WO2005017545A1 - 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置 - Google Patents

二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置 Download PDF

Info

Publication number
WO2005017545A1
WO2005017545A1 PCT/JP2004/005572 JP2004005572W WO2005017545A1 WO 2005017545 A1 WO2005017545 A1 WO 2005017545A1 JP 2004005572 W JP2004005572 W JP 2004005572W WO 2005017545 A1 WO2005017545 A1 WO 2005017545A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
representative
secondary battery
measured
Prior art date
Application number
PCT/JP2004/005572
Other languages
English (en)
French (fr)
Inventor
Yusai Murakami
Norito Yamabe
Original Assignee
Panasonic Ev Energy Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Ev Energy Co., Ltd. filed Critical Panasonic Ev Energy Co., Ltd.
Priority to EP04728239A priority Critical patent/EP1679523A4/en
Priority to US10/567,799 priority patent/US7528575B2/en
Publication of WO2005017545A1 publication Critical patent/WO2005017545A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the method for estimating the remaining capacity of a secondary battery according to the present invention includes a method for estimating the remaining capacity of each secondary battery based on the battery voltage obtained by the voltage correcting method for a secondary battery according to the present invention. Is calculated.
  • the reliability of the battery control is improved by using the battery voltage with improved measurement accuracy for estimating S ⁇ C.
  • S between battery blocks It has the advantages of reducing the OC estimation error, improving the SOC estimation accuracy, and being able to accurately grasp the even charging time.
  • the battery pack 10 When the battery pack 10 is mounted on an HEV or the like, usually, a battery in which a plurality of unit cells, such as nickel-hydrogen batteries, or unit cells are electrically connected in series is used to obtain a predetermined output to the motor. A plurality of blocks are further electrically connected in series.
  • the battery pack 10 is composed of 20 battery blocks 10-1, 10-2,..., 10-20.
  • each battery block is represented by a single battery electric symbol for simplicity of illustration.
  • 102--2 is provided in the second voltage measurement system for the five battery blocks 10-11, 10-13, 10-15, 10-17, 10-19.
  • the voltage data V o (3), Vo (5), V o ( 7), the average voltage V avl of Vo (9) is calculated as a representative voltage of the first voltage measurement system.
  • the voltage data V o (19) corresponding to the battery block 10-19 disposed one inside from the other end of the battery pack 10 the voltage data Vo (1 1) , V o (13), V o (15), and V 0 (17) are calculated as the average voltage V a V 2 as the representative voltage of the second voltage measurement system.
  • the representative (average) voltage calculation unit 105 calculates the voltage data corresponding to the battery block determined to be abnormal due to a remarkable variation in the battery capacity or the like, A voltage deviation from a voltage measurement circuit that is determined to be abnormal due to a voltage deviation that exceeds the specified range or a cable disconnection from the battery pack 10 to the battery ECU 101, etc. Are also excluded from the average voltage calculation.
  • the average voltage difference calculation unit 106 sets the battery blocks 10-11, 10-13, 10-15, 1 in the second voltage measurement system as different voltage measurement systems.
  • Average voltage V a V 2 corresponding to 0—17 and adjacent battery blocks in the fourth voltage measurement system 10—12, 10—14, 10—16, 10—18
  • the difference between the average value of V1 and VaV3 and the average value of the average voltages VaV2 and Vav4 in the second and fourth voltage measurement systems ((((VaV1 + V a V 3) From (V av 2 + V av 4)) / 2), the average voltage difference AV 2 in the second voltage measurement system and the average voltage difference ⁇ 4 in the fourth voltage measurement system are calculated.
  • the voltage correction value calculation unit 107 receives the average voltage difference 1, mm 2, 3, and AV 4 from the average voltage difference calculation unit 106, and calculates the average voltage in the first to fourth voltage measurement systems. Voltage correction values Q; 1, a
  • the correction value averaging processing unit 108 calculates the average value aa V of the voltage correction values ⁇ 1, a2, hi3, and ⁇ 4 from the voltage correction value calculation unit 107 during a predetermined period (for example, several seconds). 1, aav2, aav3, o; calculate av4.
  • the correction value reflection processing unit 109 receives the average value aavl, aa V2, aav3 aav4 of the voltage correction values from the voltage correction value calculation unit 107, and receives the voltage data V of the first voltage measurement system.
  • 0 (i) (i l, 3, 5, 7, 9)
  • Voltage data of the third voltage measurement system V o (i) (i 2, 4, 6, 8, 10
  • the electromotive force calculation unit 113 obtains the polarization voltage calculation unit 112 from the correction voltage data Vc (i) obtained by the correction value reflection unit 109, as described above. By subtracting the polarization voltage Vpo1, the electromotive force Veq (equilibrium potential) is calculated. The electromotive force V e Q calculated in this way is input to the remaining capacity calculation unit 114.
  • the remaining capacity calculation unit 114 calculates the temperature measurement unit 1 from the characteristic curve or equation of the electromotive force V eq with respect to the remaining capacity SOC with the temperature as a parameter, which is stored in the reference table (LUT) 1 141 in advance. Based on the temperature data T measured in 04, the remaining capacity SOC of each battery block is calculated.
  • a characteristic curve that can cover a temperature range of 130 ° C to 60 ° C is stored in the LUT 1141 as reference data.
  • FIG. 2 is a flowchart showing a processing procedure in a remaining capacity estimation method using the voltage correction method for a secondary battery according to one embodiment of the present invention.
  • the voltage data V (i) and the current data I are measured as a set of data (S201).
  • the average voltage V a V 1 in the first voltage measurement system and the average voltage V a V 3 in the third voltage measurement system are added to the difference between each other.
  • the average of the average voltages V a V 1 and V a V 3 and the average of the average voltage V a V 2 in the second voltage measurement system and the average voltage V a V 4 in the fourth voltage measurement system From the difference from the value, an average voltage difference ⁇ V 1 for the first voltage measurement system and an average voltage difference ⁇ 3 for the third voltage measurement system are calculated.
  • the difference between the average voltage V a V 2 in the second voltage measurement system and the average voltage V a V 4 in the fourth voltage measurement system (3 a Average value of V3 and average voltage Vav2 and average voltage
  • the average voltage difference ⁇ V 2 for the second voltage measurement system and the average voltage difference ⁇ 4 for the fourth voltage ′ measurement system are calculated from the difference between the voltage V av 4 and the average value.
  • the voltage correction value calculation processing step S20 from the average voltage differences ⁇ 1, ⁇ V2, ⁇ V3, AV4, the average voltages in the first to fourth voltage measurement systems are respectively equalized. Calculate the voltage correction values ⁇ 1, hi2, hi3, and a4.
  • the integrated capacity Q is calculated by current integration based on the current data I measured in step S201.
  • a change capacity calculation processing step S208 a change amount (change capacity) of the integrated capacity Q in a predetermined period (for example, one minute) is calculated.
  • the polarization voltage calculation processing step S209 based on a reference table in which the polarization voltage Vp o1 ⁇ characteristic data with the temperature data T as a parameter is stored in advance from the change capacity AQ, Calculate the polarization voltage Vp o 1.
  • the electromotive force calculation processing step S 210 the polarization voltage calculation processing is performed based on the correction voltage data V c (i) calculated in the correction value reflection processing step S 206.
  • the electromotive force Veq is calculated by subtracting the polarization voltage Vp01 calculated in step S209.
  • the remaining capacity calculation processing step S 211 from the electromotive force Ve Q calculated in the electromotive force calculation processing step S 210, the electromotive force V ed—the remaining capacity S 0 using the temperature data T as a parameter.
  • the remaining capacity SOC is calculated based on a reference table in which the C characteristic data is stored in advance.
  • the reliability of battery control is improved by using the battery voltage with improved measurement accuracy for estimating SOC.
  • the SOC estimation error between the battery blocks is reduced, the SOC estimation accuracy is improved, and the timing of equal charging can be accurately grasped.
  • the battery pack system mounted on the HEV having four different voltage measurement systems has been described as an example.
  • the present invention is not limited to this, and can be applied to, for example, a power supply system having a backup power supply and two different voltage measurement systems.
  • the voltage correction method and apparatus of the secondary battery which improved the measurement accuracy of the battery voltage between the battery blocks from which a voltage measurement system differs are provided, and, thereby, the offset error is added to the measured battery voltage. Even in the case where it is included, it is possible to provide a method and apparatus capable of estimating S OC with high accuracy.
  • a voltage correction method and device for a secondary battery according to the present invention have improved battery voltage measurement accuracy between battery blocks having different voltage measurement systems. Therefore, even if the measured battery voltage includes an offset error, the SOC can be estimated with high accuracy, so that electric vehicles (PEV), hybrid vehicles (HEV), eight-brid vehicles with fuel cells and secondary batteries, etc. This is useful for applications such as electric vehicles and power supply systems with a backup power supply.
  • PEV electric vehicles
  • HEV hybrid vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

電圧測定系が異なる電池ブロック間における電池電圧の測定精度を向上させた二次電池の電圧補正装置を提供する。電池ECU(101)内に、異なる電圧測定系内に設けられ複数の電池ブロックの電圧を測定する、第1の電圧測定部(102−1)、第2の電圧測定部(102−2)、第3の電圧測定部(102−3)、第4の電圧測定部(102−4)と、第1から第4の電圧測定部により測定された電池電圧から各代表電圧を算出する代表電圧算出部(105)と、各代表電圧に基づいて電圧補正値を算出する電圧補正値算出部(107)と、電圧補正値を対応する各電圧測定系における電池ブロックの測定電圧に加算する補正値反映処理部(109)とを設けた。

Description

明 細 書 二次電池の電圧補正方法および装置、 並びに二次電池の残存容量推定方法および装置 技術分野
本発明は、 電気自動車(PEV) や八イブリツド車両(HEV)等に、 モータの動力源および各種負荷の駆動源として搭載されるニッケル一水 素 (N i— MH) パッテリなどの二次電池の電圧を測定し、 測定電圧に 基づいて充電状態である残存容量 (SOC : State of Charge) を推定す る技術に関する。 背景技術
従来より、 HEVでは、 二次電池の電圧、 電流、 温度等を検出して二 次電池の残存容量 (以下、 S OCと略称する) を演算により推定し、 車 両の燃料消費効率が最も良くなるように S〇 C制御を行っている。 S O C制御を正確に行うためには、 充放電を行っている二次電池の S O Cを 正確に推定することが必要になる。
電池電圧から S OCを推定する従来の方法としては、 以下のようなも のが知られている。 まず、 所定期間に電圧 Vと充放電された電流 Iとの ペアデータを複数個取得して記憶し、 そのペアデータから、 回帰分析に より 1次の近似直線 (電圧 V—電流 I近似直線) を求め、 V— I近似直 線の V切片を電池電圧 V o c (無負荷電圧) として求める。 また、 電流 Iの積算値 Iを計算し、 温度 T、 電池電圧 V o c、 電流積算値 $ Iの 関数から電池の分極電圧 Vpを求め、 電池電圧 Vo cから分極電圧 Vp を減算して、 電池の起電力 Eを求める。 次に、 予め用意されている起電 カー S〇C特性を参照して、求められた起電力 Eから S O Cを推定する。 また、 H E V等に塔載される二次電池は、 単電池または単位電池を複 数個直列接続した電池ブロックを複数個組み合わせた電池パックとして 構成され、 各電池ブロックでの S O Cを把握するために、 各電池ブロッ クで S O Cの算出を行うことが一般的である。
したがって、 この場合の S O Cの算出精度は、 電池電圧の測定精度に 直接依存している。 電池電圧の測定精度には、 ランダム誤差、 オフセッ ト誤差、 エージング誤差などが影響する。
しかしながら、 上記従来のような電池電圧から s〇cを推定する方法 では、 以下のような問題点がある。
電圧ランダム誤差は、 電池ブロック間の S O C推定誤差への影響が少 ないが、 電圧オフセット誤差は、 電圧測定系が異なる電池ブロック間の 電圧には容易に発生し、 例えば数 1 O m V以下という電圧オフセット誤 差を確保するために、 高精度の電圧センサや電圧検出回路系を用いると コストアップとなるため、 安価な製品の開発には、 低コストで精度のあ まり良くないものを使わざるをえないというのが実情である。そのため、 電池ブロック間の S O Cの推定誤差を増大させる、 という問題がある。 発明の開示
本発明は、 上記の問題点に鑑みてなされたものであり、 その目的は、 電圧測定系が異なる電池ブロック間における電池電圧の測定精度を向上 させた二次電池の電圧補正方法および装置を提供し、 それにより、 測定 された電池電圧にオフセット誤差を含む場合でも、 S O Cを高精度に推 定できる方法および装置を提供することにある。
前記の目的を達成するため、本発明に係る二次電池の電圧補正方法は、 複数の電圧測定系を有し、 各電圧測定系内に複数の二次電池を有する電 池システムにおいて測定された電池電圧を補正する方法であって、 各電 圧測定系内おいて測定した電池電圧から代表電圧を算出する工程と、 算 出した各代表電圧に基づいて電圧補正値を算出する工程と、' 電圧補正値 に基づいて各電圧測定系における二次電池の測定電圧を補正する工程と を含むことを特徴とする。
本発明に係る二次電池の電圧補正方法において、 代表電圧は、 各電圧 測定系内において測定した電池電圧の平均電圧として算出され、 この電 圧補正方法は、 異なる電圧測定系との間の平均電圧の差を算出する工程 を含み、 電圧補正値は、 平均電圧差に基づいて各電圧測定系における平 均電圧が等しくなるように算出されることが好ましい。
上記の方法によれば、 電圧測定系が異なる例えば電池プロック間に発 生する電圧オフセット誤差を補正することで、 電池電圧の測定精度を向 上させることができる。
また、 本発明に係る二次電池の電圧補正方法において、 代表電圧は、 各電圧測定系内において異常と判定された電池の測定電圧を除いて算出 されることが好ましい。
この方法によれば、異常と判定された電池の測定電圧を除いて代表(平 均) 電圧を算出することで、 電池電圧の測定精度をさらに向上させるこ とができる。
また、 本発明に係る二次電池の電圧補正方法において、 代表電圧は、 各電圧測定系内において代表電圧からの偏差が所定範囲を超える測定電 圧を除いて算出されることが好ましい。
この方法によれば、 代表 (平均) 電圧からの偏差が大きい測定電圧を 除いて、 代表 (平均) 電圧を再度算出することで、 電池電圧の測定精度 をさらに向上させることができる。
また、 本発明に係る二次電池の電圧補正方法において、 代表電圧は、 各電圧測定系内において他の電池との温度差が所定値よりも大きい電池 の測定電圧を除いて算出されることが好ましい。
この方法によれば、 電池システムとして例えば電池パックを構成する 複数の電池ブロックのうち、 両端部に配置された電池ブロックは、 他の 電池ブロックに比べて温度差が発生し易く、 容量差がついて、 電圧差が 生じるので、 これら両端部の電池ブロックの測定電圧を代表 (平均) 電 圧の算出から除くことで、 電池電圧の測定精度をさらに向上させること ができる。
また、 本発明に係る二次電池の電圧補正方法において、 代表電圧は、 異常と判定された電圧測定回路系からの測定電圧を除いて算出されるこ とが好ましい。
この方法によれば、 異常な回路系によるオフセット誤差の影響を受け ないので、 電池電圧の測定精度をさらに向上させることができる。
また、 本発明に係る二次電池の電圧補正方法は、 電圧補正値の所定期 間における平均値を算出する工程を含むことが好ましい。
この方法によれば、 電圧補正値から回路誤差以外の要因を除去するこ とができ、 電池電圧の測定精度をさらに向上させることができる。
前記の目的を達成するため、 本発明に係る二次電池の残存容量推定方 法は、 本発明に係る二次電池の電圧補正方法により得られた電池電圧に 基づいて各二次電池の残存容量を算出する工程を含むものである。
この方法によれば、 測定精度が向上した電池電圧を S O Cの推定に用 いることで、 電池制御の信頼性が高くなる。 特に、 電池ブロック間の S O C推定誤差を軽減して、 S O C推定精度を向上させるとともに、 均等 充電時期を正確に把握することができる等の利点がある。
前記の目的を達成するため、本発明に係る二次電池の電圧補正装置は、 複数の電圧測定系を有し、 各電圧測定系内に複数の二次電池を有する電 池システムにおいて測定された電池電圧を補正する装置であって、 各電 圧測定系内に設けられ複数の二次電池の電圧を測定する電圧測定部と、 電圧測定部により測定された電池電圧から代表電圧を算出する代表電圧 算出部と、 各代表電圧に基づいて電圧補正値を算出する電圧補正値算出 部と、 電圧補正値に基づいて各電圧測定系における二次電池の測定電圧 を補正する補正値反映処理部とを備えたことを特徴とする。
本発明に係る二次電池の電圧補正装置において、 代表電圧算出部は、 各電圧測定系内において測定した電池電圧の平均電圧として代表電圧を 算出し、 この電圧補正装置は、 異なる電圧測定系との間の平均電圧の差 を算出する平均電圧差算出部を備え、 電圧補正値算出部は、 平均電圧差 に基づいて各電圧測定系における平均電圧が等しくなるように電圧補正 値を算出することが好ましい。
上記の構成によれば、 電圧測定系が異なる例えば電池ブロック間に発 生する電圧オフセット誤差を補正することで、 電池電圧の測定精度を向 上させることができる。
また、 本発明に係る二次電池の電圧補正装置において、 代表電圧算出 部は、 各電圧測定系内において異常と判定された電池の測定電圧を除い て代表電圧を算出することが好ましい。
この構成によれば、異常と判定された電池の測定電圧を除いて代表(平 均) 電圧を算出することで、 電池電圧の測定精度をさらに向上させるこ とができる。
また、 本発明に係る二次電池の電圧補正装置において、 代表電圧算出 部は、 各電圧測定系内において代表電圧からの偏差が所定範囲を超える 測定電圧を除いて代表電圧を算出することが好ましい。
この構成によれば、 代表 (平均) 電圧からの偏差が大きい測定電圧を 除いて、 代表 (平均) 電圧を再度算出することで、 電池電圧の測定精度 をさらに向上させることができる。
また、 本発明に係る二次電池の電圧補正装置において、 代表電圧算出 部は、 各電圧測定系内において他の電池との温度差が所定値よりも大き い電池の測定電圧を除いて代表電圧を算出することが好ましい。
この構成によれば、 電池システムとして例えば電池パックを構成する 複数の電池ブロックのうち、 両端部に配置された電池プロックは、 他の 電池ブロックに比べて温度差が発生し易く、 容量差がついて、 電圧差が 生じるので、 これら両端部の電池ブロックの測定電圧を代表 (平均) 電 圧の算出から除くことで、 電池電圧の測定精度をさらに向上させること ができる。
また、 本発明に係る二次電池の電圧補正装置において、 代表電圧算出 部は、 異常と判定された電圧測定回路系からの測定電圧を除いて代表電 圧を算出することが好ましい。
この構成によれば、 異常な回路系によるオフセット誤差の影響を受け ないので、 電池電圧の測定精度をさらに向上させることができる。 また、 本発明に係る二次電池の電圧補正装置は、 前記電圧補正値の所 定期間における平均値を算出する補正値平均化処理部を備えることが好 ましい。
この構成によれば、 電圧補正値から回路誤差以外の要因を除去するこ とができ、 電池電圧の測定精度をさらに向上させることができる。 前記の目的を達成するため、 本発明に係る二次電池の残存容量推定装 置は、 本発明に係る二次電池の電圧補正装置における補正値反映処理部 により得られた電池電圧に基づいて各二次電池の残存容量を算出する残 存容量算出部を備えたものである。
この構成によれば、 測定精度が向上した電池電圧を S〇Cの推定に用 いることで、 電池制御の信頼性が高くなる。 特に、 電池ブロック間の S O C推定誤差を軽減して、 S O C推定精度を向上させるとともに、 均等 充電時期を正確に把握することができる等の利点がある。 図面の簡単な説明
図 1は、 本発明の一実施形態に係る二次電池の電圧補正装置および残 存容量推定装置を備えた電池パックシステムの一構成例を示すブロック 図である。
図 2は、 本発明の一実施形態に係る二次電池の電圧補正方法を用いた 残存容量推定方法における処理手順を示すフローチャートである。 発明を実施するための最良の形態
以下、本発明の好適な実施の形態について、図面を参照して説明する。 図 1は、 本発明の一実施形態に係る二次電池の電圧補正装置および残 存容量推定装置を備えた電池パックシステムの一構成例を示すブロック 図である。図 1において、電池パックシステム 1は、電池パック 1 0と、 マイクロコンピュータシステムの一部として、 本発明に係る電圧補正装 置および残存容量推定装置が含まれる電池用の電子制御ュニット(以下、 電池 E C Uと略称する) 1 0 1とで構成される。
電池パック 1 0は、 H E V等に搭載された場合、 通常、 モータに対す る所定の出力を得るため、 例えばニッケル一水素バッテリである複数の 単電池または単位電池が電気的に直列接続された電池ブロックをさらに 複数個電気的に直列接続されて構成される。 図 1では、 電池パック 1 0 は、 2 0個の電池ブロック 1 0— 1、 1 0— 2、 ···、 1 0— 2 0から成 る。 なお、 図中、 各電池ブロックは、 例示の簡略化のため、 単一の電池 の電気シンポルで表している。 また、 電池ブロック 1 0— ( 2 i— 1 ) ( i = 1〜 1 0 ) を奇数電池ブロックと、 電池ブロック 1 0— 2 i ( i = 1〜 1 0) を偶数電池ブロックと呼ぶ。
電池 E CU 1 0 1において、 1 0 2— 1は、 5個の電池プロック 1 0 一 1、 1 0— 3、 1 0— 5、 1 0 - 7, 1 0— 9に対する第 1の電圧測 定系内に設けられ、 電圧センサ (不図示) により検出された各電池プロ ックの端子電圧を所定のサンプリング周期で電圧デ一夕 V( i ) ( i = l, 3、 5、 7、 9) として測定する第 1の電圧測定部である。
また、 1 0 2— 2は、 5個の電池ブロック 1 0— 1 1、 1 0— 1 3、 10— 1 5、 1 0— 1 7、 10— 1 9に対する第 2の電圧測定系内に設 けられ、 電圧センサ (不図示) により検出された各電池ブロックの端子 電圧を所定のサンプリング周期で電圧データ V ( i ) ( i = l l、 1 3、
1 5、 1 7、 1 9) として測定する第 2の電圧測定部である。
また、 1 02— 3は、 5個の電池ブロック 1 0— 2、 1 0 -4, 1 0 一 6、 1 0 - 8, 1 0— 1 0に対する第 3の電圧測定系内に設けられ、 電圧センサ (不図示) により検出された各電池ブロックの端子電圧を所 定のサンプリング周期で電圧データ V ( i ) ( i =2、 4、 6、 8、 1 0) として測定する第 3の電圧測定部である。
さらに、 1 02— 4は、 5個の電池ブロック 1 0— 1 2、 1 0— 1 4、 1 0— 1 6、 1 0— 1 8、 1 0— 20に対する第 4の電圧測定系内に設 けられ、 電圧センサ (不図示) により検出された各電池ブロックの端子 電圧を所定のサンプリング周期で電圧データ V ( i ) ( i = l 2、 1 4、
1 6、 1 8、 20) として測定する第 4の電圧測定部である。
ここで、 上記の各電圧測定部では、 従来技術で説明したように、 測定 した電圧データ V ( i ) と、 後述する電流測定部 1 0 3からの電流デー タ Iとの複数の組データから、 例えば最小二乗法を用いた統計処理によ り、 1次の電圧一電流直線 (近似直線) を求め、 電流がゼロの時の電圧 値 (電圧 (V) 切片) である無負荷電圧を電圧データ V o ( i ) として 算出する。 ·
1 03は、 電流センサ (不図示) により検出された電池パック 1 0の 充放電電流を所定のサンプリング周期で電流データ I (その符号は充電 方向か放電方向かを表す) として測定する電流測定部で、 1 04は、 温 度センサ (不図示) により検出された電池パック 1 0の温度を温度デー 夕 Tとして測定する温度測定部である。
第 1の電圧測定部 1 0 2— 1からの電圧データ V o ( i ) ( i = 1、 3、 5、 7、 9) と、第 2の電圧測定部 1 02— 2からの電圧デ一夕 V o ( i ) ( i = l l、 1 3、 1 5、 1 7、 1 9) と、 第 3の電圧測定部 1 02— 3からの電圧データ Vo ( i ) ( i = 2、 4、 6、 8、 1 0) と、 第 4の 電圧測定部 1 02— 4からの電圧データ V o ( i ) ( i = 1 2、 14、 1 6、 1 8、 20) は、 代表 (平均) 電圧算出部 1 0 5に入力される。 代表 (平均) 電圧算出部 1 0 5では、 以下の処理が行われる。 まず、 電池パック 1 0の一方の端部に配置された電池ブロック 1 0— 1に対応 する電圧データ Vo ( 1) を除いて、 電圧データ V o (3)、 Vo (5)、 V o (7)、 Vo (9) の平均電圧 V a v lが、 第 1の電圧測定系の代表 電圧として算出される。 また、 電池パック 1 0の他方の端部から一つ内 側に配置された電池ブロック 1 0— 19に対応する電圧データ V o ( 1 9) を除いて、 電圧デ一夕 Vo (1 1)、 V o ( 1 3)、 V o (1 5)、 V 0 ( 1 7 ) の平均電圧 V a V 2が、 第 2の電圧測定系の代表電圧として 算出される。 また、 電池パック 1 0の一方の端部から一つ内側に配置さ れた電池ブロック 1 0— 2に対応する電圧データ V o (2) を除いて、 電圧データ Vo (4)、 V o (6)、 Vo (8)、 V o (1 0) の平均電圧 V a v 3が、 第 3の電圧測定系の代表電圧として算出される。 さらに、 電池パック 1 0の他方の端部に配置された電池ブロック 1 0— 20に対 応する電圧デ一夕 V o (20) を除いて、 電圧データ Vo (1 2)、 Vo (14)、 V o (1 6)、 V o (1 8) の平均電圧 V a v 4が、 第 4の電 圧測定系の代表電圧として算出される。
ここで、 電池パック 1 0の両端部およびその一つ内側に配置される電 池ブロック 1 0— 1、 1 0— 2、 1 0— 1 9、 1 0 _ 20にそれぞれ対 応する電圧データ Vo (1)、 V 0 (2)、 V o (1 9)、 V o (20) を 除いて平均電圧を算出するのは、 両端部およびその近傍に配置された電 池ブロックは、 他の電池ブロックに比べて温度差が発生し易く、 容量差 がついて、 電圧差が生じるので、 これら両端部の電池ブロックの測定電 圧を代表 (平均) 電圧の算出から除くことで、 電池電圧の測定精度をさ らに向上させるためである。
また、 代表 (平均) 電圧算出部 1 0 5では、 電池容量が著しくばらつ いている等に起因して、 異常であると判定された電池ブロックに対応す る電圧データ、 算出した平均電圧からの偏差が所定範囲を超える電圧デ 一夕や、 電池パック 1 0から電池 ECU 1 0 1までのケーブルの断線等 に起因して、 異常であると判定された電圧測定回路系からの電圧デ一夕 も、 平均電圧の算出から除かれる。
代表 (平均) 電圧算出部 10 5からの平均電圧 V a V 1、 V a V 2、 V a v 3、 V a v は、 平均電圧差算出部 1 06に入力される。 平均電 圧差算出部 1 0 6では、 異なる電圧測定系として、 第 1の電圧測定系に おける電池ブロック 1 0— 3、 1 0— 5、 1 0 - 7, 1 0— 9に対応す る平均電圧 V a V 1と、 第 3の電圧測定系における隣接する電池ブロッ ク 1 0— 4、 1 0 - 6, 1 0 - 8, 1 0— 1 0に対応する平均電圧 V a v 3との互いに対する差 (Va v l— V a v 3、 V a v 3 -V a v l) だけでなく、 第 1および第 3の電圧測定系における平均電圧 V a v 1と V a v 3の平均値と、 第 2および第 4の電圧測定系における平均電圧 V a V 2と V a V 4の平均値との差 ((( V a v 1 + V a v 3 ) — (V a v 2 + V a v 4)) / 2 ) より、 第 1の電圧測定系における平均電圧差 AV
1、 第 3の電圧測定系における平均電圧差 AV 3が算出される。
また、 平均電圧差算出部 1 0 6では、 同様に、 異なる電圧測定系とし て、 第 2の電圧測定系における電池ブロック 1 0— 1 1、 1 0— 1 3、 1 0— 1 5、 1 0— 1 7に対応する平均電圧 V a V 2と、 第 4の電圧測 定系における隣接する電池ブロック 1 0— 1 2、 1 0— 1 4、 1 0— 1 6、 1 0 - 1 8に対応する平均電圧 V a V 4との互いに対する差 (V a V 2 -V a V 4, V a v 4 -V a v 2) だけでなく、 第 1および第 3の 電圧測定系における平均電圧 V a V 1と V a V 3の平均値と、 第 2およ び第 4の電圧測定系における平均電圧 V a V 2と V a v 4の平均値との 差 (((V a V 1 +V a V 3) 一 (V a v 2 +V a v 4)) / 2 ) より、 第 2の電圧測定系における平均電圧差 AV 2、 第 4の電圧測定系における 平均電圧差 Δν 4が算出される。
電圧補正値算出部 1 0 7は、 平均電圧差算出部 1 0 6からの平均電圧 差 1、 厶¥ 2、 3、 A V 4を受けて、 第 1から第 4の電圧測定 系における平均電圧が等しくなるように、 それぞれ電圧補正値 Q; 1、 a
2、 α 3、 ひ 4を算出する。 補正値平均化処理部 1 0 8は、 電圧補正値 算出部 1 0 7からの電圧補正値 α 1、 a 2 , ひ 3、 α 4の所定期間 (例 えば、 数秒間) における平均値 a a V 1、 a a v 2、 a a v 3 , o; a v 4を算出する。
補正値反映処理部 1 0 9は、 電圧補正値算出部 1 0 7からの電圧補正 値の平均値 a a v l、 a a V 2 , a a v 3 a a v 4を受けて、 第 1の 電圧測定系の電圧データ V 0 ( i ) ( i = l、 3、 5、 7、 9)、 第 2の 電圧測定系の電圧データ V o ( i ) ( i = l l、 1 3、 1 5、 1 7、 1 9)、 第 3の電圧測定系の電圧データ V o ( i ) ( i = 2、 4、 6、 8、 1 0)、 第 4の電圧測定系の電圧デ一夕 V o ( i ) ( i = 1 2、 1 4、 1 6、 1 8、 20 ) に、それぞれ電圧補正値の平均値 cu a v l、 a a V 2 , a a v 3 , a a v 4を加算して、 各電池ブロックに対応する補正された電圧デ一タ V c ( i ) ( i = l〜20) を出力する。
また、 電流測定部 1 0 3からの電流データ Iは、 積算容量算出部 1 1 0に入力されて、 所定期間における積算容量 Qが算出される。 積算容量 算出部 1 1 0により算出された積算容量 Qは、 変化容量算出部 1 1 1に 入力され、 所定期間 (例えば、 1分間) における積算容量 Qの変化量(変 化容量) が求められる。 変化容量 は、 分極電圧算出部 1 1 2に 入力される。 分極電圧算出部 1 1 2では、 参照テーブル (LUT) 1 1 2 1に予め記憶されている、 温度をパラメ一夕とした変化容量 に対 する分極電圧 Vp o 1の特性曲線または式から、 温度測定部 1 04で測 定された温度データ Tに基づいて、 分極電圧 Vp 0 1が算出される。 な お、 例えば HEV用途の場合、 一 3 0°C〜十 6 0°Cまでの温度範囲を力 バーできるような特性曲線が参照データとして LUT 1 1 2 1に格納さ れている。
次に、 起電力算出部 1 1 3が、 先に説明したように、 補正値反映部 1 09により得られた補正電圧デ一夕 Vc ( i ) から、 分極電圧算出部 1 1 2により得られた分極電圧 Vp o 1を減算して、 起電力 V e q (平衡 電位) を算出する。 このようにして算出された起電力 V e Qは、 残存容 量算出部 1 14に入力される。 残存容量算出部 1 14では、 参照テープ ル (LUT) 1 141に予め記憶されている、 温度をパラメ一夕とした 残存容量 SOCに対する起電力 V e qの特性曲線または式から、 温度測 定部 1 04で測定された温度データ Tに基づいて、 各電池ブロックの残 存容量 S O Cが算出される。 なお、 例えば HE V用途の場合、 一 3 0°C 〜十 60 までの温度範囲をカバーできるような特性曲線が参照データ として LUT 1 141に格納されている。 次に、 以上のように構成された電池パックシステムにおける補正され た電池電圧を用いた残存容量推定の処理手順について、 図 2を参照して 説明する。
図 2は、 本発明の一実施形態に係る二次電池の電圧補正方法を用いた 残存容量推定方法における処理手順を示すフローチャートである。 図 2 において、 まず、 電圧デ一夕 V ( i ) と電流データ Iを組データとして 測定する (S 20 1)。 次に、 代表 (平均) 電圧算出処理工程 S 202に おいて、 上記で説明したように、 第 1の電圧測定部 1 0 2— 1により得 られた電圧データ V o ( i ) ( i = 3、 5、 7、 9) 力ゝら第 1の電圧測定 系における平均電圧 V a V 1を、 第 2の電圧測定部 1 0 2— 2により得 られた電圧データ V o ( i ) ( i = l l、 1 3、 1 5、 1 7) から第 2の 電圧測定系における平均電圧 V a V 2を、 第 3の電圧測定部 1 02— 3 により得られた電圧データ V o ( i ) ( i = 4、 6、 8、 1 0) から第 3 の電圧測定系における平均電圧 V a V 3を、 また第 4の電圧測定部 1 0 2— 4により得られた電圧データ V o ( i ) ( i = 1 2、 14、 1 6、 1 8) から第 4の電圧測定系における平均電圧 Va v 4を算出する (図 2 では、 まとめて V a Vで表している)。
次に、 平均電圧差算出工程 S 20 3において、 第 1の電圧測定系にお ける平均電圧 V a V 1と第 3の電圧測定系における平均電圧 V a V 3と の互いに対する差に加えて、平均電圧 V a V 1と V a V 3との平均値と、 第 2の電圧測定系における平均電圧 V a V 2と第 4の電圧測定系におけ る平均電圧 V a V 4との平均値との差から、 第 1の電圧測定系に対する 平均電圧差△ V 1、 第 3の電圧測定系に対する平均電圧差 Δν 3を算出 する。 また、 同様に、 第 2の電圧測定系における平均電圧 V a V 2と第 4の電圧測定系における平均電圧 V a V 4との互いに対する差に (3えて、 平均電圧 V a V 1と V a V 3との平均値と、 平均電圧 V a v 2と平均電 圧 V a v 4との平均値との差から、 第 2の電圧測定系に対する平均電圧 差△ V 2、 第 4の電圧'測定系に対する平均電圧差 Δν 4を算出する。 次に、電圧補正値算出処理工程 S 2 0 において、平均電圧差 Δν 1、 △ V 2、 Δ V 3 , AV4から、 第 1から第 4の電圧測定系における平均 電圧が等しくなるように、 それぞれ電圧補正値 α 1、 ひ 2、 ひ 3、 a 4 を算出する。 そして、 補正値平均化処理工程 S 2 0 5において、 電圧補 正値 a l、 ひ 2、 a 3, 4の所定期間 (例えば、 数秒間) における平 均値 a a v l、 a a v 2、 c¾ a v 3 > a a v 4を算出する。
次に、 補正値反映処理工程 S 2 0 6において、 第 1の電圧測定系の電 圧データ V o ( i ) ( i = l、 3、 5、 7、 9)、 第 2の電圧測定系の電 圧データ V o ( i ) ( i = l l、 1 3、 1 5、 1 7、 1 9)、 第 3の電圧 測定系の電圧データ Vo ( i ) ( i = 2、 4、 6、 8、 1 0)、 第 4の電 圧測定系の電圧デ一夕 Vo ( i ) ( i = 1 2、 1 4、 1 6、 1 8、 2 0) に、 それぞれ電圧補正値の平均値 a a v 1、 a a v 2、 a a v 3 , a v 4を加算して、 各電池ブロックに対応する補正された電圧データ V c ( i ) ( i = 1〜 2 0 ) を求める。
一方、 積算容量算出処理工程 2 0 7において、 ステップ S 2 0 1で測 定された電流データ Iに基づいて、 電流積算により積算容量 Qを算出す る。 次に、 変化容量算出処理工程 S 2 0 8において、 積算容量 Qの所定 期間 (例えば、 1分間) における変化量 (変化容量) を算出する。 そして、 分極電圧算出処理工程 S 2 0 9において、 変化容量 AQから、 温度デ一夕 Tをパラメータとした分極電圧 Vp o 1 一 ΔΟ特性デ一夕が 予め記憶されている参照テーブルに基づいて、 分極電圧 Vp o 1を算出 する。
次に、 起電力算出処理工程 S 2 1 0において、 補正値反映処理工程 S 2 0 6で算出された補正電圧データ V c ( i ) から、 分極電圧算出処理 工程 S 2 0 9で算出された分極電圧 Vp 0 1を減算して、 起電力 Ve q を算出する。 そして、 残存容量算出処理工程 S 2 1 1において、 起電力 算出処理工程 S 2 1 0で算出された起電力 Ve Qから、 温度データ Tを パラメ一夕とした起電力 V e d—残存容量 S 0 C特性データが予め記憶 されている参照テーブルに基づいて、 残存容量 S O Cを算出する。
以上のように、 本実施形態によれば、 電池パック 1 0内における奇数 電池ブロック 10— (2 i— 1) ( i = l〜 10) と偶数電池ブロック 1 0 - 2 i ( i = l〜 1 0) との間で発生する電圧差 (オフセット誤差) を補正することが可能になる。 これにより、 測定精度が向上した電池電 圧を S OCの推定に用いることで、電池制御の信頼性が高くなる。特に、 電池ブロック間の S OC推定誤差を軽減して、 S OC推定精度を向上さ せるとともに、 均等充電時期を正確に把握することができる等の利点が ある。
なお、 本実施形態では、 異なる電圧測定系が 4系統 (第 1から第 4の 電圧測定系) ある、 HE Vに塔載される電池パックシステムを例に挙げ て説明したが、 本発明はこれに限定されず、 例えば、 異なる電圧測定系 が 2系統ある、 パックアップ電源を塔載した電源システム等にも適用可 能である。
本発明によれば、 電圧測定系が異なる電池ブロック間における電池電 圧の測定精度を向上させた二次電池の電圧補正方法および装置を提供し、 それにより、 測定された電池電圧にオフセット誤差を含む場合でも、 S OCを高精度に推定できる方法および装置を提供することが可能になる。 産業上の利用可能性
本発明に係る二次電池の電圧補正方法および装置は、 電圧測定系が異 なる電池ブロック間における電池電圧の測定精度を向上させた、 それに より、 測定された電池電圧にオフセット誤差を含む場合でも、 SOCを 高精度に推定できることで、電気自動車(PEV)、ハイプリッド車両(H EV)、燃料電池と二次電池とを有する八イブリッド車両等の電動車両等 や、 バックアップ電源を塔載した電源システム等の用途に有用である。

Claims

請求の範囲
1 . 複数の電圧測定系を有し、 各電圧測定系内に複数の二次電池を 有する電池システムにおいて測定された電池電圧を補正する方法であつ て、
各電圧測定系内おいて測定した電池電圧から代表電圧を算出する工程 と、
算出した各代表電圧に基づいて電圧補正値を算出する工程と、 前記電圧補正値に基づいて各電圧測定系における前記二次電池の測定 電圧を補正する工程とを含むことを特徴とする二次電池の電圧補正方法 c
2 . 前記代表電圧は、 各電圧測定系内において測定した電池電圧の 平均電圧として算出され、 前記二次電池の電圧補正方法は、 異なる電圧 測定系との間の前記平均電圧の差を算出する工程を含み、 前記電圧補正 値は、 前記平均電圧差に基づいて各電圧測定系における平均電圧が等し くなるように算出される請求項 1記載の二次電池の電圧補正方法。
3 . 前記代表電圧は、 各電圧測定系内において異常と判定された電 池の測定電圧を除いて算出される請求項 1記載の二次電池の電圧補正方 法。
4 . 前記代表電圧は、 各電圧測定系内において前記代表電圧からの 偏差が所定範囲を超える測定電圧を除いて算出される請求項 1記載の二 次電池の電圧補正方法。
5 . 前記代表電圧は、 各電圧測定系内において他の電池との温度差 が所定値よりも大きい電池の測定電圧を除いて算出される請求項 1記載 の二次電池の電圧補正方法。
6 . 前記代表電圧は、 異常と判定された電圧検出回路系からの測定 電圧を除いて算出される請求項 1記載の二次電池の電圧補正方法。
7 . 前記二次電池の電圧補正方法は、 前記電圧補正値の所定期間に おける平均値を算出する工程を含む請求項 1記載の二次電池の電圧補正 方法。
8 . 前記二次電池は、 単電池または単位電池を複数個直列に接続し た電池プロックから成る請求項 1記載の二次電池の電圧補正方法。
9 . 複数の電圧測定系を有し、 各電圧測定系内に複数の二次電池を 有する電池システムの各電圧測定系内おいて測定した電池電圧から代表 電圧を算出する工程と、
算出した各代表電圧に基づいて電圧補正値を算出する工程と、 前記電圧補正値に基づいて各電圧測定系における前記二次電池の測定 電圧を補正する工程と、
測定電圧の補正工程により得られた電池電圧に基づいて各二次電池の 残存容量を算出する工程を含む二次電池の残存容量推定方法。
1 0 . 複数の電圧測定系を有し、 各電圧測定系内に複数の二次電池 を有する電池システムにおいて測定された電池電圧を補正する装置であ つて、
各電圧測定系内に設けられ前記複数の二次電池の電圧を測定する電圧 測定部と、
前記電圧測定部により測定された電池電圧から代表電圧を算出する代 表電圧算出部と、
各代表電圧に基づいて電圧補正値を算出する電圧補正値算出部と、 前記電圧補正値に基づいて各電圧測定系における前記二次電池の測定 電圧を補正する補正値反映処理部とを備えたことを特徴とする二次電池 の電圧補正装置。
1 1 . 前記代表電圧算出部は、 各電圧測定系内において測定した電 池電圧の平均電圧として前記代表電圧を算出し、 前記二次電池の電圧捕 正装置は、 異なる電圧測定系との間の前記平均電圧の差を算出する平均 電圧差算出部を備え、 前記電圧補正値算出部は、 前記平均電圧差に基づ いて各電圧測定系における平均電圧が等しくなるように前記電圧補正値 を算出する請求項 1 0記載の二次電池の電圧補正装置。
1 2 . 前記代表電圧算出部は、 各電圧測定系内において異常と判定 された電池の測定電圧を除いて前記代表電圧を算出する請求項 1 0記載 の二次電池の電圧補正装置。
1 3 . 前記代表電圧算出部は、 各電圧測定系内において前記代表電 圧からの偏差が所定範囲を超える測定電圧を除いて前記代表電圧を算出 する請求項 1 0記載の二次電池の電圧補正装置。
1 4 . 前記代表電圧算出部は、 各電圧測定系内において他の電池と の温度差が所定値よりも大きい電池の測定電圧を除いて前記代表電圧を 算出する請求項 1 0記載の二次電池の電圧補正装置。
1 5 . 前記代表電圧算出部は、 異常と判定された電圧検出回路系か らの測定電圧を除いて前記代表電圧を算出する請求項 1 0記載の二次電 池の電圧補正装置。
1 6 . 前記二次電池の電圧補正装置は、 前記電圧補正値の所定期間 における平均値を算出する電圧補正値平均化処理部を備えた請求項 1 0 記載の二次電池の電圧補正装置。
1 7 . 前記二次電池は、 単電池または単位電池を複数個直列に接続 した電池ブロックから成る請求項 1 0記載の二次電池の電圧補正装置。
1 8 . 複数の電圧測定系を有し、 各電圧測定系内に複数の二次電池 を有する電池システムの各電圧測定系内に設けられ前記複数の二次電池 の電圧を測定する電圧測定部と、
前記電圧測定部により測定された電池電圧から代表電圧を算出する代 表電圧算出部と、
各代表電圧に基づいて電圧補正値を算出する電圧補正値算出部と、 前記電圧補正値に基づいて各電圧測定系における前記二次電池の測定 電圧を補正する補正値反映処理部と、
前記補正値反映処理部により得られた電池電圧に基づいて各二次電池 の残存容量を算出する残存容量算出部とを備えた二次電池の残存容量推 定方法。
PCT/JP2004/005572 2003-08-14 2004-04-19 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置 WO2005017545A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04728239A EP1679523A4 (en) 2003-08-14 2004-04-19 METHOD AND UNIT FOR CORRECTING SECONDARY BATTERY VOLTAGE AND METHOD AND UNIT FOR ESTIMATING BATTERY RESIDUAL CAPABILITY
US10/567,799 US7528575B2 (en) 2003-08-14 2004-04-19 Method and apparatus for correcting voltage of secondary battery, and method and apparatus for estimating state of charge of secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003293529A JP4283615B2 (ja) 2003-08-14 2003-08-14 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置
JP2003-293529 2003-08-14

Publications (1)

Publication Number Publication Date
WO2005017545A1 true WO2005017545A1 (ja) 2005-02-24

Family

ID=34190999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005572 WO2005017545A1 (ja) 2003-08-14 2004-04-19 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置

Country Status (5)

Country Link
US (1) US7528575B2 (ja)
EP (1) EP1679523A4 (ja)
JP (1) JP4283615B2 (ja)
CN (1) CN100547427C (ja)
WO (1) WO2005017545A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806592A1 (en) * 2005-12-29 2007-07-11 AMI Semiconductor Belgium BVBA Method and system for monitoring battery stacks
US8258792B2 (en) 2009-05-11 2012-09-04 Semiconductor Components Industries, Llc. Monitoring system and method

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4283615B2 (ja) * 2003-08-14 2009-06-24 パナソニックEvエナジー株式会社 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置
JP2007205977A (ja) * 2006-02-03 2007-08-16 Toyota Motor Corp 二次電池の監視装置
JP4877181B2 (ja) * 2006-10-23 2012-02-15 ソニー株式会社 充電装置および充電方法
JP5179047B2 (ja) * 2006-11-27 2013-04-10 パナソニック株式会社 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
JP4668306B2 (ja) * 2007-09-07 2011-04-13 パナソニック株式会社 二次電池の寿命推定装置および二次電池の寿命推定方法
JP5279261B2 (ja) * 2007-12-27 2013-09-04 三洋電機株式会社 充電状態均等化装置及びこれを具えた組電池システム
US8044786B2 (en) * 2008-06-19 2011-10-25 Tesla Motors, Inc. Systems and methods for diagnosing battery voltage mis-reporting
JP5297729B2 (ja) * 2008-09-09 2013-09-25 矢崎総業株式会社 電圧検出装置
JP5297730B2 (ja) * 2008-09-09 2013-09-25 矢崎総業株式会社 電圧検出装置
US8115446B2 (en) * 2008-11-12 2012-02-14 Ford Global Technologies, Llc Automotive vehicle power system
KR101171603B1 (ko) * 2008-11-20 2012-08-06 미쓰비시덴키 가부시키가이샤 전력 변환 장치
US8643376B2 (en) 2009-03-04 2014-02-04 Yazaki Corporation Voltage measuring apparatus of assembled battery
JP5148579B2 (ja) * 2009-09-29 2013-02-20 三菱重工業株式会社 二次電池異常予見システム
DE102010001529A1 (de) * 2010-02-03 2011-08-04 SB LiMotive Company Ltd., Kyonggi Adaptives Verfahren zur Bestimmung der Leistungsparameter einer Batterie
DE102010006965A1 (de) * 2010-02-05 2011-08-11 Continental Automotive GmbH, 30165 Vorrichtung und Verfahren zur Bestimmung eines Bereichs einer Batteriekennlinie
JP5468442B2 (ja) * 2010-03-31 2014-04-09 本田技研工業株式会社 Ad変換回路、及び、誤差補正方法
JP5700756B2 (ja) 2010-04-28 2015-04-15 矢崎総業株式会社 複数組電池の電圧測定装置
CN102741699B (zh) * 2010-04-30 2014-12-03 松下电器产业株式会社 满充电容量修正电路、充电系统、电池组件以及满充电容量修正方法
JP2011247818A (ja) * 2010-05-28 2011-12-08 Yazaki Corp 複数組電池の電圧測定装置
DE102010030491A1 (de) * 2010-06-24 2011-12-29 Sb Limotive Company Ltd. Verfahren zur Feststellung wenigstens eines Zustandes einer Mehrzahl von Batteriezellen, Computerprogramm, Batterie und Kraftfahrzeug
US8872518B2 (en) 2010-06-25 2014-10-28 Atieva, Inc. Determining the state of-charge of batteries via selective sampling of extrapolated open circuit voltage
JP2012083283A (ja) 2010-10-14 2012-04-26 Yazaki Corp 複数組電池の電圧測定装置
US9354277B2 (en) * 2010-10-29 2016-05-31 Gm Global Technology Operatins Llc Apparatus of SOC estimation during plug-in charge mode
CN102466785A (zh) * 2010-11-09 2012-05-23 欣旺达电子股份有限公司 动力电池组单体电池电压差值的采集方法与采集装置
JP5786324B2 (ja) * 2010-11-17 2015-09-30 日産自動車株式会社 組電池の制御装置
JP2012202738A (ja) * 2011-03-24 2012-10-22 Toyota Motor Corp 電圧測定装置、電圧測定システム、電圧測定方法
CN103358926B (zh) * 2012-03-30 2016-12-28 拉碧斯半导体株式会社 电池监视系统以及半导体装置
JP5680769B2 (ja) * 2012-07-13 2015-03-04 パナソニックIpマネジメント株式会社 蓄電池システム及びその制御方法
US9091738B2 (en) * 2012-10-10 2015-07-28 GM Global Technology Operations LLC Vehicle battery pack cell voltage determination
JP5975169B2 (ja) * 2013-03-29 2016-08-23 日本電気株式会社 充放電装置、充放電制御方法、及びプログラム
CN104714181B (zh) * 2013-12-11 2017-10-27 广州汽车集团股份有限公司 一种获取电压与电池荷电状态关系的方法和系统
JP2015155859A (ja) * 2014-02-21 2015-08-27 ソニー株式会社 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法
KR101578291B1 (ko) 2014-05-13 2015-12-16 엘에스산전 주식회사 Hvdc 시스템
CN104505550B (zh) * 2014-12-25 2017-01-18 宁德时代新能源科技股份有限公司 磷酸铁锂电池组的被动均衡方法及系统
JP6128155B2 (ja) * 2015-03-25 2017-05-17 トヨタ自動車株式会社 ハイブリッド自動車
CN107923942B (zh) 2015-05-08 2020-11-20 沃尔沃卡车集团 用于监测电池组中的多个电池单体的状态的方法
KR101755798B1 (ko) * 2015-06-30 2017-07-07 현대자동차주식회사 친환경 차량의 배터리 충방전량 제어 장치 및 방법
CN107305239A (zh) * 2016-04-22 2017-10-31 宝沃汽车(中国)有限公司 电芯单体电压修正电路、方法、电池管理系统及汽车
DE102016109074A1 (de) * 2016-05-18 2017-11-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Anordnung zum Laden einer Fahrzeugbatterie
US10333182B2 (en) * 2016-07-26 2019-06-25 GM Global Technology Operations LLC Estimation of cell voltage excursion in the presence of battery pack sensing faults
KR102559200B1 (ko) 2016-10-05 2023-07-25 삼성전자주식회사 배터리 유닛을 관리하는 장치, 방법, 및 시스템
JP7151079B2 (ja) 2017-03-07 2022-10-12 株式会社デンソー 電池状態推定装置及び電源装置
DE102018211724A1 (de) * 2018-07-13 2020-01-16 Robert Bosch Gmbh Verfahren zum Betrieb eines Batteriemoduls
CN111880106B (zh) * 2020-08-04 2021-12-17 安徽江淮汽车集团股份有限公司 电池荷电状态检测方法、设备、存储介质及装置
US20220352737A1 (en) * 2021-04-29 2022-11-03 GM Global Technology Operations LLC Thermal runaway prognosis by detecting abnormal cell voltage and soc degeneration
CN114509682B (zh) * 2021-12-27 2024-01-12 安徽锐能科技有限公司 锂电池soc估计算法的修正方法和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915311A (ja) * 1995-06-26 1997-01-17 Japan Storage Battery Co Ltd 組電池の故障検出装置
JP2002334726A (ja) * 2001-05-09 2002-11-22 Nissan Motor Co Ltd 組電池の異常セル検出装置および異常セル検出方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439892B2 (ja) * 1973-04-16 1979-11-30
GB2241342A (en) * 1990-02-22 1991-08-28 Sloan Power Electronics Ltd Battery charge indicator
US6060864A (en) * 1994-08-08 2000-05-09 Kabushiki Kaisha Toshiba Battery set structure and charge/discharge control apparatus for lithium-ion battery
JP3611905B2 (ja) * 1995-10-09 2005-01-19 松下電器産業株式会社 組蓄電池の充電制御方法
JP3733629B2 (ja) * 1995-12-08 2006-01-11 日産自動車株式会社 二次電池の温度制御装置
JP3934760B2 (ja) * 1997-11-17 2007-06-20 株式会社東芝 二次電池の電圧補正回路
TW472426B (en) * 1998-10-06 2002-01-11 Hitachi Ltd Battery apparatus and control system therefor
JP3865189B2 (ja) * 1999-12-16 2007-01-10 株式会社デンソー 自己発電型電気自動車用電池の制御方法
US7202634B2 (en) * 2001-08-17 2007-04-10 O2Micro International Limited Voltage mode, high accuracy battery charger
US6845332B2 (en) * 2001-11-16 2005-01-18 Toyota Jidosha Kabushiki Kaisha State of charge calculation device and state of charge calculation method
JP2003243042A (ja) * 2002-02-12 2003-08-29 Toyota Motor Corp 組電池を構成するリチウム電池の劣化度検知装置および方法
JP2004032871A (ja) * 2002-06-25 2004-01-29 Shin Kobe Electric Mach Co Ltd 走行車両用電源システム
DE10236958B4 (de) * 2002-08-13 2006-12-07 Vb Autobatterie Gmbh & Co. Kgaa Verfahren zur Ermittlung der entnehmbaren Ladungsmenge einer Speicherbatterie und Überwachungseinrichtung für eine Speicherbatterie
GB0312303D0 (en) * 2003-05-29 2003-07-02 Yuasa Battery Uk Ltd Battery life monitor and battery state of charge monitor
JP4283615B2 (ja) * 2003-08-14 2009-06-24 パナソニックEvエナジー株式会社 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915311A (ja) * 1995-06-26 1997-01-17 Japan Storage Battery Co Ltd 組電池の故障検出装置
JP2002334726A (ja) * 2001-05-09 2002-11-22 Nissan Motor Co Ltd 組電池の異常セル検出装置および異常セル検出方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1806592A1 (en) * 2005-12-29 2007-07-11 AMI Semiconductor Belgium BVBA Method and system for monitoring battery stacks
US7638979B2 (en) 2005-12-29 2009-12-29 Semiconductor Components Industries, L.L.C. Method and system for monitoring battery stacks comprising a controller for calculating a correction factor used to correct battery voltage measurements
US8258792B2 (en) 2009-05-11 2012-09-04 Semiconductor Components Industries, Llc. Monitoring system and method

Also Published As

Publication number Publication date
CN100547427C (zh) 2009-10-07
EP1679523A1 (en) 2006-07-12
CN1836172A (zh) 2006-09-20
JP4283615B2 (ja) 2009-06-24
US20060273802A1 (en) 2006-12-07
EP1679523A4 (en) 2009-07-29
JP2005062028A (ja) 2005-03-10
US7528575B2 (en) 2009-05-05

Similar Documents

Publication Publication Date Title
WO2005017545A1 (ja) 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置
US7557584B2 (en) Method and device for estimating charge/discharge electricity amount of secondary cell
US8008891B2 (en) Simple method for accurately determining a state of charge of a battery, a battery management system using same, and a driving method thereof
US7630842B2 (en) Secondary battery charge/discharge electricity amount estimation method and device, secondary battery polarization voltage estimation method and device and secondary battery remaining capacity estimation method and device
KR101015185B1 (ko) 상태검지장치 및 이것을 이용하는 장치
JP5496612B2 (ja) 電池の充放電可能電流演算方法及び電源装置並びにこれを備える車両
KR100669477B1 (ko) 배터리의 soc 보정 방법 및 이를 이용한 배터리 관리시스템
EP1801606B1 (en) Method for compensating state of charge of battery, battery management system using the method, and hybrid vehicle having the battery management system
EP1906193B1 (en) Method and device for detecting charged state of battery
KR20010043872A (ko) 전지 충전상태의 추정수단 및 전지 열화상태의 추정방법
WO2003061054A1 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
JPH0875833A (ja) バッテリ充電状態検出方法
JP6482901B2 (ja) 劣化検出装置および劣化検出方法
JP7016704B2 (ja) 二次電池システム
JP6494327B2 (ja) 劣化検出装置および劣化検出方法
JP4668015B2 (ja) 二次電池の状態検出方法および二次電池の状態検出装置
JP5886225B2 (ja) 電池制御装置及び電池制御方法
US7999553B2 (en) Voltage measurement device and electric vehicle
CA2600577C (en) State detecting system and device employing the same
CN114475348A (zh) 电动汽车能量状态确定方法、装置、存储介质和汽车

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023301.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006273802

Country of ref document: US

Ref document number: 10567799

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004728239

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004728239

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10567799

Country of ref document: US