製造工程においては、 P L及びカルボニル化合物を原料と し、 反応工程及び蒸留工程を経て D P Cを製造する主工程において、 上記蒸留ェ 程で生じる蒸留残渣が排液となる。 この蒸留残渣には、 D P Cが含まれており、 この回収は、 D P Cの収率に大きく影響する。
これに対し、 上記蒸留残渣を再度蒸留し、 D P Cを回収し、 これを上記反応ェ 程終了後の反応液に戻す方法が、 特許文献 5に開示されている。
さらに、 特許文献 6に記載されているように、 上記 B P Aの製造工程において は、 P L及びアセトンを原料とし、 合成反応工程、 晶析工程、 及び固液分離工程 を経て B P Aを製造する主工程において、 上記固液分離工程から分離された母液 には、 多量の P L及び B P Aの他、 2, 4一異性体、 トリスフエノール類、 クロ マン化合物等の副生物を含み、 さらに、 少量の着色不純物や着色性不純物を含む 。 そして、 この母液は、 B P Aの反応原料となる P Lや B P Aを含むことから、 全工程に循環して再使用されるが、 処理をせずに全量を循環すると、 前記副生物 や、 着色不純物及び着色性不純物の蓄積が起こることから、 それらの副生物ゃ不 純物の除去が必要となる。 また、 D PCを製造する工程においては、 還流させつつ DP Cを蒸留して精製 し、 P Cを製造する工程においては、 P Lを D P Cと蒸留分離しながら除去する 。 これらの蒸留操作は、 蒸留温度を下げるために、 真空設備を設けて減圧下で行 われる (特許文献 7参照)。
[特許文献 1] 特開 2000— 53 75 9号公報
. [特許文献 2 ] 特開平 10— 601 06号公報
[特許文献 3] 特開平 9一 255772号公報
[特許文献 4] 特開平 9一 1 65443号公報
[特許文献 5] 特開 2002— 322 1 30号公報
[特許文献 6] 特開平 5— 33 10.88号公報
[特許文献 7] 特開平 9一 38402号公報
<発明の開示〉
[副生フエノールの処理、 3つの製造工程統合時の問題]
しかしながら、 上記の場合は、 いずれも、 B PA、 DPC等、 水以外の不純物 の含有量に注目しているものの、 水の含有量については検討されていない。 重合 原料である D P Cや B P C、 特に一旦固形化し保持されたものを使用すると、 原 料に含まれている水分や、 更には重合触媒とともに供給される水分が副生フエノ ールに同伴される。 水の存在は、 B P A製造工程においては、 触媒の活性低下を 引き起こし、 反応転化率を低下させる。 また、 D PC製造工程においては、 触媒 の活性低下につながると共に、 製造される DP Cの加水分解につながる。
さらに、 上記 P C重合工程で生じる副生フエノールには、 上記の不純物が含ま れる。 これらの副生物には、 D PC製造工程に送られても問題ないが、 BP A製 造工程に送られると問題となる不純物や、 これと逆の場合の不純物が含まれる。
さらにまた、 上記の通り、 P C重合工程で留出するフエノールを主成分とする 留出成分からは、 水分除去のための工程が必要となる。 ところが、 D PC製造ェ 程、 B P A製造工程及び P C製造工程を 1力所にまとめた場合においては、 B P A製造工程にも水分除去のための工程を有するので、 同様の工程が重複して存在 することとなる。
[製造工程間の連携]
また、 B P Aの製造工程の、 得られた B P Aを晶析する工程において、 使用さ れる晶析装置等の接液部に固体の付着が生じやすく、 数ケ月に 1度は、 この工程 を停止させて、 掃除をする必要がある。 このため、 B P Aの製造工程の、 合成反 応工程から晶析工程に至る工程は、 断続的な運転となる。
これに対し、 D P C製造工程においては、 上記のような問題はなく、 連続的に D P Cを製造することができる。 このため、 B P Aを溶融状態のまま、 必要量貯 蔵することにより、 P Cを連続的に重合することが可能となる。
しかし、 B P Aを溶融状態で保持すると、 黄変、 分解等が生じやすく、 得られ る P Cの品質に影響を与えることとなる。
液処理]
さらに、 上記 P Cの製造工程における蒸留残渣には P Lが含有されているため 、 その全てを重合工程に戻すと、 重合開始当初から P Lが存在することとなり、 初期の重合速度に影響を与える。 さらに、 P Cの製造工程における蒸留残渣は、 一般的に着色しており、 そのままリサイクルしたのでは、 製品の P Cの着色を招 くこととなる。 また、 上記蒸留残渣を再度蒸留しても、 その回収蒸留残渣にも多 少の上記各成分が含まれるので、 そのまま廃棄処分するのは、 製造効率に影響す ると共に、 環境負荷の問題が生じる。
ま.た、 上記 D P Cの製造工程における蒸留残渣は、 そのまま廃棄処理がされて いる。 この蒸留残渣には、 D P Cがまだ含まれており、 そのまま廃棄処分するの は、 製造効率に影響すると共に、 環境負荷の問題が生じることがある。 さらにまた、 減圧下で蒸留すると、 P Lや D P C等の留出成分が、 真空設備に 引っ張られて、 真空設備に連結される配管の途中に液溜まりを生じたり、 この溜 まった留出成分が固まったりして、 真空状態を維持できなくなる場合がある。 ま た、 留出した P Lや DPC等の留出成分をポンプによって還流させる場合、 還流 用の配管内で留出成分が固化するなどの原因によって詰まるおそれもあった。 そこでこの発明は、 副生フエノールの対処法として、 P C製造工程において生 じる副生 P Lの含水率を所定範囲内に限定することにより、 送られる B P A製造 工程及ぴ DP C製造工程での製造効率を保持し、 全体として、 PCの製造効率を 保持することを目的とする。
さらに、 芳香族ポリカーボネート重合工程で生じる副生フエノールに含まれる 不純物にあわせて、 フエ二ルカーポネート製造工程又はビスフエノール A製造 工程に送ることにより、 副生フエノールの精製処理を省力化することも目的とす る。
さらにまた、 3つの製造工程統合時の問題においては、 既存のジフエ二ルカ一 ボネート及ぴビスフエノール Aを製造するために用いられる工程を利用すること により、 芳香族ポリカーボネート重合工程で生じるフエノールを主成分とする留 出成分の精製処理を省力化することも目的とする。
また、 製造工程間の連携については、 十分な品質を有する P Cの製造方法を提 供できる製造工程間の連携方法を提供することを目的とする。
さらに、 排液処理法として、 D P C製造工程における蒸留残渣、 及び PC製造 工程における蒸留残渣を、 P Cを製造する各工程の特定位置に戻すことにより、 全体の効率を向上させ、 かつ、 環境負荷を低減させることを目的とする。
さらにまた、 蒸留工程については、 P Lや DP Cが留出する装置において、 配 管内で液溜まりや固化を生じにくくすることを目的とする。
この発明は、 副生フエノールの対処法として、 フエノール (P L) 及びカルボ ニル化合物を原料とし、 ジフエニルカーボネート (DPC) を製造するジフエ- ルカーボネート (DPC) 製造工程、 及び/又は、 フエノール (P L) 及びァセ トンを原料としてビスフエノール A (BP A) を製造するビスフエノール A (B PA) 製造工程、 並びに、 上記ジフエ-ルカーポネート (DPC) 及びビスフエ ノール A (B PA) を原料とし、 P C重合工程を経て芳香族ポリカーボネート ( P C) を製造すると共に、 副生フエノールを回収する芳香族ポリカーボネート ( PC) 製造工程を含む、 芳香族ポリカーボネート (PC) の製造方法において、 上記芳香族ポリカーボネート (PC) 製造工程で回収される副生フエノール中に 含まれる水分量を、 0. 2重量0 /0以下として、 上記ジフエ-ルカーポネート (D PC) 製造工程、 及び/又はビスフエノール A (BPA) 製造工程の原料の一部 として用いることを特徴とする。
また、 上記ジフエ二ルカーポネート (DP C) 製造工程で原料として使用され るフエノールとして、 クレゾール及ぴ Z又はキシレノールを 20〜 1000重量 P pm含有するフエノール (P L) を用い、 上記ビスフエノール A (BPA) 製 造工程で原料として使用されるフ ノールの少なくとも一部として、 上記芳香族 ポリカーボネート (PC) 製造工程の重合工程で生じるフエノール (PL) を用 いることができる。
さらに、 上記芳香族ポリカーボネー卜製造工程で副生するフエノールのうち、 50〜9 5重量。 /0を上記ジフエニルカーボネート製造工程で使用するフエノール の少なくとも一部として使用し、 かつ、 50〜5重量0 /0を上記ビスフエノール A 製造工程の原料の少なくとも一部として使用することを特徴とする。
また、 各工程の連携については、 上記 P L蒸留工程の前及ぴノ又は後に、 上記 P L蒸留工程にかける前の P C蒸発成分の液化物、 及び 又は上記 P L蒸留工程 で回収された副生フエノールを貯蔵する P C貯蔵工程を設けること、 上記 D P C 蒸留工程の後に、 この D P C蒸留工程で得られたジフエニルカーボネートを貯蔵 する DP C貯蔵工程を設けること、 及び Z又は上記 B P A晶析 '分離工程と、 上 記 P C重合工程との間に、 ビスフエノール Aとフエノールとの混合物を貯蔵する B P A貯蔵工程を設けることを特徴とし、 必要に応じて、 各貯蔵工程に用いられ る貯蔵タンクの容量を、 下記のように規定することを特徴とする。
• 1 0≤ (V c/F c ) ≤ 1 00 (1)
(なお、 式 (1) において、 Vcは、 PC貯蔵タンクの容量 (m3) を示し、 F cは、 P C蒸発成分の液化物又は副生フユノールの供給速度 (ni3/h r) を示 す。)
• 1 0≤ (V d/F d) ≤ 1 00 (2) (なお、 式 (2) において、 Vdは、 D PC貯蔵タンクの容量 (m3) を示し、 F dは、 ジフヱニルカーボネートの供給速度 (m3Zh r) を示す。)
• 10≤ (V b/F b) ≤ 1000 (3)
(なお、 式 (3) において、 Vbは、 BP A貯蔵タンクの容量 (m3) を示し、 F bは、 P C重合工程に供されるビスフエノール Aの供給量 (m3/h r) を示 す。)
さらに、 排液処理法として、 P L蒸留残渣を、 D P C蒸留工程及ぴ Z又は D P C回収蒸留工程に送ったり、 P L蒸留残渣並びに Z又は D P C蒸留残渣及び Z若 しくは DP C回収蒸留残渣を、 上記 BP A母液処理工程に送ったり、 P L蒸留残 渣を、 上記 D P C蒸留工程及び/又は DP C回収蒸留工程に送り、 次いで、 DP C蒸留残渣及びノ又は D P C回収蒸留残渣を、 上記 B P A母液処理工程に送るこ とを特徴とする。 - さらにまた、 蒸留工程については、 D P C蒸留工程又は P L蒸留工程の蒸留塔 に、 留出する物質を凝縮する凝縮器、 系内を減圧にする真空設備、 及び、 上記凝 縮器と上記真空設備とを繋ぐ真空配管を設け、 上記真空配管は、 上記凝縮器側か ら上記真空設備側へ向かって下向きの傾斜を有しており、 かつ、 上記凝縮器側か ら上記真空設傭側へ向かって上方に立ち上がる部分の高さの合計が lm以下とす ることを特徴とする。 く図面の簡単な説明〉
図 1は、 この発明に係る DP C製造工程のフローの例を示す工程図であり、 図 2は、 この発明に係る B P A製造工程のフローの例を示す工程図であり、 図 3は、 この発明に係る B P A製造工程の水分離工程 (工程 (b— 2)) のフロ 一の例を示す工程図であり、
図 4は、 この発明に係る B P A製造工程の母液処理工程 (工程(g)) のフロー の例を示す工程図であり、
図 5は、 この発明に係る P C製造工程のフローの例を示す工程図であり、 図 6は、 この発明に係る P C製造工程の他のフローの例を示す工程図であり、 図 7は、 この発明にかかる DP C製造工程、 B P A製造工程、 及び PC製造ェ 程に DP C貯蔵工程、 B P A貯蔵工程、 及び 又は PC貯蔵工程を設けた場合の フローの例を示す工程図であり、
図 8は、 この発明にかかる DP C製造工程、 B P A製造工程、 及び PC製造ェ 程において、 P L蒸留残渣 (X2)、 D PC蒸留残渣 (X l)、 及び/又は DP C 回収蒸留残渣(X 1 ')を所定工程に送ることを示したフローの例を示す工程図で あり、
図 9は、 この発明にかかる還流装置の説明図である。
なお、 図中の符号、 1は DP C反応器、 2は脱塩酸塔、 3は混合槽、 4はアル カリ中和槽、 5は水洗槽、 6は第 1 DP C蒸留塔、 7は第 2D PC蒸留塔、 8は D PC回収蒸留塔、 1 1は B P A用回収 P Lタンク、 1 2は P L分離塔、 1 3は フエノール蒸発器、 14は残渣反応器、 - 1 5は再生反応器、 2 1は混合槽、 22 は第 1重合槽、 23は第 2重合槽、 24は第 3重合槽、 25は第 4重合器、 26 は熱交換器、 27は熱交換器、 28はコンデンサ、 29は P C用回収 P Lタンク 、 29 aは第 1 P C用回収 P Lタンク、 29 bは第 2 P C用回収 P Lタンク、 3 0は第 1 P L蒸留塔、 3 1は第 2 P L蒸留塔、 3 2は押出機、 33 a, 33 bは 還流装置、 4 1は蒸留塔、 42は凝縮器、 43は真空設備、 44は真空配管、 4 5は凝縮液タンク、 46は送液ポンプ、 47は還流配管、 48はミストキャッチ ヤー、 49は液抜き口、 50は供給口、 5 1は弁、 52は弁、 53は液抜き口、 54は液抜き口、 5 5は供給口、 56は弁、 57は取り出し口、 Aはアセトン、 B P Aはビスフエノール A、 C 1はアルカリ系触媒、 C 2は塩基性触媒、 CDC はホスゲン、 D 1は塩酸ガス、 D 2は中和排水、 D 3は排水、 D 4は BP A低沸 留去分、 D 5は排ガス、 D 6は P C低沸留去分、 D 7は廃液、 AWは水 ·ァセト ン混合物、 D P Cはジフエニルカーボネート、 E 1はアルカリ性水溶液、 Fは混 合ガス、 Iは酸、 Jは添加剤、 pは PC蒸発成分、 p iは第 I PC蒸発成分、 p 2は第 2 PC蒸発成分、 PLはフエノール、 s— P Lは副生フエノール、 Wは水 、 1は0?じ蒸留残渣、 X I ' は回収蒸留残渣、 X 2は P L蒸留残渣、 aは D PC含有反応液、 bは脱塩酸処理液、 dは DP C含有回収液、 eは中和処理液、 f は水洗処理液、 gは第 1蒸留残渣、 kは P L回収液、 pは P C蒸発成分、 qは 第 1段残渣である。 く発明を実施するための最良の形態〉
以下、 この発明の実施形態について詳細に説明する。
この発明にかかる芳香族ポリカーボネート (PC) の製造方法は、 ジフエニル カーボネート (DPC) 及ぴビスフエノール A (B PA) を重合させて製造する 方法である。
[D PC製造工程]
DPCは、 P L及びカルポニル化合物を原料として製造される。 この力ルポ二 ル化合物は、 D PCの力ルポ二ル基を形成することができれば、 制限なく用いら れる。 このようなカルボニル化合物の例.としては、 ホスゲン (以下、 「CDCJ と 略する。)、 一酸化炭素、 炭酸ジアルキル等があげられる。 以下において、 カルボ ニル化合物として CD Cを用い、 反応後に D P C洗浄工程及び D P C蒸留工程を 経て、 D PCを製造する工程について説明する。
上記 DP C製造工程は、 図 1に示すプロセスから構成される。 すなわち、 原料 として、 P L、 CDCを用い、 これとピリジン等のアルカリ系触媒 (C 1) とを D P C反応器 1に導入する D P C反応工程を行う。 このときの反応条件は特に限 定されないが、 P Lが溶融状態にある 50〜180°C、 常圧下が好まじい。 また 、 と〇0〇の混合比 (モル比) は、 CD Cの完全消費の観点から、 PL 1モ ルに対して、 0. 40〜0. 49モルが好ましい。
上記 D P C反応工程で製造された D P C含有反応液 aは、 脱塩酸塔 2に送られ 、 脱塩酸工程が行われる。 D PC反応器 1及び脱塩酸塔 2で生じた塩酸ガス (D 1) は、 回収され、 塩酸処理工程 (図示せず) に送られる。
次いで、 得られた脱塩酸処理液 bは、 D P C洗浄工程に付される。 この DPC 洗浄工程は、 下記の中和工程及び水洗工程から構成される。 すなわち、 上記脱塩 酸処理液 bは、 混合槽 3に送られ、 次いで、 アルカリ中和槽 4に送られ、 アル力 リ性水溶液 (E 1) で上記脱塩酸塔で除去しきれなかった塩酸を中和する中和ェ 程が行われる。 ここで排出される中和排水 (D 2) は、 排水処理工程 (図示せず ) に送られ、 含有する有効な有機成分を回収した後、 活性汚泥処理に付される。 そして、 得られだ中和処理液 eは、 水洗槽 5に送られ、 水 (W) で水洗する D PC水洗工程が行われる。 この DP C水洗工程で排出される排水 (D 3) は、 前 記中和工程のアルカリ性水溶液 (E 1) を調整する際のアルカリ希釈剤として再 利用することが可能である。
上記 D P C水洗工程で得られた水洗処理液 f は、 蒸留塔に送られ、 D P C蒸留 工程が行われる。 図 1においては、 3つの蒸留塔が用いられるが、 これに限られ るものではない。 3つの蒸留塔を用いる場合、 第 I D PC蒸留塔 6で水、 P L及 びアルカリ系触媒を含有する混合ガス (F) を回収する。 この混合ガス (F) は 、 各成分を分離して、 反応系に再利用することができる。
そして、 上記第 1 D P C蒸留塔 6の第 1蒸留残渣 gを第 2 D P C蒸留塔 7で再 蒸留し、 製品である精製された DP Cを蒸留分として回収する。
上記第 ID PC蒸留塔 6での蒸留条件としては、 水、 アルカリ系触媒、 PLが 蒸留され、 D PCが残留する条件であれば特に限定されるものではなく、 1. 3 〜1 3 k P aが好ましい。 温度はその圧力下での沸点となる。 また、 上記第 2D P C蒸留塔 7での蒸留条件としては、 D PCが蒸留され、 DP Cより高沸の不純 物が残留する条件であれば特に限定されるものではなく、 1. 3〜6. 5 k P a で、 1 50〜220°Cが好ましい。
ところで、 第 2D PC蒸留塔 7での DP C蒸留残渣 X 1には、 フエノール含有 不純物であるメチルフエノールが反応した D P Cのメチル置換体、 CD C中の残 留臭素が反応した DP Cの臭素置換体を中心とする不純物が含有するが、 DP C そのものも含有する。 このため、 この D P C蒸留残渣 X 1を再び蒸留し、 ジフエ ニルカーボネート (DPC) を回収してもよい。 この場合、 図 1に示すように、 D PC蒸留残渣 X Iを、 D P C回収蒸留塔 8を用いて回収蒸留工程にかける。 こ れにより、 D PC含有回収液 dを蒸留回収することができる。 そして、 上記の D P Cのメチル置換体や臭素置換体が濃縮された D P C回収蒸留残渣(X 1 ')が蒸 留釜残側から回収される。 上記 DP C回収蒸留塔 8での蒸留.条件としては、 D PCが蒸留され、 DP Cよ り高沸の不純物が残留する条件であれば特に限定されるものではなく、 1. 3〜 6. 5 k P a、 1 50〜220°Cが好ましい。
そして、 上記 DP C回収蒸留塔からの留出物である DP C含有回収液 dは、 D PCを多く含む成分であるので、 これを、 混合槽 3に送ることにより、 洗浄 -蒸 留工程に再投入することができ、 ジフエニルカーボネート (DPC) の回収効率 をより向上させることができる。
[B P A製造工程] .
B P Aの製造工程は、 図 2示すプロセスから構成される。 すなわち、 原料とし て P L及びアセトン (A) を用い、 B P A反応工程 (工程 (a))、 B P A低沸除 去工程 (工程 (b))、 B P A晶析 .分離工程 (工程 (c))、 加熱溶融工程 (工程 (d))、 PL除去工程 (工程 (e))、 造粒工程 (工程 (f )) を経由して B PAが 製造される。
次に、 各工程についてそれぞれ説明する。
上記工程 (a) は、 P Lとアセ トン (A) とを酸性触媒の存在下で、 縮合反応 させて B PAを生成させる工程である。 ここで用いる原料の P L及ぴアセトン ( A) は、 化学量論量よりも P Lが過剰な条件で反応させる。 P Lとアセトン (A ) とのモル比は、 PLZアセトン (A) の比として 3〜30、 好ましくは 5〜2 0の範囲である。 反応温度は通常 30〜 100°C、 好ましくは 50〜90°C、 反 応圧力は、 一般に常圧〜 5 k g / c m2 · Gで行われる。
上記酸性触媒としては、 塩酸等の無機酸や有機酸、 イオン交換樹脂等を用いる ことができる。 上記酸性触媒としてイオン交換樹脂を用いる場合、 ゲル型で架橋 度が 1〜 8 %、 好ましくは 2〜 6 %のスルホン酸型陽ィオン交換樹脂が適してい るが、 特に限定されるものではない。 また、 酸触媒として塩酸を用いてもよい。 上記スルホン酸陽イオン交換樹脂は、 そのままでも用いられるが、 必要に応じ て、 変性させたスルホン酸陽イオン交換樹脂を用いることができる。 上記変性に 要される化合物としては、 メルカプト基を有する化合物等があげられる。
上記メルカプト基を有する化合物としては、 2—アミノエタンチオール等のァ ミノアルカンチオール、 2— ( 4—ピリジル) エタンチオール等の ω—ピリジル アルカンチオール、 加水分解等により容易にメルカプト基を発現する 2, 2—ジ メチルチアゾリジン等のチアゾリジン類等、 従来からこの用途に用い得ることが 知られている任意のものを用いることができる。
上記工程 (a) で生成する反応混合物中には、 一般に B P Aの他に、 未反応 P L、 未反応アセトン (A)、 触媒、 反応生成水 (W) 及び着色物質等の副生物が含 まれる。
上記工程 (b) は、.上記工程 (a) で得られる反応混合液から B PA低沸点成 分と塩酸等の触媒とを除去する工程である。 ここでいう B PA低沸点成分とは、 反応生成水 (W)、 未反応アセトン (A)、 及ぴこれらと沸点が近いものである。 この工程では、 上記反応混合物からこれらの低沸点成分を例えば減圧蒸留等によ り除去し、 また触媒等の固体成分は濾過等によって除かれる。 なお、 固定床触媒 反応器を用いる場合は脱触媒の必要は特にない。 減圧蒸留は圧力 50〜30 Om mHg、 温度 70〜 1 30°Cの範囲を用いるのが好ましく、 未反応 P Lが共沸し てその一部が系外へ除かれることもある。
上記工程 (b) で留去された B PA低沸留去分 (D4) は、 水や少量のァセト ン (A) やフエノール (PL) を含む。 この B P A低沸留去分 (D4) は、 図 3 に示すように、 P L分離塔 1 2に送られ、 必要に応じて抽剤を用いて、 塔底より P Lを回収する水分離工程 (工程(b— 2)) を行う。 この水分離工程で得られた 回収液 は、 B PA用回収 P Lタンク 1 1に回収する。 そして、 上記 P L分 離塔 1 2の塔頂より回収した水■ァセトン混合物 AWは、 別途処理される。
上記工程 ( c ) は、 上記工程 ( b ) で得られた混合液を冷却し、 B P Aと P L との混合物を析出させて分離する工程である。 この工程 (c) に先立って、 上記 工程 (b) で得られた混合液中の B PAの濃度を、 P Lを留去又は追加すること により、 B PAの濃度を 10〜50重量。/。、 好ましくは 20〜40重量%に調整 しておくと、 上記付加物の収率を高め、 かつスラリー状の混合液の見掛けの粘度 を調節して、 作業性を改良する上で好ましい。 なお、 上記の B P Aと P Lとの 混合物としては、 B P Aと P Lとの付加物結晶、 B P A結晶と P L結晶との単純 混合物があげられる。
上記工程 (c) における冷却は、 一般に 45〜60°Cの温度まで行われ、 これ によって、 B P Aと' P Lとの付加物結晶又は各結晶が析出し、 系はスラリー状に なる。 この冷却は、 外部に設けた熱交換器ゃ晶析機に加えられる水の蒸発潜熱に よる除熱によって行われる。 次に、 このスラリー状の液を、 ろ過、 遠心分離等に より結晶と反応副生物を含む母液とに分離し、 結晶を次工程に供する。 分離され た母液の一部又は全部は、 後述する B P A母液処理工程 (g) を経由して、 工程 (a) にリサイクルして、 原料として使用される P Lの一部又は全部として用い 、 更に反応収率の向上を図る。
上記工程 (d) は、 上記工程 (c) で得られた結晶を加熱溶融する工程である 。 この付加物結晶の組成は、 B PAが 45~70重量%、 ?しが55〜30°/0の 範囲にあるのが一般的である。 この結晶を 100〜1 60°Cに加熱することによ り溶融して次工程に供する。
上記工程 (e) は、 上記工程 (d) で得られた溶融液から P Lを除去して溶融 B PAを得る工程である。 工程 (d) で得られた溶融液から、 減圧蒸留等の方法 によって P Lを除去することにより付加物を解離させて、 高純度の B P Aが回収 できる。 この減圧蒸留は、 圧力 10〜: L 0 OmmHg、 温度 1 50〜220°Cの 範囲で、 かつ系内に存在するビスフエノール A (B PA) とフエノーノレ (P L) との混合液の融点より少なくとも 10°C高い温度で行うのが好ましい。 減圧蒸留 に加えてスチームストリッビングを行って、 残存する P Lを除去する方法も提案 されている。 '
上記工程 (f ) は、 上記工程 (e) で得られた溶融状態の BP Aを冷却 ·固化 し、 造粒して粒状の製品を得る工程である。 溶融状態の B P Aは、 例えばスプレ 一ドライヤー等の造粒装置により液滴にされ、 冷却固化されて製品となる。 この 液滴は、 噴霧、 滴下、 散布等により調製され、 冷却は通常窒素あるいは空気等に よって行われる。
この B P Aの製造工程、 特に、 上記工程 (a) において、 B P A以外に、 2, 4' 一ビスフユノール A等の副生物 (以下、 「B PA副生物」 と称する。) も同時 に合成される。 そして、 この B P A副生物は、 主として、 上記工程 (c) の母液 に含有され、 上記 B P Aの製造工程を循環する。 このため、 上記 B P A副生物が この循環系内で蓄積する傾向にあり、 ある程度以上の蓄積が生じると、 上記工程 (c) での分離が不十分となり、 BP A側に付随してしまい、 結果として、 製品 B P Aの品質を低下させる傾向がある。 このため、 上記工程 (c) の母液の一部 又は全部を、 B P A母液処理工程 (工程 (g)) にかけることにより、 上記母液中 の上記 B P A副生物を分離 ·除去して減少させ、 これを B P A製造原料として用 いることにより、 製品 B PAの品質を保持することができる。
上記工程 (g) は、 蒸留により P Lを回収する方法、 又は、 母液を塩基性物質 の存在下で加熱してこの母液中の B P A副生物を分解して、 P L及ぴ P L誘導体 を生じさせ、 次いで、 これを、 酸触媒又はアルカリ触媒を用いて反応させて B P Aを製造し、 これを回収する方法である。
具体的には、 図 4に示すように、 まず、 上記母液の一部又は全部を PL蒸発器 1 3に導入し、 同時に水酸化ナトリゥム、 水酸化力リゥム等の塩基性物質を導入 する。 次いで、 P Lの沸点以上に加熱して蒸発させ、 PLを P L蒸発器 1 3の上 部から抜き出す。 そして、 P L蒸発器 1 3の下部から上記 B P A及ぴ B PA副生 物を主成分とする蒸発残渣を残渣反応器 14に送り、 180〜 300°Cの熱をか けることにより、 上記 B P A及ぴ B P A副生物に分解反応を生じさせ、 BP Aの 反応中間体であるィソプロべユルフェノール等の分解物を得、 これを塔頂から蒸 留留去させる。 また、 この残渣反応器 14で生じた釜残分は、 有機分を大量に含 む排液として、 焼却処理等の排液処理工程 (図示せず) に送られる。
上記 B P A副生物の分解物である P L及び P L誘導体は、 残渣反応器 14の上 部より留去されて再生反応器 1 5に送られるが、 残渣反応器 14の上部より取り 出す際、 上記 P L蒸発器 1 3の上部から抜き出された PLと混合させる。 これに より、 P L誘導体の濃度が希釈されて、 好ましくない副反応が生じるのを抑える ことができる。
次いで、 再生反応器 1 5において、 上記 B P A副生物の分解物である P L及び P L誘導体を、 酸触媒を用いて、 再度、 反応させることにより、 B PA等を生成 させる。 これは、 未反応の P Lと共に、 上記原料として使用される P Lに混合さ れて、 工程 (a) に送られる。 上記 B P Aは、 そのまま、 工程 (c) を経て回収 され、 P Lは、 原料として使用されるので、 B.PAの製造効率を高めることがで さる。
[PC製造工程]
上記 PCの製造工程は、 図 5に示すプロセスから構成される。 すなわち、 原料 として、 上記の方法で製造された DP C及び B P Aを用い、 これとアルカリ水溶 液等の塩基性触媒 (C 2) とを混合槽 21に導入して混合し、 次いで重合槽に送 つて PC重合工程を行う。 上記重合槽は、 重合で副生するフエノールを留出させ ながら縮重合が行うことができるものであれば、 特に制限はなく、 縦型槽、 横型 槽、 塔形式の槽の何れの槽であってもよい。
さらに、 上記重合槽の数は、 特に限定されないが、 重合反応が脱フエノールを 行いながらの縮重合であるので、 重合度に併せて重合条件をかえることを可能と するため、 複数の重合槽を用いるのが好ましい。 図 5においては、 縦型重合槽を 3つ (第 1重合槽 22, 第 2重合槽 23, 第 3重合槽 24)、及び横型重合器を 1 つ (第 4重合器 25) を直列に連結した重合槽群を示した。 この場合の重合条件 としては、 例えば、 第 1重合槽 22において、 200〜 250°Cで 50から 20 0 T o r r、 第 2重合槽 23において、 230〜280°Cで 1 0から 50To r r、 第 3重合槽 24において、 250~ 300°Cで 0. 2から 5 T o r r、 第 4 重合器 25において、 260〜320°〇で0. 05から 2 T o r rとすることが できる。 このようにすると、重合が進行するにつれて副生フエノール(以下、 「s 一 P L」 と略する。) が留去され、 所望の重合度の P Cを得ることができる。 上記 P C重合工程において生じた s— P Lを主成分とする P C蒸発成分 pは、 熱交換器 26, 27やコンデンサ 28によって液化され、 PC用回収 P Lタンク 29に送られる。 そして、 残りの排ガス (D 5) は、 真空設備側に吸引され処理 工程 (図示せず) に送られる。
上記 PC重合工程で製造された PCは、 押出機 32に送られる。 ここで、 含有 する揮発分を排ガス (D 5) として除去すると共に、 酸 Iや各種添加剤 Jを加え て、 触媒の中和等が行われる。 そして、 ペレット化等の処理 (図示せず) が行わ れ、 製品としての P Cが得られる。
上記 PC蒸発成分 pは、 上記の通り、 液化されて PC用回収 P Lタンク 29に 送られる。 この PC蒸発成分 pは、 s— P Lを主成分とするが、 原料である DP C、 B PA、 D PC及び B P Aの 1分子同士〜数分子同士が縮重合したオリゴマ 一、 アルカリ系触媒由来の水等を含有する。 このため、 この PC蒸発成分!)を P L蒸留工程にかけ、 s— P Lを回収する。 この P L蒸留工程の例としては、 図 5 に示すような 2段の蒸留塔を用いる方法を例としてあげることができる。 まず、 第 1 P L蒸留塔 30では、 P Lより低沸点の水等を蒸発留去させ、 水を主成分と し、 P Lを含有する P C低沸留去分 (D 6) を回収除去する。 次いで、 第 1 P L 蒸留塔 30の第 1段蒸留残渣 qを第 2 PL蒸留塔 3 1に送って、 高沸分をカツト して s— P Lを蒸留回収すると共に、 上記高沸分である PL蒸留残渣 (X2) を 回収する。
[副生フ ノール (s— P L) の処理 1 : s— P Lの水分量]
上記 P L蒸留工程で蒸留回収した s—P L中の水分量は、 0. 2重量%以下が よく、 0. 1重量%以下が好ましく、 0. 05重量%以下がより好ましく、 0. 0 1重量%以下がさらに好ましい。 0. 2重量%より多いと、 後述するように、 上記 DP C製造工程や B P A製造工程に送ったとき、 D PC製造工程及び B P A 製造工程においては、 触媒活性の低下を生じ、 また、 D PC製造工程においては 、 加水分解等が生じやすくなる。 このため、 D PC製造工程や B P A製造工程で の製造効率の低下が生じやすい。 一方、 水分量は少なければ少ないほどよいので 、 水分量の下限は、 0重量%である。
第 1 P L蒸留塔 30において、 P C蒸発成分 pから蒸留にて水を留去しようと すると、 通常の蒸留条件では、 P Lが相当量同伴し、 ロスが生じる。 これは、 水 と P Lとが共沸性を有するためである。 このロスを防止するため、 抽出蒸留を行 つたり、 減圧条件にして共沸性をなくしたり、 理論段数及び還流比をアップさせ る等の方法があるが、 いずれにしろ、 完全な分離を行うことは経済上好ましくな い。 このため、 第 1 P L蒸留塔 30において、 通常の蒸留条件で水を一部 P Lと 共に留去させた PC低沸留去分 (D 6) を、 上記 DP C製造工程の DP C洗浄ェ 程、及び Z又は B P A製造工程の水分離工程((b— 2) 工程) に送ることができ る。
上記第 1 P L蒸留塔 30の蒸留条件としては、 大気圧から数十 T o r rの減圧 下、 塔頂温度をその圧力下での水の沸点以上、 かつ、 フエノールの沸点以下が好 ましい。 この第 1 P L蒸留塔 30の塔頂ガスは、 水と P Lの混合ガスであり、 塔 頂温度を目的の混合ガスの組成における沸点に調整するのが好ましい。 上記塔頂 温度が、 水の沸点より低いと、 第 1段残渣 q中の水分量が増加し、 第 2 P L蒸留 塔 3 1で得られる s—P L中の水分量が上記範囲を外れて増大するおそれがある 。 一方、 上記塔頂温度が、 P Lの沸点より高いと、 PC低沸留去分 (D 6) に含 まれる s— P L量が増大し、 その回収に多量のエネルギーを要することとなり、 経済的でない。
上記第 1 P L蒸留塔 30の塔頂ガス中の P L含有量としては、 具体的には、 P L濃度が 50重量。 /0以上が好ましく、 中でも 70重量%以上が好ましく、 99. 8重量%以下が好ましい。
このようにして得られた s— P Lは、 DP C製造工程や B PA製造工程の原料 の一部として用いられる。
具体的には、 上記 DP C製造工程においては、 s—P Lは、 上記の DP C反応 工程で用いられる。 上記 D P C反応工程に送られると、 原料の P Lの一部又は全 部として使用することができる。 このとき、 含有する水は、 上記範囲内なので、 反応工程に与える影響は少なく、 D P Cの製造効率を保持することができる。 次に、 上記 B P A製造工程においては、 s _PLは、 上記の B P A反応工程 (( a) 工程) で用いられる。 上記 B P A反応工程で用いられると、 原料の P Lの一 部又は全部として使用することができる。 このとき、 含有する水は、 上記範囲内 なので、 合成反応工程に与える影響は少なく、 B P Aの製造効率を保持すること ができる。
[P C低沸留去分 (D 6) の処理]
上記第 1 P L蒸留塔 30で留去された低沸留去分 (D 6) は、 上記したように 、 上記 D P C製造工程の D P C洗浄工程や、上記 B PA製造工程の水分離工程(( b— 2) 工程) に戻すことにより、 PC低沸留去分 (D 6) 中の P Lを回収する ことができる。
具体的には、 図 1に示すように、 上記 DP C製造工程の DP C洗浄工程、 例え ばアルカリ中和槽 4に戻すと、 PC低沸留去分 (D 6) に含有される P Lは、 有 機相 (反応液) に抽出され、 次工程の第 1DPC蒸留塔 6で混合ガス (F) とし て回収され、 最終的には、 D PCの原料として使用される。
また、 図 2や図 3に示すように、上記 B P A製造工程の水分離工程程((b— 2 ) 工程)、 より具体的には、 例えば、 P L分離塔 1 2に戻すと、 PC低沸留去分 ( D 6) に含有される PLは、 塔底より P L回収液 kとして回収され、 最終的には 、 B P Aの原料として使用される。
[副生フエノール (s— P L) の処理 2 : P C重合工程での P C蒸発成分の処理] 上記重合工程において副生したフエノールを含有する P C蒸発成分 pは、 図 5 に示すように、 熱交換器 26, 27やコンデンサ 28によって液化され、 PC用 回収 P Lタンク 29に送られる。 そして、 残りの排ガス (D 5) は、 処理工程 ( 図示せず) に送られる。
ところで、 上記の第 1重合槽 22〜第 3重合槽 25の蒸発成分に含まれる副生 フエノール分以外の不純物は、 それぞれ異なる。 具体的には、 初期段階の重合ェ 程からでてくる蒸発成分には、 副生フエノール分以外に不純物として、 P Lより 沸点の低い不純物や、 少量のカルボニル化合物、 ジフエニルカーボネート等が含 まれる。 これらの不純物は、 上記 DP C製造工程における原料及び生成物であり 、 且つ B P A等の高融点物を含有していないので、 これらの不純物を含む蒸発成 分は、 精製することなく、 又は低純度の精製により DP C製造工程に使用される P Lの一部として使用することができる。
一方、 上記 PC重合工程の後期段階での重合工程から出てくる蒸発成分には、 副生フエノール分以外に不純物として、 DPC、 B PA、 DPCと B PAから得 られるオリゴマ一等の P Lより沸点の高い不純物が含まれ、 P Lより沸点の低い 不純物は、 ほとんど含まれない。 これらの不純物は、 B PA製造工程で加水分解 され、 この製造工程での原料及び生成物となり、 かつ、 B P A製造工程での触媒 活性低下原因となるアルコール類等がほとんど含まれていない。 このため、 これ らの不純物を含む蒸発成分は、 精製することなく、 または、 低純度の精製により 、 B P A製造工程に使用される P Lの一部として使用することができる。
このことから、 図 6に示すように、 P C重合工程の蒸発成分を 2つに分けて回 収することができる。 すなわち、 前期段階での重合工程での蒸発成分、 すなわち 、 第 1重合槽 2 2、 又は第 1重合槽 2 2及び第 2重合槽 2 3から回収される、 副 生フエノール分を含む第 1 P C蒸発成分 p 1を、 第 1 P C用回収 P Lタンク 2 9 aに送り、 また、 後期段階での重合工程での蒸発成分、 すなわち、 第 2重合槽 2 3以降の重合槽、 又は第 3重合槽 2 4以降の重合槽から回収される、 副生フエノ 一ル分を含む第 2 P C蒸発成分 p 2を、 第 2 P C用回収 P Lタンク 2 9 bに送る ことができる。 - このように回収された第 I P C蒸発成分!) 1は、 図 5に示す P L蒸留工程を経 ることなく、 D P C製造工程に原料として使用される P Lの一部として使用する ことができる。 また、 第 2 P C蒸発成分 p 2は、 図 5に示す P L蒸留工程を経る ことなく、 B P A製造工程に原料として使用される P Lの一部として使用するこ とができる。
上記 D P C製造工程で使用される副生フェノ一ル分を含む第 1 P C蒸発成分 p 1が得られる上記重合槽、 すなわち、 第 1重合槽 2 2、 又は第 1重合槽 2 2及び 第 2重合槽 2 3には、 蒸発成分を一部液化し、 還流する還流装置 3 3 a、 3 3 b を設けるのが好ましい。 この還流装置 3 3 a、 3 3 bを設けることにより、 第 1 重合槽 2 2、 又は第 1重合槽 2 2及び第 2重合槽 2 3から留出する成分のうち、 P Lより高沸点の成分を各重合槽に戻すことができ、 得られる第 1 P C蒸発成分 1中に含まれる P Lより高沸点の成分をより減少させることができる。
ところで、 上記の第 2重合槽 2 3から回収される蒸発成分は、 上記したように 、 第 1 P C用回収 P Lタンク 2 9 a又は第 2 P C用回収 P Lタンク 2 9 bのいず れかに送られる。 この回収タンクの選択は、 いずれか一方に限定して配管を設け てもよく、 図 6に示すように、 両方の回収タンクにつながる配管を設けると共に 、 それぞれの配管に弁 34 a、 34 bを設け、 適宜、 切り替えるようにしてもよ い。 これは、 上記の第 2重合槽 23から回収される蒸発成分に含まれる副生フエ ノール分以外の不純物は、 相対的に少なく、 第 1 PC蒸発成分 p 1として用いる こともでき、 また、 第 2 PC蒸発成分 p2として用いることもできるからである。 上記第 2重合槽 23からの留出する蒸発成分を第 1 PC用回収 PLタンク 29 aに送る量、 又は第 2 P C用回収 P Lタンク 29 bに送る量は、 他の各重合槽か らの蒸発成分量、 特にこの蒸発成分に含まれる副生フ ノール量、 及ぴこの蒸発 成分に含まれる不純物含量によって調整される。
上記 P C重合工程の蒸発成分に含まれる副生フエノール分のうち、 上記 D P C 製造工程に送られ、 原料の P Lの一部として使用される量、 すなわち、 第 I PC 蒸発成分 P 1に含まれる副生フ ノールの量は、 上記 PC重合工程の蒸発成分に 含まれる副生フエノール分の全量、 すなわち、 第 1 PC蒸発成分 p 1及び第 2 P C蒸発成分 p 2に含まれる副生フエノール分の合計量に対して、 50〜95重量 °/0がよく、 50〜70重量%が好ましい。
また、 上記第 2 PC蒸発成分 p 2に含まれる副生フエノール分の量は、 上記 P C重合工程の蒸発成分に含まれる副生フエノール分の全量に対して、 50〜5重 量%がよく、 50〜30重量%が好ましい。
上記第 1 P C蒸発成分! 1に含まれる副生フエノールの量が、 50重量%より 少ないと、 D PCより低沸点である不純物、 特にアルコール等が第 2 PC蒸発成 分] D 2に混入し、 そのまま BP A製造原料として使用すると、 反応活性が低下す る傾向があり、 好ましくない。 一方、 9 5重量%より多いと、 DP Cより高沸点で ある B P Aやオリゴマーが第 1 PC蒸発成分 p 1に混入し、 D PC製造時の配管 閉塞をまねくおそれがある。
また、 上記 DP C製造工程で使用される蒸発成分、 すなわち、 上記第 I P C蒸 発成分!) 1に含まれる、 B PAや上記 DP Cと B P Aとから得られるオリゴマー 等の DP Cより高沸点を有する高沸点化合物の含有量は、 1. 0重量%以下が好 ましく、 0. 1重量0 /0以下がより好ましい。 1. 0重量%より多いと、 DP C製 造時の配管閉塞をまねくおそれがある。 さらに、 上記 B P A製造工程で使用される蒸発成分、 すなわち、 上記第 2 PC 蒸発成分 P 2に含まれる DPCより低沸点を有する低沸点化合物、 具体的には、 カルボニル化合物、 カルボニル化合物から副生するアルコール等の含有量は、 1 00重量 p pm以下が好ましく、 50重量: pm以下がより好ましい。 なお、 上 記 B PA製造工程で、 原料として使用される PLは、 上記第 I PC蒸発成分 p i 及び上記第 2 P C蒸発成分 p 2に含まれる再生フエノール分以外に、 不足分とし ての市販フエノール、 さらには、 B P A製造工程を循環する P Lを含む。 そのた め、 上記の原料として使用される P L中の上記低沸点化合物の含有量は、 副生フ ェノール中の上記低沸点化合物の含有量より少なく、 通常、 20重量1) 111以下 、 好ましくは 5重量: pm以下である。 20重量 p pmより多いと、 B PA製造 時の触媒活性を低下させ、 生産性の低下をまねくおそれがある。
なお、 上記カルボニル化合物がジアルキルカーボネート及び Z又はアルキルァ リールカーボネートの場合、 上記の力ルポニル化合物から副生するアルコーノレは 、 ジアルキルカーボネート及び/又はアルキルァリールカーボネートカゝら得られ るアルキルアルコールとなる。
このように、 P C蒸発成分: を 2つに分け、 不純物の種類に合わせて、 DPC 製造工程及び B P A製造工程へ送ることにより、 PC製造工程において、 P L蒸 留工程を省略することができ、 製造効率の向上 寄与できる。
[副生フエノール (s— P L) の処理 3 : P C蒸発成分 p及び市販 P Lの不純物 による使用法の区分け]
ところで、 D P C製造工程と B P A製造工程、 P C製造工程が同一スケールの 場合、 図 5で示す PC製造工程で生じる s— PLの量は、 理論的に、 DPC製造 工程及ぴ B P A製造工程で原料として使用される量の合計の約半分であり、 かつ 、 DPC製造工程で原料として使用される量と、 B P A製造工程で原料として使 用される量とは、 理論上同一である。 そして、 不足分は、 市販の PL (以下、 単 に 「市販 P L」 と称する。) で補われる。 このため、 s— P Lゃ巿販 P Lをどのよ うに使用するかが問題となることがある。
一般に、 巿販 P Lには、 クレゾ一ル及ぴ Z又はキシレノールや、 ヒドロキシァ セトン等の不純物がある程度含有されており、 一方、 S — P Lを蒸留回収する前 の成分である P C蒸発成分 pには、 タレゾール及び Z又はキシレノールや、 ヒド ロキシアセトン等の不純物の含有量が少ない。 このため、 タレゾール及び Z又は キシレノールや、 ヒ ドロキシアセトン等の不純物の含有量の違いで s — P Lの使 用方法を決めることができる。
具体的には、 D P C製造工程の原料として使用される P Lとしては、 クレゾ一 ル及び/又はキシレノールを 2 0〜 1 0 0 0重量 p p m含有するフエノール (以 下、 「クレゾール等含.有 P L」 と称する。) を用い、 B P A製造工程の原料として 使用される P Lとしては、 クレゾール及び/又はキシレノールを 2 0重量 p m 未満含有するフエノール (以下、 「タレゾール等不含 P L」 と称する。) を用いる のがよい。
クレゾール等含有 P Lとしては、 市販 P Lがあげられる。 そして、 この巿販 P Lには、 上記のクレゾールゃキシレノール以外に、 ヒ ドロキシァセトン等の着色 原因不純物が数十重量 P p m含まれる。
このクレゾール等含有 P Lは、 そのまま、 上記したように、 上記 D P C反応ェ 程に使用することができる。 このクレゾール等含有 P L中の不純物であるクレゾ ール、 キシレノール、 ヒドロキシアセトン等の着色原因不純物等の不純物の量は 、 いずれも上記 D P C反応工程において許容できる範囲である。 そして、 後述す る第 I D P C蒸留塔 6によって、 混合ガス Fの一部として蒸発留去されたり、 蒸 留残渣として除去される。 このため、 上記 P C製造工程に、 このクレゾ一ル等含 有 P Lを用いて製造した D P Cを使用しても、 得られる P Cの品質に影響を与え ない。
上記クレゾール不含 P Lとしては、 s— P Lを蒸留回収する前の成分である P C蒸発成分 pをあげることができる。 この P C蒸発成分 pに含まれるヒドロキシ アセトン等の触媒毒原因不純物の含有量は、 1 0 p p m未満が好ましく、 中でも 5 p p ni未満が好ましく、 特に 1 p p m未満が好ましい。 1 0 p p m以上だと、 結果的に、 触媒の寿命を著しく低下させる。
上記 P C蒸発成分 pに含まれる不純物としては、 上記したクレゾール、 キシレ ノールや、 ヒドロキシアセトン等の触媒毒原因物質や着色原因物質以外に、 DP C、 B PA, D P C及び B PAが 1〜数分子反応したオリゴマー等が含まれる。 上記 P C蒸発成分 pに含まれるクレゾール及び Z又はキシレノールの含有量は 、 20重量 p 以下が好ましく、 10重量 p pm以下がより好ましい。 20重 量 p pmより多いと、 B P Aのアルキル置換体が生成され、 BP Aの純度低下を 招くおそれがある。
上記 PC蒸発成分 pは、 水を含有する。 水の存在は、 B PA製造工程において は、 触媒の活性低下が生じ、 B PAの生成率の低下につながる。 このため、 水分 除去のための工程が必要となる。 これを行うため、 上記 PC蒸発成分 pを、 水を 除去する工程を経た後に、 B P A製造工程の工程 (a) に用いるのが好ましい。 上記水を除去する工程としては、 上記水分離工程 (工程 (b— 2)) をそのまま 使用することができる。 すなわち、 図 3-において、 原料となる PC蒸発成分 pを P L分離塔 1 2に送り、 水除去工程を行う。 このとき、 蒸発留去される水 ·ァセ トン混合物 AWは、 別途処理される。 また、 上記 P L分離塔 1 2の蒸留残渣は、 図 2及び 3に示さないが、 高沸除去塔に送られて、 P Lより高沸の成分を分離す る高沸分除去工程が行われ、高沸成分が蒸留釜残として分離'除去され、蒸留分と して P Lが回収される。
上記の回収された P Lは、 そのまま、 原料 P Lとして、 上記 B P A製造工程の B PA反応工程 ((a) 工程) に供してもよく、 また、 上記 BPA用回収 P Lタン ク 1 1に一且回収し、 これを、 図 2に示す工程 (c)、 及び必要に応じて、 母液処 理工程 (工程 (g)) を経由して上記 B PA反応工程 ((a) 工程) に供してもよ レ、。 上記 B PA晶析 '分離工程 ((c) 工程) に供与するのは、 合成された B P A の洗浄液として使用するのに、 きれいな P Lを使用するのが好ましいからであり 、 かつ、 上記 B PA晶析 '分離工程 ((c) 工程) に供しても、 この工程で混入す る不純物は、 上記 B P A反応工程で生成した B P Aの 2, 4 ' 一異性体等 (以下 、 「B PA副生物」 と称する。) であり、 上記合成反応工程には影響しないからで ある。 一方、 上記の高沸分除去工程から排出される高沸成分は、 前述した母液処 理工程 (g) に送られ、 有効成分を回収することができる。 このように、 PC蒸発成分 pを B P A製造工程に送り、 D PC製造工程に市販 P Lを用いると、 含まれる不純物による悪影響を抑制することができると共に、 PC製造工程において、 P L蒸留工程を省略することができ、 製造効率の向上に 寄与できる。 .
[製造工程間の連携一貯蔵工程の設置]
(1. PC製造工程)
上記 PC製造工程において、 図 7に示すように、 上記 P L蒸留工程の前及び/ 又は後に、 上記 P L蒸留工程にかける前の PC蒸発成分 pの液化物、 及び Z又は 上記 P L蒸留工程で回収された s— P Lを貯蔵する PC貯蔵工程 (?〇第1貯蔵 工程又は P C第 2貯蔵工程) を設けることができる。 この PC貯蔵工程を設ける ことにより、 PC重合工程が一時的に停止したり、 断続的になっても、 この PC 貯蔵工程で、 上記の P C蒸発成分!)又は s— P Lが貯蔵され、 これを次工程であ る、 P L蒸留工程や、 DP C反応工程又は B P A反応工程の原料 P Lとして連続 的に供給することができ、 次工程を連続的に運転することが可能となる。
上記の P C貯蔵工程に用いられる P C貯蔵タンクの容量は、 上記 P C重合工程 の運転時間及び停止時間を考慮して決めればよく、 具体的には、 下記式 (1) の 条件を満たす容量とすることが好ましい。
1 0≤ (V c/F c) ≤ 100 (1)
なお、 式 (1) において、 Vcは、 PC貯蔵タンクの容量 (m3) を示し、 F c は、 P C蒸発成分の液化物又は副生フユノールの供給速度 (m3/h r ) を示す
V c/F cが 10より小さいと、 上記の P C蒸発成分 p又は s— P Lを次工程 に連続的に供給することが困難となる場合がある。 そして、 PC製造グレードの 変更に伴う PC蒸発成分 pの組成変動を調整することが困難となる。 一方、 1 0 0より大きくてもよいが、 あまり大きくしすぎても、 生産効率の面から、 そこま で貯蔵する必要性が乏しく、 かえって無駄となり、 熱安定性の観点からも必要以 上の保持時間は好ましくない。
なお、 この P C貯蔵タンクは、 PC第 1貯蔵工程及び PC第 2貯蔵工程の一方 のみに設けてもよく、 両方に設けてもよい。 また、 1つの P C貯蔵工程の中で、 上記 P C貯蔵タンクを 1つ設けてもよく、 直列又は並列に複数個設けても良い。 なお、 複数個設けた場合の上記式 (1) の V cは、 複数個存在するタンクの容量 の合計量を意味する。
(2. D PC製造工程)
上記 DP C製造工程において、 図 7に示すように、 D PC蒸留工程の後に、 こ の D P C蒸留工程で得られた D P Cを貯蔵する D P C貯蔵工程を設けることがで きる。 この DP C貯蔵工程を設けることにより、 D PC製造工程が一時的に停止 したり、 断続的になっても、 この DP C貯蔵工程で、 D PCが貯蔵され、 これを 次工程である、 PC製造工程の原料 DP Cとして連続的に供給することができ、 連続的に P Cを製造することが可能となる。
上記 D P C貯蔵工程貯蔵工程に用いら-れる D P C貯蔵タンクの容量は、 上記 D PC製造工程の運転時間及び停止時間を考慮して決めればよく、 具体的には、 下 記式 (2) の条件を満たす容量とすることが好ましい。
1 0≤ (V d/F d) ≤ 100 (2)
なお、 式 (2) において、 Vdは、 D PC貯蔵タンクの容量 (m3) を示し、 F dは、 ジフエニルカーボネートの供給速度 (m h r ) を示す。
V d ZF dが 10より小さいと、 上記の D P Cを次工程に連続的に供給するこ とが困難となる場合がある。 一方、 100より大きくてもよいが、 あまり大きく しすぎても、 生産効率の面から、 そこまで貯蔵する必要性が乏しく、 かえって無 駄となり、 熱安定性の観点からも好ましくない。
なお、 この DP C貯蔵タンクを 1つ設けてもよく、 直列又は並列に複数個設け ても良い。 なお、 複数個設けた場合の上記式 (2) の Vdは、 複数個存在するタ ンクの容量の合計量を意味する。
(3. B P A製造工程)
上記 B PA製造工程において、 図 7に示すような PL除去工程((e) 工程) の 後、 又は、 図示しないが、 B P A晶析 .分離工程 ((c) 工程) から P L除去工程 ((e) 工程) までの間に、 上記のビスフエノール A (B PA) とフエノール (P L) との混合物を貯蔵するための B PA貯蔵工程が設けられる。
この B P A貯蔵工程を設けることにより、 上記 B P A製造工程のいずれかのェ 程が一時的に停止し、 停止した工程以前の工程が断続的になっても、 この B PA 貯蔵工程で上記混合物が貯蔵され、 これを P C製造工程に供与することができ、 連続的に P Cを製造することが可能となる。
特に、 上記の B PA晶析■分離工程 ((c) 工程) は、 使用される晶析槽、 熱交 換器等の晶析装置の接液部に固体の付着が生じやすく、 数ケ月に 1度は、 このェ 程を停止させて、 掃除をする必要がある。 このため、 上記の B P A反応工程 (( a) 工程) から BP A晶析.分離工程 ((c) 工程) に至る工程は断続的な運転と なる傾向がある。 そこで、 PL除去工程 ((e) 工程) の後、 又は、 図示しないが 、 B PA晶析 '分離工程 ((c) 工程) から P L除去工程 ((e) 工程) までの間 に、 上記 B P A貯蔵工程を設けることにより、 上記の B P A反応工程 ((a) 工程 ) から B P A晶析 ·分離工程 ((c) 工程) に至る工程が断続的になっても、 上記 P C製造工程を連続的に行うことができる。
上記 B P A貯蔵工程で貯蔵される混合物の形態としては、 B PAと P Lとの付 加物結晶、 B P Aと P Lとの付加物結晶を含むスラリー、 BP Aと PLとの混合 液等があげられる。
上記の B P Aと P Lとの混合物の組成は、 B PAが 45〜70重量 °/0、 P Lが 55〜 30 %の範囲にあるのが一般的である。 このため、 上記の貯蔵時の温度が 0〜9 5°Cの場合、 付加物は結晶状態となる。 また、 上記の混合物中のフユノー ル割合が高い場合、 貯蔵温度が 40°C以上になると、 B P Aと付加していない P Lが溶融状態となるため、 スラリー状又は溶液となる。 さらに、 貯蔵温度が 9 5 °Cを超えると、 上記付加物が溶融するため、 溶融状態となる。
上記貯蔵温度は好ましくは 45〜 1 50 °Cであり、 上記 B P Aと P Lの混合物 がスラリー状ないしは'溶液状態であることが望ましい。 また、 B PAの分解およ び着色を防止する目的で、 できるだけ低温で保持させるのが好ましく、 上記条件 下では、 B P Aの分解で生じる着色原因物質と考えられる、 4一イソプロぺニル フエノールの生成を抑制することが可能である。 さらに、 貯蔵タンク内を窒素ガス等の不活性ガス雰囲気とし、 エアの混入を防 止することも重要である。 また、 貯蔵タンクの材質は、 一般的なオーステナイ ト 系ステンレス鋼やフェライ ト系ステンレス鋼を使用することができるが、 色調低 下の原因になる F eの溶出の少ないものが好適に用いられ、 なかでも、 C r含有 量が 1 6%以上であり、 カーボン含有量が 0. 03 %以上の鋼材質、 例えば、 S U S 3 1 6よりは S US 304が好ましく、 SUS 3 1 6 L、 SUS 304 Lよ りは SUS 3 1 6、 SUS 304が好ましく用いられる。 当然ではあるが、 より C r含有量の高い S US 309 Sや SUS 3 1 0 Sはより好ましい方向である。 この B PAと P Lとの混合物を貯蔵するタンクの容量は、 上記 B P A製造工程 の運転時間及び停止時間を考慮して決めればよく、 具体的には、 下記式 (3) の 条件を満たことが好ましい。
10≤ (Vb/F b) ≤ 1000 . (3)
なお、 式 (3) において、 Vbは、 BP A貯蔵タンクの容量 (m3) を示し、 F bは、 P C重合工程に供されるビスフエノール Aの供給量 (m3/h r) を示す
VbZF bが 1 0より小さいと、 PC重合工程を連続的に行うことが困難とな る場合がある。 一方、 1 000より大きくてもよいが、 あまり大きくしすぎても 、 生産効率の面から、 そこまで貯蔵する必要性が乏しく、 かえって無駄となり、 品質面からも長期保持は好ましくない。
なお、 この貯蔵タンクは、 1つであってもよく、 直列又は並列に複数個設けて も良い。 複数個設けた場合の上記式 (3) の Vbは、 複数個存在するタンクの容 量の合計量を意味する。
上記 B P A貯蔵工程では、 上記の形態を有する付加物を貯蔵するため、 pHが 酸性やアルカリ性になった場合、 B P A分解反応が生じやすくなる。 これを防止 するため、 上記 B P A晶析 ·分離工程 ((c) 工程) と P C重合工程との間に存在 する B P A貯蔵タンク、 あるいはそれより前の工程に、 BP A中和工程を設ける ことが好ましい (図示せず)。 この B P A中和工程で、上記混合物中の酸成分又は 塩基成分を中和することができ、 上記混合物中の B P Aの分解を抑制することが できる。
[排液処理]
(P L蒸留残渣 (X 2) の処理)
上記の P L蒸留残渣 (X2) には、 P L、 DPC、 B PA、 D PC及び B P A の 1分子同士〜数分子同士が縮重合したオリゴマ一等を含有するが、 このうち、 P L、 B PA及び DP Cを多く含む。 そこで、 これらの有効成分を有効活用する ため、 図 8に示すように、 上記の PL蒸留残渣 (X2) を、 上記 DP C製造工程 の上記の蒸留工程又は回収蒸留工程、 又は上記 B P A製造工程の上記母液処理工 程 (工程 (g)) に送る。
上記 DP C製造工程において、 上記回収蒸留工程を有さず、 上記の P L蒸留残 渣 (X 2) を、 上記 DP C製造工程の上記蒸留工程に送る場合、 具体的には、 図 1に示すように、 上記 P L蒸留残渣 (X.2) を、 第 1DPC蒸留塔 6に送る。 こ れにより、 上記 P L蒸留残渣 (X 2) は、 第 1DPC蒸留塔 6及ぴ第 2DPC蒸 留塔 7で蒸留され、 P L及び D P Cを回収する。 このうち、 P Lは、 第 1DPC 蒸留塔 6で混合ガス (F) の一成分として回収され、 DPCは、 第 2DPC蒸留 塔 7で回収される。
上記 D PC製造工程において、 上記回収蒸留工程を有し、 上記の P L蒸留残渣 (X2) を、 上記 DP C製造工程の上記回収蒸留工程に送る場合、 具体的には、 図 1に示すように、 上記 P L蒸留残渣 X 2を、 D PC回収蒸留塔 8に送る。 これ により、 上記 P L蒸留残渣 (X 2) は、 D PC回収蒸留塔 8で蒸留され、 P L及 び DP Cを回収し、 混合槽 3に送られる。 このうち、 P Lは、 第 1 DP C蒸留塔 6で混合ガス (F) の一成分として回収され、 DPCは、 第 2D PC蒸留塔 7で 回収される。
また、 上記の P L蒸留残渣 (X 2) を、 上記 B P A製造工程の上記母液処理工 程 (工程 (g)) に送る場合、 具体的には、 図 4に示すように、 上記 P L蒸留残渣 (X 2) を、 残渣反応器 14に送る。 これにより、 P Lは、 そのまま留去される 1S 他の成分は、 分解され、 再生反応器 1 5で再び B P A等が生成され、 B PA 製造工程の B P A反応器 (図示せず) に送られる。 これにより、 P Lは原料とし て使用され、 B PAは、 そのまま合成される B PAと一体となって動く。
(蒸留残渣 (X I) 又は回収蒸留残渣 (X I ') の処理)
上記 DP C製造工程において、 上記回収蒸留工程を有さないときの蒸留残渣 ( X l)、 又は、 上記回収蒸留工程を有するときの回収蒸留残渣 (Χ Ι ') には、 D PCや、 D PCのメチル置換体、 D P Cの臭素置換体等の D P C系不純物等が含 まれ、 また、 上記 P L蒸留残渣 (X2) を、 上記蒸留工程又は回収蒸留工程に導 入した場合は、 合わせて、 B PA、 D PC及ぴ B PAの 1分子同士〜数分子同士 が縮重合したオリゴマー等を含有するが、 このうち、 B P A及び DP Cを多く含 む。 そこで、 これらの有効成分を有効活用するため、 上記蒸留残渣 (X I) 又は 回収蒸留残渣 (X l,) を、 上記 B P A製造工程の上記母液処理工程 (工程 (g) ) に送る。
この場合、 具体的には、 図 4に示すように、 上記蒸留残渣 (X I) 又は回収蒸 留残渣 (Χ Ι ') を、 残渣反応器 14に送る。 これにより、 各成分は、 分解され、 —部は再生反応器 1 5で再び Β Ρ Αに変換ざれ、 得られた B P Aやフエノールは B P A製造工程の B PA反応器 (図示せず) に送られる。
(P L蒸留残渣 (X 2) と蒸留残渣 (X I) 又は回収蒸留残渣 (X I '))
PL蒸留残渣 (X 2)、 蒸留残渣 (X I) 及び回収蒸留残渣 (Χ Ι ') の処理法 として、 上記の方法があげられるが、 これらの中でも、 上記 P L蒸留残渣 (X 2 ) を、 上記 DP C蒸留工程や DP C回収蒸留工程に送り、 次いで、 上記 DP C蒸 留工程で生じる DP C蒸留残渣 (X I) や DP C回収蒸留残渣 (X 1 ') を、 上記 B P A母液処理工程 (工程 (g)) に送ることが好ましい。
このようにすることにより、 D PC製造工程、 B P A製造工程、 及び PC製造 工程からでる排液は、 ビスフエノール A (B PA) 製造工程の上記母液処理工程 (工程 (g)) から生じる排液 (D 7) の 1つに集約される。 このようにすると、 3工程のそれぞれで発生していた、 有機物を大量に含有する排液を 1つにまとめ ることができ、 排液全体としての排出量を抑制することが可能となり、 排液処理 工程 (図示せず) が効率的となり、 その負荷を低下させることができる。 上記の D P C蒸留工程や P C重合工程、 P L蒸留工程の蒸留塔等の蒸留装置及 ぴ重合装置には留出成分を凝縮する凝縮器、 系内を減圧する真空設備、 及び上記 凝縮器と真空設備とをつなぐ真空配管が設けられる。 以下において蒸留装置を例 にして説明する。 蒸留装置 4 1には、 図 9に示すように、 D P Cや P L等の留出 する物質を凝縮する凝縮器 4 2、 系内を減圧にする真空設備 4 3、 及び、 上記凝 縮器 4 2と真空設備 4 3とを繋ぐ真空配管 4 4が設けられる。
この蒸留装置 4 1は、 還流部が形成される場合が多い。 この還流部を形成する 装置としては、 留出する物質を凝縮する凝縮器 4 2、 凝縮された液の一部を溜め る凝縮液タンク 4 5、 凝縮液タンク 4 5中の凝縮液を蒸留装置 4 1に戻す送液ポ ンプ 4 6、 及び、 送液ポンプ 4 6と蒸留装置 4 1とを連結する還流配管 4 7等が 含まれる。 以下、 この還流部を 「還流装置」 と称する。
上記の真空設備 4 3は、 蒸留装置 4 1や還流装置内のガスを吸引して排出し、 蒸留装置 4 1を減圧状態にするための設備である。 このような真空設備 4 3とし ては、 例えば真空ポンプ等があげられる。
この真空設備 4 3に繋がる真空配管 4 4は、 凝縮器 4 2側から真空設備 4 3側 へ向かって下向きの傾斜を有している。 この傾斜は、 真空配管 4 4の水平部分の うちできるだけ長い区間にわたっていることが望ましい。 また、 上記の傾斜は、 水平方向から下向きに 0 ° より大きく、 9 0 ° 以下であればよいが、 上記真空設 備へ向かって水平方向に 2 m進むときには、 l c ni以上、 下方向に進むものであ ると望ましく、 5 c m〜 l ni下方向に進むものであればより望ましい。 さらに、 傾斜のある水平部分には、 完全水平部分及び立ち上がる部分が無ければより望ま しく、 傾斜が真空配管 4 4の端から端まで一定であればさらに望ましい。 なお、 上記水平部分は、 水平状態、 及び水平状態から少し傾斜した状態の部分をいう。 また、 上記完全水平部分とは、 鉛直方向に対して直角方向の部分をいう。
上記の傾斜は、 途中に上記の完全水平部分や立ち上がる部分があってもよいが 、 その立ち上がる部分の高さの合計は l m以下であることが好ましく、 5 0 c m 以下、 より好ましくは 1 0 c m以下であればさらに好ましく、 そのような部分は 無いことが最も好ましい。 この立ち上がる部分の高さの合計が l mを超えると、 上記の立ち上がる部分に上記の留出物が溜まった場合に生じる圧力損失が大きく なりすぎ、 減圧吸引しきれなくなるおそれがある。 なお、 上記の立ち上がる部分 とは、 上記の傾斜とは逆に、 凝縮器 4 2から真空設備 4 3 へ向かって上方に傾斜 を有する部分をいう。 ここには、 上記の留出物が液体又は固体として溜まりやす く、 溜まった場合には圧力損失を生じ、 溜まりすぎると管そのものを閉塞させて しまうおそれもあるため、 無い方がより望ましい。 そのため、 上記の傾斜は凝縮 器 4 2側から真空設備 4 3側へ向かって下方向のみであればさらに望ましい。 上記の凝縮器 4 2では、 P Lや D P C等を凝縮する。 凝縮された留出物は、 系 外に抜き出されるか、 蒸留装置 4 1に還流するために上記還流装置の凝縮液タン ク 4 5に送られる。
上記蒸留塔 4 1内の圧力は減圧であることが好ましく、 l 〜 2 0 0 T o r rで あることがより好ましく、 5 〜 1 0 O T.o r rであれば特に好ましい。そのとき、 蒸留塔 4 1内のガスを引く真空配管 4 4内の真空減圧された圧力は蒸留塔 4 1内 の圧力に近いか、 それ以下であることが望ましく、 1 ~ 1 0 0 T o r rであれば より望ましい。
さらに、 蒸留塔 4 1の塔頂から凝縮器 4 2への配管構造は、 以下の条件を満た していることが望ましい。 配管の内径は、 a c t u a 1ガス線速が 0 . 0 1 〜 2 O mZ s e cとなる範囲であることが望ましい。 また、 蒸留塔 4 1の塔頂から凝 縮器 4 2までの配管の長さは短いほどよく、 1 O m以下であることが望ましく、 O mであればもっとも望ましい。 さらに、 配管の曲折部は少ないほどよく、 5箇 所以下であることが望ましい。 これらの条件から、 凝縮器4 2は、 蒸留塔 4 1の 塔頂に塔頂コンデンサとして設けられているともっとも望ましい。 これらの条件 が満たされていると、 真空設備 4 3による蒸留塔 4 1の真空減圧状態がより安定 化されるようになる。
留出された P Lや D P Cのガスは、 凝縮器 4 2の上から下へと流れるように供 給されることが望ましい。 また、 凝縮器 4 2の内部と出口部とは、 ガス線速が小 さくなるように、 大口径であることが望ましい。 ガス線速が大きいと、 圧損原因 となり、 蒸留装置 4 1の真空減圧が保持できなくなるおそれがある。 上記の凝縮器 4 2と真空配管 4 4との間には、 ミストを捕捉するためのミスト キヤツチヤー 4 8が設けられていると望ましい。 ミスト状の P Lや D P Cが真空 配管 4 4に混入して溜まったり、 固化したりすることを、 できるだけ防ぐためで ある。.
上記の真空配管 4 4は、 上記の留出物の融点以上に内部を加熱、 保温する設備 を有していることが望ましい。その設備としては、例えば、上記真空配管 4 4を、 二重管構造や、蒸気又は電気によるトレース構造にすることが挙げられる。なお、 上記留出物が複数の成分からなっている場合には、 それらの中で最も高い融点を 持つ物質の融点以上であることが望ましい。 また、 上記真空配管 4 4内は減圧状 態であるが、 ここで融点とは減圧状態における融点である。 真空配管 4 4内が上 記の留出物の融点以上とすると、 凝縮器 4 2で凝縮しきれずに真空配管 4 4に混 入した P Lや D P Cが、 固化することなく液体か気体のままであり続けるので、 真空配管 4 4の内部が詰まる可能性をさらに低くできる。 そのため、 D P Cの融 点である 8 0 °C以上であって、 蒸留装置 4 1の塔頂部の温度以下であると工程の 運用上望ましい。
また、 上記の真空配管 4 4には、 下側に向けて少なくとも一つの液抜き口 4 9 を設けることが望ましい。 真空配管 4 4内で液化したり、 露となったりした上記 の留出物を、真空配管 4 4内に留まらせずに、抜き取ることが必要だからである。 この液抜き口 4 9のうち、 少なくとも一つは、 真空配管 4 4の真空設備 4 3に接 続している部分に近接していることが望ましい。 真空配管 4 4が傾斜を有してい るため、 その傾斜の一番下に出来るだけ近いところから抜き出さないと、 それよ り先で上記留出物が溜まる可能性があるからである。このような液の抜き取りは、 真空設備 4 3による真空減圧中に行うのではなく、 装置全体を停止して行っても よい。 さらに、 真空配管 4 4の長さが 3 mを超える場合は、 真空配管 4 4の途中 にも液抜き口 4 9を設けると、 液溜まりを回避しやすくなり、 より望ましい。 さらに、 上記の凝縮器 4 2側の真空配管 4 4には、 加熱流体を供給可能な供給 口 5 0を設けることが望ましい。 この供給口 5 0を設ける位置は、 凝縮器 4 2に 近いところほど望ましいが、 真空配管 4 4と凝縮器 4 2との間に、 上記ミストキ ャツチヤー 4 8が存在している場合は、 ミストキヤツチヤー 4 8と凝縮器 4 2の 間ではなく、 真空配管 4 4がミストキヤツチヤー 4 8に接続されているところに 出来るだけ近いことが望ましい。 この供給口 5 0を設けることにより、 ここから 上記加熱流体を流し込み、 液抜き口 4 9から抜き出すことができ、 真空配管 4 4 を洗浄することができる。 そのため、 供給口 5 0と液抜き口 4 9の間の部分が、 真空配管 4 4のうちのできるだけ長い領域を占めることが望ましい。 また、 傾斜 があるため、 位置エネルギーの高い方から供給した方が効率がよい。 このため、 供給口 5 0は、 真空配管 4 4の上側を向いて開いているのが望ましい。
上記加熱流体とは、 真空配管 4 4内の温度において流体であるものをいい、 液 体でも気体でもよい。 上記加熱流体としては、 例えば、 水蒸気、 P L、 窒素など が挙げられ、 水蒸気又は P L蒸気であるとより望ましい。 P L蒸気を用いると、 真空配管 4 4内部で D P Cが固化していた際に溶解させることができるのでさら に望ましい。 これらのうちの一つだけでも、 複数の混合体であってもよい。 ただ し、 上記加熱流体は、 真空配管 4 4の素材や D P C等とは、 真空配管 4 4内の温 度圧力条件下で、 ほとんど反応しないものであることが望ましく、 まったく反応 しないものであるとより望ましい。
また、 上記の真空配管 4 4には、 凝縮器 4 2、 真空設備 4 3、 ミストキャッチ ヤー 4 8などと連結する部分に、弁 5 1, 5 2が設けられていることが望ましい。 上記加熱流体によって洗浄する際、 弁によってさえぎられていると、 真空配管 4 4の外に上記加熱流体が漏れることを防ぐことができるからである。
さらに、 上記の真空配管 4 4には、 フリーズコンデンサ (図示せず) が設けら れていることが望ましい。 このフリーズコンデンサは、 2基以上が並列に設置さ れていて、 それぞれを切り替えられるとなお望ましい。 上記フリーズコンデンサ が設置されていると、 凝縮器 4 2で捕捉できなかった留出成分を強制的に固化し て捕集することができ、 それ以降の真空配管 4 4で、 閉塞、 又は圧損の上昇を抑 制でき、 望ましい。
また、 D P Cから P L等の低沸点化合物を蒸留除去する場合は、 蒸留装置 4 1 から留出する蒸発ガスを液化するために、 凝縮器 4 2を 2基以上直列に繋いで使 用することも効果的である。 その際、 各凝縮器 4 2の温度は蒸留塔 4 1から離れ るに従い、 徐々に低温化させるのが好ましい。 特に、 最初の凝縮器 4 2は D P C 等の高沸点成分を積極的に凝縮させるために、 8 0 〜 1 5 0 °Cに調整し、 液化さ れた凝縮液は蒸留装置 4 1へ循環する。 次いで、 最初の凝縮器 4 2で液化されな かった未凝縮ガスは、 2段目以降の凝縮器 4 2で 0 〜 8 0 °Cに調整され、 ほぼ完 全に液化される。 ここで液化された凝縮液は、 必要に応じて一部を蒸留装置 4 1 へ還流し、 残り乃至は全量を留出する。 このように凝縮器 4 2を 2基以上設置す ると、 万が一、 D P Cが蒸留装置 4 1から多量に留出しても凝縮器 4 2内で固化 閉塞することなく、 運転が継続でき、 長時間安定して蒸留を行うことができる。 D P Cの凝固点は 8 0 °Cであり、 P Lの凝固点 (4 0 °C) より高いため、 通常の P L等低沸点化合物のみを凝縮させる凝縮器 4 2の温度条件下においては、 D P Cが大量に存在すると、 凝縮器 2内で D P Cが固化するおそれがある。 従って、 凝縮器 4 2を 2基以上設置し、 高融点である D P Cを強制的に凝縮除去した後、 未凝縮ガスを凝縮させたほうが、 固化防止になり、 蒸留装置 4 1の真空度を安定 させることができる。 また、 蒸留留去させる軽沸分として、 P L以外に、 P Lよ り低沸点化合物を多く含有する場合は、 この複数段の凝縮器 4 2を用いるのがよ り望ましい。
次に、 上記の還流装置について、 図 9を用いて説明する。 この還流装置を用い ることにより、 高沸点成分の蒸発を抑止しつつ、 蒸留分離の効率を高めることが できる。
上記の送液ポンプ 4 6によって上記凝縮液タンク中の凝縮液を蒸留装置 4 1に 還流するための還流配管 4 7の水平部分は、 蒸留装置 4 1側から送液ポンプ 4 6 側へ下向きの傾斜を有していることがよい。 この傾斜を有する水平部分の途中に は、 完全水平部分や立ち上がる部分は無い方が好ましく、 傾斜が一定であればよ り望ましい。 このとき、 上記の傾斜は、 送液ポンプ 4 6 へ向けて水平方向に 2 m 進むときに 1 c m以上、 下方向に進むものであると望ましく、 5 <:111〜 1 1 下方 向に進むものであればより望ましい。 もし完全水平部分や立ち上がる部分がある 場合には、 傾斜による高度差が、 立ち上がる部分の高さの差の合計よりも大きい ことが必要であり、 かつ、 立ち上がる部分の高さの合計が、 Ι πα以下であること が望ましく、 1 0 c m以下であればさらに望ましい。 なおここで、 上記の立ち上 がる部分とは、 上記の傾斜とは逆に、 蒸留装置 4 1側から送液ポンプ 4 6側へ向 かって上方に傾斜する部分をいう。
また、 送液ポンプ 4 6の位置にもよるが、 図 9に示すように、 還流配管 4 7の 、 上記の傾斜を有する水平部分と送液ポンプ 4 6との間に、 垂直又は垂直に近い 勾配である部分があってもよい。 このとき、 送液ポンプ 4 6の前後で溜まる液を 抜き出すため、 上記の.送液ポンプ 4 6の吸入口付近と、 吐出口付近との配管には 、 液抜き口 5 3, 5 4を設けてもよい。
上記の還流配管 4 7は、 上記の留出物の融点以上に内部を力!]熱、 保温する設備 を有していることが望ましい。 なお、 上記の留出物が複数の成分からなっている 場合には、 それらの中で最も高い融点を持つ物質の融点以上に加熱、 保温するこ とができると望ましい。 上記還流配管が上記の留出物の融点以上であると、 上記 留出物が固化することなく、 液体か気体のままであり続けるので、 内部で詰まる 可能性をさらに低く出来る。 このように加熱、 保温する設備としては、 二重管構 造や、 蒸気、 電気によるトレース構造をしているものがあげられる。
この還流配管 4 7の蒸留塔 4 1に近い箇所に、 供給口 5 5が設けられていると 望ましい。 装置全体の運転を停止した場合に、 この供給口 5 5から上記加熱流体 を流し込み、 液抜き口 5 4から抜き出すことで、 還流配管 4 7を洗浄することが できる。 またその際に、 上記加熱流体が蒸留装置 4 1に流れ込まないように、 還 流配管 4 7と蒸留装置 4 1との間に弁 5 6が設けられていると望ましい。
なお、 上記したような、 P Lや D P Cを留出する蒸留装置は、 D P Cから P L 等の不純物を除去して精製 D P Cを回収する D P C蒸留工程や、 D P Cと B P A とを真空減圧下で反応させて副生する P L ( s— P L ) を回収しつつ P Cを重合 する P C製造工程の P C重合工程や P L蒸留工程等において、 P Lや D P Cを回 収するために用いることができる。 さらに、 同様に P Lや D P Cを留出する工程 であれば利用可能である。
また、 上記したような、 P Lや D P Cを還流させる還流装置は、 例示した蒸留 装置 41から留出した P Lや DP Cを蒸留装置 41に戻して、 供給された P Lや D PCに含有されていた高沸点成分の蒸発を抑え、 蒸留分離効率を高める工程の ほか、 同様に還流の必要がある工程であれば利用可能である。 なお、 上記高沸点 成分は蒸留装置 41の下部から別に抜き出すことができる。
また、 これらの装置が DPCの製造に用いられる場合は、 還流配管 47の、 上 記傾斜を有する水平部分以外の箇所に、 DPCを系外に取り出す取り出し口 5 7 があるとよい。
これらの工程において、 上記したそれぞれの装置を用いることにより、 それぞ れに設けられている供給口 50、 5 5から上記加熱流体を供給する洗浄方法によ つて、 管内が閉塞した場合でも容易に閉塞を解除することができる。 ぐ実施例 >
[実施例 1 ]
以下に、 s— P Lの処理について、 本発明を更に具体的に説明する。
(脱水した S— P Lの製造)
[PCの重合工程]
窒素ガス雰囲気下、 1 30°Cで、 B PA (三菱化学 (株) 製、 後述する参考例 2で得られたもの) を 34. 3 k gZh rで、 DPC (三菱化学 (株) 製、 後述 する参考例 1で得られたもの) を 3 3. 5 k g/h rで溶融混合し、 1 30°Cに 加熱した原料導入管を介して常圧、 窒素雰囲気下、 210°Cに制御した第 1縦型 攪拌重合槽内に連続供給し、 平均滞留時間が 60分になるように槽底部のポリマ 一排出ラインに設けられたバルブ開度を制御しつつ液面レベルを一定に保った。 また、 上記原料混合物の供給を開始すると同時に、 触媒として水溶液とした炭酸 セシウムを B P A 1モルに対し、 0. 5 X 10— 6モルの流量で連続供給した。 槽 底より排出された重合液は、 引き続き第 2、 3、 4の縦型重合槽並びに第 5の横 型重合器に逐次連続供給された。 反応の間、 各槽の平均滞留時間が 60分になる ように液面レベルを制御し、 また同時に副生する P Lの留去も行った。 第 1〜3 重合槽より蒸発するガスは、 それぞれ多段凝縮器で凝縮液化され、 一部を各重合 槽に還流し、 残りを s— P Lタンクに回収した。 一方、 第 :〜 5重合器より蒸発 するガスは、 それぞれ、 並列 2基ある片方のフリーズコンデンサで固化され、 他 方のフリーズコンデンサとの切替運転により固化分を溶融し、 s— P Lタンクに 回収された。
各反応槽の重合条件は、 第 1重合槽 (2 10 °C、 l O O T o r r)、 第 2重合槽 (240 °C、 1 5 T o r r)、 第 3重合槽 (260 °C、 0. 5 T o r r)、 第 4重 合槽 (270°C、 0. 5 T o r r) であった。 また、 ポリカーボネートの製造速 度は 38. 3 k g/h rで運転を 400時間行った。
このポリマーを溶融状態のまま、 2軸押出機 (神戸製鋼所 (株) 製、 スクリュ 一径 0. 046m, L/D = 40. 2) に導入し、 ポリカーボネート当たり 5 p pm相当の: —トルエンスルホン酸ブチルを連続的に添加した。 なお —トルェ ンスルホン酸ブチルは、 原液をフレーク状のポリカーボネートにミキサーを用い て分散させマスターバッチを作成し、 重量フィーダ一を用いて、 窒素下、 上記押 出機に供給し、 ペレッ ト化した。 得られたポリカーボネートの粘度平均分子量 ( Mv) は 2 1 000であり、 初期色相 ( Υ I ) は 1. 7だった。
<粘度平均分子量 (Mv) の測定 >
PCの濃度 (C) が 0. 6 gZd 1の塩化メチレン溶液を用いて、 ウベローデ 型粘度計により温度 20°Cで測定した比粘度
Figure imgf000038_0001
s p) から、 下記の両式を用い て算出した。
V s ρ / C = [η] (1 + 0. 28 75 s )
[ η ] = 1. 23 X 1 CT4 (Mv) °·83
<初期色相 (Y I ) の測定 >
P Cを窒素雰囲気下、 1 20°Cで 6時間乾燥した後、 (株) 日本製鋼所製 J一 1 00射出成形機で 3 mm厚の射出成形片を 360°Cで製作し、 スガ試験機株式会 社製 S C— 1により Y I値を測定した (この Y I値が大きいほど着色しているこ とを示す)。
[s— PL精製工程]
上記重合工程より約 30. 2 k g / h rで回収された s— P Lを分析した結果 、 DPCが 5. 0重量0/。、 8? が0. 5重量0/。、 オリゴマーが 0. 3重量0 /0、 水分が 0. 3重量。 /0検出された。
この s— P Lを以下の 2塔の蒸留塔で連続的に精製した。 第 1 PL蒸留塔は、 200 T o r r、 還流比 2で、 含有する水を一部 P Lとともに留去し、 缶出液は 第 2 P L蒸留塔へ供給した。 第 1 P L蒸留塔より留出される P C低沸留去分中の フエノール濃度は約 90重量%であった。 次いで第 2 P L蒸留塔では、 50T o r r、 還流比 0. 5で、 トップより精製 s— P Lを約 2 7 k gZh rで得た。 一 方、 缶出からは DP C、 B PA、 及び、 オリゴマーをそれぞれ、 67重量0/。、 7 重量%、 及ぴ、 4重量。 /。含有する P L混合液を約 2. 2 k g/h rで連続的に抜 き出した。
(実験例 1) D P Cの製造
まず、 図 5の第 2 P L蒸留塔で留去された脱水後の s _ P Lを DP C原料とし て使用し、 かつ、 第 1 P L蒸留塔 30の s— P Lの脱水時に留出される PC低沸 留去分 (D 6) を DP Cの洗浄工程にリサイクルしながら、 D PCを製造する方 法について、 具体的に説明する。
[D P C反応工程 ·脱塩酸工程]
図 1に示すフローに準じて D P C製造工程を行った。 なお、 D PC反応器 1は 、 2つの反応器を直列に連結して用いた。
温度 50°Cで溶融した上記精製した s— P L 30. 0 k g/h r (0. 3 2 k mo 1 Zh r)、及び触媒として、後述する低沸蒸留塔から留出した低沸点物質を 脱水処理したピリジン含有 P Lを、 D PC第一反応器へ連続供給しながら、 1 5 0°Cへ昇温した。 十分に攪拌を行いながら、 ホスゲン (CDC) ガス 3. 56 N m3/h r (0. 1 6 kmo 1 /h r ) を D P C第一反応器へ連続供給した。 DP C第一反応器から流出した反応混合物は、 気液混相にてオーバーフロー管を介し て DP C第二反応器へ供給した。 D PC第二反応器も十分な攪拌状態のもと 1 5 0°Cに調整し、 反応液は脱塩酸塔 2へ供給し、 脱塩酸塔 2では、 中間体であるフ ェニルクロロフォーメ一'トと P Lの押し切り反応を完結すべく、 窒素ガスによる 向流接触を 1 60°Cで実施した。 脱塩酸塔 2の底からは、 D PCが約 89重量% の脱塩酸処理液 bが連続的に抜き出された。 供給されたホスゲンは、 そのほぼ 1 00 %が D P Cに転換された。 一方、 D P C合成時の排ガス (D l、 DPC第二 反応器からの反応排ガス及び脱塩酸等塔 2からの窒素含有排ガス) は、 混合した 後、 10°Cまで冷却され、 凝縮液は DP C第二反応器へ戻され、 未凝縮ガスの塩 化水素はアル力リ水溶液で中和され、 排出した。 ,
[D P C洗浄工程 · D P C水洗工程]
得られた脱塩酸処理液 bと、 後述する D P C回収蒸留塔 8より回収された D P C含有回収液 dとを混合槽 3に送り、 続いて、 テフロンライニング製のアルカリ 中和槽 4に送った。 そして、 約 5重量%の水酸化ナトリウム水溶液 (25重量% の水酸化ナトリゥム水溶液と次工程の水洗後に分離された水相及び、 上記 s— P L精製工程で得られた PC低沸留去分との混合液) を上記中和槽 4に供給し、 8 0°Cで約 10分間混合した後、 PH8..5に調整した。 静置分離し、 分離した有 機相を水洗槽 5に移送した。 一方、 分離後の水相 (P Lや食塩を含有している) は、 水蒸気と接触させて、 含有する PLをほぼ全量低沸留去分として回収し、 次 工程の水洗槽 5に供給した。 水洗槽 5では有機相に対して約 30重量%に相当す る温水で洗浄され、 水相 (前述した中和混合槽にリサイクルされる) を分離して 、 粗製 DPC (水、 触媒ピリジン、 P Lを含有する) である水洗処理液 f を得た
[D P C蒸留工程一低沸蒸留工程]
次に、 上記水洗処理液 f を約 42 k g/h r、 0. 1 Nの水酸化ナトリウム水 溶液を 7 OmL/h rで第 1DPC蒸留塔 6の中段に連続供給した。 第 1DP C 蒸留塔 6は内径 1 5 Omm、 高さ 4. Omで、 上部に還流装置、 中央に原料供給 部があり、 濃縮部および回収部にスルザ一パッキング (住友重機工業 (株) 製) を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r , 熱媒 オイル温度約 220 °C、 トツプ温度 80〜 1 00 °C、 還流比 1の条件で蒸留して DPCより低沸点物質である水、 触媒ピリジン、 未反応 PLを含む混合ガス Fを 蒸留除去した。 混合ガス Fは脱水処理後、 一部をパージし、 残りを前記 DP C第 一反応器へ供給した。 —方、 塔底からは、 約 37 k gZh rで DPCを主とする 第 1蒸留残渣 gを抜き出した。 その中の水分は未検出 (l O p pm以下) であり 、 ピリジンと P Lの含有量はそれぞれ未検出 (l p pm以下) と 5 O p pmであ つた。
[D P C蒸留工程一高沸蒸留工程]
更に、 この第 1蒸留残渣 gを第 2D PC蒸留塔 7に連続供給した。 第 2D PC 蒸留塔 7は内径 20 Omm、 高さ 4. Omで、 上部に還流装置、 中央に原料供給 部があり、 濃縮部および回収部にスルザ一パッキング (住友重機工業 (株) 製) を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r、 熱媒 オイル温度約 240 °C、 トツプ温度約 1 80 °C、 還流比 0. 5、 留出率約 90 % の条件で蒸留して、 トップより精製 DPCを約 3 3. 5 k g/h rで得、 塔底よ り高沸物である D P C蒸留残渣 (X I) を約 4 k gZh rでパージした。 精製 D P Cは、 P Lを 80 p pm含有する高純度品であった。
[D PC回収蒸留工程]
さらに、 高沸蒸留塔の塔底よりパージされた DP C蒸留残渣 (X I) を同時に DP C回収蒸留塔 8に供給し、 下記の条件で連続蒸留し、 トップより約 3. 5 k g/h rで回収された D P C含有回収液 dは、 前述した混合槽 3にリサイクルし 、 缶出液である DPC回収蒸留塔 8は約 0. 2 k gZh rで連続的にパージした 。 D P Cの回収蒸留の条件は、 内径 100mm、 高さ 3. Omで、 上部に還流装 置、 中央に原料供給部があり、 濃縮部および回収部にスルザ一パッキング (住友 重機工業 (株) 製) を充填した、 理論段数 8段の連続蒸留塔を使用し、 真空度 2 0 t o r r、 熱媒オイル温度約 240 °C、 トツプ温度 1 80 °C、 還流比 0. 5で 実施した。 また、 D PC回収蒸留塔 8の缶出液である DP C回収蒸留残渣 (X I ') には、 D PCのアルキル置換体とブロム置換体が、 それぞれ、約 7000重量 p ρ mと約 800重量 ρ ρ πι検出された。
(参考例 1) D PCの製造
上記の精製 s— P Lの代わりに、 市販の P L (三菱化学 (株) 製) を用いた以 外は、 実験例 1と同様にして、 D PCを製造した。
[結果] s— P Lを用いても、 市販の P Lの場合と同様の収率が得られ、 製造効率が保 持されたことが確認された。
(比較例 1) D PCの製造
上記の s— P L精製工程において、 第 1 P L蒸留塔をバイパスして得られた s 一 P L (含水率 0. 3重量 °/0) を用いた以外は実験例 1と同様にして DP Cを製 造した。 その結果、 D P C反応工程での加水分解により脱塩酸処理液 b中の D P C濃度が 86重量%にまで低下し、 製造効率の大幅な低下がみられた。
(参考例 2) B P Aの製造
(B PA製造工程)
図 2〜4に示すフローにしたがって、 B P Aを製造した。 すなわち、 温度調節 器を有する流通式 B P A反応器に、 4一ピリジンエタンチオールでスルホン酸基 の 1 5%を中和した、 スルホン酸型酸性陽イオン交換樹脂 (三菱化学 (株) 製: 商品名 ダイヤイオン S K— 104) を 60 L充填した。 この B P A反応器に、 P L : アセトンのモル比 10 : 1の混合液を温度 80°C、 68. 2 k g//h rの 流量で装入し、 反応させた。 アセトンの転化率は 80%であった。 反応混合物は 、 低沸点物 (未反応アセ トン、 水、 P Lの一部) を 5. lkgZhの流量で除去 したのち、 50°Cに冷却して付加物の結晶を析出させた。 これを濾過して、 付加 物の結晶と母液とに分離した。 流量はそれぞれ 1 6. 5 k g/hと 46. 5 k g Z hであった。 この母液の 10 w t %を母液処理工程に供給し、 他の母液は B P A反応器に装入する原料の一部として循環させた。
ここで得られた付加物結晶を、 再度 27. 2 k g/hの流量の P Lに溶解させ たのち、 50°Cに冷却して結晶を析出させ、 濾過して付加物の結晶 (1 1. 3 k g/h) と母液 (3 2. 5 k g/h) とに分離した。 分離された結晶は、 0. 3 mmHgの減圧下、 1 80°Cに加熱して P Lを除去し、 純度 99. 95 %以上の B P Aを 7. 7 k gZhの流量で得た。
上記の母液処理工程に供給した母液は、 図 4に示す P L蒸発器で P Lの一部を 留去し濃縮した。 次に、 水酸化ナトリウムを 0. 1重量。 /0含ませ、 50mmHg の減圧下、 2 1 0°Cにコントロールした残渣反応器 14の塔底に装入した。 塔底 の液レベルは一定の条件で運転し(滞留時間 1 li r )、残渣反応器 14の塔底液 は 0. 5 k g / hの流量で系外にパージした。 さらに、 残渣反応器 14の塔頂か らの流出液と前述の P Lとを混ぜ、 スルホン酸型酸性陽イオン交換樹脂 (三菱化 学 (株) 製:商品名 ダイヤイオン SK— 104) を 4 L充填した、 流通式再生 反応器 1 5に 4. 2 k g/hの流量で装入し、 80°Cの条件で、 反応させた。 得 られた反応液は最初の B P A反応器に循環した。
反応混合物より分離して得られた、 低沸点物 (未反応アセトン、 水、 PLの一 部) を、 5. 1 k gZhの流量で P L回収塔に装入し、 同時にェチルベンゼン ( 共沸ブレイカー) を塔頂部より供給した。 そして、 PL回収塔の塔頂よりァセト ン、 水、 ェチルベンゼンの混合液を 2. 4 k g/hの流量で、 塔底より PLを 3 . 5 k g/hの流量で、 それぞれ抜き出した。 さらに、 PL回収塔の塔頂流出物 (アセ トン、 水、 ェチルベンゼン) を、 ァセトン回収塔に装入し、 塔頂よりァセ トンを 0. 7 k gZhの流量で、 塔底より水、 ェチルベンゼンの混合物を 1. 6 k gZhの流量でそれぞれ抜き出した。 P L回収塔塔底より得られた P Lとァセ トン回収塔塔頂より得られたァセトンは、 前述の合成反応器に装入する原料の一 部として循環させた。
さらに、 前述の合成反応器へは、 系外へパージされた量及び得られた B P Aの 量に対応する量のァセトンを2. 9 k gZhで、 精製 P Lを 1 5 k gZhで補給 し、 B P A反応を連続的に行い、 上記の系全体として B P Aを連続的に製造した 。 ここで得られた B P Aを、 前述の P Cの重合工程に装入し、 PCを製造した。 上記で使用した精製 P Lは、 市販工業用 P L (水分濃度 0. l W t °/。、 不純物 濃度 0. 05 w t0/o、 ヒ ドロキシァセトン濃度 20 p pm) を、 温度 80°C、 接 着時間 50分で三菱化学 (株) 製:商品名 ダイヤイオン SK— 104H樹脂に 接触処理後、 蒸留塔塔底温度 1 75°C、 塔頂圧力 56 OmmHgで蒸留し、 塔頂 より得たものである。 この精製 P L中のヒドロキシァセトン含有量は 1 p pm以 下であった。
(実験例 2) B P Aの製造
次に、 図 5の第 2 P L蒸留塔で留去された s― P Lの脱水品を B P A原料とし て使用し、 かつ、 s— P Lの脱水時に留出される PC低沸留去分 (D 6) を B P Aの水分離工程に戻しながら、 B P Aを製造する方法について説明する。
上記 B P A製造工程 (参考例 2) において、 反応混合物より分離して得られた 、 低沸点物 (未反応アセトン、 水、 P Lの一部) (5. 1 k g/h) に、 前述の s -P L精製工程の第 1蒸留塔の塔頂より得られた低沸留去分をまぜて、 P L回収 塔に装入し、 同時にェチルベンゼン (共沸プレイカー) を塔頂部より供給した。 そして、 P L回収塔の塔頂よりアセトン、 水、 ェチルベンゼンの混合液を 2. 5 k gZhの流量で、 塔底より P Lを 4. O k g/hの流量で、 それぞれ抜き出し た。 さらに、 P L回収塔の塔頂流出物 (アセ トン、 水、 ェチノレベンゼン) を、 ァ セトン回収塔に装入し、 塔頂よりアセトンを 0. 7 k gZhの流量で、 塔底より 水、 ェチルベンゼンの混合物を 1. 7 k g/hの流量でそれぞれ抜き出した。 P L回収塔塔底より得られた P Lとァセトン回収塔塔頂より得られたァセトンは、 前述の合成反応器に装入する原料の一部として循環させた。 '
さらに、 前述の B P A反応器へは、 系外へパージされた量及ぴ得られた B P A の量に対応する量のアセ トンを 2. 9 k gZhで、 P Lとして前述の P L蒸留ェ 程の第 2 P L蒸留塔の塔頂より得られた精製 S — P Lを 14. 5 k g/hで補給 し、 合成反応を連続的に行い、 上記の系全体として B P Aを連続的に製造した。 さらに、 ここで得られた B P Aを、 前述の重合工程に装入し、 PCを製造した。 その結果、 s—P L精製工程の第 1蒸留塔の塔頂より得られた低沸留去分を B P A製造工程内の既存の工程にリサイクルすることで、 低沸留去分中の P Lのほ ぼ全量を B P Aの原料として効率的に回収できた。 以上の操作を実施しながら、 前述の如く B P A及び P Cを製造した結果、 得られた B P A及び P Cの品質には 何ら問題が無かった。
(比較例 2) B P Aの製造
上記の精製 s—P Lの代わりに、 上記の s— P L精製工程において、 第 1 P L 蒸留塔をバイパスして得られた s— P L (含水率 0. 3重量 °/0) を用いた以外は 、 実験例 2と同様にして、 B P Aを製造した。 その結果、 B P Aの収量低下がみ られた。 これは、 含有する水によって反応触媒であるイオン交換樹脂の活性低下 を引き起こしたと考えられる。
(比較例 3) B P Aの製造
参考例 2において、 精製 P Lに代えて市販工業用 P Lを用いた以外は、 参考例 2と同様にして B P Aを製造した。 その結果、 徐々に B P Aの収量が低下し、 含 有するヒドロキシァセトンによる触媒の活性低下が確認された。
[実施例 2 ]
次に、 s—P Lの処理 2として、 P C重合工程での P C蒸発成分の処理につい て、 実験例を用いて説明する。
〔D P Cの製造例 (1) 〕
巿販 P Lと CD Cから D P Cを製造する例を以下に示す。
<反応工程 >
溶融した市販 P Lとピリジン触媒を反応器へ連続供給しながら、 1 50°Cの混 合下、 ホスゲンガスを連続供給した。 ホスゲン化反応に伴って副生される塩化水 素ガスは 1 0°Cまで冷却し、 凝縮液は反応器に戻され、 未凝縮ガスはアルカリ水 溶液で中和後排出した。 一方、 反応器からは DP Cが約 9 1重量%含有する反応 液を連続的に抜き出した。 反応工程でのホスゲンの反応率はほぼ 100° /。であつ た。
<洗浄工程〉
上記反応液と約 5重量%の水酸化ナトリゥム水溶液を、 それぞれテフロンライ ニング製の中和混合槽に供給し、 80°C下で約 10分間混合し、 pH8. 5に調 整した。 中和後の有機相は静置分離後、 水洗混合槽に移送した。 水洗混合槽では 有機相に対して約 30重量 °/0に相当する温水で洗浄され、 水相を分離して、 粗製 DP C (水 1重量0/。、 ピリジン 2重量0 /。、 P L 8重量0 /。、 0?じ 8 9重量%含有 ) を得た。
ぐ低沸蒸留工程 >
次に、 上記粗製 DPCを約 30 k g/h rで低沸蒸留塔の中段に連続供給した 。 低沸蒸留塔は内径 1 5 Omm、 高さ 4. 0 mで、 上部に還流装置、 中央に原料 供給部があり、 濃縮部および回収部にスルザ一パッキング (住友重機械工業 (株 ) 製) を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r 、 熱媒オイル温度約 220 °C、 トツプ温度 80〜 100 °C、 塔中段温度 1 60 °C 、 還流比 1の条件で蒸留して DP Cより低沸点物質である水、 ピリジン、 P Lを 蒸留留去した。 塔底からは、 約 26 k g/h rで D P C (水 1 0重量 p p m以下 、 ピリジン 1重量; p pm以下、 ?1^ 50重量 1!1) が連続的に抜き出された。 <高沸蒸留工程〉
更に、 この DPC (低沸蒸留塔の缶出液) を高沸蒸留塔に連続供給した。 高沸 蒸留塔は内径 200mm、 高さ 4. Omで、 上部に還流装置、 中央に原料供給部 があり、 濃縮部および回収部にスルザ一パッキング (住友重機械工業 (株) 製) を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r、 熱媒 オイル温度約 240 °C、 トツプ温度約 180 °C、 還流比 0. 5の条件で蒸留して 、 トップより精製 DP Cが約 23. 5 k.gZh rで得られ、 塔底より高沸物 (D P Cのアルキル置換体とブロム置換体がそれぞれ約 3 50重量 p 13111と約40重 量 p 含有する D P C) が約 2. 5 k gZh rでパージされた。 精製 DP Cは 、 P L 8◦重量 p pm含有する高純度品であった。
〔DPCの製造例 (2) 〕
巿販 P Lとジメチルカーボネートから DP Cを製造する例を以下に記す。
<反応工程 >
内径 50mm、 高さ 5 mの実段数 50段のトレィ式蒸留塔 (第 1反応蒸留塔) の上から 1 0段目に巿販 P L、 ジメチルカーボネート及び触媒としてテトラフエ ノキシチタンを含む原料液を 600 g/h r (ジメチルカーボネート 3 90 gZ h r P L 200 g/h r、 テトラフエノキシチタン 0. 5 g/h r ) の流量でフ イードした。 塔底をマントルヒーターで加熱して反応蒸留を行い、 塔頂からメタ ノールを含むジメチルカーボネート溶液を還留比 1 2で還留させながら抜き出し た。 生成したメチルフエニルカーボネート及び少量の DP Cを含む塔底液は、 塔 底から抜き出して、 内径 80mm、 高さ 4 mの実段数 50段のトレィ式蒸留塔 ( 第 2反応蒸留塔) の上から 10段目にフィードした。 第 2反応蒸留塔では、 更に 反応が進行して生成した DP C、 メチルフエニルカーボネートを含む液が、 塔底 から抜き出された。 そして、 大部分の未反応ジメチルカーボネートと一部の未反 応 P Lは、 第 2反応蒸留塔の塔頂より留去して第 1反応蒸留塔へリサイクルした
<リサイクル工程 >
内径 3 2 mm,高さ 2 . 5 mの実段数 3 0段の蒸留塔(共沸蒸留塔) の中段に第 1反応蒸留塔から留出させたメタノールを含むジメチルカーポネートの溶液をフ イードして、 還留比 5で蒸留した。 塔頂よりほぼ共沸組成に近いメタノールとジ メチルカーボネートの混合液を抜き出し、 次いで抽出蒸留塔にフィードした。 抽 出蒸留塔では、 メタノールとジメチルカーボネートを分離し、 メタノールは系外 にパージされ、 ジメチルカーボネートは第 1反応蒸留塔へリサイクルした。 また 、 前記の共沸蒸留塔の塔底液は微量の P Lを含むジメチルカーボネートであり、 これは第 1反応蒸留塔へ循環した。 - <精製工程 >
第 2反応蒸留塔の塔底から連続的に抜き出された触媒及び D P Cを含む高沸点 反応混合物は蒸発缶へ導入され、 そこで触媒を含む蒸発凝縮液がパージされた。 一方、 蒸発缶で形成された D P Cを多量に含む蒸発物はジフエニルカーボネート 精製塔に供給された。 精製塔の塔頂圧力は 2 O T o r r N 塔底温度は 1 9 0 °Cに 制御され、 塔頂からフエノール及びメチルフエニルカーボネートを含む低沸点混 合物を留出し、 一部は還流し、 残りは前記の第 2反応蒸留塔へリサイクルした。 一方、 ジフエニルカーボネート精製塔の塔底からは高沸不純物をパージし、 塔中 段から D P Cを得た。
以上のような操作を連続で行い、 各工程が定常状態になるまで継続した。 定常 状態においてサンプリングして高速液体クロマトグラフィーで分析したところ、 得られたジフエ二ルカーボネートにはメチルフエ二ルカーボネートが 3 0 0重量 p p m検出された。 また、 D P Cの収率は、 P L基準で約 9 5 °/。であった。
〔B P Aの製造例〕
市販 P Lとァセトンから B P Aを製造する例を以下に記す。
温度調節器を有する流通式合成反応器に、 4一ピリジンエタンチオールでスル ホン酸基の 1 5%を中和した、 スルホン酸型酸性陽イオン交換樹脂 (三菱化学 ( 株) 製、 商品名ダイヤイオン SK- 104) を 60 L充填した。 この合成反応器 に、 P L : ァセトンのモル比が 10 : 1の混合液を温度 80°C、 68. 2 k g/ h rの流量で装入し、 反応させた。 アセトンの転化率は 80%であった。 反応混 合物は、 低沸点物 (未反応アセトン、 水、 P Lの一部) を 5. l k gZhの流量 でパージしたのち、 50°Cに冷却して付加物の結晶を析出させた。 これを濾過し て、 付加物の結晶と母液とに分離した。 流量はそれぞれ 1 6. S k gZhと 46 . 5 k g/hであった。 この母液の 10w t %を母液処理工程に供給し、 他の母 液は合成反応器に装入する原料の一部として循環させた。
ここで得られた付加物結晶を、 再度 27. 2 k g/hの流量の P Lに溶解させ たのち、 50°Cに冷却して結晶を析出させ、 濾過して付加物の結晶 (1 1. 3 k g/h) と母液 (3 2. 5 k g/h) とに分離した。 分離された結晶は、 0. 3 mmHgの減圧下、 1 80°Cに加熱し P Lを除去し、 純度 9 9. 95%以上の B PAを 7. 7 k gZhの流量で得た。
一方、 母液処理工程に供給した母液は、 P Lの一部を留去し濃縮した。 次に、 水酸化ナトリウムを 0. 1重量。/。含ませ、 50mmHgの減圧下、 210°Cにコ ントロールした分解蒸留塔の塔底に装入した。 塔底の液レベルは一定の条件で運 転し (滞留時間: l h r) 、 分解蒸留塔の塔底液は 0. 5 k gZhの流量で系外 にパージした。 さらに、 分解蒸留塔の塔頂からの流出液と前述の P Lとを混ぜ、 スルホン酸型酸性陽イオン交換樹脂 (三菱化学 (株) 製、 商品名ダイヤイオン S K - 104) を ·4 L充填した、 流通式反応器に 4. 2 k g/hの流量で装入し、 80°Cの条件で、 反応させた。 得られた反応液は最初の合成反応器に循環した。 前述の合成反応器へは、系外へパ-ジされた量及び得られたビスフエノ -ル Aの 量に対応する量の市販 P L (1 8. 5 k g/h) とアセトン (3. 6 k g / h ) を補給し、 合成反応を連続的に行い、 上記の系全体として B P Aを連続的に製造 した。
〔PCの製造例 (1) 〕
上記 DP Cの製造例 (1) で得られた DP Cと、 上記 B P Aの製造例から得ら れた B PAから図 6に示す工程で P Cを製造する例を以下に記す。
< P C重合工程 >
上記 D P Cと B P Aを窒素ガス雰囲気下、 0. 977重量比で混合槽 21にて 溶融混合し、 窒素雰囲気下、 2 10°C、 100 T o r ITに制御した第 1縦型攪抨 重合槽 22内に連続供給し、 平均滞留時間が 60分になるように槽底部のポリマ 一排出ラィンに設けられたバルブ開度を制御しつつ液面レベルを一定に保った。 また、 上記原料混合物の供給を開始すると同時に、 触媒として水溶液とした炭酸 セシウムを B P A 1モルに対し、 0. 5 X 10— 6モルの流量で連続供給した。 槽 底より排出された重合液は、 引き続き第 2、 3の縦型重合槽 23, 24並びに第 4の横型重合器 25に逐次連続供給された。 反応の間、 各槽の平均滞留時間が 6 0分になるように液面レベルを制御し、 また同時に副生する P Lの留去も行った 。 第 1、 2重合槽 22, 23より蒸発するガスは、 それぞれ環流装置 33 a, 3 3 b、 及び多段凝縮器 26, 27で凝縮液化され、 一部を各重合槽に還流し、 残 りを第 1 P C用回収 P Lタンク 29 aに回収した。 一方、 第 3重合槽 24より蒸 発するガスは、 並列 2基ある片方のフリーズコンデンサーで固化され、 他方のフ リーズコンデンサーとの切替運転により固化分を溶融し、 第 2 P C用回収 P Lタ ンク 29 bに回収された。 その際、 第 1, 及び第 2重合槽 22, 23より留出さ れる PC蒸発成分は全てを第 1 PC用回収 P Lタンク 29 aに、 第 3重合槽 24 より留出される PC蒸発成分は第 2 PC用回収 P Lタンク 29 bにそれぞれ貯蔵 した。
各重合槽の重合条件は、 第 1重合槽 22 (2 10°C、 1 0 O T o r r) 、 第 2 重合槽 23 (240 °C、 1 5 T o r r) 、 第 3重合槽 24 (260 °C、 0. 5 T o r r ) 、 第 4重合器 25 (280 °C、 0. 5 T o r r) であった。
上記得られたポリマーを溶融状態のまま、 2軸押出機 (神戸製鋼所 (株) 製、 スクリュー径 0. 046m、 L/D = 40. 2) に導入し、 ポリカーボネート当 たり 5重量 p pm相当の p— トルエンスルホン酸ブチルを連続的に添加しながら 、 ペレッ ト化した。 こう して得られた P Cの Mvは 21 , 000であり、 初期 Υ Iは 1. 7であった。 なお、 分子量 (Mv) 及び初期色相 (Y I ) の測定方法は 、 上記のとおりである。
く P c蒸発成分 >
上記重合工程より回収された各 P c蒸発成分の量ならびに組成を測定した結果
、 以下の通りであった。
'第 I P C用回収 P Lタンク 2 9 a
回収された第 1 PC蒸発成分 p 1中のフユノール量は、 P C重合工程で留出し た P L全体量に対して、 約 6 0°/。であった。 P L以外には D P Cが 1. 1重量。 /0 検出され、 B P A及びオリゴマー成分は未検出であった。
-第 2 P C用回収 P Lタンク 2 9 b
回収された第 2 P C蒸発成分 p 2中のフエノール量は、 重合工程で留出した P L全体量に対して、 約 40%であり、 P L以外に D P Cが 6. 0重量 °/0検出され 、 B P A及びオリ ゴマー成分がそれぞれ 1. 2重量。/。、 0. 3重量。/。検出された
〔P Cの製造例 (2) 〕
上記 D P Cの製造例 (2) で得られた DP Cと、 上記 B P Aの製造例から得ら れた B P Aから P Cを製造する例を以下に記す。
< P C重合工程 >
D P Cとして、 前述した D P Cの製造例 (2) で得られた D P Cを使用した以 外は、 前記 P Cの製造例 (1 ) と同様の操作を実施した。 得られた P Cは、 Mv = 2 1 , 0 00、 初期 Υ 1 = 1. 7であり、 前記芳香族ポリカーボネートの製造 例 (1 ) のそれと同等品質であった。'
< P C蒸発成分 >
上記重合工程より回収された各 P C蒸発成分の量ならびに組成を測定した結果
、 以下の通りであった。
-第 1 P C用回収 P Lタンク 2 9 a
回収された第 1 P C蒸発成分 p 1中のフエノール量は、 P C重合工程で留出し た P L全体量に対して、 約 6 0 %であった。 P L以外には D P Cが 1. 1重量 °/0 、 メタノールが 9 5重量 p p m検出され、 B P Aおよぴォリゴマー成分は未検出 であった。
-第 2 PC用回収 P Lタンク 29 b
回収された第 2 P C蒸発成分: p 2中のフエノール量は、 重合工程で留出した P L全体量に対して、 約 40%であり、 P L以外に DPCが 6. 0重量。 /0検出され 、 B P A及びオリゴマー成分がそれぞれ 1. 2重量%、 0. 3重量%検出された 。 メタノールは未検出 (5重量 1) 111以下) であった。
(実験例 1 )
上記 PCの製造例 (1) で得られた副生フユノールを含む P C蒸発成分を用い て、 D P C及び B P Aを製造した。
<DPCの製造〉
前述した DP Cの製造例 (1) で使用した市販 PLの 60%に相当する分を、 上記 PCの製造例 (1) で回収された第 1 P C蒸発成分 p 1に変えた以外は、 前 述した DP Cの製造例 (1) と同様の操作を行い、 D PCを製造した。 結果、 反 応工程でのホスゲン反応率、 及ぴ、 得られた D P Cの品質は何ら変わりなく問題 なかった。
< B P Aの製造 >
前述した B P Aの製造例において、 合成反応器に連続的に補給される市販 P L の 40°/0に相当する分を、 上記 PCの製造例 (1) で回収された第 2 P C蒸発成 分: p 2に変えた以外は、 前述した B P Aの製造例と同様の操作を行い、 B PAを 製造した。 結果、 アセトンの転化率、 ビスフエノール Aの品質に問題はなかった
(実験例 2 )
上記 PCの製造例 (2) で得られた副生フエノールを含む PC蒸発成分を用い て、 D P C及ぴ B P Aを製造した。
く D P Cの製造 >
前述した DP Cの製造例 (2) で使用した市販 P Lの 60%に相当する分を、 上記 PCの製造例 (2) で回収された第 1 PC蒸発成分 p 1に変えた以外は、 前 述した DP Cの製造例 (2) と同様の操作を行い、 D PCを製造した。 結果、 同 等品質の D P Cを得ることができ、 メチルフエニルカーボネート由来のメタノー ルが混入しても問題ないことが確認できた。
く B P Aの製造〉
前述した B P Aの製造例において、 合成反応器に連続的に補給される市販 P L の 40%に相当する分を、 上記 PCの製造例 (2) で回収された第 2 PC蒸発成 分 p 2に変えた以外は、 前述した B P Aの製造例と同様の操作を行い、 B PAを 製造した。 結果、 アセトンの転化率、 B P Aの品質に問題はなかった。 また、 反 応原料中のメタノール濃度は未検出であった。
(比較実験例 1 )
上記 PCの製造例 (1) で回収された第 2 PC蒸発成分 p 2を使用して DP C を製造した。
<DPCの製造 >
前述した DP Cの製造例 (1) で使用した市販 P Lを全て、 上記 PCの製造例 (1) で回収された第 2 P C蒸発成分 p 2に変えた以外は、 前述した DP Cの製 造例 (1) と同様の操作を行い、 D PCを製造した。 結果、 反応液を洗浄工程に 移送する配管内で閉塞を生じ、 運転を継続することができなかった。
(比較実験例 2 )
上記 PCの製造例 (2) で回収された第 1 P C蒸発成分 p 1を使用して B PA を製造した。
<B P Aの製造〉
前述した B P Aの製造例において、 合成反応器に連続的に補給される市販 P L を全て、 上記 PCの製造例 (2) で回収された第 1 PC蒸発成分 p 1 (メタノー ル 95重量 p pm含有) に変えた以外は、 前述した B P Aの製造例に従って B P Aを連続的に製造した。 結果、 アセトンの転化率が 5 5. 0%まで大幅に低下し 、 含有するメタノールにより触媒性能が低下したと考えられる。 また、 合成反応 時の原料フユノール中のメタノール濃度は、 循環する母液にて希釈され、 約 30 里重 p mでめった。
[実施例 3 ] 次に、 s— P Lの処理 3として、 P C蒸発成分 p及ぴ巿販 P Lの不純物による 使用法の区分けについて、 実験例を用いて説明する。
(実験例 1 )
(D P Cの製造)
〔反応工程〕
溶融した市販 P L (三菱化学 (株) 製、 タレゾール含有量: 45重量 111、 ヒドロキシアセトン含有量: 27重量 p pm、 以下、 「P L 1」 と称する。) とピ リジン触媒を反応器へ連続供給しながら、 1 50°Cの混合下、 ホスゲンガスを連 続供給した。 ホスゲン化反応に伴って副生される塩化水素ガスは 10°Cまで冷却 し、 凝縮液は反応器に戻され、 未凝縮ガスはアルカリ水溶液で中和後排出した。 一方、反応器からは D P Cが約 9 1重量%含有する反応液を連続的に抜き出した。 〔洗浄工程〕 - 上記反応液と約 5重量。 /0の水酸化ナトリゥム水溶液を、 それぞれテフロンライ ニング製の中和混合槽に供給し、 80°Cで約 1 0分間混合し pH8. 5に調整し た。 中和後の有機相は静置分離後、 水洗混合槽に移送した。 水洗混合槽では有機 相に対して約 30重量。 /0に相当する温水で洗浄され、 水相を分離して、 粗製 DP C (水 1重量0/。、 ピリジン 2重量0/。、 P L 8重量0/。、 D P C 8 9重量0/。含有) を 得た。
〔低沸蒸留工程〕
次に、上記粗製 DPCを約 30 k g/h rで低沸蒸留塔の中段に連続供給した。 低沸蒸留塔は内径 1 50mm、 高さ 4. Omで、 上部に還流装置、 中央に原料供 給部があり、 濃縮部および回収部にスルザ一パッキング (住友重機工業製) を充 填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r、 熱媒オイ ル温度約 220 °C、 トツプ温度 80〜 100 °C、 塔中段温度 1 60 °C、 還流比 1 の条件で蒸留して D PCより低沸点物質である水、 ピリジン、 P Lを蒸留留去し た。 塔底からは、 約 26 k g / li rで D PC (水 1 0重量 p p ni以下、 ピリジン 1重量 p pm以下、 ?1^ 50重量 ) が連続的に抜き出された。
〔高沸蒸留工程〕 更に、 この DPC (低沸蒸留塔の缶出液) を高沸蒸留塔に連続供給した。 高沸 蒸留塔は内径 20 Omm、 高さ 4. Omで、 上部に還流装置、 中央に原料供給部 があり、 濃縮部および回収部にスルザ一パッキング (住友重機工業製) を充填し た、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r , 熱媒オイル温 度約 240 °C、 トツプ温度約 1 80 °C、 還流比 0. 5の条件で蒸留して、 トップ より精製 D P C (P L 80重量 p pm含有)が約 23. 5 k g/h rで得られた。 (参考例 1 )
上記の市販 PL (P L 1) の代わりに、 三菱化学 (株) での PC製造工場から 得られた P C蒸発成分 pを以下の条件で蒸留精製した副生フェノール (クレゾー ル含有量: 5重量 p pm、 ヒドロキシァセトン含有量: 1重量 p pm以下、以下、
「P L 2」 と称する。) を用いた以外は、 実験例 1と同様にして、 D P Cを製造し た。
[蒸留精製条件]
第 1蒸留塔では、 200 T o r r、 還流比 2で、 含有する水を一部 P Lととも に留去し、缶出液を第 2蒸留塔へ連続供給した。索 2蒸留塔では、 50 T o r r、 還流比 0. 5で、 トップより精製した副生フエノールを得、 缶出からは高沸点の 成分である DP C、 B PA、 及び、 オリゴマーを含有する P L混合液を連続的に パージした。
〔結果〕
市販 p Lを精製することなく、 DPC製造に使用しても、 蒸留精製した副生フ ェノールを用いた場合と同様に、 高純度で、 変色等の生じない高純度な D Pじが 得られた。
(実験例 2、 比較例 1) B P Aの製造
スルホン酸基の 1 5重量%が 4一 (2—メルカプトェチル) ピリジンで変性さ れたスルホン酸型陽イオン交換樹脂 (スチレンージビニルベンゼン架橋共重合体 のスルホン化物 (ダイヤイオン SK 1 04H、 三菱化学 (株) 製)) を反応器に充 填し、 これに上記 P L (? 1^ 2又は? 1) とアセ トン (三菱化学 (株) 製) と からなる原料流体 (P L : アセトン = 1 3 : 1 (モル比)) をフエノール湿潤触媒 基準の L H S V = 5 h r 1で連続的に流通させながら、 7 0 °Cの反応温度で、 1 0 0 8時間にわたって、 B P Aの生成反応を行った。 反応開始直後のアセトンの 反応率、 1 0 0 8時間経過後のアセトン反応率、 及び B P Aの選択率を表 1に示 す。 また、 反応開始 1 2 0時間経過後のァセトン反応率に対する 1 0 0 8時間経 過後のアセトン反応率の比を、 活性維持率として算出した。 この結果も合わせて 表 1に示す。
Figure imgf000055_0001
なお、 反応率 (%)、 触媒の活性維持率 (°/0) は、 下記の式から算出した。 反応率 (%) = { (供給アセトン量一未反応アセトン量) Z供給アセトン量 } X
1 0 0
活性維持率 (%) = ( 1 0 0 8時間後のァセトン転化率) Z ( 1 2 0時間後の ァセトン転化率) X 1 0 0
[結果]
P Lとして、 重合工程で留出した P Lを蒸留精製したものを用いた場合、 市販 P Lを用いた場合とは異なり、 反応率も触媒の活性維持率も高い保持率を有して いた。
また、 重合工程で留出した P Lを蒸留精製したものを用いた場合、 得られる B P Aの色調は白色だったが、 市販 P Lを用いた場合は、 少し黄変していた。 これ らを用いて P Cを製造したとすると、 重合工程で留出した P Lを蒸留精製したも のを用いて B P Aを製造した場合では、 白色の高純度の P Cが得られると考えら れるが、 市販 P Lを用いて B P Aを製造した場合は、 得られる P Cが多少黄変し 、 純度も低下することが予想される。 [実施例 4]
次に、 製造工程間の連携について、 図 7に記載のフローしたがって、 本発明を 更に具体的に説明する。 なお、 B P A貯蔵工程は、 図 7と異なり、 加熱溶融工程 ((d) 工程) と P L除去工程 ((e) 工程) の間に設けた。
(実験例 1 )
〔B P Aの製造〕
温度調節器を有する流通式 B P A反応器に、 4一ピリジンエタンチオールでス ルホン酸基の 1 5%を中和した、 スルホン酸型酸性陽イオン交換樹脂 (三菱化成 (株) 製:商品名ダイヤイオン SK- 1 04) を 60 L充填した。 この合成反応 器に、 P L : ァセトン (A) のモル比が 1 0 : 1の混合液を温度 80°C、 68.
2 k gZh rの流量で装入し、 反応させた。 セトン (A) の転化率は 80%で あった。 反応混合物は、 低沸点物 (未反応アセトン、 水、 P Lの一部) を 5. 1 k gZhの流量でパージしたのち、 50°Cに冷却して付加物の結晶を析出させた。 これを濾過して、 付加物の結晶と母液とに分離した。 流量はそれぞれ 1 6. 5 k § と 46. 5 k gZhであった。 この母液の 10 w t %を母液処理工程に供 給し、 他の母液は合成反応器に装入する原料の一部として循環させた。
ここで得られた付加物結晶を、 再度 27. 2 k g/hの流量のフエノ -ルに榕 解させたのち、 50°Cに冷却して結晶を析出させ、濾過して付加物の結晶(1 1.
3 k g/h) と母液 (3 2. 5 k g/h) とに分離した。 分離された結晶は、 精 製 P L 1. 5 k g/h rと混合され、 B PAと P Lの 60 : 40重量。 /0の混合物 を、 1 2. 8 k gZh rで B P A貯蔵タンク (以下の条件) にストックし、 次ェ 程の P L除去工程に 1 2. 0 k g / h rで連続して供給した。
上記 B P A貯蔵タンクは、 SU S 304製の容量 1 50 Lのもの (明細書に記 載の Vb/F b = 2 2となる) を使用し、 系内を窒素でシールし、 B P Aと P L の混合物の内温を 1 20°Cに調整した。 また、 上記 B PAと P Lの混合物には、 イオン交換樹脂からの溶出したと考えられる P Lスルホン酸が約 10重量 p p b 検出されたため、 貯蔵タンクに移送する前に、 該酸性物質を完全に中和すべく、 中和相当量の苛性ソーダ水溶液を添加し中和した後、上記貯蔵タンクに供給した。 貯蔵タンクの液面は、 運転開始から僅かながら徐々に上昇してきた。
次に、 B P A貯蔵タンク内の B P Aと P Lの混合物は、 1 2. O k g/h rで 連続して、 P L除去工程に移送され、 0. 3mniHgの減圧下、 1 80°Cに加熱 して P Lを除去し、 純度 9 9. 9 5 %以上の B P Aを 7. 2 k g/h r (6. 8 L/h r ) の流量で得た。 得られた B PAは、 そのまま、 後述する芳香族ポリ力 ーボネート製造工程に連続して供給した。
—方、 母液処理工程 (図 7に示さず。 図 4参照。) に供給した母液は、 PLの一 部を P L蒸発器 1 3で留去し濃縮した。 次に、 水酸化ナトリウムを 0. 1重量% 含ませ、 50mmHgの減圧下、 2 1 0 °Cにコントロールした残渣反応器 14の 塔底に装入した。 塔底の液レベルは一定の条件で運転し (滞留時間: 1 h r)、残 渣反応器 14の塔底液は 0. 5 k gZhの流量で系外にパージした。 さらに、 残 渣反応器 14の塔頂からの流出液と前述の P Lとを混ぜ、 スルホン酸型酸性陽ィ オン交換樹脂 (三菱化学 (株) 製:商品名ダイヤイオン SK- 1 04) を 4 L充 填した、 流通式再生反応器 1 5に 4. 2 k g / hの流量で装入し、 80 °Cの条件 で、 反応させた。 得られた反応液は最初の B P A反応器に循環した。
前述の B P A反応器へは、 系外へパージされた量及び得られた B P Aの量に対 応する量の市販の P L (18. 5 k g/h) とアセトン (3. 6 k g / h ) を補 給し、合成反応を連続的に行い、上記の系全体として B P Aを連続的に製造した。 〔PCの製造〕
図 5のフローに従って、 P Cの製造例を以下に記す。
上記連続的に供給される B P Aと D P Cを窒素ガス雰囲気下、混合槽 21で 1. 024重量比で溶融混合し、 窒素雰囲気下、 210 °C、 l O O T o r rに制御し た第 1縦型攪拌重合槽 22内に連続供給し、 平均滞留時間が 60分になるように 槽底部のポリマー排出ラインに設けられたバルブ開度を制御しつつ液面レベルを 一定に保った。 また、 上記原料混合物の供給を開始すると同時に、 触媒として水 溶液とした炭酸セシウムを B P A 1モルに対し、 0. 5 X 10—6モルの流量で連 続供給した。槽底より排出された重合液は、 き続き第 2、 3の縦型重合槽 2 3, 24並びに第 4の横型重合槽 2 5に逐次連続供給された。 反応の間、 各槽の平均 滞留時間が 60分になるように液面レベルを制御し、 また同時に副生する P Lの 留去も行った。 第 1、 2重合槽より蒸発する PC蒸発成分: は、 それぞれ多段凝 縮器で凝縮液化され、 一部を各重合槽に還流し、 残りを PC用 P Lタンク 29に 回収した。 一方、 第 3, 4重合槽 24, 25より蒸発するガスは、 それぞれ、 並 列 2基ある片方のフリーズコンデンサで固化され、 他方のフリーズコンデンサと の切替運転により固化分を溶融し、 PC用 PLタンク 29に回収した(図示せず)。 各反応槽の重合条件は、 第 1重合槽 (2 10°C、 10 OT o r r) 、 第 2重合 槽 (240 °C、 1 5 T o r r ) 、 第 3重合槽 (260°C、 0. 5 T o r r) 、 第 4重合槽 (280°C、 0. 5 T o r r ) であった。
上記得られたポリマーを溶融状態のまま、 P C当たり 5重量 p p m相当の p— トルエンスルホン酸プチルを連続的に添加しながら、 ペレツト化した。 こうして 得られたポリカーボネートの Mvは 2 1, 000であり、 初期 Υ Iは 1. 8であ つた。
<分子量 (Μν) の測定 >
P Cの濃度 (C) が 0. 6 gZd 1の塩化メチレン溶液を用いて、 ウベローデ 型粘度計により温度 20°Cで測定した比粘度 ( s p) から、 下記の両式を用い て分子量 (Mv) を算出した。 '
77 s p/C= [η] (1 - 0. 28 ?7 s )
[η] = 1. 23 X 1 0- 4 (Μν) °· 83
く初期色相 (Υ I ) の測定 >
PCを窒素雰囲気下、 1 20°Cで 6時間乾燥した後、 (株) 日本製鋼所 (株) 製: J一 100射出成形機で 3 mm厚の射出成形片を 360 °Cで製作し、 スガ試 験機 (株) 製: S C— 1により Y I値を測定した (この Y I値が大きいほど着色 していることを示す) 。
上記運転を 1週間継続した後、 B P Aの晶析装置を洗浄する目的で、合成反応 · 晶析工程を一時的に約 8 h rほど停止した。 しかしながら、 その間も貯蔵タンク にス トックされた混合液を用いて、 後工程を連続して運転し、 B PA、 および、 芳香族ポリカーボネートを製造することができた。 また、 得られた上記品質は、 1週間の継続運転時もその後の後工程のみの運転時も、 初期品質と何ら変わりな く問題なかった。
(実験例 2 )
実験例 1の B P A製造時の B P A貯蔵タンクの容量を 2m3 (Vb/F b = 2 94となる) に変えた以外は、 上記実験例 1と同様の操作を行い、 B PAおよび 芳香族ポリカーボネートを連続して製造した。 得られた芳香族ポリカーボネート の Mvは 2 1, 000であり、 初期 Υ Iは 1. 8を示した。
また、 上記運転を 2·ヶ月継続したが、 その間、 芳香族ポリカーボネートの色相
(初期 Υ Ι ) は 1. 8〜1. 9を示し、 良好な製品を得ることができた。 さらに、 その後、 Β Ρ Αの合成反応 ·晶析工程を一時的に約 3日ほど停止したが、 貯蔵タ ンクにストツクされた混合液を用いて、 後工程を連続して運転することができ、 得られた製品品質も問題なかった。 それ以降、 上述の通り、 B PAの前工程 (B PA貯蔵タンクより前にある工程まで) を、 2ヶ月毎に 313間停止する断続運転 を行い、 該 B P Aの後工程から芳香族ポリカーボネートの製造までを連続運転し て、 約半年にわたり、 良品質の芳香族ポリカーボネートを連続して得ることがで きた。
(比較実験例 1 )
実験例 1の B P A製造時の B P A貯蔵タンクの容量を 50 L (V b/F b = 7 となる) に変えた以外は、 上記実験例 1と同様の操作を行い、 B PAおよび芳香 族ポリカーボネートを連続して製造した。 得られた芳香族ポリカーボネートの M Vは 2 1, 000であり、 初期 Y Iは 1. 8を示した。
しかしながら、 上記運転を開始して 2日を過ぎてから、 B P A貯蔵タンクが一 杯となり、 ビス P L製造の前工程 (貯蔵タンクより前にある工程まで) の製造速 度を低下させ、 貯蔵タンクの液面が一定になるように調整した。 その後、 該前ェ 程のみを停止したところ、 貯蔵タンクの液面は見る見るうちに低下し、 約 4 h r で空となり、 後工程おょぴ P C工程の全工程を停止せざるを得なくなつた。
(比較実験例 2 )
比較実験例 1において、 貯蔵タンクの液面が一定になるように、 B P Aの前ェ 程 (貯蔵タンクより前にある工程まで) の製造速度を調整しながら、 連続的に B P Aを製造し、 得られた B P Aは冷却後、 造粒されたものを、 新たに設けた B P Aの粉体ホッパー (容量 l m3) に一度貯蔵した。 その後、 粉体計量フィーダ一 を用いて、 D PC溶液に供給、 溶解させながら、 上述の通り連続的に P Cを製造 した。 上記粉体ホッパーに B PAが存在している間は、 B PA工程を一時的に停 止しても、 P Cの製造速度には問題無かったが、 この方法では、 溶融している B P Aを粉体にするため一度冷却し、 その後溶解のために加熱する必要があり、 熱 効率の面で不利であった。 また、 B P Aの供給時に粉塵が発生し、 ガスラインが 閉塞するトラブルが発生した。
(比較実験例 3 )
比較実験例 1において、 貯蔵タンクの液面が一定になるように、 貯蔵タンク以 降の製造速度を若干上昇させ、 連続的に B P Aを 7. 7 k gZh rで製造した。 得られた B P A単体は、 新たに設けた容量 2m3のタンクに貯蔵され、 内温が 1 60°Cにコントロールされた後、 比較実験例 1と同様に、 7. 2 k gZh rで P Cの製造原料として供給した。 得られた P Cの初期 Y Iは 1. 8であったが、 運 転を継続するにつれて、 色相が明らかに悪化し始め、 B P A単体で溶融保持する と品質は大幅に悪化した。
(実験例 3 )
次に、 B P A製造工程、 D PC製造工程及び PC製造工程を連携し、 各製造工程 に B PA、 DPC、 P C貯蔵工程を設けた実験例を以下に記す。
〔B PAの製造〕
上記実験例 1と同様に実施した。
[D P Cの製造〕
<反応工程 >
温度 50°Cの溶融フ ノールを 6. 4 k g/h r、 触媒として、 後述する低沸 蒸留塔から留出した低沸点物質を脱水処理したピリジン含有フエノールを第一反 応器へ連続供給しながら、 1 50°Cへ昇温した。 十分に攪拌を行いながら、 ホス ゲンガス 0. 75 Nm3 /h rを第一反応器へ連続供給した。 第一反 器から流 出した反応混合物は、 気液混相にてオーバーフロー管を介して第二反応器へ供給 した。 第二反応器も+分な攪拌状態のもと 1 5 0 °Cに調整し、 反応液は脱ガス塔 へ供給し、 脱ガス塔では、 中間体であるフエ二 クロ口フォーメートとフエノー ルの押し切り反応を完結すべく、窒素ガスによる向流接触を 1 6 0 °Cで実施した。 脱ガス塔底からは、 ジフエ二ルカーポネートが約 8 9重量%の反応液が連続的に 抜き出された。 供給されたホスゲンは、 そのほぼ 1 0 0 %がジフエ二ルカーポネ ートに転換された。 一方、 ジフエニルカーボネート合成時の排ガス (第二反応器 からの反応排ガス及び脱ガス塔からの窒素含有排ガス) は、 混合した後、 1 0 °C まで冷却され、 凝縮液は第二反応器へ戻され、 未凝縮ガスの塩化水素はアルカリ 水溶液で中和され、 排出した。
<洗浄工程〉
得られた反応液と、 後述する回収蒸留塔より回収されたジフ ニルカーボネー トと、 約 5重量。/。の水酸化ナトリウム水溶液 (2 5重量%の水酸化ナトリウム水 溶液と次工程の水洗後に分離された水相との混合液) を、 それぞれテフロンライ ユング製の中和混合槽に供給し、 8 0 °Cで約 1 0分間混合し p H 8 . 5に調整し た。 中和後の有機相は静置分離後、 水洗混合槽に移送した。 一方、 分離後の水相 (フエノールや食塩を含有している) は、 水蒸気と接触させて、 含有するフエノ ールをほぼ全量フエノール含有水として回収し、次工程の水洗混合槽に供給した。 水洗混合槽では有機相に対して約 3 0重量。 /0に相当する温水で洗浄され、水相(前 述した中和混合槽にリサイクルされる) を分離して、 粗製ジフヱニルカーボネー ト (水、 触媒ピリジン、 フユノールを含有する) を得た。
く低沸蒸留工程 >
次に、 上記粗製ジフエニルカーボネートを約 9 k g / h r、 0 . I Nの水酸化 ナトリゥム水溶液を 1 5 m L Z h rで低沸蒸留塔の中段に連続供給した。 低沸蒸 留塔は内径 1 0 0 mm、 高さ 4 . 0 mで、 上部に還流装置、 中央に原料供給部が あり、濃縮部および回収部にスルザ一パッキング(住友重機工業製)を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 2 0 t o r r , 熱媒オイル温度約 2 2 0 °C、 トップ温度 8 0〜 1 0 0 °C、 還流比 1の条件で蒸留してジフエ二ルカ ーポネートより低沸点物質である水、 触媒ピリジン、 未反応フユノールを蒸留除 去した。 低沸点物質は脱水処理後、 一部をパージし、 残りを前記ホスゲン化第一 反応器へ供給した。 一方、 塔底からは、 約 7. 8 k g/h 1:でジフエエルカーボ ネートを抜き出し、 その中の水分は未検出 (l O p pm以下) であり、 ピリジン とフエノールの含有量はそれぞれ未検出(1 p pm以下) と 50 p p であった。 ぐ高沸蒸留工程 >
更に、 このジフエ二ルカーポネート (低沸蒸留塔の缶出液) を高沸蒸留塔に連 続供給した。 高沸蒸留塔は内径 1 0 Omm、 高さ 4. Omで、 上部に還流装置、 中央に原料供給部があり、 濃縮部および回収部にスルザ一パッキング (住友重機 工業製) を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r、 熱媒オイル温度約 240 °C、 トツプ温度約 1 80 °C、 還流比 0. 5、 留出率 約 90%の条件で蒸留して、 トップより精製ジフヱ二ルカーポネートを約 7. 1 k g/h r (7 L/h r ) で得、 塔底より髙沸物を約 0. 8 k g/h rでパージ した。 精製ジフエュルカーボネートは、 フエノールを 80 p 含有する高純度 品であり、 SU S 3 1 6製の容量 200 Lのタンク (明細書に記載の V d Z F d = 29となる) に 1 00°Cで一定量 (約 1 00 L) 貯蔵された後、 7 LZh rで P C重合原料として供給された。
く回収蒸留工程 >
ざらに、 高沸蒸留塔の塔底よりパージされた缶出液を同時に回収蒸留塔に供給 し、 下記の条件で連続蒸留し、 トップより約 0. 7 k gZh rで回収されたジフ ニルカーボネートは前述した中和混合槽にリサイクルし、 缶出液は約 0. 04 k g/h rで連続的にパージした。ジフエニルカーボネートの回収蒸留の条件は、 内径 50mm、 高さ 3. 0 mで、 上部に還流装置、 中央に原料供給部があり、 濃 縮部および回収部にスルザ一パッキング (住友重機工業製) を充填した、 理論段 数 8段の連続蒸留塔を使用し、真空度 20 t o r r、熱媒オイル温度約 240° ( 、 トップ温度 1 80°C、還流比 0. 5で実施した。また、回収蒸留塔の缶出液には、 ジフエ二ルカーボネートのアルキル置換体とブロム置換体が、 それぞれ、 約 70 00重量 p pmと約 800重量 p pm検出された。 〔P Cの製造〕
く重合工程 >
窒素ガス雰囲気下、 1 30°Cで、 上記で得られたビスフエノール Aを 7. 2 k g Z h rで、 ジフエニルカーボネートを 7. 1 k g/h rで溶融混合し、 1 30 °C に加熱した原料導入管を介して常圧、 窒素雰囲気下、 21 0°Cに制御した第 1縦 型攪拌重合槽内に連続供給し、 平均滞留時間が 60分になるように槽底部のポリ マー排出ラインに設けられたバルプ開度を制御しつつ液面レベルを一定に保った。 また、 上記原料混合物の供給を開始すると同時に、 触媒として水溶液とした炭酸 セシウムをビスフエノーノレ A 1モルに対し、 0. 5 X 1 0 - 6モノレの流量で連続 供給した。 槽底より排出された重合液は、 引き続き第 2、 3、 4の縦型重合槽並 びに第 5の横型重合槽に逐次連続供給された。 反応の間、 各槽の平均滞留時間が 60分になるように液面レベルを制御し、 また同時に副生するフエノールの留去 も行った。 第 1〜3重合槽より蒸発するガスは、 それぞれ多段凝縮器で凝縮液化 され、一部を各重合槽に還流し、残りを副生フエノールタンクに回収した。一方、 第 4 ~ 5重合槽より蒸発するガスは、 それぞれ、 並列 2基ある片方のフリーズコ ンデンサ一で固化され、 他方のフリーズコンデンサーとの切替運転により固化分 を溶融し、 上記の副生フユノールタンクに回収された。
各反応槽の重合条件は、 第 2重合槽 ( 2 1 0 °C、 10 OT o r r) 、 第 3重合 槽 ( 240 °C、 1 5 T o r r ) 、 第 4重合槽 (260 °C、 0. 5 T o r r) 、 第 5重合槽 (270° (:、 0. 5 T o r r) であった。 また、 ポリカーボネートの製 造速度は 8. 0 k g / h rで運転を行った。
次に、 このポリマーを溶融状態のまま、 2軸押出機 (神戸製鋼所 (株) 製) に 導入し、 ポリカーボネート当たり 5 p pm相当の p—トルエンスルホン酸ブチル を連続的に添加した。 なお p— トルエンスルホン酸ブチルは、 原液をフレーク状 のポリカーボネートにミキサーを用いて分散させマスターバッチを作成し、 重量 フィーダ一を用い.て、 窒素下、 上記押出機に供給し、 ペレッ ト化した。 こう して 得られたポリカーボネートの Mvは 21, 000であり、 初期 Υ Iは 1. 7であ つた。 分子量 (Mv) :
ポリカーボネートの濃度(C)が 0. 6 g/d 1の塩化メチレン溶液を用いて、 ウベローデ型粘度計により温度 2 0°Cで測定した比粘度 (77 s p) から、 下記の 両式を用いて算出した値である。
η s p /C= [ 77 ] ( 1 + 0. 2 8 77 s p )
[ 77 ] = 1. 2 3 X 1 0-4 (M v) 0.83
初期色相 (Y I ) :
ポリカーボネート樹脂を窒素雰囲気下、 1 2 0°Cで 6時間乾燥した後、 (株) 日本製鋼所製 J一 1 0 0射出成形機で 3 mm厚の射出成形片を 3 6 0°Cで製作し、 スガ試験機株式会社製 S C— 1により Y I値を測定した (この Y I値が大きいほ ど着色していることを示す) 。
<副生フエノール精製工程 > .
上記重合工程より約 6. 3 k g/h r ( 6 L/h r ) で回収された副生フエノ ールは前述した副生フエノールタンク (S U S 3 0 4製の容量 2 0 0 Lタンク。 明細書に記載の V c ZF c == 3 3となる) に一定量 (約 1 0 0 L) 貯蔵した後、 以下の蒸留精製を行い、 D P C製造原料としてリサイクルした。 不足分は、 市販 P Lを一部補充した。
第 1の蒸留塔は、 2 0 0 T o r r、 還流比 2で、 含有する水を一部フエノール とともに留去し、 缶出液は第 2蒸留塔へ供給した。 第 2蒸留塔では、 5 0 T o r r、 還流比 0. 5で、 トップより精製フエノ一ルを約 5. 8 k g / h rで得、 精 製フエノールタンクを経由して、 D P C製造工程に供給した。 一方、 缶出からは ジフエニルカーボネート、 ビスフエノール A、 及ぴ、 オリゴマーをそれぞれ、 6 7重量%、 7重量%、 及ぴ、 4重量%含有するフ ノール混合液を連続的に抜き 出した。
上記実験を継続して 4 0 0時間実施したが、 途中温調トラブル等で D P C製造 工程を一時的に停止する必要が生じたものの、 貯蔵タンク内の液を用いることで 全系停止には至らず、 早急にトラブル対処することができた。 また、 運転の途中 でポリカーボネートのグレードとして Mv = 1 5 , 0 0 0なるものを製造した力 その際重合槽ょり回収される副生フエノールの一時的な組成変動を生じたが、 前 記貯蔵タンク内でその変動が緩和でき、 次工程の副生フヱノール精製工程の運転 条件をスムーズに変更することができた。
[実施例 5 ]
次に、 排液処理について、 本発明を更に具体的に説明する。 なお、 まず、 粘度 平均分子量 (Mv) 及び初期色相 (Υ Ι) の測定方法は、 上記の通りである。
(実験例 1 )
(D PC製造工程)
図 1に記載のフローにしたがって行った。 以下に、 詳細を示す。
〔D PC反応工程〕
溶融 P Lとピリジン触媒を DP C反応器 1へ連続供給しながら、 1 50°Cの混 合下、 ホスゲン (CDC) ガスを連続供給した。 次いで、 脱塩酸塔 2に送り、 ホ スゲン化反応に伴って副生される塩化水素ガス (D 1) は 1 0°Cまで冷却し、 凝 縮液は反応器に戻され、 未凝縮ガスはアルカリ水溶液で中和後排出した。 一方、 脱塩酸塔 2からは D P Cが約 9 1重量。 /0含有する脱塩酸処理液 bを連続的に抜き 出した。
〔D P C洗浄工程 · D P C水洗工程〕
上記脱塩酸処理液 bを混合槽 3に送り、 続いて、 テフロンライニング製のアル 力リ中和槽 4に送った。 また、 約 5重量%の水酸化ナトリゥム水溶液を、 アル力 リ中和槽 4に供給し、 80°C下で約 1 0分間混合し、 pH8. 5に調整した。 中 和後の有機相は静置分離後、 水洗槽 5に移送した。 水洗槽 5では有機相に対して 約 30重量。 /0に相当する温水で洗浄され、 水相を分離して、 粗製 DP C (水 1重 量。 /0、 ピリジン 2重量%、 P L 8重量%、 D P C 8 9重量。/。含有) である水洗処 理液 f を得た。
CD P C蒸留工程一低沸蒸留工程〕
次に、 上記水洗処理液 ίを約 30 k g/h rで第 1 P L蒸留塔 6の中段に連続 供給した。 第 1 P L蒸留塔 6は内径 1 50 mm, 高さ 4. 0 mで、 上部に還流装 置、 中央に原料供給部があり、 濃縮部および回収部にスルザ一パッキング (住友 重機工業 (株) 製) を充填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r、 熱媒オイル温度約 220 °C、 トツプ温度 80〜 100 °C、 塔中段 温度 1 60。C、 還流比 1の条件で蒸留して D P Cより低沸点物質である水、 ピリ ジン、 P Lを含む混合ガス F蒸留留去した。 塔底からは、 約 26 k g/h rで D PC (水 10重量 p pm以下、 ピリジン 1重量; pm以下、 卩1^ 50重量 111) を含む缶出液である第 1蒸留残渣 gが連続的に抜き出された。
[D P C蒸留工程一高沸蒸留工程〕
更に、 この第 1蒸留残渣 gを第 2 PL蒸留塔 7に連続供給した。 第 2 P L蒸留 塔 7は内径 20 Omm、 高さ 4. Omで、 上部に還流装置、 中央に原料供給部が あり、 濃縮部および回収部にスルザ一パッキング (住友重機工業 (株) 製) を充 填した、 理論段数 8段の連続蒸留塔を使用した。 真空度 20 t o r r , 熱媒オイ ル温度約 240°C、 トツプ温度約 1 80 °C、 還流比 0. 5の条件で蒸留して、 ト ップより精製 D P Cが約 23. 5 k g/h rで得られ、 塔底より高沸物 (D P C のアルキル置換体とブロム置換体がそれぞれ約 3 50重量 p pmと約 40重量 p 111含有する0?0 である DP C蒸留残渣 (X I) が約 2. 5 k gZh rでパ ージされた。 精製 DP Cは、 P Lを 80重量 p pm含有する高純度品であった。
(PC製造工程) .
[P C重合工程〕
図 5に示すフローにしたがって行った。 すなわち、 上記 D P C製造工程で得ら れた精製 D P Cと B P Aを窒素ガス雰囲気下、 混合槽 2 1において、 0. 9 77 重量比で溶融混合し、 1 30°Cに加熱した原料導入管を介して常圧、 窒素雰囲気 下、 2 10°Cに制御した縦型第 1重合槽 22内に連続供給し、 平均滞留時間が 6 0分になるように槽底部のポリマー排出ラインに設けられたバルブ開度を制御し つつ液面レベルを一定に保った。 また、 上記原料混合物の供給を開始すると同時 に、 触媒として水溶液とした炭酸セシウムを B P A 1モルに対し、 0. 5 X 1 0一 6モルの流量で連続供給した。 槽底より排出された重合液は、 引き続き第 2、 3の 縦型重合槽並びに第 4の横型重合器に逐次連続供給された。 反応の間、 各槽の平 均滞留時間が 60分になるように液面レベルを制御し、 また同時に副生する P L の留去も行った。 第 1〜3重合槽より蒸発する PC蒸発成分 pは、 それぞれ多段 凝縮器で凝縮液化され、 一部を各重合槽に還流し、 残りを P C用回収 P Lタンク 29に回収した。 一方、 第 4重合器より蒸発するガスは、 並列 2基ある片方のフ リーズコンデンサで固化され、 他方のフリーズコンデンサとの切替運転により固 化分を溶融し、 P C用回収 P Lタンク 29に回収された (図示せず) 。
各反応槽の重合条件は、 第 1重合槽 ( 2 10 °C、 100 T o r r ) 、 第 2重合 槽 (240°C、 1 5 T o r r) 、 第 3重合槽 (260 °C、 0. 5 T o r r) 、 第 4重合器 (270°C、 .0. 5 T o r r) であった。
上記得られたポリマーを溶融状態のまま、 2軸押出機 (神戸製鋼所 (株) 製、 スクリュー径 0. 046m、 L/D = 40. 2) 3 2に導入し、 PC当たり 5重 量 p pm相当の; — トルエンスルホン酸ブチルを連続的に添加しながら、 ペレツ トイ匕した。 こうして得られた P Cの粘度平均分子量 (Mv) は 2 1, 000であ り、 初期色相 (Υ Ι ) は 1. 7であった。
〔 PL蒸留工程〕
上記 P C重合工程より回収された P C蒸発成分 pを分析した結果、 D P Cが 5. 0重量0/。、 8 八が0. 5重量%、 オリ ゴマーが 0. 3重量%、 水分が 0. 2重 量 ° /。検出された。
この PC蒸発成分 pを以下の 2塔の蒸留塔 (第 1 PL蒸留塔 30, 第 2 P L蒸 留塔 3 1) で連続的に精製した。 第 1 P L蒸留塔 30は、 200 T o r r、 還流 比 2で、 含有する水を一部 P Lとともに P C低沸留去分 (D 6) として留¾し、 缶出液である第 1段残渣 qは、 第 2 P L蒸留塔 3 1へ連続供給した。 第 2 P L蒸 留塔 3 1では、 5 0丁 0 :: 1"、 還流比0. 5で、 トップより精製 P Lを得、 缶出 からは DPC、 B PA、 及び、 オリゴマーをそれぞれ、 6 7重量0/。、 7重量0 /0、 及び、 4重量。 /0含有する P L蒸留残渣 (X 2) を連続的にパージした。
(P C製造工程の蒸留残渣 X 2を、 D P C製造工程の蒸留工程に送る例) 上記 P C製造工程の副生 P L精製工程よりパージされた P L蒸留残渣 (X 2, P L 22重量。/。、 DP C 6 7重量0/。、 8 ? 7重量%、 オリ ゴマー 4重量%含有) を上記 DP C製造工程の第 I D PC蒸留塔 6へ供給し、 次いで、 第 1DPC蒸留 塔 6の缶出液である第 1蒸留残渣 gを第 2 D P C蒸留塔 7へ供給した。その結果、 上記 P L蒸留残渣 (X 2) のうち P Lのほぼ 100 °/。が第 1 D P C蒸留塔 6のト ップより回収され、 D P Cの約半分が第 2 D P C蒸留塔 7のトップより回収され、 上記 P L蒸留残渣 (X 2) を既存の所定の工程にリサイクルするだけで有効成分 が効率的に回収できた。
以上の操作を実施しながら、 前述の如く DP C及び PCを製造した結果、 得ら れた D P C及び P Cの品質には何ら問題が無かった。
(実験例 2)
(D PC製造工程)
図 1に記載のフローにしたがって行った。 以下に、 詳細を示す。
〔回収蒸留工程〕
実験例 1の D P C製造工程の高沸蒸留工程よりパージされた D P C蒸留残渣 (X I) を DP C回収蒸留塔 8に供給し、 下記の条件で連続蒸留し、 トップより D PC含有回収液 dを留出回収した。 回収された留出分は、 D PC製造工程の洗 浄工程にリサイクルし、 歩留まりを向上させた。 一方、 D PC回収蒸留塔の缶出 からは高沸物 (D P Cのアルキル置換体とブロム置換体がそれぞれ約 7000重 量 p pmと約 800重量 p pm含有する DPC) である DP C回収蒸留残渣 (X 1 ') が連続的にパージされた。
D P Cの回収蒸留の条件は、 内径 100mm、 高さ 3. Omで、 上部に還流装 置、 中央に原料供給部があり、 濃縮部および回収部にスルザ一パッキング (住友 重機工業 (株)'製) を充填した、 理論段数 8段の連続蒸留塔を使用し、 真空度 2 0 t o r r、 熱媒オイル温度約 240 °C、 トツプ温度 1 80 °C、 還流比 0. 5で 実施した。
その他の操作は、 実験例 1と同様に行い、 精製 DP C ( ? 80重量1) 1) 111含 有) の高純度品を製造し、 PCを製造した。
(PC製造工程の蒸留残渣 (X 2) を、 D P C製造工程の回収蒸留工程に送る例) 上記 PC製造工程の P L蒸留工程よりパージされた P L蒸留残渣 (X2, P L 22重量0/。、 DP C 6 7重量0/。、 13 ? 7重量%、 オリゴマー 4重量%含有) を 上記 DPC製造工程の DP C回収蒸留塔 8へ供給した。 その結果、 上記蒸留残渣 のうち P Lのほぼ 100%と0 ?〇の約80重量%が回収蒸留塔のトップより回 収され、 上記 P L蒸留残渣 X 2を既存の所定の工程にリサイクルするだけで有効 成分が効率的に回収できた。
以上の操作を実施しながら、 前述の如く DP C及び PCを製造した結果、 得ら れた D P C及び P Cの品質には何ら問題が無かった。
(実験例 3 )
(B P A製造工程)
図 2〜4に示すフローで行った。 温度調節器を有する流通式 B P A反応器に、 4—ピリジンエタンチォ一ノレでスルホン酸基の 1 5%を中和した、 スルホン酸型 酸性陽イオン交換樹脂 (三菱化学 (株) 製:商品名 ダイヤイオン SK- 1 0 4) を 60 L充填した。 この B P A反応器に、 P L : アセ トンのモル比 10 : 1 の混合液を温度 80°C、 6 8. 2 k g/h rの流量で装入し、 反応させた。 ァセ トンの転化率は 80 %であった。反応混合物は、低沸点物(未反応ァセトン、水、 P Lの一部) を 5. 1 k gZhの流量でパージしたのち、 50°Cに冷却して付加 物の結晶を析出させた。 これを濾過して、 付加物の結晶と母液とに分離した。 流 量はそれぞれ 1 6. 51 § 11と 46. 5 k gZhであった。 この母液の 1 0 w t %を母液処理工程に供給し、 他の母液は合成反応器に装入する原料の一部とし て循環させた。
ここで得られた付加物結晶を、 再度 27. 2 k gZhの流量のフエノ-ルに溶 解させたのち、' 50°Cに冷却して結晶を析出させ、濾過して付加物の結晶(1 1. 3 k g/h) と母液(3 2. 5 k g/h) とに分離した。 分離された結晶は、 0. 3mmHgの減圧下、 1 8 0 °Cに加熱して P Lを除去し、 純度 9 9. 95 °/0以上 の B P Aを 7. 7 k gZhの流量で得た。
一方、 母液処理工程に供給した母液は、 図 4に示すように、 P L蒸発器 1 3で 、 P Lの一部を留去し濃縮した。 次に、 水酸化ナトリウムを 0. 1重量。 /0含ませ 、 5 OmniHgの減圧下、 2 1 0 °Cにコントロールした残渣反応器 14分解蒸留 塔の塔底に装入した。 塔底の液レベルは一定の条件で運転し (滞留時間: 1 h 3: )、 分解蒸留塔の塔底液は 0. 5 k g/hの流量で系外にパージした。 さらに、 残 渣反応器 14の塔頂からの流出液と前述の PLとを混ぜ、 スルホン酸型酸性陽ィ オン交換樹脂 (三菱化学 (株) 製:商品名 ダイヤイオン SK- 1 04) を 4 L充填した、 流通式再生反応器 1 5に 4. 2 k g/hの流量で装入し、 · 80°Cの 条件で、 反応させた。 得られた反応液は最初の B P A反応器に循環した。
前述の B P A反応器へは、 系外へパージされた量及び得られた B P Aの量に対 応する量のアセトン (3. 6 k g/h) と P L (1 8. 5 k g/h) とを補給し 、 合成反応を連続的に行い、 上記の系全体として B P Aを連続的に製造した。
(D P C製造工程の D P C蒸留残渣 (X I) と P C製造工程の P L蒸留残渣 (X 2) を、 B P A製造工程の母液処理工程に送る例)
上記 DP C製造工程の DP C蒸留残渣 (X I , DP Cのアルキル置換体:約 3 50重量!) pm、 DP Cのブロム置換体-約 40重量 p pm、残りは DPC)を 0 · I l k g/hの流量で、 P C製造工程の副生 P L精製工程よりパージされた P L 蒸留残渣 (X 2, P L 22重量0/。、 DP C 67重量0/。、 :8 ? 7重量%、 オリゴ マー 4重量%含有) を 0. 1 5 k g/hの流量で、 上記 B P A製造工程の母液処 理工程 ((g) 工程) へ供給した。 このとき、 残渣反応器 1 4の塔底の液レベルは 一定の条件で運転し (滞留時間: 1 h r)、 塔底液は 0. 6 k gZhで系外にパー その結果、 上記各蒸留残渣のうち P Lのほぼ 100%と B P Aの分解生成物が 母液処理工程の残渣反応器 14のトップより回収され、 上記各蒸留残渣を既存の 所定の工程にリサイクルするだけで有効成分が効率的に回収できた。
以上の操作を実施しながら、 前述の如く B P A、 DPC及ぴ PCを製造した結 果、 得られた BP A、 DP C及び P Cの品質には何ら問題が無かった。
(実験例 4)
(D P C製造工程の DP C回収蒸留残渣(X 1 ') と P C製造工程の P L蒸留残渣 (X 2) を、 B P A製造工程の母液処理工程に送る例)
上記 D P C製造工程の D P C回収蒸留残渣(X 1 ', D P Cのアルキル置換体: 約 7000重量 p p m、 DP Cのブロム置換体約 800重量 p p m、 残りは D P C) を 0. l l k g/hの流量で、 P C製造工程の副生 P L精製工程よりパージ された P L蒸留残渣(X 2, P L 22重量%、0卩〇 6 7重量0/。、 B P A 7重量0 /0、 オリ ゴマー 4重量%含有) を 0. 1 5 k g/hの流量で、 上記 BP A製造工程の 母液処理工程 ((g) 工程) へ供給した。 このとき、 残渣反応器 14の塔底の液レ ベルは一定の条件で運転し (滞留時間 1 h r)、塔底液は 0. 6 k gZhで系外 にパージした。
その結果、 上記蒸留残渣のうち P Lのほぼ 100%と B P Aの分解生成物が母 液処理工程の残渣反応器 14のトップより回収され、 上記各蒸留残渣を既存の所 定の工程にリサイクルするだけで有効成分が効率的に回収できた。
以上の操作を実施しながら、 前述の如く B P A、 D PC及び PCを製造した結 果、 得られた BP A、 D P C及び P Cの品質には何ら問題が無かった。
(実験例 5 ) -
(P C製造工程の P L蒸留残渣 (X2) を、 D PC製造工程の回収蒸留工程に送 り、 D PC回収蒸留残渣 (X I ') を B P A製造工程の母液処理工程に送る例) 上記 PC製造工程の副生 P L精製工程よりパージされた P L蒸留残渣 (X 2、 P L 22重量%、 D P C 6 7重量0/。、 B P A 7重量0/。、 オリゴマー 4重量%含有) を上記 D P C製造工程の D P C回収蒸留塔 8へ供給し、 DP C回収蒸留塔 8より 留出された有効成分は上記 DP C製造工程の洗浄工程にリサイクルし、 かつ、 D PC回収蒸留塔 8の缶出液である DP C回収蒸留残渣 (X I ' ) は、 上記 B P A 製造工程の母液処理工程 ( (g) 工程) に供給し、 該工程で回収された有効成分 を B P A製造工程の合成原料として使用した。 以上の操作を実施しながら、 B P A、 D P C及ぴ P Cを 400時間連続して運転した結果、 得られた B P A、 DP C及び PCの品質には何ら問題が無く、 高沸廃棄物は B P A製造工程の母液処理 工程からの排出にまとめられ、 その量は激減し、 歩留まりが大幅に向上した。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。 本出願は、 2003年 8月 2i 日出願の日本特許出願 (特願 2003— 297844)、 2003 年 8月 21 日出願の日本特許出願 (特願 2003— 297719)、 2003年 8月 21 日出願の 日本特許出願 (特願 2003— 297832)、 2003年 11月 12日出願の日本特許出願 (特 願 2003— 382667)、 2003年 11月 12日出願の日本特許出願(特願 2003— 382773)、 2003年 11月 12日出願の 本特許出願(特願 2003— 382646)に基づくものであり、 その内容はここに参照として取り込まれる。 ぐ産業上の利用可能性 >
この発明によると、 副生フエノールの含水量を所定範囲に限定するので、 この 副生フエノールをジフエニルカーボネート製造工程や、 ビスフエノール A製造ェ 程の原料の一部として使用しても、 製造効率の低下は少なく、 ほぼ保持される。
さらに、 芳香族ポリカーボネート製造工程の重合初期に回収される副生フエノ ールに含まれる不純物は、 ジフエ二ルカーボネート製造工程における原料及び生 成物であるので、 これらの不純物を含む副生フエノールは、 精製することなく、 ジフエ二ルカーポネート製造工程に使用されるフエノールの少なくとも一部とし て使用することができる。
一方、 芳香族ポリカーボネート製造工程の重合後期に回収される副生フエノー ルに含まれる不純物は、 ビスフユノール A製造工程で加水分解され、 この製造ェ 程での原料及び生成物となり、 かつ、 ビスフエノール A製造工程での触媒活性低 下原因となるアルコール類等がほとんど含まれないので、 これらの不純物を含む 副生フエノールは、 精製することなく、 ビスフエノール A製造工程に使用される フエノールの少なくとも一部として使用することができる。
さらにまた、 ジフエ-ルカーボネート製造工程、 ビスフエノール A製造工程、 芳香族ポリカーボネート製造工程を統合的に運用することにより、 ジフエ-ルカ ーボネートの製造原料として市販のフエノールを、 ビスフエノール Aの製造原料 として、 芳香族ポリカーボネート製造工程の重合工程で生じる留出成分を用いる ことが可能となる。
また、 上記 P L蒸留工程の前及び/又は後に、 上記 P L蒸留工程にかける前の P C蒸発成分の液化物、 及び/又は上記 P L蒸留工程で回収された副生フエノー ルを貯蔵する P C貯蔵工程を設ける場合、 上記 D P C蒸留工程の後に、 この D P C蒸留工程で得られたジフエ二ルカーボネートを貯蔵する D P C貯蔵工程を設け る場合、 及び/又は上記 B P A晶析 '分離工程と、 上記 P C重合工程との間に、 ビスフユノール Aとフ ノールとの混合物を貯蔵する B P A貯蔵工程を設ける場 合、 各工程で得られる化合物の品質を一定の範囲に保持することができ、 かつ、 前工程の都合にかかわらず、 後工程を連続的に行うことができる。
さらに、 P L蒸留残渣、 D P C蒸留残渣、 及び/又は D P C回収蒸留残渣を所 定の場所に送る場合、 これらに含まれる有効成分を完全利用することができるの で、 全体の効率が向上させることができ、 かつ、 環境負荷を低減させることがで きる。
さらにまた、 凝縮器から真空設備へ繋がる真空配管の、 傾斜とは上下の向きが 逆に立ち上がる部分の高さの合計が 1 m以下とする場合、 立ち上がる部分に溜ま る液体分及び固体分を最小限に抑え、 配管が完全に閉塞したり、 圧力損失が大き くなりすぎたりすることを回避できる。

Claims

請 求 の 範 囲
1 . フエノール及びカルボニル化合物を原料とし、 ジフエ-ルカーポネー トを製造するジフエニルカーボネート製造工程、
及び/又は、 フエノール及びァセトンを原料としてビスフエノール Aを製造す るビスフエノール A製造工程、
並びに、 上記ジフエニルカーボネート及びビスフエノール Aを原料とし、 芳香 族カーボネート重合工程を経て芳香族ポリカーボネートを製造すると共に、 副生 フエノールを回収する芳香族ポリカーボネート製造工程を含む、 芳香族ポリカー ボネートの製造方法において、
上記芳香族ポリカーボネート製造工程で回収される副生フエノール中に含まれ る水分量を、 0 . 2重量%以下として、 上記ジフヱニルカーボネート製造工程、 及び/又はビスフエノール A製造工程の原料として用いることを特徴とする芳香 族ポリカーボネートの製造方法。
2 . 上記ジフエ二ルカーポネート製造工程は、 ジフエニルカーボネート反 応工程及びジフエニルカーボネート蒸留工程を有する工程であることを特徴とす る請求の範囲第 1項記載の芳香族ポリカーボネートの製造方法。
3 . 上記ビスフエノール A製造工程は、 ビスフエノール A反応工程、 ビス フエノール A低沸除去工程及びビスフエノール A晶析■分離工程を有すると共に 、 上記ビスフ ノール A低沸除去工程から排出されるビスフ ノール A低沸留去 分をビスフエノール A水分離工程にかけてフエノールを回収する工程を有するこ とを特徴とする請求の範囲第 1項又は第 2項記載の芳香族ポリカーボネートの製 造方法。
4 . 上記芳香族ポリカーボネート製造工程のうち、 副生フエノールを回収 する工程は、 上記芳香族カーボネート重合工程での芳香族カーボネート蒸発成分 を液化してフエノール蒸留工程にかけ、 この芳香族カーボネート蒸発成分から芳 香族カーボネート低沸留去分を除去することによって、 副生フエノールを回収す る工程であることを特徴とする請求の範囲第 1項乃至第 3項のいずれかに記載の 芳香族ポリカーボネートの製造方法。
5 . 上記 P L蒸留工程で除去される P C低沸留去分中のフエノール濃度が 5 0 - 9 9 . 8重量%であることを特徴とする請求の範囲第 4項記載の芳香族ポ リカーボネートの製造方法。
6 . 上記ジフエ二ルカーボネート製造工程は、 上記のジフエ二ルカーポネ 一ト反応工程とジフエ二ルカーボネート蒸留工程の間にジフエニルカーボネート 洗浄工程を有し、
上記フ ノール蒸留工程で発生する芳香族カーボネート低沸留去分を、 上記ジ フユニルカーボネート洗浄工程に送ることを特徴とする請求の範囲第 4項記载の 芳香族ポリカーボネートの製造方法。
7 . 上記フエノール蒸留工程で発生する芳香族カーボネート低沸留去分を 、 上記ビスフ ノール A水分離工程に送ることを特徴とする請求の範囲第 4項乃 至第 6項のいずれかに記載の芳香族ポリカーボネートの製造方法。
8 . 上記ビスフエノール A製造工程で原料として使用されるフエノール中 の、 ヒドロキシァセトンの含有量が 1 0重量 p p m未満であることを特徴とする 請求の範囲第 1項乃至第 7項のいずれかに記載の芳香族ポリカーボネートの製造 方法。
9 . 上記ビスフエノール A反応工程に用いられる酸触媒が、 メルカプト基 を有する化合物で変性されたスルホン酸型陽イオン交換樹脂である請求の範囲第 3項乃至第 8項のいずれかに記載の芳香族ポリカーボネートの製造方法。
1 0. 上記フエノール蒸留工程の前及び/又は後に、 上記フエノール蒸留 工程にかける前の芳香族カーボネート蒸発成分の液化物、 及び Z又は上記フエノ ール蒸留工程で回収された副生フェノールを貯蔵する芳香族力ーボネート貯蔵ェ 程を設け、 この芳香族カーボネート貯蔵工程に用いられる芳香族カーボネート貯 蔵タンクの容量を、 '下記式 (1) の条件を満たす容量とすることを特徴とする請 求の範囲第 4項乃至第 9項のいずれかに記載の芳香族ポリカーボネートの製造方 法。
1 0≤ (V c /F c ) ≤ 1 00 ( 1 )
(なお、 式 (1) において、 V cは、 芳香族カーボネート貯蔵タンクの容量 (m 3) を示し、 F cは、 芳香族カーボネート蒸発成分の液化物又は副生フヱノール の供給速度 (mS ^h r) を示す。) -
1 1. 上記ジフエ二ルカーボネート蒸留工程の後に、 このジフエ二ルカ一 ポネート蒸留工程で得られたジフヱニルカーボネートを貯蔵するジフエ二ルカ一 ポネート貯蔵工程を設け、 このジフエニルカーボネート貯蔵工程に用いられるジ フエ-ルカーポネート貯蔵タンクの容量を、 下記式 (2) の条件を満たす容量と することを特徴とする請求の範囲第 2項乃至第 10項のいずれかに記載の芳香族 ポリカーボネートの製造方法。
1 0≤ (V d/F d) ≤ 100 (2)
(なお、 式 (2) において、 V dは、 ジフエニルカーボネート貯蔵タンクの容量 (m3) を示し、 F dは、 ジフエニルカーボネートの供給速度 (m3Zh r) を示 す。)
1 2. 上記ビスフエノール A晶析 '分離工程と、 上記芳香族カーボネート 重合工程との間に、 ビスフヱノール Aとフエノールとの混合物を貯蔵するビスフ ェノール A貯蔵工程を設けることを特徴とする請求の範囲第 3項乃至第 1 1項の いずれかに記載の芳香族ポリカーボネートの製造方法。
1 3 . 上記ビスフエノール A貯蔵工程に用いられるビスフエノール A貯蔵 タンクの容量を、 下記式 (3 ) の条件を満たす容量とすることを特徴とする請求 の範囲第 1 2項記載の芳香族ポリカーボネートの製造方法。
1 0≤ (V b / F b ) ≤ 1 0 0 0 ( 3 )
(なお、 式 (3 ) において、 V bは、 ビスフエノール A貯蔵タンクの容量 (m 3 ) を示し、 F bは、 芳香族カーボネート重合工程に供されるビスフエノール Aの 供給量 (m V h r ) .を示す。)
1 4 . 上記ビスフエノール A貯蔵工程で貯蔵される上記ビスフエノール A とフエノールとの混合物が、 ビスフエノール Aとフエノールとの付加物結晶、 ビ スフエノール Aとフエノールとの付加物結晶を含むスラリー、 ビスフエノール A とフエノールとの混合液のいずれかの形態であることを特徴とする請求の範囲第 1 2項又は第 1 3項記載の芳香族ポリカーボネートの製造方法。
1 5 . 上記ビスフエノール A晶析工程と芳香族カーボネート重合工程との 間、 又はそれより前の工程に、 中和工程を設けることを特徴とする請求の範囲第 1 2項乃至第 1 4項のいずれかに記載の芳香族ポリカーボネートの製造方法。
1 6 . 上記のビスフエノール A反応工程からビスフエノール A晶析工程に 至る工程を断続的に行うと共に、 上記芳香族カーボネート重合工程を連続的に行 うことを特徴とする請求の範囲第 1 2項乃至第 1 5項のいずれかに記載の芳香族 ポリカーボネートの製造方法。
1 7 . 上記フエノール蒸留工程で生じるフエノール蒸留残馇を、 上記ジフ ェニルカーボネート蒸留工程に送ることを特徴とする請求の範囲第 4項乃至第 1 6項のいずれかに記載の芳香族ポリカーボネートの製造方法。
1 8 . 上記ジフエニルカーボネート製造工程は、 上記ジフエ二ルカーポネ 一ト蒸留工程のジフエニルカーボネート蒸留残渣からジフエニルカーボネートを 回収するジフエニルカーボネート回収蒸留工程を有し、
上記フエノール蒸留工程で生じるフェノ一ル蒸留残渣を、 上記ジフエ二ルカ一 ポネート蒸留工程及び/又はジフエ-ルカ一ボネ^ "ト回収蒸留工程に送ることを 特徴とする請求の範囲第 4項乃至第 1 7項のいずれかに記載の芳香族ポリカーボ ネートの製造方法。
1 9 . 上記ビスフエノール A製造工程は、 上記ビスフエノール A晶析■分 離工程から排出される母液の一部又は全部を、 ビスフ ノール A母液処理工程に 送って母液中の副生物を減少させ、 次いで、 ビスフエノール A製造の原料として 使用されるフエノールの一部又は全部として用いる工程を有し、
上記フエノール蒸留工程で生じるフェノール蒸留残渣、 及び Z又は上記ジフエ -ルカーボネート蒸留工程で生じるジフエニルカーボネート蒸留残渣を、 上記ビ スフエノール A製造工程の上記ビスフエノール A母液処理工程に送ることを特徴 とする請求の範囲第 4項乃至第 1 7項のいずれかに記載の芳香族ポリカーボネー トの製造方法。
2 0 . 上記フエノール蒸留工程で生じるフエノール蒸留残渣、 並びに/又 は、 上記ジフエエルカーボネート蒸留工程で生じるジフエニルカーボネート蒸留 残渣及ぴ Z若しくは上記ジフエニルカーボネート回収蒸留工程で生じるジフエ二 ルカーボネート回収蒸留残渣を、 上記ビスフエノール A製造工程の上記ビスフェ ノール A母液処理工程に送ることを特徴とする請求の範囲第 4項乃至第 1 9項の いずれかに記載の芳香族ポリカーボネートの製造方法。
2 1 . 上記フエノール蒸留工程で生じるフェノール蒸留残渣を、 上記ジフ ェ-ルカーボネート蒸留工程に送り、 次いで、 上記ジフエニルカーボネート蒸留 工程で生じる蒸留残渣を、 上記ビスフエノール A母液処理工程に送ることを特徴 とする請求の範囲第 4項乃至第 2 0項のいずれかに記載の芳香族ポリカーボネー トの製造方法。
.
2 2 . 上記フエノール蒸留工程で生じるフエノール蒸留残渣を、 上記ジフ ェニルカーボネート蒸留工程及び/又はジフエニルカーボネート回収蒸留工程に 送り、 次いで、 上記ジフエニルカーボネート蒸留工程で生じるジフエ二ルカーボ ネート蒸留残渣及び Z又はジフエ二ルカーポネート回収蒸留残渣を、 上記ビスフ ェノール A母液処理工程に送ることを特徴とする請求の範囲第 4項乃至第 2 1項 のいずれかに記載芳香族ポリカーボネートの製造方法。
2 3 . 上記ビスフエノール A母液処理工程は、 母液の一部又は全部に塩基 性物質を加えて加熱することによって、 フエノール及びフエノール誘導体を生じ させ、 次いで、 このフエノール及びフエノール誘導体を、 酸触媒又はアルカリ触 媒を用いて反応させることにより、 ビスフエノール Aを得ることを特徴とする請 求の範囲第 1 9項乃至第 2 2項のいずれかに記載の芳香族ポリカーボネートの製 造方法。
2 4 . 上記塩基性物質が水酸化ナトリゥム又は水酸化力リゥムであること を特徴とする請求の範囲第 2 3項記載の芳香族ポリカーボネートの製造方法。
2 5 . 上記ジフエニルカーボネート蒸留工程の蒸留塔に、 留出する物質を 凝縮する凝縮器、 系内を減圧にする真空設備、 及び、 上記凝縮器と上記真空設備 とを繫ぐ真空配管を設け、
上記真空配管は、 上記凝縮器側から上記真空設備側へ向かって下向きの傾斜を 有しており、 かつ、 上記凝縮器側から上記真空設備側へ向かって上方に立ち上が る部分の高さの合計が 1 m以下であることを特徴とする請求の範囲第 2項乃至第 2 4項のいずれかに記載の芳香族ポリカーボネートの製造方法。
2 6 . 上記 P C重合工程での P C蒸発成分を液化する工程に用いられる重 合装置に、 留出する P C蒸発成分を凝縮する凝縮器、 重合系内を減圧にする真空 設備、 及び、 上記凝縮器と真空設備とを繋ぐ真空配管を設け、
上記真空配管は、 上記凝縮器側から上記真空設備側へ向かって下向きの傾斜を有 しており、 かつ、 上記凝縮器側から上記真空設備側へ向かって上方に立ち上げる 部分の高さの合計が 1 m以下であることを特徴とする請求の範囲第 2項乃至第 2 5項のいずれかに記載の芳香族ポリカーボネートの製造方法。
2 7 . 上記フユノール蒸留工程の蒸留塔に、 留出する物質を凝縮する凝縮 器、 系内を減圧にする真空設備、 及び、 上記凝縮器と上記真空設備とを繋ぐ真空 配管を設け、
上記真空配管は、 上記凝縮器側から上記真空設備側へ向かって下向きの傾斜を 有しており、 かつ、 上記凝縮器側から上記真空設備側へ向かって上方に立ち上が る部分の高さの合計が 1 m以下であることを特徴とする請求の範囲第 2項乃至第 2 5項のいずれかに記載の芳香族ポリカーボネートの製造方法。
2 8 . 上記真空配管が、 上記蒸留塔及び/又は重合装置からの留出物の融 点以上に内部を加熱保温する設備を有することを特徴とする請求の範囲第 2 5項 乃至第 2 7項のいずれかに記載の芳香族ポリカーボネートの製造方法。
2 9 . 上記真空配管の上記真空設備側に、 少なくとも一つの液抜き口を設 けることを特徴とする請求の範囲第 2 5項乃至第 2 8項のいずれかに記載の芳香 族ポリカーボネートの製造方法。
3 0 . 上記真空配管の上記凝縮器側に、 加熱流体を供給可能な供給ロを設 けることを特徴とする請求の範囲第 2 5項乃至第 2 9項のいずれかに記載の芳香 族ポリカーボネートの製造方法。
3 1 . 上記供給口から、 上記加熱流体を供給することにより、 上記真空配 管を洗浄することを特徴とする請求の範囲第 3 0項記載の芳香族ポリカーボネー トの製造方法。
3 2 . 上記加熱流体が、 水蒸気、 フエノール、 窒素のうち少なくとも一つ を含むことを特徴とする請求の範囲第 3 0項又は第 3 1項記載の芳香族ポリカー ポネートの製造方法。
3 3 . 上記ジフエ二ルカーボネート製造工程で原料として使用されるフエ ノールとして、 クレゾール及ぴ Z又はキシレノールを 2 0〜 1 0 0 0重量 p p m 含有するフ ノールを用い、
上記ビスフエノール A製造工程で原料として使用されるフエノールの少なくと も一部として、 上記芳香族ポリカーボネート製造工程の重合工程で生じるフエノ ールを用いることを特徴とする請求の範囲第 1項乃至第 3 2項のいずれかに記載 の芳香族ポ.リカーボネートの製造方法。
3 4 . 上記ビスフエノール A製造工程で原料として使用されるフエノール 中の、 タレゾール及び Z又はキシレノールの含有量が 2 0重量 p p m未満である ことを特徴とする請求の範囲第 3 3項記載の芳香族ポリカーボネートの製造方法
3 5 . 上記ビスフエノール A製造工程で原料として使用されるフエノール の少なくとも一部として、 上記芳香族ポリカーボネート製造工程の重合工程で生 じるフエノールを、 水を除去する工程を経た後に用いることを特徴とする請求の 範囲第 3 3項又は第 3 4項記載の芳香族ポリカーボネートの製造方法。
3 6 . 上記ビスフエノール A製造工程は、 ビスフエノール A反応工程、 ビ スフエノール A低沸除去工程及びビスフエノール A晶析■分離工程を有すると共 に、 上記ビスフヱノール A低沸除去工程から排出されるビスフ ノール A低沸留 去分をビスフエノール A水分離工程にかけてフエノールを回収する工程を有し、 上記の水を除去する工程が、 上記ビスフエノール A製造工程の水分離工程であ ることを特徴とする請求の範囲第 3 5項記載の芳香族ポリカーボネートの製造方 法。
3 7 . 上記水を除去する工程に次いで、 フエノールより高沸点の成分を分 離するビスフユノール A高沸分分離工程を有することを特徴とする請求の範囲第 3 5項又は第 3 6項記載の芳香族ポリカーボネートの製造方法。
3 8 . 上記ビスフエノール A製造工程は、 上記 B P A晶析 ·分離工程から 排出される母液の一部又は全部を、 B P A母液処理工程に送って母液中の副生物 を減少させ、 次いでビスフエノー^^ A製造の原料として使用されるフエノールの 一部又は全部として用いる工程を有し、 上記 B P A高沸分除去工程で得られたフ ェノールより高沸点の成分を、 上記 B P A母液処理工程に送ることを特徴とする 請求の範囲第 3 7項記載の芳香族ポリカーボネートの製造方法。
3 9 . 上記芳香族ポリカーボネート製造工程で副生するフ ノールのうち 、 5 0〜9 5重量%を上記ジフエ-ルカーボネート製造工程で使用するフエノー ルの少なくとも一部として使用し、 かつ、 5 0〜5重量。 /0を上記ビスフエノール A製造工程の原料の少なくとも一部として使用することを特徴とする請求の範囲 第 1項乃至第 3 8項のいずれかに記載の芳香族ポリカーボネートの製造方法。
4 0 . 上記芳香族ポリカーボネート製造工程で副生するフエノールのうち 、 5 0〜7 0重量%を上記ジフエニルカーボネート製造工程で使用するフエノー ルの少なくとも一部として使用し、 かつ、 5 0〜 3 0重量0 /0を上記ビスフエノー ル A製造工程の原料の少なくとも一部として使用することを特徴とする請求の範 囲第 3 9項記載の芳香族ポリカーボネートの製造方法。
4 1 . 上記芳香族ポリカーボネート製造工程における重合工程は、 少なく とも 3槽の重合槽から構成され、 上記重合槽のうち、 第 1槽、 又は第 1槽及び第 2槽から回収される副生フエノ^ "ルを上記ジフエ二ルカ ^"ボネート製造工程で使 用するフエノールの少なくとも一部として使用し、 かつ、 上記重合槽のうち、 第 2槽以降、 又は第 3槽以降の重合槽から回収される副生フエノールを上記ビスフ ヱノール A製造工程で使用するフエノールの少なくとも一部として使用すること を特徴とする請求の範囲第 ·1項乃至第 4 0項のいずれかに記載の芳香族ポリカー ボネートの製造方法。
4 2 . 上記ジフエニルカーボネート製造工程で使用される副生フエノール は、 ジフエ二ルカーボネートより高沸点を有する高沸点化合物を 1 . 0重量%以 下含有する請求の範囲第 3 9項乃至第 4 1項のいずれかに記載の芳香族ポリカー ポネートの製造方法。
4 3 . 上記ジフエ二ルカーボネート製造工程で使用される副生フエノール が得られる上記重合槽は、 蒸発成分を還流する還流装置を有する請求の範囲第 3 9項乃至第 4 2項のいずれかに記載の芳香族ポリカーボネートの製造方法。
4 4 . 上記カルボニル化合物がジアルキルカーボネート及び Ζ又はアルキ ルァリ一ルカーポネートであり、 上記芳香族ポリカーボネート製造工程で副生す るフユノールを上記ビスフエノール Α製造工程の原料の一部として使用するとき 、 上記の原料として用いられるフエノールには、 ジアルキルカーボネート及びァ ルキルァリールカーボネート、 並びにジアルキルカーボネート及ぴ 又はアルキ ルァリールカーボネートから得られるアルキルアルコールを 2 0重量 p m以下 含有する請求の範囲第 3 9項乃至第 4 3項のいずれかに記載の芳香族ポリカーボ ネートの製造方法。
PCT/JP2004/012041 2003-08-21 2004-08-17 芳香族ポリカーボネートの製造方法 WO2005019302A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04772002.4A EP1657272B2 (en) 2003-08-21 2004-08-17 Process for producing aromatic polycarbonate
BRPI0413650A BRPI0413650A8 (pt) 2003-08-21 2004-08-17 processo para produção de um policarbonato aromático

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003297844 2003-08-21
JP2003-297832 2003-08-21
JP2003-297844 2003-08-21
JP2003297719A JP4295042B2 (ja) 2003-08-21 2003-08-21 芳香族ポリカーボネートの製造方法
JP2003297832A JP4333276B2 (ja) 2003-08-21 2003-08-21 芳香族ポリカーボネートの製造方法
JP2003-297719 2003-08-21
JP2003-382646 2003-11-12
JP2003382646A JP4706172B2 (ja) 2003-11-12 2003-11-12 芳香族ポリカーボネートの製造装置及び芳香族ポリカーボネートの製造方法
JP2003-382667 2003-11-12
JP2003382773A JP4802446B2 (ja) 2003-11-12 2003-11-12 装置、及びこの装置を用いたジフェニルカーボネート又は芳香族ポリカーボネートの製造方法
JP2003-382773 2003-11-12
JP2003382667A JP4691881B2 (ja) 2003-11-12 2003-11-12 芳香族ポリカーボネートの製造方法

Publications (1)

Publication Number Publication Date
WO2005019302A1 true WO2005019302A1 (ja) 2005-03-03

Family

ID=34222676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012041 WO2005019302A1 (ja) 2003-08-21 2004-08-17 芳香族ポリカーボネートの製造方法

Country Status (3)

Country Link
EP (1) EP1657272B2 (ja)
BR (1) BRPI0413650A8 (ja)
WO (1) WO2005019302A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321805B (zh) * 2005-11-30 2012-03-28 旭化成化学株式会社 高品质芳香族聚碳酸酯的工业制备方法
US8629235B2 (en) 2011-01-07 2014-01-14 Mitsubishi Chemical Corporation Production method of polycarbonate
KR20150021114A (ko) * 2012-06-19 2015-02-27 이피씨 엔지니어링 컨설팅 게엠베하 폴리카보네이트 생산 방법 및 설비
WO2021047037A1 (zh) * 2019-09-11 2021-03-18 利华益维远化学股份有限公司 一种聚碳酸酯生产原料预处理系统及方法
CN113577814A (zh) * 2021-08-16 2021-11-02 四川中蓝国塑新材料科技有限公司 一种用于聚碳酸酯工业化生产的碳酸二苯酯回收装置及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718959A (zh) 2007-07-31 2012-10-10 三菱化学株式会社 聚碳酸酯树脂及其制备方法
KR101976886B1 (ko) 2011-07-08 2019-05-09 코베스트로 도이칠란드 아게 디아릴 카르보네이트의 제조 방법
EP2921514B1 (en) 2012-11-17 2021-01-06 Mitsubishi Gas Chemical Company, Inc. Production method for aromatic polycarbonate resin having increased molecular weight
EP3645158B1 (en) 2017-06-30 2023-12-20 SABIC Global Technologies B.V. Oligomeriser with improved mixing performance
WO2019003207A1 (en) 2017-06-30 2019-01-03 Sabic Global Technologies B.V. OLIGOMERIZER WITH ENHANCED FEED SYSTEM

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331088A (ja) 1991-10-30 1993-12-14 Chiyoda Corp ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法
LU88564A1 (de) 1994-12-02 1995-04-05 Bayer Ag Verfahren zur Herstellung von thermoplastischem Polycarbonat
LU88569A1 (de) 1994-12-14 1995-04-05 Bayer Ag Verfahren zur Herstellung von thermoplastischem Polycarbonat
JPH0938402A (ja) 1995-07-27 1997-02-10 Teijin Ltd フェノールの蒸留方法
JPH09165443A (ja) 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
US5717609A (en) * 1996-08-22 1998-02-10 Emv Technologies, Inc. System and method for energy measurement and verification with constant baseline reference
US6277945B1 (en) 1998-08-05 2001-08-21 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing an aromatic polycarbonate
JP2002322130A (ja) 2001-02-26 2002-11-08 Mitsubishi Chemicals Corp ジフェニルカーボネートの製造方法及び芳香族ポリカーボネートの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189139A (en) * 1991-08-08 1993-02-23 The Dow Chemical Company Preparation of polycarbonates comprising separating bisphenol, converting bisphenol to diaryl carbonate and recycling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331088A (ja) 1991-10-30 1993-12-14 Chiyoda Corp ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法
LU88564A1 (de) 1994-12-02 1995-04-05 Bayer Ag Verfahren zur Herstellung von thermoplastischem Polycarbonat
LU88569A1 (de) 1994-12-14 1995-04-05 Bayer Ag Verfahren zur Herstellung von thermoplastischem Polycarbonat
JPH0938402A (ja) 1995-07-27 1997-02-10 Teijin Ltd フェノールの蒸留方法
JPH09165443A (ja) 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
US5717609A (en) * 1996-08-22 1998-02-10 Emv Technologies, Inc. System and method for energy measurement and verification with constant baseline reference
US6277945B1 (en) 1998-08-05 2001-08-21 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing an aromatic polycarbonate
JP2002322130A (ja) 2001-02-26 2002-11-08 Mitsubishi Chemicals Corp ジフェニルカーボネートの製造方法及び芳香族ポリカーボネートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1657272A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321805B (zh) * 2005-11-30 2012-03-28 旭化成化学株式会社 高品质芳香族聚碳酸酯的工业制备方法
US8629235B2 (en) 2011-01-07 2014-01-14 Mitsubishi Chemical Corporation Production method of polycarbonate
KR20150021114A (ko) * 2012-06-19 2015-02-27 이피씨 엔지니어링 컨설팅 게엠베하 폴리카보네이트 생산 방법 및 설비
KR101995617B1 (ko) 2012-06-19 2019-07-02 이피씨 엔지니어링 앤드 테크놀로지스 게엠베하 폴리카보네이트 생산 방법 및 설비
WO2021047037A1 (zh) * 2019-09-11 2021-03-18 利华益维远化学股份有限公司 一种聚碳酸酯生产原料预处理系统及方法
CN113577814A (zh) * 2021-08-16 2021-11-02 四川中蓝国塑新材料科技有限公司 一种用于聚碳酸酯工业化生产的碳酸二苯酯回收装置及方法

Also Published As

Publication number Publication date
BRPI0413650B1 (pt) 2015-06-16
EP1657272B1 (en) 2013-03-20
EP1657272B2 (en) 2020-04-08
BRPI0413650A8 (pt) 2018-04-17
EP1657272A1 (en) 2006-05-17
EP1657272A4 (en) 2006-08-09
BRPI0413650A (pt) 2006-10-17

Similar Documents

Publication Publication Date Title
TWI438184B (zh) 製造雙酚之結晶方法
JP6302058B2 (ja) ビスフェノールa製造装置および製造方法
WO2005019302A1 (ja) 芳香族ポリカーボネートの製造方法
JP5353817B2 (ja) 芳香族ポリカーボネートの製造方法
WO2001053238A1 (fr) Procede de preparation de bisphenol a
JP4752212B2 (ja) 芳香族ポリカーボネートの製造方法
WO2002055462A1 (fr) Procede pour produire du bisphenol a
US20200017431A1 (en) Apparatus and method for preparing bisphenol a
JP4691881B2 (ja) 芳香族ポリカーボネートの製造方法
CN1255112A (zh) 连续生产二羟基二芳基烷烃的方法
KR100813452B1 (ko) 방향족 폴리카보네이트의 제조 방법
US7301056B2 (en) Process for the separation of phenol from phenol-containing streams from the preparation of Bisphenol A
JP4295042B2 (ja) 芳香族ポリカーボネートの製造方法
JP4577820B2 (ja) ビスフェノールaの製造方法及び装置
RU2326133C2 (ru) Способ получения ароматического поликарбоната
RU2426718C2 (ru) Способ получения гранулированного бисфенола а высокого качества
KR100948724B1 (ko) 비스페놀 a의 제조방법
WO2007046474A1 (ja) ビスフェノールaの製造方法およびイオン交換樹脂の判定方法
KR101050655B1 (ko) 비스페놀 a의 프릴의 제조방법
JP4871703B2 (ja) 9,9−ビス(4−ヒドロキシフェニル)フルオレン類の包接結晶を利用した連続製造方法
JP4706172B2 (ja) 芳香族ポリカーボネートの製造装置及び芳香族ポリカーボネートの製造方法
JP4333276B2 (ja) 芳香族ポリカーボネートの製造方法
JP2003160524A (ja) ビスフェノールaの製造方法及びその装置
WO2003043964A1 (fr) Procede de production de bisphenol a et appareil correspondant
JP2005146047A (ja) 芳香族ポリカーボネートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023949.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004772002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 871/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020067003560

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006108794

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004772002

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0413650

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 1020067003560

Country of ref document: KR