KR101578291B1 - Hvdc 시스템 - Google Patents

Hvdc 시스템 Download PDF

Info

Publication number
KR101578291B1
KR101578291B1 KR1020140057357A KR20140057357A KR101578291B1 KR 101578291 B1 KR101578291 B1 KR 101578291B1 KR 1020140057357 A KR1020140057357 A KR 1020140057357A KR 20140057357 A KR20140057357 A KR 20140057357A KR 101578291 B1 KR101578291 B1 KR 101578291B1
Authority
KR
South Korea
Prior art keywords
voltage
transformers
value
power
high voltage
Prior art date
Application number
KR1020140057357A
Other languages
English (en)
Other versions
KR20150130147A (ko
Inventor
최용길
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Priority to KR1020140057357A priority Critical patent/KR101578291B1/ko
Priority to US14/692,538 priority patent/US9853558B2/en
Priority to EP15165304.5A priority patent/EP2945249A3/en
Priority to CN201510232949.9A priority patent/CN105098813B/zh
Priority to JP2015097108A priority patent/JP6027181B2/ja
Publication of KR20150130147A publication Critical patent/KR20150130147A/ko
Application granted granted Critical
Publication of KR101578291B1 publication Critical patent/KR101578291B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

실시 예에 따른 초고압 직류 송전 시스템은 초고압 직류 송전 시스템의 서로 다른 위치에 설치될 제 1 내지 N 계기용 변압기 사이의 전압 측정 편차를 검출하고, 상기 검출된 전압 측정 편차를 보상하기 위한 보상 값을 결정하는 통합 측정 패널; 및 상기 제 1 내지 N 계기용 변압기가 상기 초고압 직류 송전 시스템의 서로 다른 위치에 각각 설치되면, 상기 설치된 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값을 이용하여 상기 제 1 내지 N 계기용 변압기가 설치된 각 위치에 대한 실제 전압 값을 측정하는 초고압 직류 송전 장치를 포함하며, 상기 초고압 직류 송전 장치는, 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값의 보상을 위한 보상 값을 통합 측정 패널로부터 제공받고, 상기 제공받은 보상 값을 이용하여 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값을 보상하며, 상기 보상한 전압 값을 이용하여 상기 실제 전압 값을 측정한다.

Description

HVDC 시스템{HIGH VOLTAGE DIRECT CURRENT SYSTEM}
본 발명은 HVDC 시스템에 관한 것으로, 특히 복수의 계기용 변압기를 통해 측정된 전압 값의 편차를 보상할 수 있는 HVDC 시스템에 관한 것이다.
초고압 직류 송전(HIGH VOLTAGE DIRECT CURRENT, HVDC)은 송전소가 발전소에서 생산되는 교류 전력을 직류 전력으로 변환시켜서 송전한 후, 수전소에서 교류로 재변환시켜 전력을 공급하는 송전 방식을 말한다.
HVDC 시스템은 해저 케이블 송전, 대용량 장거리 송전, 교류 계통 간 연계 등에 적용된다. 또한, HVDC 시스템은 서로 다른 주파수 계통 연계 및 비동기(asynchronism) 연계를 가능하게 한다.
송전소는 교류 전력을 직류 전력으로 변환한다. 즉, 교류 전력을 해저 케이블 등을 이용하여 전송하는 상황은 매우 위험하기 때문에, 송전소는 교류 전력을 직류 전력으로 변환하여 수전소로 전송한다.
한편, HVDC 시스템에 이용되는 전압형 컨버터는 다양한 종류가 있으며, 최근 모듈형 멀티레벨 형태의 전압형 컨버터가 가장 주목받고 있다.
모듈형 멀티레벨 컨버터(Modular Multi-Level Converter, MMC)는 다수의 서브 모듈(Sub-Module)을 이용하여 직류 전력을 교류 전력으로 변환하는 장치이며, 각각의 서브 모듈을 충전, 방전, 바이패스 상태로 제어하여 동작한다.
이러한 HVDC 시스템에는 시스템 제어 및 시스템 보호 등의 목적을 위하여 여러 개소에 계기용 변압기가 설치된다.
그러가, 상기와 같은 계기용 변압기는 동일 제품인 경우에도 전압 측정 범위에 따라 서로 다른 측정 값을 감지함에 따라 측정 오류가 발생할 수 있으며, 이는 시스템 고장으로 인식되어 심각한 경우에는 시스템 운전을 중단해야 하는 상황이 발생할 수 있다.
즉, 일반적으로 단일 계기용 변압기의 전압 측정 오차는 0.2~0.5% 범위를 가져야 한다. 그러나, HVDC 시스템에 적용되는 계기용 변압기는 초고압 측정시에 오차 범위가 상당히 커지게 되며, 또한 여러 개소에 복수의 계기용 변압기가 설치되는 경우, 각각의 계기용 변압기가 가지는 측정 오차로부터 야기되는 오류의 범위는 더 넓어질 수 밖에 없는 실정이다.
또한, 이를 위해 보다 정밀한 센싱 기기를 사용할 수 있으나, 정말한 센싱 기기를 사용하기에는 설치 비용과 기술적인 문제가 존재하게 된다.
본 발명에 따른 실시 예에서는, 복수의 계기용 변압기에서 측정되는 전압 값의 편차를 보상할 수 있는 HVDC 시스템에 관한 것이다.
제안되는 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시 예에 따른 초고압 직류 송전 시스템은 초고압 직류 송전 시스템의 서로 다른 위치에 설치될 제 1 내지 N 계기용 변압기 사이의 전압 측정 편차를 검출하고, 상기 검출된 전압 측정 편차를 보상하기 위한 보상 값을 결정하는 통합 측정 패널; 및 상기 제 1 내지 N 계기용 변압기가 상기 초고압 직류 송전 시스템의 서로 다른 위치에 각각 설치되면, 상기 설치된 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값을 이용하여 상기 제 1 내지 N 계기용 변압기가 설치된 각 위치에 대한 실제 전압 값을 측정하는 초고압 직류 송전 장치를 포함하며, 상기 초고압 직류 송전 장치는, 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값의 보상을 위한 보상 값을 통합 측정 패널로부터 제공받고, 상기 제공받은 보상 값을 이용하여 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값을 보상하며, 상기 보상한 전압 값을 이용하여 상기 실제 전압 값을 측정한다.
또한, 상기 통합 측정 패널은, 상기 초고압 직류 송전 시스템의 서로 다른 위치에 설치될 제 1 내지 N 계기용 변압기를 준비하고, 상기 준비된 제 1 내지 N 계기용 변압기에 제 1 전압을 공급하며, 상기 공급된 제 1 전압에 의해 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값들을 측정하고, 상기 측정된 전압 값들 사이에 편차가 발생하였다면, 상기 측정된 전압 값들을 동일한 전압 값으로 보상하기 위한 보상 값을 결정한다.
또한, 상기 준비된 제 1 내지 N 계기용 변압기는, 상기 하나의 통합 측정 패널에 공통 연결되며, 상기 준비된 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값은, 상기 하나의 통합 측정 패널을 통해 측정된다.
또한, 상기 통합 측정 패널은, 상기 측정된 전압 값들의 평균 값을 계산하고, 상기 계산된 평균 값을 기준으로 상기 전압 값들의 편차를 보상하기 위한 보상 값을 결정한다.
또한, 상기 통합 측정 패널은, 상기 제 1 내지 N 계기용 변압기에 공급되는 제 1 전압으로 상기 측정된 전압 값들을 표준화하기 위한 보상 값을 결정한다.
또한, 상기 통합 측정 패널은 상기 준비된 제 1 내지 N 계기용 변압기에 다수의 구간으로 구분된 전압 범위 내에 속한 전압을 순차적으로 공급하며, 상기 보상 값은, 상기 순차적으로 공급되는 각각의 구간에 대한 전압 범위에 대해 결정된다.
또한, 상기 초고압 직류 송전 장치는, 상기 보상 값을 이용하여 제 1 내지 N 계기용 변압기가 설치된 각각의 위치에 대한 실제 전압 값을 측정하는 편차 보상기와, 상기 편차 보상기를 통해 측정된 실제 전압 값을 이용하여 상기 초고압 직류 송전 장치의 동작을 제어하는 중앙 제어기를 포함한다.
또한, 상기 편차 보상기는, 상기 제 1 내지 N 계기용 변압기의 출력 전압 값에 대한 각각의 전압 구간 정보를 상기 통합 측정 패널로 전송하고, 상기 통합 측정 패널은, 상기 제 1 내지 N 계기용 변압기의 보상 값 중 상기 각각의 전압 구간에 대한 보상 값을 추출하여 상기 편차 보상기로 제공한다.
또한, 상기 보상 값은, 상기 제 1 내지 N 계기용 변압기에 적용될 변압비, 오프-셋 및 게인 값 중 적어도 어느 하나이다.
본 발명에 따른 실시 예에 의하면, HVDC 시스템에 계기용 변압기가 설치되기 이전에, 상기 HVDC 시스템에 설치된 계기용 변압기들 사이의 측정 편차를 보상해주기 위한 보상 값을 결정하고, 상기 계기용 변압기가 HVDC 시스템에 설치되면 상기 결정된 보상 값을 적용하여 전압 값을 측정함으로써, HVDC 시스템의 신뢰성을 향상시킬 수 있다.
또한, 본 발명에 따른 실시 예에 의하면, 동일한 측정 패널을 사용하여 다수의 계기용 변압기의 편차를 보상할 수 있으며, 이에 따라 상기 다수의 계기용 변압기를 통해 측정되는 전압 값의 편차가 줄기 때문에, HVDC 제어가 용이할 뿐 아니라, 전압 편차 보호 등에 대한 정확한 동작을 할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면 전력을 전송하는 HVDC 시스템에서는 측정 편차에 의해 발생하는 손실을 최소화할 수 있으며, 이에 따른 시스템 손실을 개선할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면 특정 계기용 변압기에 문제가 발생하여 교체가 필요한 경우, 이전에 다수의 계기용 변압기의 편차를 보상하는데 사용한 정보가 저장되어있음으로써, 상기 특정 계기용 변압기의 교체를 용이하게 수행할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 고전압 직류 송전(high voltage direct current transmission, HVDC transmission) 시스템의 구성을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시 예에 따른 모노폴라 방식의 고전압 직류 송전 시스템의 구성을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 바이폴라 방식의 고전압 직류 송전 시스템의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 트랜스포머와 3상 밸브 브릿지의 결선을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 구성 블록도이다.
도 6은 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 구체적인 구성을 나타내는 구성 블록도이다.
도 7은 본 발명의 일 실시 예에 따른 복수의 서브 모듈의 연결을 나타낸다.
도 8은 본 발명의 일 실시 예에 따른 서브 모듈 구성의 예시도이다.
도 9는 본 발명의 실시 예에 따른 계기용 변압기의 편차 보상 장치를 나타낸 도면이다.
도 10은 본 발명의 실시 예에 따른 HVDC 시스템의 구성을 보여주는 도면이다.
도 11은 본 발명의 제 1 실시 예에 따른 계기용 변압기의 편차 보상 방법을 단계별로 설명하기 위한 흐름도이다.
도 12는 본 발명의 제 2 실시 예에 따른 계기용 변압기의 편차 보상 방법을 단계별로 설명하기 위한 흐름도이다.
도 13은 도 11 및 도 12에서의 보상 값 결정 과정을 보다 구체적으로 설명하기 위한 흐름도이다.
도 14는 본 발명의 실시 예에 따른 HVDC 시스템에서의 전압 값 측정 방법을 단계별로 설명하기 위한 흐름도이다.
이하, 본 발명과 관련된 실시 예에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
첨부된 도면의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 도면의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 도면의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 도면의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 1은 본 발명의 실시예에 따른 고전압 직류 송전(high voltage direct current transmission, HVDC transmission) 시스템을 보여준다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 HVDC 시스템(100)은 발전 파트(101), 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 수요 파트(180), 및 제어 파트(190)를 포함한다. 송전 측 변전 파트(103)는 송전 측 트랜스포머 파트(120), 송전 측 교류-직류 컨버터 파트(130)를 포함한다. 수요 측 변전 파트(105)는 수요 측 직류-교류 컨버터 파트(150), 수요 측 트랜스포머 파트(160)를 포함한다.
발전 파트(101)는 3상의 교류 전력을 생성한다. 발전 파트(101)는 복수의 발전소를 포함할 수 있다.
송전 측 교류 파트(110)는 발전 파트(101)가 생성한 3상 교류 전력을 송전 측 트랜스포머 파트(120)와 송전 측 교류-직류 컨버터 파트(130)를 포함하는 DC 변전소에 전달한다.
송전 측 트랜스포머 파트(120)는 송전 측 교류 파트(110)를 송전 측 교류-직류 컨버터 파트(130) 및 직류 송전 파트(140)로부터 격리한다(isolate).
송전 측 교류-직류 컨버터 파트(130)는 송전 측 트랜스포머 파트(120)의 출력에 해당하는 3상 교류 전력를 직류 전력으로 변환한다.
직류 송전 파트(140)는 송전 측의 직류 전력을 수요 측으로 전달한다.
수요 측 직류-교류 컨버터 파트(150)는 직류 송전 파트(140)에 의해 전달된 직류 전력을 3상 교류 전력으로 변환한다.
수요 측 트랜스포머 파트(160)는 수요 측 교류 파트(170)를 수요 측 직류-교류 컨버터 파트(150)와 직류 송전 파트(140)로부터 격리한다.
수요 측 교류 파트(170)는 수요 측 트랜스포머 파트(160)의 출력에 해당하는 3상 교류 전력을 수요 파트(180)에 제공한다.
제어 파트(190)는 발전 파트(101), 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 수요 파트(180), 제어 파트(190), 송전 측 교류-직류 컨버터 파트(130), 수요 측 직류-교류 컨버터 파트(150) 중 적어도 하나를 제어한다. 특히, 제어 파트(190)는 송전 측 교류-직류 컨버터 파트(130)와 수요 측 직류-교류 컨버터 파트(150) 내의 복수의 밸브의 턴온 및 턴오프의 타이밍을 제어할 수 있다. 이때, 밸브는 싸이리스터 또는 절연 게이트 양극성 트랜지스터(insulated gate bipolar transistor, IGBT)에 해당할 수 있다.
도 2는 본 발명의 실시예에 따른 모노폴라 방식의 고전압 직류 송전 시스템을 보여준다.
특히, 도 2는 단일의 극의 직류 전력을 송전하는 시스템을 보여준다. 이하의 설명에서는 단일의 극은 양극(positive pole)임을 가정하여 설명하나 이에 한정될 필요는 없다.
송전 측 교류 파트(110)는 교류 송전 라인(111)과 교류 필터(113)를 포함한다.
교류 송전 라인(111)은 발전 파트(101)가 생성한 3상의 교류 전력을 송전 측 변전 파트(103)로 전달한다.
교류 필터(113)는 변전 파트(103)이 이용하는 주파수 성분 이외의 나머지 주파수 성분을 전달된 3상 교류 전력에서 제거한다.
송전 측 트랜스포머 파트(120)는 양극을 위하여 하나 이상의 트랜스포머(121)를 포함한다. 양극을 위하여 송전 측 교류-직류 컨버터 파트(130)는 양극 직류 전력을 생성하는 교류-양극 직류 컨버터(131)를 포함하고, 이 교류-양극 직류 컨버터(131)는 하나 이상의 트랜스포머(121)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(131a)를 포함한다.
하나의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 6개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
2개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 12개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
3개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 18개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 양극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
직류 송전 파트(140)는 송전 측 양극 직류 필터(141), 양극 직류 송전 라인(143), 수요 측 양극 직류 필터(145)를 포함한다.
송전 측 양극 직류 필터(141)는 인덕터(L1)와 커패시터(C1)를 포함하며, 교류-양극 직류 컨버터(131)가 출력하는 양극 직류 전력을 직류 필터링한다.
양극 직류 송전 라인(143)는 양극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.
수요 측 양극 직류 필터(145)는 인덕터(L2)와 커패시터(C2)를 포함하며, 양극 직류 송전 라인(143)을 통해 전달된 양극 직류 전력을 직류 필터링한다.
수요 측 직류-교류 컨버터 파트(150)는 양극 직류-교류 컨버터(151)를 포함하고, 양극 직류-교류 컨버터(151)는 하나 이상의 3상 밸브 브릿지(151a)를 포함한다.
수요 측 트랜스포머 파트(160)는 양극을 위하여 하나 이상의 3상 밸브 브릿지(151a)에 각각 대응하는 하나 이상의 트랜스포머(161)를 포함한다.
하나의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
2개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
3개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
수요 측 교류 파트(170)는 교류 필터(171)와 교류 송전 라인(173)을 포함한다.
교류 필터(171)는 수요 파트(180)가 이용하는 주파수 성분(예컨데, 60Hz) 이외의 나머지 주파수 성분을, 수요 측 변전 파트(105)가 생성하는 교류 전력에서 제거한다.
교류 송전 라인(173)은 필터링된 교류 전력을 수요 파트(180)에 전달한다.
도 3은 본 발명의 실시예에 따른 바이폴라 방식의 고전압 직류 송전 시스템을 보여준다.
특히, 도 3은 2개의 극의 직류 전력을 송전하는 시스템을 보여준다. 이하의 설명에서는 2개의 극은 양극(positive pole)과 음극(negative pole)임을 가정하여 설명하나 이에 한정될 필요는 없다.
송전 측 교류 파트(110)는 교류 송전 라인(111)과 교류 필터(113)를 포함한다.
교류 송전 라인(111)은 발전 파트(101)가 생성한 3상의 교류 전력을 송전 측 변전 파트(103)로 전달한다.
교류 필터(113)는 변전 파트(103)이 이용하는 주파수 성분 이외의 나머지 주파수 성분을 전달된 3상 교류 전력에서 제거한다.
송전 측 트랜스포머 파트(120)는 양극을 위한 하나 이상의 트랜스포머(121)를 포함하고, 음극을 위한 하나 이상의 트랜스포머(122)를 포함한다. 송전 측 교류-직류 컨버터 파트(130)는 양극 직류 전력을 생성하는 교류-양극 직류 컨버터(131)와 음극 직류 전력을 생성하는 교류-음극 직류 컨버터(132)를 포함하고, 교류-양극 직류 컨버터(131)는 양극을 위한 하나 이상의 트랜스포머(121)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(131a)를 포함하고, 교류-음극 직류 컨버터(132)는 음극을 위한 하나 이상의 트랜스포머(122)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(132a)를 포함한다.
양극을 위하여 하나의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 6개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
양극을 위하여 2개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 12개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
양극을 위하여 3개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 18개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 양극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
음극을 위하여 하나의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 6개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
음극을 위하여 2개의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 12개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
음극을 위하여 3개의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 18개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 음극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
직류 송전 파트(140)는 송전 측 양극 직류 필터(141), 송전 측 음극 직류 필터(142), 양극 직류 송전 라인(143), 음극 직류 송전 라인(144), 수요 측 양극 직류 필터(145), 수요 측 음극 직류 필터(146)를 포함한다.
송전 측 양극 직류 필터(141)는 인덕터(L1)와 커패시터(C1)를 포함하며, 교류-양극 직류 컨버터(131)가 출력하는 양극 직류 전력을 직류 필터링한다.
송전 측 음극 직류 필터(142)는 인덕터(L3)와 커패시터(C3)를 포함하며, 교류-음극 직류 컨버터(132)가 출력하는 음극 직류 전력을 직류 필터링한다.
양극 직류 송전 라인(143)는 양극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.
음극 직류 송전 라인(144)는 음극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.
수요 측 양극 직류 필터(145)는 인덕터(L2)와 커패시터(C2)를 포함하며, 양극 직류 송전 라인(143)을 통해 전달된 양극 직류 전력을 직류 필터링한다.
수요 측 음극 직류 필터(146)는 인덕터(L4)와 커패시터(C4)를 포함하며, 음극 직류 송전 라인(144)을 통해 전달된 음극 직류 전력을 직류 필터링한다.
수요 측 직류-교류 컨버터 파트(150)는 양극 직류-교류 컨버터(151)와 음극 직류-교류 컨버터(152)를 포함하고, 양극 직류-교류 컨버터(151)는 하나 이상의 3상 밸브 브릿지(151a)를 포함하고, 음극 직류-교류 컨버터(152)는 하나 이상의 3상 밸브 브릿지(152a)를 포함한다.
수요 측 트랜스포머 파트(160)는 양극을 위하여 하나 이상의 3상 밸브 브릿지(151a)에 각각 대응하는 하나 이상의 트랜스포머(161)를 포함하고, 음극을 위하여 하나 이상의 3상 밸브 브릿지(152a)에 각각 대응하는 하나 이상의 트랜스포머(162)를 포함한다.
양극을 위하여 하나의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
양극을 위하여 2개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
양극을 위하여 3개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
음극을 위하여 하나의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.
음극을 위하여 2개의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다.
음극을 위하여 3개의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.
수요 측 교류 파트(170)는 교류 필터(171)와 교류 송전 라인(173)을 포함한다.
교류 필터(171)는 수요 파트(180)가 이용하는 주파수 성분(예컨데, 60Hz) 이외의 나머지 주파수 성분을, 수요 측 변전 파트(105)가 생성하는 교류 전력에서 제거한다.
교류 송전 라인(173)은 필터링된 교류 전력을 수요 파트(180)에 전달한다.
도 4는 본 발명의 실시예에 따른 트랜스포머와 3상 밸브 브릿지의 결선을 보여준다.
특히, 도 4는 양극을 위한 2개의 트랜스포머(121)와 양극을 위한 2개의 3상 밸브 브릿지(131a)의 결선을 보여준다. 음극을 위한 2개의 트랜스포머(122)와 음극을 위한 2개의 3상 밸브 브릿지(132a)의 결선, 양극을 위한 2개의 트랜스포머(161)와 양극을 위한 2개의 3상 밸브 브릿지(151a)의 결선, 음극을 위한 2개의 트랜스포머(162)와 음극을 위한 2개의 3상 밸브 브릿지(152a)의 결선, 양극을 위한 1개의 트랜스포머(121)와 양극을 위한 1개의 3상 밸브 브릿지(131a), 양극을 위한 1개의 트랜스포머(161)와 양극을 위한 1개의 3상 밸브 브릿지(151a)의 결선 등은 도 4의 실시예로부터 용이하게 도출할 수 있으므로, 그 도면과 설명은 생략한다.
도 4에서, Y-Y 형상의 결선을 가지는 트랜스포머(121)를 상측 트랜스포머, Y-Δ 형상의 결선을 가지는 트랜스포머(121)를 하측 트랜스포머, 상측 트랜스포머에 연결되는 3상 밸브 브릿지(131a)를 상측 3상 밸브 브릿지, 하측 트랜스포머에 연결되는 3상 밸브 브릿지(131a)를 하측 3상 밸브 브릿지라고 부르도록 한다.
상측 3상 밸브 브릿지와 하측 3상 밸브 브릿지는 직류 전력을 출력하는 2개의 출력단인 제1 출력단(OUT1)과 제2 출력단(OUT2)을 가진다.
상측 3상 밸브 브릿지는 6개의 밸브(D1-D6)를 포함하고, 하측 3상 밸브 브릿지는 6개의 밸브(D7-D12)를 포함한다.
밸브(D1)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제1 단자에 연결되는 애노드를 가진다.
밸브(D2)는 밸브(D5)의 애노드에 연결되는 캐소드와 밸브(D6)의 애노드에 연결되는 애노드를 가진다.
밸브(D3)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제2 단자에 연결되는 애노드를 가진다.
밸브(D4)는 밸브(D1)의 애노드에 연결되는 캐소드와 밸브(D6)의 애노드에 연결되는 애노드를 가진다.
밸브(D5)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제3 단자에 연결되는 애노드를 가진다.
밸브(D6)는 밸브(D3)의 애노드에 연결되는 캐소드를 가진다.
밸브(D7)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제1 단자에 연결되는 애노드를 가진다.
밸브(D8)는 밸브(D11)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
밸브(D9)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제2 단자에 연결되는 애노드를 가진다.
밸브(D10)는 밸브(D7)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
밸브(D11)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제3 단자에 연결되는 애노드를 가진다.
밸브(D12)는 밸브(D9)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
한편, 수요 측 직류-교류 컨버터 파트(150)는 모듈형 멀티레벨 컨버터(Modular Mulit-Level Converter, 200)로 구성될 수 있다.
모듈형 멀티레벨 컨버터(200)는 복수의 서브 모듈(210)을 이용하여 직류 전력을 교류 전력으로 변환할 수 있다.
도 5를 참고하여 모듈형 멀티레벨 컨버터(200)의 구성을 설명한다.
도 5는 모듈형 멀티레벨 컨버터(200)의 구성 블록도이다.
모듈형 멀티레벨 컨버터(200)는 제어기(250), 복수의 암 제어기(230), 복수의 서브 모듈(210)을 포함한다.
제어기(250)는 복수의 암 제어기(230)를 제어하고, 각각의 암 제어기(230)는 복수의 서브 모듈(210)을 제어할 수 있다.
도 6을 참고하여, 모듈형 멀티레벨 컨버터(200)의 구성을 상세히 설명한다.
도 6은 모듈형 멀티레벨 컨버터(200)의 구성을 나타내는 구성 블록도이다.
모듈형 멀티레벨 컨버터(200)는 서브 모듈(210), 암 제어기(230), 제어기(250)를 포함한다.
서브 모듈(210)은 직류 전력을 입력받아 충전, 방전 및 바이패스 동작을 할 수 있으며, 서브 모듈 센서(211), 서브 모듈 제어부(213), 스위칭부(217), 저장부(219)를 포함한다.
서브 모듈 센서(211)는 서브 모듈(210)의 전류, 전압 중 하나 이상을 측정할 수 있다.
서브 모듈 제어부(213)는 서브 모듈(210)의 전반적인 동작을 제어할 수 있다.
구체적으로 서브 모듈 제어부(213)는 서브 모듈 센서(211)의 전류, 전압 측정 동작, 스위칭부(217)의 스위칭 동작 등을 제어할 수 있다.
스위칭부(217)는 서브 모듈(210)에 입출력되는 전류를 스위칭할 수 있다.
스위칭부(217)는 적어도 하나 이상의 스위치를 포함하여, 서브 모듈 제어부(213)의 제어 신호에 따라 스위칭 동작을 할 수 있다.
또한, 스위칭부(217)는 다이오드를 포함할 수 있고, 스위칭 동작과 다이오드의 정류 동작으로 서브 모듈(210)의 충전, 방전 및 바이패스 동작을 수행할 수 있다.
저장부(219)는 서브 모듈(210)에 입력되는 전류를 기초로 에너지를 충전하는 충전 동작을 할 수 있다.
또한 저장부(219)는 충전된 에너지를 기초로 전류를 출력하는 방전 동작을 할 수 있다.
도 7을 참고하여, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)의 연결을 설명한다.
도 7은 3상 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)의 연결을 나타낸다.
도 7을 참고하면, 복수의 서브 모듈(210)은 직렬로 연결될 수 있으며, 하나의 상(Phase)의 양극 또는 음극에 연결된 복수의 서브 모듈(210)을 하나의 암(Arm)을 구성할 수 있다.
3상 모듈형 멀티레벨 컨버터(200)는 일반적으로 6개의 암(Arm)으로 구성될 수 있으며, A, B, C인 3상 각각에 대해 양극과 음극으로 구성되어 6개의 암(Arm)으로 구성될 수 있다.
이에 따라, 3상 모듈형 멀티레벨 컨버터(200)는 A상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제1 암(221), A상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제2 암(222), B상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제3 암(223), B상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제4 암(224), C상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제5 암(225), C상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제6 암(226)으로 구성될 수 있다.
그리고 하나의 상(Phase)에 대한 복수의 서브 모듈(210)은 레그(Leg)를 구성할 수 있다.
이에 따라, 3상 모듈형 멀티레벨 컨버터(200)는 A상에 대한 복수의 서브 모듈(210)을 포함하는 A상 레그(227)과, B상에 대한 복수의 서브 모듈(210)을 포함하는 B상 레그(228), C상에 대한 복수의 서브 모듈(210)을 포함하는 C상 레그(229)로 구성될 수 있다.
그래서 제1 암(221) 내지 제 6암(226)은 각각 A, B, C상 레그(227, 228, 229)에 포함된다.
구체적으로, A상 레그(227)에는 A상의 양극 암인 제1 암(221)과 음극 암인 제2 암(222)이 포함되며, B상 레그(228)에는 B상의 양극 암인 제3 암(223)과 음극 암인 제4 암(224)가 포함된다. 그리고 C상 레그(229)에는 C상의 양극 암인 제5 암(225)과 음극 암인 제6 암(226)이 포함된다.
또한, 복수의 서브 모듈(210)은 극성에 따라 양극 암(Arm, 227)과 음극 암(Arm, 228)을 구성할 수 있다.
구체적으로 도 7을 참고하면, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)은 중성선(n)을 기준으로 양극에 대응하는 복수의 서브 모듈(210)과 음극에 대응하는 복수의 서브 모듈(210)로 분류할 수 있다.
그래서 모듈형 멀티레벨 컨버터(200)는 양극에 대응하는 복수의 서브 모듈(210)로 구성되는 양극 암(227), 음극에 대응하는 복수의 서브 모듈(210)로 구성되는 음극 암(228)로 구성될 수 있다.
이에 따라, 양극 암(227)은 제1 암(221), 제3 암(223), 제5 암(225)로 구성될 수 있고, 음극 암(228)은 제2 암(222), 제4 암(224), 제6 암(226)으로 구성될 수 있다.
이어서 도 8을 참고하여, 서브 모듈(210)의 구성을 설명한다.
도 8은 서브 모듈(210)의 구성에 대한 예시도이다.
도 8을 참고하면, 서브 모듈(210)은 2개의 스위치, 2개의 다이오드, 커패시터를 포함한다. 이러한 서브 모듈(210)의 형태를 하프 브릿지(half-bridge) 형태 또는 반파 인버터(half bridge inverter)라고도 한다.
그리고 스위칭부(217)에 포함되는 스위치는 전력 반도체를 포함할 수 있다.
여기서 전력 반도체는 전력 장치용 반도체 소자를 말하며, 전력의 변환이나 제어용에 최적화될 수 있다. 그리고 전력 반도체는 밸브 장치라고 하기도 한다.
이에 따라 스위칭부(217)에 포함되는 스위치는 전력 반도체로 구성될 수 있어서, 예를 들면 IGBT(Insulated Gate Bipolar Transistor), GTO(Gate Turn-off Thyristor), IGCT(Integrated Gate Commutated Thyristor) 등으로 구성될 수 있다.
저장부(219)는 커패시터를 포함하고 있어서, 에너지를 충전 및 방전할 수 있다.
상기와 같은 모듈형 멀티 레벨 컨버터와 같은 HVDC 시스템에는 다수의 센서가 장착된다.
즉, 상기 설명한 바와 같이, HVDC 시스템에는 암 센서(231)나 서브 모듈 센서(211)가 설치된다. 상기 도면상에는 암 센서(231)와 서브 모듈 센서(211)가 하나씩만 설치된다고 하였으나, 이는 설명의 편의를 위한 것을 뿐, 실질적으로 상기 암 센서나 서브 모듈 센서(211)는 복수 개로 설치되어 있다.
이때, 상기와 같은 암 센서(231)나 서브 모듈 센서(211)는 계기용 변압기로 구현될 수 있다. 하지만, 상기 계기용 변압기는 제품마다 서로 다른 오차 범위를 가지기 때문에, 동일한 전압에 대해서도 이를 측정하는 계기용 변압기에 따라 서로 다른 전압 값이 출력될 수 있다.
따라서, 본 발명에서는 상기와 같이 HVDC 시스템이 계기용 변압기가 설치되기 이전에, 상기 HVDC 시스템에 설치될 계기용 변압기들의 편차를 보상하도록 한다.
도 9는 본 발명의 실시 예에 따른 계기용 변압기의 편차 보상 장치를 나타낸 도면이다.
도 9를 참조하면, 계기용 변압기의 편차 보상 장치는 상기 HVDC 시스템에 설치될 다수의 계기용 변압기(310)와, 상기 다수의 계기용 변압기(310)를 통해 출력되는 전압 값을 측정하고, 상기 측정한 전압 값을 이용하여 상기 다수의 계기용 변압기(310) 사이의 측정 편차를 확인하며, 상기 확인한 측정 편차를 기준으로 상기 측정 편차를 보상하기 위한 보상 값을 결정하는 통합 측정 패널(320)을 포함한다.
계기용 변압기(310)은 제 1 내지 N 계기용 변압기를 포함할 수 있다.
상기 제 1 내지 N 계기용 변압기는 동일 제조 회사에서 제조된 것일 수 있으며, 이와 다르게 서로 다른 제조 회사에서 제조된 것일 수도 있다.
상기와 같은 계기용 변압기들은 동일한 개소에 동일한 제품이 설치되는 경우에도 측정되는 전압 값에 편차가 발생한다.
통합 측정 패널(320)은 상기 다수의 계기용 변압기(310)들을 통해 출력되는 전압 값을 측정하고, 상기 측정된 전압 값들에 편차가 발생한 경우, 이를 보상해주기 위한 보상 값을 설정한다.
이때, 통합 측정 패널(320)은 상기 다수의 계기용 변압기(310)들의 각각에 대한 보상 값이 설정되면, 상기 설정된 보상 값을 저장하기 위한 메모리(330)를 포함한다.
도 10은 본 발명의 실시 예에 따른 HVDC 시스템의 구성을 보여주는 도면이다.
도 10을 참조하면, HVDC 시스템은, 제 1 내지 N 계기용 변압기(310), 통합 측정 패널(320), 편차 보상기(410) 및 중앙 제어기(420)를 포함한다.
상기 제 1 내지 N 계기용 변압기(310) 및 통합 측정 패널(320)은 상기에서 이미 설명하였으므로, 이에 대한 상세한 설명은 생략하기로 한다.
편차 보상기(410)는 상기 제 1 내지 N 계기용 변압기(310)가 HVDC 시스템의 서로 다른 위치에 각각 설치되면, 상기 제 1 내지 N 계기용 변압기(310)를 통해 출력되는 전압 값을 검출하고, 상기 검출된 전압 값을 이용하여 상기 제 1 내지 N 계기용 변압기(310)가 설치된 각각의 위치에 대한 실제 전압 값을 측정한다.
이때, 상기 제 1 내지 N 계기용 변압기(310)는 상기 설명한 바와 같이 편차가 발생한다.
이에 따라, 상기 편차 보상기(410)는 상기 실제 전압 값을 측정할 때, 상기 제 1 내지 N 계기용 변압기(310)에 대한 보상 값의 요구 신호를 통합 측정 패널(320)에 전송한다.
통합 측정 패널(320)은 상기 편차 보상기(410)를 통해 전송되는 요구 신호에 따라 상기 편차 보상기(410)가 요구한 계기용 변압기에 대한 보상 값을 전송한다.
예를 들어, 편차 보상기(410)는 제 1 계기용 변압기에 대한 보상 값을 요구할 수 있으며, 이에 따라 통합 측정 패널(320)은 상기 요구에 따른 제 1 계기용 변압기의 보상 값을 상기 편차 보상기(410)로 전송한다.
이때, 상기 편차 보상기(410)는 상기 제 1 계기용 변압기를 통해 출력되는 전압 값에 대한 전압 구간을 확인하고, 상기 확인한 전압 구간에 대응하는 보상 값을 요구하며, 상기 통합 측정 패널(320)은 상기 편차 보상기(410)에서 요구한 특정 전압 구간에서의 특정 계기용 변압기에 대한 보상 값을 상기 편차 보상기(410)로 제공한다.
또한, 상기 편차 보상기(410)는 상기 통합 측정 패널(320)을 통해 제공되는 보상 값을 이용하여 제 1 계기용 변압기를 통해 출력되는 전압 값을 보상하고, 상기 보상된 전압 값을 이용하여 상기 제 1 계기용 변압기가 설치된 위치에 대한 실제 전압 값을 측정한다.
그리고, 상기 편차 보상기(410)는 상기 제 1 계기용 변압기가 설치된 위치에 대한 실제 전압 값이 측정되면, 상기 측정된 실제 전압 값을 중앙 제어기(420)로 전송한다.
중앙 제어기(420)는 상기 편차 보상기(410)를 통해 전송되는 실제 전압 값을 이용하여 상기 제 1 계기용 변압기가 설치된 위치의 전압 값을 확인하고, 상기 확인된 전압 값을 기준으로 HVDC 시스템의 전반적인 동작을 제어한다.
이하에서는, 첨부된 도면을 참조하여 상기와 같은 계기용 변압기의 편차보상 장치의 동작에 대해 보다 구체적으로 설명하기로 한다.
도 11은 본 발명의 제 1 실시 예에 따른 계기용 변압기의 편차 보상 방법을 단계별로 설명하기 위한 흐름도이고, 도 12는 본 발명의 제 2 실시 예에 따른 계기용 변압기의 편차 보상 방법을 단계별로 설명하기 위한 흐름도이며, 도 13은 도 11 및 도 12에서의 보상 값 결정 과정을 보다 구체적으로 설명하기 위한 흐름도이다.
먼저, 도 11을 참조하면, 통합 측정 패널(320)은 제 1 내지 N 계기용 변압기를 통해 발생하는 전압 값을 측정한다(100단계). 이때, 상기 제 1 내지 N 계기용 변압기에는 모두 동일한 전압이 공급되며, 이에 따라 상기 제 1 내지 N 계기용 변압기는 상기 공급된 동일한 전압에 대한 전압 측정 동작을 수행한다.
이후, 상기 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들 사이에 편차가 발생하였는지 여부를 판단한다(110단계). 즉, 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들이 모두 동일한 전압 값인지, 아니면 서로 다른 전압 값인지 여부를 판단한다.
이어서, 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들 사이에 편차가 발생하였다면, 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들의 평균 값을 계산한다(120단계). 그리고, 제 1 실시 예에서는 상기 평균 값이 기준 값이 되며, 상기 기준 값에 의해 상기 제 1 내지 N 계기용 변압기들 사이의 편차가 보상된다.
상기 평균 값이 계산되면, 상기 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들을 모두 상기 평균 값으로 표준화하기 위한 보상 값을 결정한다(130단계).
이때, 상기 보상 값은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들에 따라 서로 다르게 결정된다. 예를 들어, 상기 평균 값이 4이고, 제 1 계기용 변압기에서 발생한 전압 값이 5인 경우, 상기 보상 값을 '-1' 같은 값으로 설정될 수 있다.
또한, 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들이 모두 다른 값을 가지기 때문에, 상기 평균 값에 의해 결정되는 상기 제 1 내지 N 계기용 변압기들의 각각의 보상 값들도 서로 다른 값들로 결정된다.
이때, 상기 평균 값은 상기 제 1 내지 N 계기용 변압기들을 통해 발생한 모든 전압 값들의 평균 값이 아닌 특정 계기용 변압기들만을 통해 발생한 전압 값들의 평균 값일 수 있다.
예를 들어, 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값 중 특정 전압 값이 다른 전압 값들에 비해 큰 차이가 존재하면, 상기 큰 차이가 존재하는 전압 값을 포함시켜 상기 평균 값을 계산하는 경우, 상기 보상 값에 정확성이 떨어질 수 있다.
이에 따라, 본 발명에 따른 실시 예에서는, 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값 중 특정 전압 값들만을 이용하여 평균 값을 계산하고, 상기 계산한 평균 값을 이용하여 상기 제 1 내지 N 계기용 변압기의 각각에 대한 보상 값을 결정하도록 한다.
이어서, 상기 통합 측정 패널(320)은 상기 결정된 제 1 내지 N 계기용 변압기의 각각에 대한 보상 값을 저장한다(140단계).
한편, 상기 보상 값은 상기 제 1 내지 N 계기용 변압기의 전압 측정 특성을 표준화하기 위한 것이며, 이에 따라 상기 보상 값은 변압비, 오프-셋 및 게인 값 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 상기 보상 값은 100V의 1차 전압 값이, 10V의 2차 전압 값으로 검출되어야 하는 데, 상기 2차 전류 값이 15V인 경우, 상기 15V의 2차 전압 값을 10V의 2차 전압 값으로 보상하기 위한 것이다. 이때, 원래의 전압 변화 비율은 100:10이지만, 상기에서는 100:15인 것으로 인식하고, 그에 따라 상기와 같은 100V의 전압이 인가되는 범위 내에서 15V의 전압이 검출되는 경우, 이의 1차 전압 값은 100V로 인식할 수 있다. 이와 마찬가지로, 상기 전압 변화 비율이 아닌 오프-셋 값이나 게인 값을 이용하여 상기 보상 값을 구성할 수 있다.
다음으로, 도 12를 참조하면, 통합 측정 패널(320)은 기준 전압 값을 발생시킨다(200단계).
그리고, 통합 측정 패널(320)은 상기 발생한 기준 전압 값을 측정하는 제 1 내지 N 계기용 변압기의 출력 전압 값을 측정한다(210단계).
이후, 상기 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들 사이에 편차가 발생하였는지 여부를 판단한다(220단계). 즉, 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들이 모두 동일한 전압 값인지, 아니면 서로 다른 전압 값인지 여부를 판단한다.
이어서, 통합 측정 패널(320)은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들 사이에 편차가 발생하였다면, 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들을 상기 기준 전압 값으로 보상하기 위한 보상 값을 결정한다(230단계).
이때, 상기 보상 값은 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들에 따라 서로 다르게 결정된다. 예를 들어, 상기 기준 전압 값이 4이고, 제 1 계기용 변압기에서 발생한 전압 값이 5인 경우, 상기 보상 값을 '-1' 같은 값으로 설정될 수 있다.
또한, 상기 제 1 내지 N 계기용 변압기를 통해 발생한 전압 값들이 모두 다른 값을 가지기 때문에, 상기 기준 전압 값에 의해 결정되는 상기 제 1 내지 N 계기용 변압기들의 각각의 보상 값들도 서로 다른 값들로 결정된다.
이어서, 상기 통합 측정 패널(320)은 상기 결정된 제 1 내지 N 계기용 변압기의 각각에 대한 보상 값을 저장한다(240단계).
한편, 상기 보상 값은 상기 제 1 내지 N 계기용 변압기의 전압 측정 특성을 표준화하기 위한 것이며, 이에 따라 상기 보상 값은 변압비, 오프-셋 및 게인 값 중 적어도 어느 하나를 포함할 수 있다.
한편, 상기 보상 값은 측정되는 전압 구간에 대해 각각 다르게 설정되어야 한다.
예를 들어, 100V의 전압을 측정하는 경우에 발생하는 편차와, 200V의 전압을 측정하는 경우에 발생하는 편차는 서로 다르게 나타날 수 있다.
따라서, 본 발명은 상기 제 1 내지 N 계기용 변압기의 각각에 대해 측정 전압 구간별로 서로 다른 보상 값들을 각각 결정하도록 한다.
이를 위해, 도 13을 참조하면, 먼저 제 1 전압 범위(예를 들어, 1V~20V)에 속한 전압 값 중 어느 하나의 전압 값을 발생한다(300단계).
그리고, 상기 발생한 전압 값들에 의한 제 1 내지 N 계기용 변압기들의 출력 전압 값을 측정하고, 상기 측정된 전압 값들을 이용하여 상기 제 1 내지 N 계기용 변압기들에 대한 보상 값을 각각 결정한다(310단계). 이때, 상기 결정된 보상 값은 상기 설정된 제 1 전압 범위에 대한 보상 값이다.
이때, 상기 보상 값은 상기 제 1 내지 N 계기용 변압기들을 통해 발생하는 전압 값들의 평균 값을 기준으로 결정될 수 있으며, 이와 다르게 상기 발생한 제 1 전압 범위 내에 속한 전압 값을 기준으로 결정될 수도 있다.
이후, 통합 측정 패널(320)은 전압 범위를 다음 전압 범위로 설정한다(320단계). 예를 들어, 통합 측정 패널(320)은 상기 전압 범위를 제 2 전압 범위(21V~40V)로 설정할 수 있다.
그리고, 상기 통합 측정 패널(320)은 상기 설정된 다음 전압 범위에 속한 전압 값 중 어느 하나의 전압 값을 발생한다(330단계).
이어서, 상기 통합 측정 패널(320)은 상기 설정된 전압 범위에 대하여, 상기 발생한 전압 값들을 기준으로 보상 값을 결정한다(340단계).
이후, 상기 통합 측정 패널(320)은 모든 전압 범위에 대해 보상 값이 결정되었는지를 확인하고, 모든 전압 범위에 대해 보상 값이 결정되었다면 종료하고, 아니면 상기 단계(320단계)로 복귀하여, 다음 전압 범위에 대한 보상 값을 결정한다(350단계).
한편, 상기 통합 측정 패널(320)은 상기와 같은 보상 값들을 결정하는데 기준이된 기준 값을 저장한다.
그리고, 상기와 같이 보상 값이 결정된 제 1 내지 N 계기용 변압기 중 어느 하나의 변압기의 고장이 발생하여, 이를 새로운 계기용 변압기로 교체하는 상황이 발생하면, 상기 저장한 기준 값을 기준으로 새로운 하나의 계기용 변압기에 대한 보상 값을 결정한다.
도 14는 본 발명의 실시 예에 따른 HVDC 시스템에서의 전압 값 측정 방법을 단계별로 설명하기 위한 흐름도이다.
도 14를 참조하면, 제 1 내지 N 계기용 변압기(310)가 HVDC 시스템의 서로 다른 위치에 각각 설치되면, 편차 보상기(410)는 상기 제 1 내지 N 계기용 변압기(310)를 통해 출력되는 전압 값을 측정한다(400단계).
상기 전압 값이 측정되면, 상기 편차 보상기(410)는 상기 제 1 내지 N 계기용 변압기(310)를 통해 출력된 각각의 전압 값에 대한 전압 구간을 확인한다(410단계).
이어서, 편차 보상기(410)는 상기 각각의 전압 값에 대한 전압 구간이 확인되면, 상기 제 1 내지 N 계기용 변압기(310)의 전압 구간에 대한 정보를 통합 측정 패널(320)로 전송하고, 그에 따라 통합 측정 패널(320)로부터 상기 각각의 전압 구간에 대응하는 상기 제 1 내지 N 계기용 변압기(310)의 보상 값을 제공받는다(420단계).
그리고, 편차 보상기(410)는 상기 제공받은 상기 제 1 내지 N 계기용 변압기(310)의 각각에 대한 보상 값을 적용하여, 상기 제 1 내지 N 계기용 변압기(310)를 통해 출력된 전압 값을 보상한다(430단계).
이어서, 편차 보상기(410)는 상기 보상된 제 1 내지 N 계기용 변압기(310)의 각각의 전압 값을 기준으로, 상기 제 1 내지 N 계기용 변압기(310)가 설치된 각 위치에 대한 실제 전압 값을 측정한다(440단계).
그리고, 편차 보상기(410)는 상기 측정된 제 1 내지 N 계기용 변압기(310)의 설치 위치에 대한 실제 전압 값을 중앙 제어기로 전송한다(450단계).
본 발명에 따른 실시 예에 의하면, HVDC 시스템에 계기용 변압기가 설치되기 이전에, 상기 HVDC 시스템에 설치된 계기용 변압기들 사이의 측정 편차를 보상해주기 위한 보상 값을 결정하고, 상기 계기용 변압기가 HVDC 시스템에 설치되면 상기 결정된 보상 값을 적용하여 전압 값을 측정함으로써, HVDC 시스템의 신뢰성을 향상시킬 수 있다.
또한, 본 발명에 따른 실시 예에 의하면, 동일한 측정 패널을 사용하여 다수의 계기용 변압기의 편차를 보상할 수 있으며, 이에 따라 상기 다수의 계기용 변압기를 통해 측정되는 전압 값의 편차가 줄기 때문에, HVDC 제어가 용이할 뿐 아니라, 전압 편차 보호 등에 대한 정확한 동작을 할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면 전력을 전송하는 HVDC 시스템에서는 측정 편차에 의해 발생하는 손실을 최소화할 수 있으며, 이에 따른 시스템 손실을 개선할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면 특정 계기용 변압기에 문제가 발생하여 교체가 필요한 경우, 이전에 다수의 계기용 변압기의 편차를 보상하는데 사용한 정보가 저장되어있음으로써, 상기 특정 계기용 변압기의 교체를 용이하게 수행할 수 있다.
310: 계기용 변압기
320: 통합 측정 패널
330: 메모리
410: 편차 보상기
420: 중앙 제어기

Claims (9)

  1. 초고압 직류 송전 시스템의 서로 다른 위치에 설치될 제 1 내지 N 계기용 변압기 사이의 전압 측정 편차를 검출하고, 상기 검출된 전압 측정 편차를 보상하기 위한 보상 값을 결정하는 통합 측정 패널; 및
    상기 제 1 내지 N 계기용 변압기가 상기 초고압 직류 송전 시스템의 서로 다른 위치에 각각 설치되면, 상기 설치된 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값을 이용하여 상기 제 1 내지 N 계기용 변압기가 설치된 각 위치에 대한 실제 전압 값을 측정하는 초고압 직류 송전 장치를 포함하며,
    상기 초고압 직류 송전 장치는,
    상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값의 보상을 위한 보상 값을 통합 측정 패널로부터 제공받고,
    상기 제공받은 보상 값을 이용하여 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값을 보상하며,
    상기 보상한 전압 값을 이용하여 상기 실제 전압 값을 측정하며,
    상기 통합 측정 패널은,
    상기 초고압 직류 송전 시스템의 서로 다른 위치에 설치될 제 1 내지 N 계기용 변압기를 준비하고,
    상기 준비된 제 1 내지 N 계기용 변압기에 제 1 전압을 공급하며,
    상기 공급된 제 1 전압에 의해 상기 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값들을 측정하고,
    상기 측정된 전압 값들 사이에 편차가 발생하였다면, 상기 측정된 전압 값들을 동일한 전압 값으로 보상하기 위한 보상 값을 결정하는
    초고압 직류 송전 시스템.
  2. 제 1항에 있어서,
    상기 통합 측정 패널은,
    상기 편차가 발생하면, 상기 제 1 내지 N 계기용 변압기를 통해 상기 제 1 전압에 따른 동일한 전압 값이 측정된 것으로 인식하기 위한 보상 값을 결정하는
    초고압 직류 송전 시스템.
  3. 제 2항에 있어서,
    상기 준비된 제 1 내지 N 계기용 변압기는,
    상기 하나의 통합 측정 패널에 공통 연결되며,
    상기 준비된 제 1 내지 N 계기용 변압기를 통해 출력되는 전압 값은,
    상기 하나의 통합 측정 패널을 통해 측정되는
    초고압 직류 송전 시스템.
  4. 제 2항에 있어서,
    상기 통합 측정 패널은,
    상기 측정된 전압 값들의 평균 값을 계산하고, 상기 계산된 평균 값을 기준으로 상기 전압 값들의 편차를 보상하기 위한 보상 값을 결정하는
    초고압 직류 송전 시스템.
  5. 제 2항에 있어서,
    상기 통합 측정 패널은,
    상기 제 1 내지 N 계기용 변압기에 공급되는 제 1 전압으로 상기 측정된 전압 값들을 표준화하기 위한 보상 값을 결정하는
    초고압 직류 송전 시스템.
  6. 제 2항에 있어서,
    상기 통합 측정 패널은
    상기 준비된 제 1 내지 N 계기용 변압기에 다수의 구간으로 구분된 전압 범위 내에 속한 전압을 순차적으로 공급하며,
    상기 보상 값은,
    상기 순차적으로 공급되는 각각의 구간에 대한 전압 범위에 대해 결정되는
    초고압 직류 송전 시스템.
  7. 제 6항에 있어서,
    상기 초고압 직류 송전 장치는,
    상기 보상 값을 이용하여 제 1 내지 N 계기용 변압기가 설치된 각각의 위치에 대한 실제 전압 값을 측정하는 편차 보상기와,
    상기 편차 보상기를 통해 측정된 실제 전압 값을 이용하여 상기 초고압 직류 송전 장치의 동작을 제어하는 중앙 제어기를 포함하는
    초고압 직류 송전 시스템.
  8. 제 7항에 있어서,
    상기 편차 보상기는,
    상기 제 1 내지 N 계기용 변압기의 출력 전압 값에 대한 각각의 전압 구간 정보를 상기 통합 측정 패널로 전송하고,
    상기 통합 측정 패널은,
    상기 제 1 내지 N 계기용 변압기의 보상 값 중 상기 각각의 전압 구간에 대한 보상 값을 추출하여 상기 편차 보상기로 제공하는
    초고압 직류 송전 시스템.
  9. 제 2항에 있어서,
    상기 보상 값은,
    상기 제 1 내지 N 계기용 변압기에 적용될 변압비, 오프-셋 및 게인 값 중 적어도 어느 하나인
    초고압 직류 송전 시스템.
KR1020140057357A 2014-05-13 2014-05-13 Hvdc 시스템 KR101578291B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020140057357A KR101578291B1 (ko) 2014-05-13 2014-05-13 Hvdc 시스템
US14/692,538 US9853558B2 (en) 2014-05-13 2015-04-21 High voltage direct current (HVDC) transmission system to compensate for voltage values output from a plurality of potential transformers
EP15165304.5A EP2945249A3 (en) 2014-05-13 2015-04-28 Hvdc transmission system
CN201510232949.9A CN105098813B (zh) 2014-05-13 2015-05-08 高压直流输电系统
JP2015097108A JP6027181B2 (ja) 2014-05-13 2015-05-12 Hvdcシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140057357A KR101578291B1 (ko) 2014-05-13 2014-05-13 Hvdc 시스템

Publications (2)

Publication Number Publication Date
KR20150130147A KR20150130147A (ko) 2015-11-23
KR101578291B1 true KR101578291B1 (ko) 2015-12-16

Family

ID=53002607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140057357A KR101578291B1 (ko) 2014-05-13 2014-05-13 Hvdc 시스템

Country Status (5)

Country Link
US (1) US9853558B2 (ko)
EP (1) EP2945249A3 (ko)
JP (1) JP6027181B2 (ko)
KR (1) KR101578291B1 (ko)
CN (1) CN105098813B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101578292B1 (ko) * 2014-05-13 2015-12-16 엘에스산전 주식회사 계기용 변압기의 편차 보상 방법
KR101529146B1 (ko) 2014-05-13 2015-06-16 엘에스산전 주식회사 계기용 변압기의 편차 보상 방법
KR101622461B1 (ko) 2014-05-13 2016-05-18 엘에스산전 주식회사 계기용 변압기의 편차 보상 방법
CN108964105A (zh) * 2018-01-08 2018-12-07 广东电网有限责任公司电力科学研究院 双端柔性直流场合的直流电压控制方法及直流电压控制器
CN115561695B (zh) * 2022-11-18 2023-06-09 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096137B1 (ko) * 2011-01-20 2011-12-19 한국전력공사 Hvdc 시스템의 점호 신호 발생 장치 및 방법
KR101307098B1 (ko) 2012-09-20 2013-09-11 한국전력공사 배전기기의 전압 및 전류의 전송 오차에 대한 자동 보정 장치 및 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3863134A (en) * 1973-07-23 1975-01-28 Gen Electric Electric control circuits for a static power converter
SE515140C2 (sv) * 1995-02-10 2001-06-18 Abb Ab Anläggning för överföring av elektrisk effekt med hjälp av högspänd likström
WO2001029572A1 (en) 1999-10-21 2001-04-26 Siemens Power Transmission & Distribution, Inc. External transformer correction in an electricity meter
US6636028B2 (en) 2001-06-01 2003-10-21 General Electric Company Electronic electricity meter configured to correct for transformer inaccuracies
JP4283615B2 (ja) 2003-08-14 2009-06-24 パナソニックEvエナジー株式会社 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置
US7305310B2 (en) * 2004-10-18 2007-12-04 Electro Industries/Gauge Tech. System and method for compensating for potential and current transformers in energy meters
CN101258671A (zh) 2005-09-09 2008-09-03 西门子公司 用于电能传输的设备
US7856327B2 (en) 2007-10-09 2010-12-21 Schweitzer Engineering Laboratories, Inc. State and topology processor
KR101029016B1 (ko) * 2009-04-27 2011-04-14 주식회사 유신 오차 보정 기능을 갖는 전력 계측기 및 위상 오차 보정 방법
US8942942B2 (en) * 2010-07-23 2015-01-27 Caterpillar Inc. Generator set calibration controller
JP5803247B2 (ja) 2011-05-02 2015-11-04 トヨタ自動車株式会社 電動システム
KR20140005392A (ko) * 2012-06-26 2014-01-15 삼성전기주식회사 전류편차 보정수단을 갖는 전원공급장치 및 그를 이용한 전류편차 보정방법
JP6126815B2 (ja) 2012-09-21 2017-05-10 東芝三菱電機産業システム株式会社 サイリスタ変換器
KR101562117B1 (ko) * 2014-01-23 2015-10-22 엘에스산전 주식회사 초고압 직류송전 시스템의 제어 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096137B1 (ko) * 2011-01-20 2011-12-19 한국전력공사 Hvdc 시스템의 점호 신호 발생 장치 및 방법
KR101307098B1 (ko) 2012-09-20 2013-09-11 한국전력공사 배전기기의 전압 및 전류의 전송 오차에 대한 자동 보정 장치 및 방법

Also Published As

Publication number Publication date
KR20150130147A (ko) 2015-11-23
US20150333643A1 (en) 2015-11-19
EP2945249A2 (en) 2015-11-18
JP6027181B2 (ja) 2016-11-16
JP2015220986A (ja) 2015-12-07
CN105098813A (zh) 2015-11-25
EP2945249A3 (en) 2015-11-25
CN105098813B (zh) 2017-11-24
US9853558B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
KR101622461B1 (ko) 계기용 변압기의 편차 보상 방법
KR101666712B1 (ko) 모듈형 멀티레벨 컨버터
KR101578291B1 (ko) Hvdc 시스템
KR101578292B1 (ko) 계기용 변압기의 편차 보상 방법
KR101630510B1 (ko) 모듈형 멀티레벨 컨버터
KR102056252B1 (ko) Hvdc 시스템의 전력 손실 보정 방법
KR101529146B1 (ko) 계기용 변압기의 편차 보상 방법
KR20160062949A (ko) 고전압 직류 송전 시스템의 절연 설계 장치
JP6301976B2 (ja) 高圧直流送電システムにおける電力値測定方法
KR101659252B1 (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR20150130863A (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR20160072499A (ko) 모듈형 멀티 레벨 컨버터의 운전 방법
KR20150130864A (ko) 모듈형 멀티레벨 컨버터 및 그의 제어 방법
KR20150124329A (ko) Hvdc 시스템의 컨버터 장치 및 그의 제어 방법
KR101717349B1 (ko) 고전압 직류 송전 시스템의 상정고장 해석장치 및 방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181001

Year of fee payment: 4