WO2005016861A1 - Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure - Google Patents

Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure Download PDF

Info

Publication number
WO2005016861A1
WO2005016861A1 PCT/EP2004/007871 EP2004007871W WO2005016861A1 WO 2005016861 A1 WO2005016861 A1 WO 2005016861A1 EP 2004007871 W EP2004007871 W EP 2004007871W WO 2005016861 A1 WO2005016861 A1 WO 2005016861A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas mixture
meth
acrolein
feed gas
partial oxidation
Prior art date
Application number
PCT/EP2004/007871
Other languages
English (en)
French (fr)
Inventor
Jochen Petzoldt
Signe Unverricht
Heiko Arnold
Klaus Joachim MÜLLER-ENGEL
Martin Dieterle
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003137788 external-priority patent/DE10337788A1/de
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP04741050A priority Critical patent/EP1656335A1/de
Priority to BRPI0413440-0A priority patent/BRPI0413440A/pt
Priority to JP2006522917A priority patent/JP2007502254A/ja
Publication of WO2005016861A1 publication Critical patent/WO2005016861A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein

Definitions

  • the present invention relates to a process for the preparation of (meth) acrolein and / or (eth) acrylic acid by heterogeneously catalyzed gas phase partial oxidation, in which a fresh fixed catalyst bed in a reactor is charged at elevated temperature with a feed gas mixture which, in addition to at least one, is partially added oxidizing organic precursor compound and molecular oxygen as the oxidizing agent comprises at least one diluent gas which is essentially inert under the conditions of the heterogeneously catalyzed gas phase partial oxidation.
  • the notation (meth) acrolein stands for methacrolein or acrolein.
  • (meth) acrylic acid stands for methacrylic acid or acrylic acid.
  • (eth) acrolein and (meth) acrylic acid form reactive monomers which e.g. for the production of polymers that include can be used as adhesives are suitable.
  • (meth) acrolein and (meth) acrylic acid mainly by heterogeneously catalyzed gas-phase partial oxidation of suitable C 3 - / C -Vorstoryr- compounds, in particular of propene and propane in the case of acrolein and acrylic acid or of iso-butene and iso-butane in the case of methacrylic acid and methacrolein.
  • suitable C 3 - / C -Vorstoryr- compounds in particular of propene and propane in the case of acrolein and acrylic acid or of iso-butene and iso-butane in the case of methacrylic acid and methacrolein.
  • propane, isobutene and isobutane other compounds containing 3 or 4 carbon atoms, such as isobutanol, n-propanol or the methyl ether (as a precursor of a C 4 precursor) from iso, are also suitable as starting materials butanol.
  • the catalysts to be used for such gas phase partial oxidations are normally multi-element oxides in the solid state.
  • the heterogeneously catalyzed gas-phase partial oxidation of C / C precursors to (meth) acrolein and / or (meth) acrylic acid is therefore usually carried out by charging a fixed catalyst bed at elevated temperature with a Feed mixture which, in addition to the at least one organic precursor compound to be partially oxidized, contains molecular oxygen as the oxidizing agent.
  • the fixed catalyst bed is usually surrounded by an envelope (e.g. it can be in the contact tubes of a tube bundle reactor).
  • an envelope e.g. it can be in the contact tubes of a tube bundle reactor.
  • the exothermic partial oxidation takes place during the dwell time on the catalyst surface, and on the other side of the envelope a heat transfer medium (e.g. a salt bath) is conducted to absorb and remove the heat of reaction.
  • a heat transfer medium e.g. a salt bath
  • the reactants are generally diluted with a gas which is essentially inert under the conditions of the gas phase partial oxidation and which, with its heat capacity, is able to absorb additionally released heat of reaction and, in most cases, can at the same time have a favorable influence on the explosion behavior of the feed gas mixture. In addition, it usually has an advantageous influence on the reaction rate.
  • Non-combustible gases are typically used as the inert diluent gases.
  • molecular nitrogen is automatically used whenever air is used as the oxygen source for the heterogeneously catalyzed gas phase partial oxidation.
  • Circular gas is the residual gas that remains in the heterogeneously catalyzed gas phase partial oxidation of the at least one organic precursor compound when the target product ((meth) acrolein and / or (meth) acrylic acid) is more or less selectively (e.g. through Absorption in a suitable solvent) has separated.
  • the inert diluent gases used for the heterogeneously catalyzed gas phase partial oxidation as well as of water vapor usually formed as a by-product in the gas phase partial oxidation and of carbon oxides formed by undesired complete secondary oxidation.
  • it contains small amounts of oxygen (residual oxygen) not consumed in the gas phase partial oxidation and / or of unreacted organic starting compounds.
  • residual oxygen residual oxygen
  • the gas phase partial oxidation of the precursor compound can predominantly to (meth) acrolein, or lead to a mixture of (meth) acrolein and (meth) acrylic acid, or predominantly to (meth) acrylic acid.
  • the two steps are carried out on catalyst feeds which are different from one another and are arranged spatially one behind the other, the individual catalyst feed being tailor-made for the respective reaction step to be catalyzed.
  • the product gas mixture leaving the first stage is then passed directly into the second stage, where appropriate after intermediate cooling and / or supplementation with molecular oxygen (for example in the form of air), where the (meth) acrolein formed in the first stage leads to (meth ) acrylic acid is further oxidized.
  • the temperature in the respective reaction stage is usually also adapted in an optimizing manner to the respective reaction step.
  • Reactor e.g. in a tube bundle reactor
  • EP-A 700 893 e.g. EP-A 700 893
  • both reaction stages can also be carried out in a single reactor, which then generally has more than one temperature zone (cf. e.g.
  • multielement oxide active materials are also known which can catalyze more than just one step (cf., for example, EP-A 962 253, EP-A 1 260 495, DE-A 10 122 027, EP-A 1 192 987 and EP-A 962 253).
  • a single reaction step can also be carried out in a reactor which more than one to improve the target product selectivity Has temperature zone, as is recommended, for example, in EP-A 1 106598, in WO 00/53556, in WO 00/53559, in WO 00/53557 and in WO 00/53558.
  • Reaction gas starting mixture comprising the partial oxidation of essentially inert diluent gas (the feed gas mixture) is passed through a fixed catalyst bed feed at elevated temperature (generally a few hundred ° C., usually 100 to 600 ° C.).
  • elevated temperature generally a few hundred ° C., usually 100 to 600 ° C.
  • a disadvantage of such a heterogeneously catalyzed gas phase partial oxidation is that the heat of reaction has to be dissipated at a sufficient rate on the one hand in order to avoid overheating of the system. On the other hand, the heat must not be dissipated too quickly, otherwise the reaction may fall asleep. Conversely, especially at the beginning, the reaction must develop sufficient heat to start. This balance is made more difficult by the fact that the reactant concentration during passage through the catalyst feed is not constant, but rather decreases.
  • WO 02/098827 recommends changing the composition of the feed gas mixture over time such that a feed gas mixture with a very low content of the partially oxidized organic substances is initially used for at least one hour Compound (typically 0 to ⁇ 0.5 vol .-%) is used. The content of the reactants is then Gaseous gas mixture increased in stages. As the reactant concentration in the feed gas mixture increases, the reactant ratio is also varied. Finally, an essentially stationary feed gas mixture is passed over the fixed catalyst bed.
  • the loading of the catalyst feed with the feed gas mixture is kept constant.
  • the object of the present invention was therefore to largely remedy the disadvantages of the procedure according to the recognized prior art.
  • a process for the production of (meth) acrolein and / or (meth) acrylic acid by heterogeneously catalyzed gas phase partial oxidation in which a fresh fixed catalyst bed in a reactor is charged at elevated temperature with a feed gas mixture, the In addition to at least one organic precursor compound to be partially oxidized and molecular oxygen as the oxidizing agent, at least one diluent gas which is essentially inert under the conditions of the heterogeneously catalyzed gas phase partial oxidation is found, which is characterized in that the process after adjusting the composition of the feed gas mixture at im substantially constant conversion of the organic precursor compound and with essentially unchanged composition of the feed gas mixture initially over a running-in period of 3 days to 10 days at a low load and then carried out at a higher load on the catalyst feed with feed gas mixture.
  • the advantage of the process according to the invention over the process of the prior art lies in the fact that it trims excessive heat development not by reducing the reactant content of the feed gas mixture but, in the case of full reactant content, by reducing the load on the fixed catalyst bed with feed gas mixture.
  • the conversion of the organic precursor compound (based on the single passage of the feed gas mixture through the fixed catalyst bed) is adjusted essentially constant to the target conversion.
  • Essentially constant means that the maximum deviation from the sales arithmetically averaged over time is not more than ⁇ 10%, preferably not more than ⁇ 5% (reference basis is the sales arithmetically averaged over time).
  • composition of the feed gas mixture remaining essentially the same means that the maximum deviation of the volume fraction of one of the components molecular oxygen, organic precursor compound and inert diluent gas in the feed gas mixture from the respective volume fraction, arithmetically averaged over time, of the respective component in the feed gas mixture does not exceed ⁇ 10%, preferably not more than ⁇ 5% (reference base is the respective volume fraction of the respective component in the feed gas mixture, arithmetically averaged over time).
  • the setting of the composition of the feed gas mixture and the temperature of the fixed catalyst bed for the process according to the invention can in principle be carried out according to the procedure described in WO 02/098827.
  • the time frame required for this, however, is usually well under an hour.
  • it can also be carried out in such a way that in a line leading via a static mixer, the reactor containing the fixed bed of catalyst initially only (optionally with a content of 2 to 4% by volume oxygen) inert gas (including water vapor), then the at least one organic one Vor meetingrverbin- and finally the oxygen source (normally air).
  • the fixed catalyst bed is already brought to the temperature required by the heat transfer medium during the inert gas supply, which is required at low loads in order to achieve the target conversion in a single pass through the catalyst feed.
  • Lower loading of the fixed catalyst bed with feed gas mixture in the process according to the invention means that the lower loading is typically 40 to 80%, preferably 50 to 70% of the higher target (end) loading for which the reactor, including its catalyst loading, is designed.
  • the reactor and fixed catalyst bed are designed for end loading with e.g. 150 NI propene / l fixed catalyst bed • h designed (the propene content in the feed gas mixture of a propene partial oxidation to acrolein and / or acrylic acid is typically 4 to 12 vol .-%), the 3 to 10 days run-in according to the invention is typically under a load of 100 Nl propene / l • h carried out. The above run-in could then also be carried out with appropriate loads of 80 to 120 Nl propene / l • h.
  • the 3 to 10 day run-in according to the invention is typically carried out with a load of 120 Nl propene / l • h etc.
  • the above run-in could then also with appropriate loads of 100 to 140 Nl propene / l • h.
  • the desired final load with an organic precursor compound is values ⁇ 80 Nl / I • h, mostly values ⁇ 100 Nl / I • h or ⁇ 120 Nl / I • h.
  • Final loads of 600 Nl / I • h or often 300 Nl / I • h are usually not exceeded.
  • the load can be increased suddenly, continuously or step by step to the desired final load.
  • the advantage of the procedure according to the invention is that after the running-in phase of 3 to 10 days, often 4 to 9 or 5 to 8 days, the process can be continued under higher loads with a comparatively increased target product selectivity and at the same time a comparatively lower heat transfer medium temperature.
  • Suitable fixed bed catalysts for the process according to the invention for the production of (meth) acrolein, in particular for the production of acrolein from propene are all those whose active composition is at least one multimetal oxide containing Mo, Bi and Fe. They are to be referred to here as fixed bed catalysts 1.
  • Example 1 c from EP-A 15565 and a catalyst to be produced in a corresponding manner, the active composition of which, however, has the composition Mo 12 i 6 5 5 Zn 2 Fe 2 Bi ⁇ Po, oo65 o, o 6 ⁇ x • 10SiO 2 having. Also to be emphasized is the example with the current No.
  • these hollow cylinders have a geometry of 5 mm x 2 mm x 2 mm, or 5 mm x 3 mm x 2 mm, or 6 mm x 3 mm x 3 mm, or 7 mm x 3 mm x 4 mm (each Outside diameter x height x inside diameter).
  • X 1 nickel and / or cobalt
  • X 2 thallium, an alkali metal and / or an alkaline earth metal
  • X 3 zinc, phosphorus, arsenic, boron, antimony, tin, cerium, lead and / or tungsten,
  • X 4 silicon, aluminum, titanium and / or zirconium
  • n a number which is determined by the valency and frequency of the elements in I other than oxygen.
  • suitable active compositions for the fixed bed catalysts 1, in particular those of the general formula I can be prepared in a simple manner by generating an intimate, preferably finely divided, dry mixture of suitable stoichiometry from suitable sources of their elemental constituents and this at temperatures of Caicinated at 350 to 650 ° C.
  • the calcination can take place both under inert gas and under an oxidative atmosphere such as air (mixture of inert gas and oxygen) and also under a reducing atmosphere (eg mixture of inert gas, NH 3 , CO and / or H 2 ).
  • the duration of the calculation can range from a few minutes to a few hours and usually decreases with temperature.
  • Suitable sources for the elementary constituents of the multimetal oxide active materials I are those compounds which are already oxides and / or those compounds which can be converted into oxides by heating, at least in the presence of oxygen.
  • such starting compounds are in particular halides, nitrates, formates, oxalates, citrates, acetates, carbonates, amine complexes, ammonium salts and / or hydroxides (compounds such as NH 4 OH, (NH) 2 CO 3 , NH 4 NO 3 , NH 4 CHO 2 , CH 3 COOH, NH 4 CH 3 CO 2 and / or ammonium oxalate, which can decompose and / or decompose into fully gaseous compounds at the latest during later calcination, can also be incorporated into the intimate dry mixture) ,
  • the intimate mixing of the starting compounds for the production of multimetal oxide masses I can take place in dry or in wet form. If it is carried out in dry form, the starting compounds are expediently used as finely divided powders and, after mixing and optionally compacting, are subjected to the calcination. However, the intimate mixing is preferably carried out in wet form. Usually, the starting compounds are mixed together in the form of an aqueous solution and / or suspension. Particularly intimate dry mixtures are obtained in the mixing process described if only sources of the elementary constituents present in dissolved form are used. Water is preferably used as the solvent. The aqueous mass obtained is then dried, the drying process preferably being carried out by spray drying the aqueous mixture at exit temperatures of 100 to 150 ° C.
  • the multimetal oxide compositions suitable as fixed bed catalysts 1 according to the invention can be used for the process according to the invention both in powder form and in the form of certain catalyst geometries, it being possible for the shaping to take place before or after the final calculation.
  • full catalysts can be produced from the powder form of the active composition or its uncalcined and / or partially caicinated precursor composition by compressing it to the desired catalyst geometry (e.g. by tableting, extruding or extruding), where appropriate auxiliaries such as e.g.
  • Graphite or stearic acid can be added as a lubricant and / or molding aid and reinforcing agent such as microfibers made of glass, asbestos, silicon carbide or potassium titanate.
  • Suitable unsupported catalyst geometries are e.g. Solid cylinder or hollow cylinder with an outer diameter and a length of 2 to 10 mm. In the case of the hollow cylinders, a wall thickness of 1 to 3 mm is appropriate.
  • the full catalyst can also have a spherical geometry, the spherical diameter being 2 to 10 mm.
  • the shape of the powdery active composition or its powdery, not yet and / or partially caicinated, precursor composition can also be achieved by Applied to preformed inert catalyst supports.
  • the coating of the support bodies for producing the coated catalysts is generally carried out in a suitable rotatable container, as is known, for example, from DE-A 2909671, EP-A 293859 or from EP-A 714700.
  • the powder mass to be applied is expediently moistened and dried again after application, for example by means of hot air.
  • the layer thickness of the powder composition applied to the carrier body is expediently selected in the range from 10 to 1000 mm, preferably in the range from 50 to 500 mm and particularly preferably in the range from 150 to 250 mm.
  • carrier bodies can have a regular or irregular shape, with regularly shaped carrier bodies with a clearly formed surface roughness, e.g. Balls or hollow cylinders are preferred. It is suitable to use essentially non-porous, rough-surface, spherical supports made of steatite, the diameter of which is 1 to 8 mm, preferably 4 to 5 mm. However, it is also suitable to use cylinders as carrier bodies, the length of which is 2 to 10 mm and the outside diameter is 4 to 10 mm.
  • the wall thickness is moreover usually 1 to 4 mm.
  • Annular support bodies to be used preferably according to the invention have a length of 3 to 6 mm, an outer diameter of 4 to 8 mm and a wall thickness of 1 to 2 mm.
  • rings of geometry 7 mm x 3 mm x 4 mm are particularly suitable as carrier bodies.
  • the fineness of the catalytically active oxide compositions to be applied to the surface of the carrier body is of course adapted to the desired shell thickness (cf. EP-A 714700).
  • compositions to be used according to the invention as fixed bed catalysts 1 are furthermore compositions of the general formula II
  • Y 1 bismuth, tellurium, antimony, tin and / or copper
  • Y 2 molybdenum and / or tungsten
  • Y 3 an alkali metal, thallium and / or samarium
  • Y 4 an alkaline earth metal, nickel, cobalt, copper, manganese, zinc, tin, cadmium and / or mercury
  • Y 5 iron, chromium, cerium and / or vanadium
  • Y 6 phosphorus, arsenic, boron and / or antimony
  • Y 7 a rare earth metal, titanium, zirconium, niobium, tantalum, rhenium, ruthenium, rhodium, silver, gold, aluminum, gallium, indium, silicon, germanium, lead, thorium and / or uranium,
  • a ' 0.01 to 8
  • b' 0.1 to 30,
  • c ' 0 to 4
  • d' 0 to 20
  • e ' 0 to 20
  • f 0 to 6
  • x', y ' numbers determined by the valency and frequency of the elements in II other than oxygen
  • p, q numbers whose ratio p / q is 0.1 to 10 .
  • compositions II according to the invention are those in which Y 1 is bismuth.
  • Z 2 molybdenum and / or tungsten
  • Z 4 thallium, an alkali metal and / or an alkaline earth metal
  • Z 5 phosphorus, arsenic, boron, antimony, tin, cerium and / or lead,
  • Z 6 silicon, aluminum, titanium and / or zirconium
  • Z 7 copper, silver and / or gold
  • a " 0.1 to 1
  • b" 0.2 to 2
  • c " 3 to 10
  • d" 0.02 to 2
  • e 0.01 to 5, preferably 0.1 to 3
  • f " 0 to 5
  • g" 0 to 10
  • h 0 to 1
  • x y
  • q " Numbers whose ratio p "/ q" is 0.1 to 5, preferably 0.5 to 2
  • multimetal oxide materials II active materials is e.g. described in EP-A 575897 and in DE-A 19855913.
  • the heterogeneously catalyzed gas-phase partial oxidation of an organic precursor compound to (meth) acrolein according to the invention is carried out in a tube bundle reactor charged with fixed-bed catalysts 1, as described e.g. is described in EP-A 700714.
  • the fixed-bed catalyst 1 to be used is in the simplest way in the metal tubes of a tube bundle reactor and a temperature medium (single-zone mode of operation), usually a molten salt, is passed around the metal tubes.
  • a temperature medium usually a molten salt
  • the molten salt can also be passed through the reactor, viewed in a meandering manner, around the tube bundle, so that, viewed across the entire reactor, there is only a cocurrent or countercurrent to the direction of flow of the reaction gas mixture.
  • the flow rate of the temperature control medium is usually dimensioned such that the temperature rise (due to the exothermic nature of the reaction) of the heat exchange medium from the point of entry into the reactor to the point of exit from the reactor is ⁇ 0 to 10 ° C, often ⁇ 2 to 8 ° C, often ⁇ 3 to 6 ° C.
  • the entry temperature of the heat exchange medium into the tube bundle reactor in particular in the case of the conversion of propene to acrolein, is generally 310 to 360 ° C., frequently 320 to 340 ° C.
  • Fluid heat transfer media are particularly suitable as heat exchange medium.
  • melts of salts such as potassium nitrate, potassium nitrite, sodium nitrite and / or sodium nitrate, or of low-melting metals such as sodium, mercury and alloys of various metals is particularly favorable.
  • the feed gas mixture of the feed with fixed bed catalyst 1 is expediently preheated to the desired reaction temperature.
  • DE-C 2830765 discloses a preferred variant of a two-zone tube bundle reactor which can be used according to the invention.
  • the two-zone tube bundle reactors disclosed in DE-C 2513405, US-A 3147084, DE-A 2201528, EP-A 383224 and DE-A 2903218 are also suitable.
  • the fixed bed catalyst 1 to be used is located in the metal tubes of a tube bundle reactor, and two temperature-regulating media, generally salt melts, which are essentially spatially separated from one another, are guided around the metal tubes.
  • the pipe section over which the respective salt bath extends represents a reaction zone.
  • a salt bath A flows around that section of the tubes (reaction zone A) in which, for example, the oxidative conversion of the propene (in a single pass) takes place until conversion in the range from 40 to 80 mol% is achieved
  • a salt bath B flows around, for example, the section of the tubes (reaction zone B), in which, for example, the oxidative subsequent conversion of the propene (in a single pass) until a Sales value of at least 90 mol .-% is usually carried out (if necessary, reaction zones A, B can be followed by further reaction zones which are kept at individual temperatures).
  • the salt bath can be conducted within the respective temperature zone as with the single-zone procedure.
  • the temperature of salt bath B is normally at least 5 ° C above the temperature of salt bath A.
  • the two-zone high-load mode e.g. as in DE-A 19948523 or as described in DE-A 19948248.
  • the process according to the invention is suitable for propene loads on the fixed bed catalyst bed 1 of> 70 Nl / I • h, ⁇ 130 Nl / I • h, ⁇ 180 Nl / I • h, ⁇ 240 Nl / I • h, ⁇ 300 Nl / I • h, but usually ⁇ 600 Nl / l • h.
  • the inert gas to be used for the feed gas mixture can be added
  • inert gases should generally be those used here for the single passage through the respective fixed bed catalyst bed to less than 5%, preferably less, for the process according to the invention convert as 2%) Diluent gases such as propane, ethane, methane, pentane, butane, CO 2 , CO, steam and / or noble gases are recommended for the feed gas mixture.
  • the working pressure in the process according to the invention in the propene partial oxidation can be both below normal pressure (for example up to 0.5 bar) and above normal pressure. Typically, the working pressure will be between 1 and 5 bar, often between 1.5 and 3.5 bar.
  • the reaction pressure during the propene partial oxidation will normally not exceed 100 bar.
  • the molar ratio of O 2 : C 3 H 6 in the feed gas mixture is normally ⁇ 1. Usually this ratio will be values ⁇ 3. Often the molar ratio of O 2 : C 3 H 6 in the feed gas mixture is ⁇ 1, 5 and ⁇ 2.0.
  • the propene content in the feed gas mixture can e.g. at values from 4 to
  • the process according to the invention is often used in the case of a propene: oxygen: indifferent gases (including water vapor) volume ratio in the reaction gas starting mixture (feed gas mixture) of 1: (1.0 to 3.0) :( 5 to 25), preferably 1: (1st , 5 to 2.3) :( 10 to 15).
  • feed gas mixture 1: (1.0 to 3.0) :( 5 to 25), preferably 1: (1st , 5 to 2.3) :( 10 to 15).
  • the feed gas mixture compositions of DE-A 10313209 can also be used according to the invention.
  • X 2 Cu, Ni, Co, Fe, Mn and / or Zn,
  • X 3 Sb and / or Bi
  • X 4 one or more alkali metals
  • X 5 one or more alkaline earth metals
  • X 1 W, Nb, and / or Cr
  • X 2 Cu, Ni, Co, and / or Fe
  • X 5 Ca, Sr and / or Ba
  • multimetal oxides IV are those of the general formula V Mo 12 V a .Y 1 b .Y 2 c .Y 5 f Y 6 g .O n (V),
  • Y 5 Ca and / or Sr
  • multimetal oxide active compositions (IV) which are suitable according to the invention are known per se, e.g. available in DE-A 4335973 or in EP-A 714700.
  • suitable multimetal oxide active compositions in particular those of the general formula IV, can be prepared as fixed bed catalysts 2 in a simple manner by generating an intimate, preferably finely divided, dry mixture of stoichiometry in accordance with their stoichiometry from suitable sources of their elemental constituents and this Temperatures from 350 to 600 ° C caicinated.
  • the caicination can be carried out both under inert gas and under an oxidative atmosphere such as air (mixture of inert gas and oxygen) and under a reducing atmosphere (eg mixtures of inert gas and reducing gases such as H 2 , NH 3 , CO, methane and / or acrolein or the reducing gases mentioned are carried out by themselves).
  • the caicination time can last from a few minutes to a few hours and usually decreases with temperature.
  • Suitable sources for the elementary constituents of the multimetal oxide active compositions IV are those compounds which are already oxides and / or those compounds which can be converted into oxides by heating, at least in the presence of oxygen.
  • the intimate mixing of the starting compounds for the production of multimetal oxide compositions IV can take place in dry or in wet form. If it is carried out in dry form, the starting compounds are expediently in the form of finely divided powders used and subjected to calcination after mixing and optionally compressing. However, the intimate mixing is preferably carried out in wet form.
  • the starting compounds are mixed with one another in the form of an aqueous solution and / or suspension.
  • Particularly intimate dry mixtures are obtained in the mixing process described if only sources of the elementary constituents present in dissolved form are used. Water is preferably used as the solvent.
  • the aqueous mass obtained is then dried, the drying process preferably being carried out by spray drying the aqueous mixture at exit temperatures of 100 to 150 ° C.
  • the multimetal oxide compositions suitable according to the invention as fixed bed catalysts 2, in particular those of the general formula IV, can be used for the process according to the invention both in powder form and in the form of certain catalyst geometries, it being possible for the shaping to take place before or after the final caicination.
  • full catalysts can be produced from the powder form of the active composition or its uncalcined precursor composition by compression to the desired catalyst geometry (e.g. by tableting, extrusion or extrusion), where appropriate auxiliaries such as e.g. Graphite or stearic acid can be added as a lubricant and / or molding aid and reinforcing agent such as microfibers made of glass, asbestos, silicon carbide or potassium titanate.
  • Suitable unsupported catalyst geometries are e.g. Solid cylinder or hollow cylinder with an outer diameter and a length of 2 to 10 mm. In the case of the hollow cylinders, a wall thickness of 1 to 3 mm is appropriate.
  • the full catalyst can also have a spherical geometry, the spherical diameter being 2 to 10 mm.
  • the powdery active composition or its powdery, not yet caicinated, precursor composition can also be shaped by application to preformed inert catalyst supports.
  • the coating of the support bodies for the production of the coated catalysts is usually carried out in a suitable rotatable container, as is e.g. is known from DE-A 2909671, EP-A 293859 or from EP-A 714700.
  • the powder mass to be applied is expediently moistened and dried again after application, for example by means of hot air.
  • the layer thickness of the powder composition applied to the carrier body is expediently selected in the range from 10 to 1000 ⁇ m, preferably in the range from 50 to 500 ⁇ m and particularly preferably in the range from 150 to 250 ⁇ m.
  • Conventional porous or non-porous aluminum oxides, silicon dioxide, thorium dioxide, zirconium dioxide, silicon carbide or silicates such as magnesium or aluminum silicate can be used as carrier materials.
  • the carrier bodies can have a regular or irregular shape, preference being given to regularly shaped carrier bodies with a clearly formed surface roughness, for example balls or hollow cylinders.
  • annular support bodies to be used preferably according to the invention have a length of 3 to 6 mm, an outer diameter of 4 to 8 mm and a wall thickness of 1 to 2 mm.
  • Particularly suitable according to the invention are rings of geometry 7 mm x 3 mm x 4 mm (outer diameter x length x inner diameter) as the carrier body.
  • the fineness of the catalytically active oxide materials to be applied to the surface of the carrier body is of course adapted to the desired shell thickness (cf. EP-A 714700).
  • compositions to be used according to the invention as fixed bed catalysts 2 are furthermore compositions of the general formula VI,
  • Z 1 W, Nb, Ta, Cr and / or Ce
  • Z 2 Cu, Ni, Co, Fe, Mn and / or Zn
  • z 3 Sb and / or Bi
  • z 4 Li, Na, K, Rb, Cs and / or H
  • z 5 Mg, Ca, Sr and / or Ba
  • z 6 Si, Al, Ti and / or Zr
  • z 7 Mo, W, V, Nb and / or Ta
  • starting mass 1 separately formed in f one-piece form (starting mass 1) and then the pre-formed solid starting mass 1 in an aqueous solution, an aqueous suspension or in a finely divided dry mixture of sources of the elements Mo, V, Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , which the aforementioned elements in the stoichiometry D
  • the multimetal oxide compositions VI are preferred, in which the preformed solid starting composition 1 is incorporated into an aqueous starting composition 2 at a temperature ⁇ 70 ° C.
  • a detailed description of the production of multimetal oxide materials VI catalysts contain e.g. EP-A 668104, DE-A 19736105 and DE-A 19528646.
  • the heterogeneously catalyzed gas phase partial oxidation of acrolein to acrylic acid according to the invention will be carried out in a tube bundle reactor charged with the fixed bed catalysts 2, as described, for example, in EP-A 700893. That is, in the simplest way, the fixed bed catalyst 2 to be used is located in the metal tubes of a tube bundle reactor and a temperature control medium (single-zone mode), usually a molten salt, is passed around the metal tubes. The molten salt and reaction gas mixture can be carried out in simple cocurrent or countercurrent.
  • the temperature control medium (the molten salt) can, however, also be viewed through the reactor in a meandering manner around the tube bundle, so that viewed only across the entire reactor, there is a cocurrent or countercurrent to the direction of flow of the reaction gas mixture.
  • the volume flow of the temperature control medium (heat exchange medium) is usually dimensioned such that the temperature rise (due to the exothermic nature of the reaction) of the heat exchange medium from the entry point into the reactor to the exit point from the reactor 0 to 10 ° C., frequently w 2 to 8 ° C, often 3 to 6 ° C.
  • the inlet temperature of the heat exchange medium in the tube bundle reactor is usually 230 to 300 ° C, often 245 to 285 ° C or 245 to 265 ° C.
  • Suitable heat exchangers are the same fluid tempering media as have already been described for the heterogeneously catalyzed gas-phase partial oxidation according to the invention of an organic precursor compound to (meth) acrolein.
  • the feed gas mixture is expediently fed to the feed with fixed bed catalyst 2 preheated to the desired reaction temperature.
  • the process according to the invention is expediently carried out in a two-zone tube bundle reactor.
  • a preferred variant of a two-zone tube bundle reactor which can be used according to the invention for this purpose is disclosed in DE-C 2830765. But also those in DE-C 2513405, US-A 3147084, DE-A 2201528, EP-A 383224 and DE-A 2903582 disclosed two-zone tube bundle reactors are suitable.
  • the fixed bed catalyst 2 to be used according to the invention is in a simple manner in the metal tubes of a tube bundle reactor, and two tempering media which are essentially spatially separated from one another, usually molten salts, are passed around the metal tubes.
  • the pipe section over which the respective salt bath extends represents a reaction zone.
  • a salt bath C preferably flows around those sections of the tubes (reaction zone C) in which the oxidative conversion of acrolein (in a single pass) takes place until a conversion value in the range of 55 to 85 mol% is reached and a salt bath D flows around the Section of pipes (the recession zone D), in which the oxidative subsequent conversion of acrolein (in a single pass) takes place until a conversion value of generally at least 90 mol% is reached (if necessary, further reaction zones can follow the reaction zones C, D to be used according to the invention, which are kept at individual temperatures).
  • the salt bath can be conducted within the respective temperature zone as with the single-zone procedure.
  • the temperature of the salt bath D is normally at least 5 to 10 ° C above the temperature of the salt bath C.
  • the two-zone high-load mode can e.g. as in DE-A 19948523 or as described in DE-A 19948248.
  • the process according to the invention is suitable for acrolein loads in the fixed bed catalyst bed 2 of ⁇ 70 Nl / I • h,> 130 Nl / I • h, ⁇ 180 Nl / I • h, ⁇ 240 Nl / I • h,> 300 Nl / I • h, but usually ⁇ 600 Nl / l • h.
  • the inert gas to be used for the feed gas mixture can be ⁇ 20 vol.%, Or> 30 vol.%, Or ⁇ 40 vol.%, Or ⁇ 50 vol.%, Or> 60 vol. -%, or> 70 vol .-%, or ⁇ 80 vol .-%, or ⁇ 90 vol .-%, or ⁇ 95 vol .-% of molecular nitrogen.
  • the inert diluent gas is often 5 to 20% by weight H 2 O (formed in the first reaction stage) and 70 up to 90 vol .-% consist of N 2 .
  • inert diluent gases such as propane, ethane, methane, butane, pentane, CO, CO, water vapor and / or noble gases is recommended for the process according to the invention.
  • these gases can also be used at lower acrolein loads.
  • the working pressure in the gas phase partial oxidation of acrolein can be both below normal pressure (e.g. up to 0.5 bar) and above normal pressure.
  • the working pressure in the gas phase partial oxidation of acrolein will be from 1 to 5 bar, often 1 to 3 bar.
  • the reaction pressure in the partial oxidation of acrolein will normally not exceed 100 bar.
  • the molar ratio of O: acrolein in the feed gas mixture of the fixed bed catalyst bed 2 will normally be ⁇ 1. This ratio will usually be at values ⁇ 3.
  • the molar ratio of O: acrolein in the above-mentioned feed gas mixture will frequently be 1 to 2 or 1 to 1.5 according to the invention.
  • the process according to the invention is often used with an acrolein: oxygen.
  • the acrolein content in the feed gas mixture can e.g. at values of 3 to 15% by volume, often 4 to 10% by volume or 5 to 8% by volume (in each case based on the total volume).
  • the heterogeneously catalyzed gas phase partial oxidation of methacrolein to methacrylic acid can be carried out analogously to that of acrolein to acrylic acid.
  • those of EP-A 668103 are preferably used as catalysts.
  • the other reaction conditions are also advantageously determined in accordance with EP-A 668103.
  • the multimetal oxide catalysts such as those used e.g. the documents DE-A 10248584, DE-A 10029338, DE-A 10033121, DE-A 10261186, DE-A 10254278, DE-A 10034825, EP-A 962253, EP-A 1260495, DE-A 10122027, EP-A 192987 and DE-A 10254279 recommend.
  • reaction conditions can also be selected in accordance with these documents.
  • a single-zone reactor will usually be used as the reactor.
  • a reaction tube (V2A steel; 30 mm outside diameter, 2 mm wall thickness, 26 mm inside diameter, length: 350 cm) as well as a thermotube centered in the middle of the reaction tube (4 mm outside diameter) for receiving a thermocouple with which the temperature in the reaction tube is determined over its entire length was freshly loaded from top to bottom as follows:
  • Section 1 80 cm length steatite rings of geometry 7 mm x 7 mm x 4 mm (outer diameter x length x inner diameter) as a pre-fill.
  • Section 2 100 cm length of catalyst feed with a homogeneous mixture of 30% by weight of steatite rings of geometry 5 mm x 3 mm x 2 mm (outside diameter x length x inside diameter) and 70% by weight of full catalyst from section 3.
  • test arrangement was in each case continuously with a feed gas mixture (mixture of air, polymer grade propylene and cycle gas) of the composition
  • a comparison of the example and the comparative example shows that an immediate start-up of the fresh catalyst feed under the desired final load results in a catalyst feed that requires significantly higher salt bath temperatures for the same conversion. The higher maximum temperatures also cause the catalyst feed to age prematurely.

Abstract

Ein Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure durch heterogen katalysierte Gasphasen-Partialoxidation einer organischen Vorläuferverbindung an einem frischen Katalysatorfestbett, bei dem man das Verfahren mit einer verminderten Belastung des Katalysatorfestbetts mit Beschickungsgasgemisch anfährt.

Description

Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure
Beschreibung
Vorliegende Erfindung betrifft ein Verfahren zur Herstellung von (Meth)acrolein und/oder ( eth)acrylsäure durch heterogen katalysierte Gasphasen-Partialoxidation, bei dem man ein in einem Reaktor befindliches frisches Katalysatorfestbett bei erhöhter Temperatur mit einem Beschickungsgasgemisch belastet, das neben wenigstens einer partiell zu oxidierenden organischen Vorläuferverbindung und molekularem Sau- erstoff als Oxidationsmittel wenigstens ein sich unter den Bedingungen der heterogen katalysierten Gasphasen-Partialoxidation im wesentlichen inert verhaltendes Verdünnungsgas umfasst.
Die Schreibweise (Meth)acrolein steht in dieser Schrift verkürzend für Methacrolein oder Acrolein.
(Meth)acrylsäure steht in dieser Schrift verkürzend für Methacrylsäure oder Acrylsäure.
( eth)acrolein und (Meth)acrylsäure bilden reaktive Monomere, die z.B. zur Herstel- lung von Polymerisaten, die u.a. als Klebstoffe Verwendung finden können, geeignet sind.
Großtechnisch werden (Meth)acrolein und (Meth)acrylsäure überwiegend durch heterogen katalysierte Gasphasen-Partialoxidation geeigneter C3-/C -Vorläufer- Verbindungen, insbesondere von Propen und Propan im Fall von Acrolein und Acrylsäure bzw. von iso-Buten und iso-Butan im Fall der Methacrylsäure und des Methacro- leins hergestellt. Neben Propen, Propan, iso-Buten und iso-Butan eignen sich als Ausgangsstoffe jedoch auch andere 3 bzw. 4 Kohlenstoffatome enthaltende Verbindungen, wie beispielsweise iso-Butanol, n-Propanol oder der Methylether (als Vorläufer eines C4-Vorläufers) von iso-Butanol. (Meth)acrylsäure kann auch aus (Meth)acrolein erzeugt werden.
Bei den für solche Gasphasen-Partialoxidationen zu verwendenden Katalysatoren handelt es sich normalerweise um im festen Aggregatzustand befindliche Multiele- mentoxide.
Üblicherweise erfolgt die Durchführung der heterogen katalysierten Gasphasen- Partialoxidation von C -/C -Vorläufern zu (Meth)acrolein und/oder (Meth)acrylsäure daher durch Beschicken eines Katalysatorfestbetts bei erhöhter Temperatur mit einem Beschickungsgemisch, das neben der wenigstens einen partiell zu oxidierenden organischen Vorläuferverbindung molekularen Sauerstoff als Oxidationsmittel enthält.
Dabei ist das Katalysatorfestbett normalerweise von einer Einhüllenden umgeben (z.B. kann es sich in den Kontaktrohren eines Rohrbündelrealtors befinden). Diesseits der Einhüllenden vollzieht sich während der Verweilzeit an der Katalysatoroberfläche die exotherme Partialoxidation und jenseits der Einhüllenden wird ein Wärmeträger (z.B. ein Salzbad) geführt, um die Reaktionswärme aufzunehmen und abzuführen.
Zusätzlich werden die Reaktionspartner in der Regel mit einem unter den Bedingungen der Gasphasen-Partialoxidation im wesentlichen inerten Gas verdünnt, das mit seiner Wärmekapazität zusätzlich frei werdende Reaktionswärme zu absorbieren vermag und in den meisten Fällen gleichzeitig das Explosionsverhalten des Beschickungsgasgemisches günstig zu beeinflussen vermag. Außerdem übt es üblicherweise einen vorteil- haften Einfluss auf die Reaktionsgeschwindigkeit aus. In typischer Weise werden als inerte Verdünnungsgase nicht brennbare Gase verwendet.
Eines der häufigsten mitverwendeten inerten Verdünnungsgase ist molekularer Stickstoff, der automatisch immer dann zu Anwendung kommt, wenn als Sauerstoffquelle für die heterogen katalysierte Gasphasen-Partialoxidation Luft verwendet wird.
Ein anderes vielfach mitverwendetes Verdünnungsgas ist wegen seiner allgemeinen Verfügbarkeit Wasserdampf. Vielfach wird auch Kreisgas als inertes Verdünnungsgas mitverwendet (vgl. z.B. EP-A 1180508). Als Kreisgas wird das Restgas bezeichnet, das bei der heterogen katalysierten Gasphasen-Partialoxidation der wenigstens einen organischen Vorläuferverbindung dann verbleibt, wenn man aus dem Produktgasgemisch das Zielprodukt ((Meth)acrolein und/oder (Meth)acrylsäure) mehr oder weniger selektiv (z.B. durch Absorption in ein geeignetes Lösungsmittel) abgetrennt hat. Im Regelfall besteht es überwiegend aus den für die heterogen katalysierte Gasphasen- Partialoxidation verwendeten inerten Verdünnungsgasen sowie aus bei der Gasphasen-Partialoxidation üblicherweise als Nebenprodukt gebildetem Wasserdampf und durch unerwünschte vollständige Neben-Oxidation gebildeten Kohlenoxiden. Teilweise enthält es geringe Mengen an bei der Gasphasen-Partialoxidation nicht verbrauchtem Sauerstoff (Restsauerstoff) und/oder an nicht umgesetzten organischen Ausgangsver- bindungen. Üblicherweise wird nur eine Teilmenge des Restgases als Kreisgas verwendet. Die verbleibende Restgasmenge wird in der Regel verbrannt.
Je nach gewählter Katalysatorbeschickung sowie Reaktionsbedingungen, kann die Gasphasen-Partialoxidation der Vorläuferverbindung überwiegend zu (Meth)acrolein, oder zu einem Gemisch aus (Meth)acrolein und (Meth)acrylsäure, oder überwiegend zu (Meth)acrylsäure führen.
Dies liegt darin begründet, dass die Gasphasen-Partialoxidation geeigneter C3-/C - Vorläuferverbindungen zu (Meth)acrylsäure normalerweise in zwei aufeinanderfolgenden Schritten verläuft. Der erste Schritt führt zum (Meth)acrolein und der zweite Schritt zur (Meth)acrylsäure.
In der Regel werden die beiden Schritte an voneinander verschiedenen, räumlich hin- tereinander angeordneten Katalysatorbeschickungen durchgeführt, wobei die einzelne Katalysatorbeschickung für den jeweiligen zu katalysierenden Reaktionsschritt maßgeschneidert ist. Man spricht dann auch von einer mehrstufigen Gasphasen-Partialoxidation. In der ersten Stufe wird überwiegend (Meth)acrolein gebildet. Das die erste Stufe verlassende Produktgasgemisch wird anschließend, gegebenenfalls nach Zwi- schenkühlung und/oder Ergänzung an molekularem Sauerstoff (z.B. in Form von Luft) unmittelbar in die zweite Stufe geführt, wo das in der ersten Stufe gebildete (Meth)- acrolein zu (Meth)acrylsäure weiteroxidiert wird.
Die Temperatur in der jeweiligen Reaktionsstufe wird normalerweise ebenfalls in opti- mierender Weise an den jeweiligen Reaktionsschritt angepasst.
Anwendungstechnisch zweckmäßig wird die jeweilige Reaktionsstufe in einem eigenen
Reaktor (z.B. in einem Rohrbündelreaktor) realisiert (vgl. z.B. EP-A 700 893 und
EP-A 700 714).
Es können aber auch beide Reaktionsstufen in einem einzigen Reaktor durchgeführt werden, der dann in der Regel mehr als eine Temperaturzone aufweist (vgl. z.B.
EP-A 1 106 598 und EP-A 990 636).
Es sind aber auch Multielementoxidaktivmasse bekannt, die mehr als nur einen Schritt zu katalysieren vermögen (vgl. z.B. EP-A 962 253, EP-A 1 260 495, DE-A 10 122 027, EP-A 1 192 987 und EP-A 962 253).
In solchen Fällen kann in Abhängigkeit von den gewählten Reaktionsbedingungen in einer Reaktionsstufe entweder im wesentlichen nur (Meth)acrolein, oder ein Gemisch aus (Meth)acrolein und (Meth)acrylsäure, oder im wesentlichen nur (Meth)acrylsäure erzeugt werden. Normalerweise wird eine solche Reaktionsstufe in einem Reaktor verwirklicht.
Selbstverständlich kann aber auch ein einzelner Reaktionsschritt in einem Reaktor durchgeführt werden, der zur Verbesserung der Zielproduktselektivität mehr als eine Temperaturzone aufweist, wie es z.B. in der EP-A 1 106598, in der WO 00/53556, in der WO 00/53559, in der WO 00/53557 und in der WO 00/53558 empfohlen wird.
Zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure nach einem Verfahren der heterogen katalysierten Gasphasen-Partialoxidation wird somit normalerweise ein wenigstens eine partiell zu oxidierende Vorläuferverbindung, molekularen Sauerstoff als Oxidationsmittel und wenigstens ein sich unter den Bedingungen der heterogen katalysierten Gasphasen-Partialoxidation sich im wesentlichen inert verhaltendes Verdünnungsgas umfassendes Reaktionsgasausgangsgemisch (das Beschickungsgas- gemisch) bei erhöhter Temperatur (in der Regel einige hundert °C, üblicherweise 100 bis 600°C) durch eine Katalysatorfestbettbeschickung geführt. Die chemische Umsetzung erfolgt während der Kontaktzeit an der Katalysatoroberfläche, und die Reaktionswärme wird vor allem durch indirekten Wärmetausch an einen fließenden Wärmeträger abgegeben.
Nachteilig an einer solchermaßen durchgeführten heterogen katalysierten Gasphasen- Partialoxidation ist, dass die Reaktionswärme einerseits mit ausreichender Geschwindigkeit abgeführt werden muss, um eine Überhitzung des Systems zu vermeiden. Andererseits darf die Wärmeabfuhr nicht zu schnell erfolgen, da sonst die Reaktion gege- benenfalls einschläft. Umgekehrt muss die Reaktion insbesondere am Anfang in ausreichendem Umfang Wärme entwickeln, um überhaupt zu starten. Erschwert wird diese Balance dadurch, dass die Reaktandenkonzentration beim Durchgang durch die Katalysatorbeschickung nicht konstant ist, sondern abnimmt.
Im Ausgangsbereich des Reaktionsgasgemisches aus dem Katalysatorfestbett wirkt sich dies mindernd auf die Reaktionsgeschwindigkeit und die damit einhergehende Wärmeentwicklung aus, während im Eintrittsbereich des Reaktionsgasgemisches in die Katalysatorbeschickung die hohe Reaktandenkonzentration die exotherme Wärmeentwicklung beschleunigt.
Zusätzlich verkompliziert wird der vorstehend beschriebene Sachverhalt dadurch, dass ein frisches Katalysatorfestbett kein stationäres Aktivitätsverhalten aufweist, sondern eine sogenannte Formierungsphase durchläuft.
Um beim Einfahren einer frischen Katalysatorbeschickung übermäßige, gegebenenfalls unkontrollierte lokale Wärmeentwicklungen zu vermeiden, empfiehlt die WO 02/098827 die Zusammensetzung des Beschickungsgasgemisches über die Zeit so zu verändern, dass zunächst für wenigstens eine Stunde ein Beschickungsgasgemisch mit einem sehr niedrigen Gehalt der partiell zu oxidierenden organischen Verbindung (typisch 0 bis ≤ 0,5 Vol.-%) verwendet wird. Anschließend wird der Reatandengehalt im Beschi- ckungsgasgemisch stufenförmig erhöht. Mit der Erhöhung der Reaktandenkonzentration im Beschickungsgasgemisch wird gleichzeitig das Reaktandenverhältnis varriert. Schließlich wird ein im wesentlichen stationär zusammengesetztes Beschickungsgasgemisch über das Katalysatorfestbett geführt.
Sobald das Beschickungsgasgemisch von der partiell zu oxidierenden organischen Verbindung enthält, wird die Belastung der Katalysatorbeschickung mit Beschickungsgasgemisch konstant gehalten.
Die beschriebene Verfahrensweise der WO 02/098827 ist jedoch insofern von Nachteil, als bei ihrer Ausübung über mehrere Betriebsstunden keine im wesentlichen stabile Beschickungsgasgemischzusammensetzung vorherrscht. Dies ist insofern von Nachteil, als das Beschickungsgasgemisch in Abhängigkeit von seiner Zusammensetzung explosive und nicht explosive Zustände aufweisen kann (vgl. DE-A 10232482). Häufige Änderungen seiner Zusammensetzung sollten daher vermieden werden.
Darüber hinaus ist es nicht von Vorteil, das Anspringen der Gasphasen-Partialoxidation unter Volllast (Endbelastung des Katalysatorfestbetts mit Beschickungsgasgemisch) durchzuführen, da eine hohe Belastung des Katalysatorfestbetts gleichbedeutend ist mit einer geringeren mittleren Verweilzeit im Katalysatorfestbett. Eine geringe Verweilzeit beschneidet jedoch den Zeitraum der zur Reaktion am Katalysator zur Verfügung steht.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, den Nachteilen der Ver- fahrensweise gemäß des gewürdigten Stand der Technik weitgehend abzuhelfen.
Als Lösung der gestellten Aufgabe wurde ein Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure durch heterogen katalysierten Gasphasen- Partialoxidation, bei dem man ein in einem Reaktor befindliches frisches Katalysator- festbett bei erhöhter Temperatur mit einem Beschickungsgasgemisch belastet, das neben wenigstens einer partiell zu oxidierenden organischen Vorläuferverbindung und molekularem Sauerstoff als Oxidationsmittel wenigstens ein sich unter den Bedingungen der heterogen katalysierten Gasphasen-Partialoxidation im wesentlichen inert verhaltendes Verdünnungsgas umfasst, gefunden, das dadurch gekennzeichnet ist, dass das Verfahren nach Einstellung der Zusammensetzung des Beschickungsgasgemisches bei im wesentlichen gleich bleibendem Umsatz der organischen Vorläuferverbindung und bei im wesentlichen gleichbleibender Zusammensetzung des Beschickungsgasgemischs zunächst über einen Einfahrzeitraum von 3 Tagen bis 10 Tagen bei einer niederen Belastung und daran anschließend bei einer höheren Belastung der Katalysatorbeschickung mit Beschickungsgasgemisch durchgeführt wird. Unter der Belastung eines Katalysatorfestbetts einer Reaktionsstufe mit Beschickungsgasgemisch wird die Menge an Beschickungsgasgemisch in Normlitern (= Nl; das Volumen in Litern, das die entsprechende Beschickungsgasgemischmenge bei Normalbedingungen, d.h. bei 25°C und 1 bar einnehmen würde) verstanden, die pro Stunde durch einen Liter Katalysatorfestbett geführt wird (dabei werden Vor- und Nachschüttungen aus reinem Inertmaterial nicht dem Katalysatorfestbett zugerechnet; homogene Mischungen aus Inertmaterialformkörpern und Katalysatorformkörpern werden dem Katalysatorfestbett dagegen zugerechnet.
Der Vorteil des erfindungsgemäßen Verfahrens gegenüber dem Verfahren des Standes der Technik liegt darin begründet, dass es eine übermäßige Wärmeentwicklung nicht durch eine Minderung des Reaktandengehaltes des Beschickungsgasgemisches sondern bei vollem Reaktandengehalt durch eine Minderung der Belastung des Kataly- satorfestbetts mit Beschickungsgasgemisch beschneidet.
Der Umsatz der organischen Vorläuferverbindung (bezogen auf einmaligen Durchgang des Beschickungsgasgemisches durch das Katalysatorfestbett) wird dabei im wesentlichen gleichbleibend auf den angestrebten Zielumsatz eingestellt. Im wesentlichen gleichbleibend bedeutet dabei, dass die maximale Abweichung vom über die Zeit arithmetisch gemittelten Umsatz nicht mehr als ± 10 %, vorzugsweise nicht mehr als ± 5 % beträgt (Bezugsbasis ist dabei der über die Zeit arithmetisch gemittelte Umsatz).
Ebenso bedeutet „bei im wesentlichen gleichbleibender Zusammensetzung des Be- schickungsgasgemischs", dass die maximale Abweichung des Volumenanteils einer der Komponenten molekularer Sauerstoff, organische Vorläuferverbindung sowie inertes Verdünnungsgas am Beschickungsgasgemisch vom jeweiligen über die Zeit arithmetisch gemittelten Volumenanteil der jeweiligen Komponente am Beschickungsgasgemisch nicht mehr als ± 10 %, vorzugsweise nicht mehr als ± 5 % beträgt (Bezugsba- sis ist dabei der jeweilige über die Zeit arithmetisch gemittelte Volumenanteil der jeweiligen Komponente am Beschickungsgasgemisch).
Die Einstellung der Zusammensetzung des Beschickungsgasgemisches sowie der Temperatur des Katalysatorfestbetts für das erfindungsgemäße Verfahren kann im Prinzip nach der in der WO 02/098827 beschriebenen Verfahrenweise erfolgen. Der dazu erforderliche Zeitrahmen liegt normalerweise jedoch deutlich unterhalb einer Stunde. Sie kann jedoch auch so erfolgen, dass man in einer über einen statischen Mischer führenden Leitung dem die Katalysatorfestbettschüttung enthaltenden Reaktor zunächst nur (gegebenenfalls mit einem Gehalt von 2 bis 4 Vol.-% Sauerstoff) Inertgas (einschließlich Wasserdampf), dann die wenigstens eine organische Vorläuferverbin- dung und abschließend die Sauerstoffquelle (im Normalfall Luft) zuführt. Das Katalysatorfestbett wird dabei mittels des Wärmeträgers während der Inertgaszufuhr bereits auf die Temperatur gebracht, die bei der niederen Belastung erforderlich ist, um bei einmaligem Durchgang durch die Katalysatorbeschickung den Zielumsatz zu erreichen.
Eine niedere Belastung des Katalysatorfestbetts mit Beschickungsgasgemisch ist bei im wesentlichen gleichbleibender Zusammensetzung des Beschickungsgasgemischs gleichbedeutend mit einer niederen Belastung des Katalysatorfestbetts mit Rektand.
Wird im weiteren Verlauf des erfindungsgemäßen Verfahrens die Belastung des Katalysatorfestbetts mit Beschickungsgasgemisch erhöht, mindert dies die mittlere Verweilzeit der Rektanden in der Katalysatorbeschickung. Um bei geringer Verweilzeit einen im wesentlichen gleichbleibenden Umsatz der wenigstens einen organischen Vorläuferverbindung zu erzielen, bedarf es daher normalerweise einer Erhöhung der Tempe- ratur des für den indirekten Wärmeaustausch eingesetzten Wärmeträgers.
Niedere Belastung des Katalysatorfestbetts mit Beschickungsgasgemisch bedeutet beim erfindungsgemäßen Verfahren, dass die niedere Belastung in typischer Weise 40 bis 80 %, vorzugsweise 50 bis 70 % der höheren angestrebten (End) Belastung, für die der Reaktor einschließlich seiner Katalysatorbeschickung ausgelegt ist, beträgt.
D.h., sind der Reaktor und das Katalysatorfestbett für eine Endbelastung mit z.B. 150 NI Propen/I Katalysatorfestbett • h ausgelegt (der Propengehalt im Beschickungsgasgemisch einer Propenpartialoxidation zu Acrolein und/oder Acrylsäure beträgt in typischer Weise 4 bis 12 Vol.-%), wird das erfindungsgemäße 3 bis 10 tägige Einfahren in typischer Weise bei einer Belastung von 100 Nl Propen/I • h durchgeführt. Das vorstehende Einfahren könnte dann aber auch bei entsprechenden Belastungen von 80 bis 120 Nl Propen/I • h durchgeführt werden.
Ist eine Endbelastung von 180 bis 190 Nl Propen/I • h ins Auge gefasst, wird das erfindungsgemäße 3 bis 10 tägige Einfahren in typischer Weise bei einer Belastung von 120 Nl Propen/I • h durchgeführt etc.. Das vorstehende Einfahren könnte dann aber auch bei entsprechenden Belastungen von 100 bis 140 Nl Propen/I • h durchgeführt werden. In der Regel liegt die angestrebte Endbelastung mit organischer Vorläuferver- bindung bei Werten ≥ 80 Nl/I • h, meist bei Werten ≥ 100 Nl/I • h bzw. ≥ 120 Nl/I • h. Endbelastungen von 600 Nl/I • h bzw. vielfach 300 Nl/I • h werden in der Regel nicht überschritten.
Nach der Einfahrperiode kann die Belastung sprunghaft, kontinuierlich oder schrittwei- se auf die angestrebte Endbelastung erhöht werden. Der Vorteil der erfindungsgemäßen Verfahrensweise besteht darin, dass es nach Beendigung der Einfahrphase von 3 bis 10 Tagen, häufig 4 bis 9 oder 5 bis 8 Tagen, eine Fortsetzung des Verfahrens bei höherer Belastung mit vergleichsweise erhöhter Zielproduktselektivität und gleichzeitig vergleichsweise geringerer Wärmeträgertemperatur ermöglicht. Vergleichsbasis ist diesbezüglich eine verkürzte bzw. verschwindende Einfahrphase bei geringerer Belastung. Außerdem ermöglicht es minimale Heißpunkttemperaturen (= Bezeichnung für die höchste Temperatur innerhalb des mit Reaktionsgasgemisch durchströmten Katalysatorfestbetts).
Als Festbettkatalysatoren kommen für das erfindungsgemäße Verfahren zur Herstellung von (Meth)acrolein, insbesondere zur Herstellung von Acrolein aus Propen, alle diejenigen in Betracht, deren Aktivmasse wenigstens ein Mo, Bi und Fe enthaltendes Multimetalloxid ist. Sie sollen hier als Festbettkatalysatoren 1 bezeichnet werden.
D.h., prinzipiell können alle diejenigen Katalysatoren, die in den Schriften DE-C 3338380, DE-A 19902562, EP-A 15565, DE-C 2380765, EP-A 807465, EP-A 279374, DE-A 3300044, EP-A 575897, US-A 4438217, DE-A 19855913, WO 98/24746, DE-A 19746210 (diejenigen der allgemeinen Formel II), JP-A 91/294239, EP-A 293224 und EP-A 700714 offenbart werden, als Festbettkatalysatoren 1 eingesetzt werden. Dies gilt insbesondere für die beispielhaften Ausführungsformen in diesen Schriften, unter denen jene der EP-A 15565, der EP-A 575897, der DE-A 19746210 und der DE-A 19855913 besonders bevorzugt werden. Besonders hervorzuheben sind in diesem Zusammenhang ein Katalysator gemäß Beispiel 1 c aus der EP-A 15565 sowie ein in entsprechender Weise herzustellender Katalysatur, dessen Aktivmasse jedoch die Zusammensetzung Mo12 i6ι5Zn2Fe2BiιPo,oo65 o,o6θx • 10SiO2 aufweist. Ferner sind hervorzuheben das Beispiel mit der laufenden Nr. 3 aus der DE-A 19855913 (Stöchiometrie: Mo12Co7Fe3Bioι6Ko,o8Siι,6Ox) als Hohlzylindervoll- katalysator der Geometrie 5 mm x 3 mm x 2 mm (Außendurchmesser x Höhe x Innen- durchmesser) sowie der Multimetalloxid II - Vollkatalysator gemäß Beispiel 1 der DE-A 19746210. Ferner wären die Multimetalloxid-Katalysatoren der US-A 4438217 zu nennen. Letzteres gilt insbesondere dann, wenn diese Hohlzylinder eine Geometrie 5 mm x 2 mm x 2 mm, oder 5 mm x 3 mm x 2 mm, oder 6 mm x 3 mm x 3 mm, oder 7 mm x 3 mm x 4 mm (jeweils Außendurchmesser x Höhe x Innendurchmesser) auf- weisen.
Eine Vielzahl der als Festbettkatalysatoren 1 geeigneten Multimetailoxidaktivmassen lässt sich unter der allgemeinen Formel I Mo12BiaFebX1 cX2 dX3 eX4 fOn (I), in der die Variablen nachfolgende Bedeutung aufweisen:
X1 = Nickel und/oder Kobalt, X2 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall,
X3= Zink, Phosphor, Arsen, Bor, Antimon, Zihn, Cer, Blei und/oder Wolfram,
X4= Silicium, Aluminium, Titan und/oder Zirkonium,
a = 0,5 bis 5, b = 0,01 bis 5, vorzugsweise 2 bis 4, c = 0 bis 10, vorzugsweise 3 bis 10, d = 0 bis 2, vorzugsweise 0,02 bis 2, e = 0 bis 8, vorzugsweise 0 bis 5, f = 0 bis 10 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in I bestimmt wird, subsummieren.
Sie sind in an sich bekannter Weise erhältlich (siehe z.B. die DE-A 4023239) und werden üblicherweise in Substanz zu Kugeln, Ringen oder Zylindern geformt oder auch in Gestalt von Schalenkatalysatoren, d.h., mit der Aktivmasse beschichteten vorgeformten, inerten Trägerkörpern, eingesetzt. Selbstverständlich können sie prinzipiell aber auch in Pulverform als Festbettkatalysatoren 1 angewendet werden. Selbstverständlich kann als Festbettkatalysator 1 erfindungsgemäß auch der Bi, Mo und Fe umfassende Multimetalloxidkatalysator ACS-4 der Fa. Nippon Shokubai verwendet werden.
Prinzipiell können für die Festbettkatalysatoren 1 geeignete Aktivmassen, insbesondere solche der allgemeinen Formel I, in einfacher Weise dadurch hergestellt werden, daß man von geeigneten Quellen ihrer elementaren Konstituenten ein möglichst inniges, vorzugsweise feinteiliges, ihrer Stöchiometrie entsprechend zusammengesetztes, Trockengemisch erzeugt und dieses bei Temperaturen von 350 bis 650°C caiciniert. Die Calcination kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft (Gemisch aus Inertgas und Sauerstoff) sowie auch unter reduzierender Atmosphäre (z.B. Gemisch aus Inertgas, NH3, CO und/oder H2) erfolgen. Die Calcina- tionsdauer kann einige Minuten bis einige Stunden betragen und nimmt üblicherweise mit der Temperatur ab. Als Quellen für die elementaren Konstituenten der Multimetall- oxidaktivmassen I kommen solche Verbindungen in Betracht, bei denen es sich bereits um Oxide handelt und/oder um solche Verbindungen, die durch Erhitzen, wenigstens in Anwesenheit von Sauerstoff, in Oxide überführbar sind. Neben den Oxiden kommen als solche Ausgangsverbindungen vor allem Halogenide, Nitrate, Formiate, Oxalate, Citrate, Acetate, Carbonate, Aminkomplexe, Ammonium- Salze und/oder Hydroxide in Betracht (Verbindungen wie NH4OH, (NH )2CO3, NH4NO3, NH4CHO2, CH3COOH, NH4CH3CO2 und/oder Ammoniumoxalat, die spätestens beim späteren Calcinieren zu vollständig gasförmig entweichenden Verbindungen zerfallen und/oder zersetzt werden können, können in das innige Trockengemisch zusätzlich eingearbeitet werden).
Das innige Vermischen der Ausgangsverbindungen zur Herstellung von Multimetall- oxidmassen I kann in trockener oder in nasser Form erfolgen. Erfolgt er in trockener Form, so werden die Ausgangsverbindungen zweckmäßigerweise als feinteilige Pulver eingesetzt und nach dem Mischen und gegebenenfalls Verdichten der Calcinierung unterworfen. Vorzugsweise erfolgt das innige Vermischen jedoch in nasser Form. Üblicherweise werden dabei die Ausgangsverbindungen in Form einer wässrigen Lösung und/oder Suspension miteinander vermischt. Besonders innige Trockengemische werden beim beschriebenen Mischverfahren dann erhalten, wenn ausschließlich von in gelöster Form vorliegenden Quellen der elementaren Konstituenten ausgegangen wird. Als Lösungsmittel wird bevorzugt Wasser eingesetzt. Anschließend wird die erhaltene wässrige Masse getrocknet, wobei der Trocknungsprozess vorzugsweise durch Sprüh- trocknung der wässrigen Mischung mit Austrittstemperaturen von 100 bis 150°C erfolgt.
Die als erfindungsgemäße Festbettkatalysatoren 1 geeigneten Multimetalloxidmassen, insbesondere jene der allgemeinen Formel I, können für das erfindungsgemäße Ver- fahren sowohl in Pulverform als auch zu bestimmten Katalysatorgeometrien geformt eingesetzt werden, wobei die Formgebung vor oder nach der abschließenden Calcina- tion erfolgen kann. Beispielsweise können aus der Pulverform der Aktivmasse oder ihrer uncalcinierten und/oder partiell caicinierten Vorläufermasse durch Verdichten zur gewünschten Katalysatorgeometrie (z.B. durch Tablettieren, Extrudieren oder Strang- pressen) Vollkatalysatoren hergestellt werden, wobei gegebenenfalls Hilfsmittel wie z.B. Graphit oder Stearinsäure als Gleitmittel und/oder Formhilfsmittel und Verstär- kungsmittel wie Mikrofasern aus Glas, Asbest, Siliciumcarbid oder Kaliumtitanat zugesetzt werden können. Geeignete Vollkatalysatorgeometrien sind z.B. Vollzylinder oder Hohizylinder mit einem Außendurchmesser und einer Länge von 2 bis 10 mm. Im Fall der Hohizylinder ist eine Wandstärke von 1 bis 3 mm zweckmäßig. Selbstverständlich kann der Vollkatalysator auch Kugelgeometrie aufweisen, wobei der Kugeldurchmesser 2 bis 10 mm betragen kann.
Selbstverständlich kann die Formgebung der pulverförmigen Aktivmasse oder ihrer pulverförmigen, noch nicht und/oder partiell caicinierten, Vorläufermasse auch durch Aufbringen auf vorgeformte inerte Katalysatorträger erfolgen. Die Beschichtung der Trägerkörper zur Herstellung der Schalenkatalysatoren wird in der Regel in einem geeigneten drehbaren Behälter ausgeführt, wie es z.B. aus der DE-A 2909671, der EP-A 293859 oder aus der EP-A 714700 bekannt ist. Zweckmäßigerweise wird zur Beschichtung der Trägerkörper die aufzubringende Pulvermasse befeuchtet und nach dem Aufbringen, z.B. mittels heißer Luft, wieder getrocknet. Die Schichtdicke der auf den Trägerkörper aufgebrachten Pulvermasse wird zweckmäßigerweise im Bereich 10 bis 1000 mm, bevorzugt im Bereich 50 bis 500 mm und besonders bevorzugt im Bereich 150 bis 250 mm liegend, gewählt.
Als Trägermaterialien können dabei übliche poröse oder unporöse Aluminiumoxide, Siliciumdioxid, Thoriumdioxid, Zirkondioxid, Siliciumcarbid oder Silikate wie Magnesium- oder Aluminiumsilikat verwendet werden. Die Trägerkörper können regelmäßig oder unregelmäßig geformt sein, wobei regelmäßig geformte Trägerkörper mit deutlich ausgebildeter Oberflächenrauhigkeit, z.B. Kugeln oder Hohizylinder, bevorzugt werden. Geeignet ist die Verwendung von im wesentlichen unporösen, oberflächenrauhen, kugelförmigen Trägern aus Steatit, deren Durchmesser 1 bis 8 mm, bevorzugt 4 bis 5 mm beträgt. Geeignet ist aber auch die Verwendung von Zylindern als Trägerkörper, deren Länge 2 bis 10 mm und deren Außendurchmesser 4 bis 10 mm beträgt. Im Fall von erfindungsgemäß geeigneten Ringen als Trägerkörper liegt die Wanddicke darüber hinaus üblicherweise bei 1 bis 4 mm. Erfindungsgemäß bevorzugt zu verwendende ringförmige Trägerkörper besitzen eine Länge von 3 bis 6 mm, einen Außendurchmesser von 4 bis 8 mm und eine Wanddicke von 1 bis 2 mm. Erfindungsgemäß geeignet sind vor allem auch Ringe der Geometrie 7 mm x 3 mm x 4 mm (Außendurchmes- ser x Länge x Innendurchmesser) als Trägerkörper. Die Feinheit der auf die Oberfläche des Trägerkörpers aufzubringenden katalytisch aktiven Oxidmassen wird selbstredend an die gewünschte Schalendicke angepasst (vgl. EP-A 714700).
Günstige als Festbettkatalysatoren 1 erfindungsgemäß zu verwendende Multimetall- oxidaktivmassen sind ferner Massen der allgemeinen Formel II
[Y1 aΥ2 b x.]p[Y3 c.Y4 d.Y5 eΥ6 f.Y7 gY2 h ]q (II),
in der die Variablen folgende Bedeutung haben:
Y1 = Wismut, Tellur, Antimon, Zinn und/oder Kupfer,
Y2 = Molybdän und/oder Wolfram,
Y3 = ein Alkalimetall, Thallium und/oder Samarium,
Y4 = ein Erdalkalimetall, Nickel, Kobalt, Kupfer, Mangan, Zink, Zinn, Cadmium und/oder Quecksilber, Y5 = Eisen, Chrom, Cer und/oder Vanadium, Y6 = Phosphor, Arsen, Bor und/oder Antimon,
Y7 = ein seltenes Erdmetall, Titan, Zirkonium, Niob, Tantal, Rhenium, Ruthenium, Rhodium, Silber, Gold, Aluminium, Gallium, Indium, Silicium, Germanium, Blei, Thorium und/oder Uran,
a' = 0,01 bis 8, b' = 0,1 bis 30, c' = 0 bis 4, d' = 0 bis 20, e' = 0 bis 20, f = 0 bis 6, g' = 0 bis 15, h' = 8 bis 16, x',y'= Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt werden und p,q = Zahlen, deren Verhältnis p/q 0,1 bis 10 beträgt,
enthaltend dreidimensional ausgedehnte, von ihrer lokalen Umgebung aufgrund ihrer von ihrer lokalen Umgebung verschiedenen Zusammensetzung abgegrenzte, Bereiche der chemischen Zusammensetzung Y1 aΥ2 b χ', deren Größtdurchmesser (längste durch den Schwerpunkt des Bereichs gehende Verbindungsstrecke zweier auf der Oberfläche (Grenzfläche) des Bereichs befindlicher Punkte) 1 nm bis 100 μm, häufig 10 nm bis 500 nm oder 1 μm bis 50 bzw. 25 μm, beträgt.
Besonders vorteilhafte erfindungsgemäße Multimetalloxidmassen II sind solche, in denen Y1 Wismut ist.
Unter diesen werden wiederum jene bevorzugt, die der allgemeinen Formel III
[Bia.Z2 bOJ..]pn [Z2 12Z3 c.Z4 rf.Fee.Z5 fZVZ7 h»O ]q.. (IM)
in der die Varianten folgende Bedeutung haben:
Z2 = Molybdän und/oder Wolfram,
Z3 = Nickel und/oder Kobalt,
Z4 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall,
Z5 = Phosphor, Arsen, Bor, Antimon, Zinn, Cer und/oder Blei,
Z6 = Silicium, Aluminium, Titan und/oder Zirkonium, Z7 = Kupfer, Silber und/oder Gold, a" = 0,1 bis 1 , b" = 0,2 bis 2, c" = 3 bis 10, d" = 0,02 bis 2, e" = 0,01 bis 5, vorzugsweise 0,1 bis 3, f" = 0 bis 5, g" = 0 bis 10, h" = 0 bis 1 , x",y"= Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Element in III bestimmt werden, p",q"=Zahlen, deren Verhältnis p"/q" 0,1 bis 5, vorzugsweise 0,5 bis 2 beträgt,
entsprechen, wobei diejenigen Massen III ganz besonders bevorzugt werden, in denen Z2 b- = (Wolfram)b" und Z2 12 = (Molybdän)12 ist.
Ferner ist es von Vorteil, wenn wenigstens 25 mol-% (bevorzugt wenigstens 50 mol-% und besonders bevorzugt wenigstens 100 mol-%) des gesamten Anteils [Y1 aΥ2 bOX']p ([Bia»Z2 Ox»]p») der als Festbettkatalysatoren 1 erfindungsgemäß geeigneten Multime- talloxidmassen II (Multimetalloxidmassen III) in den erfindungsgemäß geeigneten Multimetalloxidmassen II (Multimetalloxidmassen III) in Form dreidimensional ausgedehnter, von ihrer lokalen Umgebung aufgrund ihrer von ihrer lokalen Umgebung verschiedenen chemischen Zusammensetzung abgegrenzter, Bereiche der chemischen Zusammensetzung Y1a'Y2 OX' [Bia»Z2 »Oχ") vorliegen, deren Größtdurchmesser im Bereich 1 nm bis 100 μm liegt.
Hinsichtlich der Formgebung gilt bezüglich Multimetalloxidmassen Il-Katalysatoren das bei den Multimetalloxidmassen I-Katalysatoren Gesagte.
Die Herstellung von Multimetalloxidmassen Il-Aktivmassen ist z.B. in der EP-A 575897 sowie in der DE-A 19855913 beschrieben.
Anwendungsmäßig zweckmäßig erfolgt die Durchführung der erfindungsgemäßen heterogen katalysierten Gasphasen-Partialoxidation einer organischen Vorläuferverbin- düng zum (Meth)acrolein in einem mit den Festbettkatalysatoren 1 beschickten Rohr- bündelreaktor wie er z.B. in der EP-A 700714 beschrieben ist.
D.h., in einfachster Weise befindet sich der zu verwendende Festbettkatalysator 1 in den Metallrohren eines Rohrbündelreaktors und um die Metallrohre wird ein Tempera- turmedium (Einzonenfahrweise), in der Regel eine Salzschmelze, geführt. Salzschmel- ze und Reaktionsgasgemisch können dabei im einfachen Gleich- oder Gegenstrom geführt werden. Die Salzschmelze (das Temperiermedium) kann aber auch über den Reaktor betrachtet mäanderförmig um die Rohrbündel geführt werden, so dass lediglich über den gesamten Reaktor betrachtet ein Gleich- oder Gegenstrom zur Strö- mungsrichtung des Reaktionsgasgemisches besteht. Die Strömungsgeschwindigkeit des Temperiermediums (Wärmeaustauschmittels) wird dabei üblicherweise so bemessen, dass der Temperaturanstieg (bedingt durch die Exothermie der Reaktion) des Wärmeaustauschmittels von der Eintrittsstelle in den Reaktor bis zur Austrittstelle aus dem Reaktor ≥ 0 bis 10°C, häufig ≥ 2 bis 8°C, oft ≥ 3 bis 6°C beträgt. Die Eintrittstem- peratur des Wärmeaustauschmittels in den Rohrbündelreaktor beträgt, insbesondere im Fall der Umsetzung von Propen zu Acrolein, in der Regel 310 bis 360°C, häufig 320 bis 340°C.
Als Wärmeaustauschmittel eignen sich insbesondere fluide Temperiermedien. Beson- ders günstig ist die Verwendung von Schmelzen von Salzen wie Kaliumnitrat, Kaliumnitrit, Natriumnitrit und/oder Natriumnitrat, oder von niedrig schmelzenden Metallen wie Natrium, Quecksilber sowie Legierungen verschiedener Metalle.
Zweckmäßigerweise wird das Beschickungsgasgemisch der Beschickung mit Festbett- katalysator 1 auf die gewünschte Reaktionstemperatur vorerwärmt zugeführt.
Insbesondere im Fall von angestrebten hohen (z.B. ≥ 160 Nl/I • h ,in der Regel jedoch ≤ 600 NI/I • h) Endbelastungen der Beschickung mit Festbettkatalysator 1 mit der wenigstens einen partiell zu oxidierenden organischen Vorläuferverbindung (z.B. des Pro- pens) erfolgt die Durchführung des erfindungsgemäßen Verfahrens zweckmäßig in einem Zweizonenrohrbündelreaktor. Eine bevorzugte Variante eines erfindungsgemäß einsetzbaren Zweizonenrohrbündelreaktors offenbart die DE-C 2830765. Aber auch die in der DE-C 2513405, der US-A 3147084, der DE-A 2201528, der EP-A 383224 und der DE-A 2903218 offenbarten Zweizonenrohrbündelreaktoren sind geeignet.
D.h., in einfachster weise befindet sich der zu verwendende Festbettkatalysator 1 in den Metallrohren eines Rohrbündelreaktors und um die Metallrohre werden zwei voneinander im wesentlichen räumlich getrennte Temperiermedien, in der Regel Salzschmelzen, geführt. Der Rohrabschnitt, über den sich das jeweilige Salzbad erstreckt, repräsentiert eine Reaktionszone. Vorzugsweise umströmt z.B. ein Salzbad A denjenigen Abschnitt der Rohre (die Reaktionszone A), in welchem sich z.B. die oxidative Umsetzung des Propens (beim einfachen Durchgang) bis zum Erreichen eines Umsatzes im Bereich von 40 bis 80 mol.-% vollzieht und ein Salzbad B umströmt z.B. den Abschnitt der Rohre (die Reaktionszone B), in welchem sich z.B. die oxidative An- Schlussumsetzung des Propens (beim einfachen Durchgang) bis zum Erreichen eines Umsatzwertes von in der Regel wenigstens 90 mol.-% vollzieht (bei Bedarf können sich an die Reaktionszonen A, B weitere Reaktionszonen anschließen, die auf individuellen Temperaturen gehalten werden).
Innerhalb der jeweiligen Temperaturzone kann das Salzbad prinzipiell wie bei der Einzonenfahrweise geführt werden. Die Temperatur des Salzbades B liegt normalerweise wenigstens 5°C oberhalb der Temperatur des Salzbads A.
Im Übrigen kann die Zwei-Zonen-Hochlastfahrweise z.B. wie in der DE-A 19948523 oder wie in der DE-A 19948248 beschrieben durchgeführt werden.
Am Beispiel der Gasphasen-Partialoxidation von Propen zu Acrolein sei darauf beispielhaft näher eingegangen. Die anderen erfindungsgemäßen Gasphasen- Partialoxidationen von organischen Vorläuferverbindungen sind analog durchführbar.
Danach eignet sich das erfindungsgemäße Verfahren für Propenbelastungen der Festbettkatalysatorschüttung 1 von > 70 Nl/I • h, ≥ 130 Nl/I • h, ≥ 180 Nl/I • h, ≥ 240 Nl/I • h, ≥ 300 Nl/I • h, jedoch normalerweise < 600 Nl/I • h.
Dabei kann das für das Beschickungsgasgemisch zu verwendende Inertgas zu
≥ 20 Vol.-%, oder zu > 30 Vol.-%, oder zu ≥ 40 Vol.-%, oder zu ≥ 50 Voi.-%, oder zu ≥ 60 Vol.-%, oder zu ≥ 70 Vol.-%, oder zu > 80 Vol.-%, oder zu ≥ 90 Vol.-%, oder zu ≥ 95 Vol.-% aus molekularem Stickstoff bestehen.
Bei Propenbelastungen der Festbettkatalysatorschüttung 1 oberhalb von 250 Nl/I • h wird für das erfindungsgemäße Verfahren jedoch die Mitverwendung von inerten (inerte Verdünnungsgase sollen hier generell solche sein, die sich beim einmaligen Durchgang durch die jeweilige Festbettkatalysatorschüttung zu weniger als 5 %, bevorzugt zu weniger als 2 % umsetzen) Verdünnungsgasen wie Propan, Ethan, Methan, Pentan, Butan, CO2, CO, Wasserdampf und/oder Edelgasen für das Beschickungsgasgemisch empfohlen.
Mit zunehmender Propenbelastung ist die beschriebene Zweizonenfahrweise, wie bereits erwähnt, gegenüber der beschriebenen Einzonenfahrweise bevorzugt.
Der Arbeitsdruck kann beim erfindungsgemäßen Verfahren bei der Propenpartialoxida- tion sowohl unterhalb von Normaldruck (z.B. bis zu 0,5 bar) als auch oberhalb von Normaldruck liegen. Typischerweise wird der Arbeitsdruck bei Werten von 1 bis 5 bar, häufig 1 ,5 bis 3,5 bar liegen. Normalerweise wird der Reaktionsdruck bei der Propen- partialoxidation 100 bar nicht überschreiten. Das molare Verhältnis von O2:C3H6 im Beschickungsgasgemisch beträgt normalerweise ≥ 1. Üblicherweise wird dieses Verhältnis bei Werten ≤ 3 liegen. Häufig beträgt das molare Verhältnis von O2:C3H6 im Beschickungsgasgemisch ≥ 1 ,5 und < 2,0.
Als Quelle für den erforderlichen molekularen Sauerstoff kommt sowohl Luft, als auch z.B. an molekularem Stickstoff entreicherte Luft (z.B. ≥ 90 Voi.-% O2, ≤ 10 Vol.-% N2) in Betracht.
Der Propenanteil im Beschickungsgasgemisch kann z.B. bei Werten von 4 bis
15 Vol.-%, häufig bei 5 bis 12 Vol-% bzw. 5 bis 8 Vol.-% liegen (jeweils bezogen auf das Gesamtvolumen).
Häufig wird man das erfindungsgemäße Verfahren bei einem Propen : Sauerstoff : indifferente Gase (einschließlich Wasserdampf) Volumenverhältnis im Reaktionsgas- ausgangsgemisch (Beschickungsgasgemisch) von 1 :(1 ,0 bis 3,0):(5 bis 25), vorzugsweise 1 :(1 ,5 bis 2,3):(10 bis 15) durchführen. Es können aber auch die Beschickungsgasgemischzusammensetzungen der DE-A 10313209 erfindungsgemäß angewendet werden.
Zur Herstellung von Acrylsäure aus Acrolein kommen für das erfindungsgemäße Verfahren alle diejenigen in Betracht, deren Aktivmasse wenigstens ein Mo und V enthaltendes Multimetalloxid ist. Sie sollen hier als Festbettkatalysatoren 2 bezeichnet werden.
Solchermaßen geeignete Festbettkatalysatoren 2 können beispielsweise der US-A 3 775474, der US-A 3 954 855, der US-A 3 893 951 und der US-A 4 339 355 entnommen werden. Ferner eignen sich in besonderer Weise die Multimetalloxidmassen der EP-A 427 508, der DE-A 2 909 671 , der DE-C 31 51 805, der DE-AS 2 626 887, der DE-A 43 02 991 , der EP-A 700 893, der EP-A 714 700 und der DE-A 19 73 6105 für Festbettkatalysatoren 2. Besonders bevorzugt sind in diesem Zusammenhang die beispielhaften Ausführungsformen der EP-A 714 700 sowie der DE-A 19 73 6105.
Eine Vielzahl der als Festbettkatalysatoren 2 geeigneten Multimetalloxidaktivmassen lässt sich unter der allgemeinen Formel IV
Mo12VaX1 bX2 cX3 dX4 eX5 fX6 gOn (IV),
in der die Variablen folgende Bedeutung haben: X1 = W, Nb, Ta, Cr und/oder Ce,
X2 = Cu, Ni, Co, Fe, Mn und/oder Zn,
X3 = Sb und/oder Bi, X4 = eines oder mehrere Alkalimetalle,
X5 = eines oder mehrere Erdalkalimetalle,
X6 = Si, AI, Ti und/oder Zr, a = 1 bis 6, b = 0,2 bis 4, c = 0,5 bis 18, d = 0 bis 40, e = 0 bis 2, f = 0 bis 4, g = 0 bis 40 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in IV bestimmt wird,
subsummieren.
Bevorzugte Ausführungsformen innerhalb der aktiven Multimetalloxide IV sind jene, die von nachfolgenden Bedeutungen der Variablen der allgemeinen Formel IV erfasst werden:
X1 = W, Nb, und/oder Cr, X2 = Cu, Ni, Co, und/oder Fe,
X3= Sb,
X4 = Na und/oder K,
X5 = Ca, Sr und/oder Ba,
X6 = Si, AI, und/oder Ti, a = 1,5 bis 5, b = 0,5 bis 2, c = 0,5 bis 3, d = 0 bis 2, e = 0 bis 0,2, f = 0 bis 1 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in IV bestimmt wird.
Ganz besonders bevorzugte Multimetalloxide IV sind jedoch jene der allgemeinen Formel V Mo12Va.Y1 b.Y2 c.Y5 fY6 g.On (V),
mit
Y1 = W und/oder Nb,
Y2 = Cu und/oder Ni,
Y5 = Ca und/oder Sr,
Y6 = Si und/oder AI, a' = 2 bis 4, b' = 1 bis 1 ,5, c' = 1 bis 3, f = 0 bis 0,5 g' = 0 bis 8 und n' = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elementen in V bestimmt wird.
Die erfindungsgemäß geeigneten Multimetalloxidaktivmassen (IV) sind in sich bekannter, z.B. in der DE-A 4335973 oder in der EP-A 714700 offenbarter, Weise erhältlich.
Prinzipiell können erfindungsgemäß als Festbettkatalysatoren 2 geeignete Multimetalloxidaktivmassen, insbesondere solche der allgemeinen Formel IV, in einfacher Weise dadurch hergestellt werden, dass man von geeigneten Quellen ihrer elementaren Konstituenten ein möglichst inniges, vorzugsweise feinteiliges, ihrer Stöchiometrie entspre- chend zusammengesetztes, Trockengemisch erzeugt und dieses bei Temperaturen von 350 bis 600°C caiciniert. Die Caicination kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft (Gemisch aus Inertgas und Sauerstoff) sowie auch unter reduzierender Atmosphäre (z.B. Gemische aus Inertgas und reduzierenden Gasen wie H2, NH3, CO, Methan und/oder Acrolein oder die genannten redu- zierend wirkenden Gase für sich) durchgeführt werden. Die Caicinationsdauer kann einige Minuten bis einige Stunden betragen und nimmt üblicherweise mit der Temperatur ab. Als Quellen für die elementaren Konstituenten der Multimetalloxidaktivmassen IV kommen solche Verbindungen in Betracht, bei denen es sich bereits um Oxide handelt und/oder um solche Verbindungen, die durch Erhitzen, wenigstens in Anwe- senheit von Sauerstoff, in Oxide überführbar sind.
Das innige Vermischen der Ausgangsverbindungen zur Herstellung von Multimetalloxidmassen IV kann in trockener oder in nasser Form erfolgen. Erfolgt es in trockener Form, so werden die Ausgangsverbindungen zweckmäßigerweise als feinteilige Pulver eingesetzt und nach dem Mischen und gegebenenfalls Verdichten der Calcinierung unterworfen. Vorzugsweise erfolgt das innige Vermischen jedoch in nasser Form.
Üblicherweise werden dabei die Ausgangsverbindungen in Form einer wässrigen Lö- sung und/oder Suspension miteinander vermischt. Besonders innige Trockengemische werden beim beschriebenen Mischverfahren dann erhalten, wenn ausschließlich von in gelöster Form vorliegenden Quellen der elementaren Konstituenten ausgegangen wird. Als Lösungsmittel wird bevorzugt Wasser eingesetzt. Anschließend wird die erhaltene wässrige Masse getrocknet, wobei der Trocknungsprozess vorzugsweise durch Sprüh- trocknung der wässrigen Mischung mit Austrittstemperaturen von 100 bis 150°C erfolgt.
Die erfindungsgemäß als Festbettkatalysatoren 2 geeigneten Multimetalloxidmassen, insbesondere jene der allgemeinen Formel IV, können für das erfindungsgemäße Ver- fahren sowohl in Pulverform als auch zu bestimmten Katalysatorgeometrien geformt eingesetzt werden, wobei die Formgebung vor oder nach der abschließenden Caicination erfolgen kann. Beispielsweise können aus der Pulverform der Aktivmasse oder ihrer uncalcinierten Vorläufermasse durch Verdichten zur gewünschten Katalysatorgeometrie (z.B. durch Tablettieren, Extrudieren oder Strangpressen) Vollkatalysatoren hergestellt werden, wobei gegebenenfalls Hilfsmittel wie z.B. Graphit oder Stearinsäure als Gleitmittel und/oder Formhilfsmittel und Verstärkungsmittel wie Mikrofasern aus Glas, Asbest, Siliciumcarbid oder Kaliumtitanat zugesetzt werden können. Geeignete Vollkatalysatorgeometrien sind z.B. Vollzylinder oder Hohizylinder mit einem Außendurchmesser und einer Länge von 2 bis 10 mm. Im Fall der Hohizylinder ist eine Wandstärke von 1 bis 3 mm zweckmäßig. Selbstverständlich kann der Vollkatalysator auch Kugelgeometrie aufweisen, wobei der Kugeldurchmesser 2 bis 10 mm betragen kann.
Selbstverständlich kann die Formgebung der pulverförmigen Aktivmasse oder ihrer pulverförmigen, noch nicht caicinierten, Voriäufermasse auch durch Aufbringen auf vorgeformte inerte Katalysatorträger erfolgen. Die Beschichtung der Trägerkörper zur Herstellung der Schalenkatalysatoren wird in der Regel in einem geeigneten drehbaren Behälter ausgeführt, wie es z.B. aus der DE-A 2909671 , der EP-A 293859 oder aus der EP-A 714700 bekannt ist.
Zweckmäßigerweise wird zur Beschichtung der Trägerkörper die aufzubringende Pulvermasse befeuchtet und nach dem Aufbringen, z.B. mittels heißer Luft, wieder getrocknet. Die Schichtdicke der auf den Trägerkörper aufgebrachten Pulvermasse wird zweckmäßigerweise im Bereich 10 bis 1000 μm, bevorzugt im Bereich 50 bis 500 μm und besonders bevorzugt im Bereich 150 bis 250 μm liegend, gewählt. Als Trägermaterialien können dabei übliche poröse oder unporöse Aluminiumoxide, Siliciumdioxid, Thoriumdioxid, Zirkondioxid, Siliciumcarbid oder Silikate wie Magnesium- oder Aluminiumsilikat verwendet werden. Die Trägerkörper können regelmäßig oder unregelmäßig geformt sein, wobei regelmäßig geformte Trägerkörper mit deutlich ausgebildeter Oberflächenrauhigkeit, z.B. Kugeln oder Hohizylinder, bevorzugt werden. Geeignet ist die Verwendung von im wesentlichen unporösen, oberflächenrauhen, kugelförmigen Trägern aus Steatit, deren Durchmesser 1 bis 8 mm, bevorzugt 4 bis 5 mm beträgt. Geeignet ist aber auch die Verwendung von Zylindern als Trägerkörper, deren Länge 2 bis 10 mm und deren Außendurchmesser 4 bis 10 mm beträgt. Im Fall von erfindungsgemäß geeigneten Ringen als Trägerkörper liegt die Wanddicke darüber hinaus üblicherweise bei 1 bis 4 mm. Erfindungsgemäß bevorzugt zu verwendende ringförmige Trägerkörper besitzen eine Länge von 3 bis 6 mm, einen Außendurchmesser von 4 bis 8 mm und eine Wanddicke von 1 bis 2 mm. Erfindungsgemäß geeignet sind vor allem auch Ringe der Geometrie 7 mm x 3 mm x 4 mm (Außendurchmesser x Länge x Innendurchmesser) als Trägerkörper. Die Feinheit der auf die Oberfläche des Trägerkörpers aufzubringenden kataiytisch aktiven Oxidmassen wird selbstredend an die gewünschte Schaiendicke angepasst (vgl. EP-A 714700).
Günstige erfindungsgemäß als Festbettkatalysatoren 2 zu verwendende Multimetalloxidaktivmassen sind ferner Massen der allgemeinen Formel VI,
[D]P[E]q (VI),
in der die Variablen folgende Bedeutung haben:
D = Mo12Va.Z1 b.Z2 c.Z3 tf.Z4 e.Z5 fZVθ).,
Figure imgf000021_0001
Z1 = W, Nb, Ta, Cr und/oder Ce,
Z2 = Cu, Ni, Co, Fe, Mn und/oder Zn, z3 = Sb und/oder Bi, z4 = Li, Na, K, Rb, Cs und/oder H z5 = Mg, Ca, Sr und/oder Ba, z6 = Si, AI, Ti und/oder Zr, z7 = Mo, W, V, Nb und/oder Ta,
a" 1 bis 8, b" = 0,2 bis 5, c" = 0 bis 23, d" = 0 bis 50, e" = 0 bis 2, f" = 0 bis 5, g" = 0 bis 50, h" = 4 bis 30, i" = 0 bis 20 und x",y" = Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Element in VI bestimmt werden und p,q = von Null verschiedene Zahlen, deren Verhältnis p/q 160:1 bis 1 :1 beträgt,
und die dadurch erhältlich sind, dass man eine Multimetalloxidmasse E
Z7 12Cuh..H,Oy.. (E),
in f einteiliger Form getrennt vorbildet (Ausgangsmasse 1 ) und anschließend die vorge- bildete feste Ausgangsmasse 1 in eine wässrige Lösung, eine wässrige Suspension oder in ein feinteiliges Trockengemisch von Quellen der Elemente Mo, V, Z1, Z2, Z3, Z4, Z5, Z6, die die vorgenannten Elemente in der Stöchiometrie D
Mo12Va.Z1 b.Z2 c.Z3 d »Z4 e.Z5 fZV (D),
enthält (Ausgangsmasse 2), im gewünschten Mengenverhältnis p:q einarbeitet, die dabei gegebenenfalls resultierende wässrige Mischung trocknet, und die so gegebene trockene Vorläufermasse vor oder nach ihrer Trocknung zur gewünschten Katalysatorgeometrie bei Temperaturen von 250 bis 600°C caiciniert.
Bevorzugt sind die Multimetalloxidmassen VI, bei denen die Einarbeitung der vorgebildeten festen Ausgangsmasse 1 in eine wässrige Ausgangsmasse 2 bei einer Temperatur < 70°C erfolgt. Eine detaillierte Beschreibung der Herstellung von Multimetalloxidmassen Vl-Katalysatoren enthalten z.B. die EP-A 668104, die DE-A 19736105 und die DE-A 19528646.
Hinsichtlich der Formgebung gilt bezüglich Multimetalloxidmassen Vl-Katalysatoren das bei den Multimetalloxidmassen IV-Katalysatoren Gesagte.
Anwendungstechnisch zweckmäßig wird man die erfindungsgemäße heterogen katalysierte Gasphasen-Partialoxidation von Acrolein zu Acrylsäure in einem mit den Festbettkatalysatoren 2 beschickten Rohrbündelreaktor, wie er z.B. in der EP-A 700893 beschrieben ist, durchführen. D.h., in einfachsterweise befindet sich der zu verwendende Festbettkatalysator 2 in den Metallrohren eines Rohrbündelreaktors und um die Metallrohre wird ein Temperiermedium (Einzonenfahrweise), in der Regel eine Salzschmelze geführt. Salzschmelze und Reaktionsgasgemisch können dabei im einfachen Gleich- oder Gegenstrom geführt werden. Das Temperiermedium (die Salzschmelze) kann aber auch über den Reaktor betrachtet mäanderförmig um die Rohrbündel geführt werden, so daß lediglich über den gesamten Reaktor betrachtet ein Gleich- oder Gegenstrom zur Strömungsrichtung des Reaktionsgasgemisches besteht. Der Volumenstrom des Temperiermediums (Wärmeaustauschmittels) wird dabei üblicherweise so bemessen, daß der Tempe- raturanstieg (bedingt durch die Exothermie der Reaktion) des Wärmeaustauschmittels von der Eintrittstelle in den Reaktor bis zur Austrittstelle aus dem Reaktor 0 bis 10°C, häufig w 2 bis 8°C, oft 3 bis 6°C beträgt. Die Eintrittstemperatur des Wärmeaustauschmittels in den Rohrbündelreaktor beträgt in der Regel 230 bis 300°C, häufig 245 bis 285°C bzw. 245 bis 265°C. Als Wärmeaustauschmittel eignen sich dabei die glei- chen f luiden Temperiermedien, wie sie bereits für die erfindungsgemäße heterogen katalysierte Gasphasen-Partialoxidation einer organischen Vorläuferverbindung zum (Meth)acrolein beschrieben worden sind.
Zweckmäßigerweise wird das Beschickungsgasgemisch der Beschickung mit Festbett- katalysator 2 auf die gewünschte Reaktionstemperatur vorerwärmt zugeführt.
Insbesondere im Fall von angestrebten hohen (z.B. ≥ 140 Nl/I • h, in der Regel jedoch ≤ 600 Nl/I • h) Endbelastungen der Beschickung mit Festbettkatalysator 2 mit Acrolein erfolgt die Durchführung des erfindungsgemäßen Verfahrens zweckmäßig in einem Zweizonenrohrbündelreaktor. Eine bevorzugte Variante eines für diesen Zweck erfindungsgemäß einsetzbaren Zweizonenrohrbündelreaktors offenbart die DE-C 2830765. Aber auch die in der DE-C 2513405, der US-A 3147084, der DE-A 2201528, der EP- A 383224 und der DE-A 2903582 offenbarten Zweizonenrohrbündelreaktoren sind geeignet.
D.h., in einfacher Weise befindet sich der erfindungsgemäß zu verwendende Festbettkatalysator 2 in den Metallrohren eines Rohrbündelreaktors und um die Metallrohre werden zwei voneinander im wesentlichen räumlich getrennte Temperiermedien, in der Regel Salzschmelzen, geführt. Der Rohrabschnitt, über den sich das jeweilige Salzbad erstreckt, repräsentiert eine Reaktionszone.
Vorzugsweise umströmt z.B. ein Salzbad C denjenigen Abschnitte der Rohre (die Reaktionszone C), in welchem sich die oxidative Umsetzung des Acroleins (beim einfachen Durchgang) bis zum Erreichen eines Umsatzwertes im Bereich von 55 bis 85 mol.% vollzieht und ein Salzbad D umströmt den Abschnitt der Rohre (die Rekations- zone D), in welchem sich die oxidative Anschlußumsetzung des Acroleins (beim einfachen Durchgang) bis zum Erreichen eines Umsatzwertes von in der Regel wenigstens 90 mol.% vollzieht (bei Bedarf können sich an die erfindungsgemäß anzuwendenden Reaktionszonen C,D weitere Reaktionszonen anschließen, die auf individuellen Temperaturen gehalten werden).
Innerhalb der jeweiligen Temperaturzone kann das Salzbad prinzipiell wie bei der Einzonenfahrweise geführt werden. Die Temperatur des Salzbades D liegt normalerweise wenigstens 5 bis 10°C oberhalb der Temperatur des Salzbades C.
Im übrigen kann die Zwei-Zonen-Hochlastfahrweise z.B. wie in der DE-A 19948523 oder wie in der DE-A 19948248 beschrieben durchgeführt werden.
Danach eignet sich das erfindungsgemäße Verfahren für Acroleinbelastungen der Festbettkatalysatorschüttung 2 von ≥ 70 Nl/I • h, > 130 Nl/I • h, ≥ 180 Nl/I • h, ≥ 240 Nl/I • h, > 300 Nl/I • h, jedoch normalerweise ≤ 600 Nl/I • h.
Dabei kann das für das Beschickungsgasgemisch zu verwendende Inertgas zu ≥ 20 Vol.-%, oder zu > 30 Vol.-%, oder zu ≥ 40 Vol.-%, oder zu ≥ 50 Vol.-%, oder zu > 60 Vol.-%, oder zu > 70 Vol.-%, oder zu ≥ 80 Vol.-%, oder zu ≥ 90 Voi.-%, oder zu ≥ 95 Vol.-% aus molekularem Stickstoff bestehen.
Ist die Gasphasen-Partialoxidation des Acroleins die zweite Reaktionsstufe einer zweistufigen Gasphasen-Partialoxidation von Propen zu Acrylsäure, wird das inerte Ver- dünnungsgas häufig zu 5 bis 20 Gew.-% aus H2O (wird in der ersten Reaktionsstufe gebildet) und zu 70 bis 90 Vol.-% aus N2 bestehen.
Bei Acroleinbelastungen der Festbettkatalysatorschüttung 2 oberhalb von 250 Nl/I • h wird für das erfindungsgemäße Verfahren jedoch die Mitverwendung von inerten Ver- dünnungsgasen wie Propan, Ethan, Methan, Butan, Pentan, CO , CO, Wasserdampf und/oder Edelgasen empfohlen. Selbstverständlich können diese Gase aber auch bereits bei geringeren Acroleinbelastungen mitverwendet werden.
Der Arbeitsdruck kann bei der Gasphasen-Partialoxidation des Acroleins sowohl unter- halb von Normaldruck (z.B. bis zu 0,5 bar) als auch oberhalb von Normaldruck liegen. Typischerweise wird der Arbeitsdruck bei der Gasphasen-Partialoxidation des Acroleins bei Werten von 1 bis 5 bar, häufig 1 bis 3 bar liegen.
Normalerweise wird der Reaktionsdruck bei der Acroleinpartialoxidation 100 bar nicht überschreiten. Das molare Verhältnis von O :Acrolein im Beschickungsgasgemisch der Festbettkatalysatorschüttung 2 wird normalerweise ≥ 1 betragen. Üblicherweise wird dieses Verhältnis bei Werten ≤ 3 liegen. Häufig wird das molare Verhältnis von O :Acrolein im vorgenannten Beschickungsgasgemisch erfindungsgemäß 1 bis 2 bzw. 1 bis 1 ,5 betragen. Vielfach wird man das erfindungsgemäße Verfahren im Fall der Acroleinpar- tialoxidation mit einem im Beschickungsgasgemisch vorliegenden Acro- lein:Sauerstoff .Wasserdampf: Inertgas - Volumenverhältnis (Nl) von 1:(1 bis 3) : (0 bis 20) : (3 bis 30), vorzugsweise von 1 :(1 bis 3) : (0,5 bis 10) : (7 bis 10) auführen.
Der Acroleinanteil im Beschickungsgasgemisch kann z.B. bei Werten von 3 bis 15 Vo %, häufig bei 4 bis 10 Vol.-% bzw. 5 bis 8 Vol.-% liegen (jeweils bezogen auf das Gesamtvolumen).
Die heterogen katalysierte Gasphasen-Partialoxidation von Methacrolein zu Methacrylsäure kann analog zu derjenigen von Acrolein zu Acrylsäure durchgeführt werden. Als Katalysatoren werden jedoch vorzugsweise diejenigen der EP-A 668103 eingesetzt. Ebenso werden die übrigen Reaktionsbedingungen mit Vorteil gemäß der EP- A 668103 festgelegt.
Zur Gasphasen-Partialoxidation von Propan zu Acrylsäure bzw. von iso-Butan zu Methacrylsäure wird man mit Vorteil die Multimetalloxidkatalysatoren einsetzen, wie sie z.B. die Schriften DE-A 10248584, DE-A 10029338, DE-A 10033121 , DE-A 10261186, DE-A 10254278, DE-A 10034825, EP-A 962253, EP-A 1260495, DE-A 10122027, EP- A 192987 und DE-A 10254279 empfehlen.
Ebenso können die Reaktionsbedingungen gemäß diesen Schriften gewählt werden.
Als Reaktor wird man üblicherweise einen Einzonenreaktor verwenden.
Abschließend sei noch festgehalten, dass bei einer zweistufigen heterogen katalysierten Gasphasen-Partialoxidation zur Herstellung von (Meth)acrylsäure (z.B. von Propen zu Acrolein (1. Stufe) und dann Acrolein zu Acrylsäure (2. Stufe)), bei der das Produktgasgemisch der ersten Stufe, gegebenenfalls nach Abkühlung und Zudosierung von Luft als Sauerstoffquelle, in die zweite Stufe geführt wird, mit einer Anwendung des erfindungsgemäßen Verfahrens auf die erste Stufe automatisch auch eine Anwendung des erfindungsgemäßen Verfahrens auf die zweite Stufe einhergeht.
Ferner sei noch festgehalten, dass es beim erfindungsgemäßen Verfahren beim Über- gang von der niederen Belastung zur höheren Belastung zweckmäßig sein kann, den Kreisgasanteil am Beschickungsgasgemisch leicht zu verringern (der Reaktandenanteil am Beschickungsgasgemisch steigt dann geringfügig an). Vorgenanntes ist dann angebracht, wenn die Auslegung des Kreisgasverdichters die maximal komprimierbare Gasmenge limitiert. Abschließend sei festgehalten, dass das erfindungsgemäße Verfahren auch auf in Reaktoren befindliche, frisch regenierierte (z.B. gemäß EP- A 169449, EP-A 614872, EP-A 339119, DE-A 10249797 oder DE-A 10350822) Katalysatorbetten angewendet werden kann.
Beispiel und Vergleichsbeispiele
a) Versuchsanordnung
Ein Reaktionsrohr (V2A Stahl; 30 mm Außendurchmesser, 2 mm Wandstärke, 26 mm Innendurchmesser, Länge: 350 cm, sowie ein in der Reaktionsrohrmitte zentriertes Thermorohr (4 mm Außendurchmesser) zur Aufnahme eines Thermoelements mit dem die Temperatur im Reaktionsrohr auf seiner gesamten Länge ermittelt werden kann) wurde von oben nach unten wie folgt frisch beschickt:
Abschnitt 1 : 80 cm Länge Steatitringe der Geometrie 7 mm x 7 mm x 4 mm (Außendurchmesser x Länge x Innendurchmesser) als Vorschüttung.
Abschnitt 2: 100 cm Länge Katalysatorbeschickung mit einem homogenen Gemisch aus 30 Gew.-% an Steatitringen der Geometrie 5 mm x 3 mm x 2 mm (Außendurchmesser x Länge x Innendurchmesser) und 70 Gew.-% Vollkatalysator aus Abschnitt 3.
Abschnitt 3: 170 cm Länge Katalysatorbeschickung mit ringförmigem (5 mm x 3 mm x 2 mm = Außendurchmesser x Länge x Innendurchmesser) Vollkatalysator gemäß Beispiel 1 der DE-A 10046957 (Stöchiometrie: [Bi2W2O9 x 2Wθ3]o,5 [Mθ125,5Fe2,g4Si1,5gKo,08θx]1).
Die Temperierung des Reaktionsrohres erfolgte mittels eines im Gegenstrom gepumpten Salzbades. b) Versuchsdurchführung
Die beschriebene, jeweils frisch hergerichtete, Versuchsanordnung wurde jeweils kontinuierlich mit einem Beschickungsgasgemisch (Gemisch aus Luft, Polymer grade Propylen und Kreisgas) der Zusammensetzung
5,4 Vol.-% Propen, 10,5 Vol.-% Sauerstoff, 1 ,2 Vol.-% COx, 81 ,3 Vol.-% N2, und 1 ,6 Vol.-% H2O beschickt, wobei die Belastung und die Thermostatisierung des Reaktionsrohres über die Zeit variiert wurden. Die Thermostatisierung des Reaktionsrohres erfolgte so, dass der Propenumsatz U (mol-%) bei einmaligem Durchgang des Beschickungsgasgemisches durch das Reaktionsrohr kontinuierlich etwa 95,0 mol-% betrug.
Die nachfolgenden Tabellen zeigen die in Abhängigkeit von der Belastung des Katalysatorfestbettes (ausgedrückt als Propenlast in Nl/I • h) und der Salzbadtemperatur Ts (°C) erzielten Wertproduktselektivitäten Sw (mol-%) (Summe aus der Selektivität der Acroleinbildung und der Selektivität der Acrylsäurebildung) sowie die längs des Reaktionsrohres gemessenen maximalen Temperaturen Tmax in °C. Die angestrebte Endbelastung betrug 150 Nl/I • h. Die angegebenen Ergebnisse beziehen sich stets auf das Ende der jeweiligen Betriebsperiode.
Beispiel
Figure imgf000027_0001
Vergleichsbeispiel
Figure imgf000028_0001
Ein Vergleich von Beispiel und Vergleichsbeispiel zeigt, dass bei einer sofortigen Inbe- triebnahme der frischen Katalysatorbeschickung unter der angestrebten Endlast eine Katalysatorbeschickung resultiert, die für denselben Umsatz signifikant höhere Salzbadtemperaturen benötigt. Die höheren Maximaltemperaturen bedingen zusätzlich eine frühzeitige Alterung der Katalysatorbeschickung.
US Provisional Patent Application Nr. 60/494814, eingereicht am 14. August 2003 ist eingefügt in die vorliegende Anmeldung durch Literaturhinweis.
Im Hinblick auf die obengenannten Lehren sind zahlreiche Änderungen und Abweichungen von der vorliegenden Erfindung möglich. Man kann deshalb davon ausgehen, dass die Erfindung, im Rahmen der beigefügten Ansprüche, anders als hierin spezifisch beschrieben, ausgeführt werden kann.

Claims

__öPatentansprüche
1. Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure durch heterogen katalysierte Gasphasen-Partialoxidation, bei dem man ein in einem Reaktor befindliches frisches Katalysatorfestbett bei erhöhter Temperatur mit einem Beschickungsgasgemisch belastet, das neben wenigstens einer partiell zu oxidierenden organischen Vorläuferverbindung und molekularem Sauerstoff als Oxidationsmittel wenigstens ein sich unter den Bedingungen der heterogen katalysierten Gasphasen-Partialoxidation im wesentlichen inert verhaltendes Verdün- nungsgas umfasst, dadurch gekennzeichnet, dass das Verfahren nach Einstellung der Zusammensetzung des Beschickungsgasgemisches bei im wesentlichen gleichbleibendem Umsatz der organischen Vorläuferverbindung und bei im wesentlichen gleichbleibender Zusammensetzung des Beschickungsgasgemisches zunächst über einen Einfahrtzeitraum von 3 Tagen bis 10 Tagen bei einer niederen Belastung und daran anschließend bei einer höheren Belastung der Katalysatorbeschickung mit Beschickungsgasgemisch durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die niedere Belastung während des Einfahrzeitraums 40 bis 80 % der angestrebten höheren End- belastung beträgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die angestrebte Endbelastung mit Beschickungsgasgemisch, ausgedrückt als Endbelastung mit organischer Vorläuferverbindung, ≥ 80 Nl/I • h beträgt.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es ein Verfahren der heterogen katalysierten Gasphasen-Partialoxidation von Propen zu Acrolein und/oder Acrylsäure ist.
PCT/EP2004/007871 2003-08-14 2004-07-15 Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure WO2005016861A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04741050A EP1656335A1 (de) 2003-08-14 2004-07-15 Verfahren zur herstellung von (meth)acrolein und/oder (meth)acryls ure
BRPI0413440-0A BRPI0413440A (pt) 2003-08-14 2004-07-15 processo para a preparação de (met) acroleìna e/ou de ácido (met) acrìlico por oxidação parcial em fase gasosa catalisada heterogeneamente
JP2006522917A JP2007502254A (ja) 2003-08-14 2004-07-15 (メタ)アクロレインおよび/または(メタ)アクリル酸の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US49481403P 2003-08-14 2003-08-14
DE10337788.3 2003-08-14
DE2003137788 DE10337788A1 (de) 2003-08-14 2003-08-14 Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure
US60/494,814 2003-08-14

Publications (1)

Publication Number Publication Date
WO2005016861A1 true WO2005016861A1 (de) 2005-02-24

Family

ID=34195742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/007871 WO2005016861A1 (de) 2003-08-14 2004-07-15 Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure

Country Status (9)

Country Link
US (1) US7015354B2 (de)
EP (1) EP1656335A1 (de)
JP (1) JP2007502254A (de)
KR (1) KR20060061357A (de)
BR (1) BRPI0413440A (de)
MY (1) MY138925A (de)
RU (1) RU2361853C2 (de)
TW (1) TW200523245A (de)
WO (1) WO2005016861A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202048A1 (de) 2013-02-07 2013-04-18 Basf Se Verfahren zur Herstellung einer katalytisch aktiven Masse, die ein Gemisch aus einem die Elemente Mo und V enthaltenden Multielementoxid und wenigstens einem Oxid des Molybdäns ist
WO2021213823A1 (de) 2020-04-21 2021-10-28 Basf Se Verfahren zur herstellung eines die elemente mo, w, v und cu enthaltenden katalytisch aktiven multielementoxids
WO2022090019A1 (de) 2020-10-29 2022-05-05 Basf Se Verfahren zur herstellung eines schalenkatalysators

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1484299B1 (de) * 2002-03-11 2014-10-15 Mitsubishi Chemical Corporation Verfahren zur katalytischen dampfphasenoxidation
JP2005336085A (ja) * 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp (メタ)アクリル酸または(メタ)アクロレインの製造方法
KR100868454B1 (ko) * 2005-07-08 2008-11-11 주식회사 엘지화학 고정층 촉매 부분산화 반응기에서 고효율의 불포화산의제조방법
DE102007004960A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Acrylsäure
DE102007055086A1 (de) 2007-11-16 2009-05-20 Basf Se Verfahren zur Herstellung von Acrylsäure
WO2009123872A1 (en) * 2008-04-01 2009-10-08 Dow Global Technologies Inc. Procedure for the startup of a (meth)acrylic acid plant
JP5902374B2 (ja) 2009-03-26 2016-04-13 株式会社日本触媒 アクリル酸の製造方法
JP2010235504A (ja) 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
DE102009047291A1 (de) * 2009-11-30 2010-09-23 Basf Se Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
WO2015067659A1 (de) 2013-11-11 2015-05-14 Basf Se Mechanisch stabiler hohlzylindrischer katalysatorformkörper zur gasphasenoxidation eines alkens zu einem ungesättigten aldehyd und/oder einer ungesättigten carbonsäure
EP3068754B1 (de) 2013-11-11 2018-01-31 Basf Se Verfahren zur herstellung eines ungesättigten aldehyds und/oder einer ungesättigten carbonsäure
CN117730072A (zh) 2021-07-28 2024-03-19 巴斯夫欧洲公司 制备丙烯酸的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034442A2 (de) * 1980-02-08 1981-08-26 The Standard Oil Company Verfahren zur Herstellung ungesättigter Aldehyde und Säuren
EP0450596A2 (de) * 1990-04-03 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von ungesättigten Aldehyden und ungesättigten Säuren
WO2002098827A1 (fr) * 2001-05-30 2002-12-12 Mitsubishi Rayon Co., Ltd. Procede relatif a l'elaboration de (meth)acrylaldehyde et/ou d'acide (meth)acrylique

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147084A (en) 1962-03-08 1964-09-01 Shell Oil Co Tubular catalytic reactor with cooler
JPS5129124B1 (de) 1971-04-27 1976-08-24
BE793928A (fr) 1972-01-13 1973-05-02 Deggendorfer Werft Eisenbau Appareil pour la mise en oeuvre de processus chimiques exothermiques et endothermiques
US3893951A (en) 1973-02-22 1975-07-08 Standard Oil Co Catalysts for oxidation reactions
JPS5246208B2 (de) 1973-03-22 1977-11-22
DE2513405C2 (de) 1975-03-26 1982-10-21 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Acrylsäure durch Oxidation von Propylen mit Sauerstoff enthaltenden Gasen in zwei getrennten Katalysatorstufen, die in einem Röhrenreaktor hintereinander angeordnet sind
US4339355A (en) 1975-10-09 1982-07-13 Union Carbide Corporation Catalytic oxide of molybdenum, vanadium, niobium and optional 4th metal
DE2626887B2 (de) 1976-06-16 1978-06-29 Basf Ag, 6700 Ludwigshafen Katalysator für die Oxadation von (Methacrolein zu (Meth)Acrylsäure
US4203906A (en) 1977-07-13 1980-05-20 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for catalytic vapor phase oxidation
DE2903218A1 (de) 1979-01-27 1980-08-07 Basf Ag Verfahren zur herstellung von papier mit hoher trockenfestigkeit und niedriger nassfestigkeit
DE2903582B1 (de) 1979-01-31 1980-11-20 Basf Ag, 6700 Ludwigshafen Rohrbündelreaktor zur Durchführung katalytischer Reaktionen in der Gasphase
DE2909671A1 (de) 1979-03-12 1980-10-02 Basf Ag Verfahren zur herstellung von schalenkatalysatoren
DE2909597A1 (de) 1979-03-12 1980-09-25 Basf Ag Verfahren zur herstellung von 3 bis 4 c-atome enthaltenden alpha , beta -olefinisch ungesaettigten aldehyden
DE3151805A1 (de) 1981-12-29 1983-07-07 Basf Ag, 6700 Ludwigshafen Verfahren zum regenerierenden aufarbeiten von geschaedigten oxidationskatalysatoren
JPS58119346A (ja) 1982-01-06 1983-07-15 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒
US4537874A (en) 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
ES2027712T3 (es) 1987-02-17 1992-06-16 Nippon Shokubai Kagaku Kogyo Co., Ltd Catalizador para la oxidacion de una olefina o un alcohol terciario.
AU606160B2 (en) 1987-05-27 1991-01-31 Nippon Shokubai Kagaku Kogyo Co. Ltd. Process for production of acrylic acid
ES2028180T3 (es) 1987-06-05 1992-07-01 Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha Catalizador para la oxidacion de acroleina y procedimiento para su preparacion.
ES2035663T3 (es) 1989-02-17 1993-04-16 Jgc Corporation Aparato del tipo de envoltura y tubos, que tienen una placa intermedia de tubos.
CA2029277A1 (en) 1989-11-06 1991-05-07 Tatsuya Kawajiri Method for production of acrylic acid
DE4023239A1 (de) 1990-07-21 1992-01-23 Basf Ag Verfahren zur katalytischen gasphasenoxidation von propen oder iso-buten zu acrolein oder methacrolein
DE4220859A1 (de) 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
DE4302991A1 (de) 1993-02-03 1994-08-04 Basf Ag Multimetalloxidmassen
DE4335973A1 (de) 1993-10-21 1995-04-27 Basf Ag Verfahren zur Herstellung von katalytisch aktiven Multimetalloxidmassen, die als Grundbestandteile die Elemente V und Mo in oxidischer Form enthalten
DE4405060A1 (de) 1994-02-17 1995-08-24 Basf Ag Multimetalloxidmassen
ES2133599T3 (es) 1994-02-22 1999-09-16 Basf Ag Masas de oxidos multimetalicos.
DE4431957A1 (de) 1994-09-08 1995-03-16 Basf Ag Verfahren zur katalytischen Gasphasenoxidation von Propen zu Acrolein
DE4431949A1 (de) 1994-09-08 1995-03-16 Basf Ag Verfahren zur katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
DE4442346A1 (de) 1994-11-29 1996-05-30 Basf Ag Verfahren zur Herstellung eines Katalysators, bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
DE19528646A1 (de) 1995-08-04 1997-02-06 Basf Ag Multimetalloxidmassen
JP3793317B2 (ja) 1996-05-14 2006-07-05 日本化薬株式会社 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JP3775872B2 (ja) 1996-12-03 2006-05-17 日本化薬株式会社 アクロレイン及びアクリル酸の製造方法
DE19736105A1 (de) 1997-08-20 1999-02-25 Basf Ag Verfahren zur Herstellung von Multimetalloxidmassen
KR20010031245A (ko) 1997-10-21 2001-04-16 스타르크, 카르크 프로판의 아크롤레인 및(또는) 아크릴산으로의 불균질촉매화 기상산화 방법
DE19746210A1 (de) 1997-10-21 1999-04-22 Basf Ag Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein und/oder Acrylsäure
CA2271397A1 (en) 1998-05-21 1999-11-21 Rohm And Haas Company A process for preparing a catalyst
EP1260495B1 (de) 1998-05-21 2004-08-11 Rohm And Haas Company Verfahren zur Herstellung eines multimetalloxidischen Katalysators
US6384274B1 (en) 1998-09-27 2002-05-07 Rohm And Haas Company Single reactor process for preparing acrylic acid from propylene having improved capacity
DE19855913A1 (de) 1998-12-03 2000-06-08 Basf Ag Multimetalloxidmasse zur gasphasenkatalytischen Oxidation organischer Verbindungen
DE19902562A1 (de) 1999-01-22 2000-07-27 Basf Ag Verfahren zur Herstellung von Acrolein durch heterogen katalysierte Gasphasen-Partialoxidation von Propen
MY119958A (en) 1999-03-10 2005-08-30 Basf Ag Catalytic gas-phase oxidation of propene to acrylic acid
MY121878A (en) 1999-03-10 2006-02-28 Basf Ag Method for the catalytic gas-phase oxidation of propene into acrylic acid
DE19910508A1 (de) 1999-03-10 2000-09-21 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
DE19948248A1 (de) 1999-10-07 2001-04-12 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
DE19948523A1 (de) 1999-10-08 2001-04-12 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
MY121141A (en) 1999-03-10 2005-12-30 Basf Ag Method for the catalytic gas-phase oxidation of propene into acrolein
US6620968B1 (en) 1999-11-23 2003-09-16 Rohm And Haas Company High hydrocarbon space velocity process for preparing unsaturated aldehydes and acids
DE10122027A1 (de) 2001-05-07 2002-05-23 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Partialoxidation von Propan
DE10029338A1 (de) 2000-06-20 2002-01-03 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation
DE10033121A1 (de) 2000-07-07 2002-01-17 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation
DE10034825A1 (de) 2000-07-18 2002-01-31 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenoxidation von Propan
JP4871441B2 (ja) 2000-08-07 2012-02-08 株式会社日本触媒 反応器のスタートアップ方法
US6407280B1 (en) 2000-09-28 2002-06-18 Rohm And Haas Company Promoted multi-metal oxide catalyst
DE10232482A1 (de) 2002-07-17 2004-01-29 Basf Ag Verfahren zum sicheren Betreiben einer kontinuierlichen heterogen katalysierten Gasphasen-Partialoxidation wenigstens einer organischen Verbindung
DE10261186A1 (de) 2002-12-20 2004-07-08 Basf Ag Verfahren der heterogen katalysierten Gasphasenpartialoxidation von Acrolein zu Acrylsäure
DE10248584A1 (de) 2002-10-17 2004-04-29 Basf Ag Multimetalloxidmassen
DE10254279A1 (de) 2002-11-20 2004-06-03 Basf Ag Multimetalloxidmassen
DE10254278A1 (de) 2002-11-20 2004-02-26 Basf Ag Verfahren zur Herstellung einer Multimetalloxidmasse
US7038080B2 (en) 2002-09-27 2006-05-02 Basf Aktiengesellschaft Heterogeneously catalyzed gas-phase partial oxidation of acrolein to acrylic acid
US7038082B2 (en) 2002-10-17 2006-05-02 Basf Aktiengesellschaft Preparation of a multimetal oxide material
JP4193530B2 (ja) 2003-03-17 2008-12-10 株式会社ジェイテクト 電動パワーステアリング装置
DE10313209A1 (de) 2003-03-25 2004-03-04 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrylsäure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034442A2 (de) * 1980-02-08 1981-08-26 The Standard Oil Company Verfahren zur Herstellung ungesättigter Aldehyde und Säuren
EP0450596A2 (de) * 1990-04-03 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Herstellung von ungesättigten Aldehyden und ungesättigten Säuren
WO2002098827A1 (fr) * 2001-05-30 2002-12-12 Mitsubishi Rayon Co., Ltd. Procede relatif a l'elaboration de (meth)acrylaldehyde et/ou d'acide (meth)acrylique
US20040171874A1 (en) * 2001-05-30 2004-09-02 Seigo Watanabe Process for producing (meth)acrolein and/or (meth)acrylic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202048A1 (de) 2013-02-07 2013-04-18 Basf Se Verfahren zur Herstellung einer katalytisch aktiven Masse, die ein Gemisch aus einem die Elemente Mo und V enthaltenden Multielementoxid und wenigstens einem Oxid des Molybdäns ist
WO2014122043A1 (de) 2013-02-07 2014-08-14 Basf Se Verfahren zur herstellung einer katalytisch aktiven masse, die ein gemisch aus einem die elemente mo und v enthaltenden multielementoxid und wenigstens einem oxid des molybdäns ist
US9061988B2 (en) 2013-02-07 2015-06-23 Basf Se Process for producing a catalytically active composition being a mixture of a multielement oxide comprising the elements Mo and V and at least one oxide of molybdenum
WO2021213823A1 (de) 2020-04-21 2021-10-28 Basf Se Verfahren zur herstellung eines die elemente mo, w, v und cu enthaltenden katalytisch aktiven multielementoxids
WO2022090019A1 (de) 2020-10-29 2022-05-05 Basf Se Verfahren zur herstellung eines schalenkatalysators

Also Published As

Publication number Publication date
RU2361853C2 (ru) 2009-07-20
BRPI0413440A (pt) 2006-10-17
JP2007502254A (ja) 2007-02-08
TW200523245A (en) 2005-07-16
MY138925A (en) 2009-08-28
US20050038291A1 (en) 2005-02-17
RU2006107501A (ru) 2006-07-27
EP1656335A1 (de) 2006-05-17
KR20060061357A (ko) 2006-06-07
US7015354B2 (en) 2006-03-21

Similar Documents

Publication Publication Date Title
EP1159244B1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrolein
EP1979305B1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten partiellen gasphasenoxidation einer organischen ausgangsverbindung
EP1159248B1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
EP1973641B1 (de) Verfahren der heterogen katalysierten gasphasen-partialoxidation wenigstens einer organischen ausgangsverbindung
DE60105882T2 (de) Verfahren zur Herstellung von ungesättigten Aldehyden und ungesättigten Carbonsäuren
EP2627622B1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
EP1611077B1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrylsäure
WO2001036364A1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
WO2000053559A1 (de) Verfahren der katalytischen gasphasenoxidation von acrolein zu acrylsäure
WO2000053557A1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
DE19910506A1 (de) Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrolein
EP1750837A1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten gasphasenpartialoxidation wenigstens einer organischen verbindung
DE19927624A1 (de) Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
WO2005016861A1 (de) Verfahren zur herstellung von (meth)acrolein und/oder (meth)acrylsäure
DE19948241A1 (de) Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrolein
DE10337788A1 (de) Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure
EP1611080A2 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von acrolein zu acrylsäure
EP1856022B1 (de) Verfahren zur herstellung wenigstens einer organischen zielverbindung durch heterogen katalysierte gasphasen-partialoxidation
EP1611073A1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
DE10313212A1 (de) Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrolein
EP1611076A1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrylsäure
DE102006057631A1 (de) Verfahren zum Betreiben einer exothermen heterogen katalysierten partiellen Gasphasenoxidation einer organischen Ausgangsvervbindung zu einer organischen Zielverbindung
EP1613579B1 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
WO2003029177A1 (de) Verfahren zur herstellung von acrylsäure durch heterogen katalysierte gasphasenoxidation
DE102006054214A1 (de) Verfahren zum Betreiben einer exothermen heterogen katalysierten partiellen Gasphasenoxidation einer organischen Ausgangsverbindung zu einer organischen Zielverbindung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023260.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004741050

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067003020

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006522917

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006/02036

Country of ref document: ZA

Ref document number: 200602036

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2006107501

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004741050

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067003020

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0413440

Country of ref document: BR